
CORSO DI DOTTORATO IN SISTEMI COMPLESSI PER LE SCIENZE FISICHE,

SOCIO-ECONOMICHE E DELLA VITA

ANTONIO DI MARIA

BIOTAGME: A COMPREHENSIVE PLATFORM FOR BIOLOGICAL KNOWLEDGE

NETWORK ANALYSIS

TESI DI DOTTORATO

RELATORI:

CHIAR.MO PROF. A. PULVIRENTI

DOTT. S. ALAIMO

ANNO ACCADEMICO 2019/2020

ABSTRACT

The inference of novel knowledge and the generation of new hypotheses from

the analysis of the current literature is a fundamental process in making new scien-

tific discoveries, and gaining knowledge about relations among biological elements.

Especially in bio-medicine, given the enormous amount of literature and knowledge

bases available, this process allows the researchers to obtain information on aspects

already widely investigated by others researchers. The automatic extraction of infor-

mation in the form of semantically related terms (or tags) is becoming an importance

aspect (Kilicoglu et al., 2012; Stewart et al., 2012). Here we propose BioTAGME

framework that combines TAGME annotation framework based on Wikipedia cor-

pus (Ferragina and Scaiella, 2010), with the DT-Hybrid methodology. The aim of

this combination is to extract biological terms from scientific documents available

in PubMed, and predicts possible relationships among them in order to generate

a knowledge graph. The proposed framework consist of two pipeline. The first

one is entirely implemented in Spark in order to distribute the computing among

several machines. It will be employed to annotate documents, and predict relation-

ships among biological terms. Instead, the second one use the Laravel model-view-

controller framework for the User Interface realization, and Neo4j graph database

for storing the knowledge graph. In this thesis I also describe another project, called

NetME, realized during the PhD. It allows to build an on-the-fly knowledge graphs

starting from a subset of full texts obtained by a real-time query on PubMed and

applying several semantic analysis methodologies.

Keywords: Knowledge Graph, Document Annotation, Prediction Algorithms, Sen-

timental Analysis Methodologies, Apache SPARK, HDFS, Neo4j.

i

ACKNOWLEDGEMENT

With immense pleasure and deep sense of gratitude, I wish to express my sin-

cere thanks to Prof. Alfredo Pulvirenti, Prof. Alfredo Ferro, and the Dr. Salva-

tore Alaimo, without their motivation and continuous encouragement, this research

would have been difficult to be completed.

I wish to extend my profound sense of gratitude to my parents for all the

sacrifices they made during my research and also providing me with moral support

and encouragement whenever required.

I am also pleased to thank the Prof. Dennis Shasha, and Dr. Jacopo Cir-

rone for motivating me to carry out research during the six months spent at the New

York University, and also for providing me with infrastructural facilities and many

other resources needed for my research..

Last but not the least, I would like to thank my colleagues for their constant en-

couragement, help, and moral support during the last three years of research activity.

Place: Catania

Date: 15/12/2020 Antonio

ii

Contents

ABSTRACT . i

ACKNOWLEDGEMENT . ii

1 Introduction 1

2 Background 5

2.1 Knowledge Graph . 6

2.2 Documents repositories . 7

2.2.1 PubMed . 8

2.2.2 PubMed Central . 9

2.2.3 bioRxiv . 9

2.3 Articles annotation and Relationships extraction 11

2.3.1 PubAnnotation . 12

2.3.2 PubTatorCentral . 15

2.3.3 SemRep . 18

2.3.4 STRING . 20

2.3.5 Hetionet . 22

2.3.6 Reactome . 23

2.3.7 kindred . 24

2.4 Annotations format . 24

2.4.1 Biological Expression Language (BEL) 25

2.4.2 Resource Description Framework 26

iii

3 Algorithms and Frameworks 28

3.1 DT-Hybrid . 28

3.2 Custom DT-Hybrid . 30

3.3 Tagme framework . 32

3.4 Custom Tagme (OntoTagme) . 34

3.5 SPARK framework . 36

3.6 Neo4j . 39

4 BioTAGME 41

4.1 Cluster configuration . 43

4.2 External Sources . 44

4.2.1 DisGeNET . 44

4.2.2 Disease Ontology . 45

4.2.3 DiseaseEnhancer . 45

4.2.4 DrugBank . 46

4.2.5 PharmGKB . 46

4.2.6 HUGO Gene Nomenclature Committee 47

4.2.7 Ensembl . 47

4.2.8 LNCipedia . 48

4.2.9 miRcode . 48

4.2.10 miRBase . 49

4.2.11 miRTarBase . 49

4.2.12 miRCancer . 49

4.2.13 Reactome . 50

4.2.14 PathBank . 50

4.2.15 UniProt . 50

4.2.16 BRENDA . 51

4.2.17 RefSeq . 51

4.3 Pipeline one . 52

iv

4.3.1 Download and Import module 52

4.3.2 SQL to JSON parser module 53

4.3.3 Integrating databases module 56

4.3.4 Annotation module . 57

4.3.5 Prediction module . 59

4.3.6 Network Construction . 61

4.3.7 Updating procedure . 62

4.4 Pipeline two . 63

4.4.1 Network import module 64

4.4.2 Searching module . 66

4.4.3 Case study . 72

5 NetME 74

5.1 NetME methodology . 75

5.2 NetME User Interface . 77

5.3 Case study . 78

6 Conclusions 81

v

Chapter 1

Introduction

The increasing amount of scientific literature is rising new challenges for scientists.

Identify the proper set of articles dealing with a certain topic could result as a not

straightforward task and therefore the chance to miss important references and in-

deed relevant research is high.

In particular, in research areas as biology or biomedicine, thanks also to the fast-

track publication journals, the number of published papers increases significantly

fast. Furthermore, in such research areas, network analysis has became a key en-

abling technology to help the understanding of mechanisms of life, living organ-

isms, and in general uncover the underlying fundamental biological processes. Ex-

ample of applications include: i) analyzing the disease networks for identifying the

disease-causing genes and pathways [1]; ii) discovering the functional interdepen-

dence among molecular mechanisms through functional network querying [2]; and

iii) Network based inference with application on drug re-purposing [3].

The large number of open-access articles available in archive such as Pubmed Cen-

tral [4], arxiv [5], and bioarxiv [6] as well as databases of ontologies which hold

entities and their relations [7], is driving the academic community to rely on text

mining tools and machine learning algorithms to digest corpus and extract semantic

knowledge from them.

The text mining tools [8] and Natural Language Processing (NLP) [9] employ in-

1

formation extraction methods to translate unstructured textual knowledge in a form

that can be easily analyzed and used to build functional network or more in gen-

eral a biomedical knowledge graphs [10].This technology allows to infer putative

relations among molecules such as: understand how a proteins interact each other;

which gene mutations are involved in a disease, etc. In this context, the Biological

Expression Language (BEL) [11] or Resource Description Framework (RDF) [12]

is widely applied to convert a text in semantic triplets having the following form:

<subject, predicate, object>.

The subject and object represent biological elements (i.e gene, disease, drug, en-

zyme, etc). Instead, the predicate represents a logical or physical relationship be-

tween them.

Since the implementation of biological text mining tools requires specialist skills in

natural language processing that end-users usually do not have, several annotations

ecosystem and tools have been implemented and made available to scientist commu-

nity: j) PubAnnotation [13] is based on the "Agile text mining" concept, and it is a

public resource for sharing annotated biomedical texts. jj) PubTator (PTC) [14] is a

web service for viewing and retrieving bio-concept annotations (for genes/proteins,

genetic variants, diseases, chemicals, species and cell lines) in full text biomedical

articles. It annotates all the PubMed [4] abstract, and more than three millions of

full texts. The annotations are downloadable in multiple formats (XML, JSON and

tab delimited) via the online interface, a RESTful web service and bulk FTP. PTC

is synchronized with PubMed and PubMed Central, with new articles added daily.

Once the documents have been translated in a list of keywords through the annota-

tion systems, we need to employ one or more prediction algorithms [15] and/or sen-

timent analysis techniques [16] for building relationships among the just extracted

keywords.

Therefore, several frameworks to relations extraction from documents and knowl-

edge network construction have been implemented in the past years: i) STRING

[17], ii) Hetionet [18], iii) SemRep [19], iv) etc.

2

In this thesis we have implemented two frameworks based on the knowledge

graph construction context. The first one is called BioTAGME (A comprehensive

platform for biological knowledge network analysis) which is capable to extract

knowledge from all documents’ title and abstract in PubMed. It is composed of two

pipelines:

• The first one has been designed to transform the PubMed documents in a

knowledge network by applying TagME [20] as annotation technique, and

DT-Hybrid algorithm together with relatedness computing method of TagME

as prediction one. In addition, several external ontologies and databases i.e

Disease Ontology [21], DrugBank [22], HGNC [23], etc, have been employed

to mitigate the disambiguation error caused by an excessive generality of the

Wikipedia corpus.

This corpus is used by TagME to extract the annotation terms from a text.

Such pipeline is entirely implemented in Spark [24] and Scala to ensure high

scalability and distribution of the application.

• Instead, the second one has been designed to make available to the users a

“Graphic interace”, and several APIs needed for extracting information from

the knowledge network, such as the echo network of a biological element, the

shortest path between two biological ones, etc. It employs the Laravel model-

view-control, in addition, all the views are implemented in React native.

The actual BioTAGME version is able to extract the relationships among biologi-

cal elements, but no the relationship type due to the limited amount of information

within the titles and abstracts. Therefor, we are already working on a second version

of BioTAGME which includes full texts, titles, and abstracts in order to solve this

issue.

The second frameworks explained in this thesis is NetME which allows to build

an on-the-fly knowledge graphs starting from a subset of full texts obtained by a

3

real-time query on PubMed. This framework orchestrates two different technologies

which enable the inference of biological networks:

• A customized version of the entity-linker tagme [20], named “ontoTagme”,

which is designed to run on a set of biological ontology knowledge-bases

(such as GeneOntology [25], Drug-Bank [22],DisGeNET [26], and Obofoundry

[27]) and allows to extract biological entities (i.e. genes, drugs, diseases) from

a collection of full-text articles obtained through a query to PubMed. These

biological entities will represent the nodes of the network;

• A software module developed upon the NLTK library [28] resource derives

relations type and direction (edges) among the nodes previously extracted.

Edges are weighted according to the frequency of appearance of their corre-

sponding relation in the chosen list of full-text articles.

The thesis is organized as follows. The chapter two reports an overview based on

already known annotation techniques, knowledge graph construction frameworks,

and knowledge representation methods. The third one describes all the annotation

and prediction algorithms (including our customization) used by BioTAGME and

NetME for nodes and edges inference. The fourth and fifth ones provides the tech-

nical details of the back-end and the front-end of BioTAGME and NetME, respec-

tively. We give also a preliminary experimental analysis. The conclusion one ends

the thesis and sketches future research directions.

4

Chapter 2

Background

The concept of semantic networks has a long history (Quillian, 1968) and opened

up a basis for knowledge modeling and representation (Helbig, 2006) by providing

an adaptable formal framework for scientific developments and applications [29].

These networks allow to model semantic relationships in patterns of interconnected

labeled nodes and edges incorporating linguistic information that describes concepts

or objects. Semantic standards and technologies facilitate the combination of mul-

tiple biomedical association data across multiple domains, which can be highly het-

erogeneous, and enable the construction of knowledge networks composed of vari-

ous biological entities, such as compounds, proteins, and genes [17].

Interactions among biological components is basically studied and analyzed through

a rich spectrum of methods and metrics grounded on network theory. Most of these

methods focus on the comparison of two biological networks (e.g., control vs. dis-

ease) [30]. To support challenging biomedical data integration efforts, a computa-

tional technique should satisfy the following three basic requirements [31]:

• An inter-operable data model that is capable of capturing and modeling the

observed biomedical networks.

• A data integration framework to map and merge network data across disparate

data sources.

5

• A collection of computational services to analyze, discover and validate new

associations in integrated biomedical networks.

Based on these requirements, computer scientist and in general life-science re-

searchers are focusing their studies and research topics on Annotation echo-systems

and relations extraction frameworks.

In this chapter, we explain the concept of Document annotation including a brief

overview of the most widely used tools and frameworks. Then, we give a description

of the semantic languages have been established to represent and query semantic

meaning of data and relationship. Finally, we conclude this chapter by listing a set

of tools used to extract relationships and build knowledge networks.

2.1 Knowledge Graph

A Knowledge Graph (also known as semantic network) is a systematic way to con-

nect information and data to knowledge. It represents a collection of interlinked

descriptions of entities, real-world objects and events, or abstract concepts, obtained

from several structured knowledge-bases such as ontologies (O1, O2, ..., Ok) [32].

An ontology is a formal description of knowledge as a set of concepts within a do-

main and the relationships that hold between them. To enable such a description,

we need to formally specify components such as individuals (instances of objects),

classes, attributes and relations as well as restrictions, rules and axioms. As a result,

ontologies do not only introduce a shareable and reusable knowledge representation

but can also add new knowledge about the domain [33]. They are considered as the

data schema of the graph. In some cases, a knowledge graph can contains multiple

ontologies and inter-relations between them.

A semantic network is defined as a graph G = (E,R) composed of entity e ∈ E

coming from terminologies or ontologies, and relations r ∈ R that can be terminol-

ogy/ies or ontology/ies relations. Both E and R are finite discrete spaces. In addition,

every entity e ∈ E can have some additional meta information defined with respect

6

Figure 2.1: Linking Open Data cloud diagram 2014, by Max Schmatchtenberg, Cris-
tian Bizer, Anja Jentzshc and Richard Cyganiak. http://lod-cloud.net/. The figure
shows the DBPedia Knowledgw network.

to the application of the knowledge graph [34].

DBPedia [35] is an example of big knowledge graph. This project leverages

the structure inherent in the info boxes of Wikipedia to create an enormous dataset

of 4.58 things (link https://wiki.dbpedia.org/about) and an ontology that has en-

cyclopedic coverage of entities such as people, places, films, books, organizations,

species, diseases, etc.

2.2 Documents repositories

Thanks to the high availability of open-access articles repositories, and the continued

growth of new entries and publications in the last few years, the research community

has focused on text mining tools and machine learning algorithms to digest corpus

and extract semantic knowledge. Due to the importance of these repositories, below

7

is reported a brief explanation of the most commonly used documents repositories.

2.2.1 PubMed

PubMed [36] is a free resource supporting the search and retrieval of biomedical and

life sciences literature with the aim of improving health–both globally and person-

ally. The PubMed database contains more than 30 million citations and abstracts of

biomedical literature. It does not comprise full-text journal articles. PubMed cita-

tions and abstracts include the fields of biomedicine and health, covering portions

of the life sciences, behavioral sciences, chemical sciences, and bio-engineering.

PubMed also provides access to additional relevant web sites and links to the other

NCBI molecular biology resources. PubMed was developed since 1996, and is

maintained by the National Center for Biotechnology Information (NCBI), at the

U.S. National Library of Medicine (NLM), located at the National Institutes of

Health (NIH). The search for based-topic publications can be carried out through

two different modalities:

• User Interface over the website https://pubmed.ncbi.nlm.nih.gov/.(Fig 2.1)

• Entrez API (E-utilities) [37] allow access to all Entrez databases including

PubMed. The E-utilities are a suite of eight server-side programs that accept

a fixed URL syntax for search, link and retrieval operations. In BioTAGME

we employ the E-utilities esearch and efetch functions during the updating of

our local documents repository. The first one is used to download the PMIDs

list published from mindata to maxdata. For example, to get all the new docu-

ments PMIDs from 2020/03/01 to 2020/04/01, we have to send the following

GET request.

“https://eutils.ncbi.nlm.nih.gov/entrez/eutils/esearch.fcgi?db=pubmed&

retmode=json&retmin=2020/03/01&retmax=2020/04/01”

8

Figure 2.2: Title and Abstract of the articles that treats COVID 19 disease

The second one is used to download title and abstract of the just downloaded

PMIDs.

2.2.2 PubMed Central

PubMed Central [14] is the United States National Library of Medicine’s digital

archive of biomedical and life sciences journal literature which provides free access

to the full text of articles. To search for free full-text articles on PubMed Central

over the website “http://www.ncbi.nlm.nih.gov/pmc/”, the searcher have to write

topic/author/journal title. Just like PubMed, the NCBI’s E-utilities can be used to

download full-text by REST API.

2.2.3 bioRxiv

bioRxiv [6] is a free online archive and distribution service for unpublished pre-

prints in the life sciences operated by Cold Spring Harbor Laboratory. The authors

are able to to make their publications immediately available to the community (be-

fore the submitting to journals) by posting pre-prints on bioRxiv. The articles are no

9

Figure 2.3: All the covid 19-based pre-print submitted to bioRxiv

reviewed before being posted online. However, these are only checked for avoiding

offensive and/or non-scientific content. An article may be posted prior to, or concur-

rently with, submission to a journal but should not be posted if it has already been

accepted for publication by a journal. In addition it is categorized as New Results,

Confirmatory Results, or Contradictory Results.

• New Results describe an advance in a field.

• Confirmatory Results largely replicate and confirm previously published work

• Contradictory Results largely replicate experimental approaches used in pre-

viously published work but the results contradict and/or do not support it.

Readers may comment the articles on bioRxiv and also contact authors directly to

get clarification. Pre-prints deposited in bioRxiv can be cited using their digital

object identifier (DOI). Such object identifier is the same for every version of the

manuscript. Therefore, if a user needs to specific a version, she has to add the

version-specific URL: “https://www.biorxiv.org/content/10.1101/2019.12.11.123456v2”.

10

2.3 Articles annotation and Relationships extraction

Entity and relation extraction is a standard task in text mining or natural language

processing (NLP) necessary to transfer unstructured textual information into a struc-

tured form (more information about these forms are reported in the next section). In

this context, entities are typically short phrases representing a specific object such

as ’pancreatic neoplasms’. Instead, the relations are physical or logical interactions

among the entities of the considered domain (biological in this thesis work) [38].

A common idea of the computational linguistics approaches is that the seman-

tics of a relation expressed in a piece of text can be extracted through the syntactic

analysis of that text. Thus, given the sentence "A woman who was treated for thy-

rotoxicosis disease with methimazole drug developed agranulocytosis disease.", the

aim of an annotator is to extract the entities methimazole (drug) and agranulocyto-

sis (disease) as well as the relationship between these. The syntactic structure of

a sentence is often represented as a parse tree capturing the interaction of phrasal

constituents within the formalism of Dependency Grammar.

Various approaches for relation extraction have been applied to the biomedical

domain:

• The simplest approach is the detection of co-occurrences of entities from

sentences or abstracts relying on clustering procedures. The central hypothesis

is that similar entities tend to occur together in similar contexts. Generally, the

type and direction of the relation cannot be determined [39].

• Pattern-based extraction approaches to infer lexico-syntactic patterns. The

main drawback is that this techniques does not face the high variability of how

a relation can be expressed in natural language. It generally extracts single-

word terms rather than well-formed and compound concepts [40].

• Machine Learning [41] classifier for associating specific category to an in-

put text without using any advanced Natural Language Processing technique

11

on the sentences. Since this approach relies on a standard supervised clas-

sification strategy, several algorithms like Naive Bayes Classifiers [42], De-

cision Trees [43] and Support Vector Machines [44], are usually employed.

For example, a vector-based approach is used to transform a span of text and

candidate relations into a numerical vectors used during the classification pro-

cedure. Such models suffer a main problems: The errors generated in the en-

tities extraction step may propagate to the step of relation classification. For

instance, if a drug or disease entity mention is incorrectly recognized, than the

extraction of its related relationships will be incorrect.

• Deep learning [45] with neural networks has received increasing research at-

tention in the text mining and NLP areas. Compared with other approaches,

deep neural networks adopt low-dimensional dense embedding [46] to denote

features such as words or part-of-speech (POS) tags [47], which can effec-

tively settle the feature sparsity problem. In addition, deep neural networks

demand less feature engineering, since they can learn features from training

data automatically. For relation classification, deep neural networks (RNNs)

[48] or convolutional neural networks (CNNs) [49] are used to learn relation

representations along the words between two target entities.

Relation extraction algorithms can also be classified by the way the extraction

rules are obtained, they can be: i. manually defined or ii. learned from large anno-

tated training corpora.

Below we describe some frameworks and tools designed to entities and relation-

ships extraction.

2.3.1 PubAnnotation

PubAnnotation [13] is an ecosystem based on agile approaches to text mining and

annotation procedures. It is composed of the following three components:

12

• An annotation model composed of three sub-components: i. Storage, ii. Ac-

cessors. and iii. Processors

• A dictionary-based annotator.

• A storage component facilitates regression testing.

To facilitate the communication among the components, two models have been

created: Passive communication model allows processors or accessors to get anno-

tation stored in the annotation server, or to push new and revised ones to a server.

Active communication model enables an annotation storage for initializing com-

munication to “actively” obtain new or update annotations.

Based on these two communication models, several components have been de-

veloped within the ecosystem: PubDictionaries, PubAnnotation and TextAE

• PubDictionaries (http://pubdictionaries.org) is a processor to enable customized

dictionary-based annotation. It provides the following functionalities: i) A

repository of dictionaries, ii)An interface to test dictionary-based annotation,

iii) A set of programmable RESTful APIs for scalable annotation, iv)An in-

terface to enable edition of dictionaries. In addition, a user can easily add new

entries to or delete from a dictionary. Note that, a dictionary means a list of

couples composed of labels and identifiers.

dictionaryi = (l1, i1), ...,(lk, ik) (2.1)

where labels mean term expressions that have to appear in natural language

text as refer to specific entities, and identifiers are structured information

sources (e.g. databases or ontologies.

• PubAnnotation (http://pubannotation.org) enables an user to annotate a bio-

logical text through the dictionaries previously explained. Thus, at the begin-

ning it is necessary to select the PubDictionary processors (dictionaries), and

13

Figure 2.4: PubDictionary user interface that allows to upload dictionaries, modify
terms and concept of the dictionary, edit dictionaries, etc

the text to annotate. For example, if the selected text treats COVID 19 disease,

the PubDictionary processors to select are: “MONDO_0100096”, “COVID 19

samples”, etc. Next, the user sends the request and obtains a list of annotations

extracted by the text. Finally, the user may evaluate the quality of annotations

in two different ways: using a benchmark dataset registered to PubAnnotation

as a project and compared with any other project, or manual inspection.

If the quality is not satisfactory, an improvement may be implemented either

by revising the dictionary, or by revising the annotation. Therefore, if there

are missing or noisy entries within the dictionaries which have been identified

during the evaluation, the user may add o remove them, respectively. In this

case, the improvement may be replicated to future (dictionary-based) annota-

tions.

Since PubAnnotation works as a public repository of annotations, as well as

a platform for annotation development, the annotations developed on PubAn-

14

Figure 2.5: An example of text annotation using the “mondo” dictionary, and send a
text that treats COVID 19 disease

notation can be shared.

2.3.2 PubTatorCentral

PubCentral [14] provides automated concept annotations of several biomedical con-

cept types (genes/proteins, genetic variants, diseases, chemicals, and species) across

all PubMed article abstracts, and PMC full-text articles. To ensure high quality, the

framework uses tools such as GeneTUKit [50] for gene mention, GenNorm [51]

for gene normalization, SR4GN [52] for species, DNorm for diseases [53], tm-

Var [54] for mutations, and a dictionary-based lookup approach [55] for chemicals.

SR4GN was also used for associating recognized species with their corresponding

gene/protein mentions so that we were able to perform cross-species gene normal-

ization in PubTator.

Five search options are currently available in PubTator:

• PubMed return results identical to PubMed search results

• Gene return all articles relevant to a specific gene or gene product

• Chemical return all articles relevant to a specific chemical

15

Figure 2.6: List of annotations extracted from the text submitted in Figure 2.5 and
shown through the TextAE editor

• Disease return all articles relevant to a specific disease or syndrome

• PMID List: return articles in the PubMed Identifier (PMID)

PubTator supports three annotation tasks: document triage, entity annotation and

relationship annotation. In document triage, biocurators are used to select articles.

As a pre-step for full curation, users can identify articles in two simple mechanisms:

First, a user can select articles from the search results. Second, a user can indicate

whether an article is curatable at the top of the annotation page.

PubTator can be used to provide automated pre-annotations for five common

types (listed above) marked with different colours. A user can modify and remove

an existing annotation as well as insert a new one.

Finally, PubTator can be used for annotating relationships between entities. This

allows curators to specify the kind of relations they desire to capture from litera-

ture, which can be either between the same kind of entities, such as protein–protein

interactions, or between different kinds, such as gene–disease relations.

16

Figure 2.7: Text Annotation through PubTator. The annotation terms are marked
with different colors.

17

2.3.3 SemRep

SemRep [19] is a natural language processing system designed to recover seman-

tic propositions from biomedical text using underspecified syntactic analysis and

structured domain knowledge from the UMLS [56]. It extracts relationships from

biomedical sentences in PubMed titles and abstracts by mapping textual content to

an ontology which represents the meaning.

After the selection and tokenization of the text is completed, it is submitted to

an under-specified parser that relies on the syntactic information in the SPECIAL-

IST Lexicon [57]. Part-of-speech ambiguities are resolved with the Xerox Part-of-

Speech Tagger [58].

Basically, simple noun phrases are identified because these contain useful infor-

mation about terms relationships. Prepositional phrases are treated as noun phrases

whose first element is a preposition. Instead, other syntactic categories, including

verbs, auxiliaries, and conjunctions are expressed through their part-of-speech label

and put into a separate phrase. In order to show the returned annotations in a com-

pact way, the semantic types are abbreviate. Therefore, “Diseases” or “Sndromes”

are referred as “dsyn”, “OrganicChemical” with (orch), etc.

The domain knowledge is obtained through MetaMap [59], a knowledge-based

application that uses the SPECIALIST Lexicon and several rules to determine the

best mapping between the text of a noun phrase and a concept. Thus, interpretation

of semantic propositions depends on the underspecified syntactic analysis enriched

with domain knowledge.

The rules adopted allow to map syntactic indicators such as verbs, prepositions,

and nominalization, to predicates in the Semantic Network. For example, exist a rule

that links the ’nominalization treatment’ with the predicate TREATS. Further syn-

tactic constraints on argument identification are controlled by statements expressed

in a dependency grammar.

SemRep also addresses noun phrase coordination [60] by taking advantage of se-

18

Figure 2.8: Example of text submitting in SemRep User Interface

mantic types. Thus, on the basis of the under-specified syntax enhanced with domain

knowledge, it is necessary to determine whether each coordinator is conjoining noun

phrases or something other than noun phrases. For a coordinator marked as conjoin-

ing noun phrases, the semantic type of the noun phrase immediately to the right of

that coordinator is examined. Then, the noun phrase immediately to the left of the

coordinator, and noun phrases occurring to the left of that noun phrase (separated

by another coordinator or a comma) are examined to understand whether they are

semantically consonant.

Terms that share same meaning are classed under the same concept. Instead,

each concept is assigned a semantic type, such as “Disease or Syndrome” or “Gene

or Genome”, so that similar concepts are clustered under the same semantic type.

Once all text sentences are evaluated, the framework returns several tuples per each

sentence that contain a subject, an object, and the relation that links them [61].

19

Figure 2.9: SemRep results extracted from the Input text. Only a single relation-
ship has been obtained: < sub ject : Intestines, type_rel : LOCAT ION_OF,ob ject :
Neoplasm >

2.3.4 STRING

The STRING database [17] aims to collect and integrate functional interactions be-

tween the expressed proteins for a large number of organisms. The associations in

STRING include direct (physical) interactions, as well as indirect (functional) ones.

Regarding interaction predictions, these are derived from several sources:

• systematic co-expression analysis.

• detection of shared selective signals across genomes.

• automated text-mining of the scientific literature.

• computational transfer of interaction knowledge between organisms based on

gene orthology.

For each protein–protein association stored in STRING, a score is provided. These

scores indicate the estimated likelihood that a given interaction is biologically mean-

20

ingful, specific and reproducible, given the supporting evidence. This last is divided

into one or more ’evidence channel’ (delineated by edges of different colors in the

user interface) on the basis of the origin and type of the evidence. An interaction

is good when the score is high, but at the same time, there is also more than one

evidence channel contributing to the score. The “evidence channels” in STRING

are seven:

• Experiments channel: the evidence comes from actual experiments in the lab

extracted by databases organized in the IMEx consortium [62], plus BioGRID

[63].

• Database channel: the evidence is asserted by a human expert curator. This

information is imported from pathway databases.

• Textmining channel: the evidence comes from abstract or even sentence into

fulltext articles.

• Coexpression channel: the evidence is extracted by gene expression data.

Pairs of proteins that are consistently similar in their expression patterns re-

ceive an high association score.

• Neighborhood channel: the evidence is inferred considering genes and other’s

genome neighborhood (genome-based prediction).

• Fusion channel: Pairs of proteins are given an association score when there is

at least one organism where their respective orthologs have fused into a single,

protein-coding gene.

• Co-occurrence channel: In this channel, STRING evaluates the phylogenetic

distribution of orthologs of all proteins in a given organism [64]. If two pro-

teins show a high similarity in this distribution, i.e. if their orthologs tend to

be observed as “present” or “absent” in the same subsets of organisms, then

an association score is assigned

21

Figure 2.10: PTEN echo network in STRING. There are several edges between two
proteins: one for each “evidence channel”

2.3.5 Hetionet

Hetionet [18] is a heterogeneous network of biomedical knowledge constructed from

a collection of 29 publicly available databases and millions of publications. It was

originally created as part of Project Rephetio, a study that utilizes the benefits of

heterogeneous network to predict new uses for existing drugs. In the last few years,

it has been modified for working over a broader variety of purposes: i) Drug Re-

purposing: used heterogeneous edge prediction to predict which disease is treated

by each available compounds. ii) Prioritizing Disease-Associated Genes: used het-

net edge prediction for disease-associated genes, based on a predecessor network

to Hetionet. The network contains many types of node that are: Gene, Disease,

Compound, etc. In addition the relationships have been grouped into several cate-

gories such as “up/down regulates”, “inhibit”, etc. It is available over the website

“https://het.io/”, and provides two search modes:

• Connectivity Search: is used to find the most important paths connecting any

22

Figure 2.11: PTEN-Drugs relationships in Hetionet shown through Neo4j.

two nodes in Hetionet, even when they are different types or not known to be

related.

• Neo4j [65] Browser: is a graph database that supports the Cypher language

for querying and visualizing heterogeneous network.

2.3.6 Reactome

Reactome [66] is a free, open-data, and peer-reviewed knowledge bases of biomolec-

ular pathways [67] that contains a detailed representation of cellular processes in-

terconnecting terms to form a graph of biological knowledge. Such network can

be seen as a directed graph, which consists of nodes and directed edges connecting

ordered pairs of nodes. Reactom stores pathway data in its natural form so that it

does not require any transformation of data into a flat format. This approach re-

duces the complexity of the database and guarantees a easier access to the data.

Compared with other biological pathways databases, Reactom adopts neo4j [65] as

23

graph database to improve the data traversal performance and knowledge discovery.

Reactome is available over the website:"https://reactome.org".

2.3.7 kindred

Kindred is a Python package builds upon the Stanford CoreNLP framework [68] and

the scikit-learn machine learning library [69] for relation extraction using a vector-

based approach. This approach transforms a span of text and candidate relation into

a numerical vector that can be used in traditional machine learning classification.

The algorithm used is Support vector machine (SVM) [44]. Relation candidates are

created by finding every possible pair of entities within each sentence and stored

with a class number for use in the multiclass classifier. The types of relations and

how many classes are required for the multiclass classifier are based on the training

data provided to Kindred. Kindred integrates PubAnnotation [13] and PubTator [14]

to allow easy access to training data and text.

2.4 Annotations format

Once the entities and relationships have been infer from the documents, it is neces-

sary to transform these in a format suitable for:

• classification and prediction methods.

• visualization tools.

Based on that, several representation formats have been proposed. The most im-

portant are: Biological expression language (BEL) [61] and Resource Description

Framework (RDF) [12]

24

2.4.1 Biological Expression Language (BEL)

The Biological Expression Language (BEL) [61] is a language used to unambigu-

ously represent casual biological entities and their inter-relationships reported in the

scientific literature. The objective is to obtain knowledge with sufficient accuracy

and semantics for building knowledge bases suitable for querying, powerful visuali-

sation, and inference capabilities necessary to support today’s life sciences research.

Biological Expression Language can also represent a rich set of relationships, in-

cluding correlative relationships, genomic relationships [70] and other relationships

that can describe concepts such as biomarkers, or even define a hierarchical arrange-

ment of concepts to form a taxonomy.

It is comprised of a set of function and relationships types usually used in con-

junction with well known vocabularies such as HGNC human gene symbols [23],

Gene Ontology [25], Disease Ontology [21], ChEBI [71], and MeSH. BEL also pro-

vides the necessary metadata to make the data findable, accessible, inter-operable

and reusable, as well as guarantees a strong interoperability using standardized ter-

minologies and external data sources for all biological entities.

The entities and relationships among them are represent through a triplet:

a(CHEBI : corticosteroid)−|bp(NCI : TissueDamage) (2.2)

The topic treats in this example is related to the “ amount of corticosteroid”.

Since, BEL’s functional notation allows to represent sophisticated concepts as sin-

gle terms, or combination of simpler ones, the abundance concept of this example

has been abbreviated as “a”. The biological process as “bp”. Instead the relation-

ships effect with “|-” to indicate a decrease of the target entity when the first one

increase, or with “->” to indicate an increase of the target entity when also the first

one increase. In addition, the entities can be prefixed with a “namespace” and a

colon “:” to specify the source where the information has been extracted.

In this example, the “corticosteroid” information has been extracted from CHEBI,

25

Figure 2.12: Writer-Document RDF representation []

while the “Tissue Damage” one from NCI (National Cancer Institute) vocabulary. In

summary, the relationship in (2.2) equation claims that the presence of some amount

of corticosteroid causes there to be less tissue damage.

2.4.2 Resource Description Framework

RDF [12] provides a model for describing resources characterized by attributes and

properties. A resource is any object uniquely identifiable by an Uniform Resource

Identifier (URI). The properties associated with resources are identified by a types,

and property types have corresponding values. These property types express the

relationships of values associated with resources. The values may be atomic (text

strings, numbers, etc.) or other resources. At the core of RDF is a xml-based syntax

model [72] for representing resources and their corresponding descriptions.

Due to several disambiguation caused by the use of same property type to mean

very different concepts, RDF avoid this uniquely identifying property types through

the XML name-space mechanism. XML name-spaces provide a method for unam-

biguously identifying the semantics and conventions of property types by uniquely

identifying the governing authority of the vocabulary. For example, the property

type "author" is defined as the "person or organization responsible for the creation

of the intellectual content". An XML name space is used to unambiguously identify

the Schema for the vocabulary by pointing to the definitive resource that defines the

corresponding semantics.

In figure 2.12 is represents a resource “Document 1” with the semantics of prop-

26

erty type “Creator” unambiguously defined in the context of DC vocabulary (Dublin

Core). The value of this property type is John Smith.

The corresponding syntactic way of expressing this statement using XML names-

paces is:

<?xml:namespace ns = "http://www.w3.org/RDF/RDF/" prefix ="RDF" ?>

<?xml:namespace ns = "http://purl.oclc.org/DC/" prefix = "DC" ?>

<RDF:RDF>

<RDF:Description RDF:HREF = "http://uri-of-Document-1">

<DC:Creator>John Smith<DC:Creator>

</RDF:Description>

</RDF:RDF>

The element <RDF:RDF> is a simple wrapper that marks the boundaries in an

XML document where the content is explicitly intended to be mappable into an RDF

data model instance. The element <RDF:Description> is correspondingly used to

denote or instantiate a resource with the corresponding URI http://uri-of-Document-

1. And the element <DC:Creator> in the context of the <RDF:Description> repre-

sents a property type DC:Creator and a value of “John Smith.”

27

Chapter 3

Algorithms and Frameworks

In this chapter, we introduce the frameworks and algorithms that have been used

through this thesis to implement the BioTAGME core, annotate the text coming

from scientific papers (full text or document title and abstract), and to build the

knowledge graph which will be searchable through our implemented User Interface.

Therefore, we will start providing an overview of the DT-Hybrid method [73] and

Tagme [20] tool used to predict relationships among biological elements, and for

annotating scientific text, respectively. We then give a description of SPARK [24]

and Neo4j [65] frameworks employed for implementing the whole BioTAGME core,

and for querying the obtained knowledge graph, respectively.

3.1 DT-Hybrid

The domain tuned-hybrid (DT-Hyrid) [73] extends the NBI algorithm proposed in

Zhou et al. (2007) by adding application domain knowledge. This technique pro-

vides a complete and functional framework for in silico prediction of drug and target

relationships.

DT-Hybrid employs the recommendation method based on the bipartite network

projection technique that implements the concept of resources transfer within the

network. Therefore, given a set of structures (i.e. biological compounds, molecules)

28

Figure 3.1: Bipartite Graph

X = {x1,x2,,xm}, and a set of targets (i.e. genes, proteins) T = {t1, t2, ..., tn}; the

X-T network of interactions can be described as a bipartite graph G(X ,T,E) where

a link between xi ∈ X and and t j ∈ T is in the graph iff the structure xi is associated

with the target t j. The network can be represented by an adjacency matrix A, where

ai j = 1 if xi is connected to t j; zero otherwise. Once the bipartite graph is built, a

two-phase resource transfer is associated with one of its projections (Fig 3.1): at the

beginning, the resource is transferred from nodes belonging to T to those in X, and

subsequently the resource is transferred back to the T nodes.

This process allows to calculate each element of the weight matrix W in the pro-

jection as follows:

wi, j =
1

Γ(i, j)

m

∑
l=1

ai,la j,l

k(xl)
(3.1)

Where:

29

• k(xl) is the degree of the xl node in the bipartite network.

• Γ(i, j) = 1
k(ti)α k(t j)α−1 where k(ti) and k(t j) are the degrees of the ti and t j,

respectively.

We denote the sum of the equation(1) by Di, j(S) symbol. Given the weight

matrix W and the adjacency matrix A of the bipartite network, the recommendation

matrix “R” is computed by the product between A and W. Finally, each column i

of the R matrix is sorted in a score-based descending order so that the structures si

having a higher interaction with the target t j are in the first rows of the matrix column

i. DT-Hybrid maintains only the top L columns values. Where L is a user-defined

parameter.

3.2 Custom DT-Hybrid

In this thesis, we implemented a custom DT-Hybrid algorithm that considers: the

documents as structures, the annotation terms (keywords) as target, and elements

of the matrix R as the confidence score in the association of term ti to term t j.

In addition, we have considered only the W matrix because we are just interested

in terms relationships and not terms-documents ones. Since DT-Hybrid presents a

structure and implementation incompatible with the Spark distributed concept, we

re-implemented the whole algorithm using Scala and Spark SQL languages. In that

regard, the matrices are replaced with Spark DataFrame, and the matrix product with

join operations.

Given the “Documents_Terms” DataFrame containing all the annotation terms

for each document si, the weight one "W" is computed as follows: at the beginning

a self-join on the column “document_id” is applied to join the “Documents_Terms”

to itself for generating the “Documents_Termi_Term j" DataFrame. This DataFrame

contains all the associations Termi-Term j located in the same document.

Then, two GROUP BY operations are executed on the “Documents_Terms”: the

30

Documents_Termi_Term j
document_id termi term j

s0 t0 t1
s0 t0 t3
s0 t0 t7
s0 t3 t7
...
sn t3 t6

DataFrame 3.1

first one groups all the rows having the same “document_id” to generate the “Doc-

uments_recipDeg” DataFrame containing the reciprocal of the documents degree.

Where the documenti degree means the number of annotation terms linked by the

documenti. Instead, the second one groups all the rows having the same “term_id”

to generate the “Terms_recipDeg” DataFrame containing the reciprocal of the terms

degree. Where the term j degree means the number of documents linked by the

term j.

Documents_recipDeg
document_id recip_deg

s0
1

deg(s0)

s1
1

deg(s1)

... ...
sn

1
deg(sn)

DataFrame 3.2

Terms_recipDeg
term_id recip_deg

t0 1
deg(t0)

t1 1
deg(t1)

... ...
tm 1

deg(tm)

DataFrame 3.3

After that, a document_id-based join is applied to join the “Docuents_Termi_Term j"

DataFrame with the “Documents_inverseDeg” one. All the rows having the same

termi-term j value are then group to compute, through the Spark built-in “sum” func-

tion applied on the column “recip_deg”, the contribute that termi-term j associations

received from all the documents (Di, j(S)). This intermediate DataFrame is called

“Documents_contribution”.

Finally two other "JOIN" operations are executed: The first is a termi-based join

between the “Documents_contribution” DataFrame with the “Term_inverseDeg”

31

one. Instead, the second one is similar to the previous, but the join is carried out

on the term j column. Below is the Documents_contribution DataFrame after the

“JOIN” operations.

Documents_contriution
termi term j Di, j(S) recip_ti_deg recip_t j_deg

t0 t5 D0,5(S) 1
deg(t0)

1
deg(t5)

t0 t12 D0,12(S) 1
deg(t0)

1
deg(t12)

...
tk tr Dk,r(S) 1

deg(tk)
1

deg(tr)

DataFrame 3.4

Performing the product among the columns Di, j(S), recip_ti_deg, and recip_t j_deg

, we obtained all the wi, j terms of the “W” DataFrame. This DataFrame will be used

during the Prediction procedure.

W
termi term j wi, j

t0 t5 w0,5
t0 t12 w0,12
...
tk tr wk,r

DataFrame 3.5

3.3 Tagme framework

Tagme [20] annotates, on-the-fly and with high precision/recall, short text with per-

tinent hyperlinks to Wikipedia articles. Tagme uses Wikipedia anchor texts as spots

and the pages linked to them in Wikipedia as their possible meanings. The authors

employ Wikipedia as corpus because of ever-expanding pages number. In addition,

it enriches texts with explanatory links to provide structured knowledge about any

unstructured fragment of text. So any task that is currently addressed with bags

of words-indexing could use these links to draw a vast network of concepts and

32

their inter-relations. The anchor for a Wikipedia page p is the text used in another

Wikipedia page to point to p. All the anchors composed by one character or just

numbers have been discarded because these could be unsuitable for annotation and

probably misleading for disambiguation.

To solve ambiguity and polysemy, Tagme tries to disambiguate each anchor “a”

in “AT” (set of all anchors occurring in the input text “T”) by computing a score for

each possible meaning “pa” of “a” through a new notation of “collective agreement”

between “pa” and the possible meanings of all other anchors detected in “T”. Where

“pa” in “Pg(a)” (set of all Wikipedia pages linked by “a”). Therefore, for each other

anchor “b” in AT −{a} is computed its vote to the annotation “a” -> “pa”. Since “b”

could have several meanings, Tagme compute the vote as the average relatedness

between each meaning “pb” of the anchor “b” and the meaning “pa” that should

be associated to the anchor “a”. However, not all possible meanings of “b” have

the same significance, so Tagme weight the contribution of “pb” by means of its

commonness “Pr(pb|b)”. The formula used to compute the vote is:

∑
pb∈Pg(b)

rel(pb, pa)•Pr(pb|b)|Pg(b)| (3.2)

When “b” is unambiguous, the vote b(pa) = rel(pb, pa) because the product

between “Pr(pb|b)” and “|Pg(b)|” is equal to one. But if “b” is polysemous, only the

meanings “pb” related to “pa” will affect the vote “b(pa)”. The total score rela(pa)

for the “goodness” of the annotation “a->pa” is computed as the sum of the votes

given to it by all other anchors “b” detected in the input text.

To disambiguate “a”, the best annotation “a->pa” is selected through two ranking

algorithms combination: Disambiguation by Classifier (DC) and Disambiguation by

Threshold (DT). DC uses a classifier with the score “rela(pa)”, and the commonness

“Pr(pa|a)” as features to compute a “probability of correct disambiguation” for all

meanings pa ∈ Pg(a). Among all these meanings, DC selects the “pa” reporting

the highest classification score. Instead, DT recognizes a roughness in the value of

33

“rela(pa)” among all pa ∈ Pg(a), so it computes the top-best meanings p’ in Pg(a)

according to their “rela(p’)”, and then annotates “a” with the means that obtains the

highest commonness among them.

The set “M(AT)” of candidates produced by the Disambiguation Phase has to be

pruned in order to remove improper anchors “a”. The “bad anchors” are detected

via a novel scoring function based on only two features: the link probability “lp(a)”

of the anchor “a” and the coherence of its candidate annotation “a->pa” with respect

to the candidate annotations of the other anchors in “M(AT)”. Where “lp(a)” is de-

fined as the ratio between the number of times the text “a” occurs as an anchor in

Wikipedia (“link(a)”) and the number of times the text a occurs in Wikipedia as an

anchor or not (“freq(a)”). Instead, the coherence is the average relatedness between

the candidate meaning “pa” for “a” and the candidate meaning “pb” for all other

anchors “b” in “T”. The objective is to keep all anchors whose link probability is

high or whose assigned sense (page) is coherent with the senses (pages) assigned

to the other anchors in M(AT). At the end of pruned procedure, we obtain the best

anchors set to the Text T submit from the user.

3.4 Custom Tagme (OntoTagme)

One of the major problem encountered during the BioTAGME annotation procedure

was a high anchor-meaning association error due to the excessive generality of the

Wikipedia corpus used by Tagme.

To mitigate this Tagme negativity in a biological context, I, my research team,

and the student Stefano Borzì have implemented a new custom Tagme version,

called OntoTAGME, which uses biological and biomedical ontologies suitable to

perform annotations on text coming from scientific papers. The basic idea was to

change the Wikipedia corpus with a more specific one generated from the following

databases: GeneOntology [], Drug-Bank [],DisGeNET [], and Obofoundry [].

In order to ensure high Tagme performance with the new corpus, we developed a

34

Figure 3.2: Error encountered during the Tagme annotation

two-step procedure that converts a generic ontology or database in a Wikipedia-like

database. First, each biological element within the downloaded database or ontology

is transformed in a XML file containing the unique ID of the biological element in

the downloaded source, its name (title), type (category), and other details such as

abstract and body of the page. Then, for each page is generated and associated

a tuple containing the new ID assigned by our customized version, and the basic

information of the page: < Tagme_ID, title,category, ... >. These tuples are stored

within the "wiki-latest-page" SQL table.

Since an element “j” could have several linked pages “LPs” (i.e.DOID:0002116

is a DOID:10124) or redirect pages “RPs” (i.e. GO:0006200 replace by GO:0016887),

we generated a tuple < uniqueID j,uniqueIDk > for each element “k” belonging

to “LPs” and a tuple< uniqueID j,uniqueIDi > for each element “i” belonging to

“RPs”. These tuples are stored in the tables “wiki-latest-pagelinks” and “wiki-latest-

redirect”, respectively.

35

Next, the SQL tables and XML pages are converted in nodes and edges which

can be manipulated by OntoTAGME. Note that, the core of OntoTAGME is the same

of Tagme one. We only modified the corpus and the data structure used by Tagme to

generate the network. OntoTAGME did not use in the actual version of BioTAGME.

However, it has been tested in another project, called NetME, that will be explained

in the following sections.

3.5 SPARK framework

Apache Spark [24] is an analytic engine for large-scale data processing. It provides

high-level APIs in Java, Scala, Python and R, and an optimized engine that supports

general execution graphs. It also supports a rich set of higher-level tools including

Spark SQL for SQL and structured data processing, MLlib for machine learning,

GraphX for graph processing, and Structured Streaming for incremental computa-

tion and stream processing.

SPARK application consists of a driver program that runs the user’s main func-

tion in a parallel mode on a cluster. The SPARK component that establishes both the

driver-machines of the cluster communication, and the resources allocation across

applications is the “SparkContext”. Such component can connect to several types

of cluster managers (either Spark’s own standalone cluster manager, Mesos [74] or

YARN [75]). Once connected, SPARK acquires executors on nodes in the cluster,

which are processes that run computations and store data for your application. Next,

it sends our application code (defined by JAR or Python files passed to SparkCon-

text) to the executors. Finally, SparkContext sends tasks to the executors to run.

The main aspects to consider about this architecture are []:

• Each application gets its own executor processes, which stay up for the dura-

tion of the whole application and run tasks in multiple threads. This has the

benefit of isolating applications from each other, on both the scheduling side

(each driver schedules its own tasks) and executor side (tasks from different

36

Figure 3.3: SPARK architecture

applications run in different JVMs). However, it also means that data can-

not be shared across different Spark applications (instances of SparkContext)

without writing it to an external storage system.

• SPARK is agnostic to the underlying cluster manager. As long as it can acquire

executor processes, and these communicate with each other, it is relatively

easy to run it even on a cluster manager that also supports other applications

(e.g. Mesos/YARN).

• The driver program must listen for and accept incoming connections from

its executors throughout its lifetime. As such, the driver program must be

network addressable from the worker nodes.

• Because the driver schedules tasks on the cluster, it should be run close to the

worker nodes, preferably on the same local area network. If you’d like to send

requests to the cluster remotely, it’s better to open an RPC to the driver and

have it submit operations from nearby than to run a driver far away from the

worker nodes.

Regarding the data structures, SPARK provides:

37

• Resilient distributed dataset (RDD) is a collection of elements partitioned

across the nodes of the cluster that can be operated on in parallel. RDDs are

created by a file in the Hadoop file system (or any other Hadoop-supported file

system), or an existing Scala collection in the driver program, and transform-

ing it. Users may also ask SPARK to persist an RDD in memory, allowing it to

be reused efficiently across parallel operations. Finally, RDDs automatically

recover from node failures.

• shared variables can be used in parallel operations. By default, when SPARK

runs a function in parallel as a set of tasks on different nodes, it ships a copy of

each variable used in the function to each task. Sometimes, a variable needs

to be shared across tasks, or between tasks and the driver program. SPARK

supports two types of shared variables: broadcast variables, which can be

used to cache a value in memory on all nodes, and accumulators, which are

variables that are only “added” to, such as counters and sums.

• Dataset is a distributed collection of data. Dataset is a new interface added

in SPARK 1.6 that provides the benefits of RDDs (strong typing, ability to

use powerful lambda functions) with the benefits of Spark SQL’s optimized

execution engine. A Dataset can be constructed from JVM objects and then

manipulated using functional transformations (map, flatMap, filter, etc.). The

Dataset API is available in Scala and Java. Python does not have the support

for the Dataset API. But due to Python’s dynamic nature, many of the benefits

of the Dataset API are already available. The case for R is similar.

• DataFrame is a Dataset organized into named columns. It is conceptually

equivalent to a table in a relational database or a data frame in R/Python, but

with richer optimizations under the hood. DataFrames can be constructed

from a wide array of sources such as: structured data files, tables in Hive,

external databases, or existing RDDs. The DataFrame API is available in

Scala, Java, Python, and R. In Scala and Java, a DataFrame is represented

38

by a Dataset of Rows. In the Scala API, DataFrame is simply a type alias

of Dataset[Row]. While, in Java API, users need to use Dataset<Row> to

represent a DataFrame.

Thank to the SPARK potentialities (computing distribution on a cluster of ma-

chines), and the widely collection of data structures, we decided to employ this

framework to implement all the BioTAGME core parts related to data cleaning, text

annotation, and network construction. More information about these components

will be explained in the next chapters.

3.6 Neo4j

Neo4j [65] is an open-source, NoSQL, native graph database that provides an ACID-

compliant transactional back-end for applications. A graph database [76], also re-

ferred as a semantic database, is a software application designed to store, query

and modify network graphs. A network graph is a visual construct that consists of

nodes and edges. Each node represents an entity (such as a person) and each edge

represents a connection or relationship between two nodes.

Traditionally classified as a type of NoSQL database, the graph database records

are referred as triples < sub ject, predicate,ob ject > in order to use special indexes

that allow to improve the performance of the system as well as to reduce the queries

running time.

Neo4j is referred to as a native graph database because it efficiently implements

the property graph model down to the storage level. This means that the data is

stored exactly as you whiteboard it, and the database uses pointers to navigate and

traverse the graph. In contrast to graph processing or in-memory libraries, Neo4j

also provides full database characteristics, including ACID transaction compliance,

cluster support, and runtime failover - making it suitable to use graphs for data in

production scenarios.

Some of the following particular features make Neo4j very popular:

39

Figure 3.4: In this example is reported the sub-graph extracted from Hetionet using
Neo4j and the cypher language. The query (written in cyper format on the top of
the picture) return the first ten interactions among the gene KDM4A and other genes
within the hetionet network.

• Cypher [77], a declarative query language similar to SQL, used to look for

motifs, clusters, and particular configuration within the graph database.

• Constant time traversals in big graphs for both depth and breadth due to ef-

ficient representation of nodes and relationships. Enables scale-up to billions

of nodes on moderate hardware.

• Flexible property graph schema that can adapt over time, making it possible

to materialize and add new relationships later to shortcut and speed up the

domain data when the business needs change

• Drivers for popular programming languages, including Java, JavaScript, .NET,

Python, and many more.

In this thesis, Neo4j has been employed to store the BioTAGME network. Such

network may be processed by the users though our User Interface.

40

Chapter 4

BioTAGME

BioTAGME is a framework backed by two different pipelines for building a biologi-

cal knowledge graph by applying several machines learning algorithms (DT-Hybrid

and TAGME relatedness computing) over the whole PubMed titles and abstracts

database.

The first pipeline is built on top of the SPARK analytic engine and Hadoop Dis-

tributed File System (HDFS) to guarantee large-scale data processing through scal-

able cluster managers, i.e Apache Meson, YARN, etc. This pipeline collects into

DataFrames the data from major data sources i.e. DrugBank, HGNC, Ensembl,

DisGeNET, Pathway Commons, and PubMed in order to process them though the

Spark SQL language, and then returns two csv files (Nodes.csv, Edges.csv) contain-

ing nodes and relationships of the graph as soon as the appropriate elaborations have

been completed. DataFrame and SQL language provide a common way to access a

variety of data file, including Hive, Avro, Parquet, CSV, TSV and JSON [SparkRef-

erence]. The major functionalities provided by the first pipeline are: (i) Download

and import, (ii) SQL to JSON parser, (iii) Integrating databases, (iv) Annotation, (v)

Prediction, (vi) Network generation, and (vii) Updating. Such functionalities will be

describe in the next sections.

Instead, the second pipeline (It forms the User Interface) is built on top of the

Laravel framework and is backed by the following components: (j) MySQL for stor-

41

Figure 4.1: BioTAGME architecture

ing information related to biological elements such as names, aliases, BioTAGME

ids and wikipedia pages associated during the annotation procedure. This will al-

low the user to make a based name or alias element search by the user interface. (jj)

Neo4j for drawing the echo network of each biological element or for computing the

shortest path between two user-specified biological ones. Data processing is done in

PHP and bash to achieve high performances. In addition, all the GUI modules have

been realized in react-native. The mainly functionalities of the second pipeline are:

(i) Network import, (ii) Searching.

In this chapter, we first describe the cluster configuration has been used to run

the pipeline one and two, and the external sources employed to extract the literature

evidence. Then we explain all the main components of the pipeline one including

external libraries or APIs that allow to build the Network. Finally, we describe all the

User Interface components of the pipeline two needed for querying the knowledge

graph.

42

4.1 Cluster configuration

Just like we widely discussed, our project aims to build a knowledge graph by an-

notating all the PubMed [36] documents’ title and abstract, and applying the com-

bination of DT-Hybrid algorithm [73] with relatedness computing method of Tagme

[20] as relationships prediction technique. The huge amount of data to elaborate

(Big data context), however, really requires:

• a cost-effective computing power to ensure greater performance, and faster

data elaboration.

• a huge amounts of RAM memory to avoid the data SWAP from RAM to

SWAP partition due to the excessive size of the data.

To overcome these issues, we deployed the pipeline one on a SPARK cluster [24]

made available by the Catania section of the National Institute for Nuclear Physics

(INFN). This cluster is composed of:

• one master having 8 GiB of RAM, 2 Virtual CPUs of 2GHz, one disk of 500

GB.

• nine slaves having 8 GiB of RAM, 2 Virtual CPUs of 2GHz, one disj of 500

GB.

Note that, the cluster machines that we used are undersized compared with the

SPARK specifications due to the limited resources available of the INFN. Therefore,

if you want to execute the pipeline one on a SPARK cluster in an efficient way, we

suggest you to use a cluster composed of several machines having the following

specifications:

• 8-16 cores per machine at least

• a 10 Gigabit or higher network is the best way to make the applications faster

43

Figure 4.2: Cluster configuration where the pipeline one is deployed

• 4-8 disks per node configured without RAID (just as separate mount points)

• from 8 GiB to hundreds of gigabytes of memory per machine. In all cases, we

recommend allocating only at most 75% of the memory for Spark; leave the

rest for the operating system and buffer cache.

4.2 External Sources

Below, we provide a brief overview of the main biological elements databases that

have been integrate in our pipeline one for both extracting the Literature evidence

and mitigating the disambiguation error.

4.2.1 DisGeNET

DisGeNET [26] is a discovery platform containing one of the largest publicly avail-

able collections of genes and variants associated to human diseases. It integrates

44

data from expert curated repositories, GWAS catalogues, animal models and the

scientific literature. DisGeNET data are homogeneously annotated with controlled

vocabularies and community-driven ontologies. Additionally, several original met-

rics are provided to assist the prioritization of genotype–phenotype relationships.

The current version of DisGeNET (v7.0) contains 1,134,942 gene-disease asso-

ciations (GDAs), between 21,671 genes and 30,170 diseases, disorders, traits, and

clinical or abnormal human phenotypes, and 369,554 variant-disease associations

(VDAs), between 194,515 variants and 14,155 diseases, traits, and phenotypes.

DisGeNET is a versatile platform that can be used for different research purposes

including the investigation of the molecular underpinnings of human diseases, the

analysis of the properties of disease genes, the generation of hypothesis on drug ther-

apeutic action and drug adverse effects, the validation of computationally predicted

disease genes and the evaluation of text-mining methods performance.

4.2.2 Disease Ontology

Disease Ontology (DO) [21] represents a comprehensive knowledge base of 8043

inherited, developmental and acquired human diseases. In addition, it integrates

disease and medical vocabularies through extensive cross mapping and integration of

MeSH, ICD, NCI’s thesaurus, SNOMED CT and OMIM disease-specific terms and

identifiers. The DO is utilized for disease annotation by major biomedical databases

(e.g. Array Express, NIF, IEDB), as a standard representation of human disease in

biomedical ontologies.

4.2.3 DiseaseEnhancer

DiseaseEnhancer [78] provides a comprehensive map of manually curated disease-

associated enhancers, which includes 1059 disease-associated enhancers in 167 hu-

man diseases, involving 896 unique enhancer-gene interactions. It also manually

collected their dysregulated target genes and mechanistic-related information, such

45

as associated variant types and affected transcription factor bindings. Additional

genome data were also integrated into DiseaseEnhancer to help characterize disease-

associated enhancers.

4.2.4 DrugBank

DrugBank combines detailed drug data with comprehensive drug target and drug

action information. Such database facilitates in silico drug target discovery, drug

design, drug docking or screening, drug metabolism prediction, drug interaction

prediction and general pharmaceutical education. In addition, drug-drug and food-

drug interactions, and experimental ADME have been added to each element of

the database. DrugBank offers a suite of products powered by Platform and has

customers located around the world crossing multiple industries including preci-

sion medicine, electronic health records, drug development and regulatory agencies.

DrugBank also provides DrugBank Online as a free-to-access resource for academic

research and is used by millions of pharmacists, pharmacologists, health profession-

als and pharmaceutical researchers every year. It is available at “http://www.drugbank.ca”.

[22]

4.2.5 PharmGKB

PharmGKB [79] is a tool designed to displays pharmacogenomic relationships, geno-

type, molecular, and clinical knowledge integrated into pathway representations.

Detailed relationship data from the literature is manually curated and described us-

ing controlled vocabularies. The files containing drugs/chemicals information in

tabular format are available at the website “www.pharmgkb.org”. Such website pro-

vides a diverse array of PGx information, from annotations of the primary literature

to guidelines for adjusting drug treatment based on genetic information. It is freely

available and accessible to everyone from researchers to clinicians to everyday citi-

zens.

46

4.2.6 HUGO Gene Nomenclature Committee

HUGO Gene Nomenclature Committee (HGNC) [23] assigns unique symbols and

names for human genes in order to remove ambiguity with other databases. Part of

these symbols have been defined for protein-coding genes, instead the rest to small

and non-coding RNAs, and pseudo-genes.

HGNC have three main types of placeholder symbols: C#orf#s for predicted

genes designated by the chromosome of origin, the letters ‘orf’ for open reading

frame and an iterative number. KIAA#s are approved for genes identified by the

Kazusa cDNA sequencing project when no other information is known about the

gene. Finally, the FAM# root is used to group together a set of genes that are related

based on sequence similarity, but cannot be described by function or conserved do-

mains.

The file contains all the HGNC database in tsv format is available at the follow-

ing website:“www.genenames.org”.

4.2.7 Ensembl

Ensembl [80] is a tool that supports research in comparative genomics, evolution,

sequence variation and transcriptional regulation. It annotates genes, computes mul-

tiple alignments, predicts regulatory function and collects disease data. Ensembl

tools include BLAST, BLAT, BioMart and the Variant Effect Predictor (VEP) for all

supported species. Ensembl is available as an interactive Web site, a set of flat files,

and as a complete, portable open source software system for handling genomes. All

data are provided without restriction, and code is freely available. Ensembl’s aims

are to continue to “widen” the biological integration to include other model organ-

isms relevant to understanding human biology as they become available; to “deepen”

the integration to provide an ever more seamless linkage between equivalent compo-

nents in different species; and to provide further classification of functional elements

in the genome that have been previously elusive.

47

4.2.8 LNCipedia

LNCipedia [81] is a highly consistent database composed of 21.488 annotated hu-

man long non-coding RNA (lncRNA) transcripts obtained from different source. For

each of these transcripts several data i.e secondary structure, protein coding poten-

tial and microRNA binding, and available literature evidences have been associated

in order to provide as much information as possible to the researcher.

Transcripts from different sources are added to the database avoiding redundant

transcript collection. After each import, the chromosomal positions of the newly

added exons are converted to either hg19 or hg38 using the liftOver tool. Only

conversions with perfect remapping of all bases are considered. In the filtering step,

the following transcript are removed from the database: i. transcripts that do not

map to the hg38 reference genome, ii. transcripts not localized on the reference

chromosomes, iii. transcripts with less than 200 nucleotides, iv. transcripts with

exons that overlap coding sequence as annotated in the Ensembl 92 database. As

soon as the filtering procedure is completed, all transcripts are clustered into genes

based on exon overlap. These genes are then given a LNCipedia name.

4.2.9 miRcode

miRcode [82] has been developed to identifies putative microRNA-Target sites in

lncRNAs of interest, or predicted specific microRNAs target across the GENCODE

long non-coding transcriptome. GENCODE is used because contains many well

known RNA genes and microRNAs as well as represents a comprehensive descrip-

tion of polyA+ transcriptome. Although all of GENCODE is accessible by miRcode,

only lncRNA genes that produce predicted non-coding transcripts with a mature

length higher than 200 nt are considered during the process. In addition, 6-mers are

not considered because they are marginally effective. To assess evolutionary con-

servation, a 46-way Multiz vertebrate genomic multiple alignment is remapped onto

transcripts, and site conservation levels are determined based on site presence in pri-

48

mates, non-primate mammals and non-mammal vertebrates. miRcode additionally

covers other GENCODE gene classes, including 12,549 pseudogenes and 19,999

coding genes both in typical (3’-UTR) and atypical (5’-UTR and CDS) positions.

4.2.10 miRBase

miRBase [83] is a database based on comprehensive microRNA sequence data, an-

notation and predicted gene targets. miRBase performs three main roles that are:

i) the miRBase Registry acts as an independent arbiter for the miRNA names as-

signment ii) the miRBase Sequences is the primary online repository for miRNA

sequence data and annotation. iii) miRBase Targets is a comprehensive database of

predicted miRNA target genes.

4.2.11 miRTarBase

miRTarBase [84] is an update database containing more than 3500 miRNA-Target

(MTI) interactions obtained after a data mining procedure over several PubMed full-

texts that potentially describe such interactions. All the MITs have been experimen-

tally confirmed by reporter assays, western blot, microarray experiments, pSILAC

or qRT–PCR. In addition, to examine the functions of the target genes involved in

human MITs, a gene ontology (GO) and KEGG pathways enrichment annotation

was carried out using the DAVID gene annotation scheme.

4.2.12 miRCancer

miRCancer [85] is a database composed of miRNA-cancer association extracted by

a rules-based text mining system over the PubMed titles and abstracts. Regarding the

cancer name recognition, the system compares the text with a dictionary compiled

from the international classification of diseases for ontology (ICD-0). Instead, the

miRNA name recognition is based on standardized names nomenclatures.

49

4.2.13 Reactome

Reactome [66] is a tool for visualisation, interpretation and analysis of pathway

knowledge using neo4j as graph database. The Reactome data has been designed

to generalize the reaction concept. This allows to include transformations of enti-

ties such as chemical transformations of classical biochemistry, etc. Entities include

nucleic acids, small molecules, proteins (with or without post-translational modifi-

cations) and macromolecular complexes.

4.2.14 PathBank

PathBank [86] is a database that aims to provide a pathway for every protein. Each

pathway includes information of the organs, organelles, subcellular compartments,

cofactors, molecular locations, chemical structures and protein quaternary struc-

tures. In addition, references and detailed descriptions are included to provide an

overview of the pathway. PathBank is basically designed to support pathway dis-

covery in transcriptomics, proteomics, metabolomics and systems biology.

4.2.15 UniProt

UniProt [87] is a collection of database contains sequences and functional informa-

tion available for proteins. It consist of four mainly components: (i) The UniProt

Knowledge-base (UniProtKB) is an expertly curated database over integrated pro-

tein information with cross-references to multiple sources. It combines UniProtKB/Swiss-

Prot and UniProtKB/TrEMBL. UniProtKB/Swiss-Prot contains over 550.000 se-

quences and experimental information extracted from the literature. UniProtKB/TrEMBL

provides a further 60 million sequences derived from high throughput sequencing

of DNA. Such sequence are annotated by rule-based annotation systems. (ii) The

UniProt Archive (UniParc) is a sequence repository reflecting the history of all pro-

tein sequences. (iii) UniProt Reference Clusters (UniRef) merge closely related se-

quences based on sequence identity in order to reduce the searching time. (iv) The

50

UniProt Metagenomic and Environmental Sequences (UniMES) database is a repos-

itory developed for the metagenomic and environmental data. UniProt resources can

be accessed via the website at http://www.uniprot.org/.

4.2.16 BRENDA

BRENDA [88] is a relational database contains functional and molecular informa-

tion of enzymes, including data on the occurrence, catalyzed reaction, kinetics, sub-

strates/products, inhibitors, co-factors, activators, structure and stability. All the

enzymes have been classified according to the EC system of the IUBMB Enzyme

Nomenclature Committee, and the entries are cross-referenced to other databases,

i.e. organism classification, protein sequence, protein structure and literature refer-

ences. In addition, BRENDA provides an academic web access at http://www.brenda.uni-

koeln.de for research of enzyme mechanisms, metabolic pathways, the evolution

of metabolism and, furthermore, for medicinal diagnostics and pharmaceutical re-

search.

4.2.17 RefSeq

The Reference Sequence (RefSeq) [89] project at the National Center for Biotech-

nology Information (NCBI) provides annotation for over 95.000 prokaryotic genomes

that meet standards for sequence quality, completeness, and freedom from contami-

nation. Genomes are annotated by a single Prokaryotic Genome Annotation Pipeline

(PGAP) to provide users with a resource that is as consistent and accurate as pos-

sible. Antimicrobial resistance proteins have been reannotated comprehensively,

improved structural annotation of insertion sequence transposases and selenopro-

teins is provided, curated complex domain architectures have given upgraded names

to millions of multidomain proteins, and we introduce a new kind of annotation

rule, called BlastRules. Continual curation of supporting evidence, and propagation

of improved names onto RefSeq proteins ensures that the functional annotation of

51

Figure 4.3: Pipeline one structure

genomes is kept current. RefSeq is found at “https://www.ncbi.nlm.nih.gov/refseq/”.

4.3 Pipeline one

In this section, we describe all the components and functionalities of the pipeline one

(Fig. 4.3) necessary to transform all the unstructured documents’ title and abstract

of PubMed in a Knowedge Graph.

4.3.1 Download and Import module

This module enables the user to import, into Hadoop FileSystem (HDFS), all the

external databases through a bash file, called “importing.bash”, provided with Bio-

TAGME package. Such file consists of three main sections:

• Pubmed section downloads all the articles title and abstract for the annotation

procedure. Since the whole Pubmed database (about 30 millions of articles)

52

requires much time to be downloaded through the NCBI Entrez APIs (only

three queries per second are allowed) [37], we opted for downloading the

SemmedDB database.

SemMedDB is a repository of semantic predictions extracted from the PubMed

citations by SemRep, and consists of several MySQL tables. The SENTENCE

will be the selected one because it contains all the sentences of PubMed titles

and abstracts.

• Literature databases section downloads all the literature databases (listed in

the “External databases” section) necessary:

– for filtering all noisy annotation terms caused by disambiguation and

high generality of the Wikipedia corpus employed by Tagme during the

Annotation phase.

– for building the literature edges to our knowledge network. These edges

allows to evaluate the quality of BioTAGME prediction.

Note that, some databases, such as DrugBank, PharmGKB, Brenda, require a

free registration or authorization to be downloaded. Therefore, this procedure

is left to the user.

• Import section transfers the downloaded databases from the local file system

to the Hadoop one (HDFS).

4.3.2 SQL to JSON parser module

Although SemmedDB guarantees lesser downloading time than NCBI Entrez APIs,

it presents two main problems:

• Title and abstract of each PMID are divided in sentences. There are, therefore,

several contiguous SENTENCE table rows per title or abstract instead of just

one.

53

Figure 4.4: SQL to JSON parser

• The SENTENCE table is in SQL format, but Spark engine does not have na-

tive libraries for handling that.

To solve these issues, we implemented a new Spark module, named SQL2Json

parser, that fulfils the following tasks and converts the SQL file in a JSON one (Fig.

4.4). First, the SENTENCE.sql file is loaded in a single-column Spark DataFrame,

named “SENTENCE_df”, using the Spark built-in “read_txt” function. Since the

file contains both table header and data, we start to extract the header by applying our

implemented “get_table_header” function. This function employs the SQL Window

concept and the SQL “CREATE TABLE” keyword to separate the header rows from

those of the data. The header rows are then transform in a vector element by the

SPARK collect function.

Once the header has been extracted, the comma-separated content of the remain-

ing records are split into vectors, and then elaborated so that the ith elements of the

just generated vectors are associated with the appropriate index of the header one.

In order to make the “SENTENCE_df” DataFrame more appropriate for JOIN

and GROUP BY operations, we need to transform the array column into separate

columns. That is obtained by applying to the “SENTENCE_df” DataFrame the

54

Spark built-in “select” function with the header vector as argument. The features

of the new DataFrame are: PMID, TYPE, SENTENCE_ID, SENTENCE. Where

TYPE is equal to "ti" for title sentence, or "ab" to abstract one.

SENTENCE_df
ID ROW
0 [pmid0, type0,sentence_id0,sentence0]
1 [pmid1, type1,sentence_id1,sentence1]
... ...
n [pmidn, typen,sentence_idn,sentencen]

DataFrame 4.1

PMIDs_Data
ID PMID TYPE SENTENCE_ID SENTENCE
0 pmid0 type0 sentence_id0 sentence0
1 pmid1 type1 sentence_id1 sentence1
...
n pmidn typen sentence_idn sentencen

DataFrame 4.2

The final step of this module is to aggregate on the same row the Documenti title

and abstract making the following two consecutive “GROUP BY”:

• The first one, combined with the spark built-in collect_list and concat_ws

functions, groups the SENTENCE column content of the rows having the

same “pmid” and “type” value in a new textual column that will contain the

whole Documenti title or abstract.

• The second one, combined with the spark built-in joinMap function, groups

rows having same pmid so that Documenti title and abstract will be in the

same row.

The resulting DataFrame, named Titles_Abstracts, is stored into (HDFS) in JSON

format and used during the Annotation procedure.

55

Titles_Abstracts
PMID TITLE ABSTRACT
pmid0 title0 abstract0
pmid1 title1 abstract1

...
pmidn titlen abstractn

DataFrame 4.3

4.3.3 Integrating databases module

As previously mentioned, several literature databases are integrated by our pipeline

in order to inject the literature evidence in our knowledge graph. However, there are

various aspects and problems related to databases integration to consider:

• Different databases often use different words for the same thing (synonyms).

Whereas DisGenNET for example uses “Colorectal cancer, hereditary non-

polyposis, type 1”, DiseaseOntology (DO) uses “Lynch syndrome 1” to refer

the same disease.

• Equivalent attributes have different names in different databases. Whereas

one database might for example use the attribute name “mirna_nr”, another

data-base might use “id” for the same attribute.

• Different format of the downloaded databases i.e JSON, XML, TXT, CSV,

TAB, OBO, GTF, FASTQ, SQL, etc.

Starting from these remarks, we implemented our integrating module that exe-

cutes the following tasks. First, all the databases are loaded into Spark DataFrame

through:

• The built-in Spark read.csv, read.txt, or read.jsom functions for CSV, TAB,

TXT and Json format, respectively.

• Our Spark define functions for OBO, GFT, SQL, and FASTQ format.

• The Databricks spark-xml for xml format.

56

Once all DataFrame have been generated, they are elaborated in order to extract

two additional DataFrame per biological element type (it can be genes, proteins, or

drugs, etc):

• The Indexing DataFrame that contains the assigned BioTAGME id, the offi-

cial name, and the synonyms for each biological element. This DataFrame

will be used to remove all noisy annotation terms. An example is reported in

DataFrame 4.6, which is obtained through all Gene Databases employed in

BioTAGME.

• The Relationships Dataframe contains many logical or physical relationships

among biological elements extracted by the “external_reference” column of

each considered database. For every relationship, we also reported the first

and second “biological element” type (under the column “Typei_Type j”) in

order to speed up the searching and filtering operation. Such DataFrame will

be used to create the literature edges for our knowledge network.

This module can be considered as an intermediate layer that transforms all ex-

ternal databases in new ones having same schema and attributes.

Gene_indexing
BioTAGME_ID NAME ALIASES

bio_id1 gene_name1 [alias1,1, ...,alias1,m]
bio_id2 gene_name2 [alias2,1, ...,alias2,m]

...
bio_idn gene_namen [aliasn,1, ...,aliasn,m]

DataFrame 4.4

4.3.4 Annotation module

This module (Fig. 4.5) runs all the procedures to transform all the PubMed docu-

ments title and abstract in a list of annotation terms. At beginning, the Titles_Abstracts

DataFrame (DataFrame.4.3) is loaded through the Spark built-in read.json function.

57

Gene_relationships
BioTAGME_IDi BioTAGME_ID j Typei_Type j

bio_id1,1 bio_id1,2 gene−gene
bio_id2,1 bio_id2,2 gene− lncRNA

...
bio_idn,1 bio_idn,2 gene−disease

DataFrame 4.5

Figure 4.5: Annotation module components

Then, for each document “ti”, a tuple (TI_AB, TAGME parameters map)i is gener-

ated and sent to the “TAGME” tool through a HTTP POST request. Where TI_AB

is the union of Documenti Title and Abstract.

TAGME tool removes all stop-words and punctuation symbols from the TI_AB

text at first. Next, a list of “anchors” to Wikipedia pages is extracted and returned

in response to the request. This response is in a JSON format and contains the fol-

lowing information for each anchor: spot, wikipedia page title, wikipedia page cat-

egories, wikipedia page id, etc. These received JSONs constitute the Title_Abstract

ANNOTATIONS column (DataFrame 4.6).

To complete the Annotation procedure, our pipeline builds the Annotation DataFrame

applying the Spark “select” and “explode” function over the Titles_Abstracts one.

The “explode” function transform all the vectors under the ANNOTATIONS col-

umn in several rows (one per anchor). Instead, the “select” one transforms the JSON

58

Titles_Abstracts
PMID TITLE ABSTRACT ANNOTATIONS
pmid0 title0 abstr0 [anch1,1, ...,anch1,m]
pmid1 title1 abstr1 [anch2,1, ...,anch2,m]

...
pmidn titlen abstrn [anchn,1, ...,anchn,m]

DataFrame 4.6

fields of each anchor in columns (DataFrame 4.7).

Annotation
PMID SPOT Wiki_Id Wiki_title Wiki_Categs
pmidi spot0 pID0 pTitle0 [c0,0, ...,c0,t]
pmidi spot1 pID1 pTitle1 [c1,0, ...,c1,k]

...
pmidi spotm pIDm pTitlem [cm,0, ...,cm,s]

...

DataFrame 4.7

A main problem encountered during the annotation procedure is a high disam-

biguation error due to the generality of the Wikipedia corpus used by TAGME. To

solve that, our pipeline filters the “noisy annotation terms” making a join among the

Annotation DataFrame and all the biological_elements(Genes, Diseases, etc)_indexing

ones generated by the “Integrate databases module”. The final result is a DataFrame

containing only biological elements-documents associations that will be used to pre-

dict the relationships amoung the elements.

4.3.5 Prediction module

The aim of our methodology is to predict one or more potential relationships among

biological elements on the basis of the BioTAGME score value. This score is de-

fined as the product between the DT-Hybrid (Alaimo ed al, 2013) [73] score and the

TAGME relatedness [20]. Much higher is the score value much higher is the mean-

ingful of the predicted relationship. To compute the BioTAGME score, we build the

“Documents_Termi_Term j (DataFrame 4.8) at first. Such DataFrame contains all

59

the associations Termi-Term j that occur in the same document. Then, a group by

operation on the columns Termi and Term j is performed to compute the frequency

“fi, j” (number of pmids that contains the Termi and Term j association). Such fre-

quency will be used to weigh the DT-Hybrid score and TAGME relatedness. Below

is the “Documents_Termi_Term j after the “GROUP BY” operation.

Documents_Termi_Term j
Termi Term j fi, j

t0 t5 f0,5
t0 t12 f0,12
...
t3 t6 f3,6

DataFrame 4.8

After that, the DT-Hybrid and TAGME predictions are computed. Custom DT-

Hybrid produces a DataFrame, named “DT_Hybrid_df”, containing the confidence

“si, j” in the association of the element Term j to Termi (more information are de-

scribed in “Custom DT-Hybrid algorithm section”). Instead, to get the TAGME

predictions, our pipeline groups the couples of terms in several chuncks composed

of 100 elements at most, and then send these to TAGME server through http POST

requests. The server computes the relatedness “ri, j” value for each received couples

(Termi, Term j) and returns the valuess back. The relatedness value is in the range

[0,1] and expresses how much two terms are semantically related to each other. Zero

value means nothing relationships between them. All the obtained relatednesses are

collected within the “TAGME_Relatedness” DataFrame.

DT_Hybrid_df
Termi Term j si, j

t0 t1 s0,1
t0 t2 s0,2
...
tx ty sx,y

DataFrame 4.9

TAGME_Relatedness
Termi Term j ri, j

t0 t1 r0,1
t0 t2 r0,2
...
tx ty rx,y

DataFrame 4.10

To complete the BioTAGME score computing, Documents_Termi_Term j, DT_Hybrid_df

60

and TAGME_Relatedness DataFrame are joined together on the columns Termi,

Term j. And then, the “BioTAGME score” is computed through the following ex-

pression:

BioT Gi, j = ri, j ∗ si, j ∗ fi, j (4.1)

4.3.6 Network Construction

As soon as the documents have been annotated, and the prediction procedure has

been completed, the last procedure of the pipeline is to build the knowledge graph

containing logical or physical relationships among biological elements.

For every association Termi-Termj obtained during the prediction procedure, we

create three different edges:

• The literature one which represents a biological evidence resulted of labora-

tory experiments, biological and biophysical processes, etc. Such interactions

have been extracted from the relationships DataDrame built through the inte-

gration databases module.

• The STRING one which represents the predicted protein-protein associations

stored in STRING database. We report this information because our system

integrate homo-sapiens protein-protein network of STRING.

• the BioTAGME one that represent the BioTAGME prediction. Both Bio-

TAGME edge and STRING one are marked with the corresponding score

value in order to indicate the likelihood of the interaction.

More information about the plotting of the network, motif search and shortest

path computing are reported in the pipeline 2 section.

61

4.3.7 Updating procedure

BioTAGME pipeline uses the annotations of Pubmed documents’ title and abstract

to predict relationships among biological components obtained during the Anno-

tation procedure. Since many new documents are submitted to Pubmed database

every day, it is necessary for both Annotations DataFrame and Documents one to be

periodically update.

To achieve this purpose, our pipeline carried out the following tasks: First,

it downloads all the PMIDs within an established data range [mindate, maxdate]

through a NCBI esearch POST request. “Mindate” usually refers to the last updating

date, and it is saved into the “last_update_date.txt” file. Instead, “maxdate” usually

is set to the actual one. Maxdate may be configured through “biotagme_config.xml”

file located under the project src directory.

Once the PMIDs list has been obtained, the updating module tries to download

the title and abstract of these PMIDs using the NCBI efetch API. Thus, at beginnig

the list is partitioned into chunks of “retmax” size, and then several chank-based

NCBI efetch post requests are generated and sent to Pubmed server in order to obtain

the data required. Note that NCBI doesn’t report a maximum value for the retmax

parameter (numer of PMIDs that can be processed by a single request), especially

when a POST request is used. However, we suggest to keep this value under 10000

for the following considerations:

• Since the NCBI recommends to send three requests per second at most, our

pipeline just employes the SPARK cluster driver to carry out the updating task

to avoid that the application would be banned (all the cluster nodes have dif-

ferent private IP address, but same public one). Moreover, the driver available

RAM memory could be limited resulting so in possible out of memory error.

So, we need to maintains the chunk size to a low value.

• If the number of articles per request is huge, then the submitted job is con-

sidered as a heavy job. Therefore, NCBI recommends to execute these jobs

62

Figure 4.6: Pipeline two structure

during the weekends.

As soon as the Documents title and abstract have been download, the annotation,

prediction and network construction procedure will be execute in order to update the

edges and nodes of the knowledge graph.

4.4 Pipeline two

The second pipeline (Fig 4.6) has been implemented for importing the knowledge

network into Neo4j graph database through the appropriate file (generated by the

first pipeline), and for running queries (using our User Interface) on the graph in or-

der to get either the echo network of a biological element, or to compute the shortest

path between two ones. This pipeline employs the Laravel model-view-controller,

and the React native framework to implement the logic and the web pages com-

ponents, respectively. In this section we will describe all the main modules of the

pipeline two.

63

Figure 4.7: Biological element search panel

4.4.1 Network import module

Through the “biological element search” panel (Fig. 4.7), a user may access to the

uploading section by clicking on the “network files upload” link.

Such section includes three consecutive phases:

• The fist one is the “authentication phase” to ensure that only authorized users

may execute the import procedure. The user have to specify email and pass-

word (see Fig. 4.8) provided by the application manager.

• If the authentication is successfully completed, the “files selection phase” is

enabled (see Fig. 4.9(a)). During this phase, the user selects the “nodes.csv”

64

Figure 4.8: Authentication Panel

and “edges.csv” files containing network components, or the “BioIDs _Wiki-

IDs.xcv”, “Name_Aliases.csv”, “Wiki_Titles.csv” files about biological ele-

ments aliases, and Wikipedia pages information respectively. It is not possi-

ble to upload the five files in the same transaction due to their large size. The

“Name_Aliases.csv” file will enables the user to make query based on biolog-

ical element aliases/name. Instead the“Wiki_Titles.csv” allow the pipeline to

create links toward Wikipedia pages and PubMed articles. Once all the nec-

essary files have been selected, the user send them to the BioTagME server

clicking on submit button (see Fig. 4.9(b)).

Since the size of the files is large (GB), we used the “Pion” library [90] in

order to split the file into small chunks (clint side), and re-assemble them as

soon as these are correctly received (server side).

• Upon all the file have been successfully received, the “import phase” is en-

abled. It shows a summary (Fig. 4.10) about the uploaded files so that the user

may check any mistakes in the files selection. If everything is correct,then she

65

Figure 4.9: File selector panel

may trigger the execution of the following two Laravel jobs by clicking on the

import button:

– mysql_import one transforms the “BioIDs_WikiIDs.xcv”, “Name _Aliases.csv”,

“Wiki_Titles.csv” csv file in mysql tables.

– neo4j_impot one convert the “nodes.csv” and “edges.csv header” in a

compatible neo4j one at beginning, and then imports the network in no4j

using neo4j_admin tool.

If there are not errors, the user will receive a successfully notification as soon

as the processes are completed.

4.4.2 Searching module

Once the network has been imported within the neo4j graph database, a user may

execute several queries, through our User Interface “GUI” (Fig.4.11), to get the

desired information. Such GUI is composed of the following two panels: Searching

66

Figure 4.10: Import panel

panel (Fig.4.11.a) and Graph one (Fig.4.11.b).

Searching panel

The searching panel is used for setting the query parameters on the basis of the

selected menu: i. Echo network or ii. shortest path.

• When the Echo network is selected, a user may search the Echo Network of

a biological element “bei”. Therefore, she needs to provide the type and name

of the biological element to analyze (Fig.4.12.a, red rectangle), and the type of

the other elements (Fig.4.12.a, orange rectangle) to include within the echo-

network. To avoid an excessive size of the network, a maximum nodes number

have to be configured (from 10 to 50 with a step size of 10) through the “Top

n” section (Fig.4.12.a, green rectangle). Upon all the required parameters

have been filled in, the searching process is triggered by clicking on Submit

button. This process transform the specified form parameters in a “cypher

query” which will carry out the following two actions: The first one looks

67

Figure 4.11: BioTAGME Homepage

for the “Top n” nodes having one or more links from/to “bei”. Instead, the

second one return all the edges among the “Top n” nodes previously selected.

This query is sent to neo4j service by a post request in order to get the desired

information in a JSON form.

• Instead, when the shortest panel is selected (Fig.4.12.b), a user looks for the

shortest path between two biological elements. Therefore, first she needs to

provide the type and name of the source “el_src” and destination “el_dst” el-

ements (Fig.4.12.b, red rectangle), and then may run the appropriate process

by clicking on the submit button. As the process starts, all the form param-

eters are transformed in a cypher query which is mainly based on a neo4j

procedure for the shortest path computing. This query will be sent to Neo4j

server in order to get the edges and intermediate nodes connecting “el_src”

with “el_dst”.

Graph panel

The graph panel (Fig.4.11.b) plots either the “echo-network” or the “shortest path”

by employing the CytoscapeJS library [91]. All the edges are interactive. Thus, if

68

Figure 4.12: BioTAGME Homepage

a user clicks on one of that, then a new windows (Fig.4.13) will be shown. Such a

window is composed of the following data:

• A table (Fig.4.13, red rectangle) containing the name of the source and desti-

nation nodes as well as the BioTagME and STRING scores. In addition, the

last column of the table report the literature evidence (1 if the association is in

one of the literature databases at least, 0 otherwise).

• A navigation panel with three different options. The first two (Fig.4.13, or-

ange rectangle) show several links among Wikipedia pages and source or des-

tination node, respectively. Instead, the last one (Fig.4.13, green rectangle)

shows several links toward the PubMed articles containing information about

the selected association.

Once the network or the shortest path has been plotted, the result menu of the

panel (Fig.4.11.a) is appropriately configured. Such a menu reports the node and

edge legend, and a table listing all the plotted node names (Fig.4.14). Through

this table, the user may remove or add back one or more nodes by clicking on the

corresponding button.

69

Figure 4.13: Edge window

70

Figure 4.14: Result menu

71

Figure 4.15: BSG parameters configuration

4.4.3 Case study

In the proposed case study, we built the echo network of the gene “BSG” considering

only diseases and proteins as other element of the network. In addition, we also set

the “Top n’ value to ten in order to get (from Neo4j) a network having ten nodes at

most. All the configuration parameters have been reported in Fig.4.15. How it may

be noticed from the Fig.4.16, there are several kind of edges.

• The yellow edges represent biological elements interaction already available

in literature, but our framework is not able to infer.

• The yellow edges with red border are similar to the previous one, but in this

case our framework is able to predict such interactions, too.

• The green edges instead represent a protein-protein association in STRING.

To understand if our framework is able to infer those, we need to click on the

edges and check if the BioTG score is not zero.

• Finally, the red edges represent prediction obtained in BioTAGME, but nei-

ther found in STRING nor in the actual literature databases employed in Bio-

TAGME.

72

Figure 4.16: BSG echo network

73

Chapter 5

NetME

In the previous chapters, we have explained BioTAGME and its functionalities for

building a knowledge network starting from all documents’ title and abstract in

PubMed [36]. The inferred edges among the nodes only represent a possible phys-

ical or logical interaction, but at the moment our framework is not able to infer the

interaction type due to the following aspects:

• Title and Abstract contains limited information.

• BioTAGME employs two prediction algorithms only for computing the ro-

bustness of the interaction. Therefore, we need to include one or more “Sen-

timent Analysis” techniques [92] in order to infer the type.

Since working with all PubMed Central full-text, and traditional “Sentiment Anal-

ysis” methods requires much time and computing resource, we have decided to test

such methods in a small subset of full-text. This yielded our second application

called NetME (submitted and accepted to the COMPLEX NETWORK 2020, De-

cember 1-3, 2020). Thanks to the encouraging results obtained in NetME experi-

ments, we will apply the same NetME methodology in a future BioTAGME second

version in order to infer the type of each relationship. It will require a lot of time

because we will use all full-text in PubMed as well as titles and abstracts.

74

Figure 5.1: NetME pipeline

NetME is a web-based app (publicly available at http://netme.alaimos.com/netme/)

which is capable to extract knowledge from a collection of full-text documents. The

tool orchestrate two different entities which enable the inference of biological net-

works:

• The customized TagME version (OntoTagme) which is designed to to extract

biological entities from a collection of full-text articles obtained through a

query to PubMed. These biological entities will represent the nodes of the

network;

• A software module developed upon the NLTK library [28] resource to derives

relationships (edges).

The final network will contain both directed and undirected edges according to the

predictions made by the model. NetME is the first tool which allows to interactively

synthesize biological knowledge graphs on-the-fly starting from a query on PubMed.

5.1 NetME methodology

As soon as the user provide a list of searching keywords, the tool send a request to

PubMed (using the NCBI Entrez API [37]) in order to obtain the top n PubMed Cen-

75

http://netme.alaimos.com/netme/

tral full-texts containing the desired keywords. Next, all the nodes of the graph are

extracted through our implemented OntoTagme version. Once the nodes have been

deduced, the textual analysis is triggered to infer edges between them. The analysis

is performed through a methodology developed on top of the Python library NLTK

[28]. Solving a syntax analysis problem for a sentence means looking for predefined

syntactic forms which branch out from the single words. The main syntactic form

is the sentence (S) which contains noun phrases (NP) or verb phrases (VP) that in

turn are formed by further elementary syntactic forms such as nouns (N), verbs (V),

determiners (DET), etc. Two approaches are available for the syntactic analysis of

sentences: top-down and bottom-up.

• In the top-down approach the syntactic form of a sentence is determined by

starting from the whole sentence. This allows to predict several phrase con-

stituents that can be recursively analyzed until the smallest units are reached.

However, this approach could lead infinite loops.

• Insead, in the bottom-up parsing approach the objects represented by the

smallest units of text together with their syntactic class are recognized at first.

Then, it tries to find and combine sequences of words and phrases until the

whole sentence is reached. This approach does not guarantee that a valid

parsing will be found for the input even if it exists. Moreover, no checking

is performed to establish if the language derived entity is globally consistent

with the grammar.

Our approach is based on a left-corner parser, which integrates both the bottom-up

and the top-down approaches. First, a left-corner parser pre-processes the context-

free grammar to build a two-columns table. The first one holds a non-terminal cate-

gory (basically are Sentences), instead, the second one holds the collection of possi-

ble left corners of not-terminal category (basically they are VP, NP, etc). Next, our

approach parses each phrase higher syntactic forms, and filters the results starting

from the smallest text units. This approach should overcome the shortcomings of

76

both parsing methodologies. The procedure will yield all PartOf-Speech (POS) of a

sentence (S) that are nouns (N) linked through verbal relations (V).

Finally, the network is built compared the annotation terms (network nodes) ob-

tained by the OntoTAGME algorithm with the the elements extracted by the left-

corner parser. If there is a correspondence between two entities, then an edge of

the graph will connect such entities. More precisely, through a PubMed search, we

obtain a list of n full-text papers [p1, p2, · · · , pn], that are divided in grammatical pe-

riods. Therefore, given an article pi we derive a set of m sentences si,1,si,2, · · · ,si,mi .

Then, for each sentence, we employ OntoTagme computing a set of spots n1, ...,nz.

These spots will be the nodes in our final network. To define the edges in such a net-

work, we tokenize all sentences and perform a syntactic analysis. This analysis will

yield, for each sentence si, j of a paper i, a set of labelled tokens lti, j,1, lti, j,2 · · · , lti, j,ki

where each token is a pair (token, POS). Irrelevant POS are therefore removed

(stop-words, URLs, etc.), keeping only useful verb forms and spots extracted through

annotation procedure.

In our final network, each edge e = (a,b) is weighted as:

w(e) = ∑
z
k=1

1
ek/z (5.1)

where z is the number of sentences (in all the papers) in which an edge between

(a,b) is reported and ek the number of edges between a and b in the k-th sentence.

Indeed, nodes a and b may be connected more the once in the same sentence.

5.2 NetME User Interface

NETME consists of a front-end developed in PHP and Javascript. Furthermore,

the Network rendering is performed with the CytoscapeJS library [91]. The major

functionalities made available through the User Interface are essentially two:

• Query-based network annotation enables a user to provide a list of key-

77

words which are employed to run a query on PubMed (Fig.5.2a). The top re-

sulting papers are retrieved and the network inference procedure is performed.

Several parameters can be defined by the user: (i) OntoTagme ρ to increase or

reduce the number of spots, (ii) the maximum number of network nodes, (iii)

the number of top article to retrieve from PubMed, and (iv) the criteria used

to sort papers (relevance or date).

• User-provided free-text network annotation enables a user to provided a

text.

Once the user starts the analysis, the directed network is generated, and all inference

details are provided in three tables containing (i) the list of extracted papers, (ii) the

list of annotations, and (iii) the list of edges together with their weight (Fig.5.2b).

5.3 Case study

In the proposed case study, we built a network based on the “SRC” (Proto-oncogene

tyrosine-protein kinase) concept. We choose to build a network of 200 nodes from

the Top-20 PubMed articles. ρ has been set to 0.3 which are suitable to perform

an interactive test. We made a comparison considering HetioNet as competitor, and

SemRep as groundtruth. For each node and edge in SemRep results, we checked

whether NETME was able to infer it. The same analysis has been done using Het-

ioNet. In this analysis edge labels were ignored. To evaluate the quality of our pre-

diction the “precision” and “recall” have been computed (). Our analysis, although

preliminary, clearly shows that NETME has a comparable precision with HetioNet

in terms of inferred nodes and an higher recall. Concerning inferred edges, HetioNet

precision is slightly higher although NETME recall is much higher.

78

(a)

(b)

Figure 5.2: NetME web interface in (a), generated network in (b)

79

NETME HetioNet
SemRep
(Ground
truth)

Detected nodes 200 112 189
Valid nodes (TP) 123 61 189
Wrong nodes (FP) 77 51 −
Missing nodes (FN) 66 128 −
Precision 61.5% 54.5% −
Recall 65.1% 32.3% −
Detected edges 495 56 292
Valid edges (TP) 178 34 292
Wrong edges (FP) 317 22 −
Missing edges (FN) 114 258 −
Precision 56.2% 60.7% −
Recall 61% 11.6% −

DataFrame 5.1: Netme performance results

80

Chapter 6

Conclusions

In this thesis we introduced BioTAGME and NetME, two frameworks for the in-

ference of knowledge graphs from scientific documents gathered through PubMed.

The differences between the two approaches are:

• The actual BioTAGME version works on all PubMed documents title and ab-

stract. Instead, NetME works on a collection of full-texts either submitted by

the user or extracted from PubMed Central through a user-specified query.

• BioTAGME builds a graph on all the documents titles and abstract in PubMed

up to the generation date of such graph. Therefore, it is necessary to periodi-

cally update the graph in order to add new nodes and predicted edges resulting

from the analysis and elaboration of new documents. NetME instead down-

loads (in real time) the top n (from 10 to 200) full-texts based on the user-

specified context (i.e breast cancer disease, etc), and then generates the graph

starting from a partial knowledge content of the just downloaded full-texts.

Therefore, the BioTAGME knowledge graph is static instead the NetME one

is dynamic and content dependent.

• BioTAGME employees the traditional TagME version, based on Wikipedia

corpus, to transform a document in a list of keywords. MetME instead em-

ployees a custom TagME version based on Gene and Disease ontologies. Such

81

a custom version has been implemented to mitigate the disambiguation error.

• BioTAGME is able to predict a possible relationships between two biologi-

cal elements combining the bipartite graph methodology with the relatedness

among Wikipedia pages. This allows to estimate the strength of the relation-

ships, but not the type. For example, if we consider two genes A and B, and

A up-regulates B, our methodology is able to predict the interaction between

A and B, but not the up-regulate concept. Instead, NetME is based on sen-

timental analysis methodologies able to infer both the strength and type of a

relationship.

Future works will include:

• The improvement of BioTAGME prediction by employing all PubMed central

full-texts, and sentimental analysis methodologies.

• The improvement of NetME performance and predictions through the exten-

sion of the ontology used in OntoTagme, the temporary storage of networks

for fast computation of updates, and the implementation of word2vect and/or

doc2vect to predict possible missing relationships.

82

Bibliography

[1] Albert-László Barabási, Natali Gulbahce, and Joseph Loscalzo. Network

medicine: a network-based approach to human disease. Nature Reviews Ge-

netics, 12(1):56–68, December 2010.

[2] X. Ma and L. Gao. Biological network analysis: insights into structure and

functions. Briefings in Functional Genomics, 11(6):434–442, November 2012.

[3] R. Resnick, D. Halliday, and K. S. Krane. Fisica, volume 1. Casa Editrice

Ambrosiana, Milano, 2003.

[4] Beck J. Report from the field: PubMed central, an XML-based archive of

life sciences journal articles. In Proceedings of the International Symposium

on XML for the Long Haul: Issues in the Long-term Preservation of XML.

Mulberry Technologies, Inc.

[5] Ginsparg P. arXiv. Available at "https://arxiv.org".

[6] bioRxiv. Available at "https://www.biorxiv.org".

[7] Lambrix P., Tan H., Jakoniene V., and Strömbäck L. Biological ontologies. In

Semantic Web, pages 85–99. Springer US.

[8] Cohen A. M. A survey of current work in biomedical text mining. Briefings in

Bioinformatics, 6(1):57–71, January 2005.

83

"https://arxiv.org"
"https://www.biorxiv.org"

[9] Krallinger M., Erhardt R. A., and Valencia A. Text-mining approaches in

molecular biology and biomedicine. Drug Discovery Today, 10(6):439–445,

March 2005.

[10] Nicholson D. N. and Greene C. S. Constructing knowledge graphs and their

biomedical applications. Computational and Structural Biotechnology Jour-

nal, 18:1414–1428, 2020.

[11] Slater T. Recent advances in modeling languages for pathway maps and com-

putable biological networks. Drug Discovery Today, 19(2):193–198, February

2014.

[12] McBride B. The resource description framework (RDF) and its vocabulary de-

scription language RDFS. In Handbook on Ontologies, pages 51–65. Springer

Berlin Heidelberg, 2004.

[13] Kim J., Wang Y., Fujiwara T., Okuda S., Callahan T. J., and K. B. Cohen. Open

agile text mining for bioinformatics: the PubAnnotation ecosystem. Bioinfor-

matics, 35(21):4372–4380, April 2019.

[14] Wei C., Allot A., Leaman R., and Lu Z. PubTator central: automated con-

cept annotation for biomedical full text articles. Nucleic Acids Research,

47(W1):W587–W593, May 2019.

[15] Jyoti Soni, Ujma Ansari, Dipesh Sharma, and Sunita Soni. Predictive data

mining for medical diagnosis: An overview of heart disease prediction. Inter-

national Journal of Computer Applications, 17(8):43–48, March 2011.

[16] Asghar M. Z., Khan A., Ahmad S., Qasim M., and Khan I. A. Lexicon-

enhanced sentiment analysis framework using rule-based classification

scheme. PLOS ONE, 12(2):e0171649, February 2017.

[17] Szklarczyk D., Morris J. H., Cook H., Kuhn M., Wyder S., Simonovic M.,

Santos A., Doncheva N. T., Roth A., Bork P., Jensen L. J., and von Mering C.

84

The STRING database in 2017: quality-controlled protein–protein association

networks, made broadly accessible. Nucleic Acids Research, 45(D1):D362–

D368, October 2016.

[18] Himmelstein D. S. and Baranzini S. E. Heterogeneous network edge predic-

tion: A data integration approach to prioritize disease-associated genes. PLOS

Computational Biology, 11(7):e1004259, July 2015.

[19] Rindflesch T. C. and Fiszman M. The interaction of domain knowledge and

linguistic structure in natural language processing: interpreting hypernymic

propositions in biomedical text. Journal of Biomedical Informatics, 36(6):462–

477, December 2003.

[20] Ferragina P. and Scaiella U. TAGME. In Proceedings of the 19th ACM inter-

national conference on Information and knowledge management - CIKM '10.

ACM Press, 2010.

[21] Schriml L. M., Mitraka E., Munro J., Tauber B., Schor M., Nickle L., Felix

V., Jeng L., Bearer C., Lichenstein R., Bisordi K., Campion N., Hyman B.,

Kurland D., Oates C. P., Kibbey S., Sreekumar P., Le C., Giglio M., and Greene

C. Human Disease Ontology 2018 update: classification, content and workflow

expansion. Nucleic Acids Research, 47(D1):D955–D962, 11 2018.

[22] Wishart D. S., Feunang Y. D., Guo A. C., Lo E. J., Marcu A., Grant J. R.,

Sajed T., Johnson D., Li C., Sayeeda Z., Assempour N., Iynkkaran I., Liu Y.,

Maciejewski A., Gale N., Wilson A., Chin L., Cummings R., Le D., Pon A.,

Knox C., and Wilson M. DrugBank 5.0: a major update to the DrugBank

database for 2018. Nucleic Acids Research, 46(D1):D1074–D1082, November

2017.

[23] Gray K. A., Seal R. L., Tweedie S., Wright M. W., and Bruford E. A. A review

of the new HGNC gene family resource. Human Genomics, 10(1), February

2016.

85

[24] Zaharia M., Xin R. S., Wendell P., Das T., Armbrust M., Dave A., Meng X.,

Rosen J., Venkataraman S., Franklin M. J., Ghodsi A., Gonzalez J., Shenker

S., and Stoica I. Apache spark. Communications of the ACM, 59(11):56–65,

October 2016.

[25] Gene Ontology Consortium. The gene ontology (GO) database and informatics

resource. Nucleic Acids Research, 32(90001):258D–261, January 2004.

[26] Piñero j., Ramírez-Anguita J. M., Saüch-Pitarch J., Ronzano F., Centeno E.,

Sanz F., and Furlong L. I. The DisGeNET knowledge platform for disease ge-

nomics: 2019 update. Nucleic Acids Research, 48(D1):D845–D855, 11 2019.

[27] Smith B., Ashburner M., Rosse C., Bard J., Bug W., Ceusters W., Goldberg

L. J., Eilbeck K., Ireland A., Mungall C. J., Leontis N., Rocca-Serra P., Rutten-

berg A., Sansone S., Scheuermann R. H., Shah N., Whetzel P. L, and Lewis S.

The OBO foundry: coordinated evolution of ontologies to support biomedical

data integration. Nature Biotechnology, 25(11):1251–1255, November 2007.

[28] Loper E. and Bird S. NLTK. In Proceedings of the ACL-02 Workshop on

Effective tools and methodologies for teaching natural language processing

and computational linguistics -. Association for Computational Linguistics,

2002.

[29] Drieger P. Semantic network analysis as a method for visual text analytics.

Procedia - Social and Behavioral Sciences, 79:4–17, June 2013.

[30] Huo C., Wu H., Xiao J., Meng D., Zou S., Wang M., Qi P., Tian H., and

Hu Y. Genomic and bioinformatic characterization of mouse mast cells (p815)

upon different influenza a virus (h1n1, h5n1, and h7n2) infections. Frontiers

in Genetics, 10, June 2019.

86

[31] Chen H., Ding L., Wu Z., Yu T., Dhanapalan L., and Chen J. Y. Semantic web

for integrated network analysis in biomedicine. Briefings in Bioinformatics,

10(2):177–192, March 2009.

[32] Jens D. and Marc J. Semantic knowledge graph embeddings for biomedical

research: Data integration using linked open data, 09 2019.

[33] Xiaoke M. and Lin G. Biological network analysis: insights into structure and

functions. Briefings in Functional Genomics, 11(6):434–442, 11 2012.

[34] David Nettleton. Data representation. In Commercial Data Mining, pages

49–66. Elsevier, 2014.

[35] Sören A., Christian B., Georgi K., Jens L., Richard C., and Zachary I. Dbpe-

dia: A nucleus for a web of open data. In Proceedings of the 6th International

The Semantic Web and 2nd Asian Conference on Asian Semantic Web Confer-

ence, ISWC’07/ASWC’07, page 722–735, Berlin, Heidelberg, 2007. Springer-

Verlag.

[36] Williamson P. O. and Minter C. I. J. Exploring PubMed as a reliable resource

for scholarly communications services. Journal of the Medical Library Asso-

ciation, 107(1), January 2019.

[37] Sayers E. Entrez Programming Utilities Help. Available at https://www.

ncbi.nlm.nih.gov/books/NBK25501/.

[38] Li F., Zhang M., Fu G., and Ji D. A neural joint model for entity and relation

extraction from biomedical text. BMC Bioinformatics, 18(1), March 2017.

[39] Lancia F. Word co-occurrence and similarity in meaning. 01 2007.

[40] Qi L., Meng J., Xikun Z., Meng Q., Timothy H., Jing G., and Jiawei H.

Truepie: Discovering reliable patterns in pattern-based information extraction.

87

https://www.ncbi.nlm.nih.gov/books/NBK25501/
https://www.ncbi.nlm.nih.gov/books/NBK25501/

In Proceedings of the 24th ACM SIGKDD International Conference on Knowl-

edge Discovery & Data Mining, KDD ’18, page 1675–1684, New York, NY,

USA, 2018. Association for Computing Machinery.

[41] Sidey-Gibbons J. A. M. and Sidey-Gibbons C. J. Machine learning in

medicine: a practical introduction. BMC Medical Research Methodology,

19(1), March 2019.

[42] Wang Q., Garrity G. M., Tiedje J. M., and Cole J. R. Naive bayesian classi-

fier for rapid assignment of rRNA sequences into the new bacterial taxonomy.

Applied and Environmental Microbiology, 73(16):5261–5267, June 2007.

[43] Azar A. T. and El-Metwally S. M. Decision tree classifiers for automated

medical diagnosis. Neural Computing and Applications, 23(7-8):2387–2403,

October 2012.

[44] Tang Y., Jin B., and Zhang Y. Granular support vector machines with associ-

ation rules mining for protein homology prediction. Artificial Intelligence in

Medicine, 35(1-2):121–134, September 2005.

[45] Fei W., Peter Casalino, L., and Dhruv K. Deep Learning in

Medicine—Promise, Progress, and Challenges. JAMA Internal Medicine,

179(3):293–294, 03 2019.

[46] S. Levine, Wang J. M., Haraux A., Popović Z., and Koltun V. Continuous

character control with low-dimensional embeddings. ACM Transactions on

Graphics, 31(4):1–10, August 2012.

[47] J. Cussens. Part-of-speech tagging using progol. In Inductive Logic Program-

ming, pages 93–108. Springer Berlin Heidelberg, 1997.

[48] Havaei M., Davy A., Warde-Farley D., Biard A., Courville A., Bengio Y., Pal

C., Jodoin P., and Larochelle H. Brain tumor segmentation with deep neural

networks. Medical Image Analysis, 35:18–31, January 2017.

88

[49] Tajbakhsh N., Shin J. Y., Gurudu S. R., Hurst R. T., Kendall C. B., Gotway

M. B., and Liang J. Convolutional neural networks for medical image anal-

ysis: Full training or fine tuning? IEEE Transactions on Medical Imaging,

35(5):1299–1312, 2016.

[50] Huang M., Liu J., and Zhu X. GeneTUKit: a software for document-level gene

normalization. Bioinformatics, 27(7):1032–1033, February 2011.

[51] Zheng G., Wang H., Wei C., and Li Y. iGepros: an integrated gene and pro-

tein annotation server for biological nature exploration. BMC Bioinformatics,

12(S14), December 2011.

[52] Wei C., Kao H., and Lu Z. SR4gn: A species recognition software tool for

gene normalization. PLoS ONE, 7(6):e38460, June 2012.

[53] Leaman R., Dogan R. I., and Lu Z. DNorm: disease name normalization with

pairwise learning to rank. Bioinformatics, 29(22):2909–2917, August 2013.

[54] Wei C.-H., Harris B. R., Kao H.-Y., and Lu Z. tmVar: a text mining ap-

proach for extracting sequence variants in biomedical literature. Bioinformat-

ics, 29(11):1433–1439, April 2013.

[55] Zhou X., Zhang X., and Hu X. MaxMatcher: Biological concept extraction

using approximate dictionary lookup. In Lecture Notes in Computer Science,

pages 1145–1149. Springer Berlin Heidelberg, 2006.

[56] Humphreys B. L., Lindberg D. A. B., Schoolman H. M., and Barnett G. O.

The unified medical language system: An informatics research collaboration.

Journal of the American Medical Informatics Association, 5(1):1–11, January

1998.

[57] Qi C. and Guang-chun G. A corpus-based lexical study on frequency and dis-

tribution of coxhead’s AWL word families in medical research articles (RAs).

English for Specific Purposes, 26(4):502–514, January 2007.

89

[58] Cutting D., Kupiec J., Pedersen J., and Sibun P. A practical part-of-speech

tagger. In Proceedings of the third conference on Applied natural language

processing -. Association for Computational Linguistics, 1992.

[59] Aronson A. R. and Lang F. An overview of MetaMap: historical perspective

and recent advances. Journal of the American Medical Informatics Associa-

tion, 17(3):229–236, May 2010.

[60] Rindflesch T. C. Integrating natural language processing and biomedical do-

main knowledge for increased information retrieval effectiveness. In Proceed-

ings of the 5th Annual Dual-use Technologies and Applications Conference,

pages 260–5, 1995.

[61] Hoyt C. T., Domingo-Fernández D., and Hofmann-Apitius M. BEL commons:

an environment for exploration and analysis of networks encoded in biological

expression language. Database, 2018, January 2018.

[62] Orchard S., Kerrien S., Abbani S., Aranda B., Bhate J., Bidwell S., Bridge A.,

Briganti L., Brinkman F. S. L., Cesareni G., Chatr-aryamontri A., Chautard

E., Chen Ca., Dumousseau M., Goll J., Hancock R. E. W., Hannick L. I., Ju-

risica I., Khadake J., Lynn D. J., Mahadevan U., Perfetto L., Raghunath A.,

Ricard-Blum S., Roechert B., Salwinski L., Stümpflen V., Tyers M., Uetz P.,

Xenarios I., and Hermjakob H. Protein interaction data curation: the inter-

national molecular exchange (IMEx) consortium. Nature Methods, 9(4):345–

350, March 2012.

[63] Chatr-aryamontri A., Breitkreutz B., Oughtred R., Boucher L., Heinicke S.,

Chen D., Stark C., Breitkreutz A., Kolas N., O'Donnell L., Reguly T., Nixon

J., Ramage L., Winter A., Sellam A., Chang C., Hirschman J., Theesfeld C.,

Rust J., Livstone M. S., Dolinski K., and Tyers M. The BioGRID interaction

database: 2015 update. Nucleic Acids Research, 43(D1):D470–D478, Novem-

ber 2014.

90

[64] Franceschini A., Lin J., von Mering C., and Jensen L. J. SVD-phy: improved

prediction of protein functional associations through singular value decompo-

sition of phylogenetic profiles. Bioinformatics, 32(7):1085–1087, November

2015.

[65] Mark Needham and Amy E. Hodler. Graph algorithms: practical examples in

Apache Spark and Neo4j. O’Reilly, 2019.

[66] Croft D., Mundo A. F., Haw R., Milacic M., Weiser J., Wu G., Caudy M.,

Garapati P., Gillespie M., M. R. Kamdar, Jassal B., Jupe S., Matthews L., May

B., Palatnik S., Rothfels K., Shamovsky V., Song H., Williams M., Birney E.,

Hermjakob H., Stein L., and D’Eustachio P. The Reactome pathway knowl-

edgebase. Nucleic Acids Research, 42(D1):D472–D477, 11 2013.

[67] Yin P., Choi Harry M. T., Calvert C. R., and Pierce N. A. Programming

biomolecular self-assembly pathways. Nature, 451(7176):318–322, January

2008.

[68] Christopher M. D., Mihai S., John B., Jenny F., and David M. The Stanford

CoreNLP natural language processing toolkit. In Association for Computa-

tional Linguistics (ACL) System Demonstrations, pages 55–60, 2014.

[69] Fabian Pedregosa, Gaël Varoquaux, Alexandre Gramfort, Vincent Michel,

Bertrand Thirion, Olivier Grisel, Mathieu Blondel, Peter Prettenhofer, Ron

Weiss, Vincent Dubourg, et al. Scikit-learn: Machine learning in python. Jour-

nal of machine learning research, 12(Oct):2825–2830, 2011.

[70] Goddard M.E., Hayes B.J., and Meuwissen T.H.E. Using the genomic relation-

ship matrix to predict the accuracy of genomic selection. Journal of Animal

Breeding and Genetics, 128(6):409–421, November 2011.

[71] Hastings J., Owen G., Dekker A., Ennis M., Kale N., Muthukrishnan V., Turner

S., Swainston N., Mendes P., and Steinbeck C. ChEBI in 2016: Improved

91

services and an expanding collection of metabolites. Nucleic Acids Research,

44(D1):D1214–D1219, October 2015.

[72] Ying Z. and Kostas K. Towards a portable xml-based source code represen-

tation. Proc. XML Technologies and Software Engineering (XSE2001), pages

343–353, 2001.

[73] Alaimo S., Pulvirenti A., Giugno R., and Ferro A. Drug–target interaction

prediction through domain-tuned network-based inference. Bioinformatics,

29(16):2004–2008, May 2013.

[74] Roger I. Mesos in Action. Manning Publications Co., USA, 1st edition, 2016.

[75] Perwej Y., Kerim B., Adrees M. S., and Sheta O. E. An empirical exploration

of the yarn in big data. International Journal of Applied Information Systems,

12(9):19–29, December 2017.

[76] D. Dominguez-Sal, P. Urbón-Bayes, A. Giménez-Vañó, S. Gómez-Villamor,

N. Martínez-Bazán, and J. L. Larriba-Pey. Survey of graph database perfor-

mance on the HPC scalable graph analysis benchmark. In Web-Age Informa-

tion Management, pages 37–48. Springer Berlin Heidelberg, 2010.

[77] Nadime Francis, Andrés Taylor, Alastair Green, Paolo Guagliardo, Leonid

Libkin, Tobias Lindaaker, Victor Marsault, Stefan Plantikow, Mats Rydberg,

and Petra Selmer. Cypher. In Proceedings of the 2018 International Confer-

ence on Management of Data - SIGMOD '18. ACM Press, 2018.

[78] Zhang G., Shi J., Zhu S., Lan Y., Xu L., Yuan H., Liao G., Liu X., Zhang Y.,

Xiao Y., and Li X. DiseaseEnhancer: a resource of human disease-associated

enhancer catalog. Nucleic Acids Research, 46(D1):D78–D84, 10 2017.

[79] Barbarino J. M., Whirl-Carrillo M., Altman R. B., and Klein T. E. PharmGKB:

A worldwide resource for pharmacogenomic information. Wiley Interdisci-

plinary Reviews: Systems Biology and Medicine, 10(4):e1417, February 2018.

92

[80] Birney E. An overview of ensembl. Genome Research, 14(5):925–928, May

2004.

[81] Volders P., Anckaert J., Verheggen K., Nuytens J., Martens L., Mestdagh P.,

and Vandesompele J. LNCipedia 5: towards a reference set of human long non-

coding RNAs. Nucleic Acids Research, 47(D1):D135–D139, October 2018.

[82] Jeggari A., Marks D. S., and Larsson E. miRcode: a map of putative mi-

croRNA target sites in the long non-coding transcriptome. Bioinformatics,

28(15):2062–2063, 05 2012.

[83] Kozomara A., Birgaoanu M., and Griffiths-Jones A. miRBase: from mi-

croRNA sequences to function. Nucleic Acids Research, 47(D1):D155–D162,

11 2018.

[84] Hsi-Yuan H., Yang-Chi-Dung L., Jing L., Kai-Yao H., Sirjana S., Hsiao-Chin

H., Yun T., Yi-Gang C., Chen-Nan J., Yuan Y., Jia-Tong X., Yue-Ming L.,

Xiao-Xuan C., Zhen-Yu Z., Xiao-Hang C., Yuan-Yuan P., Liang H., Jin-Jiang

S., Shi-Dong C., Fei W., Yue-Yang X., Si-Yuan D., Meng-Fan L., Chih-Hung

C., Nai-Wen C., Kai-Wen C., Yu-Hsiang C., Xin-Hong W., Wen-Lian H.,

Tzong-Yi L., Feng-Xiang W., and Hsien-Da H. miRTarBase 2020: updates to

the experimentally validated microRNA–target interaction database. Nucleic

Acids Research, October 2019.

[85] Boya X., Qin D., Hongjin H., and Di W. miRCancer: a microRNA–cancer

association database constructed by text mining on literature. Bioinformatics,

29(5):638–644, 01 2013.

[86] Wishart D. S., Li C., Marcu A., Badran H., Pon A., Budinski Z., Patron J.,

Lipton D., Cao X., Oler E., Li K., Paccoud M., Hong C., Guo A. C., Chan C.,

Wei W., and Ramirez-Gaona M. PathBank: a comprehensive pathway database

for model organisms. Nucleic Acids Research, 48(D1):D470–D478, 10 2019.

93

[87] UniProt: the universal protein knowledgebase. Nucleic Acids Research,

45(D1):D158–D169, November 2016.

[88] Jeske L., Placzek S., Schomburg I., Chang A., and Schomburg D. BRENDA

in 2019: a European ELIXIR core data resource. Nucleic Acids Research,

47(D1):D542–D549, 11 2018.

[89] Haft D. H., DiCuccio M., Badretdin A., Brover V., Chetvernin V., O’Neill

K., Li W., Chitsaz F., Derbyshire M. K., Gonzales N. R., Gwadz M., Lu F.,

Marchler G. H., Song J. S., Thanki N., Yamashita R. A., Zheng C., Thibaud-

Nissen F., Geer L. Y., Marchler-Bauer A., and Pruitt K. D. RefSeq: an up-

date on prokaryotic genome annotation and curation. Nucleic Acids Research,

46(D1):D851–D860, 11 2017.

[90] Jordi Boggiano. Packagist the php package repository.

[91] Franz M., Lopes C. T., Huck G., Dong Y., Sumer O., and Bader G. D. Cy-

toscape.js: a graph theory library for visualisation and analysis. Bioinformat-

ics, page btv557, September 2015.

[92] Anna Stavrianou, Periklis Andritsos, and Nicolas Nicoloyannis. Overview and

semantic issues of text mining. ACM SIGMOD Record, 36(3):23–34, Septem-

ber 2007.

94

	ABSTRACT
	ACKNOWLEDGEMENT
	Introduction
	Background
	Knowledge Graph
	Documents repositories
	PubMed
	PubMed Central
	bioRxiv

	Articles annotation and Relationships extraction
	PubAnnotation
	PubTatorCentral
	SemRep
	STRING
	Hetionet
	Reactome
	kindred

	Annotations format
	Biological Expression Language (BEL)
	Resource Description Framework

	Algorithms and Frameworks
	DT-Hybrid
	Custom DT-Hybrid
	Tagme framework
	Custom Tagme (OntoTagme)
	SPARK framework
	Neo4j

	BioTAGME
	Cluster configuration
	External Sources
	DisGeNET
	Disease Ontology
	DiseaseEnhancer
	DrugBank
	PharmGKB
	HUGO Gene Nomenclature Committee
	Ensembl
	LNCipedia
	miRcode
	miRBase
	miRTarBase
	miRCancer
	Reactome
	PathBank
	UniProt
	BRENDA
	RefSeq

	Pipeline one
	Download and Import module
	SQL to JSON parser module
	Integrating databases module
	Annotation module
	Prediction module
	Network Construction
	Updating procedure

	Pipeline two
	Network import module
	Searching module
	Case study

	NetME
	NetME methodology
	NetME User Interface
	Case study

	Conclusions

