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A B S T R A C T

In multiple criteria decision aiding, very often the alternatives are compared by means of a value function
compatible with the preferences expressed by the Decision Maker. The problem is that, in general, there is
a plurality of compatible value functions, and providing a final recommendation on the problem at hand
considering only one of them could be considered arbitrary to some extent. For such a reason, Stochastic
Multicriteria Acceptability Analysis gives information in statistical terms by taking into account a sample
of models compatible with the provided preferences. These statistics are given assuming the existence of a
probability distribution in the space of value functions being defined a priori. In this paper, we propose some
methods aiming to build a probability distribution on the space of value functions considering the preference
information given by the Decision Maker. To prove the goodness of our proposal we performed an extensive
set of simulations. Moreover, a sensitivity analysis on the variables of our procedure has been done.
1. Introduction

In decision support problems we frequently face the issue of the
lack of a complete information. This lack determines the tradeoff
between the depth of the provided information and the accuracy of
the recommendations. All decision models need the specification of
some parameters to be implemented. Usually, such parameters strongly
depend on the preferences of the Decision Maker (DM) and to de-
termine them, one can adopt a direct or an indirect approach. The
former requires that the necessary parameters are directly provided
by the DM. So, this approach assumes that the DM clearly knows and
understands the preference model and how the parameters affect the
results. Unfortunately, in real-world decision problems, such an as-
sumption is too demanding. On the contrary, in the indirect elicitation
paradigm of the Ordinal Regression approach [1], we infer the values
to be assigned to the parameters of the model such that it restores
the preference information given by the DM. This approach is less
demanding than the direct approach and it has been successfully used
in literature as well as in several real-world applications [2,3]. The
simplicity of the indirect elicitation is however counterbalanced by the
fact that in general, a plurality of models, e.g. a plurality of value
functions, are compatible with the preferences provided by the DM and
the application of each one of these models could give different results
on the problem under consideration. For such a reason, the selection
of one of these compatible models is arbitrary and meaningless to
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some extent. To overcome this choice problem, the Robust Ordinal
Regression (ROR; [4,5]) and the Stochastic Multicriteria Acceptability
Analysis (SMAA; [6,7]) have been proposed in the literature. On the one
hand, ROR takes into account simultaneously all the models compatible
with the preferences given by the DM defining a necessary and a
possible preference relation. Given two alternatives 𝑎, 𝑏 ∈ 𝐴, where 𝐴
is the set of alternatives under consideration, 𝑎 is necessarily (weakly)
preferred to 𝑏 iff 𝑎 is at least as good as 𝑏 for all compatible models,
while 𝑎 is possibly (weakly) preferred to 𝑏 iff 𝑎 is at least as good as
𝑏 for at least one of them. On the other hand, the SMAA methodology
gives information on the problem at hand in statistical terms taking into
consideration some probability distribution in the space of compatible
models (for example, in the space of the weight vectors defining the
weighted sum preference model). From an operational point of view,
a well-distributed sample of compatible models in the corresponding
space is considered. To each of these models (for example, to each
weighted sum characterized by a given weight vector) is assigned a
certain ‘‘probability’’ (in general equal for all of them), and, then, SMAA
provides the rank acceptability indices for each alternative and each
rank position and the pairwise winning index for each ordered pair
of alternatives. The rank acceptability index gives the probability with
which an alternative fills a certain specific rank position, while, the
pairwise winning index gives the probability with which an alternative
is preferred to another.
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As underlined above, in general, it is assumed that all sampled
compatible models have the same probability. However, this is not
necessarily true. In [8] a procedure to estimate a probability distri-
bution on the space of sampled compatible models has been proposed
taking into account certain and uncertain preferences given by the DM.
With certain preferences, we refer to preferences for which the DM
has no doubt, such as ‘‘I definitely prefer 𝑎 to 𝑏’’, while for uncertain
preferences we refer to preferences for which the DM has a general
tendency without expressing a definitive certitude, such as ‘‘I have
a certain tendency to prefer 𝑎 to 𝑏’’. In particular, in the spirit of
the ordinal regression approach, the proposed procedure selects the
probability distribution on the space of compatible value functions that
maximizes the minimal difference between the probability of the pref-
erence of 𝑎 over 𝑏 on the probability of the preference of 𝑏 over 𝑎, for all
pairs of alternatives (𝑎, 𝑏) for which the DM has expressed a preference
of 𝑎 over 𝑏. Observe that differently from several other approaches
considered in the literature, no assumption is made on the probability
distribution in the space of value functions. In fact, a large variety of
procedures have been presented to induce a probability distribution in
the space of value functions on the basis of the Bayesian paradigm (see
e.g. [9–14]). In this paper, we propose a different approach. Instead
of inducing a probability distribution on the whole space of value
functions, we induce a probability distribution on a well-distributed
sample of value functions. In particular, on the basis of the preference
information supplied by the DM in terms of pairwise comparisons of
alternatives, a reference value function is determined and, maximizing
the probability of the DM’s preference comparisons, to each value
function in the sample is assigned a probability mass decreasing with
the distance from the reference value function. This problem can be
formulated in different forms permitting to use linear programming (in
case the probability mass is assumed piecewise linear with respect to
the distance from the reference function) or nonlinear optimization of
single variable functions (in case the probability mass is assumed to be
represented as some single parameter function of the distance from the
reference value function). Therefore we use a rather simple procedure,
obtaining in any case results that prove to be effective and reliable as
we shall show in the computational experiments presented in the paper.

The paper has the following structure. In Section 2 we present some
preliminary notions and remarks useful for what follows together with
the SMAA and the Subjective Stochastic Ordinal Regression (SSOR;
[8]). Section 3 describes the assumptions and the models underlying the
proposed methods. In Section 4 we detail the computational experiment
design and the statistical analysis used to test the efficiency of our pro-
posal. Section 5 presents the obtained results. In Section 6 we perform
further computational experiments and a sensitivity analysis, while, in
Section 7 we discuss the results of all performed experiments. Finally,
Section 8 contains conclusions and future directions of research.

2. Notation and preliminaries

We consider a decision problem in which a set of alternatives
𝐴 = {𝑎, 𝑏,…},1 is evaluated with respect to a set of criteria 𝐺 =
{

𝑔1,… , 𝑔𝑛
}

. Without loss of generality, we assume that, for all 𝑔𝑖 ∈ 𝐺,
𝑔𝑖 ∶ 𝐴 → R and it is of the gain type, that is, for all 𝑎, 𝑏 ∈ 𝐴, 𝑔𝑖(𝑎) ⩾ 𝑔𝑖(𝑏)
means that 𝑎 is at least good as 𝑏 with respect to 𝑔𝑖. In what follows we
assume as preference model a weighted sum

𝑈 (𝑎,𝐰) =
𝑛
∑

𝑖=1
𝑤𝑖 ⋅ 𝑔𝑖(𝑎)

where 𝐰 ∈ 𝐖 =

{

(𝑤1,… , 𝑤𝑛) ∈ [0, 1]𝑛 ∶
𝑛
∑

𝑖=1
𝑤𝑖 = 1

}

. In the following,

to simplify the notation, we shall use 𝑈 (𝑎) instead of 𝑈 (𝑎,𝐰) when it

1 In the following, we shall denote the elements of 𝐴 by 𝑎𝑗 or 𝑎
interchangeably.
2

will not be necessary to refer to the weighted sum in particular. Pay
attention to the fact that the procedure we are going to describe is
not related to the choice of a weighted sum as preference model but it
holds, more in general, considering a classical additive value function

𝑈 ∶ 𝐴 → [0, 1] assigning to each alternative 𝑎 ∈ 𝐴 the value
𝑛
∑

𝑖=1
𝑢𝑖(𝑔𝑖(𝑎)),

here 𝑢𝑖 is a marginal value function related to 𝑔𝑖 ∈ 𝐺. Indeed, as will
e clear later, it is enough considering a value function space  such
hat (i) it is possible to compute a distance between two elements in the
pace and, (ii) the preferences of the DM can be translated into linear
onstraints.

Even if a weighted sum can be considered as the simplest MCDM
odel and, indeed, it is mainly used in practice just for this reason,

ts application implies the knowledge of the weights 𝑤𝑖 for all criteria
𝑖. In the following, we shall assume that the DM will use the indirect
licitation paradigm [2] and, in particular, we distinguish between two
ases:

1. the DM does not provide certain preferences. In this case, it
is common to consider all possible parameters specifications in
the admissible space, that is, in our case, the simplex of all the
weight vectors 𝐖,

2. the DM provides preference information in terms of a binary
preference relation ≿ on a subset of alternatives 𝐴𝑅 ⊆ 𝐴 she
knows relatively well, such that 𝑎 ≿ 𝑏 iff 𝑎 is at least as good
as 𝑏 and 𝑎, 𝑏 ∈ 𝐴𝑅 (with ≻ and ∼ being the asymmetric and
the symmetric part of relation ≿, respectively), and another
quaternary preference relation ≿∗ on 𝐴𝑅 such that (𝑎, 𝑏) ≿∗ (𝑐, 𝑑)
iff the intensity of preference of 𝑎 over 𝑏 is at least as strong as
the intensity of preference of 𝑐 over 𝑑, with 𝑐 ≻ 𝑑 and 𝑎, 𝑏, 𝑐, 𝑑 ∈
𝐴𝑅. These preferences are then translated into constraints in
terms of the assumed preference model. In particular, 𝑎 ≿ 𝑏 iff
𝑈 (𝑎) ⩾ 𝑈 (𝑏), while, (𝑎, 𝑏) ≿∗ (𝑐, 𝑑) iff 𝑈 (𝑎)−𝑈 (𝑏) ⩾ 𝑈 (𝑐)−𝑈 (𝑑) and
𝑈 (𝑐) ⩾ 𝑈 (𝑑) + 𝜀 [15], where 𝜀 is an auxiliary variable, assumed
greater than zero, used to convert strict inequalities into weak
ones. To check if there exists at least one compatible model (in
our case a weighted sum) one has to solve the following LP
problem:

𝜀∗ = max 𝜀, s.t.,

𝑈 (𝑎) ⩾ 𝑈 (𝑏) + 𝜀, if 𝑎 ≻ 𝑏, for 𝑎, 𝑏 ∈ 𝐴𝑅,
𝑈 (𝑎) = 𝑈 (𝑏), if 𝑎 ∼ 𝑏, for 𝑎, 𝑏 ∈ 𝐴𝑅,
𝑈 (𝑎) − 𝑈 (𝑏) ⩾ 𝑈 (𝑐) − 𝑈 (𝑑) + 𝜀,
𝑈 (𝑐) − 𝑈 (𝑑) ⩾ 𝜀,

}

if (𝑎, 𝑏) ≻∗ (𝑐, 𝑑),
for 𝑎, 𝑏, 𝑐, 𝑑 ∈ 𝐴𝑅,

𝑈 (𝑎) =
𝑛
∑

𝑖=1
𝑤𝑖 ⋅ 𝑔𝑖(𝑎), ∀𝑎 ∈ 𝐴,

𝑤𝑖 ⩾ 0, for all 𝑖 = 1,… , 𝑛,
𝑛
∑

𝑖=1
𝑤𝑖 = 1.

⎫

⎪

⎪

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎪

⎪

⎭

𝐸𝐴𝑅
𝑐𝑒𝑟𝑡𝑎𝑖𝑛

(1)

If 𝐸𝐴𝑅
𝑐𝑒𝑟𝑡𝑎𝑖𝑛 is feasible and 𝜀∗ > 0, then, the space of compatible

value functions defined by constraints in 𝐸𝐴𝑅
𝑐𝑒𝑟𝑡𝑎𝑖𝑛, denoted by

𝐖𝐴𝑅
𝑐𝑒𝑟𝑡𝑎𝑖𝑛, is not empty. In the opposite case (𝐸𝐴𝑅

𝑐𝑒𝑟𝑡𝑎𝑖𝑛 is infeasible
or 𝜀∗ ⩽ 0) there is not any compatible value function. Therefore,
the cause of this inconsistency has to be checked and handled
by using, for example, one of the two methods presented in [16]
looking for several subsets of constraints of minimum cardinality
that, once removed, restore the feasibility of 𝐸𝐴𝑅

𝑐𝑒𝑟𝑡𝑎𝑖𝑛. Presenting
the DM with more than one of these sets is important since
she can decide to remove the constraints on which she is less

convinced.
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In both cases, since the spaces 𝐖 and 𝐖𝐴𝑅
𝑐𝑒𝑟𝑡𝑎𝑖𝑛 are composed of an

infinite number of weight vectors and, consequently, an infinite num-
ber of corresponding weighted sum exists, one can give information
regarding the alternatives at hand by considering a good approximation
of these spaces. For such a reason, a sampling from these spaces has to
be performed, and, in these cases, an algorithm such as Hit-And-Run
(HAR; [17,18]) can be used.

2.1. Stochastic multicriteria acceptability analysis

Assuming a certain preference function (in our case the weighted

sum 𝑈 (𝑎,𝐰) =
𝑛
∑

𝑖=1
𝑤𝑖𝑔𝑖(𝑎)), Stochastic Multicriteria Acceptability Anal-

ysis (SMAA) methods [6,7] provide robust information in statistical
terms by considering as preference information a probability distribu-
tion function 𝑓𝑊 over 𝐖 (in case 1. above) or a probability distribution
function 𝑓

𝑊 𝐴𝑅
𝑐𝑒𝑟𝑡𝑎𝑖𝑛

over 𝐖𝐴𝑅
𝑐𝑒𝑟𝑡𝑎𝑖𝑛 (in case 2. above) and a probability

istribution function 𝑓𝜒 over the evaluation space 𝐗 ⊆ R𝑚×𝑛 being
omposed of all matrices [𝑔𝑖(𝑎𝑗 )] with 𝑔𝑖 ∈ 𝐺 and 𝑎𝑗 ∈ 𝐴. In our

context, we shall assume that the evaluations will be deterministic and,
therefore, we shall not consider 𝑓𝜒 . Moreover, to simplify the notation,
when it will not be necessary to distinguish between the two weight
vector spaces 𝐖 and 𝐖𝐴𝑅

𝑐𝑒𝑟𝑡𝑎𝑖𝑛, we shall use 𝐖.
Knowing the probability distribution 𝑓𝑊 over the weight space 𝐖,

the following indices are computed in SMAA-2 [19]:

• The rank acceptability index:

𝑏𝑟(𝑎) = ∫𝐰∈𝐖𝑟(𝑎)
𝑓𝑊 (𝐰) 𝑑𝐰 (2)

where 𝐖𝑟(𝑎) = {𝐰 ∈ 𝐖 ∶ 𝑟𝑎𝑛𝑘(𝑎,𝐰) = 𝑟}, and 𝑟𝑎𝑛𝑘(𝑎,𝐰) = 1 +
∑

𝑥∈𝐴⧵{𝑎}
𝜌 (𝑈 (𝑥,𝐰) > 𝑈 (𝑎,𝐰)), with 𝜌(𝑓𝑎𝑙𝑠𝑒) = 0 and 𝜌(𝑡𝑟𝑢𝑒) = 1. The

range of this index is [0, 1], meaning that the greater its value, the
greater is the probability that the alternative 𝑎 achieves the rank
𝑟;

• The pairwise winning index [20]:

𝑝(𝑎, 𝑏) = ∫𝐰∈𝐖(𝑎,𝑏)
𝑓𝑊 (𝐰) 𝑑𝐰 (3)

where 𝐖(𝑎, 𝑏) = {𝐰 ∈ 𝐖 ∶ 𝑈 (𝑎,𝐰) > 𝑈 (𝑏,𝐰)}. 𝑝(𝑎, 𝑏) represents
the probability with which an alternative 𝑎 is strictly preferred to
an alternative 𝑏 in 𝐖. This index is also within the range [0, 1]
and the greater 𝑝(𝑎, 𝑏), the more 𝑎 is preferred to 𝑏.

Usually, the rank acceptability indices and the pairwise winning
indices are collected into matrices 𝑅𝐴𝐼 and 𝑃𝑊 𝐼 (𝑅𝐴𝐼 = [𝑏𝑟(𝑎)],
𝑃𝑊 𝐼 = [𝑝(𝑎, 𝑏)]) for a global overview. Clearly, their values depend
on 𝑓𝑊 . Consequently, we shall use the symbols 𝑅𝐴𝐼𝑓𝑊 and 𝑃𝑊 𝐼𝑓𝑊 to
denote the 𝑅𝐴𝐼 and 𝑃𝑊 𝐼 matrices obtained assuming the probability
distribution 𝑓𝑊 over 𝐖. For many convenient reasons, 𝑓𝑊 is often
chosen among some parametric distribution functions. In many works
(see, for example, [7,21]), 𝑓𝑊 follows a discrete uniform distribution
when no preference information is available. Otherwise, 𝑓𝑊 ∼ 𝑁(𝜇,𝛴)
(truncated) when some preference information suggests it (see, for
example, [22–24]).

Differently from the works mentioned above, in this paper, we do
not assume the knowledge of the probability distribution 𝑓𝑊 but we
want to propose some methods aiming to infer this probability on the
basis of the preference information provided by the DM. For such a
reason, we shall denote this probability distribution by 𝑓𝐷𝑀 .

Let us conclude this section by observing that in SMAA we do not
consider the whole infinite space 𝐖, but a well-distributed sample of
weight vectors in it. We shall denote the sample of weight vectors in
𝐖 by Ω and, consequently, Ω ⊆ 𝐖. In this context, each weight vector
𝐰 ∈ Ω has a mass 𝑝(𝐰) ∈ [0, 1] such that

∑

𝐰∈Ω
𝑝(𝐰) = 1. Taking into
3

account the space Ω of sampled weight vectors, for all 𝑎, 𝑏 ∈ 𝐴, the t
rank acceptability index 𝑏𝑟(𝑎) and the pairwise winning index 𝑝(𝑎, 𝑏) in
Eqs. (2) and (3), respectively, can be formulated as follows:

𝑏𝑟(𝑎) =
∑

𝐰∈Ω𝑟(𝑎)
𝑝(𝐰) and 𝑝(𝑎, 𝑏) =

∑

𝐰∈Ω(𝑎,𝑏)
𝑝(𝐰)

where Ω𝑟(𝑎) = {𝐰 ∈ Ω ∶ 𝑟𝑎𝑛𝑘(𝑎,𝐰) = 𝑟} and Ω(𝑎, 𝑏) = {𝐰 ∈ Ω ∶
𝑈 (𝑎,𝐰) > 𝑈 (𝑏,𝐰)}.

For this reason, we can reformulate the aim of this paper saying that
we want to introduce some methods to build a probability distribution
on Ω on the basis of certain and uncertain preferences given by the
DM.

2.2. Subjective stochastic ordinal regression

The Subjective Stochastic Ordinal Regression (see [8]) aims to
define a probability distribution 𝐩𝐷𝑀 over Ω assigning, therefore, a
mass 𝑝(𝑈𝑡) to each value function 𝑈𝑡 ∈ Ω. For this reason, it is
assumed that a DM provides uncertain preferences in terms of pairwise
comparisons of alternatives such as ‘‘the preference of 𝑎 over 𝑏 is at least
as credible as the preference of 𝑏 over 𝑎’’ (denoted by 𝑎≿𝑃𝑟𝑏) or in terms
of intensity of preference such as ‘‘the preference of 𝑎 over 𝑏 is at least
as credible as the preference of 𝑐 over 𝑑’’ ((𝑎, 𝑏)≿∗

𝑃𝑟(𝑐, 𝑑)). Note that, from
probabilistic point of view, the uncertain information 𝑎≿𝑃𝑟𝑏, can be

ead as ‘‘the probability that 𝑎 is at least as good as 𝑏 is not lower than
he probability that 𝑏 is at least as good as 𝑎,’’ while, the uncertain
nformation (𝑎, 𝑏)≿∗

𝑃𝑟(𝑐, 𝑑) can be read as ‘‘the probability that 𝑎 is at
east as good as 𝑏 is not lower than the probability that 𝑐 is at least
s good as 𝑑’’. These preference relations are used as constraints to
nduce the DM subjective probability measure on the set of sampled
ompatible value functions Ω.

From a computational point of view, following [8], to find a prob-
bility distribution compatible with the uncertain preference informa-
ion provided by the DM one has to solve the following LP problem:
∗
𝐿 = max 𝜀, s.t.,

∑

𝑈𝑡∈Ω∶ 𝑈𝑡(𝑎)>𝑈𝑡(𝑏)
𝑝(𝑈𝑡) ⩾

∑

𝑈𝑡∈Ω∶ 𝑈𝑡(𝑏)>𝑈𝑡(𝑎)
𝑝(𝑈𝑡) + 𝜀,

if 𝑎 ≻𝑃𝑟 𝑏,
∑

𝑈𝑡∈Ω∶ 𝑈𝑡(𝑎)>𝑈𝑡(𝑏)
𝑝(𝑈𝑡) ⩾

∑

𝑈𝑡∈Ω∶ 𝑈𝑡(𝑐)>𝑈𝑡(𝑑)
𝑝(𝑈𝑡) + 𝜀,

if (𝑎, 𝑏) ≻∗
𝑃𝑟 (𝑐, 𝑑),

|Ω|

∑

𝑡=1
𝑝(𝑈𝑡) = 1,

𝑝(𝑈𝑡) ⩾ 0, 𝑡 = 1,… , |Ω|

⎫

⎪

⎪

⎪

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎪

⎪

⎪

⎭

𝐸𝑆𝑆𝑂𝑅 (4)

here ≻𝑃𝑟 and ≻∗
𝑃𝑟

denote the asymmetric parts of ≿𝑃𝑟 and ≻𝑃𝑟 , respec-
ively, and 𝑝(𝑈𝑡), with 𝑈𝑡 ∈ Ω, is the ‘‘mass’’ attached to the sampled
alue function 𝑈𝑡. As already underlined in the previous section, Ω

epresents a sample of value functions compatible with the preferences
rovided by the DM (if any) and these functions do not have to be
ecessarily weighted sum. If 𝐸𝑆𝑆𝑂𝑅 is feasible and 𝜀∗𝐿 > 0, there
s at least one probability distribution over Ω compatible with the
ncertain preferences given by the DM. Since, in this case, more than
ne probability distribution compatible with the preferences given by
he DM exists, [8] define a probabilistic necessary and a probabilistic
ossible preference relation taking into account the whole space of
robability distribution defined by constraints in 𝐸𝑆𝑆𝑂𝑅 (the interested
eader can find more details in [8]). However, they suggest also giving
nformation in statistical terms by sampling a certain number of prob-
bility distributions from the space defined by constraints in 𝐸𝑆𝑆𝑂𝑅

nd, then, considering their barycenter 𝐩∗ as a representative of them.
n the basis of this barycenter, a binary relation ≿𝑅

𝐿 was defined so
𝑅 ∗
hat 𝑎 ≿𝐿 𝑏 iff, considering 𝐩 , the probability that 𝑎 is preferred to 𝑏
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(𝑃𝑊 𝐼𝐩∗ (𝑎, 𝑏)) is not lower than the probability that 𝑏 is preferred to 𝑎
(𝑃𝑊 𝐼𝐩∗ (𝑏, 𝑎)).

Let us underline that the probability distribution obtained by the
𝑆𝑆𝑂𝑅 assigns the masses neglecting any regularity requirement on the
probability distribution on the set of sampled value functions Ω so that
this methodology can attach very different masses to value functions
relatively close in Ω. In the next section, we shall present some methods
to build a probability distribution on Ω that use the same information
as SSOR but that assign the probability mass to each sampled value
function depending on their distance from a reference value function
𝑈𝑟𝑒𝑓 .

3. Inferring a probability density function over the space of com-
patible models

In this section, we present a methodology to infer a probability dis-
tribution function 𝐩 =

[

𝑝(𝑈𝑡) ∶ 𝑈𝑡 ∈ Ω
]

over a sampling of compatible
models Ω (in our case a probability distribution 𝐩 on the sample Ω ⊆ 𝐖
composed of weight vectors). Note that, in general terms, the methods
we propose can be applied in case the assumed preference model is
defined on a space  equipped with a distance and such that, rewriting
conveniently the last three constraints in (1), the programming problem
remains linear. For example:

• if the assumed preference model is an additive value function

of the type 𝑈 (𝑎) =
𝑛
∑

𝑖=1
𝑢𝑖
(

𝑔𝑖(𝑎)
)

, the last three constraints in (1)

should be replaced by the following

𝑈 (𝑎) =
𝑛
∑

𝑖=1
𝑢𝑖
(

𝑔𝑖(𝑎)
)

, for all 𝑎 ∈ 𝐴,

𝑛
∑

𝑖=1
𝑢𝑖
(

𝑥∗𝑖
)

= 1,

𝑢𝑖
(

𝑔𝑖(𝑎)
)

⩾ 𝑢𝑖
(

𝑔𝑖(𝑏)
)

, iff 𝑔𝑖(𝑎) ⩾ 𝑔𝑖(𝑏), for all 𝑖 = 1,… , 𝑛,
𝑢𝑖
(

𝑥𝑖,∗
)

= 0 for all 𝑖 = 1,… , 𝑛,

⎫

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎭

where, for all 𝑖 = 1,… , 𝑛, 𝑥𝑖,∗ = min
𝑎∈𝐴

𝑔𝑖(𝑎) and 𝑥∗𝑖 = max
𝑎∈𝐴

𝑔𝑖(𝑎),
respectively,

• if the preference model is the 2-additive Choquet integral [25–
27] 𝑈 (𝑎) = 𝐶ℎ𝜇(𝑎) =

∑

𝑔𝑖∈𝐺
𝑔𝑖(𝑎)𝑚

(

{𝑔𝑖}
)

+
∑

{𝑔𝑖1 ,𝑔𝑖2 }⊆𝐺
min{𝑔𝑖1 (𝑎),

𝑔𝑖2 (𝑎)}𝑚
(

{𝑔𝑖1 , 𝑔𝑖2}
)

, then, the last three constraints in (1) should
be replaced by the following ones

𝑈 (𝑎)=𝐶ℎ𝜇(𝑎)=
∑

𝑔𝑖∈𝐺
𝑔𝑖(𝑎)𝑚

(

{𝑔𝑖}
)

+
∑

{𝑔𝑖1 ,𝑔𝑖2 }⊆𝐺
min{𝑔𝑖1 (𝑎), 𝑔𝑖2 (𝑎)}𝑚

(

{𝑔𝑖1 , 𝑔𝑖2 }
)

,

for all 𝑎 ∈ 𝐴,

𝑚
(

{𝑔𝑖}
)

⩾ 0,
𝑚
(

{𝑔𝑖}
)

+
∑

𝑔𝑖1 ∈𝑇
𝑚
(

{𝑔𝑖 , 𝑔𝑖1 }
)

⩾ 0,

⎫

⎪

⎪

⎬

⎪

⎪

⎭

for all 𝑔𝑖 ∈ 𝐺 and for all 𝑇 ⊆ 𝐺 ⧵ {𝑔𝑖}

∑

𝑔𝑖∈𝐺
𝑚
(

{𝑔𝑖}
)

+
∑

{𝑔𝑖1 ,𝑔𝑖2 }⊆𝐺
𝑚
(

{𝑔𝑖1 , 𝑔𝑖2 }
)

= 1,

⎫

⎪

⎪

⎪

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎪

⎪

⎪

⎭

where 𝑚 ∶ 2𝐺 → R is a set function such that 𝑚(𝑇 ) = 0 for all
𝑇 ⊆ 𝐺 with |𝑇 | > 2. In fact, the model we are proposing can be
applied also when constraints in (1) are non-linear, for example,
when the preference of the DM can be represented by a multi-
plicative utility function [28,29]. In these cases, one can apply
an acceptance/rejection method (see e.g. Section 2.5.1 in [30]),
based on Hit-And-Run, sampling in a convex set containing the
set of parameters of the non-linear value function considered.

3.1. Basic proposal

Starting from the work presented in [8], we propose to define a
4

probability distribution function over Ω with a tendency preference f
(a mode) which we refer to as a reference model 𝑈𝑟𝑒𝑓 ∈  where
 denotes the set of models compatible with the preferences given
by the DM (indeed, assuming that the preference model is a weighted
sum,  = {𝑈 (𝑎,𝐰) ∶ 𝐰 ∈ 𝐖} if the DM did not provide any
preference information, while  = {𝑈 (𝑎,𝐰) ∶ 𝐰 ∈ 𝐖𝐴𝑅

𝑐𝑒𝑟𝑡𝑎𝑖𝑛} if the DM
expressed some preferences). Such choice has two motivations: (i) the
direction given by the uncertain information (see Section 2.2) suggests
that there are some models which better represent the preferences
provided by the DM, so, it can be reasonable to take a single ‘‘average
model’’ representing the typical attitude of the DM; (ii) the induction
of a probability distribution with a mode in the space of compatible
models allows to easily ‘‘move’’ the main body of the distribution,
i.e. the largest probability, in the direction indicated by the preferences
expressed by the DM. With this in mind, we propose to compute the
reference model 𝑈𝑟𝑒𝑓 as the barycenter of the set of sampled value
functions Ω.

The barycenter is computed as follows:

Step (1) Solve the LP problem (1). If 𝐸𝐴𝑅
𝑐𝑒𝑟𝑡𝑎𝑖𝑛 is feasible and 𝜀∗ > 0, go

to step (2) below. If this is not the case (𝐸𝐴𝑅
𝑐𝑒𝑟𝑡𝑎𝑖𝑛 is not feasible or

𝜀∗ ⩽ 0), we have to interact with the DM in order to remove a
minimal number of constraints related to preference information
and make 𝐸𝐴𝑅

𝑐𝑒𝑟𝑡𝑎𝑖𝑛 feasible, using one of the two procedures
proposed in [16] and recalled in Section 2,

Step (2) Sample a certain number of compatible value functions using
the HAR algorithm defining the set Ω,

tep (3) Since, in our case, each compatible value function 𝑈𝑡 ∈ Ω is
the weighted sum related to the weight vector 𝐰𝑡 =

(

𝑤𝑡
1,… , 𝑤𝑡

𝑛
)

,
the barycenter of Ω is also a weight vector 𝐰𝐵𝑎𝑟 =

(

𝑤𝐵𝑎𝑟
1 ,… , 𝑤𝐵𝑎𝑟

𝑛

where 𝑤𝐵𝑎𝑟
𝑖 = 1

|Ω|

|Ω|

∑

𝑡=1
𝑤𝑡

𝑖, for all 𝑖 = 1,… , 𝑛.

Following what has been said at the beginning of this section, if the
assumed preference model is an additive value function or a 2-additive
Choquet integral, then, the barycenter can be computed as explained
in Steps (1)–(3) above. The only slight difference is related to Step 3):

• if 𝑈𝑡 ∈ Ω is an additive value function, 𝑈𝑡 =
[

𝑢𝑡𝑖(𝑔𝑖(𝑎))
]

𝑖=1,…,𝑛
𝑎∈𝐴

, then
the barycenter is an additive value function 𝑈𝐵𝑎𝑟 =

[

𝑢𝐵𝑎𝑟𝑖 (𝑔𝑖(𝑎))
]

𝑖=1,…
𝑎∈

such that 𝑢𝐵𝑎𝑟𝑖 (𝑔𝑖(𝑎)) =
1

|Ω|

|Ω|

∑

𝑡=1
𝑢𝑡𝑖(𝑔𝑖(𝑎)),

• if 𝑈𝑡 ∈ Ω is a 2-additive Choquet integral,

𝑈𝑡 =
[

[

𝑚𝑡({𝑔𝑖})
]

𝑔𝑖∈𝐺
,
[

𝑚𝑡({𝑔𝑖1 , 𝑔𝑖2})
]

{𝑔𝑖1 ,𝑔𝑖2 }⊆𝐺

]

,

then the barycenter is a 2-additive Choquet integral

𝑈𝐵𝑎𝑟 =
[

[

𝑚𝐵𝑎𝑟({𝑔𝑖})
]

𝑖=1,…,𝑛 ,
[

𝑚𝐵𝑎𝑟({𝑔𝑖1 , 𝑔𝑖2})
]

{𝑔𝑖1 ,𝑔𝑖2 }⊆𝐺

]

such that 𝑚𝐵𝑎𝑟 ({𝑔𝑖}
)

= 1
|Ω|

|Ω|

∑

𝑡=1
𝑚𝑡 ({𝑔𝑖}

)

and 𝑚𝐵𝑎𝑟
(

{𝑔𝑖1 , 𝑔𝑖2}
)

=

1
|Ω|

|Ω|

∑

𝑡=1
𝑚𝑡

(

{𝑔𝑖1 , 𝑔𝑖2}
)

for all 𝑔𝑖 ∈ 𝐺 and for all
{

𝑔𝑖1 , 𝑔𝑖2
}

⊆ 𝐺.

We search for a probability distribution function 𝐩 over Ω which
ssigns a mass 𝑝(𝑈𝑡) to each preference model 𝑈𝑡 ∈ Ω that, differently
rom SSOR, is decreasing with respect to the distance of 𝑈𝑡 from 𝑈𝑟𝑒𝑓 .
his procedure requires therefore the introduction of a distance in the
pace Ω. If the preference model can be represented by means of a real
alued vector of preferential parameters, the Euclidean norm and its
nduced metric (as well as each equivalent norm) can be considered.2

2 For example, if the preference model is a weighted sum, then, this
unction can be represented by the vector 𝐰 =

[

𝑤 ,… , 𝑤
]

; if the preference
1 𝑛
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(

All previous considerations lead to the search for a probability dis-
tribution function 𝐩 over Ω in which, given 𝑈𝑘, 𝑈ℎ ∈ Ω, 𝑝(𝑈𝑘) ⩾ 𝑝(𝑈ℎ)
iff 𝑑(𝑈𝑘, 𝑈𝑟𝑒𝑓 ) ⩽ 𝑑(𝑈ℎ, 𝑈𝑟𝑒𝑓 ), where 𝑑

(

𝑈ℎ, 𝑈𝑟𝑒𝑓
)

is the distance between
the vectors representing the value functions 𝑈ℎ and 𝑈𝑟𝑒𝑓 . For example,
if the value function is a weighted sum and, therefore, 𝑈ℎ is represented
by the vector 𝐰ℎ =

[

𝑤ℎ,1,… , 𝑤ℎ,𝑛
]

, then, one can have

𝑑(𝑈ℎ, 𝑈𝑟𝑒𝑓 ) =

√

√

√

√

𝑛
∑

𝑖=1

(

𝑤ℎ,𝑖 −𝑤𝑟𝑒𝑓 ,𝑖
)2.

Assuming the existence of some uncertain preference information as
hose considered in [8], to check if there exists at least one probability
istribution over Ω, one has to solve the following LP problem (5):
∗
𝐴𝐶𝐺 = max 𝜀, s.t.

∑

𝑈𝑡∈Ω∶ 𝑈𝑡(𝑎)⩾𝑈𝑡(𝑏)
𝑝(𝑈𝑡) ⩾

∑

𝑈𝑡∈Ω∶ 𝑈𝑡(𝑎)⩽𝑈𝑡(𝑏)
𝑝(𝑈𝑡) + 𝜀,

if 𝑎≻𝑃𝑟𝑏,
∑

𝑈𝑡∈Ω∶ 𝑈𝑡(𝑎)⩾𝑈𝑡(𝑏)
𝑝(𝑈𝑡) ⩾

∑

𝑈𝑡∈Ω∶ 𝑈𝑡(𝑐)⩾𝑈𝑡(𝑑)
𝑝(𝑈𝑡) + 𝜀,

if (𝑎, 𝑏)≻∗
𝑃𝑟(𝑐, 𝑑),

𝑝(𝑈𝑘) ⩾ 𝑝(𝑈ℎ), iff 𝑑(𝑈𝑘, 𝑈𝑟𝑒𝑓 ) ⩽ 𝑑(𝑈ℎ, 𝑈𝑟𝑒𝑓 ),
for all 𝑈𝑘, 𝑈ℎ ∈ Ω,
|Ω|

∑

𝑡=1
𝑝(𝑈𝑡) = 1,

𝑝(𝑈𝑡) ⩾ 0, for all 𝑈𝑡 ∈ Ω.

⎫

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎭

𝐸𝐴𝐶𝐺 (5)

If 𝐸𝐴𝐶𝐺 is feasible and 𝜀∗𝐴𝐶𝐺 > 0 then, there exists at least one prob-
ability distribution having the previous characteristics and, therefore,
we can sample by the HAR algorithm a certain number of probability
distributions from the space defined by constraints in 𝐸𝐴𝐶𝐺 computing
then its barycenter. The barycenter is therefore used to compute the
rank acceptability index of each alternative for each rank position
as well as the pairwise winning index between each ordered pair of
alternatives. If 𝐸𝐴𝐶𝐺 is not feasible or 𝜀∗𝐴𝐶𝐺 ⩽ 0, one can check for the
causes as discussed in Section 2.

3.2. Estimation of a parsimonious model

As explained in the previous section, in the 𝑆𝑆𝑂𝑅𝐴𝐶𝐺 method
the number of parameters to be estimated increases with the size of
the sample since one probability mass is assigned to each sampled
compatible model. For this reason, in the following, we propose a
simple and parsimonious procedure to assign a probability mass to each
sampled model assuming that the probability function is a piecewise
linear value function defined by means of a certain number of reference
points the masses of which will therefore be the only unknowns of
our problem. The probability mass of the sampled value functions
which are not given as reference points will be obtained by linear
interpolation as explained in the following. Of course, also in this case,
we assume that the probability mass attached to each model 𝑈ℎ will
be a non-increasing function of its distance from a reference model
𝑑(𝑈ℎ, 𝑈𝑟𝑒𝑓 ) = 𝑑𝑟𝑒𝑓

(

𝑈ℎ
)

, that is, 𝑝(𝑈ℎ) = 𝑝
(

𝑑𝑟𝑒𝑓
(

𝑈ℎ
))

.
Let us fix 𝑞 reference distances 𝑑1,… , 𝑑𝑞 into the interval (𝑈𝑟𝑒𝑓 ,Ω)

=
[

0, max
ℎ=1,…,|Ω|

𝑑𝑟𝑒𝑓
(

𝑈ℎ
)

]

, such that 𝑑𝑘−1 < 𝑑𝑘 for all 𝑘 = 2,… , 𝑞,

𝑑1 = 0 and 𝑑𝑞 = max
ℎ∈{1,…,|Ω|}

𝑑𝑟𝑒𝑓
(

𝑈ℎ
)

. We aim to infer a probability

mass function 𝑝 ∶ (𝑈𝑟𝑒𝑓 ,Ω) → [0, 1] such that if 𝑑𝑟𝑒𝑓 (𝑈𝑡) ∈ [𝑑𝑘−1, 𝑑𝑘],
with 𝑘 = 2,… , 𝑞, we have that

𝑝
(

𝑈𝑡
)

= 𝑝(𝑑𝑟𝑒𝑓 (𝑈𝑡)) = 𝑝(𝑑𝑘−1)
𝑑𝑘 − 𝑑𝑟𝑒𝑓 (𝑈𝑡)
𝑑𝑘 − 𝑑𝑘−1

+ 𝑝(𝑑𝑘)
𝑑𝑟𝑒𝑓 (𝑈𝑡) − 𝑑𝑘−1

𝑑𝑘 − 𝑑𝑘−1
.

function is a general non-monotonic additive value function, then, it can be
represented by the vector

[

𝑢 (𝑔 (𝑎))
]

, 𝑔 ∈ 𝐺, 𝑎 ∈ 𝐴, and so on.
5

𝑖 𝑖 𝑖
Knowing 𝑝(𝑑𝑘) for all 𝑘 = 1,… , 𝑞, one can then compute the proba-
bility mass attached to all functions in Ω depending on their distance
from 𝑈𝑟𝑒𝑓 and, consequently, from the interval to which this dis-
tance belongs. Note that, the assumption on the probability mass
being a decreasing function of the distance from 𝑈𝑟𝑒𝑓 requires that
𝑝(𝑑𝑟𝑒𝑓 (𝑈𝑘)) ⩾ 𝑝(𝑑𝑟𝑒𝑓 (𝑈ℎ)) for each 𝑈ℎ, 𝑈𝑘 ∈ Ω such that 𝑑𝑟𝑒𝑓 (𝑈𝑘) ⩽
𝑟𝑒𝑓 (𝑈ℎ), which is guaranteed by imposing that 𝑝(𝑑𝑘−1) ⩾ 𝑝(𝑑𝑘) for
ll ℎ = 2,… , 𝑞. To check if there exists at least one piecewise linear
unction defined by the vector [𝑝(𝑑1),… , 𝑝(𝑑𝑞)] compatible with the
rovided preference, one has to solve the following LP problem (6):
∗
𝑝𝑙 = max 𝜀, s.t.

𝑝
(

𝑈𝑡
)

= 𝑝(𝑑𝑘−1)
𝑑𝑘−𝑑𝑟𝑒𝑓 (𝑈𝑡)
𝑑𝑘−𝑑𝑘−1

+ 𝑝(𝑑𝑘)
𝑑𝑟𝑒𝑓 (𝑈𝑡)−𝑑𝑘−1

𝑑𝑘−𝑑𝑘−1
,

if 𝑑𝑟𝑒𝑓 (𝑈𝑡) ∈ [𝑑𝑘−1, 𝑑𝑘],
∑

𝑈𝑡∈Ω∶ 𝑈𝑡(𝑎)⩾𝑈𝑡(𝑏)
𝑝(𝑈𝑡) ⩾

∑

𝑡∶ 𝑈𝑡(𝑎)⩽𝑈𝑡(𝑏)
𝑝(𝑈𝑡) + 𝜀,

if 𝑎≻𝑃𝑟𝑏,
∑

𝑈𝑡∈Ω∶ 𝑈𝑡(𝑎)⩾𝑈𝑡(𝑏)
𝑝(𝑈𝑡) ⩾

∑

𝑈𝑡∈Ω∶ 𝑈𝑡(𝑐)⩾𝑈𝑡(𝑑)
𝑝(𝑈𝑡) + 𝜀,

if (𝑎, 𝑏)≻∗
𝑃𝑟(𝑐, 𝑑),

𝑝(𝑑𝑘−1) ⩾ 𝑝(𝑑𝑘) ⩾ 0, for all 𝑘 = 2,… , 𝑞,
|Ω|

∑

𝑡=1
𝑝(𝑈𝑡) = 1.
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⎪

⎪
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⎪
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⎪
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⎪

⎪

⎪
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𝐸𝐴𝐶𝐺
𝑝𝑙 (6)

If 𝐸𝐴𝐶𝐺
𝑝𝑙 is feasible and 𝜀∗𝑝𝑙 > 0 then, there is at least one piecewise

inear probability distribution on the set of sampled value functions
ompatible with the uncertain preference given by the DM. Sampling a
ertain number of probability distributions in the space defined by the
onstraints in 𝐸𝐴𝐶𝐺

𝑝𝑙 by using the HAR algorithm we can compute its
arycenter. The so-obtained barycenter can then be used to compute
he RAIs and PWIs. We refer to this method as 𝑆𝑆𝑂𝑅𝐴𝐶𝐺

𝑝𝑙 .

.3. Parametric estimation

The proposals presented in Sections 3.1 and 3.2 are based on a non-
arametric approach in the sense that we do not assume ‘‘ex-ante’’ a
pecific shape of the probability distribution function over Ω. In this
ection, instead, we aim to fit the distribution function defined over the
et of all sampled compatible models by using some specific parametric
robability function. As in the previous proposals, we assume that
uch functions are expressed in terms of distance from a reference
odel 𝑈𝑟𝑒𝑓 and, in particular, the probability mass attached to each

ompatible model 𝑈ℎ ∈ Ω is decreasing with its distance from 𝑈𝑟𝑒𝑓 ,
hat is, 𝑑𝑟𝑒𝑓

(

𝑈ℎ
)

= 𝑑
(

𝑈𝑟𝑒𝑓 , 𝑈ℎ
)

.
We start by considering the following two alternative probability

unctions for a generic model 𝑈ℎ ∈ Ω:

𝑁𝑜𝑟(𝑈ℎ) =
𝑒−

𝑑𝑟𝑒𝑓 (𝑈ℎ)
2

2𝜆2

|Ω|

∑

ℎ=1
𝑒−

𝑑𝑟𝑒𝑓 (𝑈ℎ)
2

2𝜆2

, (7)

and

𝑝𝐸𝑥𝑝(𝑈ℎ) =
𝑒−𝜆𝑑𝑟𝑒𝑓 (𝑈ℎ)

|Ω|

∑

ℎ=1
𝑒−𝜆𝑑

𝑟𝑒𝑓 (𝑈ℎ)
, (8)

ith 𝜆 ⩾ 0.
Now, we consider the mathematical programming problems (9) and

10)

max
∑

𝑈ℎ∈𝐵
𝑝𝑁𝑜𝑟(𝑈ℎ), s.t. (9)

𝜆 ⩾ 0
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max
∑

𝑈ℎ∈𝐵
𝑝𝐸𝑥𝑝(𝑈ℎ), s.t. (10)

𝜆 ⩾ 0

here 𝐵 = {𝑈ℎ ∈ Ω ∶ 𝑈ℎ(𝑎) ⩾ 𝑈ℎ(𝑏), ∀ (𝑎, 𝑏) ∈ 𝐴 × 𝐴 ∶
𝑎 ≿𝑃𝑟 𝑏}. Observe that these mathematical programming problems
are well defined if 𝐵 is non-empty. If this is not the case, one can
reformulate (9) and (10) replacing 𝐵 with

𝐵𝑘 = {𝑈ℎ ∈ Ω ∶ |(𝑎, 𝑏) ∈ 𝐴 × 𝐴 ∶ 𝑈ℎ(𝑎) ⩾ 𝑈ℎ(𝑏) and 𝑎 ≿𝑝𝑟 𝑏| ⩾ 𝑘}

for some value of 𝑘 for which 𝐵𝑘 is not empty. Let us observe that 𝑘
can be considered as the minimum number of pairwise comparisons on
which the DM expressed her preferences that need to be represented
by at least one compatible model. Finally, we compare the optimal
objective values of the mathematical programming problems (9) and
(10) and we consider the model which gives the greatest of the two.
Note that, the proposal at hand differs from the previous not only
from a parametric point of view but also from the fact that we use the
probability distribution obtained as solution of the considered problems
and not the barycenter of a sample of compatible distributions.

4. Validation proposal

In this section we present the results of some experiments performed
to show the reliability of the methodologies aiming to build a probabil-
ity distribution on the space of models compatible with the preferences
given by the DM and described in Sections 3.1–3.3. To compare the
considered methods we mainly look at the difference between the
𝑅𝐴𝐼 and 𝑃𝑊 𝐼 matrices generated by the probability distributions 𝑝(⋅)
obtained with the different methods we are proposing.

Assuming the existence of an artificial DM that ranks some alter-
natives evaluated on a few criteria, we aim to check which method,
among the three we have proposed, is more able to restore the artifi-
cial DM’s preferences. To simulate the artificial DM’s preferences, we
consider two different cases:

• the artificial DM evaluates the alternatives using a single model
𝑈𝐷𝑀 on which no assumption is done. It is only necessary that it
is defined over a space  so that the distance between two value
functions in this space can be computed. In this case, it is possible
to define a binary relation ≿𝐷𝑀 over 𝐴 such that, for all 𝑎, 𝑏 ∈ 𝐴,
𝑎 ≿𝐷𝑀 𝑏 iff 𝑈𝐷𝑀 (𝑎) ⩾ 𝑈𝐷𝑀 (𝑏);

• the preferences of the DM are determined by a set of models
𝑈𝑡 ∈ Ω, where Ω is a set of well-distributed models in  on
which a probability distribution 𝐩𝐷𝑀 =

[

𝑝𝐷𝑀 (𝑈𝑡) ∶ 𝑈𝑡 ∈ Ω
]

is
considered. In this case we can define the binary relation ≿𝐷𝑀

over 𝐴 so that for all 𝑎, 𝑏 ∈ 𝐴, 𝑎 ≿𝐷𝑀 𝑏 iff
∑

𝑈ℎ∈Ω∶ 𝑈ℎ(𝑎)⩾𝑈ℎ(𝑏)
𝑝𝐷𝑀 (

𝑈ℎ
)

⩾
∑

𝑈ℎ∈Ω∶ 𝑈ℎ(𝑏)⩾𝑈ℎ(𝑎)
𝑝𝐷𝑀 (𝑈ℎ),

that is, if the probability mass of preference models 𝑈ℎ ∈ Ω for
which 𝑈ℎ(𝑎) ⩾ 𝑈ℎ(𝑏) is not lower than the probability mass of
preference models for which 𝑈ℎ(𝑏) ⩾ 𝑈ℎ(𝑎). Of course, in this
second case, to build the relation ≿𝐷𝑀 , to each model 𝑈ℎ ∈ Ω,
a mass probability 𝑝𝐷𝑀 (

𝑈ℎ
)

has to be assigned. This mass prob-
ability has to be non-increasing with the distance of 𝑈ℎ from
some reference model 𝑈𝑟𝑒𝑓 , that is, 𝑑𝑟𝑒𝑓

(

𝑈ℎ
)

= 𝑑
(

𝑈ℎ, 𝑈𝑟𝑒𝑓
)

, so
that, for all 𝑈𝑘, 𝑈ℎ ∈ Ω, 𝑝𝐷𝑀 (

𝑈𝑘
)

⩾ 𝑝𝐷𝑀 (

𝑈ℎ
)

iff 𝑑
(

𝑈𝑘, 𝑈𝑟𝑒𝑓
)

⩽
𝑑
(

𝑈ℎ, 𝑈𝑟𝑒𝑓
)

. Assuming the existence of a probability distribution
over Ω we can then consider different shapes of the DM prob-
ability distribution function 𝐩𝐷𝑀 shown in Table 1. Note that,
all probability functions we used are unimodal with a decreasing
shape with respect to the distance from the reference model
𝑈𝑟𝑒𝑓 . In such distributions, the parameter 𝜆 assumes a different
6

meaning according to the analytic form of the distribution. For
Table 1
DM unimodal probability distribution function.

Notation Probability mass function

𝛿𝑈𝑟𝑒𝑓
𝑝𝛿 (𝑈ℎ , 𝜆) =

{

1, if 𝑈ℎ = 𝑈𝑟𝑒𝑓 ,
0, otherwise.

𝐩𝑁𝑜𝑟 𝑝𝑁𝑜𝑟(𝑈ℎ , 𝜆) =
𝑒
−

𝑑𝑟𝑒𝑓 (𝑈ℎ )
2

2𝜆2

|𝛀|

∑

ℎ=1
𝑒−

𝑑𝑟𝑒𝑓 (𝑈ℎ )
2

2𝜆2

𝐩𝐸𝑥𝑝 𝑝𝐸𝑥𝑝(𝑈ℎ , 𝜆) =
𝑒−𝜆𝑑𝑟𝑒𝑓 (𝑈ℎ )

|𝛀|

∑

ℎ=1
𝑒−𝜆𝑑𝑟𝑒𝑓 (𝑈ℎ )

𝐩1∕𝐷 𝑝1∕𝐷(𝑈ℎ , 𝜆) =
𝑑𝑟𝑒𝑓 (𝑈ℎ )

−𝜆

|𝛀|

∑

ℎ=1
𝑑𝑟𝑒𝑓 (𝑈ℎ)

−𝜆

𝐩𝑅𝑂𝐶 𝑝𝑅𝑂𝐶 (𝑈ℎ , 𝜆) =

⎧

⎪

⎨

⎪

⎩

1
𝜆

𝜆
∑

𝑗=ℎ

1
𝑗
, for ℎ = 1,… , 𝜆,

0, for ℎ = 𝜆 + 1,… , |𝛀|.

example, in the 𝐩𝑁𝑜𝑟, 𝜆 is equal to the discrete standard devi-
ation of the distribution, while, in 𝐩𝑅𝑂𝐶 , it is a percentage of
models, ordered with respect to the distance from the reference
model, which receive a Rank Order Centroid weight (see [31]).
This means that 𝐩𝑅𝑂𝐶 assigns a probability mass only to the
first 𝜆 models, 𝑈1, 𝑈2,… , 𝑈𝜆 in Ω = {𝑈1, 𝑈2,… , 𝑈

|Ω|

} that are
renumbered in such a way that 𝑑𝑟𝑒𝑓

(

𝑈1
)

⩽ 𝑑𝑟𝑒𝑓
(

𝑈2
)

⩽ ⋯ ⩽
𝑑𝑟𝑒𝑓

(

𝑈
|Ω|

)

.

Since the methodology we are proposing aims to ‘‘discover’’ 𝐩𝐷𝑀 ,
it is reasonable to compare the results obtained by using the approxi-
mated probability distribution.

We compare the 𝑅𝐴𝐼 and 𝑃𝑊 𝐼 matrices obtained by using our
proposals with the 𝑅𝐴𝐼 and 𝑃𝑊 𝐼 matrices obtained considering 𝐩𝐷𝑀 .

On the one hand, an aspect that can matter in comparing two
𝑅𝐴𝐼 matrices 𝑅𝐴𝐼1 = [𝑏𝑟1(⋅)] and 𝑅𝐴𝐼2 = [𝑏𝑟2(⋅)], with 𝑏𝑟1(⋅) and 𝑏𝑟2(⋅)
representing the rank acceptability index for the 𝑟th position in 𝑅𝐴𝐼1
and 𝑅𝐴𝐼2, respectively, is how much they differ with respect to the
distributions of the first 𝑠 ⩽ 𝑚 positions. In this sense, we consider the
distance shown in Eq. (11)

𝑑(𝑠, 𝑅𝐴𝐼1, 𝑅𝐴𝐼2) =

𝑠
∑

𝑟=1

(

∑

𝑎∈𝐴

|

|

|

𝑏𝑟1(𝑎) − 𝑏𝑟2(𝑎)
|

|

|

)

𝑠
(11)

where 𝑠 represents the number of positions taken into account. Observe
that 𝑑(𝑠, 𝑅𝐴𝐼1, 𝑅𝐴𝐼2) can be seen as the distance induced by the 𝐿1
norm [32] in the space of the first 𝑠 columns of 𝑅𝐴𝐼 matrices. In the
following, we shall consider 𝑠 = 3.

On the other hand, given two pairwise winning index matrices
𝑃𝑊 𝐼1 = [𝑝1(𝑎, 𝑏)] and 𝑃𝑊 𝐼2 = [𝑝2(𝑎, 𝑏)], we can compute their distance
as follows:

𝑑(𝑃𝑊 𝐼1, 𝑃𝑊 𝐼2) =
‖𝑃𝑊 𝐼1 − 𝑃𝑊 𝐼2‖1

|𝐴|(|𝐴| − 1)
=

∑

{𝑎,𝑏}∈𝐴×𝐴,
𝑎≠𝑏

|

|

𝑝1(𝑎, 𝑏) − 𝑝2(𝑎, 𝑏)||

|𝐴|(|𝐴| − 1)

(12)

eing an average of the distance between the pairwise winning indices
f all pairs of alternatives at hand.

Let us conclude this section by observing that a pairwise winning
ndices matrix 𝑃𝑊 𝐼 with entries being binary values represents a
omplete order ≿ iff the following constraints are satisfied:

𝑝(𝑎, 𝑏) + 𝑝(𝑏, 𝑎) = 1, ∀(𝑎, 𝑏) ∈ 𝐴 × 𝐴,

𝑝(𝑎, 𝑏) + 𝑝(𝑏, 𝑐) ⩽ 𝑝(𝑎, 𝑐) + 1 ∀𝑎, 𝑏, 𝑐 ∈ 𝐴.

}

The first constraint implies that ≿ is complete and asymmetric, while,
the second one implies the transitivity of ≿. In this case, considering the
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Algorithm 1
Require: Number of alternatives (𝑚), number of criteria (𝑛), number of pairs of alternatives to be compared by the artificial DM (𝑧), artificial DM’s

probability distribution 𝐩𝐷𝑀 on 𝛀
repeat

1. Generate a performance matrix of 𝑚 alternatives and 𝑛 criteria
2. Build the artificial DM’s reference model
3. Sample a certain number of value functions in 𝛀
4. Compute the probability distribution 𝐩𝐷𝑀 on 𝛀 and the corresponding 𝑅𝐴𝐼𝐷𝑀 and 𝑃𝑊 𝐼𝐷𝑀 matrices
5. Elicit the artificial DM’s preferences
6. Apply the considered methods and compute the corresponding 𝑅𝐴𝐼𝑀𝑒𝑡ℎ𝑜𝑑 and 𝑃𝑊 𝐼𝑀𝑒𝑡ℎ𝑜𝑑 matrices
7. Compute the distance between 𝑅𝐴𝐼𝑀𝑒𝑡ℎ𝑜𝑑 and 𝑅𝐴𝐼𝐷𝑀 as well as between 𝑃𝑊 𝐼𝑀𝑒𝑡ℎ𝑜𝑑 and 𝑃𝑊 𝐼𝐷𝑀

until 1000 runs have not been performed
8. Compute statistics and perform the two-sample Kolmogorov–Smirnov test
7

8

two complete orders ≿1 and ≿2 represented by the matrices 𝑃𝑊 𝐼1 and
𝑊 𝐼2, respectively, we can observe that their distance computed by
q. (12) is equivalent to the Kendall–Tau distance between the two or-
ers [33]. Consequently, we can say that the distance 𝑑(𝑃𝑊 𝐼1, 𝑃𝑊 𝐼2)

represents an extension of the Kendall–Tau distance to probabilistic
preferences.

4.1. Computational experiments

To test our proposals we performed 1000 runs of Algorithm 1 which
steps are described in the following lines:

1. build an evaluation matrix 𝐸 composed of 𝑚 rows and 𝑛 columns.
Each entry of the matrix is sampled uniformly in the interval
[0, 1]. The 𝑖th row in 𝐸 represents the vector of the evaluations
of alternative 𝑎𝑖 on the criteria at hand. 𝐸 is built in such a way
that all alternatives are non-dominated;

2. assume that the artificial DM’s value function is a weighted sum.
For this reason, we randomly generate a weight vector 𝐰𝑟𝑒𝑓 =
[

𝑤𝑟𝑒𝑓 ,1,… , 𝑤𝑟𝑒𝑓 ,𝑛
]

(𝐰𝑟𝑒𝑓 ∈ [0, 1]𝑛 ∶
𝑛
∑

𝑖=1
𝑤𝑟𝑒𝑓 ,𝑖 = 1) defining the

DM’s reference model 𝑈𝑟𝑒𝑓 = 𝐰𝑟𝑒𝑓 on the basis of which the
probability distribution 𝐩𝐷𝑀 shown in Table 1 will be computed;

3. collect a well distributed random sample Ω of weight vectors 𝐰 in
the space

𝐖 =

{

𝐰 ∈ [0, 1]𝑛 ∶
𝑛
∑

𝑖=1
𝑤𝑖 = 1

}

;

4. considering the chosen probability distribution 𝐩𝐷𝑀 in Table 1,
the rank acceptability indices 𝑏𝑟𝐷𝑀 (𝑎) for all 𝑎 ∈ 𝐴 and for all
𝑟 = 1,… , |𝐴|, as well as the pairwise winning indices 𝑝𝐷𝑀 (𝑎, 𝑏)
with 𝑎, 𝑏 ∈ 𝐴 are computed and collected in the 𝑅𝐴𝐼𝐷𝑀 and the
𝑃𝑊 𝐼𝐷𝑀 matrices. Analogously, the 𝑅𝐴𝐼𝑈𝑛𝑖𝑓𝑜𝑟𝑚 and 𝑃𝑊 𝐼𝑈𝑛𝑖𝑓𝑜𝑟𝑚
matrices are computed considering a uniform distribution over
Ω;

5. we extract 𝑧 pairs of alternatives (𝑎, 𝑏) ∈ 𝐴 × 𝐴 on which we
assume the artificial DM has to express its preferences. In par-
ticular, we select the first 𝑧 pairs (𝑎, 𝑏) ∈ 𝐴 × 𝐴 that minimize
|

|

|

𝑝𝑈𝑛𝑖𝑓𝑜𝑟𝑚(𝑎, 𝑏) − 𝑝𝑈𝑛𝑖𝑓𝑜𝑟𝑚(𝑏, 𝑎)
|

|

|

. In this way, we select the ‘‘most
informative’’ pairs since the difference |

|

|

𝑝𝑈𝑛𝑖𝑓𝑜𝑟𝑚(𝑎, 𝑏) − 𝑝𝑈𝑛𝑖𝑓𝑜𝑟𝑚(𝑏, 𝑎)
|

|

|

is minimal when 𝑝𝑈𝑛𝑖𝑓𝑜𝑟𝑚(𝑎, 𝑏) ≅ 𝑝𝑈𝑛𝑖𝑓𝑜𝑟𝑚(𝑏, 𝑎) ≅ 0.5 and, there-
fore, approximately half of the compatible models are in favor
of the preference of 𝑎 over 𝑏, while the others are in favor of
the preference of 𝑏 over 𝑎. For each selected pair (𝑎, 𝑏), the
preference of the artificial DM on it is obtained by looking at
its comparison in 𝑃𝑊 𝐼𝐷𝑀 : if 𝑝𝐷𝑀 (𝑎, 𝑏) > 0.5, then, 𝑎 ≻𝑃𝑟 𝑏,
while 𝑏 ≻𝑃𝑟 𝑎 if 𝑝𝐷𝑀 (𝑏, 𝑎) > 0.5. In the rare case in which
𝑝𝐷𝑀 (𝑎, 𝑏) = 𝑝𝐷𝑀 (𝑏, 𝑎) = 0.5, then the preference information of
7

the DM is 𝑎 ≿𝑃𝑟 𝑏 and 𝑏 ≿𝑃𝑟 𝑎, that is, 𝑎 and 𝑏 are indifferent;
6. considering the artificial DM’s preference information built in step
5. we apply the 𝑆𝑆𝑂𝑅𝐴𝐶𝐺, 𝑆𝑆𝑂𝑅𝐴𝐶𝐺

𝑝𝑙 and 𝑆𝑆𝑂𝑅𝐴𝐶𝐺
𝑛𝑙 methods

as described in Sections 3.1–3.3, respectively and, then, we
compute the corresponding 𝑅𝐴𝐼𝑀𝑒𝑡ℎ𝑜𝑑 and 𝑃𝑊 𝐼𝑀𝑒𝑡ℎ𝑜𝑑 matrices;
in some cases, we considered also the SSOR method presented
in [8] and the logistic model that we will briefly recall in
Section 5.1. Regarding 𝑆𝑆𝑂𝑅𝐴𝐶𝐺

𝑝𝑙 , let us observe that the prob-
ability distribution built on Ω by the method is defined by three
breakpoints:

𝑑1 = 0, 𝑑2 =
max

𝑡=1,…,|Ω|

𝑑𝑟𝑒𝑓 (𝑈𝑡)

2
, 𝑑3 = max

𝑡=1,…,|Ω|

𝑑𝑟𝑒𝑓 (𝑈𝑡);

Note 4.1 As described in detail in Section 3.2 (the same holds
for 𝑆𝑆𝑂𝑅𝐴𝐶𝐺 described in Section 3.1) the probability distri-
bution computed by 𝑆𝑆𝑂𝑅𝐴𝐶𝐺

𝑝𝑙 is the barycenter of a sample of
probability distributions compatible with constraints in 𝐸𝐴𝐶𝐺

𝑝𝑙 .
This implies that, solving the LP problem (6), 𝐸𝐴𝐶𝐺

𝑝𝑙 is feasible
and 𝜀∗𝑝𝑙 > 0. If for the preference information provided by the
artificial DM there is no compatible value function (𝐸𝐴𝐶𝐺

𝑝𝑙 is
infeasible or 𝜀∗𝑝𝑙 ⩽ 0), then, we cannot compute the mentioned
barycenter and, therefore, we consider as probability distribu-
tion the one obtained solving the LP problem (6). It does not
satisfy all constraints in 𝐸𝐴𝐶𝐺

𝑝𝑙 but, however, it is the maximally
discriminant one;

. we compute the distances described in Section 4 between, on the
one hand, 𝑅𝐴𝐼𝐷𝑀 and 𝑅𝐴𝐼𝑀𝑒𝑡ℎ𝑜𝑑 and, on the other hand,
between 𝑃𝑊 𝐼𝐷𝑀 and 𝑃𝑊 𝐼𝑀𝑒𝑡ℎ𝑜𝑑 ;

. after 1000 runs have been performed, we show the following re-
sults:

• mean and standard deviation of the distances computed in
step 𝟕.; the lower the mean and the standard deviation,
the better is the considered method in approximating the
artificial DM’s preferences; for brevity, in the following,
we shall speak about the distance between 𝑅𝐴𝐼𝐷𝑀 and
𝑅𝐴𝐼𝑀𝑒𝑡ℎ𝑜𝑑 and between 𝑃𝑊 𝐼𝐷𝑀 and 𝑃𝑊 𝐼𝑀𝑒𝑡ℎ𝑜𝑑 omit-
ting the term ‘‘matrices’’; analogously, we shall say also
the distance between RAI matrices and distance between
PWI matrices to denote, on the one hand, the distance
between 𝑅𝐴𝐼𝐷𝑀 and 𝑅𝐴𝐼𝑀𝑒𝑡ℎ𝑜𝑑 and, on the other hand,
the distance between 𝑃𝑊 𝐼𝐷𝑀 and 𝑃𝑊 𝐼𝑀𝑒𝑡ℎ𝑜𝑑 ;

• two versions of the two-sample Kolmogorov–Smirnov test
[34] on the distances computed in step 𝟕. have been per-
formed at the 5% significance level. In the first (‘‘equal
test’’), we test the null hypothesis of equality between two
empirical distribution functions, say 𝐹1 and 𝐹2, versus
the alternative hypothesis that the two distributions are
different. In the second (‘‘greater test’’), we test the null
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hypothesis that 𝐹1 is smaller than or equal to 𝐹2, versus the
alternative hypothesis that 𝐹1 is ‘‘greater’’ than 𝐹2. Observe
that in terms of cumulative distribution functions of the
1000 distances, 𝐹1 is greater than 𝐹2 if 𝐹1 is more concen-
trated on smaller distances than 𝐹2, so that, we can say
that, in this case, 𝐹1 fits the DM’s probability distribution
better than 𝐹2. Consequently, in simple words, if the null
hypothesis of equality between empirical distributions can
be rejected in favor of the alternative hypothesis that 𝐹1
is greater than 𝐹2, we can conclude that statistically 𝐹1 is
better than 𝐹2. Observe that the above-mentioned tests are
performed in a sequential way. At first, the null hypothesis
of equality between 𝐹1 and 𝐹2 is checked. If it is not
rejected, then, the two distributions are equal and that’s
all. In the opposite case, that is, the null hypothesis is
rejected (the two distributions are not equal), the alter-
native hypothesis is tested to check if one distribution is
greater than the other. Therefore, in the tables below (and
in those included in the supplementary material), the value
of ℎ in correspondence of the ordered pair of distributions
(

𝐹1, 𝐹2
)

has to be read in the following way:

– for the equal test, ℎ = 1 means that the null hy-
pothesis is rejected and, therefore, 𝐹1 and 𝐹2 are not
equal,

– for the equal test, ℎ = 0 means that the null hy-
pothesis is not rejected and, therefore, 𝐹1 and 𝐹2 are
equal,

– ℎ = 1 for the greater test means that the null hypoth-
esis is rejected and, consequently, 𝐹1 is greater than
𝐹2,

– ℎ = 0 for the greater test means that the null hypoth-
esis is not rejected and, consequently, 𝐹1 is smaller
than or equal to 𝐹2;

• percentage of ‘‘correct comparisons’’ provided by the
method: to further check the capabilities of each method
to discover the DM’s preference model, we computed
the percentage of pairs of alternatives (not included be-
tween the 𝑧 provided as reference examples from the
DM) correctly compared by the artificial DM. Formally,
considering the pair of alternatives (𝑎, 𝑏) ∈ 𝐴 × 𝐴 on
which the artificial DM did not provide any preference
information (we shall briefly call a pair of this type no
reference pair), we can state that the considered method
replies the comparison provided by the artificial DM on
(𝑎, 𝑏) iff the probabilistic preferences of the DM (𝑝𝐷𝑀 (𝑎, 𝑏))
correspond to the probabilistic preferences of the induced
probability mass comparisons (𝑝𝑀𝑒𝑡ℎ𝑜𝑑 (𝑎, 𝑏)). This means
that for both probabilistic preferences 𝑎 is (weakly) pre-
ferred to 𝑏 (𝑝𝐷𝑀 (𝑎, 𝑏) ⩾ 0.5 and 𝑝𝑀𝑒𝑡ℎ𝑜𝑑 (𝑎, 𝑏) ⩾ 0.5) or for
both probabilistic preferences 𝑏 is (weakly) preferred to 𝑎
(𝑝𝐷𝑀 (𝑎, 𝑏) ⩽ 0.5 and 𝑝𝑀𝑒𝑡ℎ𝑜𝑑 (𝑎, 𝑏) ⩽ 0.5). This is equivalent
to the condition

(

𝑝𝐷𝑀 (𝑎, 𝑏) − 0.5
)

⋅
(

𝑝𝑀𝑒𝑡ℎ𝑜𝑑 (𝑎, 𝑏) − 0.5
)

⩾ 0. (13)

Denoting by 𝑧𝐶𝑜𝑟𝑟𝑒𝑐𝑡
𝑀𝑒𝑡ℎ𝑜𝑑 the number of no reference pairs

correctly compared by the considered method and by
𝑧 =

(𝑚
2

)

− 𝑧 the total number of no reference pairs, the
percentage of correct comparisons is therefore:

𝐶𝑜𝑟𝑟𝑒𝑐𝑡% =
𝑧𝐶𝑜𝑟𝑟𝑒𝑐𝑡
𝑀𝑒𝑡ℎ𝑜𝑑 . (14)
8

𝑀𝑒𝑡ℎ𝑜𝑑 𝑧
5. Results of the performed experiments

In this section, we shall present the results of the experiments
described in detail in the previous section. In particular, in Section 5.1,
we shall assume that the artificial DM is evaluating alternatives by
considering a single value function sampled as in step 𝟐. of Algorithm
, while, in Section 5.2 we shall show the results of the experiments
ssuming that (i) the artificial DM is evaluating the alternatives con-
idering not a single value function but a plurality of them and, (ii) on
he set composed of these value functions, a probability distribution, to
e discovered by the considered methods, is defined. As a setting for
hese experiments, we considered 𝑚 = 8, 𝑛 = 4, and 𝑧 = 4. In Section 6
e present an in-depth sensitivity analysis with respect to the values of

he considered parameters and the form of the artificial DM’s preference
odel.

.1. Unique value function (𝛿𝑈𝑟𝑒𝑓
)

In this section, we assume that the artificial DM evaluates the
lternatives using a unique model, being the one sampled in step 𝟐.
f Algorithm 1 and, consequently, 𝐩𝐷𝑀 = 𝛿𝑈𝑟𝑒𝑓

. Here 𝑅𝐴𝐼𝐷𝑀 and
𝑃𝑊 𝐼𝐷𝑀 are binary matrices, while, this is not the case, in general,
for 𝑅𝐴𝐼 and 𝑃𝑊 𝐼 matrices obtained by our three methods. Since the
artificial DM evaluates using a single value function, we can look at our
proposals as estimation methods via distribution fitting. For this reason,
we compare the obtained results with those got by a logistic regression
model (see [35]) which is the standard approach in economics for such
a type of problem. We shall therefore assume that, given 𝑎, 𝑏 ∈ 𝐴, the
probability of weak preference of 𝑎 over 𝑏 (𝑎 ≿ 𝑏) is the one shown in
the following equation

𝑃 (𝑎 ≿ 𝑏) = 1
1 + 𝑒𝛽1(𝑔1(𝑏)−𝑔1(𝑎))+⋯+𝛽𝑛(𝑔𝑛(𝑏)−𝑔𝑛(𝑎))

(15)

here 𝛽1,… , 𝛽𝑛 are estimated by using the preferences given by the
rtificial DM as described in step 5. of Algorithm 1. We then use the
stimated model to assign the preference probability to the no reference
airs of alternatives. We refer to this model as 𝐿𝑜𝑔𝑖𝑠𝑡𝑖𝑐.

Looking at the results of the performed experiments in this case, we
bserve the following:

• In Tables 2(a) and 2(b) we show the mean and standard de-
viation of the distances between, on the one hand, 𝑅𝐴𝐼𝐷𝑀
and 𝑅𝐴𝐼𝑀𝑒𝑡ℎ𝑜𝑑 and, on the other hand, between 𝑃𝑊 𝐼𝐷𝑀 and
𝑃𝑊 𝐼𝑀𝑒𝑡ℎ𝑜𝑑 (in the tables, we put in bold and italics the best
(minimum) mean and standard deviation values). In both cases
(here and in the following) we have that

𝑀𝑒𝑡ℎ𝑜𝑑 ∈ {𝑈𝑛𝑖𝑓𝑜𝑟𝑚,𝐿𝑜𝑔𝑖𝑠𝑡𝑖𝑐, 𝑆𝑆𝑂𝑅,𝑆𝑆𝑂𝑅𝐴𝐶𝐺 , 𝑆𝑆𝑂𝑅𝐴𝐶𝐺
𝑝𝑙 , 𝑆𝑆𝑂𝑅𝐴𝐶𝐺

𝑛𝑙 }.

One can see that 𝑆𝑆𝑂𝑅𝐴𝐶𝐺
𝑛𝑙 has the minimal mean distance both

considering the RAI and the PWI matrices. However, it presents
the greatest standard deviation considering the distance between
the RAI matrices, while the standard deviation of the distances
between the PWI matrices is comparable with the others.
As to the 𝐿𝑜𝑔𝑖𝑠𝑡𝑖𝑐 model, let us observe that, it can be used only
to compute the PWI matrix since, as shown in Eq. (15), it gives
the probability of weak preference of an alternative over another
but it cannot be used to compute the rank acceptability indices.
However, let us observe that the mean distance between 𝑃𝑊 𝐼𝐷𝑀
and 𝑃𝑊 𝐼𝐿𝑜𝑔𝑖𝑠𝑡𝑖𝑐 is worse than the one obtained by all other
methods apart from the uniform one. The model presents also
a very high standard deviation compared to the other methods
(almost three times worse);

• Table 3 shows the results of the Kolmogorov–Smirnov test applied
to the distances between 𝑅𝐴𝐼𝐷𝑀 and 𝑅𝐴𝐼𝑀𝑒𝑡ℎ𝑜𝑑 (see Tables 3(a)
and 3(b)) and to the distances between 𝑃𝑊 𝐼𝐷𝑀 and 𝑃𝑊 𝐼𝑀𝑒𝑡ℎ𝑜𝑑

(see Tables 3(a) and 3(b)).
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Looking at the ‘‘equal test’’ between the RAI matrices (see Ta-
ble 3(a)), one can observe only three pairs of methods presenting
ℎ = 0 and for which, consequently, the corresponding distri-
butions are equal:

(

𝑆𝑆𝑂𝑅,𝑆𝑆𝑂𝑅𝐴𝐶𝐺),
(

𝑆𝑆𝑂𝑅,𝑆𝑆𝑂𝑅𝐴𝐶𝐺
𝑝𝑙

)

and
(

𝑆𝑆𝑂𝑅𝐴𝐶𝐺 , 𝑆𝑆𝑂𝑅𝐴𝐶𝐺
𝑝𝑙

)

. In all the other cases, the value ℎ = 1
represents a rejection of the hypothesis of equality between the
considered distributions in favor of the alternative hypothesis.
Considering, instead, the equal test applied to the distances be-
tween the PWI matrices (see Table 3(c)), all pairs of methods are
different.
As previously described, for the cases presenting ℎ = 1 for the
equal test, we performed the ‘‘greater test’’ whose results are
shown in Tables 3(b) and 3(d). To better read the data in the
tables, let us observe that the following cases can occur:

– ℎ = 1 for the greater test applied to (𝐹1, 𝐹2) and ℎ = 0 for
the greater test applied to (𝐹2, 𝐹1): in this case, the curve
of the cumulative distribution function of 𝐹1 is greater than
the one corresponding to 𝐹2 but it is not true the vice versa.
Therefore, 𝐹1 is better than 𝐹2 (see Fig. 1),

– ℎ = 1 for the greater test applied to (𝐹1, 𝐹2) as well as for the
greater test applied to (𝐹2, 𝐹1): in this case, the curves of the
cumulative distribution functions corresponding to the two
methods intersect each other (see Fig. 2) and, therefore, up
to a certain distance, 𝐹1 is greater than 𝐹2, while, after that,
𝐹2 is greater than 𝐹1. In such a case, the two distributions
are therefore not comparable;

Considering the greater test applied to the distances between
𝑅𝐴𝐼𝐷𝑀 and 𝑅𝐴𝐼𝑀𝑒𝑡ℎ𝑜𝑑 as well as between 𝑃𝑊 𝐼𝐷𝑀 and
𝑃𝑊 𝐼𝑀𝑒𝑡ℎ𝑜𝑑 one can observe that, 𝑆𝑆𝑂𝑅𝐴𝐶𝐺

𝑛𝑙 is better than all
other methods, while 𝑈𝑛𝑖𝑓𝑜𝑟𝑚 is worse than all other methods.
The greater test applied to the distance between the PWI matrices
gives different recommendations about the three pairs of methods
being equal for the equal test applied to the RAI matrices: on the
one hand, 𝑆𝑆𝑂𝑅𝐴𝐶𝐺 is better than 𝑆𝑆𝑂𝑅 and 𝑆𝑆𝑂𝑅𝐴𝐶𝐺

𝑝𝑙 , while,
on the other hand, 𝑆𝑆𝑂𝑅𝐴𝐶𝐺

𝑝𝑙 is better than 𝑆𝑆𝑂𝑅.
A different argumentation has to be done for the 𝐿𝑜𝑔𝑖𝑠𝑡𝑖𝑐 model.
Considering the equal test applied to the distances between
𝑃𝑊 𝐼𝐷𝑀 and 𝑃𝑊 𝐼𝑀𝑒𝑡ℎ𝑜𝑑 , one can observe that its cumulative dis-
tribution function is different from all the others (see Table 3(c)).
However, considering the greater test, we can say that 𝑆𝑆𝑂𝑅𝐴𝐶𝐺

𝑛𝑙
is better than the 𝐿𝑜𝑔𝑖𝑠𝑡𝑖𝑐 model but the same 𝐿𝑜𝑔𝑖𝑠𝑡𝑖𝑐 model is
incomparable with all the others;

• To better understand the capacity of the methods to replicate the
DM’s preferences, in Table 4, we report the percentage of right
comparisons of no reference pairs of alternatives computed by
Eq. (14).
Looking at the results one can have confirmation that 𝑆𝑆𝑂𝑅𝐴𝐶𝐺

𝑛𝑙
is the best among the considered methods since it is able to cor-
rectly compare 85.23% of the no reference pairs of alternatives.
Moreover, the method presents the lowest standard deviation
meaning that the variability of the obtained results is lower
than the one obtained by other methods. Looking at the worst
method, instead, it seems to be the 𝐿𝑜𝑔𝑖𝑠𝑡𝑖𝑐 since it is able to
correctly compare only around 61% of the pairs of no reference
alternatives.

5.2. Artificial DM with a probability distribution on a set of value functions

In this section, we show the results of the experiments presented
in Section 4 assuming that the artificial DM evaluates using a sample
of value functions Ω on which a probability distribution function 𝐩𝐷𝑀
9

among those shown in Table 1 is defined. a
Table 2
Mean and standard deviation of the distances between
𝑅𝐴𝐼𝐷𝑀 and 𝑅𝐴𝐼𝑀𝑒𝑡ℎ𝑜𝑑 and between 𝑃𝑊 𝐼𝐷𝑀 and
𝑃𝑊 𝐼𝑀𝑒𝑡ℎ𝑜𝑑 for the unique model: 𝐩𝐷𝑀 = 𝛿𝑈𝑟𝑒𝑓

.

(a) Distance between 𝑅𝐴𝐼𝐷𝑀 and 𝑅𝐴𝐼𝑀𝑒𝑡ℎ𝑜𝑑

Model Mean Stdv

Uniform 1.518 0.179
𝑆𝑆𝑂𝑅 1.415 0.204

𝑆𝑆𝑂𝑅𝐴𝐶𝐺 1.407 0.223

𝑆𝑆𝑂𝑅𝐴𝐶𝐺
𝑝𝑙 1.425 0.219

𝑆𝑆𝑂𝑅𝐴𝐶𝐺
𝑛𝑙 1.026 0.507

(b) Distance between 𝑃𝑊 𝐼𝐷𝑀 and 𝑃𝑊 𝐼𝑀𝑒𝑡ℎ𝑜𝑑

Model Mean Stdv

Logistic 0.328 0.206
Uniform 0.355 0.074
𝑆𝑆𝑂𝑅 0.310 0.065

𝑆𝑆𝑂𝑅𝐴𝐶𝐺 0.292 0.071

𝑆𝑆𝑂𝑅𝐴𝐶𝐺
𝑝𝑙 0.305 0.074

𝑆𝑆𝑂𝑅𝐴𝐶𝐺
𝑛𝑙 0.147 0.080

5.2.1. Normal distribution (𝐩𝑁𝑜𝑟)
In this section, we assume that the probability distribution of the

rtificial DM on Ω is 𝐩𝑁𝑜𝑟 (see Table 1). In this case, we sample the 𝜆
arameter in [0.01, 0.2] once for each of the 1000 runs. We obtain the
ollowing:

• In Tables 5(a) and 5(b) we show the mean and standard de-
viation of the distances between, on the one hand, 𝑅𝐴𝐼𝐷𝑀
and 𝑅𝐴𝐼𝑀𝑒𝑡ℎ𝑜𝑑 and, on the other hand, between 𝑃𝑊 𝐼𝐷𝑀 and
𝑃𝑊 𝐼𝑀𝑒𝑡ℎ𝑜𝑑 . We can observe that 𝑆𝑆𝑂𝑅𝐴𝐶𝐺

𝑛𝑙 has the lowest mean
distance between both RAI and the PWI matrices. The second best
method is 𝑆𝑆𝑂𝑅𝐴𝐶𝐺 considering RAI and PWI mean distances,
while the worst method seems to be the 𝑈𝑛𝑖𝑓𝑜𝑟𝑚 one presenting
the greatest distances. As to the standard deviation, it is very
similar for all the considered methods for both distances;

• Considering the Kolmogorov–Smirnov test applied to the dis-
tances between 𝑅𝐴𝐼𝐷𝑀 and 𝑅𝐴𝐼𝑀𝑒𝑡ℎ𝑜𝑑 and to the distance be-
tween 𝑃𝑊 𝐼𝐷𝑀 and 𝑃𝑊 𝐼𝑀𝑒𝑡ℎ𝑜𝑑 we can observe the following3:
on the one hand, the equal test applied to the distances be-
tween 𝑅𝐴𝐼𝐷𝑀 and 𝑅𝐴𝐼𝑀𝑒𝑡ℎ𝑜𝑑 shows that the pairs of meth-
ods (𝑈𝑛𝑖𝑓𝑜𝑟𝑚, 𝑆𝑆𝑂𝑅) and (𝑆𝑆𝑂𝑅𝐴𝐶𝐺 , 𝑆𝑆𝑂𝑅𝐴𝐶𝐺

𝑝𝑙 ) are equivalent
since the corresponding distributions are equal; on the other
hand, considering the equal test for the distances between
𝑃𝑊 𝐼𝐷𝑀 and 𝑃𝑊 𝐼𝑀𝑒𝑡ℎ𝑜𝑑 , again (𝑈𝑛𝑖𝑓𝑜𝑟𝑚, 𝑆𝑆𝑂𝑅) and
(𝑆𝑆𝑂𝑅𝐴𝐶𝐺 , 𝑆𝑆𝑂𝑅𝐴𝐶𝐺

𝑝𝑙 ) are equivalent.
Going to the results of the greater test applied to the distances
between 𝑅𝐴𝐼𝐷𝑀 and 𝑅𝐴𝐼𝑀𝑒𝑡ℎ𝑜𝑑 , our three proposals 𝑆𝑆𝑂𝑅𝐴𝐶𝐺,
𝑆𝑆𝑂𝑅𝐴𝐶𝐺

𝑝𝑙 and 𝑆𝑆𝑂𝑅𝐴𝐶𝐺
𝑛𝑙 are better than 𝑈𝑛𝑖𝑓𝑜𝑟𝑚 and 𝑆𝑆𝑂𝑅

(being equivalent for the equal test). Considering the greater
test for the distance between 𝑃𝑊 𝐼𝐷𝑀 and 𝑃𝑊 𝐼𝑀𝑒𝑡ℎ𝑜𝑑 , instead,
𝑆𝑆𝑂𝑅𝐴𝐶𝐺

𝑛𝑙 is better than all other methods, while 𝑆𝑆𝑂𝑅𝐴𝐶𝐺
𝑝𝑙 and

𝑆𝑆𝑂𝑅𝐴𝐶𝐺 are better than both 𝑈𝑛𝑖𝑓𝑜𝑟𝑚 and 𝑆𝑆𝑂𝑅 methods;
• For each method, to better understand the capacity to repli-

cate the artificial DM’s preferences, in Table 6, we report the
percentage of right comparisons of no reference pairs of alterna-
tives computed by Eq. (14). Again we can confirm 𝑆𝑆𝑂𝑅𝐴𝐶𝐺

𝑛𝑙 as
the best among the considered methods having a percentage of

3 To save space we do not report here the tables containing the indicators
nd the 𝑝-values for the considered tests. However, they have been provided
s supplementary material.
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Fig. 1. ℎ = 1 for the greater test applied to (𝐹1 , 𝐹2) and ℎ = 0 for the greater test applied to (𝐹2 , 𝐹1).
Fig. 2. ℎ = 1 both for the greater test applied to (𝐹1 , 𝐹2) and to (𝐹2 , 𝐹1).
the 89.13% to correctly compare no reference pairs of alterna-
tives. Moreover, the method presents also in this case the lowest
standard deviation meaning that the variability of the obtained
results is low even if similar to the one obtained by the other
methods. The lowest percentage is observable for the 𝑈𝑛𝑖𝑓𝑜𝑟𝑚
method comparing correctly 77.44% of no reference pairs of
alternatives, almost 10% less than all other methods. Moreover,
𝑈𝑛𝑖𝑓𝑜𝑟𝑚 presents the greatest standard deviation showing a great
variability.

5.2.2. Exponential distribution (𝐩𝐸𝑥𝑝)
If we assume that the DM evaluates the alternatives by using

an exponential distribution function (𝐩𝐷𝑀 = 𝐩𝐸𝑥𝑝 and an integer
𝜆 ∈ [8, 13]), the results of the experiments described in Section 4.1
show that:

• In Tables 7(a) and 7(b) we observe that the distances between
𝑅𝐴𝐼𝐷𝑀 and 𝑅𝐴𝐼𝑀𝑒𝑡ℎ𝑜𝑑 and between 𝑃𝑊 𝐼𝐷𝑀 and 𝑃𝑊 𝐼𝑀𝑒𝑡ℎ𝑜𝑑 ob-
tained applying all considered methods. As one can see, 𝑆𝑆𝑂𝑅𝐴𝐶𝐺

presents the lowest mean distance between the RAI matrices (see
Table 7(a)), while 𝑆𝑆𝑂𝑅𝐴𝐶𝐺

𝑛𝑙 has the lowest mean distance be-
tween the PWI matrices (see Table 7(b)). The method presenting
the greatest mean distances is the 𝑈𝑛𝑖𝑓𝑜𝑟𝑚 one;
10
• Checking if the above comparisons are significant from the statis-
tical point of view, the first version of the Kolmogorov–Smirnov
test (equal test) applied to the distances between 𝑅𝐴𝐼𝐷𝑀 and
𝑅𝐴𝐼𝑀𝑒𝑡ℎ𝑜𝑑 shows that the distributions of the pairs of methods
(𝑆𝑆𝑂𝑅𝐴𝐶𝐺, 𝑆𝑆𝑂𝑅𝐴𝐶𝐺

𝑝𝑙 ), (𝑆𝑆𝑂𝑅𝐴𝐶𝐺, 𝑆𝑆𝑂𝑅𝐴𝐶𝐺
𝑛𝑙 ) and (𝑆𝑆𝑂𝑅𝐴𝐶𝐺

𝑝𝑙 ,
𝑆𝑆𝑂𝑅𝐴𝐶𝐺

𝑛𝑙 ) are equal, while, this is not the case for all other
pairs of methods. In particular, the distributions corresponding to
𝑆𝑆𝑂𝑅𝐴𝐶𝐺, 𝑆𝑆𝑂𝑅𝐴𝐶𝐺

𝑝𝑙 and 𝑆𝑆𝑂𝑅𝐴𝐶𝐺
𝑛𝑙 are greater (and, therefore,

better) than the distributions corresponding to the 𝑈𝑛𝑖𝑓𝑜𝑟𝑚 and
𝑆𝑆𝑂𝑅 methods.
Considering the distributions of the distances between 𝑃𝑊 𝐼𝐷𝑀
and 𝑃𝑊 𝐼𝑀𝑒𝑡ℎ𝑜𝑑 , the equal test shows that they are equal for the
pair of methods (𝑆𝑆𝑂𝑅𝐴𝐶𝐺, 𝑆𝑆𝑂𝑅𝐴𝐶𝐺

𝑝𝑙 ). Going to the greater
test, on the one hand, it shows, that our proposals are better than
𝑈𝑛𝑖𝑓𝑜𝑟𝑚 and 𝑆𝑆𝑂𝑅 methods but, on the other hand, it proves
that 𝑆𝑆𝑂𝑅𝐴𝐶𝐺

𝑛𝑙 is better than both 𝑆𝑆𝑂𝑅𝐴𝐶𝐺 and 𝑆𝑆𝑂𝑅𝐴𝐶𝐺
𝑝𝑙 ;

• Considering the capacity of the methods to replicate the artificial
DM’s preferences, in Table 8, we report the percentage of right
comparisons of no reference pairs of alternatives computed by
Eq. (14). Looking at the results one can see that 𝑆𝑆𝑂𝑅𝐴𝐶𝐺

𝑛𝑙 has
the greatest percentage of correct comparisons (89.32%). Again,
the 𝑈𝑛𝑖𝑓𝑜𝑟𝑚 is the worst among the methods at hand having the
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Table 3
Kolmogorov–Smirnov test for the distances between, on the one hand, 𝑅𝐴𝐼𝐷𝑀 and 𝑅𝐴𝐼𝑀𝑒𝑡ℎ𝑜𝑑 matrices and, on the other hand, between 𝑃𝑊 𝐼𝐷𝑀
and 𝑃𝑊 𝐼𝑀𝑒𝑡ℎ𝑜𝑑 matrices. 𝐩𝐷𝑀 = 𝛿𝑈𝑟𝑒𝑓

.

(a) Distance between RAI matrices:‘‘Equal’’ Test

h/p-value 𝑆𝑆𝑂𝑅 𝑆𝑆𝑂𝑅𝐴𝐶𝐺 𝑆𝑆𝑂𝑅𝐴𝐶𝐺
𝑝𝑙 𝑆𝑆𝑂𝑅𝐴𝐶𝐺

𝑛𝑙

𝑈𝑛𝑖𝑓𝑜𝑟𝑚 1/2,96E−23 1/1,11E−21 1/1,29E−16 1/3,8E−138

𝑆𝑆𝑂𝑅 ■ 0/0,393527 0/0,066631 1/1,6E−99

𝑆𝑆𝑂𝑅𝐴𝐶𝐺 ■ ■ 0/0,257511 1/1,44E−88

𝑆𝑆𝑂𝑅𝐴𝐶𝐺
𝑝𝑙 ■ ■ ■ 1/5,04E−97

(b) Distance between RAI matrices: ‘‘Greater’’ test

h/p-value 𝑈𝑛𝑖𝑓𝑜𝑟𝑚 𝑆𝑆𝑂𝑅 𝑆𝑆𝑂𝑅𝐴𝐶𝐺 𝑆𝑆𝑂𝑅𝐴𝐶𝐺
𝑝𝑙 𝑆𝑆𝑂𝑅𝐴𝐶𝐺

𝑛𝑙

𝑈𝑛𝑖𝑓𝑜𝑟𝑚 ■ 0/1 0/0,998989 0/0,998989 0/0,232195

𝑆𝑆𝑂𝑅 1/1,48E−23 ■ 0/0,531526 1/0,033317 0/0,052409

𝑆𝑆𝑂𝑅𝐴𝐶𝐺 1/5,55E−22 0/0,198309 ■ 0/0,129033 0/0,052409

𝑆𝑆𝑂𝑅𝐴𝐶𝐺
𝑝𝑙 1/6,47E−17 0/0,746591 0/0,995963 ■ 0/0,079818

𝑆𝑆𝑂𝑅𝐴𝐶𝐺
𝑛𝑙 1/1,9E−138 1/8,2E−100 1/7,22E−89 1/2,52E−97 ■

(c) Distance between PWI matrices:‘‘Equal’’ Test

h/p-value 𝑆𝑆𝑂𝑅 𝐿𝑜𝑔𝑖𝑠𝑡𝑖𝑐 𝑆𝑆𝑂𝑅𝐴𝐶𝐺 𝑆𝑆𝑂𝑅𝐴𝐶𝐺
𝑝𝑙 𝑆𝑆𝑂𝑅𝐴𝐶𝐺

𝑛𝑙

𝑈𝑛𝑖𝑓𝑜𝑟𝑚 1/1,12E−32 1/3,56E−63 1/2,71E−58 1/1,3E−37 1/6,9E−306

𝑆𝑆𝑂𝑅 ■ 1/2,67E−50 1/1,98E−08 1/0,00498 1/7,1E−265

𝐿𝑜𝑔𝑖𝑠𝑡𝑖𝑐 ■ ■ 1/1,21E−38 1/1,1E−39 1/2,9E−98

𝑆𝑆𝑂𝑅𝐴𝐶𝐺 ■ ■ ■ 1/0,000664 1/6,1E−220

𝑆𝑆𝑂𝑅𝐴𝐶𝐺
𝑝𝑙 ■ ■ ■ ■ 1/1,9E−234

(d) Distance between PWI matrices: ‘‘Greater’’ test

h/p-value 𝑈𝑛𝑖𝑓𝑜𝑟𝑚 𝑆𝑆𝑂𝑅 𝐿𝑜𝑔𝑖𝑠𝑡𝑖𝑐 𝑆𝑆𝑂𝑅𝐴𝐶𝐺 𝑆𝑆𝑂𝑅𝐴𝐶𝐺
𝑝𝑙 𝑆𝑆𝑂𝑅𝐴𝐶𝐺

𝑛𝑙

𝑈𝑛𝑖𝑓𝑜𝑟𝑚 ■ 0/1 1/1,35E−21 0/1 0/1 0/1
𝑆𝑆𝑂𝑅 1/5,59E−33 ■ 1/3,79E−36 0/0,99094 0/0,585712 0/1

𝐿𝑜𝑔𝑖𝑠𝑡𝑖𝑐 1/1,78E−63 1/1,33E−50 ■ 1/6,05E−39 1/5,48E−40 0/0,820209

𝑆𝑆𝑂𝑅𝐴𝐶𝐺 1/1,36E−58 1/9,92E−09 1/1,17E−37 ■ 1/0,000332 0/1

𝑆𝑆𝑂𝑅𝐴𝐶𝐺
𝑝𝑙 1/6,48E−38 1/0,00249 1/1,07E−33 0/0,998989 ■ 0/1

𝑆𝑆𝑂𝑅𝐴𝐶𝐺
𝑛𝑙 1/3,5E−306 1/3,5E−265 1/1,45E−98 1/3,1E−220 1/9,4E−235 ■
Table 4
Percentage of no reference pairs of alternatives cor-
rectly assigned by each method. 𝐩𝐷𝑀 = 𝛿𝑈𝑟𝑒𝑓

and
𝑧 = 4.

Model Mean Stdv

𝑈𝑛𝑖𝑓𝑜𝑟𝑚 67.98% 15.60%

𝑆𝑆𝑂𝑅 79.29% 13.28%

𝐿𝑜𝑔𝑖𝑠𝑡𝑖𝑐 61.06% 23.61%

𝑆𝑆𝑂𝑅𝐴𝐶𝐺 79.65% 13.27%

𝑆𝑆𝑂𝑅𝐴𝐶𝐺
𝑝𝑙 78.48% 13.69%

𝑆𝑆𝑂𝑅𝐴𝐶𝐺
𝑛𝑙 85.23% 11.44%

lowest percentage of right comparisons. As to the standard devi-
ation 𝑆𝑆𝑂𝑅𝐴𝐶𝐺

𝑛𝑙 has the lowest variability, while, the 𝑈𝑛𝑖𝑓𝑜𝑟𝑚
method has the greatest one.

.2.3. 1/D distribution (𝐩1∕𝐷)
Performing 1000 iterations of the procedure described in Section 4

ssuming that the artificial DM’s probability distribution over Ω is 𝐩1∕𝐷
considering 𝜆 randomly taken in [2.5, 7.5] for each run), we obtain the
ollowing:

• In Tables 9(a) and 9(b) we show the mean and standard deviation
of the distances between 𝑅𝐴𝐼𝐷𝑀 and 𝑅𝐴𝐼𝑀𝑒𝑡ℎ𝑜𝑑 as well as be-
tween 𝑃𝑊 𝐼 and 𝑃𝑊 𝐼 for each considered method. We
11

𝐷𝑀 𝑀𝑒𝑡ℎ𝑜𝑑
Table 5
Mean and standard deviation of the distances between
𝑅𝐴𝐼𝐷𝑀 and 𝑅𝐴𝐼𝑀𝑒𝑡ℎ𝑜𝑑 and between 𝑃𝑊 𝐼𝐷𝑀 and
𝑃𝑊 𝐼𝑀𝑒𝑡ℎ𝑜𝑑 for the distribution 𝐩𝐷𝑀 = 𝐩𝑁𝑜𝑟.

(a) Distance between 𝑅𝐴𝐼𝐷𝑀 and 𝑅𝐴𝐼𝑀𝑒𝑡ℎ𝑜𝑑

Model Mean Stdv

Uniform 0.885 0.331

𝑆𝑆𝑂𝑅 0.789 0.321

𝑆𝑆𝑂𝑅𝐴𝐶𝐺 0.741 0.342

𝑆𝑆𝑂𝑅𝐴𝐶𝐺
𝑝𝑙 0.764 0.343

𝑆𝑆𝑂𝑅𝐴𝐶𝐺
𝑛𝑙 0.684 0.341

(b) Distance between 𝑃𝑊 𝐼𝐷𝑀 and 𝑃𝑊 𝐼𝑀𝑒𝑡ℎ𝑜𝑑

Model Mean Stdv

Uniform 0.226 0.078

𝑆𝑆𝑂𝑅 0.191 0.070

𝑆𝑆𝑂𝑅𝐴𝐶𝐺 0.169 0.073

𝑆𝑆𝑂𝑅𝐴𝐶𝐺
𝑝𝑙 0.181 0.073

𝑆𝑆𝑂𝑅𝐴𝐶𝐺
𝑛𝑙 0.118 0.056

can observe that 𝑆𝑆𝑂𝑅𝐴𝐶𝐺
𝑛𝑙 has the lowest mean distances con-

sidering the RAI and the PWI matrices. However, it presents the

greatest standard deviation considering the distance between the
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Table 6
Percentage of no reference pairs of alternatives correctly
compared by each method considering 𝐩𝐷𝑀 = 𝐩𝑁𝑜𝑟.

Model Mean Stdv

𝑈𝑛𝑖𝑓𝑜𝑟𝑚 77.44% 12.92%

𝑆𝑆𝑂𝑅 86.75% 10.58%

𝑆𝑆𝑂𝑅𝐴𝐶𝐺 87.70% 10.27%

𝑆𝑆𝑂𝑅𝐴𝐶𝐺
𝑝𝑙 86.85% 10.77%

𝑆𝑆𝑂𝑅𝐴𝐶𝐺
𝑛𝑙 89.13% 9.32%

Table 7
Mean and standard deviation of the distances between
𝑅𝐴𝐼𝐷𝑀 and 𝑅𝐴𝐼𝑀𝑒𝑡ℎ𝑜𝑑 and between 𝑃𝑊 𝐼𝐷𝑀 and
𝑃𝑊 𝐼𝑀𝑒𝑡ℎ𝑜𝑑 for the distribution 𝐩𝐷𝑀 = 𝐩𝐸𝑥𝑝.

(a) Distance between 𝑅𝐴𝐼𝐷𝑀 and 𝑅𝐴𝐼𝑀𝑒𝑡ℎ𝑜𝑑

Model Mean Stdv

Uniform 0.637 0.207

𝑆𝑆𝑂𝑅 0.541 0.176

𝑆𝑆𝑂𝑅𝐴𝐶𝐺 0.478 0.195

𝑆𝑆𝑂𝑅𝐴𝐶𝐺
𝑝𝑙 0.484 0.198

𝑆𝑆𝑂𝑅𝐴𝐶𝐺
𝑛𝑙 0.538 0.253

(b) Distance between 𝑃𝑊 𝐼𝐷𝑀 and 𝑃𝑊 𝐼𝑀𝑒𝑡ℎ𝑜𝑑

Model Mean Stdv

Uniform 0.181 0.065

𝑆𝑆𝑂𝑅 0.145 0.052

𝑆𝑆𝑂𝑅𝐴𝐶𝐺 0.124 0.056

𝑆𝑆𝑂𝑅𝐴𝐶𝐺
𝑝𝑙 0.129 0.058

𝑆𝑆𝑂𝑅𝐴𝐶𝐺
𝑛𝑙 0.117 0.052

Table 8
Percentage of no reference pairs of alternatives correctly
compared by each method considering 𝐩𝐷𝑀 = 𝐩𝐸𝑥𝑝.

Model Mean Stdv

𝑈𝑛𝑖𝑓𝑜𝑟𝑚 77.29% 13.65%

𝑆𝑆𝑂𝑅 87.52% 10.45%

𝑆𝑆𝑂𝑅𝐴𝐶𝐺 88.12% 10.18%

𝑆𝑆𝑂𝑅𝐴𝐶𝐺
𝑝𝑙 87.55% 10.30%

𝑆𝑆𝑂𝑅𝐴𝐶𝐺
𝑛𝑙 89.32% 9.94%

RAI matrices. The standard deviation of the distances computed
between the PWI matrices is the lowest and comparable with the
ones obtained by the other methods. 𝑆𝑆𝑂𝑅𝐴𝐶𝐺 performs slightly
better than 𝑆𝑆𝑂𝑅𝐴𝐶𝐺

𝑝𝑙 for both distances even if the difference
between the two methods is not very large. The 𝑈𝑛𝑖𝑓𝑜𝑟𝑚 is the
worst method also considering this probability distribution over
Ω;

• Applying the equal test of the Kolmogorov–Smirnov to the distri-
butions of the distances between the RAI matrices and between
the PWI matrices, one gets that 𝑆𝑆𝑂𝑅𝐴𝐶𝐺 and 𝑆𝑆𝑂𝑅𝐴𝐶𝐺

𝑝𝑙 are
equal in both cases, while, the distributions for all other pairs
of methods are not equal. Therefore, we performed the greater
test of the Kolmogorov–Smirnov, getting the following evidence:
(i) 𝑆𝑆𝑂𝑅𝐴𝐶𝐺

𝑛𝑙 is better than 𝑈𝑛𝑖𝑓𝑜𝑟𝑚, 𝑆𝑆𝑂𝑅𝐴𝐶𝐺 and 𝑆𝑆𝑂𝑅𝐴𝐶𝐺
𝑝𝑙

considering the distance between RAI matrices as well as the dis-
tance between PWI matrices; (ii) our three proposals (𝑆𝑆𝑂𝑅𝐴𝐶𝐺,
𝑆𝑆𝑂𝑅𝐴𝐶𝐺

𝑝𝑙 and 𝑆𝑆𝑂𝑅𝐴𝐶𝐺
𝑛𝑙 ) are better than the 𝑈𝑛𝑖𝑓𝑜𝑟𝑚 and

𝑆𝑆𝑂𝑅 methods;
• Looking at Table 10, one has the confirmation of the goodness of

the 𝑆𝑆𝑂𝑅𝐴𝐶𝐺
𝑛𝑙 since it presents the greatest percentage (88.18%)

of correct comparisons of no reference pairs of alternatives com-
puted using Eq. (14). The same percentage computed for 𝑆𝑆𝑂𝑅,
12
Table 9
Mean and standard deviation of the distances between
𝑅𝐴𝐼𝐷𝑀 and 𝑅𝐴𝐼𝑀𝑒𝑡ℎ𝑜𝑑 and between 𝑃𝑊 𝐼𝐷𝑀 and
𝑃𝑊 𝐼𝑀𝑒𝑡ℎ𝑜𝑑 for the distribution 𝐩𝐷𝑀 = 𝐩1∕𝐷 .

(a) Distance between 𝑅𝐴𝐼𝐷𝑀 and 𝑅𝐴𝐼𝑀𝑒𝑡ℎ𝑜𝑑

Model Mean Stdv

𝑈𝑛𝑖𝑓𝑜𝑟𝑚 0.778 0.244

𝑆𝑆𝑂𝑅 0.687 0.234

𝑆𝑆𝑂𝑅𝐴𝐶𝐺 0.650 0.248

𝑆𝑆𝑂𝑅𝐴𝐶𝐺
𝑝𝑙 0.655 0.250

𝑆𝑆𝑂𝑅𝐴𝐶𝐺
𝑛𝑙 0.628 0.286

(b) Distance between 𝑃𝑊 𝐼𝐷𝑀 and 𝑃𝑊 𝐼𝑀𝑒𝑡ℎ𝑜𝑑

Model Mean Stdv

𝑈𝑛𝑖𝑓𝑜𝑟𝑚 0.205 0.068

𝑆𝑆𝑂𝑅 0.170 0.058

𝑆𝑆𝑂𝑅𝐴𝐶𝐺 0.149 0.061

𝑆𝑆𝑂𝑅𝐴𝐶𝐺
𝑝𝑙 0.155 0.063

𝑆𝑆𝑂𝑅𝐴𝐶𝐺
𝑛𝑙 0.119 0.050

Table 10
Percentage of no reference pairs of alternatives correctly
compared by each method considering 𝐩𝐷𝑀 = 𝐩1∕𝐷 .

Model Mean Stdv

𝑈𝑛𝑖𝑓𝑜𝑟𝑚 75.98% 13.98%

𝑆𝑆𝑂𝑅 86.20% 10.91%

𝑆𝑆𝑂𝑅𝐴𝐶𝐺 86.48% 10.62%

𝑆𝑆𝑂𝑅𝐴𝐶𝐺
𝑝𝑙 85.37% 11.20%

𝑆𝑆𝑂𝑅𝐴𝐶𝐺
𝑛𝑙 88.18% 10.32%

𝑆𝑆𝑂𝑅𝐴𝐶𝐺 and 𝑆𝑆𝑂𝑅𝐴𝐶𝐺
𝑝𝑙 is quite similar, even if the one corre-

sponding to 𝑆𝑆𝑂𝑅𝐴𝐶𝐺 is slightly greater. The 𝑈𝑛𝑖𝑓𝑜𝑟𝑚 method
confirms to be the worst among those under consideration.
As to the variability of the results, 𝑆𝑆𝑂𝑅𝐴𝐶𝐺

𝑛𝑙 has the lowest stan-
dard deviation, while the maximal is observed in correspondence
of the 𝑈𝑛𝑖𝑓𝑜𝑟𝑚 method. The other three (𝑆𝑆𝑂𝑅, 𝑆𝑆𝑂𝑅𝐴𝐶𝐺 and
𝑆𝑆𝑂𝑅𝐴𝐶𝐺

𝑝𝑙 ) present similar values.

.2.4. ROC distribution (𝐩𝑅𝑂𝐶)
Considering the probability distribution 𝐩𝑅𝑂𝐶 over Ω and a random

∈ {10, 11,… , 100} for each run, we can observe the following:

• In Tables 11(a) and 11(b) we show the distances between, on the
one hand, 𝑅𝐴𝐼𝐷𝑀 and 𝑅𝐴𝐼𝑀𝑒𝑡ℎ𝑜𝑑 and, on the other hand, be-
tween 𝑃𝑊 𝐼𝐷𝑀 and 𝑃𝑊 𝐼𝑀𝑒𝑡ℎ𝑜𝑑 . We can observe that 𝑆𝑆𝑂𝑅𝐴𝐶𝐺

𝑛𝑙
has the lowest mean distance in both cases even if it presents
the greatest standard deviation for the RAI distances. One aspect
that is worth noting is the difference between the best and the
second best method in terms of the distances considered. In partic-
ular, the difference between the mean RAI distance observed for
𝑆𝑆𝑂𝑅𝐴𝐶𝐺

𝑛𝑙 and 𝑆𝑆𝑂𝑅𝐴𝐶𝐺 is 0.26, while, the mean PWI distance
observed for 𝑆𝑆𝑂𝑅𝐴𝐶𝐺

𝑛𝑙 is almost half of the mean PWI distance
obtained for 𝑆𝑆𝑂𝑅𝐴𝐶𝐺. The uniform is still the worst among the
compared methods in both cases;

• To check for the statistical significance of the difference between
the distributions of the distances obtained for each pair of meth-
ods, we performed the equal test of the Kolmogorov–Smirnov
obtaining that 𝑆𝑆𝑂𝑅𝐴𝐶𝐺 and 𝑆𝑆𝑂𝑅𝐴𝐶𝐺

𝑝𝑙 distributions are equiv-
alent both considering the RAI and the PWI distances. All the
other pairs of methods are, instead, different. Performing, for
these pairs of methods the greater test, we got recommendations
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Table 11
Mean and standard deviation of the distances between
𝑅𝐴𝐼𝐷𝑀 and 𝑅𝐴𝐼𝑀𝑒𝑡ℎ𝑜𝑑 and between 𝑃𝑊 𝐼𝐷𝑀 and
𝑃𝑊 𝐼𝑀𝑒𝑡ℎ𝑜𝑑 for the distribution 𝐩𝐷𝑀 = 𝐩𝑅𝑂𝐶 .

(a) Distance between 𝑅𝐴𝐼𝐷𝑀 and 𝑅𝐴𝐼𝑀𝑒𝑡ℎ𝑜𝑑

Model Mean Stdv

Uniform 1.070 0.220

𝑆𝑆𝑂𝑅 0.974 0.210

𝑆𝑆𝑂𝑅𝐴𝐶𝐺 0.938 0.218

𝑆𝑆𝑂𝑅𝐴𝐶𝐺
𝑝𝑙 0.938 0.218

𝑆𝑆𝑂𝑅𝐴𝐶𝐺
𝑛𝑙 0.678 0.307

(b) Distance between 𝑃𝑊 𝐼𝐷𝑀 and 𝑃𝑊 𝐼𝑀𝑒𝑡ℎ𝑜𝑑

Model Mean Stdv

Uniform 0.271 0.062

𝑆𝑆𝑂𝑅 0.234 0.053

𝑆𝑆𝑂𝑅𝐴𝐶𝐺 0.213 0.055

𝑆𝑆𝑂𝑅𝐴𝐶𝐺
𝑝𝑙 0.218 0.058

𝑆𝑆𝑂𝑅𝐴𝐶𝐺
𝑛𝑙 0.120 0.059

Table 12
Percentage of no reference pairs of alternatives correctly
assigned by each method considering 𝐩𝐷𝑀 = 𝐩𝑅𝑂𝐶 .

Model Mean Stdv

𝑈𝑛𝑖𝑓𝑜𝑟𝑚 74.43% 13.64%

𝑆𝑆𝑂𝑅 84.65% 11.17%

𝑆𝑆𝑂𝑅𝐴𝐶𝐺 85.24% 10.81%

𝑆𝑆𝑂𝑅𝐴𝐶𝐺
𝑝𝑙 84.29% 10.95%

𝑆𝑆𝑂𝑅𝐴𝐶𝐺
𝑛𝑙 87.91% 10.68%

similar to those shown in the 𝐩𝐷𝑀 = 𝐩1∕𝐷 case: (i) the distribution
corresponding to 𝑆𝑆𝑂𝑅𝐴𝐶𝐺

𝑛𝑙 is greater than the one corresponding
to all other methods, while, (ii) the distributions of the distances
between RAI matrices and between PWI matrices observed for
all methods are greater than the one obtained from the 𝑈𝑛𝑖𝑓𝑜𝑟𝑚
method being, therefore, the worst among them;

• To better understand the capacity of the methods to replicate
the artificial DM’s preferences, in Table 12, we report the per-
centage of right comparisons of no reference pairs of alternatives
computed by Eq. (14).
Looking at the results one can observe that 𝑆𝑆𝑂𝑅𝐴𝐶𝐺

𝑛𝑙 is the best
among the considered methods having a percentage of right com-
parisons of no reference pairs of alternatives equal to 87.91%, be-
ing 2.67% greater than the one observed for 𝑆𝑆𝑂𝑅𝐴𝐶𝐺 (85.24%).
At the same time, the standard deviation observed for 𝑆𝑆𝑂𝑅𝐴𝐶𝐺

𝑛𝑙
is the lowest (10.68%) showing that the method presents results
that are not very variable. The 𝑈𝑛𝑖𝑓𝑜𝑟𝑚 is the worst among the
considered methods also considering 𝐩𝐷𝑀 = 𝐩𝑅𝑂𝐶 both in terms
of mean distance than in terms of the standard deviation of the
same distances.

. Additional computational experiments

.1. Choosing a reference model different from the barycenter

In 𝑆𝑆𝑂𝑅𝐴𝐶𝐺, 𝑆𝑆𝑂𝑅𝐴𝐶𝐺
𝑝𝑙 and 𝑆𝑆𝑂𝑅𝐴𝐶𝐺

𝑛𝑙 we aim to build a proba-
ility distribution on Ω such that the probability attached to each value
unction in it is decreasing with the difference from a reference model

. As previously described, in the three proposals, we assumed that
13

𝑟𝑒𝑓
he reference model is the Ω barycenter, that is, 𝑈𝑟𝑒𝑓 = 𝑈𝐵𝑎𝑟. In
his section, we shall describe a few alternative ways of selecting the
eference model 𝑈𝑟𝑒𝑓 showing also the results of the application of
ur proposals assuming the new reference model. In particular, for
𝑆𝑂𝑅𝐴𝐶𝐺

𝑝𝑙 and 𝑆𝑆𝑂𝑅𝐴𝐶𝐺
𝑛𝑙 , we considered the following alternative

eference models 𝑈𝑟𝑒𝑓 :

• The arithmetic mean of the simplex 𝐖, 𝑈𝐴𝑟𝑀𝑒: it is a weight vector
where all components have exactly the same weight, that is,
𝐰𝐴𝑟𝑀𝑒 =

(

𝑤𝐴𝑟𝑀𝑒
1 ,… , 𝑤𝐴𝑟𝑀𝑒

𝑛
)

such that 𝑤𝐴𝑟𝑀𝑒
𝑖 = 1

𝑛 , for all
𝑖 = 1,… , 𝑛;

• The most discriminant value function, 𝑈𝑀𝐷𝑖𝑠𝑐 : it is the function
obtained solving the LP problem (1) for which we get 𝜀∗.

The two alternative ways of defining 𝑈𝑟𝑒𝑓 presented above are not
considered for 𝑆𝑆𝑂𝑅𝐴𝐶𝐺 because, the equal test of the Kolmogorov–
Smirnov shows that in most cases, the distributions of the distance
corresponding to 𝑆𝑆𝑂𝑅𝐴𝐶𝐺 and 𝑆𝑆𝑂𝑅𝐴𝐶𝐺

𝑝𝑙 are equal. Since the com-
putational effort required by 𝑆𝑆𝑂𝑅𝐴𝐶𝐺 is very much larger than that
one necessary for 𝑆𝑆𝑂𝑅𝐴𝐶𝐺

𝑝𝑙 , we applied 𝑆𝑆𝑂𝑅𝐴𝐶𝐺
𝑝𝑙 only.

Only for the ‘‘Parametric’’ method 𝑆𝑆𝑂𝑅𝐴𝐶𝐺
𝑛𝑙 , we have considered

other two additional ways of defining the reference model:

• Convex combination, 𝑈𝐶𝑜𝑛𝑣: it is computed as a convex combina-
tion of the three reference models considered before, that is, 𝑈𝐵𝑎𝑟,
𝑈𝐴𝑟𝑀𝑒 and 𝑈𝑀𝐷𝑖𝑠𝑐 . In particular,

𝑈𝐶𝑜𝑛𝑣 = 𝛼 ⋅ 𝑈𝐵𝑎𝑟 + 𝛽 ⋅ 𝑈𝐴𝑟𝑀𝑒 + 𝛾 ⋅ 𝑈𝑀𝐷𝑖𝑠𝑐 ,

where 𝛼, 𝛽, 𝛾 ⩾ 0 and 𝛼+𝛽+𝛾 = 1. In this case, considering 𝑈𝐵𝑎𝑟 =
𝐰𝐵𝑎𝑟 =

(

𝑤𝐵𝑎𝑟
1 ,… , 𝑤𝐵𝑎𝑟

𝑛
)

, 𝑈𝐴𝑟𝑀𝑒 = 𝐰𝐴𝑟𝑀𝑒 =
(

𝑤𝐴𝑟𝑀𝑒
1 ,… , 𝑤𝐴𝑟𝑀𝑒

𝑛
)

and 𝑈𝑀𝐷𝑖𝑠𝑐 = 𝐰𝑀𝑑𝑖𝑠𝑐 =
(

𝑤𝑀𝐷𝑖𝑠𝑐
1 ,… , 𝑤𝑀𝐷𝑖𝑠𝑐

𝑛
)

, we have that
𝑈𝐶𝑜𝑛𝑣 = 𝐰𝐶𝑜𝑛𝑣 =

(

𝑤𝐶𝑜𝑛𝑣
1 ,… , 𝑤𝐶𝑜𝑛𝑣

𝑛
)

such that

𝑤𝐶𝑜𝑛𝑣
𝑖 = 𝛼 ⋅𝑤𝐵𝑎𝑟

𝑖 + 𝛽 ⋅𝑤𝐴𝑟𝑀𝑒
𝑖 + 𝛾 ⋅𝑤𝑀𝐷𝑖𝑠𝑐

𝑖 for all 𝑖 = 1,… , 𝑛,

and, consequently, for each 𝑈ℎ ∈ Ω,

𝑑𝑟𝑒𝑓 (𝑈ℎ)2 =
𝑛
∑

𝑖=1

(

𝑤𝑟𝑒𝑓
𝑖 −𝑤ℎ

𝑖

)2
=

𝑛
∑

𝑖=1

(

𝑤𝐶𝑜𝑛𝑣
𝑖 −𝑤ℎ

𝑖
)2

=
𝑛
∑

𝑖=1

(

𝛼 ⋅𝑤𝐵𝑎𝑟
𝑖 + 𝛽 ⋅𝑤𝐴𝑟𝑀𝑒

𝑖 + 𝛾 ⋅𝑤𝑀𝐷𝑖𝑠𝑐
𝑖 −𝑤ℎ

𝑖
)2

where 𝛼, 𝛽 and 𝛾 are unknown. The probability distribution on
Ω is therefore found solving the programming problems (9) and
(10) under the following constraints

𝜆 ⩾ 0,

𝛼, 𝛽, 𝛾 ⩾ 0,

𝛼 + 𝛽 + 𝛾 = 1.

⎫

⎪

⎪

⎬

⎪

⎪

⎭

• Unknown reference model, 𝑈𝑈𝑛𝑘𝑛: the unknown reference model is
a weight vector 𝑈𝑈𝑛𝑘𝑛 = 𝐰𝑈𝑛𝑘𝑛 =

(

𝑤𝑈𝑛𝑘𝑛
1 ,… , 𝑤𝑈𝑛𝑘𝑛

𝑛
)

such that

𝑤𝑈𝑛𝑘𝑛
𝑖 ⩾ 0, for all 𝑖 = 1,… , 𝑛 and

𝑛
∑

𝑖=1
𝑤𝑈𝑛𝑘𝑛

𝑖 = 1 obtained solving

the programming problems (9) and (10) under the following
constraints:
𝜆 ⩾ 0,

𝑤𝑈𝑛𝑘𝑛
𝑖 ⩾ 0, for all 𝑖 = 1,… , 𝑛,
𝑛
∑

𝑖=1
𝑤𝑈𝑛𝑘𝑛

𝑖 = 1.

⎫

⎪

⎪

⎬

⎪

⎪

⎭

In this case, the distance of each function 𝑈ℎ ∈ Ω, from the
reference model is

𝑑𝑟𝑒𝑓 (𝑈ℎ) =

√

√

√

√

𝑛
∑

(

𝑤𝑟𝑒𝑓
𝑖 −𝑤ℎ

𝑖

)2
=

√

√

√

√

𝑛
∑

(

𝑤𝑈𝑛𝑘𝑛
𝑖 −𝑤ℎ

𝑖
)2.
𝑖=1 𝑖=1
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Table 13
Mean and standard deviation of the distances 𝑃𝑊 𝐼𝐷𝑀 and 𝑃𝑊 𝐼𝑀𝑒𝑡ℎ𝑜𝑑 considering the five probability distributions over 𝛀 shown in Table 1.
𝐩𝐷𝑀 = 𝛿𝑈𝑟𝑒𝑓

𝐩𝐷𝑀 = 𝐩𝑁𝑜𝑟 𝐩𝐷𝑀 = 𝐩𝐸𝑥𝑝 𝐩𝐷𝑀 = 𝐩1∕𝐷 𝐩𝐷𝑀 = 𝐩𝑅𝑂𝐶

Model Mean Stdv Model Mean Stdv Model Mean Stdv Model Mean Stdv Model Mean Stdv

𝑈𝑛𝑖𝑓𝑜𝑟𝑚 0.369 0.070 𝑈𝑛𝑖𝑓𝑜𝑟𝑚 0.233 0.079 𝑈𝑛𝑖𝑓𝑜𝑟𝑚 0.179 0.063 𝑈𝑛𝑖𝑓𝑜𝑟𝑚 0.203 0.065 𝑈𝑛𝑖𝑓𝑜𝑟𝑚 0.269 0.062

𝑆𝑆𝑂𝑅𝐴𝐶𝐺
𝑝𝑙,𝐵𝑎𝑟 0.309 0.069 𝑆𝑆𝑂𝑅𝐴𝐶𝐺

𝑝𝑙,𝐵𝑎𝑟 0.183 0.076 𝑆𝑆𝑂𝑅𝐴𝐶𝐺
𝑝𝑙,𝐵𝑎𝑟 0.130 0.057 𝑆𝑆𝑂𝑅𝐴𝐶𝐺

𝑝𝑙,𝐵𝑎𝑟 0.152 0.063 𝑆𝑆𝑂𝑅𝐴𝐶𝐺
𝑝𝑙,𝐵𝑎𝑟 0.219 0.057

𝑆𝑆𝑂𝑅𝐴𝐶𝐺
𝑝𝑙,𝑀𝐷 0.294 0.071 𝑆𝑆𝑂𝑅𝐴𝐶𝐺

𝑝𝑙,𝑀𝐷 0.182 0.071 𝑆𝑆𝑂𝑅𝐴𝐶𝐺
𝑝𝑙,𝑀𝐷 0.133 0.063 𝑆𝑆𝑂𝑅𝐴𝐶𝐺

𝑝𝑙,𝑀𝐷 0.151 0.056 𝑆𝑆𝑂𝑅𝐴𝐶𝐺
𝑝𝑙,𝑀𝐷 0.216 0.053

𝑆𝑆𝑂𝑅𝐴𝐶𝐺
𝑝𝑙,𝐴𝑟𝑀𝑒 0.386 0.150 𝑆𝑆𝑂𝑅𝐴𝐶𝐺

𝑝𝑙,𝐴𝑟𝑀𝑒 0.249 0.149 𝑆𝑆𝑂𝑅𝐴𝐶𝐺
𝑝𝑙,𝐴𝑟𝑀𝑒 0.212 0.278 𝑆𝑆𝑂𝑅𝐴𝐶𝐺

𝑝𝑙,𝐴𝑟𝑀𝑒 0.229 0.274 𝑆𝑆𝑂𝑅𝐴𝐶𝐺
𝑝𝑙,𝐴𝑟𝑀𝑒 0.295 0.205

𝑆𝑆𝑂𝑅𝐴𝐶𝐺
𝑛𝑙,𝐵𝑎𝑟 0.167 0.079 𝑆𝑆𝑂𝑅𝐴𝐶𝐺

𝑛𝑙,𝐵𝑎𝑟 0.122 0.055 𝑆𝑆𝑂𝑅𝐴𝐶𝐺
𝑛𝑙,𝐵𝑎𝑟 0.121 0.050 𝑆𝑆𝑂𝑅𝐴𝐶𝐺

𝑛𝑙,𝐵𝑎𝑟 0.120 0.052 𝑆𝑆𝑂𝑅𝐴𝐶𝐺
𝑛𝑙,𝐵𝑎𝑟 0.116 0.058

𝑆𝑆𝑂𝑅𝐴𝐶𝐺
𝑛𝑙,𝑀𝐷 0.150 0.105 𝑆𝑆𝑂𝑅𝐴𝐶𝐺

𝑛𝑙,𝑀𝐷 0.180 0.092 𝑆𝑆𝑂𝑅𝐴𝐶𝐺
𝑛𝑙,𝑀𝐷 0.203 0.094 𝑆𝑆𝑂𝑅𝐴𝐶𝐺

𝑛𝑙,𝑀𝐷 0.192 0.091 𝑆𝑆𝑂𝑅𝐴𝐶𝐺
𝑛𝑙,𝑀𝐷 0.167 0.094

𝑆𝑆𝑂𝑅𝐴𝐶𝐺
𝑛𝑙,𝐴𝑟𝑀𝑒 0.346 0.084 𝑆𝑆𝑂𝑅𝐴𝐶𝐺

𝑛𝑙,𝐴𝑟𝑀𝑒 0.208 0.084 𝑆𝑆𝑂𝑅𝐴𝐶𝐺
𝑛𝑙,𝐴𝑟𝑀𝑒 0.164 0.070 𝑆𝑆𝑂𝑅𝐴𝐶𝐺

𝑛𝑙,𝐴𝑟𝑀𝑒 0.180 0.073 𝑆𝑆𝑂𝑅𝐴𝐶𝐺
𝑛𝑙,𝐴𝑟𝑀𝑒 0.239 0.076

𝑆𝑆𝑂𝑅𝐴𝐶𝐺
𝑛𝑙,𝑐𝑜𝑛𝑣 0.366 0.069 𝑆𝑆𝑂𝑅𝐴𝐶𝐺

𝑛𝑙,𝑐𝑜𝑛𝑣 0.231 0.079 𝑆𝑆𝑂𝑅𝐴𝐶𝐺
𝑛𝑙,𝑐𝑜𝑛𝑣 0.178 0.062 𝑆𝑆𝑂𝑅𝐴𝐶𝐺

𝑛𝑙,𝑐𝑜𝑛𝑣 0.201 0.065 𝑆𝑆𝑂𝑅𝐴𝐶𝐺
𝑛𝑙 0.267 0.062

𝑆𝑆𝑂𝑅𝐴𝐶𝐺
𝑛𝑙,𝑈𝑛𝑘𝑛 0.368 0.070 𝑆𝑆𝑂𝑅𝐴𝐶𝐺

𝑛𝑙,𝑈𝑛𝑘𝑛 0.232 0.079 𝑆𝑆𝑂𝑅𝐴𝐶𝐺
𝑛𝑙,𝑈𝑛𝑘𝑛 0.179 0.063 𝑆𝑆𝑂𝑅𝐴𝐶𝐺

𝑛𝑙,𝑈𝑛𝑘𝑛 0.202 0.065 𝑆𝑆𝑂𝑅𝐴𝐶𝐺
𝑛𝑙,𝑈𝑛𝑘𝑛 0.268 0.062
The probability masses 𝑝(𝑈ℎ) are computed by minimizing
𝑑𝑟𝑒𝑓 (𝑈ℎ) as shown in eqs (7) and (8) taking weights 𝑤𝑈𝑛𝑘𝑛

𝑖 , 𝑖 =
1,… , 𝑛, as unknown variables.

We considered these two reference functions only for the parametric
method 𝑆𝑆𝑂𝑅𝐴𝐶𝐺

𝑛𝑙 because the single components of the weight vectors
𝐶𝑜𝑛𝑣 =

[

𝑤𝐶𝑜𝑛𝑣
1 ,… , 𝑤𝐶𝑜𝑛𝑣

𝑛
]

and 𝐰𝑈𝑛𝑘𝑛 =
[

𝑤𝑈𝑛𝑘𝑛
1 ,… , 𝑤𝑈𝑛𝑘𝑛

𝑛
]

are unknown
variables and, therefore, also the distances 𝑑𝑟𝑒𝑓 (𝑈ℎ) are unknown.
𝑆𝑆𝑂𝑅𝐴𝐶𝐺 and 𝑆𝑆𝑂𝑅𝐴𝐶𝐺

𝑝𝑙 cannot be applied considering these two
reference models since the constraints

𝑝(𝑈𝑘) ⩾ 𝑝(𝑈ℎ), iff 𝑑𝑟𝑒𝑓 (𝑈𝑘) ⩽ 𝑑𝑟𝑒𝑓 (𝑈ℎ), for all 𝑈ℎ, 𝑈𝑘 ∈ Ω

present in the linear programming problems used to compute the
corresponding probability distributions over Ω are not linear anymore
making the corresponding problems nonlinear too.

For space reasons, we shall show the results of the experiments per-
formed applying the considered methods but with the ‘‘new’’ reference
model in case 𝑚 = 8, 𝑛 = 4, 𝑧 = 4 and considering the five probability
distributions shown in Table 1. However, additional results obtained
considering different numbers of alternatives or criteria, and different
numbers of alternatives pairwise comparisons have been provided as
supplementary material. Moreover, only the distance between 𝑃𝑊 𝐼𝐷𝑀
and 𝑃𝑊 𝐼𝑀𝑒𝑡ℎ𝑜𝑑 have been taken into account.

To underline the type of reference model used in 𝑆𝑆𝑂𝑅𝐴𝐶𝐺
𝑝𝑙 or

𝑆𝑆𝑂𝑅𝐴𝐶𝐺
𝑛𝑙 , in the tables of this section, we shall denote by 𝑆𝑆𝑂𝑅𝐴𝐶𝐺

𝑝𝑙,𝑟𝑒𝑓
and 𝑆𝑆𝑂𝑅𝐴𝐶𝐺

𝑛𝑙,𝑟𝑒𝑓 the piecewise linear method and the non-linear method
described in Sections 3.2 and 3.3, respectively, considering as reference
model 𝑟𝑒𝑓 ∈ {𝐵𝑎𝑟, 𝐴𝑟𝑀𝑒,𝑀𝐷,𝐶𝑜𝑛𝑣, 𝑈𝑛𝑘𝑛}. For example, 𝑆𝑆𝑂𝑅𝐴𝐶𝐺

𝑝𝑙,𝐵𝑎𝑟
will correspond to the 𝑆𝑆𝑂𝑅𝐴𝐶𝐺

𝑝𝑙 method having the barycenter as a
reference model (therefore, the one presented in Section 3.2), while
𝑆𝑆𝑂𝑅𝐴𝐶𝐺

𝑛𝑙,𝑈𝑛𝑘𝑛 is the model presented in Section 3.3 considering the
unknown reference model described above.

In Table 13 we show the mean and the standard deviation of
the distance between the PWI matrices considering the ten methods
obtained by changing the reference model and the five different prob-
ability distributions on the space of the sampled value functions Ω

shown in Table 1. As one can see, apart from the unique distribution
𝐩𝐷𝑀 = 𝛿𝑈𝑟𝑒𝑓

, the nonlinear method considering the barycenter as
reference model presents the lowest mean distance between the PWI
matrices and, therefore, it is the best among the considered methods.
When 𝐩𝐷𝑀 = 𝛿𝑈𝑟𝑒𝑓

, the best method is 𝑆𝑆𝑂𝑅𝐴𝐶𝐺
𝑛𝑙,𝑀𝐷, that is, the non-

linear model considering the most discriminant function as reference
model even if the difference between the two mean values is not
very great (0.017). Nevertheless, performing the greater test of the
Kolmogorov–Smirnov over the distributions corresponding to these two
methods, we get that the distribution corresponding to 𝑆𝑆𝑂𝑅𝐴𝐶𝐺

𝑛𝑙,𝑀𝐷 is
greater than the one corresponding to 𝑆𝑆𝑂𝑅𝐴𝐶𝐺

𝑛𝑙,𝐵𝑎𝑟 and, therefore, it is
better. Going more in-depth on the results obtained by the 𝑆𝑆𝑂𝑅𝐴𝐶𝐺

𝑝𝑙
and 𝑆𝑆𝑂𝑅𝐴𝐶𝐺 choosing differently 𝑈 , we can observe the following:
14

𝑛𝑙 𝑟𝑒𝑓
• considering the 𝑆𝑆𝑂𝑅𝐴𝐶𝐺
𝑝𝑙 , the best choice for the reference

model is the barycenter or the most discriminant function for
all considered distributions. In particular, 𝑆𝑆𝑂𝑅𝐴𝐶𝐺

𝑝𝑙,𝑀𝐷 is better
than 𝑆𝑆𝑂𝑅𝐴𝐶𝐺

𝑝𝑙,𝐵𝑎𝑟 for all distributions apart from 𝐩𝐸𝑥𝑝. However,
the difference between the mean PWI distances is not great in
all considered cases (the maximum mean difference is 0.0151
and it is obtained when 𝐩𝐷𝑀 = 𝛿𝑈𝑟𝑒𝑓

). Choosing the arithmetic
mean of the sampled value functions as a reference model is
the worst among the three considered options for all probability
distributions over Ω;

• with respect to 𝑆𝑆𝑂𝑅𝐴𝐶𝐺
𝑛𝑙 , as observed above, 𝑆𝑆𝑂𝑅𝐴𝐶𝐺

𝑛𝑙,𝐵𝑎𝑟 is the
best method for four out of the five distributions and, there-
fore, it is also the best among the variants considered. How-
ever, while 𝑆𝑆𝑂𝑅𝐴𝐶𝐺

𝑛𝑙,𝑀𝐷 is slightly better than 𝑆𝑆𝑂𝑅𝐴𝐶𝐺
𝑛𝑙,𝐵𝑎𝑟 when

𝐩𝐷𝑀 = 𝛿𝑈𝑟𝑒𝑓
, the difference between the mean distance ob-

tained for 𝑆𝑆𝑂𝑅𝐴𝐶𝐺
𝑛𝑙,𝑀𝐷 and for 𝑆𝑆𝑂𝑅𝐴𝐶𝐺

𝑛𝑙,𝐵𝑎𝑟 is quite great when
𝑆𝑆𝑂𝑅𝐴𝐶𝐺

𝑛𝑙,𝐵𝑎𝑟 is the best among the two. For this particular model,
the two versions considering the reference model as unknown are
always giving the worst results in terms of the mean distance
between the PWI matrices. As to the version of the method
choosing the arithmetic mean as the reference model, it is always
worse than 𝑆𝑆𝑂𝑅𝐴𝐶𝐺

𝑛𝑙,𝐵𝑎𝑟 but, in two cases (𝐩𝐸𝑥𝑝 and 𝐩1∕𝐷), it is
better than 𝑆𝑆𝑂𝑅𝐴𝐶𝐺

𝑛𝑙,𝑀𝐷 and, therefore, it is the second best option
between the 𝑆𝑆𝑂𝑅𝐴𝐶𝐺

𝑛𝑙 variants for these two cases;

To check for the capability of the methods to replicate the artificial
DM’s preferences, we computed the percentage of no reference pairs
correctly compared by each method. Looking at Table 14 one can
observe that 𝑆𝑆𝑂𝑅𝐴𝐶𝐺

𝑛𝑙,𝐵𝑎𝑟 is undoubtedly the best among the methods at
hand since it presents the greatest percentage of correct comparisons
in all considered probability distributions. As to the second best, the
situation is slightly different since there is not a single method being
the second best for all cases. In particular, 𝑆𝑆𝑂𝑅𝐴𝐶𝐺

𝑛𝑙,𝑀𝐷 is the second
best considering 𝛿𝑈𝑟𝑒𝑓

, 𝑆𝑆𝑂𝑅𝐴𝐶𝐺
𝑝𝑙,𝐵𝑎𝑟 is the second best considering 𝐩𝑁𝑜𝑟,

𝐩𝐸𝑥𝑝 and 𝐩1∕𝐷, while 𝑆𝑆𝑂𝑅𝐴𝐶𝐺
𝑝𝑙,𝑀𝐷 is the second best considering 𝐩𝑅𝑂𝐶 .

The results show therefore, that choosing the barycenter as reference
model is the best option considering all distributions for the 𝑆𝑆𝑂𝑅𝐴𝐶𝐺

𝑛𝑙
method, while it is the best option for three out of the five distributions
for the 𝑆𝑆𝑂𝑅𝐴𝐶𝐺

𝑝𝑙 one. As to the worst between the methods at hand,
there is no doubt that it is 𝑆𝑆𝑂𝑅𝐴𝐶𝐺

𝑝𝑙,𝐴𝑟𝑀𝑒 since it presents the lowest
percentage of right comparisons of no reference pairs of alternatives
for all considered cases.

6.2. Sensitivity analysis with respect to the barycenter

As observed in the previous section, 𝑆𝑆𝑂𝑅𝐴𝐶𝐺
𝑝𝑙,𝐵𝑎𝑟 and 𝑆𝑆𝑂𝑅𝐴𝐶𝐺

𝑛𝑙,𝐵𝑎𝑟,
that is the versions of the 𝑆𝑆𝑂𝑅𝐴𝐶𝐺

𝑝𝑙 and 𝑆𝑆𝑂𝑅𝐴𝐶𝐺
𝑛𝑙 methods con-

sidering the barycenter as the reference model, perform very well
with respect to the other methods. In this section, we shall perform
a sensitivity analysis on the barycenter itself, that is, we shall check



Omega 123 (2024) 102969S.G. Arcidiacono et al.

S

I
a
o
t
𝑆

{
c
b

a
a
𝑆
t
c
v
t
a
i
c

Table 14
Percentage of correct comparisons of no reference pairs of alternatives considering the five probability distributions over 𝛀 shown in Table 1.
𝐩𝐷𝑀 = 𝛿𝑈𝑟𝑒𝑓

𝐩𝐷𝑀 = 𝐩𝑁𝑜𝑟 𝐩𝐷𝑀 = 𝐩𝐸𝑥𝑝 𝐩𝐷𝑀 = 𝐩1∕𝐷 𝐩𝐷𝑀 = 𝐩𝑅𝑂𝐶

Model Mean Stdv Model Mean Stdv Model Mean Stdv Model Mean Stdv Model Mean Stdv

𝑈𝑛𝑖𝑓𝑜𝑟𝑚 67.05% 15.28% 𝑈𝑛𝑖𝑓𝑜𝑟𝑚 76.30% 12.99% 𝑈𝑛𝑖𝑓𝑜𝑟𝑚 77.59% 12.98% 𝑈𝑛𝑖𝑓𝑜𝑟𝑚 75.70% 13.38% 𝑈𝑛𝑖𝑓𝑜𝑟𝑚 74.71% 13.58%

𝑆𝑆𝑂𝑅𝐴𝐶𝐺
𝑝𝑙,𝐵𝑎𝑟 77.72% 13.35% 𝑆𝑆𝑂𝑅𝐴𝐶𝐺

𝑝𝑙,𝐵𝑎𝑟 85.66% 11.66% 𝑆𝑆𝑂𝑅𝐴𝐶𝐺
𝑝𝑙,𝐵𝑎𝑟 86.39% 11.75% 𝑆𝑆𝑂𝑅𝐴𝐶𝐺

𝑝𝑙,𝐵𝑎𝑟 84.73% 11.26% 𝑆𝑆𝑂𝑅𝐴𝐶𝐺
𝑝𝑙,𝐵𝑎𝑟 83.87% 11.70%

𝑆𝑆𝑂𝑅𝐴𝐶𝐺
𝑝𝑙,𝑀𝐷 80.37% 14.20% 𝑆𝑆𝑂𝑅𝐴𝐶𝐺

𝑝𝑙,𝑀𝐷 85.44% 12.17% 𝑆𝑆𝑂𝑅𝐴𝐶𝐺
𝑝𝑙,𝑀𝐷 86.12% 12.03% 𝑆𝑆𝑂𝑅𝐴𝐶𝐺

𝑝𝑙,𝑀𝐷 84.47% 11.78% 𝑆𝑆𝑂𝑅𝐴𝐶𝐺
𝑝𝑙,𝑀𝐷 84.14% 11.66%

𝑆𝑆𝑂𝑅𝐴𝐶𝐺
𝑝𝑙,𝐴𝑟𝑀𝑒 59.52% 21.35% 𝑆𝑆𝑂𝑅𝐴𝐶𝐺

𝑝𝑙,𝐴𝑟𝑀𝑒 68.23% 21.57% 𝑆𝑆𝑂𝑅𝐴𝐶𝐺
𝑝𝑙,𝐴𝑟𝑀𝑒 70.74% 21.26% 𝑆𝑆𝑂𝑅𝐴𝐶𝐺

𝑝𝑙,𝐴𝑟𝑀𝑒 68.60% 20.75% 𝑆𝑆𝑂𝑅𝐴𝐶𝐺
𝑝𝑙,𝐴𝑟𝑀𝑒 65.46% 22.20%

𝑆𝑆𝑂𝑅𝐴𝐶𝐺
𝑛𝑙,𝐵𝑎𝑟 84.72% 11.63% 𝑆𝑆𝑂𝑅𝐴𝐶𝐺

𝑛𝑙,𝐵𝑎𝑟 88.37% 10.82% 𝑆𝑆𝑂𝑅𝐴𝐶𝐺
𝑛𝑙,𝐵𝑎𝑟 88.98% 10.81% 𝑆𝑆𝑂𝑅𝐴𝐶𝐺

𝑛𝑙,𝐵𝑎𝑟 88.58% 9.84% 𝑆𝑆𝑂𝑅𝐴𝐶𝐺
𝑛𝑙,𝐵𝑎𝑟 88.39% 10.14%

𝑆𝑆𝑂𝑅𝐴𝐶𝐺
𝑛𝑙,𝑀𝐷 83.40% 16.81% 𝑆𝑆𝑂𝑅𝐴𝐶𝐺

𝑛𝑙,𝑀𝐷 80.62% 15.45% 𝑆𝑆𝑂𝑅𝐴𝐶𝐺
𝑛𝑙,𝑀𝐷 79.73% 17.49% 𝑆𝑆𝑂𝑅𝐴𝐶𝐺

𝑛𝑙,𝑀𝐷 79.03% 18.50% 𝑆𝑆𝑂𝑅𝐴𝐶𝐺
𝑛𝑙,𝑀𝐷 80.65% 15.44%

𝑆𝑆𝑂𝑅𝐴𝐶𝐺
𝑛𝑙,𝐴𝑟𝑀𝑒 66.23% 15.29% 𝑆𝑆𝑂𝑅𝐴𝐶𝐺

𝑛𝑙,𝐴𝑟𝑀𝑒 76.52% 12.93% 𝑆𝑆𝑂𝑅𝐴𝐶𝐺
𝑛𝑙,𝐴𝑟𝑀𝑒 77.63% 13.26% 𝑆𝑆𝑂𝑅𝐴𝐶𝐺

𝑛𝑙,𝐴𝑟𝑀𝑒 75.59% 13.50% 𝑆𝑆𝑂𝑅𝐴𝐶𝐺
𝑛𝑙,𝐴𝑟𝑀𝑒 74.57% 13.47%

𝑆𝑆𝑂𝑅𝐴𝐶𝐺
𝑛𝑙,𝑐𝑜𝑛𝑣 67.05% 15.11% 𝑆𝑆𝑂𝑅𝐴𝐶𝐺

𝑛𝑙,𝑐𝑜𝑛𝑣 76.40% 12.94% 𝑆𝑆𝑂𝑅𝐴𝐶𝐺
𝑛𝑙,𝑐𝑜𝑛𝑣 77.57% 12.86% 𝑆𝑆𝑂𝑅𝐴𝐶𝐺

𝑛𝑙,𝑐𝑜𝑛𝑣 75.52% 13.30% 𝑆𝑆𝑂𝑅𝐴𝐶𝐺
𝑛𝑙 76.64% 13.55%

𝑆𝑆𝑂𝑅𝐴𝐶𝐺
𝑛𝑙,𝑈𝑛𝑘𝑛 66.67% 15.16% 𝑆𝑆𝑂𝑅𝐴𝐶𝐺

𝑛𝑙,𝑈𝑛𝑘𝑛 76.12% 13.01% 𝑆𝑆𝑂𝑅𝐴𝐶𝐺
𝑛𝑙,𝑈𝑛𝑘𝑛 77.22% 12.97% 𝑆𝑆𝑂𝑅𝐴𝐶𝐺

𝑛𝑙,𝑈𝑛𝑘𝑛 74.96% 13.43% 𝑆𝑆𝑂𝑅𝐴𝐶𝐺
𝑛𝑙,𝑈𝑛𝑘𝑛 74.28% 13.53%
how the results will change if the reference model is a ‘‘neighbor’’
of the barycenter. We shall then apply 𝑆𝑆𝑂𝑅𝐴𝐶𝐺

𝑝𝑙,𝐵𝑎𝑟 and 𝑆𝑆𝑂𝑅𝐴𝐶𝐺
𝑛𝑙,𝐵𝑎𝑟

considering as reference model a value function close to the barycenter
and, then, we shall see how the distance between the PWI matrices,
as well as the percentage of the right comparisons of no reference
pairs of alternatives, will change. From a technical point of view, we
implemented the procedure articulated in the following steps:

Step (1) Find the barycenter 𝐰𝐵𝑎𝑟 =
(

𝑤𝐵𝑎𝑟
1 ,… , 𝑤𝐵𝑎𝑟

𝑛
)

of the set Ω as
described in Section 3.1;

Step (2) Define the set 𝐖𝑁𝑒𝑖𝑔ℎ𝐵𝑎𝑟 composed of the weight vectors in
a ‘‘neighbor’’ of 𝐰𝐵𝑎𝑟, that is, the set composed of the weight
vectors

(

𝑤1,… , 𝑤𝑛
)

satisfying the following constraints

𝑤𝐵𝑎𝑟
𝑖 − 0.05 ⩽ 𝑤𝑖 ⩽ 𝑤𝐵𝑎𝑟

𝑖 + 0.05, for all 𝑖 = 1,… , 𝑛,
𝑛
∑

𝑖=1
𝑤𝑖 = 1,

𝑤𝑖 ⩾ 0, for all 𝑖 = 1,… , 𝑛;

⎫

⎪

⎪

⎬

⎪

⎪

⎭

Step (3) Sample 100 weight vectors from 𝐖𝑁𝑒𝑖𝑔ℎ𝐵𝑎𝑟 and select the
nine closest to 𝐰𝐵𝑎𝑟, that is, the nine weight vectors in 𝐖𝑁𝑒𝑖𝑔ℎ𝐵𝑎𝑟
presenting the lowest Euclidean distance from 𝐰𝐵𝑎𝑟;

tep (4) Apply the procedure described in Section 4.1 considering 𝑚 =
8, 𝑛 = 4, 𝑧 = 4 and assuming that the artificial DM evaluates the
considered alternatives using a plurality of value functions on
which the five probability distributions in Table 1 are defined.

n the following, we shall present the results obtained considering 𝐩𝐸𝑥𝑝

s the probability distribution of the artificial DM. The data for the
ther four probability distributions are provided in the supplemen-
ary material. Also in this case, we compare the results obtained by
𝑆𝑂𝑅𝐴𝐶𝐺

𝑝𝑙 applying 𝑆𝑆𝑂𝑅𝐴𝐶𝐺
𝑛𝑙 only.

In Table 15 methods 𝑆𝑆𝑂𝑅𝐴𝐶𝐺
𝑝𝑙,𝐵𝑎𝑟𝑘

and 𝑆𝑆𝑂𝑅𝐴𝐶𝐺
𝑛𝑙,𝐵𝑎𝑟𝑘

, with 𝑘 ∈
1,… , 9}, represent the methods 𝑆𝑆𝑂𝑅𝐴𝐶𝐺

𝑝𝑙 and 𝑆𝑆𝑂𝑅𝐴𝐶𝐺
𝑛𝑙 obtained

onsidering as reference model the 𝑘th value function closest to the
arycenter in 𝐖𝑁𝑒𝑖𝑔ℎ𝐵𝑎𝑟.

Looking at the data presented in Table 15 one can see that choosing
s reference model a value function ‘‘close’’ to the barycenter, does not
ffect the obtained results. Indeed, as can be seen in Table 15(a), for the
𝑆𝑂𝑅𝐴𝐶𝐺

𝑝𝑙 model, the distance between the PWI matrices considering
he barycenter as reference model is 0.1313, while, the same distance
onsidering the nine sampled weight vectors closest to the barycenter
aries between 0.1310 and 0.1327. The same can be observed for
he mean percentage of correct comparisons of no reference pairs of
lternatives being equal to 86.15% for the 𝑆𝑆𝑂𝑅𝐴𝐶𝐺

𝑝𝑙,𝐵𝑎𝑟, while, it varies
n the interval [85.90%, 86.15%] for the other nine models using the
losest weight vectors to the barycenter as reference models.
15
Table 15
Mean distance between the PWI matrices (𝑑(𝑃𝑊 𝐼𝐷𝑀 , 𝑃𝑊 𝐼𝑀𝑒𝑡ℎ𝑜𝑑 ) and
mean percentage of correct comparisons of no reference pairs of
alternatives (𝐶𝑜𝑟𝑟𝑒𝑐𝑡

%
𝑀𝑒𝑡ℎ𝑜𝑑 ) considering the distribution 𝐩𝐷𝑀 = 𝐩𝐸𝑥𝑝.

(a) 𝑀𝑒𝑡ℎ𝑜𝑑 = 𝑆𝑆𝑂𝑅𝐴𝐶𝐺
𝑝𝑙,𝑟𝑒𝑓

Model 𝑑(𝑃𝑊 𝐼𝐷𝑀 , 𝑃𝑊 𝐼𝑀𝑒𝑡ℎ𝑜𝑑 ) 𝐶𝑜𝑟𝑟𝑒𝑐𝑡
%
𝑀𝑒𝑡ℎ𝑜𝑑

𝑆𝑆𝑂𝑅𝐴𝐶𝐺
𝑝𝑙,𝐵𝑎𝑟 0.1313 86.15%

𝑆𝑆𝑂𝑅𝐴𝐶𝐺
𝑝𝑙,𝐵𝑎𝑟1

0.1310 86.15%

𝑆𝑆𝑂𝑅𝐴𝐶𝐺
𝑝𝑙,𝐵𝑎𝑟2

0.1317 86.08%

𝑆𝑆𝑂𝑅𝐴𝐶𝐺
𝑝𝑙,𝐵𝑎𝑟3

0.1314 86.10%

𝑆𝑆𝑂𝑅𝐴𝐶𝐺
𝑝𝑙,𝐵𝑎𝑟4

0.1318 86.03%

𝑆𝑆𝑂𝑅𝐴𝐶𝐺
𝑝𝑙,𝐵𝑎𝑟5

0.1317 86.01%

𝑆𝑆𝑂𝑅𝐴𝐶𝐺
𝑝𝑙,𝐵𝑎𝑟6

0.1321 85.91%

𝑆𝑆𝑂𝑅𝐴𝐶𝐺
𝑝𝑙,𝐵𝑎𝑟7

0.1327 85.90%

𝑆𝑆𝑂𝑅𝐴𝐶𝐺
𝑝𝑙,𝐵𝑎𝑟8

0.1322 85.91%

𝑆𝑆𝑂𝑅𝐴𝐶𝐺
𝑝𝑙,𝐵𝑎𝑟9

0.1322 85.97%

(b) 𝑀𝑒𝑡ℎ𝑜𝑑 = 𝑆𝑆𝑂𝑅𝐴𝐶𝐺
𝑛𝑙,𝑟𝑒𝑓

Model 𝑑(𝑃𝑊 𝐼𝐷𝑀 , 𝑃𝑊 𝐼𝑀𝑒𝑡ℎ𝑜𝑑 ) 𝐶𝑜𝑟𝑟𝑒𝑐𝑡
%
𝑀𝑒𝑡ℎ𝑜𝑑

𝑆𝑆𝑂𝑅𝐴𝐶𝐺
𝑛𝑙,𝐵𝑎𝑟 0.1263 88.70%

𝑆𝑆𝑂𝑅𝐴𝐶𝐺
𝑛𝑙,𝐵𝑎𝑟1

0.1268 88.17%

𝑆𝑆𝑂𝑅𝐴𝐶𝐺
𝑛𝑙,𝐵𝑎𝑟2

0.1275 88.48%

𝑆𝑆𝑂𝑅𝐴𝐶𝐺
𝑛𝑙,𝐵𝑎𝑟3

0.1280 87.50%

𝑆𝑆𝑂𝑅𝐴𝐶𝐺
𝑛𝑙,𝐵𝑎𝑟4

0.1276 88.38%

𝑆𝑆𝑂𝑅𝐴𝐶𝐺
𝑛𝑙,𝐵𝑎𝑟5

0.1284 88.02%

𝑆𝑆𝑂𝑅𝐴𝐶𝐺
𝑛𝑙,𝐵𝑎𝑟6

0.1277 88.22%

𝑆𝑆𝑂𝑅𝐴𝐶𝐺
𝑛𝑙,𝐵𝑎𝑟7

0.1271 88.20%

𝑆𝑆𝑂𝑅𝐴𝐶𝐺
𝑛𝑙,𝐵𝑎𝑟8

0.1278 88.17%

𝑆𝑆𝑂𝑅𝐴𝐶𝐺
𝑛𝑙,𝐵𝑎𝑟9

0.1273 88.03%

Analogous considerations can be done for the 𝑆𝑆𝑂𝑅𝐴𝐶𝐺
𝑛𝑙 variants

obtained by choosing as reference models the nine sampled weight
vectors closest to the barycenter (see Table Table 15(b)). On the one
hand, for 𝑆𝑆𝑂𝑅𝐴𝐶𝐺

𝑛𝑙,𝐵𝑎𝑟, the mean distance between the PWI matrices
is 0.1263, while the same distance obtained considering as reference
model the nine sampled weight vectors closest to the barycenter varies
in [0.1268, 0.1284]; (ii) the mean percentage of correct comparisons of
no reference pairs of alternatives for 𝑆𝑆𝑂𝑅𝐴𝐶𝐺

𝑛𝑙,𝐵𝑎𝑟 is 88.70%, while the
same percentage varies between 87.50% and 88.48% considering the

other nine weight vectors.
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Table 16
Mean distance between the PWI matrices (𝑑(𝑃𝑊 𝐼𝐷𝑀 , 𝑃𝑊 𝐼𝑀𝑒𝑡ℎ𝑜𝑑 ) and mean percentage of correct comparisons of no reference pairs of alternatives (𝐶𝑜𝑟𝑟𝑒𝑐𝑡

%
𝑀𝑒𝑡ℎ𝑜𝑑 ) considering the

distribution 𝐩𝐷𝑀 = 𝛿𝑈𝑟𝑒𝑓
.

(5, 3) (8, 4) (12, 6)

Model 𝑑(𝑃𝑊 𝐼𝐷𝑀 , 𝑃𝑊 𝐼𝑀𝑒𝑡ℎ𝑜𝑑 ) 𝐶𝑜𝑟𝑟𝑒𝑐𝑡
%
𝑀𝑒𝑡ℎ𝑜𝑑 Model 𝑑(𝑃𝑊 𝐼𝐷𝑀 , 𝑃𝑊 𝐼𝑀𝑒𝑡ℎ𝑜𝑑 ) 𝐶𝑜𝑟𝑟𝑒𝑐𝑡

%
𝑀𝑒𝑡ℎ𝑜𝑑 Model 𝑑(𝑃𝑊 𝐼𝐷𝑀 , 𝑃𝑊 𝐼𝑀𝑒𝑡ℎ𝑜𝑑 ) 𝐶𝑜𝑟𝑟𝑒𝑐𝑡

%
𝑀𝑒𝑡ℎ𝑜𝑑

𝑈𝑛𝑖𝑓𝑜𝑟𝑚 0.379 50.57% 𝑈𝑛𝑖𝑓𝑜𝑟𝑚 0.355 67.98% 𝑈𝑛𝑖𝑓𝑜𝑟𝑚 0.356 70.92%

𝑆𝑆𝑂𝑅 0.299 80.55% 𝑆𝑆𝑂𝑅 0.310 79.29% 𝑆𝑆𝑂𝑅 0.331 76.63%

𝐿𝑜𝑔𝑖𝑠𝑡𝑖𝑐 0.191 68.12% 𝐿𝑜𝑔𝑖𝑠𝑡𝑖𝑐 0.328 61.06% 𝐿𝑜𝑔𝑖𝑠𝑡𝑖𝑐 0.353 62.39%

𝑆𝑆𝑂𝑅𝐴𝐶𝐺 0.275 81.93% 𝑆𝑆𝑂𝑅𝐴𝐶𝐺 0.292 79.65% 𝑆𝑆𝑂𝑅𝐴𝐶𝐺 0.320 76.20%

𝑆𝑆𝑂𝑅𝐴𝐶𝐺
𝑝𝑙 0.282 80.30% 𝑆𝑆𝑂𝑅𝐴𝐶𝐺

𝑝𝑙 0.305 78.48% 𝑆𝑆𝑂𝑅𝐴𝐶𝐺
𝑝𝑙 0.331 75.30%

𝑆𝑆𝑂𝑅𝐴𝐶𝐺
𝑛𝑙 0.069 83.00% 𝑆𝑆𝑂𝑅𝐴𝐶𝐺

𝑛𝑙 0.147 85.23% 𝑆𝑆𝑂𝑅𝐴𝐶𝐺
𝑛𝑙 0.276 79.23%
o

Similar considerations can be made taking into account the other
our probability distributions 𝐩𝐷𝑀 shown in Table 1 whose results are
rovided as supplementary material. Both the mean distance between
he PWI matrices and the mean percentage of correct comparisons of
o reference pairs of alternatives are not very sensitive to the choice of
weight vector close to the barycenter as reference model.

.3. Sensitivity analysis on the number of alternatives and criteria

In this section, we shall study how the results obtained by the
erformed experiments are dependent on the number of alternatives
nd criteria taken into account. In particular, we shall analyze three
ifferent cases: (5, 3), (8, 4), and (12, 6) where the first element in
he pair is the number of alternatives, while, the second element is the
umber of criteria. To this aim, we shall assume that the artificial DM
rovides four pairwise comparisons of reference alternatives (𝑧 = 4)
nd that it evaluates the alternatives using the value functions in Ω on
hich the five probability distributions shown in Table 1 are defined.
ince we have already shown that choosing the barycenter as the
eference model is the best option, we shall consider only the methods
n which the reference model is, indeed, the barycenter. Moreover,
or this set of experiments, shown as described in Section 4.1, we
onsidered also 𝑈𝑛𝑖𝑓𝑜𝑟𝑚 and 𝑆𝑆𝑂𝑅. The 𝐿𝑜𝑔𝑖𝑠𝑡𝑖𝑐 model has been
onsidered (as before) only in case 𝐩𝐷𝑀 = 𝛿𝑈𝑟𝑒𝑓

.
Looking at Table 16 one can observe that, while the mean dis-

ance between the PWI matrices increases with the ‘‘dimension’’ of
he configuration for all the considered methods, the same cannot be
aid for the mean percentage of correct comparisons of no reference
airs of alternatives. For example, 𝑈𝑛𝑖𝑓𝑜𝑟𝑚 presents a mean percentage

of correct pairwise comparisons increasing with the dimension of the
problem since it passes from 50.57% of the (5, 3) configuration to
67.98% of the (8, 4) configuration to the 70.92% of the (12, 6) config-
uration, while, a completely opposite trend can be observed for 𝑆𝑆𝑂𝑅
presenting the greatest mean percentage for the (5, 3) configuration
(80.55%) and the lowest for the (12, 6) configuration (76.63%). In
other cases, instead, the mean percentage is not monotonic with respect
to the dimension of the configuration. For example, for 𝑆𝑆𝑂𝑅𝐴𝐶𝐺

𝑛𝑙 , this
percentage increases passing from 83.00% of the (5, 3) configuration
to 85.23% of the (8,4 ) configuration but, then, it decreases to 79.23%
passing to the (12, 6) configuration.

Independently of these trends, what is more important to underline
is that 𝑆𝑆𝑂𝑅𝐴𝐶𝐺

𝑛𝑙 presents the lowest mean distance between the PWI
matrices and the greatest mean percentage of correct comparisons of no
reference pairs of alternatives in the three considered configurations. At
the same time, the 𝑈𝑛𝑖𝑓𝑜𝑟𝑚 is the method presenting the worst values
both in terms of the mean distance between the PWI matrices and the
mean percentage in the three analyzed configurations.

Similar considerations can be made taking into account the other
four probability distributions (see the corresponding tables provided
in the supplementary material). In particular: (i) 𝑆𝑆𝑂𝑅𝐴𝐶𝐺

𝑛𝑙 has the
lowest mean distance between the PWI matrices in all considered cases
(so all probability distributions and all configurations) apart from the

𝑅𝑂𝐶
16

configuration (12, 6) with probability distribution 𝐩 for which
Table 17
Mean distance between the PWI matrices (𝑑(𝑃𝑊 𝐼𝐷𝑀 , 𝑃𝑊 𝐼𝑀𝑒𝑡ℎ𝑜𝑑 ) and mean percentage
f correct comparisons of no reference pairs of alternatives (𝐶𝑜𝑟𝑟𝑒𝑐𝑡

%
𝑀𝑒𝑡ℎ𝑜𝑑 ) considering

the distribution 𝐩𝐷𝑀 = 𝛿𝑈𝑟𝑒𝑓
.

(a) 𝑑(𝑃𝑊 𝐼𝐷𝑀 , 𝑃𝑊 𝐼𝑀𝑒𝑡ℎ𝑜𝑑 )

Model 𝑧 = 4 𝑧 = 9 𝑧 = 14 𝑧 = 19 𝑧 = 25

𝑈𝑛𝑖𝑓𝑜𝑟𝑚 0.355 0.365 0.374 0.367 0.372

𝐿𝑜𝑔𝑖𝑠𝑡𝑖𝑐 0.328 0.158 0.075 0.030 0.006

𝑆𝑆𝑂𝑅𝐴𝐶𝐺
𝑝𝑙 0.305 0.730 0.233 0.212 0.191

𝑆𝑆𝑂𝑅𝐴𝐶𝐺
𝑛𝑙 0.147 0.086 0.057 0.034 0.021

(b) 𝐶𝑜𝑟𝑟𝑒𝑐𝑡
%
𝑀𝑒𝑡ℎ𝑜𝑑

Model 𝑧 = 4 𝑧 = 9 𝑧 = 14 𝑧 = 19 𝑧 = 25

𝑈𝑛𝑖𝑓𝑜𝑟𝑚 67.98% 59.44% 40.89% 12.31% 1.73%

𝐿𝑜𝑔𝑖𝑠𝑡𝑖𝑐 61.06% 76.79% 84.94% 90.67% 94.37%

𝑆𝑆𝑂𝑅𝐴𝐶𝐺
𝑝𝑙 78.48% 81.18% 78.48% 70.33% 38.30%

𝑆𝑆𝑂𝑅𝐴𝐶𝐺
𝑛𝑙 85.23% 89.86% 89.87% 87.01% 91.23%

the lowest mean distance is obtained by 𝑆𝑆𝑂𝑅; (ii) as to the mean
percentage of correct comparisons provided by the DM, we observe that
the best methods are 𝑆𝑆𝑂𝑅𝐴𝐶𝐺

𝑛𝑙 and 𝑆𝑆𝑂𝑅𝐴𝐶𝐺. In particular:

• considering 𝐩𝑁𝑜𝑟, 𝐩1∕𝐷 and 𝐩𝑅𝑂𝐶 , 𝑆𝑆𝑂𝑅𝐴𝐶𝐺
𝑛𝑙 presents the great-

est mean percentage of correct comparisons of no reference
pairs of alternatives for configurations (8, 4) and (12, 6), while,
𝑆𝑆𝑂𝑅𝐴𝐶𝐺 has the greatest percentage value for configuration
(5, 3);

• considering 𝐩𝐸𝑥𝑝, 𝑆𝑆𝑂𝑅𝐴𝐶𝐺
𝑛𝑙 presents the greatest mean percent-

age of correct comparisons of no reference pairs of alternatives
for configurations (5, 3) and (8, 4), while, 𝑆𝑆𝑂𝑅 has the greatest
percentage value for configuration (12, 6);

• in cases for which 𝑆𝑆𝑂𝑅𝐴𝐶𝐺
𝑛𝑙 is not the best method, the dif-

ference between the mean percentage of correct comparisons it
provides and the one provided by the best method (𝑆𝑆𝑂𝑅𝐴𝐶𝐺),
is always very small (lower than 3%) meaning that the results
obtained by 𝑆𝑆𝑂𝑅𝐴𝐶𝐺

𝑛𝑙 in terms of the capability of discovering
artificial DM’s preferences are anyway quite good.

6.4. Sensitivity analysis on the number of pairwise comparisons of reference
alternatives

In this section, we shall present the results obtained from a sensi-
tivity analysis on the number of pairwise comparisons provided by the
DM. The analysis is conducted considering the (8, 4) configuration and
the probability distributions 𝐩𝐷𝑀 = 𝛿𝑈𝑟𝑒𝑓

and 𝐩𝐷𝑀 = 𝐩𝑁𝑜𝑟.
Looking at the data in Tables 17 and 18 the following can be

observed:

• Considering 𝛿𝑈𝑟𝑒𝑓
as the probability distribution of the artificial

𝐴𝐶𝐺
DM over Ω, we can observe that 𝑆𝑆𝑂𝑅𝑛𝑙 is the best among
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Table 18
Mean distance between the PWI matrices (𝑑(𝑃𝑊 𝐼𝐷𝑀 , 𝑃𝑊 𝐼𝑀𝑒𝑡ℎ𝑜𝑑 ) and mean percentage
f correct comparisons of no reference pairs of alternatives (𝐶𝑜𝑟𝑟𝑒𝑐𝑡

%
𝑀𝑒𝑡ℎ𝑜𝑑 ) considering

the distribution 𝐩𝐷𝑀 = 𝐩𝑁𝑜𝑟.

(a) 𝑑(𝑃𝑊 𝐼𝐷𝑀 , 𝑃𝑊 𝐼𝑀𝑒𝑡ℎ𝑜𝑑 )

Model 𝑧 = 4 𝑧 = 9 𝑧 = 14 𝑧 = 19 𝑧 = 25

𝑈𝑛𝑖𝑓𝑜𝑟𝑚 0.226 0.236 0.231 0.237 0.233

𝑆𝑆𝑂𝑅𝐴𝐶𝐺
𝑝𝑙 0.181 0.149 0.127 0.118 0.114

𝑆𝑆𝑂𝑅𝐴𝐶𝐺
𝑛𝑙 0.118 0.101 0.095 0.095 0.094

(b) 𝐶𝑜𝑟𝑟𝑒𝑐𝑡
%
𝑀𝑒𝑡ℎ𝑜𝑑

Model 𝑧 = 4 𝑧 = 9 𝑧 = 14 𝑧 = 19 𝑧 = 25

𝑈𝑛𝑖𝑓𝑜𝑟𝑚 77.44% 70.05% 60.44% 37.80% 7.87%

𝑆𝑆𝑂𝑅𝐴𝐶𝐺
𝑝𝑙 86.85% 89.55% 89.79% 83.19% 60.50%

𝑆𝑆𝑂𝑅𝐴𝐶𝐺
𝑛𝑙 89.13% 91.86% 94.51% 94.38% 93.23%

the considered methods if the number of pairwise comparisons
provided by the DM is 4, 9 or 14. This is supported by the data in
Tables 17(a) and 17(b) reporting the mean distance between the
PWI matrices and the mean percentage of correct comparisons of
no reference pairs of alternatives, respectively. In the other two
cases (𝑧 = 19 and 𝑧 = 25) the 𝐿𝑜𝑔𝑖𝑠𝑡𝑖𝑐 method is the best both
considering the mean distance and the mean percentage even if
the difference with the equivalent data reported for 𝑆𝑆𝑂𝑅𝐴𝐶𝐺

𝑛𝑙 is
not very large.
An interesting thing to observe is that increasing the number
of pairwise comparisons of reference alternatives provided by
the artificial DM is not always beneficial for 𝑆𝑆𝑂𝑅𝐴𝐶𝐺

𝑝𝑙 . Indeed,
passing from 𝑧 = 4 to 𝑧 = 9, the mean percentage of correct
comparisons of no reference pairs of alternatives increases, while,
it drastically decreases passing from 𝑧 = 19 to 𝑧 = 25 of both
distributions. This is mainly due to the fact that, as explained
in Section 4.1, the probability distribution built by 𝑆𝑆𝑂𝑅𝐴𝐶𝐺

𝑝𝑙
is a piecewise linear function defined by three breakpoints only.
Therefore, since the number of variables defining the probability
distribution is quite small, increasing the amount of preference
information provided by the DM increases the infeasibility of the
LP problem (6).4 Therefore, the probability distribution obtained
solving the LP problem is such that not only the comparisons
between no reference pairs of alternatives but also some of the
pairwise comparisons of the reference alternatives given by the
artificial DM are not restored.
The 𝑈𝑛𝑖𝑓𝑜𝑟𝑚 method is the worst among the considered methods
for all considered values of 𝑧;

• assuming that the DM’s probability distribution over Ω is 𝐩𝑁𝑜𝑟,
we can observe from Tables 18(a) and 18(b) that 𝑆𝑆𝑂𝑅𝐴𝐶𝐺

𝑛𝑙 is the
best method for all considered values of 𝑧. In particular, we can
observe that the increase in the number of pairwise comparisons
provided by the DM involves always an increase in the mean
percentage of correct comparisons of the no reference pairs of
alternatives even if, in these cases (passing from 𝑧 = 14 to 𝑧 = 19
and, then, to 𝑧 = 25) the diminishing on the percentage is quite
small. Also in this case, increasing the amount of preference
information is not beneficial for the 𝑆𝑆𝑂𝑅𝐴𝐶𝐺

𝑝𝑙 method since for
𝑧 = 25, it presents the lowest percentage of correct comparisons
of no reference pairs of alternatives.5

4 If 𝐩𝐷𝑀 = 𝛿𝑈𝑟𝑒𝑓
, the percentage of infeasible LP problems (6) considering

= 19 and 𝑧 = 25 is 56.10% and 71.90%, respectively.
5 If 𝐩𝐷𝑀 = 𝐩𝑁𝑜𝑟, the percentage of infeasible LP problems (6) considering
= 19 and 𝑧 = 25 is 40.30% and 50.30%, respectively.
17
. Discussion

The large amount of experiments we performed show that, undoubt-
dly, 𝑆𝑆𝑂𝑅𝐴𝐶𝐺

𝑛𝑙 is the best among the methods taken into account and,
herefore, it should be applied in practice. In most of the problems
onsidered varying the number of alternatives or criteria, as well as the
umber of pairwise comparisons provided by the DM or the assumed
robability distribution on Ω, 𝑆𝑆𝑂𝑅𝐴𝐶𝐺

𝑛𝑙 presents the best results in
erms of distance from the PWI or RAI matrices and in terms of
ercentage of correct comparisons of no reference pairs of alternatives.
or this reason, we shall comment, in the following the 𝑆𝑆𝑂𝑅𝐴𝐶𝐺

𝑛𝑙
ethod only.

Regarding the choice of the barycenter as the reference model, we
ave proved that a different choice negatively affects the obtained
esults. In particular, the two versions of the 𝑆𝑆𝑂𝑅𝐴𝐶𝐺

𝑛𝑙 method in
hich the reference model is unknown presented almost always the
orst results. This probably has to be interpreted in terms of overfitting
ue to a larger number of variables to be estimated on the basis of the
vailable data. Moreover, with respect to the sensitivity of the results
o the choice of the barycenter as the reference model, we have also
roved that by replacing the barycenter with another value function
n its neighborhood, the results do not change in a considerable way.
his proves that the choice of the barycenter as reference model is also
obust with respect to the recommendations obtained by the method.

An aspect that should be underlined is that the goodness of the
esults is not strictly dependent on the amount of preference informa-
ion provided by the DM. Indeed, as proved in Section 6.4, on the one
and, the increase in the number of pairwise comparisons involves, in
eneral, a diminishing of the distance from the PWI matrices, while,
n the other hand, this is not the case for the percentage of correct
omparisons of no reference pairs of alternatives. Indeed, passing from
= 4 to 𝑧 = 9 and, then, to 𝑧 = 14, we observed an increase in the

ercentage of correct comparisons of no reference pairs of alternatives
ut, then, passing from 𝑧 = 14 to 𝑧 = 19 we got a deterioration of
he same percentage that continued also passing to 𝑧 = 25 in con-
idering one of the two assumed probability distributions. This proves
hat research has to be devoted to checking the ‘‘optimal’’ amount of
reference information that should be required to the DM in this case or
ow to modify the proposed algorithms when the amount of preference
nformation increases.

. Conclusions

In this paper, we propose some methodologies to infer a probability
istribution defined over a set of models compatible with preference
nformation provided by the Decision Maker (DM) and sampled from
he corresponding space. Differently from the Subjective Stochastic
rdinal Regression proposed by [8], in our method the mass attached

o each compatible model is dependent on the distance from a reference
odel representing the basic preference tendency of the DM to evaluate

he alternatives under consideration. In particular, the mass function is
non-increasing function of the distance from the reference model so

hat, the closest the compatible model to the reference one, the greatest
he mass attached to it. To get the mass function in a first approach
onsidering only the constraints ensuring that the larger the distance
rom the reference model the smaller the probability mass, a simple LP
roblem or the optimization of a single variable function needs to be
olved.

To make the computation of the mass function simpler, in a second
roposal, we assume that it is a piecewise linear function of the
ame distance from the reference model. Considering a few reference
istance values and associating them with a mass, the mass attached to
ll the other sampled models is obtained by linear interpolation. In this
ay, the considered mass function is defined only by the mass of the

eference distances that can be computed again by solving a simple LP
roblem.
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Finally, in our third proposal, we assume that the probability dis-
tribution on the sample of compatible models takes the normal or the
exponential form. In this case, the computation of the considered proba-
bility distribution is based on the solution of a non-linear programming
problem optimizing a single variable function. In the three proposals,
we assumed that the reference model used to compute the probability
mass of each function is the barycenter of the space of sampled value
functions compatible with some preferences given by the DM.

To prove the effectiveness and reliability of the three proposals, we
performed an extensive set of simulations assuming the existence of
an artificial DM whose probability distribution on the sample of value
functions needs to be estimated. For such a reason, different forms of
DM’s probability distributions have been taken into account. For each
of the considered methods, we computed the distance between rank
acceptability indices and pairwise winning indices matrices computed
using the artificial DM’s probability distribution and the same matrices
computed considering the estimated probability distribution. To check
if the distance values are significant from the statistical point of view
we performed two versions of the 2-sample Kolmogorov–Smirnov test.

In addition to these experiments, we made also a wide-range sen-
sitivity analysis with respect to several elements affecting the results
obtained by the application of the methodology we are proposing. In
particular, we tested the quality of the results provided by our approach
to the variation of the number of alternatives or criteria, the number
of pairwise comparisons provided by the DM, and the choice of the
barycenter as the reference model. Since we proved that the barycenter
is the optimal choice for the reference model, we also performed a
sensitivity analysis on it showing that choosing another value function
in its neighborhood as reference model does not affect the goodness of
the obtained results. This proves the robustness of this choice.

Both the results and the tests show that the third proposal assuming
the existence of a probability distribution of a normal or exponential
form on the sample of value functions compatible with the preferences
given by the DM is the best among those under consideration. For such
a reason, we suggest using it in real-world applications.

On the basis of the methodology proposed in this paper, we envisage
the following future developments. First of all, statistical properties of
the distribution inferred by the proposed models should be studied.
Secondly, it is worthwhile to apply similar approaches to preference
models different from the weighted sum mainly considered in this
paper. This is the case of the piecewise linear additive value func-
tions, the non-additive multicriteria aggregation procedures such as the
Choquet integral, the outranking methods such as ELECTRE [36,37]
or PROMETHEE methods [38]. After, we believe that it is relevant
to investigate the possibility of improving the obtained results with
an interactive procedure updating the probability in the space of fea-
sible models on the basis of preferences iteratively elicited from the
DM during the decision-aiding procedure. Moreover, one can imagine
applying the proposed procedure in interactive multiobjective opti-
mization methods [39], both evolutionary or not, in order to guide the
algorithms to discover the most preferred solutions in the Pareto front.
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