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Comparing methods for determining landslide early
warning thresholds: potential use of non-triggering
rainfall for locations with scarce landslide data
availability

Abstract Rainfall intensity-duration landslide-triggering thresh-
olds have become widespread for the development of landslide
early warning systems. Thresholds can be in principle determined
using rainfall event datasets of three types: (a) rainfall events
associated with landslides (triggering rainfall) only, (b) rainfall
events not associated with landslides (non-triggering rainfall) only,
(c) both triggering and non-triggering rainfall. In this paper,
through Monte Carlo simulation, we compare these three possible
approaches based on the following statistical properties: robust-
ness, sampling variation, and performance. It is found that
methods based only on triggering rainfall can be the worst with
respect to those three investigated properties. Methods based on
both triggering and non-triggering rainfall perform the best, as
they could be built to provide the best trade-off between correct
and wrong predictions; they are also robust, but still require a
quite large sample to sufficiently limit the sampling variation of
the threshold parameters. On the other side, methods based on
non-triggering rainfall only, which are mostly overlooked in the
literature, imply good robustness and low sampling variation, and
performances that can often be acceptable and better than thresh-
olds derived from only triggering events. To use solely triggering
rainfal l—which is the most common pract ice in the
literature—yields to thresholds with the worse statistical properties,
except when there is a clear separation between triggering and non-
triggering events. Based on these results, it can be stated that
methods based only on non-triggering rainfall deserve wider atten-
tion. Methods for threshold identification based on only non-
triggering rainfall may have the practical advantage that can be in
principle used where limited information on landslide occurrence is
available (newly instrumented areas). The fact that relatively large
samples (about 200 landslides events) are needed for a sufficiently
precise estimation of threshold parameters when using triggering
rainfall suggests that threshold determination in future applications
may start from identifying thresholds from non-triggering events
only, and then move to methods considering also the triggering
events as landslide information starts to become more available.
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Introduction
Landslides induced by rainfall are quite frequent in mountainous
areas and represent a threat to property and population (Froude
and Petley 2018). Landslide early warning systems (LEWS) are a
mitigation measure that, if coupled with adequate emergency
plans, can save lives (Piciullo et al. 2018; Guzzetti et al. 2020).
The analysis of the conditions, in terms of precursor

characteristics, for which landslides are foreseen is essential for
LEWS. It is customary to consider only precipitation as a pre-
cursor and to derive rainfall thresholds based on two character-
istics: rainfall event duration (D) and (mean) intensity (I) or
cumulated depth, also known as event rainfall (E = I×D) (Caine
1980; Guzzetti et al. 2008). Most of the works consider a power-
law threshold, derived from the analysis of rainfall events asso-
ciated to past landslide occurrence (Brunetti et al. 2010; Segoni
et al. 2018). Some others, more recent, consider both triggering
and non-triggering events, in order to have a complete assess-
ment of the performances of the derived threshold in terms of
the so-called confusion matrix, i.e., the count of true/false posi-
tives/negatives (Berti et al. 2012; Staley et al. 2013; Peres and
Cancelliere 2014; Postance et al. 2018; Marino et al. 2020). A third
possibility, that is indeed seldom considered, is to use the non-
triggering events only. To the knowledge of the authors, this
method has been discussed only in the gray literature (http://
www.cswcs.org.tw/AllDataPos/DownLoadPos/Root3/1.3-
Glade_121106-print.pdf, last accessed 16 April 2021) or just as a
way to provide an upper bound of the uncertainty range related
to threshold identification (Zêzere et al. 2015). This method may
be particularly useful when an area is potentially prone to
landslides but only a few cases have been recorded. Prone areas
with little or no recorded landslide events may come out also as
a result of susceptibility analysis (Reichenbach et al. 2018). In
fact, a landslide may occur in an area where adequate rainfall
records started to be collected only a few decades ago, covering
a period where no other landslides have been likely recorded. In
this case, the only available information on landslide occurrence
is that, presumably, none of the preceding recorded rainfall
events has triggered landslides. Still, in this case, protecting
the area with an early warning system may be useful as a
landslide mitigation measure and/or be requested by who has
the responsibility to manage landslide risk (e.g., civil protection
agencies).

In this paper, we analyze the three mentioned methods and
compare them with respect to three statistical properties: robust-
ness, sampling variation, and performance in terms of the confu-
sion matrix. Robustness measures how the determination of
threshold is affected by the presence of errors. To this end, we
consider errors induced from exchanging triggering events with
non-triggering ones and vice versa, as this may occur for the
incompleteness of landslide inventories, or an inappropriate attri-
bution of a given rainfall event to a landslide (Gariano et al. 2015).
It should be mentioned that many other sources of uncertainty do
exist in threshold determination which have been the subject of
other studies (Nikolopoulos et al. 2014, 2015; Marra et al. 2016,
2017; Destro et al. 2017; Rossi et al. 2017; Peres et al. 2018; Marra
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2019; Gariano et al. 2020), but that the illustrated erroneous attri-
bution may be considered not quantified so far.

Sampling variation here refers to the fact that threshold param-
eters are usually estimated from a limited sample and that the true
values of the threshold parameters are unknown in the real world.
Monte Carlo simulation allows simulation of repeated sampling of
a given sampling size and to compute the sampling distribution.
The standard deviation of the sampling distribution, known as the
standard error, can be then plotted as a function of sample size, to
investigate how sensitive a threshold is to the given sample avail-
able. In other terms, sampling variation provides the precision of a
given estimation of the threshold parameters for a given sample
size. This may help answer the question: how many landslide-
triggering storms constitute a statistically significant sample for
threshold determination?

Regarding performances, it is customary to use the confusion
matrix or receiver operating characteristics (ROC) analysis, i.e., to
evaluate the quality of the predictions related to a threshold in
terms of the corresponding frequency of false/true positives/neg-
atives, often summarized by metrics such as the true skill statistic
(Peirce 1884).

Our analysis is based on the use of synthetic rainfall-landslide
data generation through the Monte Carlo simulation approach,
combining stochastic generation of rainfall events with physically
based infiltration and slope stability models, presented in our
previous work (Peres and Cancelliere 2014, 2018), calibrated and
validated for typical hillslopes prone to landslides in the Peloritani
Mountains area, Sicily, Italy.

Methods and data

Threshold estimation methods
We refer to the case of power-law intensity-duration thresholds:

I ¼ aDb ð1Þ

where I and D are rainfall event intensity and duration, respec-
tively, while a and b are the two parameters to be estimated based
on the data. In our scheme, as usual, we consider that an alarm for
possible landslide occurrence is issued when I ≥ aDb.

The methods for estimation of parameters that we compare are
the following (Fig. 1):

1. Frequentist P, i.e., the so-called frequentist method (Brunetti
et al. 2010; Peruccacci et al. 2012) applied to rainfall events
associated to landslides (triggering rainfall only—“positives”)

2. Frequentist N, the frequentist method applied to rainfall
events not associated to landslides (non-triggering rainfall
only— “negatives”)

3. Frequentist PN, namely methods using both triggering and
non-triggering events (positives and negatives) and an optimi-
zation procedure applied to an indicator based on the confu-
sion matrix

The Frequentist P method is widely described and used in
previous works. It is the most commonly adopted method for
threshold identification (Piciullo et al. 2017) and software has been

made available to apply it to any suitable case study (Melillo et al.
2018). Here, we recall that it basically consists in applying the
following procedure: (i) linear regression of the data in the
double-logarithmic plane, where only triggering events are con-
sidered, and (ii) parallel translation of the regression line such that
the probability of non-exceedance is a fixed (low) value. In
performing the analysis, the residuals of the regression are con-
sidered to be normally distributed with zero mean (cf. Fig. 1). In
the case of Frequentist P, it is customary to choose a 5% of
probability of non-exceedance by triggering events. Conversely,
for the Frequentist N, we consider the choice of a threshold with
5% of probability of exceedance by non-triggering events. For the
third method, we search the threshold that maximizes a given
function of the confusion matrix, representing the trade-off be-
tween correct and wrong predictions. For the purpose, we apply
the particle swarm optimization algorithm implemented within
MATLAB®, so to find the global maximum of the true skill statistic
(Wilks 2006):

TS ¼ F I > aDbjP� �
−F I > aDbjN� � ð2Þ

where F(I > aDb| P) is the true positive rate or ROC sensitivity, an
estimation of the conditional probability to predict a landslide (a
positive, P) given that it occurred, and F(I > aDb| N), the false
positive rate, an estimation of the conditional probability that a
landslide is predicted given that no landslide (a negative, N) has
been observed. For a threshold that perfectly separates triggering
and non-triggering rainfall events, TS = 1, while TS = 0 for a thresh-
old performing no better than a random guess. Indeed, the three
illustrated methods can all be framed in terms of the last one
(Frequentist PN), as special cases where only a column of the
confusion matrix is taken into account (see Fig. 2). This consider-
ation provides already some insights on the possible performances
of the methods: Frequentist P aims at obtaining a fixed (low)
probability of false negatives (missed alarms), Frequentist N aims
at obtaining a fixed (low) probability of false positives (false
alarms). Hence, there is no control of the false positives (false
alarms) and of the false negatives (missed alarms), respectively;
so this research aims also at understanding which possible ten-
dencies can be derived for the part of the confusion matrix that is
not explicitly taken into account (see the “Results and discussion”
section). On the other side, by construction, the threshold from
Frequentist PN, built using all elements of the confusion matrix,
allows taking into account the trade-off between false and true
predictions. Another aspect that is noteworthy to be explicitly
mentioned is that the number of negatives (non-triggering
rainfall events) is generally of one order of magnitude greater than
the number of positives (see later in Table 2). This has impacts on
the investigated properties of the three analyzed methods.

Assessment of statistical properties
Triggering and non-triggering events are generated via the Monte
Carlo simulation approach that we developed in our previous
work, as cited in the “Introduction”—some more details are
recalled in Section “Synthetic data generation”. What is relevant
here is that Monte Carlo simulation allows generating a virtual se-
quence of rainfall events as long as desired, and then to dichotomize
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the events into triggering and non-triggering based on slope stability
analysis. Then, the generated events can be analyzed according to the
three methodologies illustrated in the previous section.

For each sample size M (from 2000 to 100,000 rainfall events),
n = 30 realizations are drawn, and thresholds are determined for
each sample, so to explore sampling variation. This variation
consists in the dispersion of threshold parameter estimates as
obtained from different samples of the same size (Everitt and
Skrondal 2010). Then, sampling variation is visualized by plotting
the thirty thresholds for each sample size, as well as the normal-
ized standard errors of threshold intercept and slope as functions
of sample size. The normalization is made with respect to the
reference threshold parameter values obtained using the entire
dataset of 3,000,000 generated rainfall events (see the “Synthetic
data generation” section).

For what concerns robustness, it must be acknowledged that
somewhat different meanings are used for this concept. Hence, it
may be useful to recall a standard definition. According to the
Oxford dictionary of Statistics (Upton and Cook 2008), robustness
measures how “the outcome of a statistical procedure is affected
by the presence of a small number of unusual or incorrect values.”
Here, to measure robustness, we consider a “polluted” dataset
where the p % of the triggering rainfall events is randomly
assigned to non-triggering events. In this way, we try to mimic
the effect of missing landslide events in inventories. At the same
time, an identical number of non-triggering rainfall events is
randomly assigned to triggering events, to emulate inappropriate
attribution of rainfall events to a landslide, which may occur
mainly because the nearest rain gauge available records a rainfall
event that differs from the one in the known location of the
landslide, or for an imprecise knowledge of the triggering instant.
Here, we consider the case of p = 10%. This scheme keeps unvaried
the number of triggering and non-triggering events for a given
simulation. For the sake of clarity, it may be noteworthy to men-
tion that it would have been unrealistic to take the p % of non-
triggering rainfall events and attribute it to landslide events, as the
number of the erroneous triggering rainfall events would generally
exceed the number of true landslide events (cf. end of the “Thresh-
old estimation methods” section and later Table 2).

Regarding performance of thresholds, as discussed again in the
“Threshold estimation methods” section, some entries of the con-
fusion matrix are assigned by construction from the methods
(with respect to their own calibration sample). Nevertheless, for
Frequentist P and Frequentist N methods, the false positive rates
and true positive rates are respectively unassigned, so it is still
useful to plot the true skill statistic TS, which can be used as a
single metric of performance combining the four entries of the
confusion matrix. For a more rigorous assessment of this aspect,
the TS is computed using the thresholds estimated on each sample
size against the reference complete dataset of 3,000,000 rainfall
events. In fact, the value of the TS computed in this way—given
that the scatter plot of both triggering and non-triggering events
remains the same—is a measure of how the threshold is placed
within the I-D plane. This is particularly useful as a complement to
the information given by the variation of the standard error of
threshold parameters with sample size. It is known that two
thresholds having different a and b may instead be located quite
nearly in the I-D plane, as a lower value of a can be compensated
by a lower value of b (less steep). Also, due to the logarithmic

scale, thresholds with the intercept parameter that differ quite
significantly can be instead very close in the log(I)-log(D) plane
(see for instance Fig. 4 and Table 2, PN vs. P threshold for the case
of τ = 0).

Synthetic data generation
The stochastic rainfall and the infiltration and slope stability
model are calibrated based on climate, geomorphological, hydro-
logical, and geotechnical characteristics of hillslopes in the
Peloritani Mountains area, Sicily, Italy (Fig. 3). The area has been
described in many other studies (De Guidi and Scudero 2013;
Schilirò et al. 2015; Stancanelli et al. 2017; Cama et al. 2017), and
a detailed description on how the models have been calibrated and
validated is presented in Peres and Cancelliere (2018). Hence, we
illustrate only briefly the approach for data generation—the read-
er is referred to the cited study for more details.

The stochastic model generates rainfall events that have a
duration D and a constant intensity I = E/D. Total event depth E
and duration D are generated through a bivariate distribution
obtained via a copula approach, while storm interarrivals U are
generated through a separate independent probability distribu-
tion. Generated rainfall events are separated by at least 24 h of
no rain. The generated rainfall data are inputted to the infiltration
model, which is the extension of the Iverson (2000) diffusive
model for a finite soil depth, based on a linearization of Richards’
vertical infiltration equation. This solution is implemented within
TRIGRS v.1 (Baum et al. 2010). We have made our own MATLAB®
code to better couple the stochastic model with the infiltration
model. The infiltration model provides the pressure head to com-
pute the factor of safety according to the infinite slope equation.
The initial conditions to each rainfall event are computed by a
drainage model that takes the maximum pressure head computed
for the previous rainfall event and makes it decay according to a
negative exponential law, with time constant τ, resembling the
linear reservoir model for sub-horizontal drainage. More complex
models could have been applied, such as those that consider
variably saturated conditions during infiltration. For instance, this
is done by the more recent TRIGRS v.2 software and its parallel
implementation (Alvioli and Baum 2016; Palazzolo et al. 2021).
However, the diffusive model based on TRIGRS v.1 which we apply
here has proven sufficiently reliable for many cases, including the
area considered in this study. This allowed to run the high number
of simulations required in this study in a reasonable computation
time.

The rainfall stochastic model has been calibrated on the hourly
rainfall data observed at Fiumedinisi for a period of about 9 years
(from 5 January 2002 to 23 February 2011). This rain gauge is near
the Giampilieri area where on 1 October 2009 a slide-to-flow
regional event was occurred, killing 37 persons. Rainfall model
calibration has been performed separately for three statistically
homogeneous periods of the year (JFMA, MJJA, SOND), leading to
the distributions and parameters reported in Table 2 of Peres and
Cancelliere (2018). The average of the number of rainfall events per
year is 45.36, which conversely means that 1000 events correspond
to about 22 years of recordings.

Regarding the hydrologic and geomechanical properties for the
landslide model, these are shown in Table 1.

The value of τ for the drainage model can also be varied, so to
speculate on the possible relevance of antecedent rainfall memory
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Fig. 1 Illustration of the three possible methods for determining landslide-triggering thresholds
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of the hillslope. The smaller the τ, the faster the soil drains during
dry intervals between rainfall events, and the lesser antecedent
rainfall is important for landslide occurrence. This means that in
the limit case of τ = 0, antecedent rainfall has no importance and I
and D are the only factors influencing landslide triggering (ideal
situation). We have considered three cases τ = 0, τ = τ0 = 2.75 days
and τ = 2τ0 = 5.49 days, performing a sensitivity analysis with
respect to the I-Dmodel structural uncertainty—as this parameter
controls the degree of confusion between triggering and non-
triggering rainfall events described in terms of the considered
predictors I and D. In the case of τ = 0, there is a curve that can
perfectly separate triggering and non-triggering events, though
this differs slightly from a power-law (straight line in the logD-
logI plane). Figure 4 compares the thresholds for a dataset of
3,000,000 rainfall events, which are assumed as the true thresholds
for each method, useful for computing the normalized standard
error of threshold parameters varying sample size (cf. “Methods
and data” section). Table 2 shows, for each value of the recession
constant τ, the ratio between the number of landslides and the
number of rainfall events, and the thresholds corresponding to the
entire datasets.

Results and discussion

Main case: intermediate structural uncertainty (Peloritani Mountains)
We present the results relative to the case of τ = τ0, which repre-
sents the intermediate level of structural uncertainty, and the value
that can be deemed representative for the case study of the
Peloritani mountains. From Fig. 5, it can be seen that the

Frequentist P method is the least robust. Errors tend to bring to
an underestimation of the threshold parameters that would further
increase the already high false alarm rates typical of this method.
The Frequentist PN is more robust, but less than the Frequentist N.
This happens because the former method is still affected by the
errors in triggering rainfall data, while the latter is not significantly
affected, as the impact of errors on non-triggering rainfall is lower
in a relative sense. The same figure provides also some insight on
sampling variation (width of the area spanned by the black lines).
The low sampling variation of the Frequentist N is evident. How-
ever, for a better comparison of the Frequentist P and PN methods,
it remains still useful to see how single threshold parameter esti-
mation is affected by sample size (Fig. 6). As can be seen from the
plots of normalized standard error varying sample size, for both
parameters the Frequentist PN is generally way less variable than
Frequentist N. Starting from a sample size of 30,000 rainfall
events, both methods have very close normalized standard errors
for the intercept parameter.

Regarding the performances, as already mentioned, the PN
method performs the best, by construction (Fig. 7). What is inter-
esting to see is that the Frequentist N could tendentially provide a
performance closer to the best trade-off between correct and
wrong predictions than the Frequentist P. Indeed, it may be true
that this last method is cautionary as it reduces false negatives
(potentially missed alarms) as much as possible, but it is also true
that the false positive rate is too high to a point that it can induce a
distrust in the early warning system eventually built on a so-
determined threshold (cry-wolf syndrome). This plot gives also
additional information on sampling variation of the thresholds;

Fig. 2 Links among the three considered methodologies in terms of the confusion matrix

Fig. 3 Maps showing a the Peloritani Mountains area in Sicily, Italy, with the location of the rain gauge and of the town of Giampilieri and b the landslides occurring in
the surroundings of the town on 1 October 2009 (red-colored areas)
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with respect to Fig. 6, it reflects the variability of the position of the
threshold taking into account both threshold parameters simulta-
neously. In fact, as already mentioned at the end of the “Assess-
ment of statistical properties” section, for a given set of
parameters, another threshold with a higher intercept may have
a steeper (negative) slope that compensates the intercept and
makes it quite similar to the given threshold. The TS variability
does not suffer from this issue, and reflects the actual position of
the threshold in the I-D plane. It can be seen that performances get
stable for the PN method starting from 15,000 rainfall events
(about 100 landslide-triggering storms), while for the P method
threshold position starts to reduce again for 30,000 rainfall events
(about 200 landslide-triggering storms, cf. Table 2). These mini-
mum data availability requisites—that, in addition, are to be
deemed as referred to an area with homogenous landslide
phenomenology—are not met by several past studies focussed
on threshold determination: just to give an example, the Caine
(1980) global threshold was based just on 73 landslide-triggering
storms (non-triggering events were not considered).

Sensitivity analysis for different levels of structural uncertainty
The results presented vary with the level of structural uncertainty,
which can be shown from analogous plots relative to τM = 0, and τ

= 2τ0. In the first case (Figs. 8, 9, and 10), which is an “ideal”
situation, it corresponds to a negligible structural uncertainty for
the I-D model; both the Frequentist PN and Frequentist N
methods are very robust, despite the Frequentist P, which is re-
vealed again to be too sensitive to the presence of errors in the
dataset (Fig. 8). These errors induce once more a very high under-
estimation of the threshold that may induce a dramatic increase in
false positives. Regarding the sampling variation of the parame-
ters, Frequentist PN and Frequentist P have a low sampling vari-
ation (Fig. 9). However, when looking at the performances (Fig.
10), clearly due to the low structural uncertainty of the I-D model
in this case, the Frequentist P method performs well as the
Frequentist PN, while the Frequentist N has slightly lower perfor-
mances. This last method still has good performances, and repre-
sents a cautionary option as it does not uselessly leave any
triggering events below the threshold (no false negatives), which
in the case of the Frequentist P still remain, by construction, the
5% of total positives.

In the case of an increased level of structural uncertainty
(recession constant τ = 2τ0), robustness improves for both
Frequentist P and PN methods (Fig. 11). This occurs when, as in
this case, the impact of these errors may be comparable with the
level of structural uncertainty. On the other side, and differently
from the other two cases analyzed above, sampling variation of the
threshold intercept for the Frequentist P method is lower than that
for the Frequentist PN, while for the threshold slope, normalized
standard errors have similar values for these two methods (Fig. 12).
Nevertheless, when looking at the plot of the true skill statistic vs.
sample size (Fig. 13), it can be seen that for the PN method, the
dispersion of the TS is way lower than that for the P method. This
again means that, while single parameters may vary widely for the
PN method, the position of the thresholds remains quite stable in
this case, and thus again sampling variation of the threshold as a
whole is dramatically lower for the PN and N methods with respect
to the P method. Looking at the same plot, it can be seen that
performances of this last method are dramatically lower than
those of the other two methods.

Conclusions
In this paper, we have analyzed some relevant statistical properties
of rainfall intensity-duration thresholds for landslide early warn-
ing determined by three different methods, i.e., based on the
analysis of (i) triggering rainfall events only (Frequentist P), (ii)

Table 1 Hydrologic and geomechanical properties of a representative hillslope in
the Peloritani Mountains area, Sicily, Italy

Property Units Value

Soil friction angle ° 39

Soil cohesion kPa 4

Saturated soil unit weight kN/m3 19

Unit weight of water kN/m3 9.8

Soil saturated water content - 0.35

Soil residual water content - 0.045

Saturated hydraulic conductivity m/s 2 × 10−5

Saturated hydraulic diffusivity m2/s 5 × 10−5

Soil depth m 2

Terrain slope ° 40

Recession constant for drainage, τ Days 2.75

Fig. 4 Reference thresholds obtained using the whole virtual dataset of 3,000,000 rainfall events, for three values of the recession constant τ
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non-triggering rainfall events only (Frequentist N), and (iii) both
triggering and non-triggering events (Frequentist PN). The first
approach is the most commonly applied in the literature, while the
last method has been mentioned only by a few scholars, mainly
just as a way to provide an upper bound of the uncertainty range
related to threshold identification. The third approach has been
applied in more recent studies, and it presents the advantage of
allowing the estimation of all entries of the confusion matrix, and
thus to optimize performances in terms of both true positive and
false positive ratios, which makes this approach the one that
performs best in terms of the skill in separating triggering from
non-triggering events. The results show that it is also a quite
robust method. On the other side, Frequentist P method is poorly
robust, can potentially lead to a high number of false alarms, and
seems quite unstable with respect to the specific sample at hand.
For a reasonable application of the Frequentist P method, at least
200 landslide-triggering storms should be available for a given

geomorphologically homogeneous area, as otherwise the estima-
tion of threshold parameters would be too imprecise (high sam-
pling variation). For the frequentist PN method, the position of the
threshold can be deemed stable starting from a sample with one
hundred triggering events (half than that for the Frequentist P).
Regarding the Frequentist N method, the performed analysis
shows that it is the most robust and least variable. It also seems
to have a greater potential than the Frequentist P method in
providing performances that are a better compromise between
false alarms and missed alarms. All these considerations lead to
the conclusion that Frequentist N has not received the attention
that it must deserve as a method for determining thresholds in its
own right. A practical implication of the good properties of the
Frequentist N method is that it could be a valid method to derive
rainfall thresholds in locations where only few landslides have
been recorded. Another point is that given the low robustness of
the Frequentist P method, very low data points in the I-D plane

Table 2 Number of landslides per thousand rainfall events (P/(P + N) rate) and reference thresholds for the three methods, varying the value of the recession constant τ

τ (days) P/(P+N) rate ‰ PN threshold P threshold N threshold

2.75 7.7 I = 82.86 D−0.92 I = 3.65 D−0.34 I = 6.61 D−0.36

0 5.6 I = 197.80 D−1.00 I = 118.23 D−0.93 I = 6.61 D−0.36

5.49 13.5 I = 41.42 D−0.86 I = 0.86 D−0.12 I = 6.61 D−0.36

Fig. 5 Robustness test: for the three methods investigated, black lines represent thresholds for the error-free dataset while the red lines represent those derived from a
polluted dataset (p = 10% of triggering events are exchanged with non-triggering, and vice versa): sample sizes 5000 (a) and 50,000 (b). The different thresholds for the
Frequentist N method vary little and are not visible in the plot
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must be carefully checked for errors and thus possibly removed. If
they are not errors in the dataset, the presence of low-intensity
triggering points is a sign that only intensity and duration may not
be sufficient to obtain a threshold with the necessary reliability,
and that approaches taking into account predisposing hydrologi-
cal factors must be investigated (Bogaard and Greco 2016, 2018;
Thomas et al. 2019, 2020; Marino et al. 2020). As an overall
conclusion, the analysis we have carried out suggests that future
studies for threshold determination for newly investigated areas
may start using the Frequentist N method first, and then move to

the Frequentist PN as more data becomes available, as this method
delivers globally the best of the techniques explored herein.
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Fig. 8 Robustness test for the case of negligible structural uncertainty (recession constant τ = 0): for the three methods investigated, black lines represent thresholds for
the error-free dataset while the red lines represent those derived from a polluted dataset (p = 10% of triggering events are exchanged with non-triggering, and vice
versa): sample sizes 5000 (a) and 50,000 (b). The different thresholds for the Frequentist N method vary little and are not visible in the plot

Fig. 9 Variability of threshold parameters against sample size in terms of the normalized standard error, for the case of negligible structural uncertainty (recession
constant τ = 0). In this case, there are 5.6 landslide events per 1000 rainfall events
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Fig. 10 True skill statistic of partial datasets varying sample size. The central lines represent the average of the TS within the 30 samples of each size, while the bands are
the interquartile ranges. Case of negligible structural uncertainty (recession constant τ = 0). In this case, there are 5.6 landslide events per 1000 rainfall events

Fig. 11 Robustness test for the case of high structural uncertainty (recession constant τ = 5.49 days—double respect to the reference case): for the three methods
investigated, black lines represent thresholds for the error-free dataset while the red lines represent those derived from a polluted dataset (p = 10% of triggering events
are exchanged with non-triggering, and vice versa): sample sizes 5000 (a) and 50,000 (b). The different thresholds for the Frequentist N method vary little and are not
visible in the plot
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Fig. 12 Variability of threshold parameters against sample size in terms of the normalized standard error, for the case of high structural uncertainty (recession constant τ
= 5.49 days). In this case, there are 13.5 landslide events per 1000 rainfall events

Fig. 13 True skill statistic of partial datasets varying sample size. The central lines represent the average of the TS within the 30 samples of each size, while the bands are
the interquartile ranges. Case of high structural uncertainty (recession constant τ = 5.49 days). In this case, there are 13.5 landslide events per 1000 rainfall events
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