
Received October 29, 2020, accepted November 12, 2020, date of publication November 16, 2020,
date of current version December 1, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.3038333

Adaptive Quadrature Schemes for Bayesian
Inference via Active Learning
FERNANDO LLORENTE FERNÁNDEZ 1, LUCA MARTINO2, VICTOR ELVIRA3,
DAVID DELGADO1, AND JAVIER LÓPEZ-SANTIAGO4
1Department of Statistics, Universidad Carlos III de Madrid, 28911 Leganés, Spain
2Department of Signal Processing, Universidad Rey Juan Carlos, 28933 Fuenlabrada, Spain
3School of Mathematics, The University of Edinburgh, Edinburgh EH9 3FD, U.K.
4Department of Signal Processing, Universidad Carlos III de Madrid, 28911 Leganés, Spain

Corresponding author: Fernando Llorente Fernández (felloren@est-econ.uc3m.es)

ABSTRACT We propose novel adaptive quadrature schemes based on an active learning procedure.
We consider an interpolative approach for building a surrogate posterior density, combining it with Monte
Carlo sampling methods and other quadrature rules. The nodes of the quadrature are sequentially chosen
by maximizing a suitable acquisition function, which takes into account the current approximation of the
posterior and the positions of the nodes. This maximization does not require additional evaluations of the
true posterior. We introduce two specific schemes based on Gaussian and Nearest Neighbors bases. For
the Gaussian case, we also provide a novel procedure for fitting the bandwidth parameter, in order to build
a suitable emulator of a density function. With both techniques, we always obtain a positive estimation of
the marginal likelihood (a.k.a., Bayesian evidence). An equivalent importance sampling interpretation is
also described, which allows the design of extended schemes. Several theoretical results are provided and
discussed. Numerical results show the advantage of the proposed approach, including a challenging inference
problem in an astronomic dynamical model, with the goal of revealing the number of planets orbiting a star.

INDEX TERMS Active learning, Bayesian quadrature, emulation, experimental design, Monte Carlo
methods, numerical integration.

I. INTRODUCTION AND BRIEF OVERVIEW
In this work, we consider the approximation of intractable
integrals of type

I =
∫
X
f (x)π̄ (x)dx,

where f (x) is a generic integrable function and π̄ (x) is a
probability density function (pdf). These integrals usually
appear in Bayesian inference problems where π̄ (x) represents
the posterior distribution of the variable of interest given the
observed data. In the next subsections, we briefly review sev-
eral approaches presented in the literature, which are related
to the methodology presented this work.

A. MAIN FAMILIES OF QUADRATURE METHODS
With the term numerical integration, we refer to a broad
family of algorithms for calculating definite integrals, and
by extension, the term is also used to describe the numerical
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solution of differential equations. Although exact analyti-
cal solutions to integrals are always desirable, such ‘‘uni-
corns’’ are rarely available, specially in real-world systems.
Indeed, many applications in signal processing, statistics,
and machine learning inevitably require the approximation of
intractable integrals [1]–[3]. In particular, Bayesian methods
need the computation of posterior expectations which, gener-
ally, are analytically intractable [2], [4]. The term numerical
quadrature (or simply quadrature) is employed as a synonym
for numerical integration [1]. More specifically, a quadrature
formula is often stated as a weighted sum of integrand eval-
uations at specified points (a.k.a., nodes or knots) within the
domain of integration.

1) DETERMINISTIC QUADRATURES
A first family of numerical integration methods are the
deterministic quadrature rules. A subclass within this fam-
ily is the Newton-Cotes quadrature rules [1]. The Newton-
Cotes formulas are based on evaluating the integrand at
equally spaced nodes and are obtained by substituting the
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integrand function with a corresponding polynomial interpo-
lation. Smaller approximation errors can often be obtained
by using the Gaussian quadratures, where the nodes are
optimally placed [1], [5], [6]. However, their applicability is
restricted to certain particular cases.

2) MONTE CARLO (MC) METHODS
A second family is formed by stochastic quadrature rules
based on MC sampling methods [2], [4], such as Markov
chain Monte Carlo (MCMC) and importance sampling algo-
rithms. In this framework, the nodes of the quadrature rules
are randomly chosen. However, the resulting estimators often
have a high variance, specially when the dimension of the
problem grows.

3) VARIANCE REDUCTION
A third family, formed by the variance reduction techniques
[2], [7], combines elements of the first two classes. In order
to reduce the variance of the corresponding Monte Carlo
estimators, deterministic procedures are included within the
sampling algorithms, e.g., conditioning, stratification, anti-
thetic sampling, and control variates [7]. Other interesting
examples are the Riemann-based approximations which are
combinations of a Riemann quadrature and random sampling
[2, Chapter 4.3]. The Quasi-Monte Carlo (QMC) algorithms
can be also included in this family. In QMC, deterministic
sequences of points are generated (based on the concept of
low-discrepancy) and then used as nodes of the corresponding
quadrature [3]. Several other combinations of the previous
classes above, mixing determinism with random sampling
schemes, can be found in the literature [8]–[10].

4) BAYESIAN QUADRATURE (BQ)
The BQ framework represents a fourth approach which
employs Gaussian Process (GP) regression algorithms for
approximating the integrand function (and, as a consequence,
the resulting integral as well) [11]–[13]. In the last years,
this approach has raised the interest of several authors. One
problem with this approach is that, in some cases, a negative
estimation of the marginal likelihood can be obtained. Some
possible solutions have been proposed, although they are
quite complex based on successive approximations [14], [15].
In this work, we provide two novel and much simpler alterna-
tives for solving this issue. Moreover, unlike this work, most
contributions in BQ literature focus on the GP approximation
of the function f (x) [14]–[16], although other papers on BQ
describe quite general frameworks where f (x) can contain the
likelihood or π (x) [11]–[13]. A connection between classical
quadratures and BQ can be found in [17]. Finally, theoretical
guarantees for adaptive BQ schemes can be found in the
insightful work of [18].

B. EMULATION OF COMPLEX MODELS
Many Bayesian inference problems involve the evaluation
of computationally intensive models, because of (i) the use
of particularly complex systems or (ii) a large number of

available data (or both). To overcome this issue, one possible
strategy consists in replacing the true model by a surrogate
model (a.k.a. an emulator), that could be also adaptively
improved [19]–[21]. Then, Bayesian inference is carried out
on this approximate, cheaper model.

1) USE OF THE EMULATOR
The emulator can be applied mainly in three different ways.
(a) One possibility is to apply MC sampling methods con-
sidering the surrogate model as the target pdf [22], [23].
This is used to speed up the MC algorithms. (b) In order
to improve the efficiency of MC estimators, a second option
is to use the emulator as a proposal density within an MC
technique, as we discuss in Section I-C [24]–[26]. (c) A third
possibility is to replace the true posterior with the emulator in
the integrals of interest, and computing them [11]–[13]. Here,
we mainly focus on the last approach, also combining it with
MC methods (and other quadrature rules).

2) CONSTRUCTION OF THE EMULATOR
In the literature, the surrogate model is often built by using a
regression algorithm, like a GP model or similar techniques
[27], [28]. This probabilistic approach provides also uncer-
tainty quantification that is used for estimating the approx-
imation error and adapting the emulator [29]. Sometimes,
the approximation regards only some part of the model or is
applied in a different domain (as the log-domain) [30]–[33].
Other authors employ density estimation techniques for
building the surrogate model, and then using it as a proposal
density within MC algorithms [34]–[36] or for replacing the
true posterior (again within MC methods) [37].

C. INTERPOLATIVE PROPOSAL DENSITIES WITHIN
MONTE CARLO SCHEMES
The first use of an interpolative procedure for building a
proposal density is ascribable to the adaptive rejection sam-
pling schemes [24], [38]–[40]. The proposal is formed by
polynomial pieces (constant, linear, etc.). Several works have
proposed the use of interpolative proposal densities within
MCMC algorithms [25], [41]–[43]. For more details, see
also [4, Chapters 4 and 7]. Their use within an impor-
tance sampling scheme is considered in [44]. The adap-
tation is carried out considering different statistical tests,
by measuring the discrepancy between the emulator and the
posterior [26].

The conditions needed for applying an emulator as an
proposal density are discussed in [26]. For this purpose, we
need to be able to: (a) update the construction of the emulator,
(b) evaluate the emulator, (c) normalize the function defined
by the emulator, and (d) draw samples from the emulator.
It is not straightforward to find an interpolative construction
which satisfies all those conditions jointly, for an arbitrary
dimension of the problem. However, the resulting algo-
rithms (when they can be applied) provide good performance,
confirming that the interpolative approach deserves more
attention.
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D. CONTRIBUTIONS
In this work, we leverage the advances in different fields of
numerical integration and emulation, in order to design algo-
rithms which build (a) better emulators and (b)more efficient
quadrature rules. The novel algorithms are adaptive schemes
which automatically select the nodes of the quadrature and
of the resulting emulator. Namely, the set of nodes used by
the emulator is sequentially updated bymaximizing a suitable
acquisition function. Below, we list the main contributions of
the work.
•We propose a novel design of a suitable acquisition func-

tion defined as product of the posterior and a diversity term,
taking into account the current positions of the nodes. Note
that, unlike several works in the literature, e.g., [19], [20],
[45], [46], we consider jointly both: the information regarding
the posterior and the distances among the current nodes. For
the selection of the nodes, some authors also consider the
use of MCMC runs [22] or more sophisticated procedures
combining sampling and deterministic quadrature schemes
for selecting the nodes [47]. Unlike [22], [47], our adaptive
approach is based on an active learning procedure. We also
provide cheap versions of the acquisition function. The cheap
acquisition functions do not require the evaluation of the
posterior but only the evaluation of the emulator. The overall
schemes are then parsimonious techniques which require the
evaluation of the posterior density only at the nodes, sequen-
tially selected by optimizing a cheap acquisition function.
The proposed active learning strategy is also connected to
the idea of obtaining a finite set of weighted representative
points which can summarize, in some sense, a distribution.
This topic has gained attention in the last years [48]–[51].
• We consider an interpolative approximation of the pos-

terior density π̄ (x), where the interpolant is expressed as a
linear combination of generic kernel-basis functions. Unlike
several BQ techniques in [14]–[16], we approximate π̄ (x)
instead of the function f (x) in the integral I . For this purpose,
we also propose the combination of the interpolant approach
with MC and other quadrature schemes.
•With respect to other schemes in the literature [12], [13],

our assumptions regarding the kernel-basis functions are less
restrictive, e.g., they do not need to be symmetric. We could
also employ different type of bases jointly, e.g., one different
basis for each node. For instance, our framework allows the
use of nearest neighbors (NN) basis functions, which presents
several advantages: it does not require any matrix inversion
and the coefficients of the linear combination (which defines
the interpolator) are always positive [52], obtaining always a
positive estimation of the marginal likelihood. These benefits
are very appealing as shown in [14], [15], [52], [53].
• Section V presents an importance sampling (IS) interpre-

tation of the proposed schemes, where the weights involve the
interpolant instead of the true posterior density. This again
shows that we can improve the Monte Carlo approximations
without requiring additional evaluations of π̄ (x). Moreover,
the alternative IS interpretation allows to design different

techniques. One possible example is given in the final part
of Section V.
•We also introduce a novel procedure for fitting the band-

width parameter of the Gaussian kernel in order to build an
emulator of a density function. In this scenario, the proposed
strategy performs better than the standard maximization of
the marginal likelihood of the corresponding GP. Using this
tuning procedure, we always obtain positive estimation of the
marginal likelihood, even with Gaussian kernels (this is an
important point; see [14], [15]).

We provide the theoretical support for the proposed meth-
ods in Section VII. Most of the convergence results are
mainly known in the scattered data approximation literature
[54]–[56]. The efficiency of the proposed schemes is also
confirmed by several numerical experiments (in Section VIII)
with different target pdfs and dimensions of the problem. One
of them is also a challenging astronomical application, where
the goal is to detect the number of exoplanets orbiting a star,
and infer their orbital parameters.

II. INTERPOLATIVE QUADRATURES FOR
BAYESIAN INFERENCE
In many signal processing applications, the goal is to infer
a variable of interest given a set of observations or measure-
ments. Let us denote the variable of interest by x ∈ X ⊆ Rdx ,
and let y ∈ Rdy be the observed data. The posterior pdf is then

π̄ (x) = p(x|y) =
`(y|x)g(x)
Z (y)

,

where `(y|x) is the likelihood function, g(x) is the prior pdf,
and Z (y) is the model evidence (a.k.a. marginal likelihood).
Generally, Z (y) is unknown, so we are able to evaluate the
unnormalized target function,

π (x) = `(y|x)g(x).

Usually, the analytical computation of the posterior density
π̄ (x) ∝ π (x) is unfeasible, hence numerical approximations
are required. Our goal is to approximate integrals of the form

I =
∫
X
f (x)π̄ (x)dx =

1
Z

∫
X
f (x)π (x)dx, (1)

where f (x) is some integrable function, and

Z =
∫
X
π (x)dx. (2)

In the literature, random sampling or deterministic quadra-
tures are often used [2], [4], [57]. In this work, we consider
alternative quadrature rules based on an adaptive interpolative
procedure. The adaptation is obtained by applying an active
learning scheme.

A. INTERPOLATIVE APPROACH
Let us consider a set of distinct nodes x1, . . . , xN ∈ X and
some non-negative kernel or basis function, k(x, x′) : X ×
X → R+ ∪ {0} (i.e., k(x, x′) ≥ 0). From now on, we use the
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terms basis or kernel as synonyms. The interpolant of π (x) is
as follows

π̂ (x) =
N∑
i=1

βik(x, xi), (3)

where the coefficients βi must be such that π̂ (x) interpolates
the points π (x1), . . . , π (xN ), that is, π̂ (xi) = π (xi) for i =
1, . . . ,N . Hence, the βi are the solutions to the following
linear system

β1k(x1, x1)+ . . . .+ βN k(x1, xN ) = π (x1),
β1k(x2, x1)+ . . . .+ βN k(x2, xN ) = π (x2),

...

β1k(xN , x1)+ . . . .+ βN k(xN , xN ) = π (xN ).

(4)

Denoting (K)i,j = k(xi, xj) (1 ≤ i, j ≤ N ), β =

[β1, . . . , βN ]> and d = [π (x1), . . . , π (xN )]>, Eq. (4) can be
written in matrix form as Kβ = d. Thus, the coefficients are
given by

β = K−1d. (5)

Note that, depending on the choice of kernel and its parame-
ters, these coefficients can be negative.
Remark 1: The only requirement regarding the functions

k(x, x′) is that the interpolation matrix K must be non-
singular (i.e., invertible) for any set of distinct nodes.
The symmetry of k(x, x′) is not required. Different type of
bases can be employed, for instance, one for each node xi,
i.e., ki(x, xi).
Remark 2: For simplicity, in this first part of the paper,

we consider a fixed number of nodes N . However, a key point
of the work is the adaptation procedure in Section VI, where
new nodes are sequentially added.

A detailed theoretical analysis is provided in Section VII.

B. INTERPOLATIVE QUADRATURE SCHEMES
Wecan approximate both Z and I by substituting the trueπ (x)
with its interpolant π̂ (x).

1) APPROXIMATION OF Z
Let

∫
X k(x, xi)dx = Ci > 0 be the measure of the i-th ker-

nel. An approximation of Z can be obtained, by substituting
Eq. (3) in (2),

Ẑ =
∫
X
π̂ (x)dx =

N∑
i=1

βi

∫
X
k(x, xi)dx =

N∑
i=1

βiCi. (6)

If the kernels are normalized, i.e., Ci = 1, note that
Ẑ =

∑N
i=1 βi.

Remark 3: Although Z > 0, Ẑ can take negative values,
since the coefficients βi can be negative. However, in this
work, we suggest two schemes (with Gaussian bases and a
suitable tuning procedure, and with NN bases) which ensure
a positive estimation of Z .

2) APPROXIMATION OF I
By substituting (3) and (6) in (1), we obtain an approximation
of I as

I ≈ Î =
1

Ẑ

∫
X
f (x)π̂ (x)dx. (7)

Note that, given π̂ (x) =
∑N

i=1 βik(x, xi), the approximation
of I in (7) can be expressed as

Î =
1

Ẑ

N∑
i=1

βi

∫
X
f (x)k(x, xi)dx =

1

Ẑ

N∑
i=1

βiJi,

=
1

Ẑ

N∑
i=1

νiπ (xi), (8)

where Ji =
∫
X f (x)k(x, xi)dx, ν = [ν1, . . . , νN ]> = K−1ζ

with ζ = [J1, . . . , JN ]> being the vector of integrals. Clearly,
the performance of Î depends on the discrepancy between
π̂ (x) and π (x), as shown by Theorem 1. This discrepancy
is reduced by properly adding new nodes, as suggested in
Section VI.

C. MONTE-CARLO BASED INTERPOLATIVE
QUADRATURE SCHEMES
In this work, we assume that the evaluation of the target
functionπ (x) is themain computational bottleneck [19], [21].
We consider that other operations, such as sampling and
evaluating different proposal densities, are negligible with
respect to the target evaluation. The techniques, presented in
this section, do not require additional target evaluations with
respect to Eq. (8). In some specific cases, we can compute
the integrals Ji and Ci analytically (e.g., see next section).
Otherwise, we need to approximate Ji, and in some cases,
also Ci. Some general ideas are described below.

1) NORMALIZED KERNELS (Ci = 1)
If the values Ci = 1 are known,1 we can compute Ẑ =
1
N

∑N
n=1 βi. Moreover, if we are able to draw samples from

each k(x, xi), we have

Ji =
∫
X
f (x)k(x, xi)dx ≈ Ĵi =

1
M

M∑
m=1

f (zi,m), (9)

with zi,m ∼ k(x, xi), hence

Î ≈
1

ẐM

N∑
i=1

βi

M∑
m=1

f (zi,m). (10)

If we know Ci, another possible scenario is when we are
not able to draw from k(x, xi). In this case, we can employ
the importance sampling (IS) procedure described below to
approximate the integrals Ji.

1For the sake of simplicity and without loss of generality, we assume
Ci = 1.
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2) KERNELS WITH UNKNOWN Ci
In this case, we also have to approximate

∫
X k(x, xi)dx = Ci.

For this purpose, we can employ IS with proposal densities
qi(x), with i = 1, . . . ,N , obtaining

Ci ≈ Ĉi =
1
M

M∑
m=1

wi,m, (11)

where the weights are wi,m =
k(zi,m,xi)
qi(zi,m)

and zi,m ∼ qi(x).
Moreover, we also obtain

Ji ≈ Ĵi =
1
M

M∑
m=1

wi,mf (zi,m). (12)

Replacing (11)-(12) into (8), the final estimator is given by

Î ≈
1∑N

i=1 βi
∑M

m=1 wi,m

N∑
i=1

βi

M∑
m=1

wi,mf (zi,m), (13)

=

M∑
m=1

N∑
i=1

ρ̄i,mf (zi,m), (14)

where ρ̄i,m =
βiwi,m∑N

j=1
∑M

k=1 βjwj,k
.

Remark 4: Note that, in any of the scenarios above, we do
not need to evaluate the target π (x) at the samples zi,m.
Namely, we do not require additional target evaluations with
respect to Section II-B. Moreover, as M → ∞, the estima-
tors in Eqs. (10)-(14) converge to the expression (8), under
standard MC arguments [2].

For further details, see the theoretical results in
Section VII-B2 and Theorems 6 and 7. So far we have
considered Monte Carlo approaches to estimate Ji and Ci.
Other particular and more efficient approaches (such as
deterministic quadratures) are possible if we consider specific
kernel functions. In the next sections, we analyze two specific
cases (with Gaussian and NN kernels).

III. INTERPOLATION WITH GAUSSIAN KERNELS
Let us consider the case of Gaussian kernels (with an
unbounded support X = Rdx ),

kG(x, xi)

=
1

(2π )
dx
2 |6|

1
2

exp
(
−
1
2
(x− xi)>6−1(x− xi)

)
, (15)

where 6 is a positive definite matrix. We take 6 =

h2I where h > 0 is the bandwidth hyperparameter
that needs to be tuned (see Section III-A). Alternatively,
note that we can also use unnormalized Gaussian kernels
kG(x, xi) = A exp

(
−

1
2 (x− xi)>6−1(x− xi)

)
, where A is

another parameter to possibly tune, and then consider Ci =
A(2π )

dx
2 |6|

1
2 .

Polynomial functions f (x). The use of Gaussian kernel
functions kG(x, xi) with f (x) being polynomial, ensures
that the integrals in (8) are available in closed-form.

Let f(x) = xr = [xr1, . . . , x
r
dx ]
> be componentwise powers

of x ∈ Rdx (r = 1, 2, . . . ). Then,

Ji =
∫
Rdx

f(x)kG(x, xi)dx =
∫
Rdx

xrkG(x, xi)dx,

corresponds to the r-th marginal moments of a multivariate
Gaussian centered at xi. Note that the marginal moments of a
Gaussian density are well-known. Some instances are∫

Rdx
xkG(x, xi)dx = xi (r = 1),∫

Rdx
x2 kG(x, xi)dx = x2i + diag(6), (r = 2),

where the power x2i is considered a componentwise operation.
Then, in this case, we can directly replace the values of Ji in
Eq. (8).

Generic functions f (x). Each of the N integrals on the
right hand of (8) may be also approximated efficiently with
a Gauss-Hermite quadrature (GH) [5], [6], i.e.,∫

Rdx
f (x)kG(x, xi)dx ≈ Ĵi =

M∑
m=1

w̄GH
m f (zi,m),

where w̄GH
m and zi,m are the weights and nodes of the GH

quadrature used for i-th integral. Note the quadrature weights
are independent of i and are normalized, i.e.,

∑M
m=1 w̄

GH
m = 1.

Moreover, we have zi,m = z̃m+xi, that is, the only difference
is a translation of a single set of GH nodes z̃m [6] (see
also the Suppl. Material). Again, we do not need extra
evaluations of the target π (x). Note that, with enough number
of points zi,m, Gauss-Hermite quadrature is also exact when
f (x) are polynomial functions [58]. Theoretical results, valid
for positive definite radial basis functions, can be found in
Section VII-B.

A. PROBABILISTIC INTERPRETATION
If k(x, x′) = k(x′, x) (i.e., it is symmetric) and k(x, x′) is semi
positive definite, as in the Gaussian case, we can interpret the
construction of the interpolant π̂ (x) as a Gaussian process
(GP) [59]. In our setting, d = [π (x1), . . . , π (xN )]> repre-
sents the observed vector. The process starts by placing a GP
prior on π (x), π (x) ∼ GP(0, k(x, x′)), where the GP mean is
0 and k(x, x′) is the covariance function. Conditioning on d,
it can be shown that the posterior of π (x) is given by

π (x)|d ∼ GP(π̂ (x),C(x, x′)),

where the mean function is the interpolant π̂ (x) given in (3),
and the posterior covariance function is C(x, x′) = k(x, x′)−
k(x)>K−1k(x′), with

k(x) = [k(x, x1), . . . , k(x, xN )]>,

and (K)i,j = k(xi, xj). The variance at x is

V (x) = C(x, x) = k(x, x)− k(x)>K−1k(x). (16)

Observe that V (xi) = 0 for all i = 1, . . . ,N . If we assume
that the vector of evaluations d is noisy, we can relax the exact
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fit requirement by introducing a regularization term, replac-
ing K with the matrix K+ σ 2I, where I is an N ×N identity
matrix. The noise term σ 2 also provides numerical stability.
The probabilistic interpretation of the integrals involving π is
given in Appendix B.

B. TUNING OF HYPERPARAMETERS
Let us denote as θ the vector as hyperparameters of the kernel
functions k(x, x′). A standard way of fitting the hyperpa-
rameters θ is to maximize the marginal likelihood of the
GP [59]. In this case, the evaluations of π (x) play the role
of data. Given the evaluations d = [π (x1), . . . , π (xN )]>,
the marginal likelihood is given by p(d|θ ) = N (d|0,K), and
its log-version is

log p(d|θ ) = −
1
2
d>K−1d−

1
2
log |K| + c,

where c is a constant. Note that K depends on θ . How-
ever, for fitting the bandwidth parameter h of the Gaussian
kernels, we propose an alternative procedure described in
Appendix A, specifically designed for building an emulator
of a density function. In this context, the proposed procedure
performs better then the maximization of p(d|θ ).
Remark 5: Using the novel tuning procedure in

Appendix A, the corresponding estimator Ẑ takes always
positive values.

IV. CONSTANT KERNELS BASED ON NEAREST
NEIGHBORS
Given the set of nodes {xi}Ni=1 in a bounded domain X ,
consider now the use of constant kernels with finite support

k(x, xi) = IRi (x), (17)

where IRi (x) is the indicator function in Ri, i.e., IRi (x) = 1
for all x ∈ Ri and zero otherwise. Each Ri consists of the
points x ∈ X that are closest to xi, i.e.,

Ri = {x ∈ X : ‖x− xi‖p ≤ min
j 6=i

∥∥x− xj
∥∥
p},

where ‖·‖p denotes the p-norm. That is, X = ∪Ni=1Ri is the
Voronoi partition of X using {xi}Ni=1 as support points. In this
case, solving (5) for the coefficientsβ is straightforward since
the matrix K is the identity matrix, and thus

βi = π (xi) for i = 1, . . . ,N .

Note that all βi ≥ 0 with this kernel. Hence the interpolant is
given by

π̂ (x) =
N∑
i=1

π (xi)IRi (x). (18)

Note that to evaluate π̂ (x) at any x we need to find just the
closest node. We do not need to know the borders of regions
{Ri}

N
i=1 for this purpose. This choice of kernels has three clear

advantages:
(i) no need to solve the linear system in (5) sinceK = I and

hence β = d,

(ii) the coefficients β = d are always non-negative (this
ensures that Ẑ ≥ 0),

(iii) no need of tuning the bandwidth hyperparameter.
The difficulty, however, is determining the Voronoi partition,
as well as the measures Ci =

∫
X k(x, xi)dx. We show how to

address these issues in Section IV-A. In this case,

Ci =
∫
X
IRi (x)dx = |Ri|,

where |Ri| denotes the measure of the i-th Voronoi region.
The approximation of Z is given by

Ẑ =
N∑
i=1

π (xi)Ci, (19)

and Eq. (8) is expressed as

Î =
1

Ẑ

N∑
i=1

π (xi)
∫
Ri

f (x)dx,

=
1∑N

k=1 π (xk )Ck

N∑
i=1

π (xi)
∫
Ri

f (x)dx. (20)

The convergence of this scheme is guaranteed as N grows,
as shown by Theorems 8 and 9. Further theoretical analysis
are provided in Section VII-C. Note that we need to estimate
the measures Ci, as well as the integrals

∫
Ri
f (x)dx to com-

pute Ẑ and Î . The next section is devoted to this purpose.

A. APPROXIMATING VORONOI REGIONS AND
RESULTING ESTIMATORS
In order to approximate Ci, we can generate M uniform
vectors {zm}Mm=1 in X via Monte Carlo sampling or Quasi-
Monte Carlo sequences (e.g. a Sobol sequence) [57]. Define
the set Ui as

Ui = {zm : ‖zm − xi‖p ≤ min
j 6=i

∥∥zm − xj
∥∥
p}

= {z`i}
|Ui|
`i=1

,

i.e., the |Ui| vectors closest to xi in p-norm, which form a
discrete approximation of Ri. Note that

∑N
i=1 |Ui| = M .

Hence, the measure Ci can be approximated by noting that
Ci
|X | ≈

|Ui|
M , hence

Ci ≈
|Ui|
M
|X |, (21)

where |X | is the measure ofX . Thus, the estimator in Eq. (19)
can be rewritten as

Ẑ ≈
|X |
M

N∑
i=1

π (xi)|Ui|. (22)

We can also obtain an approximation of the integral Ji =∫
Ri
f (x)dx by leveraging a QMC or MC approximation of

the Voronoi regions. Specifically, the uniform vectors z`i in
Ui can be used to approximate the integral in (20) as follows

Ji =
∫
Ri

f (x)dx ≈
Ci
|Ui|

|Ui|∑
`i=1

f (z`i ) ≈
|X |
M

|Ui|∑
`i=1

f (z`i ),

(23)
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where we used (21) again in (23). The procedure above can be
seen as an accept-reject method, and the estimators are also
unbiased [4, Chapter 3 and Section 6.6]. Note that a simpler
possible approximation with one point is Ji =

∫
Ri
f (x)dx ≈

f (xi)Ci. Thus, replacing the expressions (22)-(23) in (20),
the final estimator becomes

Î ≈
1∑N

k=1 π (xk )|Uk |

N∑
i=1

π (xi)
|Ui|∑
`i=1

f (z`i ). (24)

Connection with Section II-C. The estimators above can be
interpreted as the application of an importance sampling (IS)
scheme as described in Section II-C, for kernel functions
with unknown Ci. However, unlike in Section II-C, here we
consider a unique and uniform proposal density

qi(x) = q(x) =
1
|X |

IX (x), ∀i = 1, . . . ,N .

Then, we can also remove the subindex i in the sample
zi,m ∼ q(x), i.e., we have onlyM samples zm ∼ q(x). Hence,
following Eqs. (11)-(12), we have

Ci ≈
1
M

M∑
m=1

wi,m, (25)

Ji =
∫
Ri

f (x)dx ≈
1
M

M∑
m=1

wi,mf (zm), (26)

where zm ∼ q(x) = 1
|X | IX (x), and the weights are

wi,m =
k(zm, xi)
q(zm)

=

{
|X | if zm ∈ Ri,

0 if zm /∈ Ri.
(27)

Replacing the expression of the weights wi,m into the formu-
las above, we recover the estimators in (22) and (24).

V. AN ALTERNATIVE IS INTERPRETATION
In this section, we discuss a special case of the IS scheme
given in Section II-C, when a unique proposal qi(x) = q(x)
is employed and only M samples zm ∼ q(x) are drawn
(as already considered in the previous section). In this sce-
nario, the IS procedure in Section II-C has another rele-
vant interpretation, which allows us to design other different
schemes. Considering a generic kernel k(x, xi) and Eq. (25),
we can rearrange Ẑ as

Ẑ =
N∑
i=1

βiCi ≈
N∑
i=1

βi
1
M

M∑
m=1

wi,m

=

N∑
i=1

βi
1
M

M∑
m=1

k(zm, xi)
q(zm)

=
1
M

M∑
m=1

∑N
i=1 βik(zm, xi)

q(zm)
.

Then, recalling that π̂ (x) =
∑N

i=1 βik(x, xi) and replacing
this expression above, we finally obtain

Ẑ ≈
1
M

M∑
m=1

π̂ (zm)
q(zm)

=
1
M

M∑
m=1

γm, (28)

where γm = γ (zm) =
π̂ (zm)
q(zm)

for m = 1, . . . ,M . Moreover,
with similar steps, we can obtain

Î ≈
1

MẐ

M∑
m=1

γmf (zm), (29)

Remark 6: The weights γm have the form of the standard
IS weights with the target function π̂ in the numerator, and
the proposal density q in the denominator. Hence, the entire
sampling procedure can be interpreted as a standard IS
schemewhere the target function is π̂ instead ofπ . This shows
again that we do not need extra target evaluations and, hence,
we can employ an arbitrary large value of M.
Remark 7: Note that this result is valid for any kernel

k(x, xi), and we use a unique proposal q(x) in the procedure
described in Section II-C.

Below, we consider the NN case with a uniform proposal
q(x), deriving the same formulas in Section IV-A.

A. UNIFORM PROPOSAL DENSITY AND
NN INTERPOLATOR
Let us consider q(x) = 1

|X | IX (x), i.e., a uniform density
in X , and the NN kernel function. For each sample zm,
the corresponding weight γm is

γm = γ (zm) =
π̂ (zm)

1
|X |
=
π (xkm )

1
|X |

= |X |π (xkm ),

where xkm is the closest node to sample zm, i.e., xkm =
argminj

∥∥zm − xj
∥∥
p. Then, the IS approximation of Ẑ is

Ẑ ≈
1
M

M∑
m=1

γm =
|X |
M

M∑
m=1

π (xkm ) =
|X |
M

N∑
k=1

π (xk )|Uk |,

where |Uk | counts the number of zm whose closest node is xk
(k = 1, . . . ,N ). Note that this expression is the same as in
(22). Similarly, the IS estimate of Î is given by

Î ≈
1

MẐ

M∑
m=1

γmf (zm) =
|X |
MẐ

M∑
m=1

π (xkm )f (zm)

=
|X |
MẐ

N∑
k=1

π (xk )
|Uk |∑
`k=1

f (z`k ),

which is the same expression as in (24). However, this alter-
native IS interpretation allows us to design different schemes
using a different proposal density, as shown below.
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FIGURE 1. Example of application of NN-AQ. The cross-marks represent the starting nodes, while the points added adaptively by NN-AQ are
shown with dots. (a) The banana-shaped target and the starting nodes. (b)-(c)-(d) The NN-AQ emulator with E = 50,250,103 number of target
evaluations.

B. GAUSSIAN MIXTURE PROPOSAL
We consider now an alternative to the uniform proposal inX .
More specifically, we propose drawing {z`}Mm=1 from a Gaus-
sian mixture proposal pdf built considering the set of nodes
{xi}Ni=1, i.e.,

zm ∼ q(x) =
N∑
i=1

ξiN (x|xi,Ci),

where the mixture weights ξi are

ξi =
π (xi)∑N
n=1 π (xn)

, i = 1, . . . ,N ,

and the covariances Ci can be determined by the minimum
distance of xi to its closest node. In this case, the IS weights
are given by

γ (zm) =
π̂ (zm)∑N

i=1 ξiN (zm|xi,Ci)
=

π (xkm )∑N
i=1 ξiN (zm|xi,Ci)

,

where xkm is the closest node to zm, with m = 1, . . . ,M .

VI. ADAPTIVE PROCEDURE
In this section, we present an adaptive mechanism to add
new nodes to the interpolant. Our algorithm adds nodes
sequentially with the aim to discover high-valued regions
of π (x) while fostering the exploration of the state space.
We employ an active learning procedure where a new point is
obtained by maximizing a suitable acquisition function. The
resulting adaptive algorithm is shown in Table 1. Note that
the final number of nodes is NT = T + N0. The adaptive
quadrature scheme based on the Gaussian kernels is denoted
as GK-AQ, whereas the other scheme based on the Nearest
Neighbors (NN) kernels is denoted as NN-AQ. Figure 1
depicts an example of application of the NN-AQ.

A. BUILDING SUITABLE ACQUISITION FUNCTIONS
Let us denote as t ∈ N the tth iteration of the algorithm.
In the update stage, we decide to add a new node where the
acquisition function, At : X → {0} ∪ R+, is maximum. The
acquisition function takes into account the shape of π (x) and
the spatial distribution of the current nodes.More specifically,

TABLE 1. Adaptive Quadrature Algorithm.

it must fulfill

At (xi) = 0 for all t and i = 1, . . . ,Nt ,

and grow as we move apart from the nodes. We consider
acquisition functions At (x) of the form

At (x) = π (x)Dt (x), (31)

where Dt (x) is a diversity term that penalizes the proximity
to the current nodes. Note that the information of f (x) could
be also included as At (x) = f (x)π (x)Dt (x). In some settings,
the function At (x) above could be directly used after choos-
ing a diversity term Dt (x). However, in this work, we con-
sider that evaluating π (x) is costly, so we propose cheaper
versions of (31).

B. CHEAP ACQUISITION FUNCTIONS
We recall that the most costly step is the evaluation of the
target function π (x). This is often due to the use of complex
models and/or large amounts of data. For that reason, we pro-
pose a cheap type of At (x),

At (x) = π̂t (x)Dt (x), (32)
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FIGURE 2. 1D example of application of At (x) = π(x)Dt (x) with the diversity term Dt (x) = min
i=1,...,Nt

|x − xi |. At each iteration, the new node,

shown with a green square, is added where At (x) is maximum.

so that no evaluations of the true π (x) are required. In this
case, in terms of posterior evaluations E , the cost of the
overall algorithm in Table 1, is E = N0 + T .
Remark 8: The particular case At (x) = Dt (x) corre-

sponds to the space-filling experimental designs (e.g., see
[46], [56], [60] and Theorem 4). In the other particular case
with At (x) = π̂t (x), the resulting schemes are similar to
other approaches in literature which combine sampling and
optimization (e.g., see [9]).

In the Gaussian kernel scenario, we may use the variance
in (16) as diversity term

At (x) = π̂t (x)Vt (x), (33)

where we have set Dt (x) = Vt (x), that fulfills Vt (xi) = 0
for i = 1, . . . ,Nt . This choice is motivated by the fact that
the approximation error is bounded by the maximum value
of Vt (x) (e.g., see Theorem 3). Since the function Vt (x) is
unfeasible with constant NN kernels, we suggest a diversity
term of the form

At (x) = π̂t (x) min
i=1,...,Nt

‖x− xi‖p . (34)

Note that the term Dt (x) = min
i=1,...,Nt

‖x− xi‖p is zero when

evaluated at any current node: for each xj ∈ Xt the minimum
distance is w.r.t. itself, which is zero. This choice is moti-
vated by Theorem 4, since the approximation error is also
bounded by the maximum value of Dt (x). Figure 2 depicts
an example with this choice of Dt (x). Note that the choice
Dt (x) = min

i=1,...,Nt
‖x− xi‖p can be also employed in the

Gaussian kernel scenario.
Another alternative is to consider tempering versions of the

acquisition function,

At (x) = [π̂t (x)]α [Dt (x)]β , (35)

where α ≥ 0 can be used to prioritize moving towards high-
valued zones of π̂t (x), while β ≥ 0 to encourage exploration.
The values α and β can also vary with the iteration t . The
maximization ofAt (x) can be performed by simulated anneal-
ing or other optimization techniques. The performance of dif-
ferent acquisition functions have been compared in Figure 4
(see Section VIII-A). One can observe that maximizing the

proposed acquisition functions provides much better results
than adding uniformly random nodes.
Observations: For the GK-AQ algorithm, the most costly

step corresponds to the inversion of the Nt × Nt matrix Kt ,
needed to be done in order to build the acquisition function in
Eq. (33). Note that the inverse K−1t is used for both evaluat-
ing the interpolant π̂t (x) and computing the variance Vt (x).
We can alleviate the cost of this step by building K−1t
iteratively from K−1t−1. The recursion formula is given in
Appendix C. In the case of NN-AQ, evaluating the acquisition
function in (34) requires only to calculate the distances with
respect to each node. This computation can be used for both
evaluating the interpolant and the diversity term Dt (x) =
min ‖x− xi‖p. Note that the cost of searching for the nearest
neighbor has only a weak dependence on the dimension of
the space.

VII. THEORETICAL SUPPORT
In this section, we provide some theoretical results supporting
the proposed schemes.We consider π̄ (x) = 1

Z π (x) a bounded
target pdf and a bounded domain X ⊂ Rdx . Let also f (x) :
X → R be an integrable function. In this section, we consider
J =

∫
X f (x)π (x)dx as the integral of interest. For a generic

f (x), J corresponds to the numerator of the integral I in
Eq. (1). For f (x) = 1, J becomes the normalizing constant
of π (x), i.e., J = Z , which is the denominator of I . Thus,
working with J is equivalent to working with I . Let also
J̃ =

∫
X f (x)π̂ (x)dx, be the approximation of J given by

substituting the interpolant π̂ (x). A first general result valid
for any interpolation procedure is given below.
Theorem 1: The error incurred by substituting π (x) with

π̂ (x) in J is bounded,

|J − J̃ | ≤ ‖f (π − π̂ )‖1
≤ ‖f ‖2 ‖π − π̂‖2
≤ |X | ‖f ‖∞ ‖π − π̂‖∞ ,

where ‖·‖1, ‖·‖2 and ‖·‖∞ denote the L1, L2 and L∞ norms
respectively.

Proof: See Appendix D-A.
Therefore, if are able to build an interpolant π̂ in a way

such ‖π − π̂‖∞ vanishes to zero, then the approximation J̃
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will converge to J . Note that, in this section, we ensure the
convergence of numerator J and denominator Z of I = J

Z ,
independently. A complete treatment (yet more complicated)
should consider the convergence of the two quantities at the
same time. For the rest of results, we need to distinguish
between the case of Gaussian kernel and constant kernel inter-
polators. To establish convergence of both schemes we need
to make some preliminary definitions and considerations.

A. SPACE-FILLING MEASURES AND RELATED RESULTS
We introduce two well-known measures of dispersion widely
employed in the function approximation literature. In this
section, we always consider a bounded support X .

1) FILL DISTANCE
Given the set of nodes {xi}Ni=1 ⊂ X , let us define the follow-
ing quantity

r = max
x∈X

min
1≤i≤N

‖x− xi‖2 , (36)

which is the fill distance.

2) SEPARATION DISTANCE
The separation distance is defined as

s = min
i 6=j

∥∥xi − xj
∥∥
2 , (37)

i.e., the minimal distance between two nodes. Note that
s ≤ 2r . Having a small s increases the numerical instability
and can have a detrimental effect in the error bounds. The
adaptive procedure described in Sect. VI produces a sequence
of nodes that sequentially minimizes r .
Proposition 1: Consider the acquisition function given in

Eq. (35) with α = 0 and β = 1, and the choice At (x) =
min

i=1,...,Nt
‖x− xi‖2, where {xi}

Nt
i=1 are the current nodes of

the interpolator. The maximum of this function is the fill
distance rt in Eq. (36), at iteration t. Adding the point xNt+1
corresponding to rt to the set of current nodes ensures that

rt+1 = max min
i=1,...,Nt+1

‖x− xi‖2 ≤ rt ,

and that rt → 0 when t →∞.
Proof: See Sect. 4.1 in [56] and [45]. This procedure is

related to the ‘‘coffee house design’’ in [60].
Proposition 2: For isotropic kernels, the variance function

V (x) given in Eq. (16) satisfies that max
x∈X

[V (x)]
1
2 ≤ 8(r),

where 8(r) is an increasing function of r, depending on the
kernel function. In the case of Gaussian kernels, 8(r) is an
exponential function.

Proof: See Sect. 2.1 in [56] and Sect. 2 in [45].
Proposition 3: Consider the acquisition function given in

Eq. (35) with α = 0 and β = 1, i.e., and the choice At (x) =
Vt (x). Let us set also ϕt = max

x∈X
Vt (x). By adding new nodes

according to the rule

xNt+1 = argmaxAt (x),

we are minimizing ϕt over the iterations t, i.e., ϕt is a non-
increasing function of t and ϕt → 0 as t →∞.

Proof: This algorithm is known as p-greedy algorithm
in [61]. See the behavior of the variance of a GP inter-
polant [59]. This acquisition function is commonly used in
the kriging literature. For instance, see [62] and [46].
Proposition 4: Consider the acquisition function given in

Eq. (34) with α = 0 and β = 1, and the choice At (x) =
min

i=1,...,Nt
‖x− xi‖2, where {xi}

Nt
i=1 are the current nodes of the

interpolator. The sequence of nodes obtained as xNt+1 =
argmaxAt (x), for t ∈ N+, is a uniform low-discrepancy
sequence in a bounded X [63].

Proof: This procedure can be interpreted as determinis-
tic and sequential version of the well-known latin hypercube
sampling (LHS) [63].
Remark 9: Note that the proposed schemes do not need

that the space is covered uniformly. The only requirement, for
decreasing the fill distance r, is to be able to reach any subset
of the domainX with a non-null probability (strictly positive).

B. RESULTS FOR INTERPOLATORS BASED ON RADIAL
BASIS FUNCTIONS (RBFs)
In this section, we consider that k(x, x′) is the Gaussian kernel
considered in Sect. III. More generally, the results from this
section are valid for any k(x, x′) that is a (positive definite)
radial basis function (RBF).

1) EXACT COMPUTATION OF Ji
Recall π̂ (x) =

∑N
i=1 βik(x, xi), where the weights are β =

[β1, . . . , βN ] = K−1d using the interpolation matrix K and
the vector of target evaluations d. The approximation J̃ can
be written as

J̃ =
∫
X
f (x)π̂ (x)dx =

N∑
i=1

βiJi =
N∑
i=1

νiπ (xi),

where Ji =
∫
X f (x)k(x, xi)dx, and the weights ν =

[ν1, . . . , νN ]> are given by ν = K−1ζ with ζ being the
vector of Ji’s. In this form, J̃ is expressed as a combination of
evaluations of π (x), i.e., a quadrature. The following theorem
establishes that the weights ν = K−1ζ are optimal for a
quadrature of this kind. Note that the Gaussian kernels are
symmetric positive definite functions, and are special cases
of radial basis functions (RBF).
Theorem 2: Let us consider a symmetric kernel function

k(xi, xj) = k(xj, xi) which always defines a positive definite
matrixK. The native space related to k(x, x′) is a reproducing
kernel Hilbert space (RKHS) [64], [65]. Given the points
{xi}Ni=1 and ν = K−1ζ , the quadrature J̃ =

∑N
i=1 νiπ (xi)

is optimal in the sense of Golomb-Weinberg [66], i.e., the
weights νi minimizes the norm of the integration error func-
tional in the dual space [64], [65].

Proof: A sketch of the proof is in App. D-B. See
also [67] and [16] and references therein.
Theorem 3: Suppose that π (x) belongs to the RKHS

generated by the kernel function k(x, x′). The interpolant
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π̂ (x) =
∑N

i=1 βik(x, xi) satisfies |π (x) − π̂ (x)| ≤
‖π‖H [V (x)]

1
2 for all x ∈ X and hence ‖π − π̂‖∞ ≤

‖π‖Hmaxx∈X [V (x)]
1
2 , where ‖·‖H denotes the norm in the

RKHS, and V (x) is the variance function given in Eq. (16).
Hence, from Theorem 1, we have

|J − J̃ | ≤ |X | ‖f ‖∞ ‖π‖Hmax
x∈X

[V (x)]
1
2 .

Proof: See Sect. 2.1 in [56] and Sect. 2 in [45].
The theorem above, jointly with Proposition 3, justify the

choice of the diversity term Dt (x) = Vt (x) in Section VI-B.
The next theorem, based on results from the literature on
approximating functions with RBFs, establishes that the
approximation error tends to zero when r → 0, and that the
rate of convergence can be exponentially fast in the case of
infinitely smooth RBFs, such as the Gaussian kernels.
Theorem 4: The error of the quadrature J̃ is

|J − J̃ | ≤ |X | ‖f ‖∞ ‖π − π̂‖∞ = O(λ(r)),

where λ(r)→ 0 as r → 0, with r being the fill distance given
in Eq. (36). The convergence rate depends on the regularity
degree of π (x). For π (x) sufficiently regular (technically,
belonging to the RKHS induced by the RBF kernel), and
Gaussian RBF the bound λ(r) decreases exponentially

λ(r) = e−ch| log r|/r ,

with a certain constant ch > 0, which generally depends on
the bandwidth h.

Proof: See Sect. 11.3 and table in page 188 of [55].
Recall that the diversity term in (34) produces a monoton-

ically decreasing sequence of fill distances that converges to
zero in the limit of t → ∞, as stated in Proposition 1. The
next theorem states that the approximation error tends to zero
as N →∞, and provides a quite pessimistic upper bound.
Theorem 5: Given a sequence of nodes {xi}Ni=1 gener-

ated as in Proposition 4, it can be shown that r ≤

Cdx ,XN
−1/dx logN, where Cdx ,X is a constant that probably

depends on the dimension dx and the measure of X . Then,
the following (pessimistic) upper bound can be provided

|J − J̃ | = O
(
e
−c1 1

N−1/dx logN
−c2
|log(N−1/dx logN)|

N−1/dx logN

)
,

where c1 > 0 and c2 > 0 are constants depending on h, dx
and the measure of X .

Proof: See Sect. 2.5.1 in [56] and [63].

2) NOISY COMPUTATION OF Ji
Theorem 4 above states that the convergence of J̃ is achieved
when the fill distance r goes to zero. Recall that in J̃ =∑N

i=1 βiJi we consider the exact computation of Ji =∫
X f (x)k(x, xi)dx. In this section, we consider of approxi-
mating Ji by the estimator Ĵi, so that we finally have a noisy
version of J̃ , i.e., Ĵ =

∑N
i=1 βîJi. Below, we show some

results related to Ĵ , but we need some previous definitions.

a: STABILITY
The numerical stability of the solution depends on the inver-
sion of the interpolation matrix K and it is connected to
the separation distance s. Clearly, if two nodes are very
close, then the corresponding two rows of the interpola-
tion matrix are almost identical and the matrix becomes ill-
conditioned [55], [68].

b: REPRODUCTION QUALITY
Roughly speaking, an interpolant built with more nodes
(i.e., N grows) filling the space, generally yields a better
approximation. This concept is connected to the fill distance
r in Eq. (36). Recall that the fill distance is a measure of how
well the data fills the space [55].

c: UNCERTAINTY PRINCIPLE
A typical problem when reconstructing functions is the trade-
off between reproduction quality and numerical stability. Let
us consider RBF kernels with a fixed bandwidth, as N grows.
Generally, when one aims at a very good approximation of
the function of interest, the numerical stability gets compro-
mised, and conversely, if one aims to have good numerical
stability, the approximation will be poor. This is known in
the literature as uncertainty principle [68].

Let us denote as h the parameter which controls the band-
width of the RBFs, as 6 = h2I in the Gaussian kernel.
The next theorem illustrates the case where the numerical
instability combined with the error in computing the vector
of integrals ζ = [J1, . . . , JN ]> deteriorates the error bound
of Theorem 4 (for a fixed h). Let us denote the vector of
approximated integrals by ζ̂ = [̂J1, . . . , ĴN ]> and recall
d = [π (x1), . . . , π (xN )]> is the vector of evaluations of π .
Theorem 6 (For a Fixed Bandwidth h): Let us consider a

bounded support X . If we take into account the error in the
evaluation of the integrals ζ = [J1, . . . , JN ]>, denoted by
ζ̂ = [̂J1, . . . , ĴN ]>, the corresponding approximation Ĵ =∑N

i=1 βîJi has an error of

|J − Ĵ | ≤ |X | ‖f ‖∞ ‖π − π̂‖∞ + ||K−1||2||d||2||ζ − ζ̂ ||2
= O(λ(r))+O(υ(s, h))||ζ − ζ̂ ||2,

where λ(r) → 0 as r → 0, υ(s, h) → ∞ as s → 0, with
r and s being, respectively, the fill distance and separation
distance given in Eqs. (36) and (37). The parameter h, which
determines the bandwidth of the radial kernel, is considered
fixed. The function υ(s, h) is an upper bound for

∥∥K−1∥∥2,
which is ameasure of stability (note that ||K−1||2 corresponds
to the inverse of the lowest eigenvalue of K).

Proof: See Appendix D-C. For the bound υ(s, h) see
Corollary 12.4 in [55].

The bound in Theorem 6 expresses the uncertainty relation.
Indeed, we see that making s → 0 poses a problem if we
use a fixed bandwidth h. Indeed, the interpolation matrix K
becomes ill-conditioned as two nodes are too close, and the
error ||ζ − ζ̂ ||2 is amplified. The growing rate of υ(s, h),
as λ(r), depends on the smoothness of the RBF. For Gaussian
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kernels, the rates of υ(s, h) and λ(r) are both exponential.
However, with a Monte Carlo approximation, we can always
improve the approximation ζ̂ by increasing the number of
samplesM , so that ||ζ − ζ̂ ||2→ 0. Recall that the increase of
the number of Monte Carlo samplesM does not require addi-
tional evaluations of the target π in the proposed schemes.
Furthermore, even with a fixed M , we can control the value
||K−1||2 by decreasing the bandwidth h of the kernel func-
tion. The following results consider these two cases.
Theorem 7 (For a Fixed Bandwidth h and M → ∞]:

Given a bounded support X , consider the application of a
Monte Carlo method to approximate ζ , then ||ζ − ζ̂ ||2 → 0
as M → ∞, where M is the number of samples. Hence, the
approximation Ĵ =

∑N
i=1 βîJi has an error

|J − Ĵ | = O(λ(r)),

where λ(r)→ 0 as the fill distance r → 0 and M →∞.
Proof: The term ||ζ− ζ̃ ||2→ 0 as the number of Monte

Carlo samples M →∞ [2].
Conjecture 1 (For a Decreasing Bandwidth h and Fixed

M) Given a bounded support X , consider a noisy approx-
imation ζ̂ of ζ . Assume that we decrease h as the number
of nodes N grows (in order to control the instability term,
i.e., the magnitude of

∥∥K−1∥∥2). Hence, the approximation
Ĵ =

∑N
i=1 βîJi has an error

|J − Ĵ | = O(λ(r))+ b,

where b is some constant bias, λ(r) → 0 as r → 0, and
making h→ 0 when N →∞.

Note that, as h approaches 0, the interpolation matrix K
becomes a diagonal matrix, with the maximum values of
the kernels in the diagonal. Thus, controlling the maximum
values of the kernel functions, we can control the minimum
value of the eigenvalues, such that the interpolation matrix
K be well-conditioned. Moreover, recall that we are using
an interpolative approach and the probabilistic interpretation
in Section III-A is not strictly required. Therefore, we have
more flexibility in the choice and/or tuning of the kernel
functions. Indeed, one could consider different bandwidths
(one for each kernel function), bigger in regions with lower
density of points, while smaller bandwidths in regions with
a higher density of nodes. This would improve the numerical
stability.
Remark 10: The interplant based on NN kernels does not

suffer the uncertainty problem, since they have compact non-
overlapping supports. Namely, we can interpret that the
bandwidths are automatically tuned.

C. RESULTS FOR LOCAL INTERPOLATORS
In a local interpolation method, the addition and/or a change
of one node, only affects the solution in a subset of the
support domain. This scenario corresponds to the use of the
constant NN kernels. Recall that the interpolant based on

constant kernels,

π̂ (x) =
N∑
i=1

π (xi)IRi (x),

whereRi denotes the Voronoi region associated with node xi.
Let us first state a result for sufficiently smooth π (x).
If π (x) is Lipschitz continuous, i.e., for all x, z ∈ X we have
|π (z) − π (x)| ≤ L0||z − x|| for some constant L0, then we
have the following result.
Theorem 8: Given the NN interpolant π̂ (x), if π (x) is Lip-

schitz continuous we have that ‖π − π̂‖∞ ≤ L0 r, where L0
is the Lipschitz constant and r is the fill distance introduced
in Eq. (36). Then, from Theorem 1, we have

|J − J̃ | ≤ |X | ‖f ‖∞ L0 r .

Moreover, given a sequence of nodes {xi}Ni=1 generated as in
Proposition 4, and since r ≤ Cdx ,XN

−1/dx logN, we have the
following (pessimistic) bound

|J − J̃ | = O
(
N 1/dx logN

)
.

Proof: See Appendix D-D.
Now, recall the approximation of J̃ given by

J̃ =
∫
X
f (x)π̂ (x)dx ≈ SN =

N∑
i=1

π (xi)f (xi)Ci,

where SN is the Riemann approximation, which has been also
discussed in Sect. IV-A, and Ci =

∫
Ri
dx, i.e., the measure of

Ri. Here, we used the approximation
∫
Ri
f (x)dx ≈ f (xi)Ci.

We will show that SN converges to J =
∫
X f (x)π (x)dx

as we add more nodes according to one of the proposed
acquisition functions, that is, as t → ∞. As with Gaussian
kernels, the convergence is related with how well the nodes
fill space. Here, the role of fill distance is played by the
maximum of the measures Ci. The theorem below states that,
as we fill the space, the measuresCi converges to zero. Recall
that the Voronoi partition {Ri}

N
i=1 generated from the set of

nodes {xi}Ni=1 corresponds to the subdivision of X in N non-
overlapping pieces.
Proposition 5: Consider a sequence of points x1, . . . , xN

covering the spaceX , then for the associated Voronoi regions
Ri, we have that maxi Ci→ 0 as N →∞.

Proof: See the proofs of Theorems 1 and 4 in [69].
Theorem 9: Let π (x) be a continuous and bounded target

pdf (up to a normalizing constant) defined on a bounded
support X ⊂ Rdx . Let f (x) : X → R bounded on X .
Consider the integral J =

∫
X f (x)π (x)dx. Let us consider

a Voronoi partition of X , generated by the nodes {xi}Ni=1,
defined as R1, . . . ,RN (recall that Ci = |Ri|). Given the
Riemann sum SN =

∑N
i=1 f (xi)π (xi)Ci, the convergence of

SN → J is guaranteed as maxi Ci→ 0 when N →∞.
Proof: See Sect 8.3 in [70].

Above, we have assumed that Ci are known. However,
we can have very accurate Monte Carlo estimates without
requiring additional evaluations of the target π (x) (but just
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FIGURE 3. (a) Rel-MSE in log-scale for Z as function of number of target evaluations E . (b) Rel-MSE in log-scale for µ as function of number
of target evaluations E . (c) Rel-MSE in log-scale for estimating [σ2

1 , σ
2
2 ] as function of number of target evaluations E .

of the interpolant π̂ (x)), i.e., only with a slight increase in the
overall computation cost.

VIII. NUMERICAL EXPERIMENTS
In this section, we provide several numerical tests in order
to show the performance of the proposed adaptive quadrature
schemes and compare them with benchmark approaches in
the literature. The first example corresponds to a nonlinear
banana-shaped density in dimension dx = 2, 3, 4 and 5.
The second test is a multimodal scenario with dimension
dx = 10. Finally, we test our schemes in a challenging
astronomic inference problem of detecting the number of
exoplanets orbiting a star.

A. BANANA TARGET
As a first example, we consider a banana-shaped
target pdf,

π̄ (x) ∝ exp

{
−
(η1 − Bx1 − x22 )

2

2η20
−

dx∑
i=1

x2i
2η2i

}
, (38)

with x ∈ X = [−10, 10]dx , B = 4, η0 = 4 and ηi = 3.5 for
i = 1, . . . , dx . We consider dx = {2, 3, 4, 5} (i.e., different
dimensions) and compute in advance the truemoments of the
target (i.e., the groundtruth) by using a costly grid, in order to
check the performance of the different techniques.

1) EXPERIMENT 1
We set dx = 2 and test the different algorithms in order
to compute the vector mean µ = [−0.4, 0] and the diago-
nal of the covariance matrix [σ 2

1 , σ
2
2 ] = [1.3813, 8.9081].

Moreover, our schemes are also able to estimate Z , whose
ground-truth is Z = 7.9979, thus we also measure the
error in this estimation. We compare the performance in
terms of Relative Mean Square Error (Rel-MSE), averaged
over 500 independent runs, using different methodologies:
(a) NN-AQ starting with N0 = 10 nodes randomly chosen in
[−10, 10]× [−10, 10] andM = 105; (b) an independent MH
algorithm (I-MH) with random initialization in [−10, 10] ×
[−10, 10]; (c) random-walk MH algorithms (RW-MH) with

different proposal variance, and random initialization in
[−10, 10]× [−10, 10]; (d) an IS algorithm. The proposal
density for both I-MH and IS is a uniform in [−10, 10] ×
[−10, 10], whereas for the RW-MHs is a Gaussian density
centered at the current state of the chain with covariance
matrix v2I where v ∈ {1, 2, 5} (so we consider 3 different
RW-MHs).

For a fair comparison, we need that all methods have
the same number E of target evaluations (fixing E = 70).
Since NN-AQ, I-MH and RW-MH require one new target
evaluation per iteration, we run T = 70 iterations for I-MH
and RW-MH (E = T ), and T − N0 = 60 iterations for
NN-AQ. In this regard, the IS algorithm use 70 samples drawn
from the uniform proposal. Hence, all methods need T = 70
target evaluations. The results are given in Figures 3(a)-(b).
Note that the estimation of Z via MCMC techniques is not
straightforward (e.g., see [71]).
Discussion 1:We can observe that NN-AQ outperforms the

other methods in terms of Rel-MSE in estimation. Moreover,
in Fig. 3(a)-(b) we can see that the decrease is much greater,
as E grows, than the other methods. Namely, NN-AQ has
more benefits with new evaluations of π (x).

2) EXPERIMENT 2
In this case, we fix the number of target evaluations E , and
vary dx = {2, 3, 4, 5}. The Rel-MSE in the estimation of Z is
given in Table 2 (with E ∈ {100, 1000}).

TABLE 2. Relative MSE of Z With E ∈ {100,1000} for Different dx .

Discussion 2: In this experiment, E is fixed along different
dimensions. The results given in Table 2, with fixed E , does
not show all the potential of NN-AQ. However, NN-AQ
outperforms IS in all the dimensions dx considered when
E = 1000.
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FIGURE 4. (a) Rel-MSE in log-scale for Z as function of number of target evaluations E . (b) Rel-MSE in log-scale for µ as function of number
of target evaluations E . (b) Rel-MSE in log-scale for estimating [σ2

1 , σ
2
2 ] as function of number of target evaluations E .

FIGURE 5. (a) Example of application of GK-AQ with 10 starting points (red cross-marks) and T=60 iterations (red dots), i.e., E = 70 target
evaluations. (b) Rel-MSE in log-scale for Z as function of number of target evaluations E . (c) Rel-MSE in log-scale for µ as function of number of
target evaluations E . (d) Rel-MSE in log-scale for estimating [σ2

1 , σ
2
2 ] as function of number of target evaluations E .

3) EXPERIMENT 3
For dx = 2, we compare now IS, NN-AQ, and three vari-
ants of NN-AQ: (i) NN-U, where the optimization step in
(31) is substituted with sampling uniformly the new node
in [−10, 10] × [−10, 10] (i.e., without using an acquisition
function), (ii) NN-AQ only diversity, which uses the acqui-
sition in (35) with α = 0, β = 1, i.e., with only the
diversity term Dt (x), and (iii) NN-AQ tempered, which uses
the acquisition in (35) with α = 0, βt = 200

t , i.e., At (x) =
[Dt (x)]βt . Note that the adaptation in NN-AQ only diversity
can be viewed as filling the space in a deterministic way. Note
also that the adaptation in NN-AQ tempered will encourage
more exploration than NN-AQ in the early iterations. Again,
we compare the error in estimating Z , µ and [σ 2

1 , σ
2
2 ] as a

function of target evaluations E (up to E = 70). The results
are given in Figures 4(a)-(b).
Discussion 3: We can observe that NN-AQ and NN-AQ

tempered outperform the others in terms of Rel-MSE in esti-
mation. Moreover, in Fig. 4(a)-(b) we can see that for NN-AQ
and NN-AQ tempered, the RMSE decreases at a faster rate as
E grows, than the NN-U and NN-AQ only diversity, high-
lighting the importance of taking into account the current
interpolant to locate the new nodes. It can be seen that NN-AQ
only diversity works much better than NN-U in the early
iterations. We explain these results by the fact that NN-AQ
only diversity tends to cover the space more efficiently in

these early iterations since it avoids placing new nodes near
the existing ones. However, as E grows, the performance of
NN-U and NN-AQ only diversity is similar since both end
up filling uniformly the space. Interestingly, NN-U performs
better than IS as E increases, which demonstrate the power
of the interpolative approach even when the new nodes are
randomly chosen.

4) EXPERIMENT 4
For dx = 2, we investigate the performance of GK-AQ in
the estimation of Z , µ and [σ 2

1 , σ
2
2 ] as function of E . NN-GK

employs the acquisition in (33). The kernel bandwidth h is
fitted using the procedure in Appendix A. As commented
in Sect. III-B, we consider a small noise of σ = 10−2 for
numerical stability. We will compare the performance against
NN-AQ. The results are given in Figures 5(a)-(d), along with
an example of GK-AQ interpolant, with E = 70, obtained in
a specific run.
Discussion 4: The results are shown in Figures 5(b)-(d).

GK-AQ outperforms NN-AQ in this particular experiment.
However, it is important to remark that the results of GK-AQ
may worsen considerably if h is not selected adequately (we
have used the procedure in App. A), in contrast to NN-AQ
which is free of hyperparameter tuning and hence more
robust.
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B. MULTIMODAL TARGET
In this experiment, we consider a multimodal Gaussian target
in dx = 10,

π̄ (x) =
1
3
N (x|µ1,61)+

1
3
N (x|µ2,62)+

1
3
N (x|µ3,63),

with µ1 = [5, 0, . . . , 0], µ2 = [−7, 0, . . . , 0], µ3 =

[1, . . . , 1] and 61 = 62 = 63 = 42I10. We want to
test the performance of the different methods in estimating
the normalizing constant Z = 1. We consider an applica-
tion of GK-AQ with N0 = 500 initial nodes, random in
[−15, 15]10, and T = 1000 − N0, hence fixing the num-
ber of evaluations to E = 1000. We compare it against
three sophisticated AIS schemes, namely PMC, LAIS and
AMIS [72]. For PMC, we choose Gaussian proposal pdfs and
test different number of proposals L ∈ {10, 100, 200, 500},
whose means are also initialized at random in [−15, 15]10.
At each iteration one sample is drawn from each proposal,
hence the algorithm is run for TPMC =

1000
L iterations for

a fair comparison. As a second alternative, we consider the
deterministic mixture weighting approach for PMC, which is
shown to have better overall performance, denotedDM-PMC.
For LAIS, we also consider different number of proposals
L ∈ {10, 100, 200, 500}. More specifically, we consider two
versions of LAIS: the one-chain version and an ideal version.
In ideal LAIS, the means of the L Gaussian proposals are
drawn exactly from π̄ (x). The one-chain application of LAIS
(OC-LAIS) requires to run a MCMC algorithm targeting
π̄ (x) to obtain the L proposal means, hence it requires L
evaluations of the target. At each iteration one sample is
drawn from the mixture of the L Gaussian proposals, hence
we run the algorithm for TLAIS = 1000−L iterations for a fair
comparison. We used a Gaussian random walk Metropolis
to obtain the L means in the one-chain scenario. Finally,
we consider AMIS with several combinations of number
of iterations TAMIS and number of samples per iteration R.
At each iteration,R samples are drawn from a single Gaussian
proposal, hence the total number of evaluations is E =
RTAMIS. In this case, we test E ∈ {1000, 2000, 3000, 5000},
so the comparison is not fair except for E = 1000. For
PMC, LAIS and AMIS, as well as for the random walk
proposal within the Metropolis algorithm, the covariance of
the Gaussian proposals was fixed to h2I10 (for h = 1, . . . , 6),
where h is the initial bandwidth parameter used in GK-AQ.2

All the methods are compared through the mean absolute
error (MAE) in estimating Z , and the results are averaged over
500 independent simulations. The results are shown in Table 3
and Table 4. For each method, the best and worst MAE are
boldfaced.
Discussion: We can observe that GK-AQ obtains the best

range of MAE values [0.078, 0.4782] and the best results
for h = 1. For h > 1, we can see in Tables 3-4 that the
lowest MAE values are obtained by ideal LAIS with L = 500
and h = 3. We stress that ideal LAIS is not available in

2Recall that, for GK-AQ, the final bandwidth is tuned as described in
App. A.

TABLE 3. MAE of Z with E = 1000 (Best and Worst MAE of Each Method
are Boldfaced).

TABLE 4. MAE of Z of AMIS With E ∈ {1000,2000,3000,5000}.

practice, since we usually cannot sample directly from π̄ (x).
Regardless of the ideal LAIS scheme (not applicable in prac-
tice), GK-AQ provides the best results. Moreover, we see
that GK-AQ with h = 3 is the best performing method in
this experiment, since it achieves a lower MAE than PMC,
DM-PMC and OC-LAIS for every combination of L and h.
Table 4 shows that AMIS performs worse than GK-AQ for
E = 1000 (fair comparison), but even with much more AMIS
evaluations E ∈ {2000, 3000} (unfair comparison in favor
of AMIS). AMIS needs to reach a big enough value of E
(E = 5000), to beat GK-AQ in terms of MAE.

C. APPLICATIONS TO EXOPLANET DETECTION
In recent years, the problem of revealing objects orbiting
other stars has acquired large attention. Different techniques
have been proposed to discover exo-objects but, nowadays,
the radial velocity technique is still the most used [73]–[76].
The problem consists in fitting a dynamical model to data
acquired at different moments spanning during long time
periods (up to years). The model is highly non-linear and,
for certain sets of parameters, its evaluation is quite costly in
terms of computation time. This is due to the fact that its eval-
uation involves numerically integrating a differential equa-
tion, or using an iterative procedure for solving a non-linear
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TABLE 5. Description of Parameters in Eq. (39).

equation (until a certain condition is satisfied). This loop can
be very long for some sets of parameters.

1) LIKELIHOOD FUNCTION
When analyzing radial velocity data of an exoplanetary sys-
tem, it is commonly accepted that the wobbling of the star
around the center of mass is caused by the sum of the grav-
itational force of each planet independently and that they do
not interact with each other. Each planet follows a Keplerian
orbit and the radial velocity of the host star is given by

yt = V0 +
S∑
i=1

Ki
[
cos

(
ui,t + ωi

)
+ ei cos (ωi)

]
+ ξt , (39)

with t = 1, . . . ,T .3 The number of objects in the system
is S. Both yt , ui,t depend on time t , and ξt is a Gaussian
noise perturbation with variance σ 2

e . We consider the noise
variance σ 2

e an unknown parameter as well. The meaning of
each parameter in Eq. (39) is given in Table 5. The likelihood
function is jointly defined by (39) and some indicator vari-
ables described below. The angle ui,t is the true anomaly of
the planet i and it can be determined from

dui,t
dt
=

2π
Pi

(
1+ ei cos ui,t

)2
(1− ei)

3
2

This equation has an analytical solution. As a result, the true
anomaly ui,t can be determined from the mean anomalyMi,t .
However, the analytical solution contains a non-linear term
that needs to be determined by iterating. First, we define the
mean anomaly Mi,t as

Mi,t =
2π
Pi
(t − τi) ,

where τi is the time of periastron passage of the planet i and
Pi is the period of its orbit (see Table 5). Then, through the
Kepler’s equation,

Mi,t = Ei,t − ei sinEi,t , (40)

where Ei,t is the eccentric anomaly. Equation (40) has no ana-
lytic solution and it must be solved by an iterative procedure.
A Newton-Raphson method is typically used to find the roots

3More generally, we can have ytj with j = 1, . . . ,T .

of this equation [77]. For certain sets of parameters, this iter-
ative procedure can be particularly slow and the computation
of the likelihood becomes quite costly. We also have

tan
ui,t
2
=

√
1+ ei
1− ei

tan
Ei,t
2
, (41)

Therefore, the variable of interest x is the vector of dimension
dX = 1+ 5S (where S is the number of planets),

x = [V0,K1, ω1, e1,P1, τ1, . . . ,KS , ωS , eS ,PS , τS ],

For a single object (e.g., a planet or a natural satellite),
the dimension of x is dX = 5 + 1 = 6, with two objects the
dimension of x is dX = 11, etc. All the Eqs. from (39) to (41)
induce a likelihood function `(y|x, σe) =

∏T
t=1 `(yt |x, σe),

where y = {y1, . . . , yT }.

2) PRIOR AND POSTERIOR DENSITIES
The prior g(x) is defined as multiplication of indicator vari-
ablesV0 ∈ [−20, 20],Ki ∈ [0,max yi,t−min yi,t ], ei ∈ [0, 1],
Pi ∈ [0, 365], ωi,t ∈ [0, 2π ], τi ∈ [0, 30], (i.e., the prior is
zero outside these intervals), for all i = 1, . . . , S. This means
that the prior density is zero when the particles fall out of
these intervals. Note that the interval of τi is conditioned to
the value Pi. This parameter is the time of periastron passage,
i.e. the time passed since the object crossed the closest point
in its orbit. It has the same units of Pi and can take values
from 0 to Pi. The complete posterior is

p(x|y, σe) =
1

p(y|σe)
`(y|x, σe)g(x).

We are interested in inferring the parameters x and, more
specifically, computing the marginal likelihood

Z = p(y|σe) =
∫
X
`(y|x, σe)g(x)dx,

obtained integrating out x, in order to infer the number
of planets. The noise variance σ 2

e is also inferred after
the sampling, by maximizing Z = p(y|σe), i.e., σ̂ 2

e =

argmax
σe

p(y|σe).

3) EXPERIMENTS
Given a set of data y generated according to the model
(see the initial parameter values below), our goal is to infer
the number S of planets in the system. For this purpose,
we have to approximate the model evidence Z = p(y|σe) of
each model. In all experiments, we consider 60 total number
of observations. We consider three different experiments:
(E1) S = 0, i.e., no object, (E2) S = 1 (one object) and
(E2) the case of two objects S = 2.We set V = 2, in all cases.
For the first object in E1 and E2, we set K1 = 25, ω1 = 0.61,
e1 = 0.1, P1 = 15, τ1 = 3. ForE2, we also consider a second
object with K2 = 5, ω2 = 0.17, e2 = 0.3, P2 = 115,
τ2 = 25 (in that case S = 2). All the data are generated
with σ 2

e = 2. The rest of trajectories are generated according
to the transition model (and the corresponding measurements
yt according to the observation model).
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FIGURE 6. Plot of marginal likelihood estimates of Model 1 (one-planet) and Model 2 (two-planets) versus σ for the three data sets. The
straight lines represent the known marginal likelihoods of Model 0 (zero planets) for each data set. (a) data set with zero planets, (b) data
set with one planet, (c) data set with two planets.

4) METHODS
For each experiment, three models (i.e. three different target
pdfs) are considered: a model with S = 0 (Zero-Planets),
a model with S = 1 (One-Planet) and a model with S = 2
(Two-Planets). The goal is to estimate the marginal likelihood
of these models and then correctly detect the number of
planets, i.e., S = 0 for (E1), S = 1 for (E2) and S = 2
for (E3). The marginal likelihoods corresponding to the Zero-
planets models are available in closed form and need not be
estimated (the model is simply Gaussian in that case). For
this purpose, we apply NN-AQ (with M = 107) and and an
IS procedure.We allocate a budget of 4·106 evaluations of the
target. In IS, this budget is used to draw 4 · 106 samples from
the priors. While NN-AQ uses first 4 · 106 − 5000 of these
samples to look for a good initialization, more specifically,
the sample with the highest target evaluation is kept, along
with 9 more samples taken at random, to use them as initial
nodes. Then, NN-AQ is run for 5000 iterations. Both One-
Planet and Two-Planets models are estimated for different
values of σe = 1, 2, . . . , 15. Note that we do not need to
evaluate the target again when considering different σe, i.e., a
single target evaluation can be reused for all values of σe. The
results are shown in Figure 6.

5) RESULTS
For each experiment (E1)-(E3), Figure 6(a)-(c) depicts the
estimations of Z of the different models provided by NN-AQ
and IS, versus σe. The horizontal lines correspond to the
known marginal likelihoods of Zero-Planets models. Overall,
NN-AQ outperforms IS and predicts correctly the number of
planets as well as the true value of σe (indeed, the curves
corresponding to NN-AQ reach a maximum at σe = 2).
Figure 6(a) shows that the estimations provided by NN-AQ
and IS correctly rank the Zero-planets model (S = 0) as the
most probable one. Figure 6(b) shows both NN-AQ and IS
predict correctly the One-Planet model (S = 1) to be the
correct one. However, for σe = 2, IS barely differentiates
between the Zero-Planet and One-Planets models. Further,
for σe = 1, it wrongly predicts Zero-Planets as the best
one. Conversely, NN-AQ is able to predict the correct model

for every value of σe, and besides, also predicts the true
value σe = 2. In Figure 6(c), the difference in performance
of NN-AQ and IS is more acute. While NN-AQ is able to
correctly predict the Two-Planets model (S = 2) as the most
probable for all values of σe, IS is unable to detect that second
planet and, therefore, considers the One-Planet model more
probable. As in the previous case, IS fails at detecting any
planet for small values of σe. Again, NN-AQ predict the
correct value of σe.

IX. CONCLUSION
In this work, we have described a general framework for
adaptive interpolative quadrature schemes, leveraging an
in-depth study of different fields and related techniques in
the literature, such as Bayesian quadrature algorithms, scat-
tered data approximations, emulation, experimental design
and active learning schemes. The nodes of the quadrature
are adaptively chosen by maximizing a suitable acquisition
function, which depends on the current interpolant and the
positions of the nodes. This maximization does not require
extra evaluations of the true posterior. The proposed methods
supply also a surrogatemodel (emulator) which approximates
the true posterior density, that can be also employed in further
statistical analyses. Two specific schemes, based on Gaussian
and NN bases, have been described. In both cases, a non-
negative estimation Ẑ of the marginal likelihood Z is ensured.

In the proposed framework, we also relax the assumptions
regarding the kernel-basis functions with respect to other
approaches in the literature, e.g., the bases could be non-
symmetric. For instance, the NN bases are non-symmetric
functions and their use has different important benefits:
(a) they ensure obtaining non-negative interpolation coef-
ficients and estimators Ẑ , (b) the linear system is directly
solved without the need of inverting any matrix (the inter-
polation matrix is always diagonal), and (c) the bandwidth
of the bases are automatically selected. Our scheme also
allows selecting different kernel functions for each node
point. Therefore, the quadrature rules in Bayesian quadra-
ture are a special case of our proposed scheme. Indeed,
Bayesian quadrature considers a single symmetric and semi
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FIGURE 7. (a) GK based interpolant with NT = 70 nodes and h = 2.7, fitted by maximizing the marginal likelihood. (b) Plot of Ẑ as function
of h. The value of h at which Ẑ attains the local maximum is used to build the interpolant in our procedure. (d) GK based interpolant with
NT = 70 nodes and h = 0.51 fitted with the heuristic.

positive definite kernel function. An importance sampling
interpretation has been also provided. It is important to
remark that the true posterior is only evaluated at the nodes
selected sequentially by the algorithm, and the rest of other
computations does not query the true model. The conver-
gence of the proposed quadrature rules has been discussed,
jointly with other theoretical results. The new algorithms
are powerful techniques as also shown by several numerical
experiments.

APPENDIX A
PROCEDURE FOR TUNING THE GAUSSIAN
KERNEL BANDWIDTH
In this Appendix, we propose a procedure for fitting the
bandwidth parameter h of the Gaussian kernel (GK),

kG(x, xi) =
1

(2π )
dx
2 hdx

exp
(
−

1
2h2

(x− xi)>(x− xi)
)
,

(42)

when building theGKbased interpolant of Sect. III for a given
number of nodes. Assume we have run the GK-AQ algorithm
(with some fixed h0), so we have a total of NT nodes. Now,
for any h, we may solve the linear system (Eq. (5)), obtain the
coefficients {βi}

NT
i=1 and calculate

Ẑ =
NT∑
i=1

βi. (43)

Note that, although not explicit, the βi’s, and hence Ẑ , depend
on h. The proposed procedure consists of taking h as the
value where Ẑ attains its first local maximum. Starting from
a small value h close to zero and increasing it, the estimation
Ẑ is growing reaching a maximum. Then, h is starting to
become ‘‘too big’’, producing too much overlapping among
the kernel areas. The values of the elements out the diagonal
of K grow, and some of the coefficients βi are negative,
and the estimation Ẑ decreases. As h becomes greater and
greater, the matrix K tends to become ill-conditioned, and
the absolute values of βi’s grows. Figure 7 compares the GK

based interpolant of the target from Sect VIII-A with two
different choices of h and NT = 70 nodes. Figure 7(a) plots
the interpolant taking h as the value which minimizes the
marginal likelihood (see Sect. III-B). Note that this value of h
is too big given the dispersion of the nodes. While Figure 7(c)
plots the interpolant taking h as the value where the curve of
Ẑ (Figure 7(b)) attains its local maximum. This choice of h
seems to fit better the existing nodes. Note also that, for some
values of h, Ẑ may be negative.

APPENDIX B
PROBABILISTIC INTERPRETATION OF J
Let us consider J =

∫
X f (x)π (x)dx, which is the numerator

of (1), our integral of interest I . In section III-A, we have
seen that, when k(x, xi) = k(xi, x) (i.e., a symmetric basis
function), the interpolant π̂ (x) =

∑N
i=1 βik(x, xi) has the

probabilistic interpretation of being the mean of the posterior
distribution of (the ‘‘unknown’’) π (x) after observing d =
[π (x1), . . . , π (xN )]>, i.e., E[π (x)|d] = π̂ (x). The distribu-
tion on π (x) induces a posterior distribution on J , which is a
Gaussian with mean

E[J |d] = J̃ =
∫
X
f (x)π̂ (x)dx, (44)

and variance given by

var[J |d] =
∫ ∫

k(x, x′)f (x)f (x′)dxdx′ − ζ>K−1ζ , (45)

where ζ = [J1, . . . , JN ] and Ji =
∫
X f (x)k(x, xi)dx. This

interpretation corresponds to the so-called Bayesian quadra-
ture, which uses Eq. (44) as approximation of J . Note that
Eq. (44) is the quadrature obtained by substituting the true
π (x) with its interpolant π̂ (x), which coincides with the
numerator of Î in Eq. (7).

APPENDIX C
RECURSIVE INVERSION OF A BORDERED MATRIX
The most costly step when calculating β in (5) consists
in inverting the N × N matrix (K)i,j = k(xi, xj) (i, j ∈
{1, . . . ,N }). Moreover, every time a new node is added, the βi
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must be recomputed, so the step of computing the inverse has
to be done again. This time the matrix is bigger due to adding
a new node, that is, it has an additional row and column.
We show that knowingK−1 help us to compute the inverse of
augmented matrices (called ‘‘bordered matrix’’, i.e., adding a
‘‘border’’ of new row and column to an existing matrix).

Let us denote with KN the matrix built using N nodes,
and let KN+1 be the matrix with N + 1 nodes. Of course we
have

KN+1 =

(
KN kN
kTN k

)
(46)

where kN = (k(x1, xN+1), k(x2, xN+1), . . . , k(xN , xN+1))T

and k = k(xN+1, xN+1). The (N + 1) × (N + 1) inverse of
KN+1 can be expressed in terms of K−1N as follows

K−1N+1 =
(
A b
c s

)
, (47)

where

A = K−1N +K−1N kN
(
k − kTNK

−1
N kN

)−1
kTNK

−1
N ∈ RN×N ,

b = −K−1N kN
(
k − kTNK

−1
N kN

)−1
∈ RN×1,

c = −
(
k − kTNK

−1
N kN

)−1
kTNK

−1
N ∈ R1×N ,

s =
(
k − kTNK

−1
N kN

)−1
∈ R.

Note that computing s =
(
k − kTNK

−1
N kN

)−1
is not costly

since it is an scalar value.

APPENDIX D
PROOFS
A. PROOF TO THEOREM 1
We have that

|J − Ĵ | =

∣∣∣∣∫
X
f (x)π (x)dx−

∫
X
f (x)π̂ (x)dx

∣∣∣∣
=

∣∣∣∣∫
X
f (x) (π (x)− π̂ (x)) dx

∣∣∣∣ .
It is easy to see that, for any g(x) we have −|g(x)| ≤
g(x) ≤ |g(x)| for all x, and that −

∫
|g(x)|dx ≤

∫
g(x)dx ≤∫

|g(x)|dx, so we have
∣∣∫ g(x)dx∣∣ ≤ ∫

|g(x)|dx. Using this
result we can state the first inequality

|J − Ĵ | =

∣∣∣∣∫
X
f (x) (π (x)− π̂ (x)) dx

∣∣∣∣
≤

∫
X
|f (x)| |π (x)− π̂ (x)| dx

= ‖f (π − π̂ )‖1 .

The second inequality of the theorem follows from Holder’s
inequality

‖f (π − π̂ )‖1 ≤ ‖f ‖2 ‖π − π̂‖2 .

Finally, the last inequality of the theorem is obtained after
manipulating the ‖f ‖2 and ‖π − π̂‖2,

‖f ‖2 ‖π − π̂‖2

=

(∫
X
|f (x)|2dx

) 1
2
(∫

X
|π (x)− π̂ (x)|2dx

) 1
2

≤

(
|X |max |f (x)|2

) 1
2
(
|X |max |π (x)− π̂ (x)|2

) 1
2

= |X |max |f (x)|max |π (x)− π̂ (x)|

= |X | ‖f ‖∞ ‖π − π̂‖∞ .

B. PROOF TO THEOREM 2
We provide the main concepts and elements of the proof. For
more details, see [16], [67]. Let J =

∫
X f (x)π (x)dx and J̃ =∑N

i=1 νiπ (xi) be the integral of interest and the quadrature
using points {xi}Ni=1, respectively. Recall that we also denote

ν = [ν1, . . . , νN ]>.
Consider that π is a function belonging to the reproducing

kernel Hilbert space of functionsH originated from the sym-
metric and positive definite kernel function k(x, x′). Hence,
J and J̃ are functionals over that RKHS

J [π ] =
∫
X
f (x)π (x)dx,

J̃ [π ] =
N∑
i=1

νiπ (xi), π ∈ H.

where we write explicitly J [·] is the functional that integrates
w.r.t. f (x), while J̃ [·] is the functional that integrates w.r.t.
the weighted sum

∑N
i=1 νiδxi , where δxi denotes the point

evaluation in xi. The integration error associated with J̃ is
characterized by the norm, in the dual space H∗, of the error
functional∥∥J − J̃∥∥H∗ = sup

‖π‖H≤1

∣∣̃J [π ]− J [π ]∣∣ , (48)

where ‖·‖H and ‖·‖H∗ denote the norm inH andH∗ respec-
tively. Eq. (48) is also called worst-case error (WCE). Define
the functions

kf (x) =
∫
X
f (x′)k(x, x′)dx′, (49)

and

k̃f (x) =
N∑
i=1

νik(x, xi), (50)

where kf , k̃f ∈ H. These functions exist as consequence of∫
X k(x, x)f (x)dx < ∞. It can be shown that

∥∥J − J̃∥∥H∗ =∥∥∥kf − k̃f ∥∥∥H, and∥∥J − J̃∥∥2H∗ = ν>Kν − 2ν>ζ

+

∫
X

∫
X
f (x)f (x′)k(x, x′)dxdx′, (51)

for a vector of weights ν ∈ RN , the matrix (K)1≤i,j≤N =
k(xi, xj), and the vector of integrals ζ = [kf (x1), . . . , kf (xN )]>.
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Conditional on the fixed states {xi}Ni=1, the weights ν that
minimizes the above expression are given by ν = K−1ζ .
These are the weights that arises if we build the interpolant
π̂ of π at points {xi}Ni=1, using k(x, x

′) as the basis function,
and substitute it in J to obtain the quadrature.

C. PROOF TO THEOREM 6
Let J be the integral of interest, and let J̃ =

∑N
i=1 βiJi and

Ĵ =
∑N

i=1 βîJi be the approximations using, respectively,
the exact Ji and the noisy estimation Ĵi . Recall that the
coefficients βi are written in matrix form as β = K−1d
where K is the interpolation matrix and d is the vector of
evaluations of π . Let us denote ζ = [J1, . . . , JN ]> and
ζ̂ = [̂J1, . . . , ĴN ]>. Denoting the dot product in RN as 〈·, ·〉,
we can express J̃ = 〈ζ ,β〉 and Ĵ = 〈̂ζ ,β〉. Thus

|J − Ĵ | = |J − 〈̂ζ ,β〉|

= |J − 〈ζ − ζ + ζ̂ ,β〉|

= |J − 〈ζ ,β〉 + 〈ζ ,β〉 − 〈̂ζ ,β〉|

≤ |J − J̃ | + |〈ζ − ζ̂ ,β〉|

= |J − J̃ | + |〈K−1(ζ − ζ̂ ), d〉|

≤ ||f (π − π̂ )||1 + ||K−1(ζ − ζ̃ )||2 ‖d‖2
≤ |X | ||f ||∞ ||π − π̂ ||∞ + ||K−1||2||ζ − ζ̂ ||2 ||d||2

where the norm ||K−1||2 represents the largest singular value
of K−1. The bounds ‖π − π̂‖∞ = λ(r) and ||K−1||2 =
O(υ(s, h)) for different RBF can be found respectively in
Chapters 11.3 and 12.2 of [55]. For further details, see Propo-
sition 1 in [67].

D. PROOF TO THEOREM 8
Let us consider the target π (x) and the interpolant π̂ (x) based
on NN constant kernels. Note that for all x ∈ X we have
π̂ (x) = π (x∗), where x∗ = argmini ‖x− xi‖, i.e., the
node that is closest to x. Lipschitz continuity implies that
|π (z)− π (x)| ≤ L0 ‖z− x‖ for all z, x ∈ X . Hence,

‖π − π̂‖∞ = max
x∈X
|π (x)− π̂ (x)|

= max
x∈X
|π (x)− π (x∗)|

≤ L0max
x∈X

∥∥x− x∗
∥∥

= L0max
x∈X

min
i
‖x− xi‖

= L0 r,

where we used the definition of fill distance r , i.e.,

r = max
x∈X

min
i
‖x− xi‖ .

For further details, see [27], [56].
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