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ON UNIFORMLY RESOLVABLE (C4,K1,3)-DESIGNS

P. BONACINI, S. KÜÇÜKÇIFÇI, S. MILICI, AND E. Ş. YAZICI

Abstract. In this paper, we consider the uniformly resolvable decom-
positions of the complete graph Kv minus a 1-factor (Kv − I) into sub-
graphs where each resolution class contains only blocks isomorphic to
the same graph. We completely determine the spectrum for the case in
which all the resolution classes consist of either 4-cycles or 3-stars.

1. Introduction

Given a collection of graphs H, an H-decomposition of a graph G is a
decomposition of the edges of G into isomorphic copies of graphs in H,
called blocks. Such a decomposition is resolvable if it is possible to partition
the blocks into classes called resolution classes such that every vertex of G
appears exactly once in each resolution class.

A resolvable H-decomposition of G is also referred to as an H-factoriza-
tion of G and each resolution class is called an H-factor of G. The case
where H is the singleton {K2} is known as a 1-factorization of G and for
G = Kv it is well known to exist if and only if v is even. A resolution class
of a 1-factorization, a pairing of all points, is also known as a 1-factor or a
perfect matching.

In many cases we wish to impose further constraints on the resolution
classes of an H-decomposition. For example, a resolution class is said to
be H-uniform if its blocks are all isomorphic to the graph H. An H-
decomposition is uniformly resolvable if each resolution class is H-uniform
for a suitable H ∈ H. In particular, by writing (H1, H2)-URD(r1, r2) of
G we will mean a uniformly resolvable {H1, H2}-decomposition of G with
exactly ri resolution classes that are Hi-uniform for i = 1, 2. Uniformly
resolvable decompositions of Kv and Kv − I, where I is a 1-factor of Kv

have been studied widely in the literature, see for example [1]–[6], [9]–[16],
[18]–[23] and [25]–[30]. Note that some of the papers in these references are
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on special cases of Hamilton-Waterloo problems that are basically (H1, H2)-
URD(r1, r2) of Kv, where Hi’s are cycles.

In what follows, we will denote by (a1, a2, a3, a4) the 4-cycle C4 having
vertex set {a1, a2, a3, a4} and edge set {{a1, a2}, {a2, a3}, {a3, a4}, {a4, a1}}
and by (a1; a2, a3, a4) the 3-star , K1,3, having the vertex set {a1, a2, a3, a4},
and the edge set {{a1, a2}, {a1, a3}, {a1, a4}}.

Given v ≡ 0 (mod 4), define I(v) accordingly to Table 1. It was proven

v I(v)

0 (mod 12)
{(

v−2
2 − 3x, 4x

)
: x = 0, 1, . . . , v−6

6

}
4 (mod 12)

{(
v−2
2 − 3x, 4x

)
: x = 0, 1, . . . , v−4

6

}
8 (mod 12)

{(
v−2
2 − 3x, 4x

)
: x = 0, 1, . . . , v−2

6

}
Table 1. The set I(v).

in [11] that a (C4,K1,3)-URD(r, s) of λKv (the λ-fold complete graph) can-
not exist for λ odd. So in this paper, as is customary in such situations,
we remove a 1-factor I from Kv, note that this implies that v is even. Fur-
thermore, as both K1,3 and C4 have 4 vertices, v ≡ 0 mod 4 is a necessary
condition for the existence of a (C4,K1,3)-URD(r, s). Note that we also use
the notation (C4,K1,3)-URD(v; r, s) if the order v needs to be specified. We
therefore investigate the existence of a (C4,K1,3)-URD(r, s) of Kv − I and
prove the following result:

Main Theorem. There exists a (C4,K1,3)-URD(r, s) of Kv− I if and only
if v ≡ 0 (mod 4) and (r, s) ∈ I(v), where I(v) is given in Table 1.

In this paper we will use the following notation. Let G be the com-
plete multipartite graph in which each partite set of the set of vertices is
{0i, 1i, . . . , (v − 1)i}, for i = 1, . . . ,m. If H is a subgraph of G, we denote
by H + j, for any j ∈ {0, 1, . . . , v − 1}, the subgraph isomorphic to H ob-
tained under the natural action of Zv on G, defined by xi → (x+ j)i for any
x, j ∈ {0, 1, . . . , v − 1} and i ∈ {1, . . . ,m}.

2. Necessary conditions

In this section, we will give the necessary conditions for the existence of a
uniformly resolvable decomposition of Kv − I into r classes of 4-cycles and
s classes of 3-stars.

Lemma 2.1. If there exists a (C4,K1,3)-URD(r, s) of Kv − I, then (r, s) ∈
I(v).

Proof. Let D be a (C4,K1,3)-URD(v; r, s) of Kv − I. Counting the edges of
Kv − I that appear in D we obtain

4rv

4
+

3sv

4
=

v(v − 2)

2
,
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and hence

(2.1) 4r + 3s = 2(v − 2).

The above identity gives s ≡ 0 (mod 4). Now letting s = 4x in Equation
(2.1), we obtain r = (v − 2)/2 − 3x; since r and s cannot be negative, and
x is an integer, the value of x has to be in the range given in the definition
of I(v). □

3. Constructions and related structures

In this section, we will introduce some useful definitions, results and dis-
cuss constructions we will use in proving the main result. For missing terms
or results that are not explicitly explained in the paper, the reader is referred
to [8] and its online updates. A resolvable H-decomposition of the complete
multipartite graph with u parts, each of size g is known as a resolvable group
divisible design H-RGDD of type gu, the parts of size g are called the groups
of the design. When H = Kn we will call it an n-RGDD.

A (C4,K1,3)-URGDD (r, s) of type gu is a uniformly resolvable decompo-
sition of the complete multipartite graph with u parts each of size g into r
classes containing only copies of 4-cycles and s classes containing only copies
of 3-stars.

If the blocks of an H-RGDD of type gu can be partitioned into partial
parallel classes, each of which contain all points except those of one group,
we refer to the decomposition as a frame. When H = Kn we will call it an
n-frame and it is easy to deduce that the number of partial parallel classes
missing a specified group G is |G|/(n− 1).

An incomplete resolvable (C4,K1,3)-decomposition of Kv+h with a hole
of size h is a (C4,K1,3)-decomposition of Kv+h − Kh in which there are
two types of classes, full classes and partial classes which cover every point
except those in the hole (the points of Kh are referred to as the hole). Specif-
ically a (C4,K1,3)-IURD(v+h, h; [(r1, s1)], [(r2, s2)]) is a uniformly resolvable
(C4,K1,3)-decomposition of Kv+h−Kh with r1 partial classes of 4-cycles, s1
partial classes of 3-stars and one partial 1-factor which cover only the points
not in the hole, r2 full classes of 4-cycles which cover every point of Kv+h

and s2 full classes of 3-stars which cover every point of Kv+h.
Let Cm(n) denote the graph with the vertex set {

⋃m
i=1Xi} with |Xi| = n

for i = 1, 2, ...,m and |Xi| ∩ |Xj | = ∅ for i ̸= j, and the edge set

{{u, v} : u ∈ Xi, v ∈ Xj , i− j ≡ 1 (mod m) or j − i ≡ 1 (mod m)}
We also need the following definitions. Let (s1, t1) and (s2, t2) be two

pairs of nonnegative integers. Define (s1, t1) + (s2, t2) = (s1 + s2, t1 + t2). If
X and Y are two sets of pairs of nonnegative integers, then X + Y denotes
the set {(s1, t1)+ (s2, t2) : (s1, t1) ∈ X, (s2, t2) ∈ Y }. If X is a set of pairs of
nonnegative integers and h is a positive integer, then h ∗X denotes the set
of all pairs of nonnegative integers which can be obtained by adding any h
elements of X together (repetitions of elements of X are allowed).
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The following result can be proven in a similar manner as in [17].

Theorem 3.1. Let v, g, t, h and u be positive integers such that v = gtu+h.
If there exists

(i) a 2-frame F of type gu;
(ii) a (C4,K1,3)-URD(r1, s1) of Kh − I with (r1, s1) ∈ J1;
(iii) a (C4,K1,3)-URGDD(r2, s2) of type t2 with (r2, s2) ∈ J2;
(iv) a (C4,K1,3)-IURD(gt+h, h; [(r1, s1)], [(r3, s3)]) with (r1, s1) ∈ J1 and

(r3, s3) ∈ J3 ⊆ g ∗ J2;
then there exists a (C4,K1,3)-URD(r, s) for each (r, s) ∈ J1 + u ∗ J3.

4. Small cases

Lemma 4.1. There exists a (C4,K1,3)-URD(1, 0) of K4 − I.

Proof. Let V (K4) = Z4 and I = {{0, 2}, {1, 3}}. The class of 4-cycle is
{(0, 1, 2, 3)}. □

Lemma 4.2. There exists a (C4,K1,3)-URGDD(r, s) of type 24, with

(r, s) ∈ {(3, 0), (0, 4)}.

Proof. The case (3, 0) is given in [9, Theorem 2.2] and the case (0, 4) in [18,
Lemma 4.1]. □

Lemma 4.3. There exists a (C4,K1,3)-URD(r, s) of K8 − I with

(r, s) ∈ {(3, 0), (0, 4)}.

Proof. The result follows from Lemma 4.2. □

Lemma 4.4. There exists a (C4,K1,3)-URD(r, s) of K12 − I with

(r, s) ∈ {(5, 0), (2, 4)}.

Proof. Let V (K12) = Z12. Then the case (5, 0) corresponds to a (C4,K1,3)-
URGDD(5, 0) of type 26 which is known to exist by [9, Theorem 2.2].

For the case (2, 4) take

I = {{4, 8}, {1, 3}, {7, 11}, {6, 10}, {5, 9}, {0, 2}}

and the classes listed below:

{(0; 4, 5, 6), (7; 8, 9, 10), (11; 1, 2, 3)},
{(1; 5, 6, 7), (4; 9, 10, 11), (8; 0, 2, 3)},
{(2; 4, 6, 7), (5; 8, 10, 11), (9; 0, 1, 3)},
{(3; 4, 5, 7), (6; 8, 9, 11), (10; 0, 1, 2)},
{(0, 1, 4, 7), (2, 3, 6, 5), (8, 11, 9, 10)},
{(0, 11, 10, 3), (1, 2, 9, 8), (4, 6, 7, 5)}.

□
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Lemma 4.5. There exists a (C4,K1,3)-URGDD(r, s) of type 122, with

(r, s) ∈ {(6, 0), (3, 4), (0, 8)}.
Proof. Take the groups to be {0, 1, . . . , 11} and {0′, 1′, . . . , 11′}. The case
(6, 0) is given in [9, Theorem 2.2] and the case (0, 8) in [7, Lemma 2.3]. For
the case (3, 4) the classes are:

{(1; 4′, 9′, 10′), (2; 0′, 6′, 8′), (3; 5′, 7′, 11′),
(1′; 6, 7, 10), (2′; 0, 5, 9), (3′; 4, 8, 11)},
{(4; 2′, 7′, 11′), (5; 10′, 9′, 1′), (6; 3′, 0′, 8′),
(4′; 2, 9, 0), (5′; 1, 8, 11), (6′; 3, 7, 10)},
{(7; 3′, 5′, 0′), (8; 11′, 2′, 4′), (9; 6′, 1′, 10′),
(7′; 1, 5, 11), (8′; 10, 3, 4), (9′; 0, 2, 6)},
{(0; 6′, 8′, 1′), (10; 3′, 5′, 7′), (11; 2′, 4′, 9′),
(0′; 3, 4, 8), (10′; 2, 6, 7), (11′; 1, 5, 9)},
{(1′, 1, 0′, 11), (2′, 10, 10′, 3), (2, 3′, 0, 11′),
(4, 6′, 8, 9′), (5, 5′, 9, 8′), (6, 4′, 7, 7′)},
{(2′, 1, 8′, 7), (2, 1′, 8, 7′), (3, 3′, 9, 9′),
(4, 5′, 0, 10′), (5, 4′, 10, 0′), (6, 6′, 11, 11′)},

{(3′, 1, 6′, 5), (2′, 6, 5′, 2), (3, 1′, 4, 4′),
(7, 9′, 10, 11′), (8, 8′, 11, 10′), (9, 7′, 0, 0′)}.

□

Lemma 4.6. There exists a (C4,K1,3)-URGDD(r, s) of type 123, with

(r, s) ∈ {(12, 0), (6, 8), (0, 16)}.
Proof. The case (12, 0) is given in [9, Theorem 2.2] and the case (0, 16) fol-
lows by [18, Lemma 4.6]. For the case (6, 8) take the groups {0i, 1i, . . . , 11i}
for i = 1, 2, 3. Then consider:

B = {(j1; j2, (j + 1)2, (j + 2)2), j = 0, 4, 8}
∪ {(j2; j3, (j + 1)3, (j + 2)3), j = 3, 7, 11}
∪ {(j3; j1, (j + 1)1, (j − 1)1), j = 2, 6, 10},

C = {(j1; (j + 3)2, (j + 4)2, (j + 5)2), j = 0, 4, 8}
∪ {(j2; (j + 3)3, (j + 4)3, (j + 5)3), j = 2, 6, 10}
∪ {(j3; (j + 2)1, (j + 7)1, (j + 9)1), j = 0, 4, 8},

D = {(j1, (j + 8)2, (j + 1)1, (j − 1)2), j = 0, 4, 8}
∪ {(j1, (j + 4)3, (j + 9)1, (j + 6)3), j = 2, 6, 10}
∪ {(j2, (j + 8)3, (j + 9)2, (j + 6)3), j = 1, 5, 9},
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E = {(j1, (j + 6)2, (j + 4)3, (j + 9)2), j = 0, 4, 8}
∪ {(j1, (j + 6)2, (j + 4)3, (j + 9)2), j = 2, 6, 10}
∪ {(j1, (j + 2)3, (j + 6)1, (j + 8)3), j = 1, 5, 9}.

Then the classes are B + i, C + i, D + i for i = 0, 1, 2, 3 and E + i for
i = 0, 1. □

Lemma 4.7. There exists a (C4,K1,3)-URGDD(r, s) of type 125, with

(r, s) ∈ {(24, 0), (12, 16), (0, 32)}.

Proof. There exists a (C4,K1,3)-URGDD(r, s) of C5(12) with

(r, s) ∈ {(12, 0), (0, 16)}.
For the case (0, 16) see [18]. For the case (12, 0) we take a 1-factorization of
C5(6) with 12 factors, expand each point by two and replace each edge by
a 4-cycle. Since a 5-partite graph with part size 12 can be obtained by the
union of two C5(12), we obtain a (C4,K1,3)-URGDD(r, s) of type 125 with
(r, s) ∈ {(24, 0), (12, 16), (0, 32)}. □

Lemma 4.8. There exists a (C4,K1,3)-URD(r, s) of K24 − I with

(r, s) ∈ {(11, 0), (8, 4), (5, 8), (2, 12)} = I(24).

Proof. Take a (C4,K1,3)-URGDD(r, s) of type 122 with

(r, s) ∈ {(6, 0), (3, 4), (0, 8)}
which exists by Lemma 4.5. Replace each group of size 12 with the same
(C4,K1,3)-URD(12;x, y), where (x, y) ∈ {(5, 0), (2, 4)} which exists by
Lemma 4.4. By combining these resolutions for possible values of (r, s) and
(x, y) we get the result. □

Lemma 4.9. There exists a (C4,K1,3)-URD(r, s) of K36 − I with

(r, s) ∈ {(17, 0), (14, 4), (11, 8), (8, 12), (5, 16), (2, 20)} = I(36).

Proof. Take a (C4,K1,3)-URGDD(r, s) of type 123 with

(r, s) ∈ {(12, 0), (6, 8), (0, 16)}
which exists by Lemma 4.6. Replace each group of size 12 with the same
(C4,K1,3)-URD(12;x, y), where (x, y) ∈ {(5, 0), (2, 4)} which exists by
Lemma 4.4. By combining these resolutions for possible values of (r, s) and
(x, y) we get the result. □

Lemma 4.10. There exists a (C4,K1,3)-URGDD(r, s) of type 44 with

(r, s) ∈ {(6, 0), (3, 4), (0, 8)}.

Proof. The case (6, 0) is given in [9, Theorem 2.2], the case (0, 8) in [7,
Lemma 2.6]. For the case (3, 4), take the groups to be

{xi, i ∈ Z4}, {yi, i ∈ Z4}, {zi, i ∈ Z4} and {ti, i ∈ Z4}.
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The 4 resolution classes of 3-stars can be obtained from the base blocks:

(x0; y2, z1, t1), (y1; z3, t2, x2), (z2; t0, x3, y3), (t3;x1, y0, z0).

The 3 resolution classes of 4-cycles can be obtained from the base blocks:

(x0, y0, z0, t0), (x0, z0, t1, y1), (x0, z2, y1, t3).

□

Lemma 4.11. There exists a (C4,K1,3)-URD(r, s) of K16 − I with

(r, s) ∈ {(7, 0), (4, 4), (1, 8)} = I(16).

Proof. Take a (C4,K1,3)-URGDD(r, s) of type 44 with

(r, s) ∈ {(6, 0), (3, 4), (0, 8)}

which exists by Lemma 4.10. Replace each group of size 4 with the same
(C4,K1,3)-URD(4; 1, 0), which exists by Lemma 4.1. By combining these
resolutions for possible values of (r, s) we get the result. □

Lemma 4.12. There exists a (C4,K1,3)-IURD(16, 4; [(1, 0)], [(r2, s2)]) with

(r2, s2) ∈ {(6, 0), (3, 4), (0, 8)}.

Proof. Start from a (C4,K1,3)-URGDD(r, s) of type 44 with (r, s) ∈ {(6, 0),
(3, 4), (0, 8)} which exists by Lemma 4.10 and fill in the three groups
with a copy of a (C4,K1,3)-URD(4; 1, 0) in order to obtain a (C4,K1,3)-
IURD(16, 4; [(1, 0)], [(r2, s2)]) with (r2, s2) ∈ {(6, 0), (3, 4), (0, 8)} and one
group as the hole. □

Lemma 4.13. There exists a (C4,K1,3)-IURD(20, 8; [(r1, s1)], [(r2, s2)]) with

(r1, s1) ∈ {(3, 0), (0, 4)} and (r2, s2) ∈ {(6, 0), (3, 4), (0, 8)}.

Proof. Let the point set of K20 be Z20 and the point set {0, 1, . . . , 7} be the
hole.

(1) Let (r1, s1) = (3, 0). These are the 3 resolution classes of 4-cycles on
K20 −K8 on the vertices from 8 to 19:

{(8, 14, 9, 15), (10, 18, 11, 19), (12, 16, 13, 17)},
{(8, 12, 9, 13), (10, 16, 11, 17), (14, 18, 15, 19)},
{(8, 16, 9, 17), (10, 14, 11, 15), (12, 18, 13, 19)}.
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(a) Let (r2, s2) = (6, 0). The followings are the 6 resolution classes
of 4-cycles on K20:

{(0, 8, 1, 9), (2, 10, 3, 11), (4, 12, 5, 13),
(6, 14, 7, 15), (16, 18, 17, 19)},

{(0, 10, 1, 11), (2, 12, 3, 13), (4, 14, 5, 15),
(6, 16, 7, 17), (18, 8, 19, 9)},

{(0, 12, 1, 13), (2, 14, 3, 15), (4, 16, 5, 17),
(6, 18, 7, 19), (8, 10, 9, 11)},

{(0, 14, 1, 15), (2, 16, 3, 17), (4, 18, 5, 19),
(6, 8, 7, 9), (10, 12, 11, 13)},

{(0, 16, 1, 17), (2, 18, 3, 19), (4, 8, 5, 9),
(6, 10, 7, 11), (12, 14, 13, 15)},

{(0, 18, 1, 19), (2, 8, 3, 9), (4, 10, 5, 11),
(6, 12, 7, 13), (14, 16, 15, 17)}.

The one factor is:

{{8, 9}, {10, 11}, {12, 13}, {14, 15}, {16, 17}, {18, 19}}.
(b) Let (r2, s2) = (3, 4). The followings are the 4 resolution classes

of 3-stars:

{(0; 8, 9, 10), (1; 11, 12, 13), (2; 14, 15, 16),
(17; 3, 4, 18), (19; 5, 6, 7)},

{(3; 8, 9, 10), (4; 11, 12, 13), (5; 14, 15, 17),
(16; 0, 1, 19), (18; 2, 6, 7)},

{(6; 8, 10, 13), (9; 1, 18, 19), (12; 2, 5, 11),
(14; 0, 4, 17), (15; 3, 7, 16)},

{(7; 9, 16, 17), (8; 2, 18, 19), (10; 1, 4, 12),
(11; 0, 3, 6), (13; 5, 14, 15)}

and these are the 3 resolution classes of 4-cycles:

{(0, 17, 1, 18), (2, 13, 3, 19), (4, 8, 5, 16),
(6, 14, 12, 15), (7, 10, 9, 11)},

{(0, 15, 17, 19), (1, 8, 7, 14), (2, 10, 13, 11),
(3, 12, 6, 16), (4, 9, 5, 18)},

{(0, 12, 7, 13), (1, 15, 4, 19), (2, 9, 6, 17),
(3, 14, 16, 18), (5, 10, 8, 11)}.

The one-factor is:

{{8, 9}, {10, 11}, {12, 13}, {14, 15}, {16, 17}, {18, 19}}.



ON UNIFORMLY RESOLVABLE (C4,K1,3)-DESIGNS 9

(c) Let (r2, s2) = (0, 8). The followings are the 8 resolution classes
of 3-stars:

{(0; 8, 9, 10), (4; 12, 13, 14), (11; 1, 2, 3),
(15; 5, 6, 7), (16; 17, 18, 19)},

{(1; 12, 13, 14), (5; 16, 17, 18), (15; 0, 2, 3),
(19; 4, 6, 7), (8; 9, 10, 11)},

{(2; 16, 17, 18), (6; 8, 9, 10), (19; 0, 1, 3),
(11; 4, 5, 7), (12; 13, 14, 15)},

{(0; 11, 12, 13), (1; 8, 9, 15), (3; 10, 16, 17),
(14; 2, 5, 6), (18; 4, 7, 19)},

{(2; 8, 9, 19), (3; 12, 13, 18), (10; 5, 7, 11),
(16; 0, 1, 14), (17; 4, 6, 15)},

{(4; 8, 15, 16), (9; 3, 5, 18), (12; 2, 6, 10),
(13; 7, 11, 14), (17; 0, 1, 19)},

{(5; 12, 13, 19), (6; 11, 16, 18), (7; 8, 9, 17),
(10; 1, 2, 4), (14; 0, 3, 15)},

{(7; 12, 14, 16), (8; 3, 5, 19), (9; 4, 10, 11),
(13; 2, 6, 15), (18; 0, 1, 17)}.

The one-factor is:

{{8, 18}, {9, 19}, {10, 13}, {11, 12}, {14, 17}, {15, 16}}.
(2) Let (r1, s1) = (0, 4). These are the 4 resolution classes of 3-stars on

K20 −K8 on the vertices from 8 to 19:

{(8; 9, 12, 13), (10; 11, 16, 17), (14; 15, 18, 19)},
{(9; 12, 13, 14), (16; 8, 11, 17), (18; 10, 15, 19)},
{(11; 14, 17, 18), (12; 13, 16, 19), (15; 8, 9, 10)},
{(13; 14, 16, 18), (17; 8, 9, 12), (19; 10, 11, 15)}.

(a) Let (r2, s2) = (6, 0). The followings are the 6 resolution classes
of 4-cycles on K20:

{(0, 8, 1, 9), (2, 10, 3, 11), (4, 12, 5, 13),
(6, 14, 7, 15), (16, 18, 17, 19},

{(0, 10, 1, 11), (2, 8, 3, 9), (4, 14, 12, 15),
(5, 16, 6, 18), (7, 17, 13, 19)},

{(0, 12, 1, 13), (2, 14, 5, 15), (3, 17, 6, 19),
(4, 16, 7, 18), (8, 10, 9, 11)},
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{(0, 14, 1, 17), (2, 18, 9, 19), (3, 13, 15, 16),
(4, 8, 5, 11), (6, 10, 7, 12)},

{(0, 15, 1, 16), (2, 12, 10, 13), (3, 14, 8, 18),
(4, 17, 5, 19), (6, 9, 7, 11)},

{(0, 18, 1, 19), (2, 16, 14, 17), (3, 12, 11, 15),
(4, 9, 5, 10), (6, 8, 7, 13)}.

The one factor is:

{{8, 19}, {9, 16}, {10, 14}, {11, 13}, {12, 18}, {15, 17}}.

(b) Let (r2, s2) = (3, 4). The followings are the 4 resolution classes
of 3-stars:

{(0; 8, 9, 10), (1; 11, 12, 13), (2; 14, 15, 16),
(17; 3, 4, 18), (19; 5, 6, 7)},

{(3; 8, 9, 10), (4; 11, 12, 13), (5; 14, 15, 17),
(16; 0, 1, 19), (18; 2, 6, 7)},

{(6; 8, 9, 10), (11; 0, 5, 7), (12; 2, 15, 18),
(13; 3, 17, 19), (14; 1, 4, 16)},

{(7; 12, 14, 17), (8; 11, 18, 19), (9; 1, 4, 16),
(10; 2, 5, 13), (15; 0, 3, 6)}

and these are the 3 resolution classes of 4-cycles:

{(0, 12, 6, 14), (1, 15, 17, 19), (2, 9, 11, 13),
(3, 16, 5, 18), (4, 8, 7, 10)},

{(0, 13, 6, 17), (1, 10, 9, 18), (2, 11, 3, 19),
(4, 15, 7, 16), (5, 8, 14, 12)},

{(0, 18, 4, 19), (1, 8, 2, 17), (3, 12, 10, 14),
(5, 9, 7, 13), (6, 11, 15, 16)}.

The one factor is:

{{8, 10}, {9, 19}, {11, 12}, {13, 15}, {14, 17}, {16, 18}}.

(3) Let (r1, s1) = (0, 4) and (r2, s2) = (0, 8). These are the 4 resolution
classes of 3-stars on K20 −K8 on the vertices from 8 to 19:

{(8; 9, 12, 18), (11; 13, 14, 19), (17; 10, 15, 16)},
{(8; 11, 13, 17), (10; 12, 15, 18), (16; 9, 14, 19)},
{(9; 17, 18, 19), (14; 10, 12, 15), (16; 8, 11, 13)},
{(12; 9, 11, 16), (13; 10, 14, 18), (19; 8, 15, 17)}.



ON UNIFORMLY RESOLVABLE (C4,K1,3)-DESIGNS 11

The followings are the 8 resolution classes of 3-stars:

{(0; 8, 9, 10), (1; 11, 12, 13), (2; 14, 15, 16),
(17; 3, 4, 5), (18; 6, 7, 19)},

{(0; 11, 12, 13), (1; 8, 9, 10), (2; 17, 18, 19),
(14; 3, 4, 5), (15; 6, 7, 16)},

{(3; 8, 9, 10), (4; 11, 12, 15), (5; 16, 18, 19),
(13; 2, 6, 7), (14; 0, 1, 17)},

{(3; 11, 12, 13), (4; 8, 9, 16), (6; 14, 17, 19),
(10; 2, 5, 7), (15; 0, 1, 18)},

{(5; 8, 9, 11), (7; 14, 16, 17), (10; 4, 6, 19),
(12; 2, 13, 15), (18; 0, 1, 3)},

{(6; 8, 9, 16), (11; 2, 7, 10), (15; 3, 5, 13),
(17; 0, 1, 18), (19; 4, 12, 14)},

{(7; 8, 12, 19), (9; 2, 10, 14), (11; 6, 15, 18),
(13; 4, 5, 17), (16; 0, 1, 3)},

{(8; 2, 10, 15), (9; 7, 11, 13), (12; 5, 6, 17),
(18; 4, 14, 16), (19; 0, 1, 3)}.

The one factor is:

{{8, 14}, {9, 15}, {10, 16}, {11, 17}, {12, 18}, {13, 19}}.
□

Lemma 4.14. There exists a (C4,K1,3)-URD(r, s) of K20 − I with

(r, s) ∈ {(9, 0), (6, 4), (3, 8), (0, 12)} = I(20).

Proof. The result follows by Lemmas 4.3 and 4.13. □

In the following lemma we will use the following notation; if A = {a1, a2}
and B = {b1, b2}, we denote by [A,B] the 4-cycle (a1, b1, a2, b2).

Lemma 4.15. There exists a (C4,K1,3)-IURD(28, 4; [(1, 0)], [(r2, s2)]) with

(r2, s2) ∈ {(12, 0), (9, 4), (6, 8), (3, 12), (0, 16)}.

Proof.

(1) Let (r2, s2) = (12, 0). On the complete graph K12 with vertex set
{0, 1, . . . , 11} consider the following partial 1-factors:

F0 = {{2, 10}, {3, 9}, {4, 8}, {5, 7}, {6, 11}},
F1 = {{0, 10}, {3, 11}, {4, 9}, {5, 8}, {6, 7}},
F2 = {{0, 1}, {4, 10}, {5, 11}, {6, 8}, {7, 9}},
F3 = {{0, 2}, {1, 11}, {5, 9}, {6, 10}, {7, 8}},
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F4 = {{0, 3}, {1, 2}, {6, 9}, {7, 11}, {8, 10}},
F5 = {{0, 4}, {1, 3}, {2, 11}, {7, 10}, {8, 9}},
F6 = {{0, 5}, {1, 4}, {2, 3}, {8, 11}, {9, 10}},
F7 = {{0, 6}, {1, 5}, {2, 4}, {3, 10}, {9, 11}},
F8 = {{0, 7}, {1, 6}, {2, 5}, {3, 4}, {10, 11}},
F9 = {{0, 8}, {1, 7}, {2, 6}, {3, 5}, {4, 11}},
F10 = {{0, 9}, {1, 8}, {2, 7}, {3, 6}, {4, 5}},
F11 = {{1, 9}, {2, 8}, {3, 7}, {4, 6}, {5, 10}}.

We will construct a (C4,K1,3)-IURD(28, 4; [1, 0], [12, 0]) on Z28 with
the point set {0, 1, . . . , 27} and with the hole {24, 25, 26, 27}. Let
the partial factor be I = {{2i, 2i + 1} | i = 0, 1, . . . , 11}. Let Ai =
{2i, 2i + 1} for i = 0, 1, . . . , 11. Then the 12 resolution classes of
4-cycles are:

Cj = {[Ar, As] | {r, s} ∈ Fj}
∪ {[{24, 25}, Aj ], [{26, 27}, Aj+1]}

for j = 0, 1, . . . , 11 (where we take A12 = A0). The resolution class
of 4-cycles on K28 −K4 on the vertices from 0 to 23 is:

D = {[Ai, A11−i] | i = 0, 1, . . . , 5}.

(2) Let (r2, s2) = (9, 4). Consider the vertex set as:

X = {0i, 1i, 2i, 3i, 4i, 5i, 6i | i = 1, 2, 3, 4}.

Let the partial 1-factor be I = {{i1, i3}, {i2, i4} | i = 0, 1, 2, 3, 4, 6}.
We will construct a (C4,K1,3)-IURD(28, 4; [1, 0], [9, 4]) with the point
set X and with the hole {51, 52, 53, 54}. Let B be the following class
of 4-cycles:

B = {(01, 11, 43, 21), (02, 12, 44, 22), (03, 13, 42, 23),
(04, 14, 41, 24), (31, 61, 32, 62), (33, 63, 34, 64),

(51, 52, 53, 54)},

then 9 classes of 4-cycles are Bi = B+ i, for i = 1, 2, 3, 4, 5, 6 and the
other 3 are:

B8 = {(i1, (i+ 1)2, (i+ 2)4, (i+ 1)3) | i = 0, 1, 2, 3, 4, 5, 6},
B9 = {(i1, (i+ 2)2, (i+ 3)3, (i+ 1)4) | i = 0, 1, 2, 3, 4, 5, 6},
B10 = {(i1, (i+ 4)3, (i+ 5)2, (i+ 2)4) | i = 0, 1, 2, 3, 4, 5, 6}.
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The 4 classes of K1,3 are:

C1 = {(i1; (i+ 5)2, (i+ 5)3, (i+ 3)4) | i = 0, 1, 2, 3, 4, 5, 6},
C2 = {(i2; (i− 6)1, (i+ 3)3, (i+ 5)4) | i = 0, 1, 2, 3, 4, 5, 6},
C3 = {(i3; (i− 6)1, (i− 2)2, (i+ 2)4) | i = 0, 1, 2, 3, 4, 5, 6},
C4 = {(i4; (i− 6)1, (i− 6)2, (i− 6)3) | i = 0, 1, 2, 3, 4, 5, 6}.

The resolution class of 4-cycles on K28 −K4 on the vertices
X \ {51, 52, 53, 54} is B \ {51, 52, 53, 54}.

(3) Let (r2, s2) = (6, 8). Let the vertex set be X and the partial 1-
factor I as in the previous case. We will construct a (C4,K1,3)-
IURD(28, 4; [1, 0], [6, 8]) with the point set X and with the hole
{51, 52, 53, 54}. Let B as in the previous case.

The 6 classes of 4-cycles are Bi = B+ i, for i = 1, 2, 3, 4, 5, 6. The
8 classes of K1,3 are:

C1 = {(i1; (i+ 1)2, (i+ 1)3, (i+ 1)4) | i = 0, 1, 2, 3, 4, 5, 6},
C2 = {(i2; (i− 2)1, (i+ 1)3, (i+ 1)4) | i = 0, 1, 2, 3, 4, 5, 6},
C3 = {(i3; (i− 4)1, (i− 2)2, (i+ 1)4) | i = 0, 1, 2, 3, 4, 5, 6},
C4 = {(i4; (i− 2)1, (i− 4)2, (i− 2)3) | i = 0, 1, 2, 3, 4, 5, 6},
C5 = {(i1; (i+ 5)2, (i+ 5)3, (i+ 3)4) | i = 0, 1, 2, 3, 4, 5, 6},
C6 = {(i2; (i− 6)1, (i+ 3)3, (i+ 5)4) | i = 0, 1, 2, 3, 4, 5, 6},
C7 = {(i3; (i− 6)1, (i− 6)2, (i+ 5)4) | i = 0, 1, 2, 3, 4, 5, 6},
C8 = {(i4; (i− 6)1, (i− 6)2, (i− 6)3) | i = 0, 1, 2, 3, 4, 5, 6}.

The resolution class of 4-cycles on K28 −K4 on the vertices X \
{51, 52, 53, 54} is B \ {51, 52, 53, 54}.

(4) Let (r2, s2) = (0, 16). We will use the construction given in [7,
Lemma 3.3]. So let the point set be Z24∪{A,B,C,D} with the hole
{A,B,C,D}. Let the partial 1-factor be

I = {{2i+ 1, 2i+ 2} | i = 0, 1, . . . , 11}.

Its 16 parallel classes of 3-stars are denoted by Q1,. . . ,Q16, where Q1,
Q2, Q3 and Q4 are listed in the following table, and Qi+4j = Qi+6j
for all i = 1, 2, 3, 4 and j = 1, 2, 3 (here A,B,C,D are fixed under
the action of Z24 on the set of vertices).

Q1 = {(A; 13, 18, 20), (19;B,C,D), (0; 2, 3, 4), (5; 1, 7, 8),

(6; 11, 12, 14), (9; 15, 16, 22), (17; 10, 21, 23)},

Q2 = {(B; 14, 15, 18), (21;A,C,D), (1; 3, 4, 6), (2; 5, 7, 9),

(8; 10, 12, 17), (11; 0, 16, 19), (13; 20, 22, 23)},
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Q3 = {(C; 6, 14, 16), (22;A,B,D), (3; 5, 13, 17), (12; 1, 9, 21),

(15; 0, 19, 23), (18; 4, 8, 11), (20; 2, 7, 10)},

Q4 = {(D; 8, 11, 18), (23;A,B,C), (4; 6, 12, 17), (7; 0, 1, 15),

(10; 2, 13, 19), (14; 3, 5, 9), (16; 20, 21, 22)}.
The partial class of 4-cycles is

{(2i, 2i+ 12, 2i+ 13, 2i+ 1) | i = 0, 1, . . . , 5}.
(5) Let (r2, s2) = (3, 12). Consider the solution in the previous case, that

is (r2, s2) = (0, 16). Replace Qk, for k = 1, 2, ..., 7 by the following 3
classes of 4-cycles and 3 classes of K1,3:

{(0, 2, 5, 3), (1, 4, 12, 6), (7, 9, 19, 10), (8, 13, 23, 15),
(11, 14, 26, 16), (17, 21, 27, 22), (18, 24, 20, 25)},

{(0, 4, 15, 7), (1, 3, 14, 5), (2, 13, 10, 20), (6, 9, 12, 17),
(8, 18, 11, 27), (16, 21, 24, 23), (19, 25, 22, 26)},

{(0, 10, 2, 24), (1, 26, 3, 27), (4, 6, 8, 17), (5, 7, 11, 19),
(9, 14, 25, 23), (12, 18, 15, 21), (13, 20, 16, 22)},

{(0; 14, 15, 17), (1; 7, 21, 25), (3; 13, 18, 24), (8; 5, 10, 12),
(9; 11, 16, 22), (19; 2, 4, 27), (26; 6, 20, 23)},

{(2; 8, 9, 16), (6; 10, 11, 21), (12; 1, 20, 26), (18; 7, 14, 27),
(23; 3, 5, 17), (24; 13, 19, 22), (25; 0, 4, 15)},

{(4; 18, 24, 27), (7; 2, 12, 20), (11; 0, 8, 13), (14; 6, 16, 23),
(15, 9, 19, 22), (17; 1, 3, 10), (21; 5, 25, 26)}.

□

Lemma 4.16. There exists a (C4,K1,3)-URD(r, s) of K28 − I with

(r, s) ∈ {(13, 0), (10, 4), (7, 8), (4, 12), (1, 16)} = I(28).

Proof. The result follows by Lemmas 4.1 and 4.15. □

Lemma 4.17. There exists a (C4,K1,3)-URD(r, s) of K52 − I with

(r, s) ∈ {(25, 0), (22, 4), (19, 8), (16, 12), (13, 16),
(10, 20), (7, 24), (4, 28), (1, 32)}.

Proof. For the case (r, s) = (1, 32) we consider a K1,3-frame of type 124

from Lemma 2.8 in [7]. There are 8 partial parallel classes missing each
group. We add 4 new points and take them as the hole. Then we place on
each group with the hole a copy of a (C4,K1,3)-IURD(16, 4; [1, 0], [0, 8]) by
Lemma 4.12.

For the case (r, s) = (25, 0) we consider a 4-cycle frame of type 124 instead
of the K1,3-frame in the previous case (r, s) = (1, 32). (Note that there will
be 6 partial parallel classes missing each group.)
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Let (r, s) = (13, 16). Let the point set be {0i, 1i, . . . , 12i : i = 1, 2, 3, 4}.
The 13 resolution classes of 4-cycles are:

A1 = {(i1, (i+ 1)2, (i+ 3)4, (i+ 2)3) | i = 0, . . . , 12},
A2 = {(i1, (i+ 2)2, (i+ 5)4, (i+ 3)3) | i = 0, . . . , 12},
A3 = {(i1, (i+ 3)2, (i+ 8)4, (i+ 4)3) | i = 0, . . . , 12},
A4 = {(i1, (i+ 4)2, (i+ 10)4, (i+ 7)3) | i = 0, . . . , 12},
A5 = {(i1, (i+ 6)2, (i+ 7)3, (i+ 5)4)) | i = 0, . . . , 12},
A6 = {(i1, (i+ 7)2, (i+ 9)3, (i+ 6)4) | i = 0, . . . , 12},
A7 = {(i1, (i+ 8)2, (i+ 12)3, (i+ 7)4) | i = 0, . . . , 12},
A8 = {(i1, (i+ 9)2, (i+ 1)3, (i+ 10)4) | i = 0, . . . , 12},
A9 = {(i1, (i+ 11)3, i2, (i+ 11)4) | i = 0, . . . , 12},
A10 = {(i1, (i+ 9)3, i2, (i+ 9)4) | i = 0, . . . , 12},
A11 = {(i1, (i+ 8)3, i2, (i+ 8)4) | i = 0, . . . , 12},
A12 = {(i1, (i+ 5)3, (i+ 8)2, (i+ 2)4) | i = 0, . . . , 12},
A13 = {(i1, (i+ 10)2, (i+ 9)3, (i+ 3)4) | i = 0, . . . , 12}.

The 16 resolution classes of K1,3 are:

B1 = {(01; 11, 21, 31), (02; 12, 22, 32),
(03; 13, 23, 33), (04; 14, 24, 34),

(93; 91, 92, 94), (102; 42, 52, 62), (103; 43, 53, 63),

(104; 44, 54, 64), (71; 122, 83, 74), (82; 81, 113, 84),

(101; 41, 51, 61), (114; 121, 72, 123), (124; 111, 112, 73)},
Bi = B1 + i− 1 for i = 2, . . . , 13,

B14 = {(i1; (i+ 11)2, (i+ 6)3, (i+ 4)4) | i = 0, . . . , 12},
B15 = {(i2; (i+ 1)1, (i+ 6)3, (i+ 10)4) | i = 0, . . . , 12},
B16 = {(i3; (i+ 3)1, (i+ 6)2, (i+ 6)4) | i = 0, . . . , 12}.

The one factor is

{{i1, (i− 1)3} | i = 0, . . . , 12} ∪ {{i2, (i− 1)4} | i = 0, . . . , 12}.
From this case we can get the (r, s) = (10, 20) case just by replacing the 3
classes of 4-cycles A1, A5 and A9 with the following 4 classes of K1,3:

B17 = {(i1; (i+ 1)2, (i+ 2)3, (i+ 5)4) | i = 0, . . . , 12},
B18 = {(i2; (i+ 7)1, (i+ 1)3, (i+ 2)4) | i = 0, . . . , 12},
B19 = {(i3; (i+ 2)1, (i+ 2)2, (i+ 1)4) | i = 0, . . . , 12},
B20 = {(i4; (i+ 2)1; (i+ 2)2, (i+ 2)3) | i = 0, . . . , 12}.

In a similar way, from the (10, 20) case we can get the (r, s) = (7, 24) case
just by replacing the 3 classes of 4-cycles A2, A6 and A10 with the following
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4 classes of K1,3:

B21 = {(i1; (i+ 2)2, (i+ 3)3, (i+ 6)4) | i = 0, . . . , 12},
B22 = {(i2; (i+ 6)1, (i+ 2)3, (i+ 3)4) | i = 0, . . . , 12},
B23 = {(i3; (i+ 4)1, (i+ 4)2, (i+ 2)4) | i = 0, . . . , 12},
B24 = {(i4; (i+ 4)1, (i+ 4)2, (i+ 3)3) | i = 0, . . . , 12}.

Again, from the (7, 24) case we can get the (r, s) = (4, 28) case just by
replacing the 3 classes of 4-cycles A3, A7 and A11 with the following 4
classes of K1,3:

B25 = {(i1; (i+ 3)2, (i+ 4)3, (i+ 7)4) | i = 0, . . . , 12},
B26 = {(i2; (i+ 5)1, (i+ 4)3, (i+ 5)4) | i = 0, . . . , 12},
B27 = {(i3; (i+ 5)1, (i+ 5)2, (i+ 4)4) | i = 0, . . . , 12},
B28 = {(i4; (i+ 5)1, (i+ 5)2, (i+ 5)3) | i = 0, . . . , 12}.

Let (r, s) = (22, 4). Again, let the point set be {0i, 1i, . . . , 12i : i = 1, 2, 3, 4}.
The 22 resolution classes of 4-cycles are:

A1 = {(01, 11, 52, 21), (31, 61, 53, 71),
(03, 13, 81, 23), (02, 12, 51, 22),

(32, 62, 83, 72), (42, 92, 84, 102), (41, 91, 54, 101),

(33, 63, 82, 73), (43, 93, 114, 103), (04, 14, 111, 24),

(34, 64, 112, 74), (44, 94, 113, 104), (121, 122, 124, 123)},
Ai = A1 + i− 1 for i = 2, . . . , 13,

A14 = {(i1, (i+ 1)2, (i+ 1)3, (i+ 5)4) | i = 0, . . . , 12},
A15 = {(i1, (i+ 2)2, (i+ 5)3, (i+ 10)4) | i = 0, . . . , 12},
A16 = {(i1, (i+ 5)2, (i+ 9)3, (i+ 12)4) | i = 0, . . . , 12},
A17 = {(i1, (i+ 6)2, (i+ 7)4, (i+ 1)3) | i = 0, . . . , 12},
A18 = {(i1, (i+ 7)2, (i+ 9)4, (i+ 2)3) | i = 0, . . . , 12},
A19 = {(i1, (i+ 8)2, (i+ 11)4, (i+ 3)3) | i = 0, . . . , 12},
A20 = {(i1, (i+ 4)3, (i+ 7)2, (i+ 11)4) | i = 0, . . . , 12},
A21 = {(i1, (i+ 5)3, i2, (i+ 6)4) | i = 0, . . . , 12},
A22 = {(i1, (i+ 8)3, (i+ 2)2, (i+ 7)4) | i = 0, . . . , 12}.

The 4 resolution classes of K1,3 are:

B1 = {(i1; (i+ 11)2, (i+ 9)3, i4) | i = 0, . . . , 12},
B2 = {(i2; (i+ 1)1, (i+ 7)3, (i+ 7)4) | i = 0, . . . , 12},
B3 = {(i3; (i+ 3)1, (i+ 5)2, (i+ 9)4) | i = 0, . . . , 12},
B4 = {(i4; (i+ 12)1, (i+ 3)2, (i+ 3)3) | i = 0, . . . , 12}.
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The one factor is

{{i1, (i+ 2)4} | i = 0, . . . , 12} ∪ {{i2, (i+ 9)3} | i = 0, . . . , 12}.

From this case we can get the (r, s) = (19, 8) case just by replacing the 3
classes of 4-cycles A14, A17 and A20 with the following 4 classes of K1,3:

B5 = {(i1; (i+ 1)2, (i+ 1)3, (i+ 5)4) | i = 0, . . . , 12},
B6 = {(i2; (i+ 7)1, i3, (i+ 1)4) | i = 0, . . . , 12},
B7 = {(i3; (i+ 9)1, (i+ 3)2, (i+ 4)4) | i = 0, . . . , 12},
B8 = {(i4; (i+ 2)1, (i+ 9)2, (i+ 7)3) | i = 0, . . . , 12}.

At last, from the (19, 8) case we can get the (r, s) = (16, 12) just by replacing
the 3 classes of 4-cycles A15, A18 and A21 with the following 4 classes of K1,3:

B9 = {(i1; (i+ 2)2, (i+ 2)3, (i+ 10)4) | i = 0, . . . , 12},
B10 = {(i2; (i+ 6)1, (i+ 3)3, (i+ 2)4) | i = 0, . . . , 12},
B11 = {(i3; (i+ 8)1, (i+ 8)2, (i+ 5)4) | i = 0, . . . , 12},
B12 = {(i4; (i+ 7)1, (i+ 7)2, (i+ 6)3) | i = 0, . . . , 12}.

□

Lemma 4.18. There exists a (C4,K1,3)-URD(r, s) of K60 − I with

(r, s) ∈ {(29, 0), (26, 4), (23, 8), (20, 12), (17, 16),
(14, 20), (11, 24), (8, 28), (5, 32), (2, 36)}.

Proof. For the cases (r, s) ∈ {(29, 0), (26, 4), (17, 16), (14, 20), (5, 32), (2, 36)}
we take a (C4,K1,3)-URGDD(r, s) of type 125 with (r, s) ∈ {(24, 0), (12, 16),
(0, 32)} which exists by Lemma 4.7 and replace each group of size 12 with
the same (C4,K1,3)-URD(12; r, s), where (r, s) ∈ {(5, 0), (2, 4)} which exists
by Lemma 4.4.

For the cases (r, s) ∈ {(23, 8), (20, 12)} we take a (C4,K1,3)-URGDD(r, s)
of type 203 with (r, s) = (20, 0) which exists in [9] and replace each group of
size 20 with the same (C4,K1,3)-URD(20; r, s), where (r, s) ∈ {(3, 8), (0, 12)}
which exists by Lemma 4.14.

Let (r, s) = (11, 24). Let the point set be {0i, 1i, . . . , 14i : i = 1, 2, 3, 4}.
The 11 resolution classes of 4-cycles are:

A1 = {(i1, i2, (i+ 2)4, (i+ 3)3) | i = 0, . . . , 14},
A2 = {(i1, (i+ 1)2, (i+ 5)3, (i+ 2)4) | i = 0, . . . , 14},
A3 = {(i1, (i+ 4)3, (i− 1)2, (i+ 3)4) | i = 0, . . . , 14},
A4 = {(i1, (i+ 3)2, (i+ 8)4, (i+ 5)3) | i = 0, . . . , 14},
A5 = {(i1, (i+ 4)2, (i+ 10)3, (i+ 4)4) | i = 0, . . . , 14},
A6 = {(i1, (i+ 6)3, (i− 1)2, (i+ 5)4)) | i = 0, . . . , 14},
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A7 = {(i1, (i+ 5)2, (i− 2)3, (i+ 6)4) | i = 0, . . . , 14},
A8 = {(i1, (i+ 6)2, (i+ 9)4, (i+ 7)3) | i = 0, . . . , 14},
A9 = {(i1, (i+ 8)3, (i− 1)2, (i+ 7)4) | i = 0, . . . , 14},
A10 = {(i1, (i+ 7)2, (i− 1)4, (i+ 9)3) | i = 0, . . . , 14},
A11 = {(i1, (i+ 8)2, (i+ 4)3, (i+ 8)4) | i = 0, . . . , 14}.

The 24 resolution classes of K1,3 are:

B1 = {(111; 132, 113, 114), (122; 131, 123, 124), (133; 121, 112, 134),
(42; 82, 92, 102), (72; 142, 63, 64), (03; 13, 23, 33),

(43; 83, 93, 103), (73; 143, 54, 51), (04; 14, 24, 34),

(44; 84, 94, 104), (74; 144, 61, 62), (01; 11, 21, 31),

(41; 81, 91, 101), (71; 141, 52, 53), (02; 12, 22, 32)},
Bi = B1 + i− 1 for i = 2, . . . , 15,

B16 = {(i1; (i+ 9)2, (i+ 10)3, (i+ 9)4) | i = 0, . . . , 14},
B17 = {((i2; (i+ 5)1, (i+ 1)3, (i+ 9)4 | i = 0, . . . , 14},
B18 = {(i3; (i+ 4)1, (i+ 12)2, (i+ 1)4) | i = 0, . . . , 14},
B19 = {(i4; (i+ 5)1, (i+ 5)2, (i+ 9)3) | i = 0, . . . , 14},
B20 = {(i1; (i+ 11)2, (i+ 12)3, (i+ 11)4) | i = 0, . . . , 14},
B21 = {(i2; (i+ 3)1, (i+ 10)3, (i+ 11)4) | i = 0, . . . , 14},
B22 = {(i3; (i+ 1)1, (i+ 3)2, (i+ 7)4) | i = 0, . . . , 14},
B23 = {(i4; (i+ 3)1, (i+ 3)2, (i+ 5)3) | i = 0, . . . , 14},
B24 = {(i4; (i+ 2)1, (i+ 2)2, (i+ 4)3) | i = 0, . . . , 14}.

The one factor is

{{i1, (i− 1)4} | i = 0, . . . , 14} ∪ {{i2, (i− 2)3} | i = 0, . . . , 14}.

From this case we can get the (r, s) = (8, 28) case just by replacing the 3
classes of 4-cycles A9, A10 and A11 with the following 4 classes of K1,3:

B25 = {(i1; (i+ 7)2, (i+ 8)3, (i+ 7)4) | i = 0, . . . , 14},
B26 = {(i2; (i+ 7)1, (i+ 9)3, (i+ 8)4) | i = 0, . . . , 14},
B27 = {(i3; (i+ 6)1, (i+ 4)2, (i+ 5)4) | i = 0, . . . , 14},
B28 = {(i4; (i+ 7)1, (i+ 8)2, (i+ 11)3) | i = 0, . . . , 14}.

□

5. Main results

Lemma 5.1. For every v ≡ 8 (mod 24), there exists a (C4,K1,3)-URD(r, s)
of Kv − I with (r, s) ∈ I(v).
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Proof. Let us denote by R1, R2, . . . , R(v−2)/6 be the parallel classes of a
resolvable K4-decomposition R of Kv/2. Give weight 2 to each point of
R and place on each block of R the same (C4,K1,3)-URGDD (r, s) of type
24 with (r, s) ∈ {(3, 0), (0, 4)} (see Lemma 4.2). Since R contains (v − 2)/6
parallel classes the result is a (C4,K1,3)-URD(v; r, s) of Kv − I for each
(r, s) ∈ (v − 2)/6 ∗ {(3, 0), (0, 4)}. Since

v − 2

6
∗ {(3, 0), (0, 4)} =

{(
v − 2

2
− 3x, 4x

)
: x = 0, . . . ,

v − 2

6

}
= I(v),

we obtain the result. □

Lemma 5.2. For every v ≡ 0 (mod 24), there exists a (C4,K1,3)-URD(r, s)
of Kv − I with (r, s) ∈ I(v).

Proof. Start with a 1-factorization G of Kv/12. Give weight 12 to each point
of this 1-factorization and place on each edge of a given 1-factor the same
(C4,K1,3)-URGDD(x, y) of type 122, with (x, y) ∈ {(6, 0), (3, 4), (0, 8)},
which exists by Lemma 4.5. Fill the groups of size 12 with the same
(C4,K1,3)-URD(12;u, v), with (u, v) ∈ {(5, 0), (2, 4)}, which exists by
Lemma 4.4. Since G contains (v−12)/12 1-factors the result is a (C4,K1,3)-
URD(v; r, s) of Kv for each

(r, s) ∈ {(5, 0), (2, 4)}+ v − 12

12
∗ {(6, 0), (3, 4), (0, 8)} .

Since

v − 12

12
∗ {(6, 0), (3, 4), (0, 8)} =

{(
v − 12

2
− 3x, 4x

)
: x = 0, . . . ,

v − 12

6

}
,

it easy to see that

{(5, 0), (2, 4)}+ v − 12

12
∗ {(6, 0), (3, 4), (0, 8)} = I(v).

This completes the proof. □

Lemma 5.3. For every v ≡ 12 (mod 24), there exists a (C4,K1,3)-URD(r, s)
of Kv − I with (r, s) ∈ I(v).

Proof. The cases v = 12, 36, 60 are covered by Lemmas 4.4, 4.9 and 4.18.
For v > 60 start from a 2-frame of type 2(v−12)/24 [24, Theorem 1.4] and
apply Theorem 3.1 with g = 2, u = (v − 12)/24, t = 12 and h = 12. The
input designs are: a (C4,K1,3)-URD(12; r1, s1) with (r1, s1) ∈ {(5, 0), (2, 4)},
which exists by Lemma 4.4; a (C4,K1,3)-URGDD(r2, s2) of type 122 with
(r2, s2) ∈ {(6, 0), (3, 4), (0, 8)} which exists by Lemma 4.5; a (C4,K1,3)-
IURD(36, 12; [(r1, s1)], [(r3, s3)]) with (r1, s1) ∈ {(5, 0), (2, 4)} and (r3, s3) ∈
{(12, 0), (6, 8), (0, 16)}, which exists by Lemmas 4.4 and 4.6. Since

v − 12

24
∗{(12, 0), (6, 8), (0, 16)} =

{(
v − 12

2
− 3x, 4x

)
, x = 0, . . . ,

v − 12

6

}
,
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it easy to see that

{(5, 0), (2, 4)}+ v − 12

24
∗ {(12, 0), (6, 8), (0, 16)} = I(v).

This completes the proof. □

Lemma 5.4. For every v ≡ 20 (mod 24), there exists a (C4,K1,3)-URD(r, s)
of Kv − I with (r, s) ∈ I(v).

Proof. The case v = 20 follows by Lemma 4.14. For v ≥ 44 start from a
2-frame of type 1(v−8)/12 and apply Theorem 3.1 with g = 1, u = (v−8)/12,
t = 12 and h = 8. The input designs are: a (C4,K1,3)-URD(8; r1, s1)
with (r1, s1) ∈ {(3, 0), (0, 4)}, which exists by Lemma 4.3; a (C4,K1,3)-
URGDD(r2, s2) of type 122 with (r2, s2) ∈ {(6, 0), (3, 4), (0, 8)} which exists
by Lemma 4.5; a (C4,K1,3)-IURD(20, 8; [(r1, s1)], [(r3, s3)]) with (r1, s1) ∈
{(3, 0), (0, 4)} and (r3, s3) ∈ {(6, 0), (3, 4), (0, 8)}, which exists by Lemma
4.13. This gives a (C4,K1,3)-URD(v; r, s) of Kv − I, with

(r, s) ∈ {(3, 0), (0, 4)}+ (v − 8)

12
∗ {(6, 0), (3, 4), (0, 8)}.

Proceeding as in Lemma 5.3 we obtain the result. □

Lemma 5.5. For every v ≡ 16 (mod 24), there exists a (C4,K1,3)-URD(r, s)
of Kv − I with (r, s) ∈ I(v).

Proof. The case v = 16 follows by Lemma 4.11.
For v ≥ 40 start from a 2-frame of type 1(v−4)/12 and apply Theorem

3.1 with g = 1, u = (v − 4)/12, t = 12 and h = 4. The input designs
are: a (C4,K1,3)-URD(4; 1, 0) which exists by Lemma 4.1; a (C4,K1,3)-
URGDD(r2, s2) of type 122 with (r2, s2) ∈ {(6, 0), (3, 4), (0, 8)} which ex-
ists by Lemma 4.5; a (C4,K1,3)-IURD(16, 4; [(1, 0)], [(r3, s3)]) with (r3, s3) ∈
{(6, 0), (3, 4), (0, 8)}, which exists by Lemma 4.12. This gives a (C4,K1,3)-
URD(v; r, s) of Kv − I, with

(r, s) ∈ {(1, 0)}+ (v − 4)

12
∗ {(6, 0), (3, 4), (0, 8)}.

Proceeding as in Lemma 5.3 we obtain the result. □

Lemma 5.6. For every v ≡ 4 (mod 24), there exists a (C4,K1,3)-URD(r, s)
of Kv − I with (r, s) ∈ I(v).

Proof. The cases v = 28, 52 are covered by Lemmas 4.16 and 4.17. For
v > 52 start from a 2-frame of type 2(v−4)/24 [24, Theorem 1.4] and ap-
ply Theorem 3.1 with g = 2, u = (v − 4)/24, t = 12 and h = 4. The
input designs are: a (C4,K1,3)-URD(4; 1, 0) which exists by Lemma 4.1; a
(C4,K1,3)-URGDD(r2, s2) of type 122 with (r2, s2) ∈ {(6, 0), (3, 4), (0, 8)}
which exists by Lemma 4.5; a (C4,K1,3)-IURD(28, 4; [(1, 0)], [(r3, s3)]) with
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(r3, s3) ∈ {(12, 0), (9, 4), (6, 8), (3, 12), (0, 16)}, which exists by Lemma 4.15.
This gives a (C4,K1,3)-URD(v; r, s) of Kv − I, with

(r, s) ∈ {(1, 0)}+ (v − 4)

24
∗ {(12, 0), (6, 8), (0, 16)}.

Proceeding as in Lemma 5.3 we obtain the result. □

Combining Lemmas 2.1, 5.1, 5.2, 5.3, 5.4, 5.5 and 5.6 we obtain the main
theorem of this paper.

Theorem 5.7. There exists a (C4,K1,3)-URD(r, s) of Kv − I if and only if
v ≡ 0 (mod 4) and (r, s) ∈ I(v), where I(v) is given in Table 1.

References

1. P. Adams, E. Billington, D. Bryant and S. El-Zanati, On the Hamilton-Waterloo prob-
lem, Graphs Combin. 18 (2002), 31–51.

2. J. Asplund, D. Kamin, M. Keranen, A. Pastine, S. Ozkan, On the Hamilton-Waterloo
problem with triangle factors and C3x-factors, Australas. J. Combin. 64 (2016), 458–
474.

3. S. Bonvicini, M. Buratti, Octahedral, dicyclic and special linear solutions of some
Hamilton-Waterloo problems, Ars Math. Contemp. 14 (2018), no. 1, 1–14.

4. A. C. Burgess, P. Danziger, T. Traetta, On the Hamilton-Waterloo problem with odd
orders, J. Combin. Des. 25 (2017), no. 6, 258–287.

5. , On the Hamilton-Waterloo problem with cycle lengths of distinct parities, Dis-
crete Math. 341 (2018), no. 6, 1636–1644.

6. , On the Hamilton-Waterloo problem with odd cycle lengths, J. Combin. Des. 26
(2018), no. 2, 51–83.

7. F. Chen and H. Cao, Uniformly resolvable decompositions of Kv into K2 and K1,3

graphs, Discrete. Math. 339 (2016), 2056–2062.
8. C. J. Colbourn and J. H. Dinitz, The CRC Handbook of Combinatorial De-

signs, Chapman and Hall/CRC, Boca Raton, FL (2007). Online updates
<www.emba.uvm.edu/∼dinitz/newresults.html>.

9. P. Danziger, G. Quattrocchi and B. Stevens, The Hamilton-Waterloo problem for cycle
sizes 3 and 4, J. Combin. Des. 17 (2009), 342–352.

10. J. H. Dinitz and A. C. H. Ling, The Hamilton-Waterloo problem: The case of triangle-
factors and one Hamilton cycle, J. Combin. Des. 17 (2) (2009), 160–176.

11. M. Gionfriddo, S. Küçükçifçi, S. Milici and E. Şule Yazıcı, Uniformly resolvable
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19. A. C. H. Ling, J. H. Dinitz, The Hamilton-Waterloo problem with triangle-factors and
Hamilton cycles: the case n ≡ 3 (mod 18), J. Combin. Math. Combin. Comput. 70
(2009), 143–147.

20. G. Lo Faro, S. Milici, A. Tripodi, On uniformly resolvable (K(1,2);K(1,3))-designs, Atti
Accad. Peloritana Pericolanti Cl. Sci. Fis. Mat. Natur. 96 (2018), suppl. 2, A9, 7 pp.

21. S. Milici, A note on uniformly resolvable decompositions of Kv and Kv−I into 2-stars
and 4-cycles, Australas. J. Combin. 56 (2013), 195–200.

22. S. Milici and Z. Tuza, Uniformly resolvable decompositions of Kv into P3 and K3

graphs, Discrete Math. 331 (2014) 137–141.
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