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Abstract

In this thesis, we investigate charge transport in graphene. Graphene is one of the most

important new materials with a wide range of properties, rarely together in the same material,

and it is the ideal candidate for future electronic devices. The dynamics of electrons in the

conduction band is analyzed, by considering values of Fermi levels high enough to neglect

the dynamics in the valence band. This is equivalent to a n-type doping for traditional

semiconductors.

Degeneracy effects are very important in graphene and then it becomes mandatory to

consistently include the Pauli exclusion principle.

We develop a new Direct Simulation Monte Carlo (DSMC) procedure to solve the

Boltzmann transport equation, that properly takes into account the Pauli principle. For a

cross-validation of the results, we also solve the Boltzmann equation in a deterministic way

by using the Discontinuous Galerkin method. The agreement of the results is excellent. A

comparison of the new DSMC results with those obtained by means of well established

hydrodynamical models are presented as well, and again the agreement is very good.

This new approach is applied to study the transport properties in suspended monolayer

graphene and then in a layer of graphene on different substrates, obtaining the expected

results as the degradation of mobilities.

Regarding phonon transport, we investigate the thermal effects in a suspended monolayer

graphene due to the charge flow under an applied electric field. A complete model is

considered, with all the phonon branches, both in-plane and out of plane ones. Moreover,

we describe the phonon populations without any approximation of the distribution with an

equivalent Bose-Einstein one. The distribution is built by means of the intermediate results

arising from the new DSMC, by counting the number of the emission and absorption

processes due to the interaction between electrons and phonons. The phonon-phonon

interaction is treated in a standard way with a BGK approximation.

We are able to determine the increase of the temperature due to the charge flow and to

predict its raise for any values of electric fields and Fermi energies. Moreover, it is shown

that the inclusion of a complete phonon model leads to a lower heating effect with respect to

other simplified models.
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Sommario

L’argomento principale di questa tesi è lo studio dei fenomeni di trasporto nel grafene. Il

graphene è uno dei nuovi materiali più importanti e gode di un ampio spettro di ottime

proprietà, che sono raramente presenti assieme in uno stesso materiale, ed è considerato

il candidato ideale per lo sviluppo di futuri dispositivi elettronici. Si studierà la dinamica

degli elettroni nella banda di conduzione, considerando livelli di Fermi sufficientemente

alti per potere trascurare la dinamica di quelli nella banda di valenza. Questa condizione è

equivalente a un doping di tipo n per i semiconduttori tradizionali.

Gli effetti di degenerazione sono particolarmente importanti nel grafene e la corretta

inclusione del principio di Pauli non è più evitabile.

Per risolvere l’equazione di Boltzmann, è stata sviluppata una nuova procedura di sim-

ulazione Monte Carlo (Direct Simulation Monte Carlo) capace di trattare correttamente

il principio di Pauli. Per una validazione dei risultati, l’equazione di Boltzmann è stata

risolta anche in maniera deterministica ricorrendo a uno schema numerico basato sul metodo

Discontinuous Galerkin. L’accordo tra i risultati è eccellente. Si è fatto un confronto anche

con i risultati ottenuti utilizzando un consolidato modello idrodinamico e anche in questo

caso l’accordo è molto buono.

La nuova procedura è stata applicata per lo studio del trasporto di cariche in un singolo

strato di grafene sospeso e successivamente in uno strato di grafene appoggiato su differenti

substrati. Si sono confermati gli effetti del substrato, come la diminuzione della mobilità.

Si è investigato anche il trasporto dei fononi e sono stati analizzati gli effetti termici in

presenza di un campo elettrico. Si è fatto uso di un modello completo, comprensivo di tutte

le branche di fononi, sia quelli nel piano che quelli ortogonali al piano. La popolazione

dei fononi è stata descritta senza ricorrere all’approssimazione con una distribuzione di

Bose-Einstein ed è calcolata sfruttando i risultati della simulazione Monte Carlo, contando il

numero dei processi di emissione e assorbimento dovuti all’interazione degli elettroni con i

fononi. Il contributo dovuto all’interazione fonone-fonone è trattato con un’ approssimazione

BGK.

È stato possibile determinare l’aumento della temperatura dovuto al flusso di cariche e

prevederne l’andamento per qualsiasi valore del campo elettrico e del livello di Fermi. Infine,

si è dimostrato come l’inclusione di tutte le branche dei fononi predica effetti termici minori

rispetto ad altri modelli semplificati.
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Introduction

The Boltzmann equation is the basic starting point for transport problems; it was initially

developed for gas dynamics and its semiclassical formulation has become the standard model

for charge transport in semiconductors. The semiclassical formulation includes into the

Boltzmann equation the appropriate form of the energy bands, and therefore the relation for

the group velocity, arising from the solution of the Schroedinger equation with a periodic

potential on account of the periodicity of the crystall lattice. An useful formulation for the

collision operator is another fundamental element into a semiclassical picture. Usually, it is

derived into the constraints given by the Fermi Golden Rule and the Born approximation.

Starting from the Boltzmann equation, several models and methods have been developed

for the modeling of transport problems in semiconductors in order to describe and simulate

the underlying physical phenomena and the behaviour of real electronic devices. Many

deterministic numerical methods give a direct solution of the Boltzmann equation, but can be

computationally expensive for simulation purposes.

A standard way to overcome such a difficulty was the development of macroscopic

continuous models, as the famous Drift-Diffusion and Hydrodynamical ones. These are

obtained by means of moments of the Boltzmann equation with respect to opportune weight

functions and have the same form as the equations for fluid-dynamics. They became one

of the most useful models for Computer Aided Design (CAD). Actually, the study and

simulation of charge problem has to be integrated into the more general production process

typical of Computational Electronics. The development of a new electronic device cannot

anymore be reached with the standard trial-and-error technique and a general integrated

simulation procedure able to deal both with the physical phenomena and the device properties

has become fundamental. With the shrinking of the dimension of the electronic device the

basic assumptions underlying the macroscopic models are less and less valid. Furthermore,

quantum effects start to be not negligible.

Particle-based methods have become increasingly important.

Monte Carlo method was developed some hundreds years ago and is a consolidated

way to deal with charge transport in semiconductors. Its most important and apparently

1



Introduction

contradictory feature is together its greatest strength and advantage: it is a probabilistic

method able to solve also deterministic problems, as the Boltzmann equation. Indeed, its

probabilistic character makes it a natural way to look at charge transport in a direct way. This

means that we can deduce the properties of a real ensemble just by following the dynamics

of only a sample of particles. Furthermore, it naturally results as an experimental technique

that allows us to study physical phenomena for which direct experiments are no possible and

to predict properties of new materials and devices.

Great mathematical difficulties arise in the Boltzmann equation when we deal with non

diluted ensembles because we must consider the availability of the final states into the

collision operator, introducing strong non linearity.

Degeneracy effects were a hard task also for Monte Carlo simulations and a lot of

attempts were made to treat correctly the Pauli principle. A standard method has become

that developed by Lugli and Ferry [28] for an Ensemble Monte Carlo (EMC) simulation,

starting from the pioneering work of Bosi and Jacoboni [27] for the one-particle Monte Carlo

simulation. The results show how important the degeneracy effects are but predict incorrect

distribution functions, exceeding the maximum value equal to 1. Some improvements can be

found in literature, for example with the introduction of ad hoc scattering-out terms [31, 32]

or with some approximations of the distribution function [33, 34] but the problem of the

derivation of a correct distribution function remained unsolved. In several applications, this

effect was not so relevant because the mean values were accurate enough but the problem is

fundamental from a theoretical point of view. Moreover, in the presence of high densities, the

Pauli exclusion principle becomes more and more important and it is mandatory to accurately

describe the distribution function.

The first aim of this thesis is to deal with such degeneracy effects and to develop a new

Direct Simulation Monte Carlo strategy in order to properly take into account the Pauli

principle.

The Boltzmann equation intrinsically appears as a balance between two distinct parts with

different meaning and structure. In the left hand side, the effect of the Liouvillian differential

operator represents the rigid motion of the distribution as a whole over the trajectories of the

phase space, according to the semiclassical equations of motion; this in turn balances the

action of the collisional operator.

Keeping this structure in mind, we use a hybrid DSMC simulation strategy, splitting the

Monte Carlo solution of the Boltzmann equation into two steps: first, we solve analytically

the left part, and then we treat the scattering mechanisms, in a similar way as in the standard

EMC simulation. We obtain correct occupation numbers and can properly take into account

2
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the Pauli exclusion principle. Moreover, the computational cost is comparable with that of

the standard approaches.

Charge transport in a homogeneous suspended monolayer graphene is studied.

Graphene is one of the most important new material and shows a wide range of important

properties, rarely together in the same material. It is one of the most promising candidate for

future electronic devices due to its electric and thermal properties; for example, its electrical

conductivity is an order of magnitude greater than the conventional semiconductors. It was

theorized many years ago but it was discovered only a few years ago, so charge transport in

graphene is still an open field and much is to be well understood both from a mathematical

and from a physical point of view. For example, one can find great uncertainty about the

values of the coupling constants. From a modeling point of view, it is important to underline

that graphene is a zero-gap semiconductor, it has a linear dispersion relation and the electrons

moving inside can be treated as mass-less Dirac fermions. Degeneracy effects and Pauli’s

principle seem to be very effective in graphene and the work in this thesis could be an

important contribution in this field.

We apply the previous scheme to investigate the transport properties of graphene, as the

average velocity and energy under the effect of an applied electric field. We analyze the

dynamics of the conduction band by using values of the Fermi level high enough to consider

the valence band completely filled, so that the dynamics of the electrons into the valence

band can be neglected.

In the second part of the thesis, the case of a graphene layer on different substrates is

considered, obtaining the expected results as, for example, the degradation of the mobilities.

The influence of the distance from the substrate is deeply analyzed.

For a cross-validation of the results, we also solve the Boltzmann equation by using

a numerical scheme based on Discontinuous Galerkin method, already largely used for

conventional semiconductors. The agreement of the results is excellent.

The results for the suspended case are compared as well with those obtained by means

of well established hydrodynamical models, and again the agreement is good. The overall

discrepancy of the hydrodynamical model is acceptable from a practical point of view for

Computer Aided Design (CAD) purposes.

In order to investigate thermal effects in graphene, in the last part of the thesis we study

the phonon transport. We consider a complete phonon model with all phonon branches, both

in plane and out of plane (flexural) ones. These latter do not contribute in the interaction

with electrons but are very important in the determination of the thermal behaviour of

graphene. Moreover, we describe the phonon populations without any approximation of

the distribution by an equivalent Bose-Einstein one. The phonon distribution is obtained by
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means of the intermediate results of the DSMC part, by counting the number of emission and

absorption processes. The right statistical weight of each process is properly calculated. The

phonon-phonon interaction is modeled by a standard BGK approximation.

We are able to determine the increase of the temperature due to the charge flow and to

predict its raise for any values of electric fields and Fermi energies. It is also shown that

the inclusion of a complete phonon model leads to a lower heating effect with respect to

simplified models.

Outline of the thesis

The plan of the thesis is as follows.

In chapter 1, basic concepts about the Boltzmann equation and the properties of graphene

are presented, and the general kinetic description for charge transport in graphene is discussed.

In chapter 2, we summarize the standard Ensemble Monte Carlo simulation and then we

describe the original part, the new proposed DSMC strategy. We give computational details

and show the results. A comparison is made between the new DSMC results and the standard

EMC ones and then a comparison with the deterministic solution of the Boltzmann equation

obtained with Discontinuous Galerkin method. We also show some results obtained with

other approaches similar to those already present in literature and that suffer from physical

inconsistencies.

In chapter 3, Discontinuous Galerkin method is delineate, discussing in particular the

discretization of the drift and collision terms.

In chapter 4, we study the case of a graphene layer on different substrates, and the

influence of the distance from the substrate and the distribution of impurities are analyzed.

The results agree with the expected degradation of transport properties due to the presence of

the substrate and its impurities.

In chapter 5, we deal with phonon transport in order to analyze thermal effects in a

suspended monolayer graphene. A complete phonon model, with all phonon branches, is

considered, We show and comment the results of the simulation and deduce the rate of rise

in temperature versus time. In the second part, we perform a regression analysis on the

simulation data and we find a way to predict the raise of the temperature for any values of

the electric field and of the Fermi energy. The chapter is concluded by comparison with a

simplified model.

In chapter 6, macroscopic models are briefly presented and a hydrodynamical model

is obtained by using the Maximum Entropy Principle for the needed closure relations. A

4
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comparison between the results of the new DSMC strategy and of the Hydrodynamical model

is shown.

Some mathematical details about derivation and properties of the Boltzmann equation

are postponed in the Appendix A. The semiclassical framework is underlined.
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Chapter 1

Mathematical model for charge

transport in graphene

1.1 The Boltzmann equation

The Boltzmann equation is the fundamental basis for transport problems, from the original

gas dynamics ones to those related to charge transport in semiconductors. For more rigorous

details we refer to Appendix A.

Given a gas with N particles [1, 2], the space and velocity coordinates, x ∈ R
3
x, v ∈ R

3
v

respectively, the distribution function f (x,v, t) is defined in such a way that

f (x,v, t)dxdv (1.1)

represents the number of particles in the infinitesimal volume dxdv at time t. The normaliza-

tion condition for f is
∫

Rv

∫

Rx

f (x,v, t)dxdv = N. (1.2)

The spatial density n(x, t) at time t is given by

n(x, t) =
∫

Rv

f (x,v, t)dv. (1.3)

Given an ensemble of electrons, we consider the distribution function f (x,k, t), where k ∈ B

is the wave-vector; B is the Brilluoin zone, the primitive cell of the reciprocal lattice. k

assumes a set of discrete values, due to the discrete nature of lattice. h̄k is the crystal

momentum.

6



1.1 The Boltzmann equation

In a standard way, we can replace sums over k with integrals by mean of the following

rule

∑
k

7−→ (l)d

(2π)d

∫

B
, (1.4)

where d is the dimensionality of the electron gas and l the size of the crystal. For graphene,

d = 2. f (x,k, t) is proportional to the number of particles in dxdk and the normalization

conditions are

2
(2π)2

∫

B

∫

Rx

f (x,k, t)dxdk = N,
2

(2π)2

∫

B
f (x,k, t)dk = n(x, t). (1.5)

The factor 2 takes into account the spin of electrons. The time evolution of the distribution

function is given by the Boltzmann Transport Equation

∂t f +v(k) ·∇x f − e

h̄
E ·∇k f =C[ f ](k), (1.6)

where E is the external force, in our case the applied electric field, e the elementary (positive)

charge of electron, ∇x and ∇v denote the gradient with respect to the position and the

wave-vector, respectively, and C[ f ](k) is the collision operator. The l.h.s of the Boltzmann

Equation describes the flow of particles in the phase space and it represents the effect on

f (x,k, t) of the Liouvillian operator

L =
∂

∂ t
+v ·∇x − k̇ ·∇k. (1.7)

v(k) is the group velocity of an electron wave packet and it is linked to the energy band ε(k),

arising from the solution of the Schroedinger equation with a static periodic potential, by the

following relation

v(k) =
1
h̄

∇kε(k). (1.8)

The collision operator describes the contribution of several type of electron scatterings and,

omitting the dependence on space and time for the sake of simplicity, also justified by the

fact that the collision operator is considered local in space and time, its general form is

C[ f ](k) =
∫

B

[

P(k′,k) f (k′)(1− f (k))−P(k,k′) f (k)
(

1− f (k′)
)]

dk′. (1.9)

The first term is the gain of electrons into the state k (scattering in) and it is proportional

to the initial state occupancy f (k′) and to the availability of the finale state (1− f (k)), on

account of the Pauli exclusion principle; the second term is the loss of electrons from the

state k (scattering out). P(k′,k) is the scattering rate, the transition probability per unit time,
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1.1 The Boltzmann equation

that an electron in the state k′ is transferred into the state k. The collisions do not induce

spin flip. With the previous collision operator, the Boltzmann Equation becomes a non linear

integro-differential equation. In general, the rate of a transition from a state |i〉 into a state |j〉
due to a process with the interaction Hamiltonian HI is given by means of the Fermi Golden

Rule and is equal to

P|i〉→|j〉 =
2π

h̄
|〈i|HI|j〉|2 δ (εi − εj), (1.10)

where εi and εj take into account the energy of electrons in the state |i〉 and |j〉, respectively.

For a non homogeneous system the transition rates depend upon also the position, i.e.

P = P(x,k′,k), and if the non homogeneity is too strong, the semiclassical description could

fail and one has to recur to solutions directly based on the Schroedinger equation [1].

The most important scattering mechanisms we will consider are those with the crystal

lattice, whose vibrations are described by (quasi)-particles, the phonons, able to exchange

quanta of energy with electrons. When the electron loses a quantum of energy, we have

an emission process, otherwise an absorption one. The general scattering rate of electron

phonon-interaction can be written as a sum of emission and absorption contributions

P(k′,k) = s(q)
{

[(g(q)+1)]δ (ε(k)− ε(k′)+ h̄ω) +g(q)δ (ε(k)− ε(k′)− h̄ω)
}

. (1.11)

q is the phonon wave-vector, g(x,q, t) is the phonon distribution, s(q) is the scattering

potential and h̄ω is the phonon energy. The term +1 added to g(q) in the emission case is

due to the so-called spontaneous emission, a quantum effect that describes the possibility

of electrons to interact with the phonon field even when phonons are not present and it is

as the zero-point vibrations of quantum harmonic oscillator; the term proportional to g(q)

is due to the phonons already present in the crystal and is called stimulated emission. At

equilibrium, the electrons are described by the Fermi-Dirac distribution and the phonons, that

are bosons and do not obey to Pauli’s exclusion principle, by the Bose-Einstein distribution,

given respectively by

f (k) =
1

1+ exp ε(k)−εF

kBT

, (1.12)

g(q) =
1

1− exp h̄ω(q)
kBT

, (1.13)

where kB is the Boltzmann constant, T the temperature and εF the Fermi level.
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1.2 Electronic properties of graphene

Fig. 1.1 Graphite and Graphene

1.2 Electronic properties of graphene

Graphene is one of the most important new material, really promising as an ideal candidate

for future applications in electronic devices. It has a lot of very good properties, some of them

in general difficult to find together in the same material: it is the thinnest object ever obtained

but at the same time one of the strongest material in the world; it is also very elastic and

impermeable to any molecule. It is extremely electrically and thermally conductive, with an

electrical conductivity an order of magnitude greater than the conventional semiconductors.

The starting material is just the graphite used for pencils, Fig. 1.1. With the original scotch

tape method Andre Geim and Kostya Novoselov [3] (awarded with the Nobel Prize in Physics

in 2010), at the University of Manchester, were able to produce relatively large isolated

graphene samples from graphite. Also from a mathematical modeling point of view, one

of the most important feature of graphene is that the charges moving inside it do no more

respect the effective mass approximation model and have to be considered as mass less Dirac

fermions with an effective speed of light c∗ = 106 ms−1 ([4], [5], [6]).

Graphene is a single layer of sp2 carbon atoms arranged into a honeycomb hexagonal lattice

and can also be deformed in order to have 1-dimensional or 0-dimensional structures, the

carbon nanotubes and the fullerene, respectively (Fig. 1.2). The lattice has a biatomic basis

with the lattice vectors

a1 =
a

2

(

3,
√

3
)

, a2 =
a

2

(

3,−
√

3
)

, (1.14)

where a = 0.142 nm is the carbon-carbon bond length. Since we have a biatomic basis, the

lattice constant is a
√

3 = 0.246 nm. The nearest neighbors of each carbon atom are displaced
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1.2 Electronic properties of graphene

Fig. 1.2 Graphene configurations

by the following vectors

δδδ 1 =
a

2

(

1,
√

3
)

, δδδ 2 =
a

2

(

1,−
√

3
)

, δδδ 3 =−a (1,0) ; (1.15)

the six second-nearest neighbors are located at

δ ′δ ′δ ′
1 =±a1, δδδ ′

2 =±a2, δδδ ′
3 =±(a2 −a1) . (1.16)

The primitive cell of the reciprocal lattice, the (first) Brillouin zone (Fig. 1.3), is hexagonal

as that of the real space lattice but rotated by π
2 , and its basis vectors are

b1 =
2π

3a

(

1,
√

3
)

, b2 =
2π

3a

(

1,−
√

3
)

. (1.17)

Thanks to the periodicity of the reciprocal lattice, all the corners can be treated considering

only the two points K and K′, called Dirac points, with coordinates

K =

(

2π

3a
,

2π

3
√

3a

)

, K′ =

(

2π

3a
,− 2π

3
√

3a

)

. (1.18)

Solving the Schroedinger equation, taking into account the periodicity of the crystal po-

tential, one obtains the numerical energy bands of Fig.1.4. With the standard tight-binding

Hamiltonian approach [7] the energy bands have the general form

E± (q) =±t
√

3+ f (q)− t ′ f (q) (1.19)

where q is the wave-vector evaluated from the Γ point, the plus and minus signs are for upper

(π∗) and lower (π) band, the conduction and valence band, respectively, t = 2.8 eV, t ′ = 0.1
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1.2 Electronic properties of graphene

Fig. 1.3 Graphene lattice (left) and Brillouin zone (right)

Fig. 1.4 Energy bands in graphene

11



1.3 Semiclassical kinetic model

eV and f (q) is given by

f (q) = 2 cos
(√

3qx a
)

+4 cos

(√
3

2
qy a

)

cos

(

3
2

qx a

)

. (1.20)

The two bands touch at K and K, meaning that graphene is a zero gap semiconductor, and

they are exactly symmetric if t ′ = 0. The region of the Brillouin zone around the Dirac

points is the most occupied from electrons and then the most important in the study of charge

transport. Around the Dirac points the dispersion relation has a conical shape according to

the approximation

E±(k) =± h̄vF |k|+O

( |k|
|K|

)2

(1.21)

where k = q−K, K is the lattice vector relative to the Dirac point K, vF = 3 t a/2 is the

Fermi velocity, equal to 106 m/s, h̄ is the reduced Planck constant and k is the wave-vector

considered from the Dirac point K (or K′). Considering only the first term, the previous

relation is the same for both Dirac points, so that the valleys around K and K′ can be treated

as equivalent. It holds when |k| << |K|, so practically always because all the electrons

are around the Dirac points. At zero temperature, the valance band is totally occupied by

electrons and the conduction band has only unoccupied states. In intrinsic graphene, in

ideal conditions, the Fermi level is equal to zero. In the following, we will consider higher

values of the Fermi level taking into account the effects of imperfections of the material or

of an external applied voltage, in order to have a condition equivalent to a n type doping

in standard semiconductors; in this way, it is possible to neglect the dynamics of the holes

because the valence band is completely filled and we will refer only to the electrons dynamics.

1.3 Semiclassical kinetic model

In a semiclassical kinetic setting, the charge transport in graphene is described by four

Boltzmann equations, one for electrons in the valence band (π) and one for electrons in the

conduction band (π∗), that in turn can belong to the K or K′ valley,

∂ fℓ,s(t,x,k)

∂ t
+vℓ,s ·∇x fℓ,s(t,x,k)−

e

h̄
E ·∇k fℓ,s(t,x,k) =

d fℓ,s

dt
(t,x,k)

∣

∣

∣

∣

e−ph

, (1.22)

where fℓ,s(t,x,k) represents the distribution function of charge carriers, in the band π or

π∗ (s = −1 or s = 1) and valley ℓ (K or K′), at position x, time t, and with wave-vector
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1.3 Semiclassical kinetic model

k. We denote by ∇x and ∇k the gradients with respect to the position and the wave-vector,

respectively. The group velocity vℓ,s is related to the band energy εℓ,s by

vℓ,s =
1
h̄

∇k εℓ,s .

With a very good approximation [4] a linear dispersion relation holds for the band energies

εℓ,s around the equivalent Dirac points; so that

εℓ,s = s h̄vF |k−kℓ| , (1.23)

where vF is the (constant) Fermi velocity, h̄ the Planck constant divided by 2π , and kℓ

is the position of the Dirac point corresponding to valley ℓ. The elementary (positive)

charge is denoted by e, and E is the electric field obtained by the Poisson equation, which

must be coupled with Eqs (1.22). The right hand side of Eqs. (1.22) is the collision term

representing the interactions of electrons with acoustic, optical and K phonons. Acoustic

phonon scattering is intra-valley and intra-band. Optical phonon scattering is intra-valley and

can be longitudinal optical (LO) and transversal optical (TO); it can be intra-band, leaving

the electrons in the same band, or inter-band, pushing the electrons from the initial band

toward another one. Scattering with phonons of K type pushes electrons from a valley to a

one nearby (inter-valley scattering).

The general form of the collision term can be written as (see [4, 35–38] for more details)

d fℓ,s

dt
(t,x,k)

∣

∣

∣

∣

e−ph

= ∑
ℓ′,s′

[

∫

B
Sℓ′,s′,ℓ,s(k

′,k) fℓ′,s′(t,x,k
′)
(

1− fℓ,s(t,x,k)
)

dk′

−
∫

B
Sℓ,s,ℓ′,s′(k,k

′) fℓ,s(t,x,k)
(

1− fℓ′,s′(t,x,k
′)
)

dk′
]

,

where the total transition rate Sℓ′,s′,ℓ,s(k
′,k) is given by the sum of the contributions of the

several types of scatterings described above

Sℓ′,s′,ℓ,s(k
′,k) = ∑

ν

∣

∣

∣
G
(ν)
ℓ′,s′,ℓ,s(k

′,k)
∣

∣

∣

2

×
[(

n
(ν)
q +1

)

δ
(

εℓ,s(k)− εℓ′,s′(k
′)+ h̄ω

(ν)
q

)

+n
(ν)
q δ

(

εℓ,s(k)− εℓ′,s′(k
′)− h̄ω

(ν)
q

)]

.

(1.24)

The index ν labels the νth phonon mode. The
∣

∣

∣
G
(ν)
ℓ′,s′,ℓ,s(k

′,k)
∣

∣

∣

2
’s are the electron-phonon

coupling matrix elements, which describe the interaction mechanism of an electron with a

ν th phonon, from the state of wave-vector k′ belonging to the valley ℓ′ and band s′ to the state
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1.3 Semiclassical kinetic model

k belonging to the valley ℓ and band s. The symbol δ denotes the Dirac distribution, ω
(ν)
q is

the ν th phonon frequency, n
(ν)
q is the Bose-Einstein distribution for the ν-type phonons

n
(ν)
q =

1

eh̄ω
(ν)
q /kBT −1

, (1.25)

where kB is the Boltzmann constant and T the graphene lattice temperature and with q the

phonon wave-vector belonging to B. When, for a phonon ν∗, h̄ω
(ν∗)
q ≪ kBT , the scattering

with the phonon ν∗ can be assumed elastic. In this case, we eliminate in Eq. (1.24) the term

h̄ω
(ν∗)
q inside the delta distribution and we use the approximation n

(ν∗)
q ≈ kBT/h̄ω

(ν)
q − 1

2 .

By applying a gate voltage transversal with respect to the graphene sheet, it is possible to

modify the Fermi energy εF and therefore the charge density. If a high positive value of the

Fermi potential is considered, the electrons responsible for the current are those belonging to

the conduction band. Therefore only the transport equation for electrons in the conduction

band is considered and interband electron transitions are neglected. Moreover the valleys K

and K′ are considered as equivalent. A reference frame centered in the K-point will be used.

Of course, we simplify the notation, omitting the indexes s and ℓ and denoting with f the

only relevant distribution function.

The expressions of the electron-phonon scattering matrices used in our simulations are as

follows. For acoustic phonons, we consider the elastic approximation according to which we

have
(

2n
(ac)
q +1

)∣

∣

∣
G(ac)(k′,k)

∣

∣

∣

2
=

1
(2π)2

π D2
ac kB T

2 h̄σm v2
p

(

1+ cosϑk ,k′
)

, (1.26)

where Dac is the acoustic phonon coupling constant, vp is the sound speed in graphene, σm

the graphene density, and ϑk ,k′ is the convex angle between k and k′.

The electron-phonon coupling matrix elements of the longitudinal optical (LO), the transver-

sal optical (TO) and the K phonons are (see for example [38])

∣

∣

∣
G(LO)(k′,k)

∣

∣

∣

2
=

1
(2π)2

π D2
O

σm ωO

(

1− cos(ϑk ,k′−k +ϑk′ ,k′−k)
)

(1.27)

∣

∣

∣
G(TO)(k′,k)

∣

∣

∣

2
=

1
(2π)2

π D2
O

σm ωO

(

1+ cos(ϑk ,k′−k +ϑk′ ,k′−k)
)

(1.28)

∣

∣

∣
G(K)(k′,k)

∣

∣

∣

2
=

1
(2π)2

2π D2
K

σm ωK

(

1− cosϑk ,k′
)

, (1.29)

where DO is the optical phonon coupling constant, ωO the optical phonon frequency, DK

is the K phonon coupling constant and ωK the K phonon frequency. The angles ϑk ,k′−k
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Table 1.1 Physical parameters for the scattering rates.

σm 7.6×10−8 g/cm2

vF 106 m/s
vp 2×104 m/s

Dac 6.8 eV
h̄ωO 164.6 meV
DO 109 eV/cm

h̄ωK 124 meV
DK 3.5×108 eV/cm

and ϑk′ ,k′−k denote the convex angles between k and k′− k and between k′ and k′− k,

respectively.

In the literature there are several values for the coupling constants entering the collision

terms. For example for the acoustic deformation potential one can find values ranging

from 2.6 eV to 29 eV. A similar degree of uncertainty is found for the optical and K

phonon coupling constants as well. In our numerical simulations of monolayer graphene, the

parameters proposed in [8, 17] have been adopted. They are reported in Table 1.1.

Regarding the optical and K phonons we will assume the Einstein approximation: h̄ωη is

constant, η = LO,TO,K. Instead, for the acoustic phonon the Debye approximation will be

assumed, h̄ωac = h̄vsq with vs the sound speed in graphene, and the Brillouin zone will be

consistently extended to R
2. For an accurate description of phonon dispersion relations and

thermal conductivity in graphene, we refer the interested reader to [68, 69].

The transition rate (collision frequency) associated to the Ath type of scattering mecha-

nism is defined as

ΓA(k) =
∫

SA(k,k
′)dk′ . (1.30)

We introduce the polar coordinates (ε,θ); taking into account the dispersion relation (1.23),

we have

k = (kx, ky) 7−→
ε

h̄vF
(cosθ , sinθ) , (1.31)

dk = k dk dθ =
ε

(h̄vF)2 dε dθ , (1.32)

with ε ∈ [0,+∞) and θ ∈ [0,2π]. We set θ = ϑk ,k′ and solve the difficulty arising from the

angular terms of scattering rates for optical phonons by using the following result [44]

cos(ϑk ,k′−k +ϑk′ ,k′−k) =
(ε2 + ε ′2) cosθ −2ε ε ′

ε ′2 −2ε ε ′ cosθ + ε2 . (1.33)
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1.3 Semiclassical kinetic model

With the previous transformation of coordinates, skipping for the sake of simplicity the

details of the integration, we can get the transition rates as function of energy alone, i.e

ΓA(k) = ΓA(ε). For the acoustic phonon scattering we get

Γac(ε) =
D2

ac kB T

4h̄3 v2
F σm v2

p

ε , (1.34)

while for the total optical phonon scattering, given by the sum of the longitudinal and

transversal contribution, we have

Γop(ε) =
D2

O

σm ωO h̄2 v2
F

[

(ε − h̄ωO)
(

n
(O)
q +1

)

H(ε − h̄ωO)+(ε + h̄ωO) n
(O)
q

]

, (1.35)

where the fact that the coupling constants are the same for both the longitudinal and the

transversal optical phonons has been used. In Eq. (1.35) H is the Heaviside function and n
(O)
q

the equilibrium optical phonon distribution as given by Eq. (1.25). The expression of the

transition rate for the K phonon scattering is the same as for the optical phonon

ΓK(ε) =
D2

K

σm ωK h̄2 v2
F

[

(ε − h̄ωK)
(

n
(K)
q +1

)

H(ε − h̄ωK)+(ε + h̄ωK) n
(K)
q

]

. (1.36)

Above n
(K)
q is the equilibrium K phonon distribution. In Fig.1.5 the scattering rates for each

type of phonons are shown.

A review of the properties of the transport equations in semiconductors can be found in

[18]. Most part of the results are valid only for regularized collision operators. The existence

and uniqueness of the solution, without any regularization of the collisional kernel, have

been proved for the homogeneous semiconductor Boltzmann equations, in the case of zero

electric field in [19, 20], where it has also been shown that 0 ≤ f ≤ 1 provided that such a

condition is satisfied by the initial data. The general situation is still an open problem.
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1.3 Semiclassical kinetic model

Fig. 1.5 Scattering rates.
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Chapter 2

A new Direct Simulation Monte Carlo

Method to properly take into account the

Pauli exclusion principle

2.1 The standard Monte Carlo Method

The Monte Carlo method is based on the use of random numbers and can be used for solving

both stochastic and deterministic problems, such as the evaluation of integrals and the solution

of algebraic or integral equations. A classical example to understand how a statistical method

can be used for the solution of a deterministic problem is the calculation of the number π ,

that is equivalent to the evaluation of the integral that gives the area of a circle of radius

a. We can solve this problem by considering a square of side 2a with the circle inscribed

and by generating pairs of random numbers (x,y), evenly distributed between −a and a, to

be used as coordinates of points inside the square. The expectation value of the fraction f

of the points falling inside the circle is given by the ration between the area of the circle,

πa2, and that of the square, a2, i.e. the expectation value is equal to π . Thus, practically,

π can be evaluated by means of the ration between the number of points falling inside the

circle and the total number of points used. Clearly, one obtains a result even more exact

when the number of points is increased. This is one of the most typical feature of the Monte

Carlo method, i.e. the dependence from the statistical sample. The Monte Carlo method has

been used from remote times, already in 1777 by the French Encyclopedist Georges-Louis

Leclerc, Compte de Buffon, and by Laplace. The official birth with this name, due to the

Monte Carlo casino where roulettes generate random numbers, is due to the work of the Los

Alamos group for the development of nuclear weapons, in particular the paper “The Monte
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2.1 The standard Monte Carlo Method

Fig. 2.1 Hierarchy of transport models.

Carlo method” by Metropolis and Ulam in 1949 [9]. Thereafter [10–13, 29, 14], the MC

method had a wide range of applicability and became a standard method for the solution of

transport problems, as a very effective method to solve the Boltzmann Transport Equation.

The MC methos is very flexible due to the possibility of adapting its statistical nature both

for the solution of deterministic problems and of intrinsically statistical ones; in this latter

case, it can be considered as a Direct Simulation of the phenomenon. In this way, it is used

for the solution of the BE for charge transport as a direct simulation of the dynamics of the

particles inside the crystal. This property of MC method make us able to link directly with

the physical situation under study and make it a very useful tool also as an experimental

technique, i.e. we can simulate physical phenomena that cannot be analyzed experimentally,

predict the properties of new materials and simulate the behaviour of electronic devices,

without resorting to the very expensive industrial technique of the trial-and-error. The Monte

Carlo method fits in the middle of a hierarchy of transport models, when the macroscopic

ones, as Drift Diffusion or Hydrodynamical, fail and the quantum effects are not so strong

to invalidate the approximations behind the semiclassical Boltzmann Equation itself; an

illustration of such a hierarchy [15] is reported in Fig.2.1.
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2.1 The standard Monte Carlo Method

A first important classification is in

• one-particle Monte Carlo simulation;

• Ensemble Monte Carlo simulation (EMC).

In the first case, one simulates the motion of only one carrier and it is enough for a steady-

state homogeneous phenomenon; actually, from ergodicity, one can assume that a path long

enough of only a single carrier can give information on the behaviour of the entire gas of

particles. The second method is necessary for time or space dependent phenomena, when

for example it is important the effect of the transient dynamic response to an applied field;

in this case, we have to independently simulate a large number of particles, according to

an appropriate setting of initial conditions. Each particle in EMC is a super particle with

a statistical weight representative of the sub-ensemble of real particles whose behaviour it

describes. Usually, if N∗ is the real number of electrons and N the number of the simulated

particles, the statistical weight is equal to N∗/N. If the number of particles is large enough,

the average value of a certain quantity, 〈A(t)〉 on this sample ensemble is very close to

average one on the entire gas:

〈A(t)〉= 1
N

∑
i

Ai(t). (2.1)

Obviously, there is an error more little larger the number of particles is; the standard error is

s =
σ√
N
, (2.2)

with σ2 the variance that can be estimated as [21]

σ2 ∼= N

N −1

[

1
N

N

∑
i=1

A2
i −〈A〉2

]

. (2.3)

One follows each particle into a time window ∆t, wherein the motion of each carrier is syn-

chronized. The particle motion is constituted by a free flight, governed by the semiclassical

equations of motion, interrupted by instantaneous random collision events, that change the

energy and the momentum of the particle. Thus, the main steps of every Monte Carlo method,

all based on the generation of random numbers, are the following:

• choose of the free flight duration;

• choose of the type of scattering event;

• determination of the new energy and momentum of the particle.
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2.1 The standard Monte Carlo Method

Fig. 2.2 Flow chart of a standard EMC simulation.

This procedure is continued for each particle until the time window ∆t is reached, and then

one can extract the average values of the quantities of interest, as the distribution function,

the mean drift velocity, energy, etc. In Fig. 2.2 is reported a schematic fow chart of a typical

standard EMC simulation.

The probability that an electron suffers a collision in the time t around dt is equal to

Γ(k(t))dt, where Γ(k(t)) is the total scattering rate of an electron with wavevector k(t),

given by the sum of the scattering rates due to each scattering mechanism, ΓA(k) or ΓA(ε),

discussed in the previous chapter. Thus, the probability that an electron suffers a collision at

time t around dt after a free flight of duration t is given by the joint probability

P(t)dt = Γ(k(t))exp

{

−
∫ t

0
Γ(k(t ′))dt ′

}

dt. (2.4)
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2.1 The standard Monte Carlo Method

Random free flight times tr can be generated according to the probability density P(t) by

means of

r =
∫ tr

0
P(t)dt (2.5)

where r is a random number evenly distributed in the range [0,1]. By inserting (2.4) into

(2.5), one obtains

r = 1− exp

{

−
∫ tr

0
Γ(k(t ′))dt ′

}

. (2.6)

Since r is statistically the same as 1− r, from (2.6) we have the fundamental equation for the

generation of random free flight times after each collision

− lnr =
∫ tr

0
Γ(k(t ′))dt ′. (2.7)

It could be very difficult and computational expensive to solve the previous equation due to

the analytical form of Γ(k(t)). A standard way to overcome such a difficulty is to introduce

a fictitious scattering [23, 24], the so-called self-scattering, whose scattering rate varies in

order to ensure that the total scattering rate Γ remains constant

Γ = const = ∑
A

ΓA(k(t))+Γsel f (k(t)). (2.8)

The self-scattering does not introduce any change in the energy and momentum of the

particles, that will begin the next free flight starting from the same state before the self-

sattering event. Hence, Eq. (2.7) becomes

tr =− 1
Γ

lnr. (2.9)

Γ must be chosen in such a way that it is always greater than the real maximum one during

all the simulation. It can be fixed at the beginning of the simulation (constant gamma

method) or, in a more computationally efficient way, at each time step [16]. In order to select

the scattering mechanism that interrupts the free flight, one generates a random number r,

uniformly distributed between 0 and 1, and compares the number rΓ with the successive

sums of the Ath scattering rates, ∑A ΓA. One selects the mechanism that makes the sum

greater than rΓ (see Fig. 2.3).

After the scattering mechanism has been chosen, one has to update the values of energy

and momentum of the particles. The new energy is easily recovered by considering that

electrons and phonons exchange quanta of energy and that the energy remains unchanged if

the scattering is (quasi)-elastic, as we will assume for acoustic phonons. Defining a spherical
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2.1 The standard Monte Carlo Method

Fig. 2.3 Selection of the scattering mechanism terminating the free flight.

coordinate system around the initial wavevector k, the final wavevector is given by |k′|, that

one calculates by means of energy, and, in the general 3D case, by the azimuthal and polar

angles, φ and θ respectively. In general, φ can be chosen in a isotropic way, as φ = 2πr,

and θ according to the angular dependence of the scattering rate arising from the expression

of ΓA(k). In principle, one can use the probability to scatter into a certain angle P(θ)dθ

and an uniformly distributed random number r according to (2.5). If P(θ) cannot easily be

integrated, Eq. (2.5) can be treated by using a standard rejection technique [29, 30].

2.1.1 Degeneracy effects

Degeneracy effects arise when the particles concentration is high; in this case, we cannot

neglect the Pauli exclusion principle and the term (1− f (k′)), representing the availability of

the final state k′, has to be taken into account in the determination of the scattering rate Γ(k).

This is a hard task in EMC simulation because, when we have to determine the scattering

rate, we do not know the exact final state k′ that will be reached after the collision.

A standard way to overcome such a difficulty, as it was developed by Bosi and Jacoboni

[27] for one-particle Monte Carlo and by Lugli and Ferry [28] for EMC, is to calculate the

scattering rates without the term (1− f (k′)), to select the final state and then to add a control

on the final state availability. A random number r, uniformly distributed between 0 and 1, is

generated and a rejection technique is used to check the final state. If r is greater than f (k′)

the scattering is accepted, energy and momentum of particles changed, otherwise it is treated

as a self-scattering without any change in energy and momentum. We remind that 0 ≤ f ≤ 1.
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2.2 A new Direct Simulation Monte Carlo Method to properly take into account the

Pauli exclusion principle

The improvements in results showed how much important the degeneracy effects are, but

the obtained distribution function can exceed the maximum value 1, and this is an unphysical

result that one should consider when the degeneracy effects are very effective.

It is indeed very important to include the Pauli exclusion principle in a correct way, in

order to obtain correct distribution functions.

In the next section, we show the procedure we used to solve such a problem.

2.2 A new Direct Simulation Monte Carlo Method to prop-

erly take into account the Pauli exclusion principle

In [26], we developed a new algorithm for Direct Simulation Monte Carlo that properly takes

into account the Pauli exclusion principle also in the degenerate case; we can also derive

mean values of the charge energy and velocity more correct and stable in the case of high

charge densities than those obtained with the traditional methods.

Direct Simulation Monte Carlo (DSMC) method has been intensively used in several fields

of physical, life and social sciences. In particular a huge amount of literature is devoted

to the simulations of charge transport in electron devices. The problem is well understood

when the degeneracy effects are neglected. This is justified for low or moderate doping

concentration, as it happens in many cases of electron device design. In the case of high

charge concentrations, in the collision terms the occupation probability of the final state

cannot be approximated as equal to one and this fact must be included in the selection of the

final state after a scattering event.

A first way to deal with the degeneracy effects in bulk semiconductors was proposed in a

pioneering work in [27]. An extension to a more general case was devised in [28] and has

become the standard approach. However, due to round-off errors, the reconstruction of the

occupation number can exceed the unit, see for example [31]. In several applications this

effect is not so relevant because the mean values are still accurate but, from a theoretical

point of view, it needs an improvement if we require a good estimation of the occupation

number. Moreover, a treatment of the degeneracy effects, which is not accurate enough,

might alter the evaluation of the scattering rate and the availability of the final states. In order

to improve the approach of [28], an ad hoc scattering-out term has been added in [31, 32],

while in [33, 34] ad hoc approximations of the distribution function have been proposed for

the evaluation of the degeneracy effects.

We use a hybrid DSMC simulation strategy that guarantees correct occupation numbers

maintaining a computational cost comparable with that of the standard DSMC approach. In
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2.2 A new Direct Simulation Monte Carlo Method to properly take into account the

Pauli exclusion principle

order to validate the proposed DSMC strategy, the electron transport equation is also solved

by means of a numerical scheme based on the discontinuous Galerkin (DG) method. This

method has been already successfully applied to more conventional semiconductor materials,

like silicon [42, 43], and therefore represents a valid approach to test and compare different

techniques. It will be performed a comparison of the results obtained both with DSMC and

DG methods furnishing a cross-validation of the two approaches and confirming the validity

of the proposed DSMC algorithm.

We consider at first the homogeneous case. In a homogeneous suspended monolayer

graphene, the Boltzmann equation in the generic K valley reduces to

∂ f (t,k)
∂ t

− e

h̄
E ·∇k f (t,k) =

∫

S(k′,k) f (t,k′)(1− f (t,k))dk′

−
∫

S(k,k′) f (t,k)
(

1− f (t,k′)
)

dk′ . (2.10)

A similar equation holds for the K′ valley.

The k-space is approximated by the set [−kxmax,kxmax]× [−kymax,kymax] with kxmax and

kymax such that the number of electrons with a wave-vector k outside such a set is practically

negligible. The k-space is partitioned into a uniform rectangular grid. We shall denote by Ci j

the generic cell of the grid centered at the ki j wave-vector.

The distribution function is approximated with a piecewise constant function in each cell.

Initially, the nP particles used for the simulation are distributed in each cell according to the

equilibrium Fermi-Dirac distribution:

f (0,k) =
1

1+ exp

(

ε(k)− εF

kB T

) ,

where T = 300 K, and εF is the Fermi energy, which is related to the initial charge density

by

ρ(0) =
2

(2π)2

∫

f (0,k)dk . (2.11)

Note that in the unipolar case, when only one band is considered, ρ remains constant,

ρ(t) = ρ(0), as consequence of charge conservation. The motion of each particle alternates

free-flight and scattering. The latter is the most involved and delicate part and in graphene it

is particularly important to include the Pauli principle. This implies a heavy computational

cost and, more importantly, requires a continuous update of the distribution function.
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2.2 A new Direct Simulation Monte Carlo Method to properly take into account the

Pauli exclusion principle

In the standard approach the free-flight is performed according to the semiclassical

equation of motion

h̄k̇ =−eE . (2.12)

E will be considered as a constant external field. Therefore, in a free-flight time ∆t one has a

variation of momentum given by

h̄∆k =−eE∆t .

The time interval ∆t is chosen for each particle in a random way by

∆t =− lnξ

Γtot
, (2.13)

ξ being a random number with uniform distribution in the interval [0,1] and Γtot being the

total scattering rate (see for example [29])

Γtot = Γac +Γop +ΓK +Γss .

Γss, called self-scattering rate, is the scattering rate associated to a fictitious scattering that

does not change the state of the electron. It is introduced so that Γtot is constant leading

to the simple relation (2.13). To fix the value of Γtot one considers the range of the energy

involved in the simulation and takes the maximum value ΓM of the sum Γac +Γop +ΓK .

Γtot is then αΓM with α > 1 a tuning parameter.

The main drawback is that the range of Γac, Γop, ΓK can be very large resulting in a huge

amount of self-scatterings with a consequent high computational cost. In the range of energy

we encounter in the simulations, the scattering rates can vary by two orders of magnitude as

shown in Fig. 1.5. Therefore it is evident that the use of a constant total scattering rate could

be too expensive from a computational point of view. A good variant is to use a variable Γtot

which depends on the energy ε(t) of the considered particle at the current time t

Γtot = α [Γac(ε(t))+Γop(ε(t))+ΓK(ε(t))] .

We will use this procedure and set α = 1.1 in our simulations.

The scattering rates are given by equations (1.34), (1.35), (1.36) of the previous chapter,

that we rewrite for convenience of reading:

Γac(ε) =
D2

ac kB T

4h̄3 v2
F σm v2

p

ε,
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2.2 A new Direct Simulation Monte Carlo Method to properly take into account the

Pauli exclusion principle

Γop(ε) =
D2

O

σm ωOh̄2 v2
F

[

(ε − h̄ωO)
(

n
(O)
q +1

)

H(ε − h̄ωO)+(ε + h̄ωO) n
(O)
q

]

,

ΓK(ε) =
D2

K

σm ωK h̄2 v2
F

[

(ε − h̄ωK)
(

n
(K)
q +1

)

H(ε − h̄ωK)+(ε + h̄ωK) n
(K)
q

]

.

After the free-flight, the scattering is randomly selected according to the values of the

transition rates and the Pauli exclusion principle is taken into account as in [28]. Once the

state after the scattering has been determined, let us denote by k′ its wave-vector, the initial

state is changed or left the same with a rejection technique: a random number ξ is generated

and if ξ < 1− f (k′) the transition is accepted otherwise rejected.

At fixed times the momentum, velocity, energy of each electron are recorded and the

mean values are evaluated along with the distribution of electrons among the cells in the

k-space in order to follow the time evolution of the system.

The maximum number n∗i j of simulated particles can be accommodate in each cell is

easily evaluated (see [28]). Let Ni j be the number of real particles in the cell Ci j and let ni j be

the number of simulated particles in the same cell. By observing that N/nP is the statistical

weight of each simulated particle and taking into account the condition 0 ≤ f ≤ 1, one has

ni j =
Ni j

N
nP =

nP

N

2
(2π)2 A

∫

Ci j

f d k ≤ nP

N

2
(2π)2 A

∫

Ci j

d k

=
2

(2π)2 meas(Ci j)
nP

N
A =

2
(2π)2 meas(Ci j)

nP

ρ
= n∗i j , (2.14)

where A is the area of the sample, N is the number of real particles in the sample, N = ρA, and

meas(Ci j) is the measure of the cell Ci j. Of course n∗i j is not in general an integer, therefore

rounding errors are introduced. Usually, the problem is solved by using a number of particles

nP great enough to make negligible such errors. The convergence of the procedure is otften

checked just by comparing the results with different nP.

The main concern with the procedure delineated above is that, according to the semi-

classical approximation, the compatibility with Pauli’s principle of the positions occupied

during the free flight is not checked. It may occur that the particle at the end of the free-flight

reaches a cell in the k-space already fully occupied making the occupation number greater

than the maximum one (see Fig. 2.4).

For high values of the Fermi energy the maximum occupation number can greatly exceed

the maximum one. This is of course unphysical, although the average quantities could be
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2.2 A new Direct Simulation Monte Carlo Method to properly take into account the

Pauli exclusion principle
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Fig. 2.4 Dynamics of the simulated particles in given cells of the k-space. Under the action
of the electric field the wave-vector changes and it may happen that some particles enter in
an adjacent cell. If the number of entering particles is sufficiently higher than that of the
exiting ones, the maximum occupation number can be exceeded since during the free-flight
no control on Pauli’s principle is performed.

acceptable according to the large number law. Even if the scattering can redistribute the

particles among the cells, in general it is not able to eliminate the presence of anomalous

occupation numbers.

We have implemented the standard DSMC procedure and evaluated the distribution

function at steady state, approximately after about 5 ps. In Fig. 2.5 the distribution function

is plotted for an electric field E = 10 kV/cm and a Fermi energy equal to 0.4 eV. A violation

of Pauli’s exclusion principle is evident. In Fig. 2.6 the case with E = 1 kV/cm and a

Fermi energy equal to 0.3 eV has been considered. Although we have a smaller density, and

therefore the degeneracy effects could be less relevant, again a violation of Pauli’s principle is

observed. When the Fermi level is increased, the maximum occupation number, as expected,

increases as Fig. 2.7 clearly shows.

In [39] it has been proposed for overcoming the problem to apply the rejection technique

not only to the scattering event but also at the end of each free-flight. However, even

implementing this variant, the same drawbacks are still present and also the mean values can

change, as shown later.

In order to avoid such a difficulty we propose the following approach.

The crucial point in the previous procedure is the step concerning the free-flight. If we go

back to the original transport equation, we can use a splitting scheme to avoid unphysical

results. The basic idea is to reformulate the splitting method in terms of a particle method.
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2.2 A new Direct Simulation Monte Carlo Method to properly take into account the

Pauli exclusion principle

Fig. 2.5 Steady-state distribution function and its longitudinal view in the case of an applied
electric field of 10 kV/cm and a Fermi level equal to 0.4 eV by adopting the standard DSMC.
Note that the maximum value exceeds one.

Fig. 2.6 Steady-state distribution function and its longitudinal view in the case of an applied
electric field of 1 kV/cm and a Fermi level equal to 0.3 eV by adopting the standard DSMC.
Although we have a smaller density, again a violation of Pauli’s principle is observed.
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2.2 A new Direct Simulation Monte Carlo Method to properly take into account the

Pauli exclusion principle

Fig. 2.7 Steady-state distribution function and its longitudinal view in the case of an applied
electric field of 10 kV/cm and a Fermi level equal to 0.6 eV by adopting the standard DSMC.

In a time interval ∆t, first we solve the drift part of the equation corresponding to the

free-flight in the analogous DSMC approach,

∂ f (t,k)

∂ t
− e

h̄
E ·∇k f (t,k) = 0 , (2.15)

taking as initial condition the distribution at time t, and then the collision part

∂ f (t,k)

∂ t
=

d f

dt
(t,k)

∣

∣

∣

∣

e−ph

, (2.16)

taking as initial condition the solution of Eq. (2.15). The global procedure gives a numerical

approximation of f (t +∆t,x,k) up to first order in ∆t. The solution of Eq. (2.15) is just

a rigid translation of the distribution function as a whole along the characteristics and

can be reformulated from a particle point of view as a free-flight of the same duration for

each electron. In this way the cells in the k-space are moved with the displacement vector

h̄∆k = −eE∆t but without changing the occupation number of the cells themselves. To

avoid considering a too large computational domain, instead of moving the cells we adopt a

Lagrangian approach and move the grid, adapting it to the new position of the cells.
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2.2 A new Direct Simulation Monte Carlo Method to properly take into account the

Pauli exclusion principle

Eq. (2.16) is solved by considering a sequence of collision steps for each particle during

the time interval [t, t +∆t] in a standard way: choice of the scattering, including also the

self one, and selection of the final state. Since the collision mechanisms take into account

the Pauli principle, the occupation number cannot exceed the maximum occupation number

in this second step as well. Hence, neither the drift nor the collision step give rise to the

possibility of having more particles in a single cell greater than the maximum occupation

number.

In a schematic way, the algorithm we propose is summarized in the following steps.

1. Let us consider a uniform temporal grid t1 = ∆t, t1 = 2∆t, · · · , tr = r ∆t, · · · .

2. Let f r
i j be the piecewise constant approximation of the distribution function in Ci j at

the rth time step.

3. For each particle we update the momentum

h̄k(tr+1) = h̄k(tr)− eE∆t (2.17)

and then we move in the same way the center (kc
i ,k

c
j) of each Ci j so that the relative

positions of the electrons with respect to the grid remain unchanged.

4. For a time interval ∆t we consider for each particle only scattering events selected in

the standard way. After the scattering of each particle, the occupation numbers of the

cells involved in the collision, both the initial state and the final state, are updated.

The overall scheme is a hybrid approach which furnishes a first order in time approximation

of the distribution function.

Average quantities can be evaluated as well by taking the mean values of the quantities of

interest, e.g. velocity and energy.

The main difference between the standard and the new DSMC approach is schematically

summarized in Figs. 2.8 and 2.9.

Remark 1 The previous procedure consists of a splitting of the Boltzmann equation into

two parts; one represents the effect of the Liouvillian differential operator through a rigid

motion of the distribution function as a whole over the phase-space trajectories; the other,

scattering part, takes into account the re-distribution of electrons due to the collisions. Thus,

this procedure respects the intrinsic nature of the Boltzmann equation and in particular the

role of the time. The l.h.s of the Boltzmann equation takes into account the time evolution

while in the r.h.s the collisions are considered instantaneously, time is a frozen parameter. Is
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Fig. 2.8 The standard DSMC scheme.

Fig. 2.9 The new DSMC scheme.
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it a coincidence that a numerical solution which respects this double role of time also gives

a right solution? In this way, the splitting, that allow us to respect the intrinsic nature of

the Boltzmann equation also in the numerical procedure, seems to be not only a sufficient

condition but also a necessary condition. I think that the problem is to be investigated deeper

and that it could lead to useful suggestions, at least from a philosophical point of view, for

example about the relationship between a physical phenomenon, its analytical model and the

corresponding numerical approximations.

2.2.1 Numerical results and comparison between stochastic and deter-

ministic solutions

In this section the results of simulating a monolayer graphene with different Fermi levels and

electric fields are presented in order to check the validity of both the new DSMC simulation

and the DG method by a cross-validation. Details about the Discontinuous Galerkin method

are given in the following chapter.

The value of the Fermi level is chosen high enough for neglecting the inter-band interac-

tions and hole dynamics. The lattice temperature is kept equal to 300 K.

For the numerical solution of the ODE system arising after applying the DG discretization,

the TVD third order Runge-Kutta scheme has been used as in [51] with a time step which

depends on the electric field. We remark that the overall numerical scheme guarantees charge

conservation. In the Monte Carlo simulations a time step of 1 fs is used for the applied fields.

Regarding the computational costs, the execution time of the two approaches is compa-

rable. On the average each simulation requires at most three minutes with a 2.3 GHz Intel

Core i7 processor.

The DSMC calculations have been performed by discretizating the k-space with h̄kxmax =

h̄kymax = 4 eV·ps /µm and 641 × 641 cells when the electric fields are equal to 1, 2, 4 kV/cm.

In the cases of applied fields equal to 10 and 20 kV/cm, we have set h̄kxmax = h̄kymax = 12

eV·ps /µm but retaining the same number of cells.

In the simulations with the DG method, the k-space has been discretized with 9600 cells

while the time step depends on the values of the electric fields. For the higher considered

electric field, 20 kV/cm, we used a time step of 0.75 fs.

Firstly, the Fermi level is set equal to 0.4 eV and 104 particles are employed. In Fig.2.10

the distribution functions, obtained with the two approaches, are compared. Apart the good

agreement, it is evident that the occupation probability never exceeds one and no violation

of the Pauli exclusion principle appears with the new DSMC, in contrast with the results

showed in Fig. 2.5.
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eV kV/cm V σmeanvelocity W σmeanenergy

(108 cm/s) (108 cm/s) (eV) (eV)

0.40 1 0.1989 0.0022 0.2816 0.0004

0.40 2 0.2320 0.0022 0.2883 0.0004

0.40 4 0.2761 0.0021 0.3026 0.0004

0.40 10 0.3314 0.0021 0.3544 0.0005

0.40 20 0.3481 0.0021 0.4429 0.0007

0.60 1 0.1215 0.0022 0.4078 0.0005

0.60 2 0.1449 0.0022 0.4110 0.0005

0.60 4 0.1694 0.0022 0.4172 0.0005

0.60 10 0.2229 0.0022 0.4424 0.0006

0.60 20 0.2715 0.0022 0.5044 0.0007

Table 2.1 Estimation of the sample standard deviation for the steady state mean values of
velocity and energy. In the first and the second columns the Fermi level and the electric field
are reported.

In order to check the validity of the proposed approaches also for a higher density, we

have performed simulations in the case of a Fermi level equal to 0.6 eV as well by using

105 particles. In Fig. 2.11 the solutions are plotted. The goodness of the agreement remains

the same and again no violation of Pauli’s exclusion principle is observed in contrast with

Fig.2.7.

We have compared also the results of the average values of the electron velocity V and

energy W . These quantities are defined as

V =
1
ρ

2
(2π)2

∫

v f (t,k)dk , (2.18)

W =
1
ρ

2
(2π)2

∫

ε f (t,k)dk . (2.19)

In Table 2.1 the standard deviation of the sample mean for energy and velocity, evaluated

according to σmean = σ/
√

np −1 with σ2 denoting the variance of the energy or velocity of

the electron population, are reported at the steady state showing a good statistical performance.

Indeed the standard deviation is a small fraction of the mean value.
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Fig. 2.10 Steady-state distribution function in the case of an applied electric field of 10 kV/cm
and a Fermi level equal to 0.4 eV by adopting the new DSMC method and the DG method.
Note that the maximum value does not exceed one. In the bottom figure the longitudinal
section, ky = 0, obtained with the DG (continuos line) and the DSMC (dashed line) methods
is plotted.
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Fig. 2.11 Steady-state distribution function in the case of an applied electric field of 10 kV/cm
and a Fermi level equal to 0.6 eV by adopting the new DSMC method and the DG method.
In the bottom figure the longitudinal section, ky = 0, obtained with the DG (continuos line)
and the DSMC (dashed line) methods is plotted. Again no violation of Pauli’s exclusion
principle is observed.
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Fig. 2.12 Comparison of the average velocity versus time obtained with the standard DSMC
(continuous line) and the new DSMC (dashed line) approaches in the case of an applied
electric field of 10 kV/cm and a Fermi level equal to 0.4 eV (top) and 0.6 eV (bottom).

In Figs 2.12, 2.13, a comparison between the mean values obtained with the standard and

the new DSMC approach is plotted. It is clear that evident differences arise at a higher Fermi

energy, which is the case when the importance of the degeneracy effects increases.

In order to further investigate the accuracy of the new DSMC method, in Figs 2.14, 2.15,

2.16, 2.17 the results of the average values of the electron velocity and energy obtained with

the DG method and the new DSMC method are compared.

There is an excellent agreement between the new DSMC and the DG methods in corre-

spondence with the considered electric fields. Of course, DSMC presents some statistical

noise which is more evident in correspondence of the overshoot but the discrepancy is very

small.

In order to estimate the differences between the average quantities uMC and uDG, where

u stands for velocity or energy, obtained by using the new DSMC and the DG methods

respectively, we introduce the estimator

du =
max

t
{|uMC(t)−uDG(t)|}
E [|uDG(t)|]

,

where E is the expectation value. The time t belongs to the interval [0,5] (in ps). The results

are reported in Table 2.2 and they clarify the overall agreement. Of course, to assess whether
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Fig. 2.13 Comparison of the average energy versus time obtained with the standard DSMC
(continuous line) and the new DSMC (dashed line) approaches in the case of an applied
electric field of 10 kV/cm and a Fermi level equal to 0.4 eV (top) and 0.6 eV (bottom).

the DSMC or the DG approach is more accurate is just a fictitious question because the

differences of the results are within the measurement errors.

Finally, we want to stress that the numerical distribution obtained with the DG method

is always positive. It is apparent that the used DG scheme preserves the positivity of the

solution, supporting the validity of the theoretical results, proved in [40], also for the problem

under consideration.

2.2.2 Failure of other approaches

In this section, we show other attempts to solve the problem of a proper inclusion of the

Pauli exclusion principle. The method is the same as in the standard EMC simulation and the

differences are in the treatment of the availability of the final state.

• Variant 1

In a similar way as in [39], a rejection technique is used not only for the scattering events

but also for the final state after the free flight. In this way, the free flight trajectories are

treated not in a really semiclassical picture. Only if the state after the free flight is accepted,
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Fig. 2.14 Comparison of the average velocity versus time obtained with the new DSMC and
the DG method in the case of an applied electric field of 2 kV/cm, 4 kV/cm, 10 kV/cm, 20
kV/cm and a Fermi level equal to 0.4 eV.
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Fig. 2.15 Comparison of the average energy versus time obtained with the new DSMC and
the DG method in the case of an applied electric field of 2 kV/cm, 4 kV/cm, 10 kV/cm, 20
kV/cm and a Fermi level equal to 0.4 eV.
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Fig. 2.16 Comparison of the average velocity versus time obtained with the new DSMC and
the DG method in the case of an applied electric field of 2 kV/cm, 4 kV/cm, 10 kV/cm, 20
kV/cm and a Fermi level equal to 0.6 eV.
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Fig. 2.17 Comparison of the average energy versus time obtained with the new DSMC and
the DG method in the case of an applied electric field of 2 kV/cm, 4 kV/cm, 10 kV/cm, 20
kV/cm and a Fermi level equal to 0.6 eV.
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eV kV/cm dvelocity denergy

0.40 1 0.015631 0.003603

0.40 2 0.013698 0.003849

0.40 4 0.013873 0.004049

0.40 10 0.022464 0.004015

0.40 20 0.046947 0.005564

eV kV/cm dvelocity denergy

0.60 1 0.027146 0.006616

0.60 2 0.024401 0.006717

0.60 4 0.027201 0.006411

0.60 10 0.021336 0.001423

0.60 20 0.016653 0.003023

Table 2.2 Estimation of the differences of the results obtained with the DMSC and the
DG methods. In the first and the second columns the Fermi level and the electric field are
reported.

a) b)

Fig. 2.18 Comparison of the average energy versus time obtained with the variant 1 and the
new DSMC when E = 2 kV/cm and εF = 0.3 eV a), and when E = 20 kV/cm and εF = 0.6
eV b).

one considers the scattering events; if the final state after the scattering is accepted, as in a

standard way, one changes the electron energy and momentum, otherwise it is treated as a self

scattering. In both cases, the time is updated from t to t +dt, dt being the free flight duration.

If the final state after the free flight is not accepted, nothing happens and one only updates

the time. In Figs 2.18, 2.19, the mean values of energy and velocity are reported.There is a

great disagreement with the results of the new DSMC, mainly in the transient overshoot. The

obtained distribution functions could have values exceeding the maximum ones, even if less

than the standard procedure, and they present also negative unphysical values, as shown in

Fig.2.20.
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a) b)

Fig. 2.19 Comparison of the average velocity versus time obtained with the variant 1 and the
new DSMC when E = 2 kV/cm and εF = 0.3 eV a), and when E = 20 kV/cm and εF = 0.6
eV b).

a) b)

c) d)

Fig. 2.20 Distribution function section along the field direction with variant 1. εF = 0.3 eV
and E = 2 kV/cm a), εF = 0.3 eV and E = 20 kV/cm b), εF = 0.6 eV and E = 2 kV/cm c),
εF = 0.6 eV and E = 20 kV/cm d).
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a) b)

Fig. 2.21 Comparison of the average energy a) and velocity b) versus time obtained with the
variant 2 and the new DSMC when E = 20 kV/cm and εF = 0.6 eV.

Fig. 2.22 Distribution function section along the field direction with variant 2 when E = 20
kV/cm and εF = 0.6 eV.

• Variant 2

It is the same procedure of the variant 1, but the time is updated only if the state after the free

flight is accepted. Mean energy and velocity, compared with the new DSMC ones, are shown

in Fig.2.21.They have the same behaviuor of those in variant 1 and are very similar. This

shows how ineffective the updtating procedure for the simulation time is. The distribution

functions in Fig.2.25 can exceed again the maximum value 1 and have negative values.
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a) b)

Fig. 2.23 Comparison of the average energy versus time obtained with the variant 3 (dashed
line) and the new DSMC (continuous line) when E = 2 kV/cm and εF = 0.3 eV a), and when
E = 20 kV/cm and εF = 0.6 eV.

• Variant 3

Unlike the variant 1, at first one uses a rejection technique on the states after the scattering

events as in the standard EMC simulation; the free flight is performed and the scattering

mechanism is chosen. If this is accepted the simulation time and the electron state are

updated; if it is not accepted, then ones checks also the free flight state before the scattering;

if this is accepted one updates the electron energy and momentum according to the free flight

and updates the simulation time, otherwise all remain unchanged and only the simulation

time is updated. This is a variant closer both to standard one and to new DSMC approach;

actually, some average values for energy and velocity seem good at high fields and Fermi

levels, see Figs 2.23, 2.24, but the distribution function have values exceeding the maximum

one see Fig. 2.25.

• Variant 4

It is the same as the variant 3, but the simulation time is updated to t +dt only if the state

after the scattering or after the free flight is accepted. Again, the updating of the simulation

time it is not so important and we have practically the same results of the variant 3, see Fig.

2.26, with the same problems in the distribution functions, see Fig.2.27.
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a) b)

Fig. 2.24 Comparison of the average velocity versus time obtained with the variant 3 (dashed
line) and the new DSMC (continuous line) when E = 2 kV/cm and εF = 0.3 eV a), and when
E = 20 kV/cm and εF = 0.6 eV b).

a) b)

c) d)

Fig. 2.25 Distribution function section along the field direction with variant 3. εF = 0.3 eV
and E = 2 kV/cm a), εF = 0.3 eV and E = 20 kV/cm b), εF = 0.6 eV and E = 2 kV/cm c),
εF = 0.6 eV and E = 20 kV/cm d).

47



2.2 A new Direct Simulation Monte Carlo Method to properly take into account the

Pauli exclusion principle

a) b)

Fig. 2.26 Comparison of the average energy a) and velocity b) versus time obtained with
the variant 4 (dashed line) and the new DSMC (continuous line) when E = 20 kV/cm and
εF = 0.6 eV.

Fig. 2.27 Distribution function section along the field direction with variant 4 when E = 20
kV/cm and εF = 0.6 eV.

2.2.3 The space-dependent case

In this case the electric field is usually no longer constant and must be self-consistently

evaluated by coupling the transport equation with the Poisson equation for the electrostatic

potential. For example this problem arises when one has a variable Fermi energy or, as

happens for conventional semiconductors, a non uniform doping. A similar problem has also
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been tackled in [41] for the simulation of compressible inviscid flows by using a particle

method with a procedure having several analogies with that proposed here.

There is a relevant difference, with respect to the space-homogeneous case, in the

calculation of the distribution function f for fixed time and space. Now, we must find the

distribution in an finite suitable set of points in the real space. To this scope, we initially

introduce a partition of the space domain D, which is assumed compact, and we denote

by Da the generic cell of the partition. The initial partition of the domain D is introduced

according to the following requirements. Every cell contains, at the initial time, a sufficiently

large number of particles to guarantee a reasonable statistic, which is necessary to estimate

f and its moments. This partition, introduced at the initial time, will not be changed in the

sequel, and it is used to evaluate macroscopic quantities, as density or energy, by means of

the standard procedure to perform the statistic.

We choose a partition of the k-domain [−kxmax,kxmax]× [−kymax,kymax] in every cell Da

and we denote by Ca
i j the generic cell of the partition in the k-space, coupled to the cell Da.

Now, in the non-homogeneous case, we must find the occupation number in each set

Da ×Ca
i j for all a and (i, j), and check the validity of the Pauli’s exclusion principle in every

set Da ×Ca
i j.

As initial conditions we arrange the particles in each cell according to the value of the

doping or equivalently according to the value of the Fermi energy in the cell.

The solution at the time tn +∆t is obtained by splitting the transport equation into three

steps:

1. solve
∂ f (t,x,k)

∂ t
− e

h̄
E ·∇k f (t,x,k) = 0 (2.20)

with initial data f (tn,x,k);

2. solve
∂ f (t,x,k)

∂ t
=

d f

dt
(t,x,k)

∣

∣

∣

∣

e−ph

, (2.21)

taking as initial condition the solution of Eq. (2.20);

3. solve
∂ f (t,x,k)

∂ t
+v ·∇x f (t,x,k) = 0, t ∈ [tn, tn +∆t] (2.22)

taking as initial condition the solution of Eq.(2.21).

The global procedure gives a numerical approximation of f (tn +∆t,x,k) up to first order in

∆t.
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Let us see the previous steps from a DSMC point of view. The first and the second step

are performed in a way, which is very similar to the previous space-homogeneous case. We

only use a piecewise constant approximation of the electric field, such that in each cell Da

the electric field E is a constant. The position of the particles in the physical space remains

unchanged. We remark that, after these two steps, for every cell Da, the coupled grid in

k-space moves, according to the value of the electric field, in a non uniform way.

Now, we consider the last step. In the DSMC scheme, it corresponds to the equation

ẋ =
vF

|k|k. (2.23)

We solve this equation as in the standard DSMC method. Since, now, Pauli’s exclusion

principle is not guaranteed in all the sets Da×Ca
i j, we can use the exact solution of Eq. (2.22),

which gives

f (tn +∆t,x,k) = f (tn,x−v tn,k) (2.24)

as a corrector. In fact, in every Da ×Ca
i j where Pauli’s exclusion principle is not satisfied,

we simply replace the simulated particles belonging to Da ×Ca
i j by the same number of new

particles created according the exact distribution (2.24), which of course is less than one.
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Chapter 3

The Discontinuous Galerkin method

3.1 Basic assumptions

Lately several efficient numerical schemes have been applied for getting deterministic solu-

tions of the Boltzmann equation for charge transport in semiconductors. Several works based

on WENO schemes can be found in the literature about simulation of silicon and gallium

arsenide electron devices [50, 51] and recently also for suspended monolayer graphene

[38]. Here we use an alternative method for solving the kinetic model, i.e. for discretizing

Eq. (2.10), based on the discontinuous Galerkin method [52].

The electron distribution function f (t, ·) must belong to L1(R2), then, for each t > 0,

firstly the space of the wave-vector is approximated by a bounded domain Ω ⊂ R
2 such that

f (t,k)≈ 0 for every k /∈ Ω and t > 0. We expect an exponential decay of the distribution

function as |k| → ∞. This is proved, under suitable conditions, for the classical Boltzmann

equation of rarefied monatomic gases. In our simulations, we check if, after each time step,

the values of f at the boundary of the domain Ω are sufficiently low; otherwise, we enlarge

the domain Ω and repeat the integration starting from the initial time.

We introduce a finite decomposition {Cα} of Ω, with Cα appropriate open sets, such that

Cα ∩Cβ = /0 if α 6= β , and
N
⋃

α=1

Cα = Ω .

We assume that the distribution function f is constant in each cell Cα . If we denote by

χα(k) the characteristic function relative to the cell Cα , then

f (t,k)≈ f α(t) ∀k ∈Cα ⇐⇒ f (t,k)≈
N

∑
α=1

f α(t)χα(k) ∀k ∈
N
⋃

α=1

Cα .
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This assumption replaces the unknown f , which depends on the two variables t and k, with a

set of N unknowns f α , which depend only on time t. In order to obtain a set of N equations

for the new unknowns f α , we integrate the Boltzmann equation with respect to k over every

cell Cα and replace f with its approximation. Up the truncation error, one gets

Mα
d f α(t)

dt
− e

h̄
E ·

∫

∂Cα

f (t,k)n dσ

=
N

∑
β=1

[

Aβ ,α
(

1− f α(t)
)

f β (t)−Aα,β f α(t)
(

1− f β (t)
)

]

(3.1)

where

Aα,β =
∫

Cα

[

∫

Cβ

S(k,k′)dk′
]

dk , (3.2)

Mα is the measure of the cell Cα and n is the external unit normal to the boundary ∂Cα of

the cell Cα . If a suitable discretization of the drift and collision term is performed, it is clear

that the numerical method yields a system of ordinary differential equations. This latter can

be numerically integrated by using a total variation diminishing (TVD) Runge-Kutta scheme

[54] in order to avoid the introduction of spurious oscillations.

3.2 Discretization of the drift term

Since, due to the Galerkin method, the approximation of f is not defined on the boundary of

the cells, we must introduce a numerical flux, that furnishes reasonable values of f on every

∂Cα , depending on the values of the approximation of f in the nearest neighborhoods of the

cell Cα and on the sign of E ·n.

We use a zero flux condition at the boundary of Ω which guarantees the conservation

of the total charge. For the interior boundaries, a simple approach is given by upwind rule

between the nearest adjacent cells.

On account of the symmetry of the k-domain, we approximate it by the circle |k| ≤ kmax

and introduce the regular decomposition of Fig. 3.1, where kmax is a fixed maximum value

such that f is negligible for all |k|> kmax.

Since our unknowns are defined only in the open cell Cα , an approximation of f must be

defined on the boundary of the generic cell, which now, see Fig.3.2, consists in four simple

arcs.
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Fig. 3.1 Grid in polar coordinates used for the discretization of the k-domain.

Fig. 3.2 Numbering of the edges of each cell for the evaluation of the flux across it.

53



3.2 Discretization of the drift term

Let us fix an arc γ of Cα . If we denote by Cα ′ the cell adiacent to Cα along the considered

arc, in the simplest version, the upwind scheme leads to the following algorithm

∀z ∈ γ : if − eE ·n ≥ 0 then f (z) = f α else f (z) = f α ′
. (3.3)

In other words f on the arc is approximated by the interior value of the adiacent cell according

to the component of the drift force along the outer normal n. We remark that if the grid is

chosen in a way that each cell belongs only to a single quadrant, e.g. as in Fig. 3.1, then in

each arc of the cell boundary E ·n has a constant sign.

A more elaborate approach is based on the Min-Mod slope limiter [55]. In order to make

clear the algorithm, first we consider the following case. Let z1, z2, · · · , zN be a set of grid

points, which represent a partition of the interval [z1,zN ], and let g : [z1,zN ]→R be a smooth

function. We look for an approximation of the value g(z
n+ 1

2
) when the following piecewise

approximation of g(z) is known: g(z) ≈ g(zk) := gk in the open interval ]z
k− 1

2
,z

k+ 1
2
[, k =

n−1,n,n+1,n+2.

We denote z
n+ 1

2
− z

n− 1
2

by ∆zn for every n.

Taking into account the hyperbolic character of the equations, if we define the wind

velocity a =−eE ·n, a simple Taylor expansion gives

g
n+ 1

2
≈















gn +
∆zn

2
g′n if a > 0

gn+1 −
∆zn+1

2
g′n+1 if a < 0

, (3.4)

where, only in this section, a prime denotes partial derivatives with respect to z. Of course,

the case of vanishing a need not be considered. Eq. (3.4) allows us to replace the function

g
n+ 1

2
with an approximation containing gn or gn+1, but also one derivative. Now, we define

for a > 0

d− = 2
gn −gn−1

∆zn−1 +∆zn
, d+ = 2

gn+1 −gn

∆zn +∆zn+1

and approximate the sought derivative according to

g′n ≈
{

min{|d−|, |d+|}sgn(d−) if d−d+ > 0

0 otherwise
.

For a < 0, a similar formula holds.

On account of the geometry of the decomposition, it is more convenient to employ polar

coordinates r and ϑ . Let us denote with i and j the unit vectors of the x and y axes. Moreover,

for regularity reasons, let us introduce also the variable s = r2. In the coordinates s and ϑ
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each cell Cα is now expressed as

Cα = {(s,ϑ) ∈ [0,smax]× [0,2π] : s
k− 1

2
≤ s ≤ s

k+ 1
2
,ϑ

n− 1
2
≤ ϑ ≤ ϑ

n+ 1
2
}

for suitable index n and k depending on α , where s−1/2 = 0 < s1/2 < s3/2 < · · ·< sN+1/2 =

smax is a partition of [0,smax] and 0 = ϑ−1/2 < ϑ1/2 < · · · < ϑM+1/2 = 2π is a partition of

[0,2π].

Since

∇u =
∂u

∂ r
er +

1
r

∂u

∂ϑ
eϑ = 2

√
s

∂u

∂ s
er +

1√
s

∂u

∂ϑ
eϑ , (3.5)

where er = cosϑ i+ sinϑ j and eϑ =−sinϑ i+ cosϑ j, set g(s,ϑ) = f (
√

scosϑ ,
√

ssinϑ),

one has

E ·
∫

Cα

∇k g dk = E ·
∫ s

k+ 1
2

s
k− 1

2

ds

∫ ϑ
n+ 1

2

ϑ
n− 1

2

dϑ

[(√
s cosϑ

∂g

∂ s
− 1

2
√

s
sinϑ

∂g

∂ϑ

)

i

+

(√
s sinϑ

∂g

∂ s
+

1
2
√

s
cosϑ

∂g

∂ϑ

)

j

]

= (E · i)







∫ ϑ
n+ 1

2

ϑ
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2

cosϑ

[

√

s
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2
g(s
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2
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√

s
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2
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−
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s
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2
√

s

[

sinϑ
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2
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2
)− sinϑ
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n− 1

2
)
]
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





+(E · j)






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2

ϑ
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2

sinϑ
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√
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2
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2
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2
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2
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2
√
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




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3.3 Discretization of the collision term

+(E · j)







[

√

s
k+ 1

2
g

k+ 1
2 ,n

−
√

s
k− 1

2
g

k− 1
2 ,n

]

∫ ϑ
n+ 1

2

ϑ
n− 1
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sinϑ dϑ

−
[

cosϑ
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2
+ cosϑ
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2

]

∫ s
k+ 1

2

s
k− 1

2

1
2
√

s
ds







.

The discretization is completed by approximating the terms g
k+ 1

2 ,n
with the Min-Mod slope

limiter along ϑ = constant and and by approximating the terms g
k,n+ 1

2
with the Min-Mod

slope limiter along s = constant.

3.3 Discretization of the collision term

We need to evaluate the coefficients (3.2). They are a sum of integrals of this kind

∫ ϑ ′
b

ϑ ′
a

dϑ ′
∫ ϑb

ϑa

dϑ

∫ s′b

s′a
ds′

∫ sb

sa

ds
1
4

[

A+B cos(ϑ −ϑ ′)
]

[

δ
(

ε(k′)− ε(k)+ h̄ω
(ν)
q

)

(

n
(ν)
q +1

)

+δ
(

ε(k′)− ε(k)− h̄ω
(ν)
q

)

n
(ν)
q

]

,

where A and B are constant and the factor 1
4 is the product of the Jacobian of the transforma-

tions r =
√

s and r′ =
√

s′.

We have taken into account that the function cos(ϑk ,k′−k +ϑk′ ,k′−k), which appears

both in the longitudinal and transversal optical scattering, is canceled when the sum of the

scattering terms is performed.

The previous integral can be factorized as the product of twofold integrals. If we introduce

the parameter ξ =
(

h̄ω
(ν)
q

)

/(h̄ vF) and the characteristic function χ[a,b](z) relative to the

interval [a,b], one has

∫ ϑ ′
b

ϑ ′
a

dϑ ′
∫ ϑb

ϑa

dϑ
[

A+B cos(ϑ −ϑ ′)
]

= A
(

ϑ ′
b −ϑ ′

a

)

(ϑb −ϑa)+B

×4sin

(

ϑ ′
b −ϑ ′

a

2

)

cos

(

ϑa +ϑb

2
− ϑ ′

a +ϑ ′
b

2

)

sin

(

ϑb −ϑa

2

)

,
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3.3 Discretization of the collision term

1
4

∫ s′b

s′a
ds′

∫ sb

sa

ds
[

δ
(

ε(k′)− ε(k)+ h̄ω
(ν)
q

)(

n
(ν)
q +1

)

+δ
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ε(k′)− ε(k)− h̄ω
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q
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∫ s′b
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+ n
(ν)
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√

s′
b
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√
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√
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√
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√
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√

sa,
√
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.

As the numerical results confirm, the DG approach guarantees that the distribution function

never exceed the unit. To understand such an outcome, we observe that by using the simple

splitting the overall DG scheme can be formulated, at first order in the time step, given t = tn,
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3.3 Discretization of the collision term

as the numerical discretization of

Mα
d f α(t)

dt
− e

h̄
E ·

∫

∂Cα

f (t,k)n dσ = 0 , tn ≤ t ≤ tn+1 ,

followed by the numerical discretization of

Mα
d f α(t)

dt
=

N

∑
β=1

[

Aβ ,α (1− f α(t)) f β (t)−Aα,β f α(t)
(

1− f β (t)
)]

, tn ≤ t ≤ tn+1 .

The first equation is solved by taking as initial condition the solution at t = tn. The

second equation is solved by taking as initial condition the solution of the drift equation.

The drift part is an advection equation. The use of the Min-Mod slope limiter prevents the

formation of spurious oscillations [56] and does not allow to increase the maximum values of

the distribution function or decrease the minimum one. Moreover, the DG scheme preserves

as the dissipative character of the collision term as well. Therefore, at first order in the time

step, the numerical solution remains bounded by the extrema of the initial data.
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Chapter 4

Monolayer graphene on substrates

In [57, 58], a study of the charge transport in a monolayer of graphene on substrates (Fig.4.1)

is performed in order to investigate the degradation effects due to the substrate in the electron

velocity and then in the total current and mobility. We also compared different substrates in

order to identify the better one and we checked the effect of the randomness of the distribution

of the substrate impurities.

4.1 Monolayer graphene on SiO2

Regarding the kinetic model, we use the same Boltzmann equations as in the previous

chapters but we need to add also the effects of the remote phonons and the impurities

of the substrate. We start considering a SiO2 substrate. Quantum effects has also been

included in the literature but for Fermi energies high enough, as those we considered, the

interband tunneling effect is practically negligible and the semiclassical approach still reveals

satisfactory [59].

The scattering rate between the electrons and the phonons of the substrate has the same

form of that of the suspended case; the remote optical phonons of the substrate are assumed

to have an energy equal to 55 meV and a deformation potential D f = 5.14 ·107 eV/cm. The

interaction with the impurities adds noticeable additional difficulties, mainly due to the rather

involved expression of the dielectric function which is itself a source of theoretical debates

[60, 61].
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4.1 Monolayer graphene on SiO2

Fig. 4.1 The graphene sheet over a substrate. The spheres represents the impurities.

We will assume the model proposed in [61] for the charge-impurities scattering and

consider the following additional transition rate

S(imp)(k,k′) =
2π

h̄

ni

(2π)2

∣

∣

∣

∣

Vi(|k−k′|,d)
ε(|k−k′|)

∣

∣

∣

∣

2 (

1+ cosϑk ,k′
)

2
δ
(

ε(k′)− ε(k)
)

, (4.1)

where

a) ni is the number of impurities per unit area.

b) Vi(|k−k′|,d) = 2πe2 exp(−d |k−k′|)
κ̃ |k−k′|

– d is the location of the charged impurity measured from the graphene sheet

– κ̃ is the effective dielectric constant, defined by 4π × ε0 × (κtop +κbottom)/2,

where ε0 is the vacuum dielectric constant and κtop and κbottom are the relative

dielectric constants of the medium above and below the graphene layer. For

example, if the materials are SiO2 and air, κ̃ = 4π × ε0 × (1+κSiO2)/2 ≈ 4π ×
2.45ε0.

c) ε(|k−k′|) =























1+
qs

|k−k′| −
π qs

8kF

if |k−k′|< 2kF

1+
qs

|k−k′| −
qs

√

|k−k′|2 −4k2
F

2 |k−k′|2 − qs

4kF

asin

(

2kF

|k−k′|

)

otherwise

is the 2D finite temperature static RPA dielectric (screening) function appropriate for

graphene;

– qs =
4e2 kF

κ̃ h̄ vF
is the effective Thomas-Fermi wave-vector for graphene; it can be

rewritten in terms of the dimensionless Wigner-Seitz radius as qs = 4rSkF ;

– kF =
εF

h̄vF
is the Fermi wave-vector.
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4.1 Monolayer graphene on SiO2

With a standard correction [62, 63] we have the following additional scattering rate for

the substrate impurities

Γimp(k) =
∫

S(imp)(k,k′)
(

1− cosϑk ,k′
)

dk′. (4.2)

We also investigated the influence of the distance from the substrate that, as we would have

expected, is very effective. We consider a surface impurity density of ni = 2.5×1011 cm−2

and several values of the distance d between the graphene sheet and the remote impurities. d

should of the order of few angstroms. In the literature a range from 0 to 1 nm is considered.

The simulations are performed at several values of the electric field and Fermi energy. The

parameter rS is set equal to 0.8.

The physical parameters for the scattering rates are summarized in Table 4.1. In the

Table 4.1 Physical parameters for the scattering rates.

vF 108 cm/s vp 2×106 cm/s

σm 7.6×10−8 g/cm2 Dac 6.8 eV

h̄ωO 164.6 meV DO 109 eV/cm

h̄ωK 124 meV DK 3.5×108 eV/cm

h̄ωop−ac 55 meV D f 5.14×107 eV/cm

DSMC 104 particles have been used. Fig.4.2 shows the distribution function f in the

stationary regime in the case of an applied electric field equal to 4 kV/cm. In Figs 4.3-4.5,

we show the numerical results of the average velocity v and the average energy W , defined as

v(t) =
2

(2π)2 ρ

∫

f (t,k)
1
h̄

∇k ε(k)dk , W (t) =
2

(2π)2 ρ

∫

f (t,k)ε(k)dk . (4.3)

There is an excellent agreement, of course within the unavoidable stochastic noise of the

DCMS data, between the deterministic solutions obtained with the DG method and the

stochastic ones in all the considered cases. Since the theoretical basis of the two simulation

approaches are radically different, the results represent a strong evidence of the accuracy and

validity of the obtained solutions.

We can observe that the values of the average velocity and energy, in the case of graphene

on substrate, become lower by reducing the distance d from the impurities in the oxide,

confirming the degradation of the mobility due to the substrate as a direct consequence of

the additional scatterings with the remote impurities. The simulations are in a qualitative
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4.2 High filed mobility: comparison between different substrates

Fig. 4.2 The steady state distribution function in the case of an applied electric field of 4
kV/cm.

agreement with the theoretical expectations and are crucial for the determination of the

characteristic curves in graphene on a substrate.

4.2 High filed mobility: comparison between different sub-

strates

Two different substrates are investigated: SiO2 and hexagonal boron nitride (h-BN). We

confirm, as in [64], where only the low-field mobility has been investigated, that h-BN is one

of the most promising substrate also for the high-field mobility on account of the reduced

degradation of the velocity due to the remote impurities. Here we take into account the

randomness of the impurities location, related also to the roughness of the interface of the

oxide, by considering d a random variable. Various distributions have been analyzed: uniform

and Gamma with several values of parameters. In [64] HfO2 has also been considered but

the analysis at low fields reveals that it is not an adequate material because of the strong

degradation of the mobilities. Our analysis confirms that the h-BN is a better material than

SiO2 on account of the reduced degradation of the mobility and the stability with respect to

the fluctuations of the parameter d, even if significant quantitative differences are found with
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4.2 High filed mobility: comparison between different substrates

Fig. 4.3 Comparison of the average velocity (top) and average energy (bottom) versus time
for d = 0,0.5,1 nm in the case of an applied electric field of 5 kV/cm and Fermi energy
εF = 0.4 eV.
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4.2 High filed mobility: comparison between different substrates

Fig. 4.4 Comparison of the average velocity (top) and average energy (bottom) versus time
for d = 0,0.5,1 nm in the case of an applied electric field of 10 kV/cm and Fermi energy
εF = 0.4 eV.
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4.2 High filed mobility: comparison between different substrates

Fig. 4.5 Comparison of the average velocity (top) and average energy (bottom) versus time
for d = 0,0.5,1 nm in the case of an applied electric field of 5 kV/cm and Fermi energy
εF = 0.6 eV.
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4.2 High filed mobility: comparison between different substrates

respect to [64]. h-BN assures the higher mobility and its performance is robust with respect

to the randomness of d. The physical parameters for the substrates are summerized in Table

4.2.

Table 4.2 Physical parameters for the scattering rates related to the substrates.

SiO2 h-BN
h̄ωop−ac 55 meV 200 meV

D f 5.14 ×107 eV/cm 1.29 ×109 eV/cm

ni 2.5 ×1011 cm−2 2.5 ×1010 cm−2

κbottom 3.9 3

We consider a surface impurities density according to Table 4.2. The simulations are

performed at several values of the electric field and Fermi energy. In the simulations, when-

ever a scattering with impurities occurs d is generated according to the chosen distribution.

For comparison, the cases with fixed d are also shown along with the solutions obtained

by the DG method. 105 particles have been used for the DSMC. In Figs 4.6-4.8, we show

the numerical results of the average velocity. The velocity is related to the current J by the

relation

J =−eρv

and, in turn, v is related to the mobility µ(E) as follows

v = µ(E)E.

Therefore, from the analysis of the average velocity it is possible to estimate the effect of the

impurities on the mobility. It is expected that the scattering with the remote impurities leads

to a degradation of the mobility depending on the specific material. First we have assessed

the general performance of the different materials, by a comparison of the average velocity

for three different values of d kept constant. We can observe that the values of the average

velocity and energy become lower by reducing the distance d from the impurities in the

oxide, confirming the degradation of the mobility due to the substrate as a direct consequence

of the additional scatterings with the remote impurities. For the higher value of d, which

is very close to the pristine case, both SiO2 and h-BN produce of course the same effect

with a comparable electron velocity. For the intermediate value of d h-BN performs better

than SiO2 and this behaviour is even more evident for d = 1. Therefore, h-BN gives a better

high-field mobility, in qualitative agreement with the low field analysis in [64].

The previous results, however, do not take into account the intrinsic noise in the location of

the impurities. In order to assess its effect on the high-field mobility, we have performed some
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4.2 High filed mobility: comparison between different substrates

Fig. 4.6 Comparison of the average velocity versus time for d = 0 (top) , 0.5, 1 (bottom) nm
in the case of an applied electric field of 5 kV/cm and Fermi energy εF = 0.4 eV.
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4.2 High filed mobility: comparison between different substrates

t

Fig. 4.7 Comparison of the average velocity versus time for d = 0 (top) , 0.5, 1 (bottom) nm
in the case of an applied electric field of 10 kV/cm and Fermi energy εF = 0.4 eV.
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4.2 High filed mobility: comparison between different substrates

Fig. 4.8 Comparison of the average velocity versus time in the case of an applied electric
field of 10 kV/cm and Fermi energy εF = 0.4 eV by considering different distribution for
d: uniform (top left), Γ(2,0.5) (top right), Γ(3,0.5) (bottom left), Γ(4,0.5) (bottom right).
In the results obtained with the discontinuous Galerkin methods (DG) we have assumed d

equal to the mean values of the corresponding distribution rescaled by the factor 0.2 nm.
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4.2 High filed mobility: comparison between different substrates

Γ

Γ

Γ

Fig. 4.9 Plot of the Γ(α,λ ) distribution with λ = 0.5 and α = 2,3,4. Note that the probability
to generate a number greater than 5 is practically zero.

simulations with a random d generated, in each scattering involving impurities, according

to a prescribed probability distribution (see Fig. 4.8). First we have considered a uniform

distribution in the interval [0,1] (in nm). The results are similar to the case with constant

d = 0.5 nm and this can be explained by observing that 0.5 is the expectation value. Then

we have considered a Γ(α,λ ) distribution

f (x) =







1
λΓ(α)

xα−1ex/λ x > 0

0 x ≤ 0

where Γ(α) is the Euler gamma function. We have used the values λ = 0.5 and α = 2,3,4

(see Fig. 4.9) and rescaled d by a factor 0.5 nm to have a value less than 1 with very high

probability, as confirmed by the simulation.

In order to validate our findings, the results are compared with those obtained by using the

DG method but with values of d set equal to the mean values of the considered distribution

(αλ for the Γ(α,λ ) one) rescaled by the factor 0.2 nm. The agreement is still excellent.

We would like to conclude by observing that both the materials seem only slightly

influenced by the stochastic effect related to the randomness of the impurity positions.
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Chapter 5

Thermal effects and heating rate in

monolayer graphene

5.1 Introduction

In [65, 66], we studied the thermal effects in graphene. Some of the most important improve-

ments with respect to results in the literature are the following:

• acoustic phonons aren’t at a thermal bath and we don’t use any empirical formula for

their heating;

• all the phonon populations are considered, then also the flexural acoustic ZA and optical

ZO in addition to the planar ones; they don’t give any contribution in the interactions

with electrons but are important in the determination of the heating evolution; for the

ZA we use a quadratic dispersion relation and not the linear approximation;

• the phonon distribution function is not approximated by an equivalent Bose-Einstein

one;

• we define a global temperature for the crystal lattice;

• we are able to find a formula to predict the heating for any time and any value of the

applied electrical field and of the Fermi level.

Charge transport in graphene has been investigated in several papers, e.g. see [36, 17, 26,

44, 49, 48], but in the most part the thermal effects of the crystal lattice are neglected. Here,

we include also the lattice temperature as dynamical variable. Indeed, self-heating is a major

issue in nano-electronics and an efficient power removing system requires a good modeling
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5.2 The mathematical model

of the behaviour of the lattice temperature related to the charge transport under an applied

electric field.

Thermal effects in monolayer graphene due to an electron flow are investigated with

a Direct Simulation Monte Carlo (DSMC) analysis. The crystal heating is described by

simulating the phonon dynamics of the several relevant branches, acoustic, optical, K and Z

phonons. The contribution of each type of phonon is highlighted. In particular, it is shown

that the Z phonons, although they do not enter the scattering with electrons, play a non

negligible role in the determination of the crystal temperature.

The phonon distributions are evaluated by counting the emission and absorption processes

during the MC simulation. The rate of rise in the crystal temperature is obtained for several

applied electric fields and for several positive Fermi energies. The latters produce the effect

of a kind of n-doping in the graphene layer. Critical temperatures can be reached in few tens

of picoseconds posing significant issues regarding the cooling system in view of a possible

application of graphene in semiconductor devices. On the contrary, it is observed only a

slight influence of the lattice temperature on the characteristic curves confirming graphene

rather robust as regards the electrical performance.

A similar problem has been tackled in [67, 38] with an accurate numerical method based

on the WENO scheme but retaining the acoustic phonons at equilibrium or by changing their

temperature with an empirical formula. Moreover, the Z-phonons have been neglected.

5.2 The mathematical model

The complete model consists of the semiclassical Boltzmann equations for charges as shown

in Chapter 1 and for each species of phonons (acoustic, optical, K and Z). The transport

equation is solved by the Direct Simulation Monte Carlo (DSMC) scheme developed in

Chapter 2 which properly takes into account the Pauli exclusion principle. Here, we consider

the in plane optical phonons as two distinct branches and not an equivalent one as done

before in this thesis. We remind that the general form of the scattering rate is

Sℓ′,s′,ℓ,s(k
′,k) = ∑

A

∣

∣

∣
G
(A)
ℓ′,s′,ℓ,s(k

′,k)
∣

∣

∣

2
[(

g−A +1
)

δ
(

εℓ,s(k)− εℓ′,s′(k
′)+ h̄ωA

)

+g+A δ
(

εℓ,s(k)− εℓ′,s′(k
′)− h̄ωA

)]

.

The index A labels the Ath phonon mode. The
∣

∣

∣
G
(A)
ℓ′,s′,ℓ,s(k

′,k)
∣

∣

∣

2
’s are the electron-phonon

coupling matrix elements, which describe the interaction mechanism of an electron with the

Ath phonon, from the state of wave-vector k′ belonging to the valley ℓ′ and band s′ to the

state k belonging to the valley ℓ and band s. The symbol δ denotes the Dirac distribution, ωA
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5.2 The mathematical model

is the Ath phonon frequency, gA(q) is the phonon distribution for the A-type phonons with

q the phonon wave-vector belonging to B. In (5.1) g±A = gA (q
±), where q± = ±(k′−k),

stemming from the momentum conservation.

For acoustic phonons, we assume the elastic approximation according to which the

transition rate reads

1
(2π)2

π D2
ac kB T

2h̄σm v2
s

(

1+ cosϑk ,k′
)

δ
(

ε(k′)− ε(k)
)

, (5.1)

where Dac is the acoustic phonon coupling constant, vp is the sound speed in graphene, σm is

the graphene density, and ϑk ,k′ is the convex angle between k and k′.

The electron-phonon coupling matrix elements of the longitudinal optical (LO), the transver-

sal optical (TO) and the K phonons are (see for example [38])

∣

∣

∣
G(LO)(k′,k)

∣

∣

∣

2
=

1
(2π)2

π D2
O

σm ωO

(

1− cos(ϑk ,k′−k +ϑk′ ,k′−k)
)

(5.2)

∣

∣

∣
G(TO)(k′,k)

∣

∣

∣

2
=

1
(2π)2

π D2
O

σm ωO

(

1+ cos(ϑk ,k′−k +ϑk′ ,k′−k)
)

(5.3)

∣

∣

∣
G(K)(k′,k)

∣

∣

∣

2
=

1
(2π)2

2π D2
K

σm ωK

(

1− cosϑk ,k′
)

, (5.4)

where DO is the optical phonon coupling constant, ωO the optical phonon frequency, DK

is the K phonon coupling constant and ωK the K phonon frequency. The angles ϑk ,k′−k

and ϑk′ ,k′−k denote the convex angles between k and k′− k and between k′ and k′− k,

respectively.

In the sequel we will consider only cases of high values of the Fermi energy, which are

equivalent for conventional semiconductors to a n-type doping. Under such a condition the

dynamics of the electrons belonging to the valence band can be neglected.

Acoustic phonon scattering is intra-valley and intra-band. Optical phonon scattering

is intra-valley and can be longitudinal optical (LO) and transversal optical (TO); it can be

intra-band, leaving the electrons in the same band, or inter-band, pushing the electrons from

the initial band toward another one. Scattering with phonons of K type pushes electrons from

a valley to a nearby one (inter-valley scattering). Regarding the optical and K phonons we

will assume the Einstein approximation: h̄ωη is constant, η = LO,TO,K. Instead for the in

plane (LA, TA) acoustic phonons the Debye approximation will be assumed, h̄ωac = h̄vsq

with vs the sound speed in graphene, and the Brillouin zone will be consistently extended to

R
2.

For the simulation we use the same parameter of the previous chapters.
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5.2 The mathematical model

Fig. 5.1 Phonon dispersion for graphene(solid lines) and experimental data for graphite,
reported from [71].

The evolution of the phonon distributions is governed by the following Boltzmann

equations

gη

∂ t
=Cη , η = LO,TO,ZO,K (5.5)

gac

∂ t
+ cac ·∇x gac =Cac , ac = (LA+TA),ZA (5.6)

with cac = ∇qωac the acoustic group velocity (on account of the Einstein approximation, the

group velocity of the other phonons is negligible). The collision terms Cη and Cac describe

the interaction of the phonons with the electrons and the other phonons. It is worth to stress

that we consider also ZO (transversal optical), and ZA (tranversal acoustic) phonons in

addition to the transversal (TA) and longitudinal (LA) acoustic ones, that are considered here

as a unique in-plane population. The Z-phonons don’t give any contribution to the electron-

phonon interactions but they are important for the phonon-phonon ones and, therefore, for an

accurate description of the time evolution of the lattice temperature.

For the energy of ZA phonons we use a quadratic dispersion relation h̄ωZA = h̄α |q|2,

where α = 6.2 ·10−7m2/s (see for example [69, 70]). In Fig 5.1 the phonon dispersion curves

are reported.

The phonon-phonon collision term is very complicated and represents a formidable task

from a numerical point of view. For these reasons, in the applications the Bhatnagar-Gross-
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Krook (BGK) approximation is usually employed. It gives a simple way to describe the

tendency of each species of phonon to an equilibrium distribution. We adopt the same

approach in [72], modeling the phonon-phonon interaction by requiring that each type of

phonon branch relaxes to a local equilibrium given by a Bose-Einstein distribution evaluated,

for all the phonons species, with a common local equilibrium temperature TLE , determined

by the procedure we will specify below. Therefore we split the phonon collision terms as

follows

Cη =Cη−e −
gη −gLE

η

τη
, (5.7)

Cac =Cac−e −
gac −gLE

ac

τac
, (5.8)

where Cη−e and Cac−e describe the phonon-electron collisions and are equal to zero for ZO

and ZA, τη and τac are the phonon relaxation times, gLE
η and gLE

ac are the local equilibrium

phonon distributions given by

gLE
η =

[

eh̄ωη/kBTLE −1
]−1

, (5.9)

gLE
ac =

[

eh̄cacq/kBTLE −1
]−1

. (5.10)

The average phonon energies are given by

Wη =
yph

(2π)2

∫

B
h̄ωη gη dq , η = LO,TO,ZO,K (5.11)

Wac =
yph

(2π)2

∫

R2
h̄ωac gac dq . ac = (LA+TA),ZA. (5.12)

Note that the phonon density of state is 1/(2π)2 and the degeneracy factor yph is equal to

two for (LA+TA), equal to one otherwise. gη and gac are the current phonons distribution,

updated during the emission and absorption processes counted in the Monte Carlo simulation,

and not the Bose-Einstein ones.

By multiplying, for each species, the phonon Boltzmann equation by the phonon energies

and integrating with respect to the wave-vector q, one gets the following macroscopic balance

equations for the average phonon energies

∂Wη

∂ t
=CWη , (5.13)

∂Wac

∂ t
+∇x ·Qac =CWac

, (5.14)
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where Qac is the phonon energy-flux, defined as

Qac =
yph

(2π)2

∫

R2
h̄ωaccac gac dq , (5.15)

and

CWη =C
p−e
Wη

−
Wη −W LE

η

τη
, (5.16)

CWac
=C

p−e
Wac

− Wac −W LE
ac

τac
(5.17)

are the energy-production terms. Here

W LE
η =

yph

(2π)2

∫

B
h̄ωη

[

eh̄ωη/kBTLE −1
]−1

dq , η = LO,TO,ZO,K (5.18)

W LE
LA+TA =

yph

(2π)2

∫

B
h̄ωLA+TA

[

eh̄ωLA+TA/kBTLE −1
]−1

dq , (5.19)

W LE
ZA =

yph

(2π)2

∫

B
h̄ωZA

[

eh̄ωZA/kBTLE −1
]−1

dq (5.20)

are the average energies at the local equilibrium, while C
p−e
Wη

and C
p−e
Wac

are the contributions

arising from the phonon-electron interactions, equal to zero for ZO and ZA phonons. They

satisfy the relationships

C
e−p
Wη

+C
p−e
Wη

= 0 , (5.21)

C
e−p
Wac

+C
p−e
Wac

= 0 . (5.22)

We remark that, since the electron flow does not influence the phonon-phonon scatterings,

the conservation of the total phonon energy in absence of external field implies

∑
η

Wη −W LE
η

τη
+∑

ac

Wac −W LE
ac

τac

= 0 . (5.23)

Now we turn to give the definition of the local equilibrium temperature according to [72].

Definition 5.2.1 TLE is the common temperature we must assign to each species in order to

have

∑
η

Wη +∑
ac

Wac = ∑
η

W LE
η +∑

ac

W LE
ac . (5.24)
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In other words, TLE is the common temperature each phonon species should have if they

would be at thermodynamic equilibrium in order to preserve the total energy.

We assume that follows in order to define the temperature for each specie of phonons.

Assumption 5.2.1 The phonon distributions are locally equivalent to a Bose-Einstein one

gη =
[

eh̄ωη/kBTη −1
]−1

, gac =
[

eh̄ωac/kBTac −1
]−1

.

As consequence the temperatures of the phonon species are related to the respective

average energies according to

∫

B
h̄ωη

[

eh̄ωη/kBTη −1
]−1

dq =
∫

B
h̄ωηgη(q)dq , η = LO,TO,ZO,K (5.25)

∫

B
h̄ωac

[

eh̄ωac/kBTac −1
]−1

dq =
∫

B
h̄ωacgac(q)dq . ac = (LA+TA),ZA (5.26)

The current temperature at each time step for each phonon population is calculated solving

the previous equations by the standard numerical methods. The Eq. (5.26) for (LA+TA)

phonons can be solved analytically by extending the first Brillouin zone to all R2. One

obtains

Wac = (kBTac)
3 ·

(

4yphπζ (3)

(2π)2 (h̄ωac/q)2

)

, (5.27)

where ζ (s) is the zeta function and A = 8
√

3π2

9a2
0

is the area of the first Brillouin zone, with

a0 = 0.142 nm the interatomic distance.

By taking into account the assumption 5.2.1 and the expressions (5.18) - (5.20), we find

that TLE must satisfy the nonlinear equation

h(TLE) = ∑
η

yph

h̄ωη A

(2π)2

[

eh̄ωη/kBTLE −1
]−1

+∑
ac

yph

(2π)2

∫

B
h̄ωac

[

eh̄ωac/kBTLE −1
]−1

dq = ∑
η

Wη +∑
ac

Wac (5.28)

with Wη and Wac the current values of the average phonon energies.
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We observe that

h′(TLE) =∑
η

A · yph

(2π)2

(h̄ωη)
2

kBT 2
LE

[

eh̄ωη/kBTLE −1
]−2

+∑
ac

yph

(2π)2

∫

B

(h̄ωac)
2 · eh̄ωac/kBTLE

kBT 2
LE

[

eh̄ωac/kBTLE −1
]−2

dq > 0 ∀TLE > 0 ,

lim
T 7→+∞

h(T ) = +∞, lim
T 7→0+

h(T ) = 0,

and therefore Eq. (5.28) admits an unique solution for assigned positive Wη ’s and Wac’s.

By taking into account the definition of TLE , a simple way to satisfy Eq. (5.23) is to take

τη = τac = τ. (5.29)

In the sequel the phonon relaxation times will considered as equal.

5.3 Simulation strategy

For a homogeneous monolayer graphene under a constant electric field E, the only signi-

ficative components of the evolution equations are those parallel to the field and there is

not dependence on the spatial variables. By choosing a reference frame in the plane of the

graphene sheet with the x-axis parallel to E, the complete model consists of the following

equations

∂ f (t,k)

∂ t
− e

h̄
E

∂ f (t,k)

∂kx
=

∫

S(k′,k) f (t,k′)(1− f (t,k))dk′

−
∫

S(k,k′) f (t,k)
(

1− f (t,k′)
)

dk′ , (5.30)

∂gη(t,q)

∂ t
=Cη−e(q)−

gη −gLE
η

τη
, (5.31)

∂gac(t,q)

∂ t
=Cac−e(q)−

gac −gLE
ac

τac
, (5.32)

Wη =
yph

(2π)2

∫

B
h̄ωη gη(q)dq , η = LO,TO,ZO,K (5.33)

Wac =
yph

(2π)2

∫

R2
h̄ωac gac(q)dq . ac = (LA+TA),ZA. (5.34)
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Similar equations hold for the K′ valley. As initial condition for the electrons we take the

Fermi-Dirac distribution

f (0,k) =
1

1+ exp

(

ε(k)− εF

kB T0

) ,

where T0 is the room temperature (300 K) and εF is the Fermi energy, which is related to the

initial charge density by

ρ(0) =
4

(2π)2

∫

f (0,k)dk . (5.35)

As said, in (5.35) the factor 4 arises because we are considering both the two states of spin

and the degeneracy (equal to 2) of the valley. As alternative one can consider the population

of a single valley, and put equal to one the valley degeneracy and take in (5.35) ρ(0)/2 for

the electron density. Note that in the unipolar case ρ remains constant, ρ(t) = ρ(0), as a

consequence of the charge conservation.

Regarding the phonons, we assume that initially all the phonons are at the room tempera-

ture T0 and described by Bose-Einstein distributions. Therefore the initial conditions for the

phonon average energies are given by (5.18)-(5.20) with TLE = T0.

Let us introduce an uniform time-step ∆t and denote by tn the nth time level. For each

interval [tn, tn +∆t] we solve Eq. (5.30) by the Direct Simulation Monte Carlo scheme by

freezing the phonon temperatures to the values they have at t = tn.

By discretizing the Eq.s (5.31)-(5.32) with the explicit Euler method, we obtain the

current values of the phonon distributions gac and gη and numerically calculate the energy

densities by means of Eq.s (5.33)-(5.34). TLE is evaluated at the time step tn by taking into

account Eq.s (5.24)-(5.26).

The Brillouin zone is approximated by a square grid centered at the Γ point. The

approximation with a square grid doesn’t introduce appreciable errors because the values of

the phonons distributions are close to zero far from the Γ point.

The phonons distribution is a Bose-Einstein one for t = 0 and it is updated at each time

step using the scatterings dynamics. For this purpose, we need to know the production

terms of Eq.s (5.31)-(5.32), Cη−e(q) and Cac−e(q), that represent the rate of variation of

the phonon populations per unit time and are proportional to the difference between the

number of emission and absorption processes, n+(q) and n−(q) respectively, due to the

electron-phonon scatterings. These are evaluated using the intermediate results of the DSMC

part, counting them in each time window [tn−1, tn] and in each elementary cell of the grid in

the q-space. In the acoustic transition rate, under the elastic approximation, the number of

emission scatterings balances exactly that of absorption ones leading to a zero net energy
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production. Moreover, there aren’t scattering events with the out of plane ZA and ZO

phonons; therefore, Cac−e =CZO−e = 0 and the only relevant contributions come from the

LO, TO and K phonons.

For each scattering event, we consider whether is an absorption or an emission one and

calculate the wave-vector q and the cell to be updated taking into account the momentum

conservation q± =±(k′−k). The values of the phonons distributions in the cell the wave-

vector belong to is updated by augmenting or decreasing the number of phonons per unit cell

by using the values n−and n+ obtained from the MC simulation as follows.

The crucial point is to define the suitable statistical weight, βscatt , for each phonon, in or-

der to estimate the correct values of the production terms as Cη−e(q)= βscatt (n
+(q)−n−(q)).

As known in the literature [76, 78], the global phonon energy production term is given by

C
p−e
W =

ρ

NP ∆t
h̄ωη

(

C+
tot −C−

tot

)

, (5.36)

where ρ is the electron density, NP the number of (super)-particles used for electrons in

the DSMC, C+
tot and C−

tot are the total number of emission and absorption process in the

whole Brillouin zone. This is the density energy variation per unit time due to the phonon

distribution variation ∆gη(q) associated with scattering events that on account of the Einstein

approximation for h̄ωη can be written as

C
p−e
W =

1
(2π)2

∫

B
h̄ωη∆gη(q)dq =

h̄ωη

(2π)2

∫

B
Cη−e(q)dq . (5.37)

If we denote the generic cell of the grid by Cα , by comparing (5.36) and (5.37), and

performing numerically the integration by the middle point formula, one has

∫

B
Cη−e(q)dq ≈ (2π)2 ρ

NP ∆t

(

C+
tot −C−

tot

)

=
(2π)2 ρ

NP ∆t
∑
α

∫

Cα

(

C+(q)−C−(q)
)

dq

≈ (2π)2 ρ

NP ∆t
∑
α

n+(q)−n−(q)
(∆q)2 (∆q)2 (5.38)

where C±(q) is the pure number of processes in each cell per unit area, that is C±(q) =

n±(q)/(∆q)2. Therefore, the average value of Cη−e in each cell, C̄η−e, is given by

C̄η−e ≈
(2π)2 ρ

NP ∆t

n+(q)−n−(q)
(∆q)2 . (5.39)

This implies that the statistical weight associated at each emission and absorption event, or

equivalently at the numbers n±(q), used to update the phonon distribution at each time step
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is equal to

βscatt =
(2π)2ρ

NP ∆t(∆q)2 . (5.40)

5.4 Simulation results

Lattice heating due to the electron flow is considerably important in graphene. It can influence

the electrical characteristics but can also create hot spots with rather high temperatures and

the possibility of damaging the material. The main aim of our simulations is to evaluate the

heating rate of a monolayer graphene induced by charge carriers under a constant electric

field.

NP = 104 particles have been used. The time step has been set as ∆t = 2.5 fs and a

constant phonon relaxation time has been adopted, τ = 5 ps which is a values of the order of

those already used in the literature [73]. In [38] a phonon relaxation time depending on the

temperature has been adopted but it is strictly valid only for low electric fields. Indeed, more

accurate expressions are still lacking and represent an open problem.

Several Fermi energies have been considered in order to investigate the dependence of

the rise in temperature also on the electron density and not only on the applied field. The

shift of the Fermi level from the Dirac point inside the conduction band cone can be obtained

in suspended graphene with gate contacts [79]. In graphene over a SiC substrate it is due to

chemical effects (see for example [80] where other cases are discussed as well).

In Fig. 5.2 the evolution of the temperatures of each type of phonons along with TLE is

plotted. The latter can be identified as the temperature of the crystal lattice and can therefore

be directly related to the measurements. The most energetic phonons are the optical ones

while the least energetic phonons are the acoustic ones. Note that the LO, TO and K phonons

have different temperatures while the (LA+TA), ZA, ZO phonons have practically the same

temperature. One observes that the raise rate of the temperature, as experimentally expected

[74], increases with the electric field, roughly speaking, in a linear way.

In order to study the influence of the heating effects on the electron transport and,

therefore, the influence of the crystal heating on the characteristic curves, we have also

performed a comparison with the case when the phonons are kept at equilibrium with the

room temperature. In Fig. 5.3, a comparison of the average electron velocity and energy

is shown between the case with the lattice heating and that with the phonons kept at room

temperature. The differences in the average energy and velocity are negligible and this is a

sign of goodly stable electrical properties of graphene with respect to thermal disturbances.

The slight variation in the shape of the electron distribution function, as shown in Fig. 5.4,

does not affect in a sizable way the expectation values, in particular the velocity and therefore
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a) b)

c) d)

Fig. 5.2 Phonon temperatures and local equilibrium temperature TLE versus time in the case
εF = 0.4 eV when E = 5 kV/cm (a), E = 20 kV/cm (b), and in the case εF = 0.6 eV when
E = 5 kV/cm (c) and E = 20 kV/cm (d).

the electric current J =−neV. This implies that the use of the characteristic curves obtained

with the phonons as a thermal bath are rather accurate and can be used in the engineering

applications, at least for low and moderate electric fields.

If the Z phonons are neglected as in [65], at high fields one observes a lowering of the

velocity by increasing the electric field. The effect disappears when the Z phonons are

included in the simulations (see Fig. 5.5).

Regarding the phonons distributions, in Figs (5.6)-(5.7)-(5.8) we show the comparisons

between the initial (the Bose-Einstein ones) and the final distributions. The most important

difference is located at the centre of the Brillouin zone.
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a) b)

Fig. 5.3 Comparison of energy a) and velocity b) versus time without and with thermal effects
in the case εF = 0.6 eV and E = 20 kV/cm .

Fig. 5.4 Comparison of distribution functions with (dashed line) and without (continuous
line) thermal effects with E = 20 kV/cm and εF = 0.6 eV after 10 ps.

5.5 Heating rate

Now, we focus our attention on the behaviour of the global equilibrium temperature versus

time in order to deduce an analytical formula for the heating rate depending on the Fermi

energy (or equivalently on the electron density) and the electric field. As shown in Figs

5.9-5.10, a linear dependence with respect to time is a good approximation, with only a very

small error for times very close to t = 0 (Fig. 5.11)

TLE = T0 +mt. (5.41)
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a) b)

Fig. 5.5 Average electron energy and velocity versus time in the case εF = 0.6 eV, E = 50
kV/cm.

Taking into account the slope of each time-temperature curve, we look for a fitting of the

angular coefficient m with respect both to the Fermi level and the applied electric field. In

Fig. 5.12 m as a function of the electric field and the Fermi level is shown.

We seek for a polynomial fitting of the type

m = (a0 +a1 ·E +a2 ·E2 + . . .+ap ·E p) · (b0 +b1 · εF +b2 · ε2
F + . . .+bq · εq

F) (5.42)

ai, b j and p, q are parameters to be determined via a regression analysis of the data obtained

with the simulations. A very good agreement is obtained with p = 4 and q = 3, as the

statistical parameters of Tab. 5.1 indicate. In this table Rpq represents the determination

coefficient varying the degree of the polynomials in the fitting formula. For the sake of

completeness the adjusted determination coefficient is reported as well. Although there are

good results even with lower values of p and q, the statistical model is well explained only

with p > 3 and q > 2; this is clear comparing the residuals distributions with respect to the

response function, Fig. 5.13, and with respect to the electric field, Fig. 5.14, and to the Fermi

levels with those of other cases, for examples Figs 5.15-5.18. Only in the case with p = 4 and

q = 3, the residual distributions don’t show any strong correlation between the independent

variable and the predictor.

Therefore, we have

m = (a0 +a1 ·E +a2 ·E2 +a3 ·E3 +a4 ·E4) · (b0 +b1 · εF +b2 · ε2
F +b3 · ε3

F) = ∑
i, j

γi jE
i · ε j

F .

(5.43)

The fitting parameters are listed in Table 5.2.
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a) b)

c) d)

Fig. 5.6 initial (LA+TA) distribution (a), final (LA+TA) distribution after 10 ps (b), initial
ZA distribution (c), final ZA distribution after 10 ps (d), in the case εF = 0.6 eV and E = 20
kV/cm.
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a) b)

c) d)

e) f)

Fig. 5.7 initial LO distribution (a), final LO distribution after 10 ps (b), initial TO distribution
(c), final TO distribution after 10 ps (d), initial ZO distribution (e), final ZO distribution after
10 ps (f), in the case εF = 0.6 eV and E = 20 kV/cm.
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a) b)

Fig. 5.8 initial K phonons distribution (a), final K phonons distribution after 10 ps (b), in the
case εF = 0.6 eV and E = 20 kV/cm.

a) b)

c) d)

Fig. 5.9 Equilibrium temperature versus time, the electric field varying from 1 kV/cm to 20
kV/cm; from bottom to top: εF = 0.25 eV (a), εF = 0.3 eV (b), εF = 0.35 eV (c), εF = 0.4
eV (d).
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a) b)

c) d)

Fig. 5.10 Equilibrium temperature versus time, the electric field varying from 1 kV/cm to 20
kV/cm; from bottom to top: εF = 0.45 eV (a), εF = 0.5 eV (b), εF = 0.55 eV (c), εF = 0.6
eV (d).
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a) b)

c) d)

Fig. 5.11 Equilibrium temperature versus time, with E = 5 kV/cm and εF = 0.3 eV (a), zoom
near t = 0 ps (b), and with E = 20 kV/cm and εF = 0.3 eV (c), zoom near t = 0 ps (d).
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Fig. 5.12 Slope versus Fermi level and electric field.

Fig. 5.13 Residual plot with respect to the response data in case p=4, q=3.
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Fig. 5.14 Residual plot with respect to the electric field in case p = 4, q = 3.

Fig. 5.15 Residual plot with respect to the response data in case p = 2, q =1.

Fig. 5.16 Residual plot with respect to the electric field in case p =2, q =1.
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5.5 Heating rate

Fig. 5.17 Residual plot with respect to the response data in case p = 4, q = 2.

Fig. 5.18 Residual plot with respect to the electric field in case p = 4, q = 2.
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5.6 Summary

Table 5.1 Determination and adjusted determination coefficients.

R11 R11ad j R12 R12ad j R21 R21ad j

0.9972 0.9971 0.9988 0.9988 0.9978 0.9977
R22 R22ad j R42 R42ad j R43 R43ad j

0.9995 0.9970 0.9999 0.9998 0.9999 0.9999

Table 5.2 Fitting parameters.

γ00 γ01 γ02 γ03 γ10

0.5565 −4.4479 9.5689 −6.1728 −4.2305

γ11 γ12 γ13 γ20 γ21

45.2239 −89.3014 62.9967 1.0312 −23.6548

γ22 γ23 γ30 γ31 γ32

100.8034 −92.5045 2.1011 −8.7135 −5.1857

γ33 γ40 γ41 γ42 γ43

15.8855 −0.9526 6.2162 −10.5929 5.9443

We predict that the crystal temperature reaches the melting point after about few hundreds

of picoseconds.

5.6 Summary

An analysis of the thermal effects in graphene induced by a charge flow under a bias voltage

has been performed. All the phonons modes have been taken into account, both in plane and

out of plane. The importance of the Z phonons is highlighted and the rate of the temperature

rise with respect to time is determined. This latter can be very useful in devising electron

devices based on graphene. It furnishes a theoretical basis for design an efficient cooling

system for removing the heat produced by the energy transferred by electrons to the lattice

via the scattering interactions with the phonon modes.

5.7 A simplified model

In this section, a simplified model for thermal analysis in graphene will be shown; the main

important approximations are: the in plane optical phonons populations, LO and TO, are

considered as an unique population with the same energy, the out of plane phonon populations

are neglected and the phonon distributions are approximated by means of equivalent Bose-

Einstein ones at the current temperature. For taking into account the two in plane polarizations
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5.7 A simplified model

states for optical phonons and the three total polarizations for acoustic ones, in the evaluation

of the densities of energy, we consider a density of states equal to 2
2π and 3

2π , respectively.

We would also evaluate the error introduced by such an approximation with respect the

previous complete model. The scattering matrix elements and the physical parameters are

the same as in the previous sections.

The average phonon energies are

WLO+TO =
2

(2π)2

∫

B
h̄ωLO/TO gLO/TO dq , (5.44)

WK =
1

(2π)2

∫

B
h̄ωK gK dq , (5.45)

Wac =
3

(2π)2

∫

R2
h̄ωac gac dq . (5.46)

By multiplying, for each species, the phonon Boltzmann equation with the phonon energy

and by integrating with respect to the wave-vector q, one gets the following macroscopic

balance equations for the average phonon energies

∂WLO+TO

∂ t
=CWLO+TO

,
∂WK

∂ t
=CWK

, (5.47)

∂Wac

∂ t
=−∇x ·Qac +CWac

, (5.48)

where Qac is the phonon energy-flux defined as

Qac =
3

(2π)2

∫

R2
h̄ωaccac gac dq , (5.49)

and

CWLO+TO
=C

p−e
WLO+TO

−
WLO+TO −W LE

LO+TO

τLO+TO

, (5.50)

CWK
=C

p−e
WK

− WK −W LE
K

τK
, (5.51)

CWac
=C

p−e
Wac

− Wac −W LE
ac

τac
(5.52)
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5.7 A simplified model

are the energy-production terms, with

W LE
LO+TO =

2
(2π)2

∫

B
h̄ωLO/TO

[

eh̄ωη/kBTLE −1
]−1

dq , (5.53)

W LE
K =

1
(2π)2

∫

B
h̄ωK

[

eh̄ωη/kBTLE −1
]−1

dq , (5.54)

W LE
ac =

3
(2π)2

∫

B
h̄ωac

[

eh̄vpq/kBTLE −1
]−1

dq (5.55)

the average energies in local equilibrium, while C
p−e
WLO+TO

, C
p−e
WK

and C
p−e
Wac

are the contributions

arising from the phonon-electron interactions. Due to energy conservation, these satisfy the

relationships

C
e−p
WLO+TO

+C
p−e
WLO+TO

= 0 , (5.56)

C
e−p
WK

+C
p−e
WK

= 0 , (5.57)

C
e−p
Wac

+C
p−e
Wac

= 0 , (5.58)

where C
e−p
WLO+TO

and C
e−p
Wac

are the energy production terms for electrons.

The non linear equation for finding the common equilibrium temperature reads as

h(TLE) :=
2h̄ωLO/TO A

(2π)2

[

eh̄ωLO/TO/kBTLE −1
]−1

+
h̄ωK A

(2π)2

[

eh̄ωK/kBTLE −1
]−1

+(kBTLE)
3 3ζ (3)

π h̄2v2
p

=WLO+TO +WK +Wac , (5.59)

where ζ (s) is the zeta function and A = 8
√

3π2

9a2
0

is the area of the first Brillouin zone, with

a0 = 0.142 nm. In (5.59) WLO+TO, WK and Wac are the current values of the average phonon

energies.
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5.7 A simplified model

Considering the phonon distributions as a sum of even and odd parts and these last ones

of Bose-Einstein type, each phonon temperature is related to its energy density by

kBTLO/TO =
h̄ωLO/TO

ln

(

1+
2Ah̄ωLO/TO

(2π)2WLO+TO

) , (5.60)

kBTK =
h̄ωK

ln

(

1+
Ah̄ωK

(2π)2WK

) , (5.61)

kBTac =W
1/3
ac

(

3ζ (3)

π h̄2v2
p

)−1/3

. (5.62)

We recall the assumption for the phonons relaxation times

τLO+TO = τK = τac = τ . (5.63)

Now, the model consists of the following equations

∂ f (t,k)

∂ t
− e

h̄
E

∂ f (t,k)

∂kx
=

∫

S(k′,k) f (t,k′)(1− f (t,k))dk′

−
∫

S(k,k′) f (t,k)
(

1− f (t,k′)
)

dk′, (5.64)

dWLO+TO(t)

dt
=C

p−e
WLO+TO

−
WLO+TO −W LE

LO+TO

τ
, (5.65)

dWK(t)

dt
=C

p−e
WK

− WK −W LE
K

τ
, (5.66)

dWac(t)

dt
=C

p−e
Wac

− Wac −W LE
ac

τ
. (5.67)

Similar equations hold for the K′ valley. As initial condition for the electrons we take the

Fermi-Dirac distribution

f (0,k) =
1

1+ exp

(

ε(k)− εF

kB T0

) ,

where T0 is the room temperature (300 K). Regarding the phonons, we assume that initially

all the phonons are at the room temperature T0. Therefore the initial conditions for the

phonon average energies are given by (5.53)-(5.55) with TLE = T0.
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5.7 A simplified model

Let us introduce a uniform time-step ∆t and denote by tn the nth time level. For each

interval [tn, tn +∆t] we solve Eq. (5.64) by the previous Direct Simulation Monte Carlo

scheme by freezing the phonon temperatures at the values they have at t = tn.

The remaining Eqs. (5.65)-(5.67) are discretized by an explicit Euler method with TLE

evaluated at the previous time step by solving the nonlinear relation (5.59).

In order to complete the numerical scheme we have to evaluate the production terms

C
p−e
WLO+TO

, C
p−e
WK

and C
p−e
Wac

. They represent the rate of variation of phonon energy per unit

time and are proportional to the difference between the number of emission and absorption

processes per unit time due to the electron-phonon scatterings. By taking the advantage of the

intermediate results coming from the DSMC part, in each time window [tn−1, tn] we count, for

each phonon species, the number of emission scatterings C+
η and absorption scatterings C−

η ,

η = LO+TO,K. If Np is the number of particles used in the MC method, each simulation

particle has a statistical density weight given by ρ/NP. Therefore we can estimate the phonon

energy production term as

C
p−e
Wη

=
ρ

NP ∆t
h̄ωη

(

C+
η −C−

η

)

, (5.68)

similarly to the procedure adopted for the simulation of other semiconductors [76, 78].

As before, assuming the elastic approximation for the acoustic transition rate, C
p−e
Wac

= 0.

For the DSMC part, NP = 104 particles have been used. The time step is set as ∆t = 2.5

fs and a constant phonon relaxation time has been adopted, τ = 5 ps, which is a value already

used in the literature, also in consideration of the fact that only phonons which more strongly

interact with electrons, having as said an almost constant frequency, are significantly brought

out of local equilibrium. We have also performed a comparison with the case when all

phonons are kept at equilibrium at the room temperature in order to analyze the influence of

the crystal heating on the characteristic curves.

First we analyze the case with εF = 0.3 eV by considering several applied fields. In

Fig.5.19 the evolution of the temperatures of each type of phonons along with TLE is plotted.

The most energetic phonons are the optical ones, while the least energetic phonons are the

acoustic ones. One observes that in the first 5 ps the rise of the temperature increases, as

expected, with the electric field. Roughly it seems that the maximum TLE after 5 ps depends

on the electric field in a linear way. In order to study also the influence of the heating effects

on the electron transport, in Figs. 5.20, 5.21 a comparison of the average electron velocity

and energy is shown between the case when the crystal heating is considered and that with

the phonons kept at room temperature. The differences in the average electron energy and

velocity are small up to fields of 20 kV/cm.
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5.7 A simplified model

a) b)

c) d)

Fig. 5.19 Phonon temperatures and local equilibrium temperature TLE versus time in the
case εF = 0.3 eV, when E = 1 kV/cm (a), E = 5 kV/cm (b), E = 10 kV/cm (c) and E = 20
kV/cm (d).

a) b)

Fig. 5.20 Average electron velocity versus time in the case εF = 0.3 eV, when E = 1 kV/cm
(a) and E = 20 kV/cm (b).

The previous cases have been also simulated with a higher Fermi energy εF = 0.6 eV.

Now the heating effects are more evident due to the higher electron current and a consequent

greater number of electron-phonon scatterings that transfer more energy to the lattice because
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5.8 Summary

a) b)

Fig. 5.21 Average electron energy versus time in the case εF = 0.3 eV, when E = 1 kV/cm
(a) and E = 20 kV/cm (b).

the emission processes are dominant with respect to the absorption ones. The results are

plotted in Figs. 5.22, 5.23, 5.24 and show a qualitative trend similar to those with εF = 0.3.

5.8 Summary

By using this simplified model, the temperature rises much more than in the previous

complete model and this leads to an overestimation of the thermal effects. For example, there

is a degradation in the characteristics curves at high fields, as comparison of Figs. 5.25 with

5.5 shows. This does not happen when the complete model is used.

Therefore, the inclusion of Z branches results very important for a right evaluation of

thermal effects due to the charge flow.
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5.8 Summary

a) b)

c) d)

Fig. 5.22 Phonon temperatures and local equilibrium temperature TLE versus time in the
case εF = 0.6 eV, when E = 1 kV/cm (a), E = 5 kV/cm (b), E = 10 kV/cm (c) and E = 20
kV/cm (d).

a) b)

Fig. 5.23 Average electron velocity versus time in the case εF = 0.6 eV, when E = 1 kV/cm
(a) and E = 20 kV/cm (b).
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5.8 Summary

a) b)

Fig. 5.24 Average electron energy versus time in the case εF = 0.6 eV, when E = 1 kV/cm
(a) and E = 20 kV/cm (b).

a) b)

Fig. 5.25 Average electron energy and velocity versus time in the case εF = 0.6 eV, when
E = 50 kV/cm.
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Chapter 6

Macroscopic models

6.1 Introduction

The Boltzmann equation gives the advantage to focus on an ensemble of identical particles,

so we have to deal only with the phase-space number density, which depends up seven

variables, three space, three wave-vector coordinates and time. This is a great simplification

but it remains a hard task to manage the Boltzmann equation, even with numerical method.

To overcome such a difficulty and to have more immediate physical models, fluid dynamical

models are obtained; the common feature is that the dependent variables can be interpreted as

averages (moments) of the phase-space number density with respect to the wave-vector k, and

the variables reduce from seven to four. An approach is the Hilbert expansion based method;

it is a perturbation argument that exploits the smallness of a dimensionless parameter, the

scaled mean free path [98, 99].

With the moments method we are able to deduce balance equations for macroscopic

quantities (avarage electron density, current, energy, etc) as moment equations of the Boltz-

mann equation [18]. It is required to state some physical assumptions and to resort to some

phenomenological models, for example when the integrations are not analytically possible

or when one needs physical parameters as the mobility, the diffusion coefficient or thermal

conductivity.

The moment with respect a suitable weight function ψ(k), with k ∈ R
3
k, is defined as

Mψ(x, t) =
∫

B
ψ(k) f (x,k, t)dk , (6.1)

where f is the distribution function.
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6.1 Introduction

By multiplying the Boltzmann equation by the function ψ(k), and with integration over

B, one finds the moment equation

∂tMψ +
∫

B
ψ(k)v(k) ·∇x f dk− e

h̄
E

∫

B
ψ(k) ·∇k f dk =

∫

B
ψ(k)C[ f ]dk , (6.2)

where E is the force vector. Since

∫

B
ψ(k)∇k f dk =

∫

∂B
ψ(k) f ndσ −

∫

B
f ∇kψ(k)dk , (6.3)

where n is the outward unit normal vector field on the boundary ∂B with surface element dσ ,

Eq.(6.2) becomes

∂tMψ +∇x ·
∫

B
f ψ(k)v(k)d k +

e

h̄
E

[

∫

B
f ∇kψ(k)dk−

∫

∂B
ψ(k) f ndσ

]

=

∫

B
ψ(k)C[ f ]dk . (6.4)

The last term on the l.h.s vanishes whit the assumption that f must decay sufficiently fast

when |k| → ∞, or when B is compact and ψ(k) is periodic and continuous on ∂B, a direct

consequence of the periodicity of f on B and of the symmetry of B with respect to the origin.

With different choices of the function ψ(k), usually as power of k, we obtain an infinite

hierarchy of balance equations; any truncation of the hierarchy doesn’t give a closed system

because the moments are coupled and one always has more unknowns than equations.

Thus, one need suitable closure relations, for example resorting to the Maximum Entropy

Principle [82–85, 25]. As an example, we consider the zero-order moment, with ψ(k) = 1.

We have
∫

B

∂

∂ t
f (x,k, t)dk+∇x ·

∫

B
f (x,k, t)v(k)dk =

∫

B
C[ f ]dk = 0 , (6.5)

∂

∂ t

∫

B
f (x,k, t)dk+∇x · [n(x, t)V(x, t)] dk = 0 , (6.6)

where V(x, t) is the average macroscopic velocity, and then the continuity equation for the

charge spatial density n
∂n(x, t)

∂ t
+∇x ·J(x, t) = 0 , (6.7)

where J(x, t) = n(x, t)V(x, t) is the particle current density. By defining the charge current

density as J = −enV, e being the elementary charge, we have the charge conservation

equation
∂n(x, t)

∂ t
− 1

e
∇x ·J(x, t) = 0 . (6.8)
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6.2 Comparison between DSMC and hydrodynamical results

In this example is clear that we have one equation but two unknowns, namely n and J .

6.2 Comparison between DSMC and hydrodynamical re-

sults

Electrons which contribute to the charge transport in graphene are those in the conduction

and valence band, and it is preferable to treat the latter as holes for insuring the integrability

of the corresponding distribution function. Electrons and holes mostly populate the states

near to the K and K′ valleys. A reference frame centered in the K-point will be used.

We have a set of moment equations consisting of balance equations of the following

quantities

average density ρi =
4

(2π)2

∫

R2
fi(t,x,k)dk ,

average velocity ρiVi =
4

(2π)2

∫

R2
fi(t,x,k)vdk ,

average energy ρiWi =
4

(2π)2

∫

R2
fi(t,x,k)ε dk ,

average energy-flux ρiSi =
4

(2π)2

∫

R2
fi(t,x,k)εvdk ,

(i = electron, hole), where the factor 4 arises from taking into account both the spin states

and the two equivalent valleys.

By integrating the Boltzmann equations with respect to k, one has the following balance

equations for the above-defined macroscopic quantities

∂

∂ t
ρi +∇x · (ρi Vi) = ρiCi , (6.9)

∂

∂ t
(ρi Vi)+∇x ·

(

ρi F
(0)
i

)

+ ei ρiG
(0)
i E = ρiCVi

, (6.10)

∂

∂ t
(ρiWi)+∇x · (ρi Si)+ eiρiE ·Vi = ρiCWi

, (6.11)

∂

∂ t
(ρi Si)+∇x ·

(

ρiF
(1)
i

)

+ eiρiG
(1)
i E = ρiCSi

, (6.12)

where the G’s and F’s are extra-fluxes and the terms at the right hand sides are productions

(the reader is referred to [44] for details) and ei is equal to e for electrons and −e for holes.
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6.2 Comparison between DSMC and hydrodynamical results

The extra fluxes and the production terms are additional unknown quantities. For them

constitutive relations in terms of the fundamental variables are needed in order to get a closed

system of balance equations. A well theoretically founded way to get the desired closure

relations is to resort to the Maximum Entropy Principle (MEP) [22], according to which

the electron and hole distribution functions can be estimated by the distributions fe,MEP and

fh,MEP solving the following problem

( fe,MEP
, fh,MEP

)= max
fe(t,x,)̇, fh(t,x,)̇∈F (R2)

S[ fe, fh] ,

under the constraints
(

ρi

ρiWi

)

=
4

(2π)2

∫

R2

(

1

ε

)

fi(t,x,k)dk ,

(

ρi Vi

ρi Si

)

=
4

(2π)2

∫

R2
fi(t,x,k)

(

v

εv

)

dk ,

where S[ fe, fh] is the total entropy of the system (remind that the phonons are assumed to

represent a thermal bath kept at constant temperature and therefore they add a constant

contribution to the entropy) equal to

S[ fe, fh] =−kB

{

4
(2π)2

∫

R2
[ f e ln f e +(1− f e) ln(1− f e)] d k+

4
(2π)2

∫

R2

[

f h ln f h+

(

1− f h
)

ln
(

1− f h
)]

d k

}

,

and F (R2) is the space of the distribution functions that admit the moments required as

constraints.

By solving the above maximization problem we get

fi =
1

1+ exp(λi +λWi
ε +v · (λVi

+ ελSi
))

,

where the λ ’s are Lagrange multipliers which have to be expressed as functions of the state

variables by taking into account the constraints. As in [53], we linearize the distributions

around their isotropic part, obtaining

fi≈
1

eλi+λWi
ε +1

[

1− eλi+λWi
ε

eλi+λWi
ε −1

v · (λVi
+ ελSi

)

]

.
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6.2 Comparison between DSMC and hydrodynamical results

After that, these distributions are inserted into the kinetic definitions of the additional

variables, so closing the system of the balance equations (see [44] for the details).

Even if macroscopic models are more suited for computer-aided design (CAD) purposes

because they avoid a direct numerical solution of the Boltzmann equation, they introduce

some approximation for the needed closure relation ([25, 44–49]).

We want to assess the validity of the MEP hydrodynamical model by a comparison with

the solutions furnished by the new DSMC developed in this thesis. We consider the case

of high values of Fermi energies, so that under such a condition electrons belonging to

the conduction band do not move to the valence band and vice versa. Therefore, the hole

dynamics is totally neglected.

The lattice temperature is kept constant and equal to 300 K and the physical parameter are

the same as in chapter 2. The solutions do not depend on x and therefore we neglect the terms

in divergence form in the balance equations (6.9)-(6.12), that become a system of ODEs.

Moreover, only the component of the velocity and the energy-flux along the direction of the

electric field, which we assume to be the x axis, is changing with time if we set the initial

velocity equal to zero. Regarding the initial conditions of the other macroscopic variables,

consistently with an initial Fermi-Dirac distribution, we assume zero energy-flux while the

initial density and the average energy density are calculated from the initial Fermi-Dirac

distribution. The Boltzmann equation and the system (6.9)-(6.12) have been solved for

different values of the applied electric field and the results for the average velocity and the

energy are shown in Figs 6.1, 6.2. In order to understand if the Fermi energy influences the

accuracy of the MEP model, we have performed the same simulations with εF = 0.4 eV and

εF = 0.6 eV.

Although the overall discrepancy is reasonable for the applications, it is likely that one needs

to include some nonlinear terms in the velocity and the energy-flux or additional moments

for improving more the hydrodynamical results.
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6.2 Comparison between DSMC and hydrodynamical results

Fig. 6.1 Comparison of the energy and the velocity versus time obtained with DSMC and the
MEP hydrodynamical model (HD) for the electric fields E = 2 kV/cm (top), E = 4 kV/cm,
E = 6 kV/cm (bottom) and a Fermi energy equal to 0.4 eV.
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6.2 Comparison between DSMC and hydrodynamical results

Fig. 6.2 Comparison of the energy and the velocity versus time obtained with DSMC and the
MEP hydrodynamical model (HD) for the electric fields E = 2 kV/cm (top), E = 4 kV/cm,
E = 6 kV/cm (bottom) and a Fermi energy equal to 0.6 eV.
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Conclusions

In this thesis we have studied charge and phonon transport in graphene. We have considered

values of Fermi energies high enough to neglect the dynamics of the valance band; this is

equivalent to a n-type doping for traditional semiconductors.

The first aim was to develop a new Direct Simulation Monte Carlo strategy that properly

takes into account the Pauli exclusion principle. This result is very important both from

a theoretical point of view and for all practical applications when degeneracy effects are

strongly effective. The proposed procedure gives correct results both for mean values and

distribution functions.

The new DSMC procedure reveals very accurate and seems to respect the intrinsic nature

of the Boltzmann equation and in particular the role of time. The l.h.s of the Boltzmann

equation takes into account the time evolution while in the r.h.s the collisions are considered

instantaneously, time is a frozen parameter. The coincidence that a numerical procedure that

respects the nature of an equation also gives correct results could give important suggestions,

at lest from a philosophical point of view, for example about the relationship between physical

phenomena, their analytical models and numerical approximations. Is the previous result

really a coincidence?

For a cross-validation of the results we have solved the Boltzmann equation also by

means of a numerical scheme based on Discontinuous Galerkin method, already largely

used for conventional semiconductors. The agreement between the stochastic and the

deterministic solution is excellent and proves the accuracy of the new proposed DSMC

strategy. Furthermore, the Discontinuous Galerkin solution preserves the positivity of the

solution and, at first order in the time step, the numerical solution remains bounded by the

extrema of the initial data, aspects strongly stressed in literature.

The new proposed DSMC strategy is able to investigate the transport properties in

graphene and represents a basic framework to easily include additional scattering terms and

other physical effects that could be important when one has to simulate real graphene-based

devices.
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Conclusions

Actually, we have applied the previous method to investigate the influence of different

substrates on the transport properties of a graphene layer. The results are in perfect agreement

with those obtained with the Discontinuous Galerkin method also in this case and respect the

expected behaviour commonly found in literature, as the degradation of the mobilities and

the effective influence of the distance between the graphene layer and the substrate.

Graphene is one of the most promising material for future electronic devices and the

knowledge of its electro-thermal properties is of fundamental importance. In the last part of

the thesis, phonon transport has been studied and the new DSMC scheme reveals again as a

valid basic framework for further investigation of transport problems.

We have considered a complete phonon model, with all phonon branches, the in plane

and the out of plane ones. These latter do not enter in the electron-phonon interactions but are

important for a correct evaluation of thermal effects. We have introduced a global equilibrium

temperature for the whole crystal lattice as a dynamical variable and we have deduced the

rate in the rise in temperature of a graphene layer under the effect of an applied electric

field. Moreover, the phonon populations have been described without any approximation

with equivalent Bose-Einstein distributions. The contribution due to the phonon-electron

interactions has been obtained by means of the intermediate results of the DSMC part, by

counting the number of emission and absorption processes, with a suitable statistical weight

that has to respect the density energy balance equation. The phonon-phonon interaction is

still an open problem and it has been treated with a BGK approximation.

Furthermore, from the results of a statistical regression analysis, we have been able to

predict the raise of the temperature for any value of the electric field and Fermi energy and that

the crystal temperature reaches the melting point after about few hundreds of picoseconds.

We have compared the results with a simplified model, wherein the out of plane phonon

branches are neglected and the phonon populations are approximated by Bose-Einstein

distributions, and shown that the flexural modes are fundamental to avoid an overestimation

of thermal effects in graphene.
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Appendix A

Derivation and properties of the

Boltzmann transport equation

We have an ensemble of charged particles interacting with a driving force under the laws

of classical mechanics [86]. To overcome the difficulty to know the initial state of all

the particles, it is necessary to reformulate the problem from a probabilistic point of view

obtaining the classical Liouville equation: it describes the trajectory of the ensemble of

particles as a deterministic equation for its probability density in the position-momentum

space. The motion of a single electron with position x ∈ R
3
x and velocity v ∈ R

3
v, in position-

velocity space, is described by the trajectory w(t;x0,v0) = (x(t),v(t)) obtained by the

equations

ẋ = v v̇ =− e

m
E (A.1)

with the given initial state

x(t = 0) = x0 , v(t = 0) = v0 . (A.2)

e is the elementary (positive) charge of the electron, m its mass and E = E(x, t) is the electric

field. Now, instead of the exact initial position and initial velocity of electron, x0 and v0, we

consider the joint probability density fin = fin(x,v) of the position and velocity of the single

electron, that has the following properties:

fin(x,v)≥ 0,
∫

R3
v

∫

R3
x

fin(x,v)dxdv = 1 . (A.3)

The probability to find the electron in the subset A of the (x,v) space at t = 0 is

P(A) :=
∫ ∫

A
fin(x,v)dxdv . (A.4)
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We look for a continuum equation for the probability density f (x,v, t) with initial value

fin = f (x,v, t = 0). We postulate that f doesn’t have any variation along the trajectories

w(t;x,v) = (x(t),v(t)):

f (w(t;x,v), t) = fin(x,v), ∀x,v ∈ R
3, t ≥ 0 (A.5)

Differentiating (A.5) with respect to t,

∂t f + ẋ ·∇x f + v̇ ·∇v f = 0 , (A.6)

and with (A.1) we obtain the classical Liouville transport equation for the probability density

f :

∂t f +v ·∇x f − e

m
E ·∇v f = 0 , (A.7)

If we have an ensemble of M particles, the position and velocity vectors are 3M-

dimensional, x = (x1, . . . ,xM), v = (v1, . . . ,vM), where xi, vi ∈R
3, and the force field vector

F = (F1, . . . ,FM) is a 3M-dimensional vector depending on all 6M position and velocity

coordinates and time. The classical ensemble Liouville equation is

∂t f +v ·∇x f +
1
m

F ·∇v f = 0 . (A.8)

This is a linear, hyperbolic equation, and their characteristics are the ensemble trajectories

defined by

ẋi = vi

v̇i =
1
m

Fi, i = 1, . . . ,M. (A.9)

along with the initial condition

f (x,v, t = 0) = fin(x,v) . (A.10)

In this case, f (x,v, t) is the joint position-velocity probability density of the M-particle

ensemble at time t and the probability to find the M-particle ensemble in a subset A of the

6M position-velocity space at time t is

PM(A, t) :=
∫ ∫

A
f (x,v, t)dxdv . (A.11)
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It is very important to study in deep the initial value problem for Eq.(A.8) with initial

condition (A.10), for x ∈ R
3M
x , v ∈ R

3M
v , also regards the implications of the Liouville

theorem [87]. From (A.5), if a solution exists, f (x,v, t)≥ 0 for all t ≥ 0, if fin(x,v)≥ 0. This

means that the evolution process described by Liouville equation preserves the non-negativity

of f . We assume for the force field F that

∇ ·F = 0 (A.12)

for x ∈ R
3Mx , v ∈ R

3M
v , t ≥ 0 .

Integrating Eq. (A.8) over R3M
x ×R

3M
v , assuming that the solution decays to zero suffi-

ciently fast as |x| → ∞, |v| → ∞ and considering the condition (A.12), we have

∫

R3M
v

F ·∇v f dv =−
∫

R3M
v

f ∇ ·Fdv = 0 , (A.13)

and we obtain
d

dt

∫

R3M
x

∫

R3M
v

f (x,v, t)dvdx = 0 , (A.14)

i.e.
∫

R3M
x

∫

R3M
v

f (x,v, t)dvdx =
∫

R3M
x

∫

R3M
v

fin(x,v)dvdx = 1, t ≥ 0 . (A.15)

Thanks to the preservation of the non-negativity of f and the conservation of the whole-

space integral (A.15), the solution of the initial value problem for the Liouville equation

can have a full probabilistic interpretation. The classical Liouville equation holds when the

particles move in a vacuum without interactions, neither with the environment nor between

themselves. This is mathematically clear if we consider that the unique solution f of (A.8),

(A.10) is

f (x,v, t) = fin(w
−1(t;x,v)) , (A.16)

if the maps w(t; ·, ·) : R3M
x ×R

3M
v → R

3M
x ×R

3M
v , t ≥ 0, are sufficiently smooth and one-to-

one and if fin is sufficiently differentiable. In this way, the required invertibility of w doesn’t

permit the existence of any type of collisions into the ensemble, i.e. the trajectors can’t

intersect. Using the canonical equations of motion [88], we can write the Liouville equation

in the 6M-dimensional ensemble phase-space (x,p) of coordinate and momentum:

∂t f +
p

m
·∇x f − eE ·∇p f = 0 . (A.17)

In the semiclassical Liouville equation we can consider the effects of the periodic potential

on the charged particles due to the ions of the crystal lattice structure. The infinite periodic
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crystal lattice is denoted by

L = {ia1 + ja2 + la3 | i, j, l ∈ Z} , (A.18)

where a1, a2, a3 are the primitive lattice vectors; the reciprocal lattices is

L̂ = {ib1 + jb2 + lb3 | i, j, l ∈ Z} , (A.19)

where b1, b2, b3 are the reciprocal primitive lattice vectors and it holds

ai ·b j = 2πδi j. (A.20)

The primitive cell is a connected subset A ∈ R
3 such that is volume is equal to |a1 · (a2 ∧a3)

and R
3 =

⋃

x∈R3 TxA, where TxA is the translate of A by the lattice vector x, i.e. the whole

space is covered by the union of translates of A by lattice vectors. The primitive cell of the

reciprocal space, that contains the points closer to the origin than to any other point of L̂, is

called the (first) Brillouin zone B. B is point symmetric to the origin, i.e. k ∈ B if and only if

−k ∈ B.

Given the Schroedinger equation

HLψ = εψ, (A.21)

where HL is the quantum Hamiltonian

HL =− h̄

2m
∆− eVL (A.22)

and VL the periodic potential due to the crystal lattice

VL(x+X) =VL(x), x ∈ R
3
x, X ∈ L , (A.23)

for the Bloch theorem the wave-functions ψ can be written as

ψ(x) = eik·xuk(x) , (A.24)

where uk(x+X) = uk(x) takes into account the periodicity of the lattice and k is an arbitrary

wave-vector (of the reciprocal lattice) in R
3
k. Using (A.24), (A.21) can be written as

− h̄2

2m
(∆uk +2ik ·∇uk)+

(

h̄2

2m
|k|2 − eVL(x)

)

uk = εuk, (A.25)
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subject to the periodicity condition of uk(x). This, for given k ∈ R
3
k, is a second order

self-adjoint elliptic eigenvalue problem on the primitive lattice cell, and we may have an

infinite sequence of eigenpairs ε = εl(k), uk(x) = uk,l(x), l ∈ N. Using

ψ(x+X) = eik·Xψ(x) (A.26)

and considering that eik·X = 1 ∀k ∈ L̂, X ∈ L, the set of ψ and ε are identical for any two

vectors differing by a reciprocal lattice vector. We can assign l ∈ N io order to have εl(k)

and ψk,l(x) = eik·xuk,l(x) periodic on the reciprocal lattice:

εl(k+K) = εl(k) , (A.27)

ψk+K,l = ψk,l , (A.28)

where K ∈ L̂. In this way, we can consider only the Brillouin zone B and not the whole space,

without losing any information.

εl = εl(k) is a continuous function on B and represents the lth energy band of the crystal,

while the corresponding mean velocity (the group velocity) is

vl(k) =
1
h̄

∇kεl(k). (A.29)

Consider an ensemble of M electrons in the same energy band εl; any band transition is

forbidden because the band index is fixed; the wave-function of the ith electron is given by a

linear combination of eigenstates ψk,l(x) over k ∈ B:

ψi(x, t) =
∫

B
ci(k, t)ψk,l(x)dk, i = 1, . . . ,M. (A.30)

Considering the crystal momentum vector of the ith electron, pi = h̄ki, the semiclassical

equations of motion in (x,k) phase-space, i.e.

ẋi = v(ki)

h̄k̇i = Fi, i = 1, . . . ,M (A.31)

where F = (F1, . . . ,FM), with Fi = h̄k̇, is the vector driving force, periodic in ki, the semi-

classical ensemble Hamiltonian

H(x,p, t) =
M

∑
i=1

ε
(pi

h̄

)

− eV (x, t) , (A.32)
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one obtains the semiclassical electron-ensemble Liouville equation

∂t f +
M

∑
i=1

v(ki) ·∇xi
f +

1
h̄

F ·∇k f = 0 . (A.33)

The following periodic boundary conditions hold for ki:

f (x,k1, . . . ,ki, . . . ,kM, t) = f (x, . . . ,−ki, . . . ,kM, t), ki ∈ ∂B. (A.34)

The main limits of Liouville equation arises when we have to specify the driving force

field, including short and long range interactions, and when we have to deal with a too

large number of M particles in practical applications. Thus, we would have a model able to

describe at least the long range interactions between particles, for example the Coulomb ones,

and with a reduced dimensionality. Assuming that the particles of a small subensemble move

independently of each other, one can derive a system of equations for the position-velocity

densities of a subensemble with d electrons, and d in principle can vary from 1 to M. Dealing

with the variation of d, modeling the force field as a weak two-particles interaction and

integrating the Liouville equation with respect to the positions and velocities of the remaining

M − d particles, we have the BBGKY hierarchy (Bogoliubov [91], Born and Green [92],

Kirkwood [93] and Yvon [94]). Carrying out the limit M → ∞, the Vlasov equation is

obtained, which has a more macroscopic nature and whose solution is a single function of

three position and three velocity coordinates and represents the electron number density in

the physical space R
3
x ×R

3
v.

We have M electrons with equal mass, with position xi ∈R
3
x and velocity vi ∈R

3
v. Ei ∈R

3

is the field exerted on the ith electron (per unit charge) that we write as sum of the electric

field and of the sum of the M−1 two-particles forces that the other electrons of the ensemble

exert on the ith electron:

Ei(x, t) = Eext(xi, t)+
M

∑
i=1,i6= j

Eint(xi,x j), (A.35)

where Eext is the external electric field and Eint is the two particle interaction field. The

electrons are indistinguishable, i.e. Eint doesn’t depend from the particles indexes, and the

action-reaction law holds:

Eint(xi,x j) =−Eint(x j,xi) , (A.36)
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with Eint(x,x) = 0. The ensemble Liouville equation for f = f (x1, . . . ,xM,v1, . . . ,vM, t) is

∂t f +
M

∑
i=1

vi ·∇xi
f − e

m

M

∑
i=1

Eext(xi, t) ·∇vi
f − e

m

M

∑
i=1

M

∑
j=1

Eint(xi,x j) ·∇vi
f = 0 . (A.37)

For the assumption (A.36), if the density f doesn’t initially depend from the numbering of

the particles, it holds for all times, i.e.

f (x1, . . . ,xM,v1, . . . ,vM, t) = f (xπ(1), . . . ,xπ(M),vπ(1), . . . ,vπ(M), t) (A.38)

is valid for all permutations π of {1, . . . ,M} and ∀t, if it holds for fin = f (t = 0). The joint

position-velocity density f (d) of a subensemble of d electrons is

f d(x1, . . . ,xd,v1, . . . ,vd, t) = (A.39)

=
∫

R
3(M−d)
x

∫

R
3(M−d)
v

f (x1, . . . ,xM,v1, . . . ,vM, t)dxd+1 . . .dxMdvd+1 . . .dvM , (A.40)

with 1 ≤ d ≤ M−1. By integrating (A.37) with respect to 3(M−d) position and velocity

coordinates and by assuming that f decays to zero fast enough as |xi| → ∞, |vi| → ∞, one

obtains

∂t f (d)+
d

∑
i=1

vi ·∇xi
f (d)− e

m

d

∑
i=1

Eext(xi, t) ·∇vi
f (d)− e

m

d

∑
i=1

d

∑
j=1

Eint(xi,x j) ·∇vi
f−

e

m
(M−d)×

d

∑
i=1

∇vi
·
(

∫

R
3(M−d)
v∗

∫

R
3(M−d)
x∗

Eint(xi,x∗) f
(d+1)
∗ dx∗dv∗

)

= 0 , (A.41)

where f
(d+1)
∗ = f

(d+1)
∗ (x1, . . . ,xd,x∗,v1, . . . ,vd,v∗, t). In the previous equation, the terms

with index i≥ d+1 in the sum with external fields Eext vanish by the divergence theorem, and

vanish in the terms involving spatial derivatives and in the double sum with the interaction

field Ein. Moreover, the last sum represents the contribution of each term with 1 ≤ i ≤ d,

that, by (A.38), is the same for each j ≥ d, j 6= d. The Eq. (A.41) for 1 ≤ d ≤ M − 1 is

the Bogoliubov-Born-Green-Kirkwood-Yvon (BBGKY) hierarchy for the classical Lioville

equation [87]. Although the system of equation cannot be solved explicitly, we can perform

an asymptotic analysis for M ≫ d; this is reasonable because in the semiconductor there

are ensemble with a large number of particles. For carrying out the limit M → ∞, it is to be

assumed that |Eint | is of the order of magnitude 1/M for M large; this means that the total
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field strength is finite as M → ∞. Given d fixed, as M → ∞, the Eq.(A.41) becomes:

∂t f (d)+
d

∑
i=1

vi ·∇xi
f (d)− e

m

d

∑
i=1

Eext(xi, t) ·∇vi
f (d)

− e

m

d

∑
i=1

∇vi
·
(

∫

R3
v∗

∫

R3
x∗

M f
(d+1)
∗ Eint(xi,x∗)dx∗dv∗

)

= 0 . (A.42)

Since the electrons of a subensemble small with respect to the total number of electrons

move independently, for the joint probability density we have that

f (d)(x1, . . . ,xd,v1, . . . ,vd, t) =
d

∏
i=1

P(xi,vi, t), (A.43)

where P = f 1 is the one-particle density. From (A.42) with d = 1, by using (A.43) with

d = 2, we obtain

∂tP+v ·∇xP− e

m
Ee f f (x, t) ·∇vP = 0 , (A.44)

with

Ee f f (x, t) = Eext(x, t)+
∫

R3
x∗

∫

R3
v∗

MP(x∗,v∗, t)Eint(x,x∗)dv∗dx∗ . (A.45)

If P is a solution of (A.44), (A.43) is an arbitrary solution of (A.44) for arbitrary d ∈ N.

In the same way, if the initial f (d) can be factored as in the (A.43), this is also possible for

the solution of BBGKY hierarchy (A.42).

The number of electron per unit volume in a neighborhood of (x,v) at time t, i.e. the

expected electron number density in phase space is defined as

F(x,v, t) = MP(x,v, t). (A.46)

The expected electron number density in the position space and the macroscopic charge

current density are, respectively,

n(x, t) =
∫

R3
v

F(x,v, t)dv , (A.47)

J =−e

∫

R3
v∗

vF(x,v, t)dv . (A.48)

By multiplying (A.44) by M [87, 95], we finally obtain the classical Vlasov equation:

∂tF +v ·∇xF − e

m
Ee f f ·∇vF = 0 , (A.49)
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with

Ee f f (x, t) = Eext(x, t)+
∫

R3
x∗

n(x∗, t)Eint(x,x∗)dv∗dx∗ . (A.50)

This is as a single particle Liouville equation, where the many-body effects are taken into

account only by the effective field Ee f f , that in turn depends on the number density n. The

trajectories of electrons under the effect of the field Ee f f are the characteristics

ẋ = v, v̇ =− e

m
Ee f f (x, t), (A.51)

that in turn can be understood as the limiting (xi,vi) trajectories of the Lioville equation

(A.37) as M → ∞. F(x,v, t) is also considered as the existence probability of a particle in the

state (x,v) at time t, and then it has to obey to the Pauli principle

0 ≤ F(x,v, t)≤ 1 . (A.52)

If the Pauli principle is respected for the initial datum

0 ≤ F(x,v, t = 0)≤ 1 , (A.53)

using (A.51), we can conclude that the Pauli principle is conserved in time by Vlasov equation

(A.49).

The Vlasov equation then gives a more mascrocopic description into a kinetic framework

when there are weak long range forces, so on a time scale much shorter than the mean time of,

for example, two scattering events between particles due to short range forces. It is mandatory

in this case to resort to the Boltzmann equation. Moreover, Vlasov equation is nonlinear

with a nonlocal nonlinearity of quadratic type [86]. Starting from the semiclassical Liouville

equation (A.33), with the same procedure, one has the semiclassical Vlasov equation

∂tF +v(k) ·∇xF − e

h̄
Ee f f ·∇kF = 0 , (A.54)

with

Ee f f (x, t) = Eext(x, t)+
∫

R3
x∗

n(x∗, t)Eint(x,x∗)dv∗dx∗ . (A.55)

The electron number density and current density are respectively

n(x, t) =
∫

B
F(x,k, t)dk, (A.56)

J(x, t) =−e

∫

B
v(k)F(x,k, t)dk. (A.57)
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The phase-space number density F satisfies the periodic boundary conditions in k:

F(x,k, t) = F(x,−k, t), x ∈ R
3
x,k ∈ ∂B, t > 0. (A.58)

The Boltzmann equation takes into account the short range forces and, in particular,

collisions between particles and with the crystal lattice; the particles instantaneously change

their state, so their velocity vectors and, consequently, their wave-vectors and their momentum

change in a very fast way, while the position vectors change slowly. Without collisions, the

number density F = F(x,v, t) is conserved along the characteristics (A.51) under the effect

of the convection due to the effective field Ee f f , i.e.

(

dF

dt

)

conv

= 0. (A.59)

By postulating that there is a balance between the rate of change of F due to the convection

and that due to the collisions, we can write

(

dF

dt

)

conv

=

(

dF

dt

)

coll

, (A.60)

or, explicitly, the following Boltzmann equation:

∂tF +v ·∇xF − e

m
Ee f f ·∇vF =

(

dF

dt

)

coll

, (A.61)

where the effective field Ee f f is given by (A.50). Given a particle at time t, with position

vector x and velocity vector v′, the rate P(x,v′ → v, t) to change its velocity v′ in v after a

scattering event is proportional to the occupation probability F(x,v′, t) of the initial state

(x,v′) and, according to the Pauli principle, also to 1−F(x,v, t), that is the probability that

the final state is available at time t:

P(x,v′ → v, t) = s(x,v′,v)F(x,v′, t)(1−F(x,v, t)) . (A.62)

s is the scattering rate and s(x,v′,v)dv′ the transition rate.

The total rate of change of the number density F at (x,v, t) due to the collisions is the

difference between the sum of the rates of the particles scattered from all possible states

(x,v′) into the state (x,v) at time t and the sum of the rates of particles scattered from the

121



state (x,v) into any possible state (x,v′) at time t, i.e.

(

dF

dt

)

coll

(x,v, t) =
∫

R
3
v′

[

P(x,v′ → v, t)−P(x,v → v′, t)
]

dv′ (A.63)

By inserting (A.62) into (A.63), one obtains

C[F ](x,v, t) =
∫

R
3
v′

[

s(x,v′,v)F(x,v′, t)(1−F(x,v, t))−

s(x,v,v′)F(x,v, t)
(

1−F(x,v′, t)
)]

dv′ (A.64)

where

C[F ] :=

(

dF

dt

)

conv

. (A.65)

C is the collision operator and C[F ] the collision integral. Thus, the Boltzmann equation

reads

∂tF +v ·∇xF − e

m
Ee f f ·∇vF =C[F ] (A.66)

The effective self-consistent field already introduces a non linearity, the collision integral

C[F ] introduces another non linearity, quadratic and non-local in the velocity. If we initially

consider the semiclassical Vlasov equation (A.54) and the semiclassical expression for the

effective field (A.55) the semiclassical Boltzmann equation reads

∂tF +v(k) ·∇xF − e

h̄
Ee f f ·∇kF =C[F ] (A.67)

where

C[F ](x,k, t) =
∫

B

[

s(x,k′,k)F(x,k′, t)(1−F(x,k, t))−

s(x,k,k′)F(x,k, t)
(

1−F(x,k′, t)
)]

dk′. (A.68)

The Boltzmann equation has to respect the boundary condition

F(x,k, t) = F(x,−k, t), x ∈ R
3
x,k ∈ ∂B, t > 0 . (A.69)

Moreover, we impose the initial condition

F(x,k, t = 0) = Fin(x,k) (A.70)
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and we assume that it obeys to the Pauli exclusion principle:

0 ≤ Fin(x,k)≤ 1 . (A.71)

We report a sketch of the proof for existence and uniqueness for the Boltzmann-Poisson

problem in the whole space as in [96, 86]; for further details we refer to [19, 20]. This also

shows the intrinsic importance of the Pauli principle for the Boltzmann equation. It is used a

decoupling iterative approach. We set F(0) = 0 and construct a sequence of approximations
{

F(l)
}

l∈N0

as follows. Given F(l), the number density is

n(l) =
∫

B
F(l)dk (A.72)

and the effective field E
(l)
e f f is calculated by inserting n(l) into (A.50) using the Poisson kernel

Eint(x,y) =− e

4πεs

x−y

|x−y|3 , x,y ∈ R
3, x 6= y (A.73)

where εs is the permittivity. One obtains

∂tF
(l+1)+v(k) ·∇xF(l+1)− e

h̄
E
(l)
e f f ·∇kF(l+1) =Clin[F

(l+1),F(l)] (A.74)

with the initial condition (A.70) and the periodic boundary condition on ∂B. The collision

integral is written as

Clin[F
(l+1),F(l)] =

∫

B

[

s(x,k′,k)F(l)(x,k′, t)
(

1−F(l+1)(x,k, t)
)

−

s(x,k,k′)F(l+1)(x,k, t)
(

1−F(l)(x,k′, t)
)]

dk′ . (A.75)

Defining

A(l) =
∫

B
s(x,k′,k)F(l)(x,k′, t)dk′ , (A.76)

B(l) =
∫

B
s(x,k,k′)F(l)

(

1−F(l)(x,k′, t)
)

dk′ , (A.77)

one has

Clin(F
(l+1),F(l)) = A(l)(1−F(l+1))−B(l)F(l+1) . (A.78)
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The linear transport equation (A.74) can be solved by the method of characteristics or by the

semigroup theory. Along the characteristics

ẋ = v(k), h̄k̇ =−eEe f f (l), (A.79)

the (A.74) can be written as

dF(l+1)

dt
+
(

A(l)+B(l)
)

F(l+1) = A(l). (A.80)

Since s > 0, from (A.76) A(l) ≥ 0, if F(l) ≥ 0. By integrating (A.80), we have F(l+1) ≥ 0.

Setting G := 1−F(l+1), one obtains

dG(l+1)

dt
+
(

A(l)+B(l)
)

G(l+1) = B(l). (A.81)

If F(l) ≤ 0, we have B(l) ≥ 0 and, by integrating (A.81), G(l+1) ≥ 0. We can conclude that, if

the initial datum Fin satisfies the Pauli principle, this holds for all iterates F(l) for all times

t > 0. By passing to the limit l → ∞, we have that the Boltzmann equation conserves the

upper and the lower bounds, i.e 1 and 0, and the solution F satisfies the Pauli principle

0 ≤ F(x,k, t)≤ 1, t ≥ 0 . (A.82)

When the transition rate is regular and positive enough, then the sequence
{

F(l)
}

l∈N0
converges to the unique solution of the Boltzmann-Poisson problem.

By integrating (A.68) we obtain
∫

B
C[F ]dk =

∫

B

∫

B

[

s(x,k′,k)F(x,k′, t)(1−F(x,k, t))−

s(x,k,k′)F(x,k, t)
(

1−F(x,k′, t)
)]

dk′dk = 0 , (A.83)

and it is clear how the scattering processes produce neither a destruction nor a generation

of particles, and both the continuity equation and the conservation of the total number of

electrons are respected. A fundamental property of the collision operator prescribes that the

state of the particles ensemble has to relax towards a local thermodynamical equlibrium. For

the detailed balance principle the local scattering probabilities vanish for all states (x,k),

(x,k′) in thermal equilibrium [89, 97, 90]:

s(x,k′,k)Feq(x,k
′, t)

(

1−Feq(x,k, t)
)

= s(x,k,k′)Feq(x,k, t)
(

1−Feq(x,k
′, t)

)

, (A.84)
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where Feq is the equilibrium number density that is equal to the Fermi-Dirac distribution

Feq(k) =
1

1+ exp
(

ε(k)−εF

kBT

) , (A.85)

where ε(k) is the energy of the considered energy band, εF is the Fermi level, kB is the

Boltzmann constant and T is the lattice temperature. From (A.84) one has

s(x,k,k′) = exp

(

ε(k′)− ε(k)

kBT

)

s(x,k′,k) , (A.86)

that [96] is a sufficient and necessary condition on s in order to have the Fermi-Dirac

distribution as the null manifold of the collision operator C, i.e if we have that

C[F ] = 0, 0 ≤ F ≤ 1, (A.87)

then F is given by (A.85) for −∞ ≤ εF ≤+∞, if (A.86) holds.

We define the strength of the interaction at the state (x,k) related to the scattering rate s

as the collision frequency λ

λ (x,k) :=
∫

B
s(x,k,k′)dk′; (A.88)

The relaxation time is the reciprocal of the collision frequency and gives the average time

between two consecutive scattering events at (x,k) and is the time scale of the relaxation of

a density F towards the equilibrium Fermi-Dirac distribution.

We would analyze more in deep this property because it is one of the most important

peculiarities of the Boltzmann equation, just considering [86] a simplified case, when the

density is low enough to use the Maxwellian distribution M(k) in place of the Fermi-Dirac

one,

M(k) = Ñ exp

(

ε(k)

kBT

)

, (A.89)

with

Ñ =

(

∫

B
exp

(

ε(k)

kBT

)

dk

)−1

, (A.90)

and the initial datum Fin is very close to the Maxwellian distribution; in this case we can

write a very simplified expression for a linear and local in k collision operator:

C̃[F ](x,k, t) =− 1
τ(x,k)

(F(x,k, t)−M(k)n(x, t)) . (A.91)
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Along the characteristics (x(t),k(t)) the Boltzmann equation reads

d

dt
F =−1

τ
(F −Mn) , (A.92)

leading to

F (x(t),k(t), t) = e−t/τ

(

Fin(x0,k0)+
1
τ

∫ t

0
n
(

x(s),s)M(k(s))es/τds
)

)

. (A.93)

Assuming τ constant and n known, one has that

F (x(t),k(t), t))−n(x(t), t)M(k(t))∼ e−t/τ , as t → ∞. (A.94)

The Vlasov equation doesn’t have this property because it doesn’t take into account the

collisions and it is time-reversible, with a static exterior field, but when the collisions are

introduced, so with the Boltzmann equation, they drive the ensemble towards a thermody-

namical equilibrium in the large time limit. This is one of the most important consequences

of the H-Theorem [87, 96].
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