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1. Introduction 

 

A network is a structure of entities that can be connected to each other. Each 

network has two distinct sets of entities: nodes (or, vertexes) and edges (or, links). 

Nodes represent punctual entities while edges represent the connection between 

two nodes. One can say: node i and node j are connected. This implies that not only 

i and j exist as entities in a network, but also that an edge (i↔j) exists. If the 

connection works only on one side but not on another, then the edge is directed and 

it is represented as (i→j). The set Ji of all j-nodes connected to i is the ego-network 

(of first order) of i. A network allowing directed edges is a directed network. A 

count of edges is referred as degree, with the letter k. To say that the node i has k = 

3 means that i has 3 connections with other nodes. 

Networks are represented as mathematical graphs, that are special sets: 

𝐺 = (𝑉, 𝐸)         (1) 

where: G is the graph, V is a set of nodes, and E is a set of edges. This 

representation is convenient for the abstraction of structural proprieties of classes 

(or “ensambles”, a word borrowed by Statistical Mechanics) of real networked 

topologies. In graph theory, G is often processed as an adjacency matrix: a square 

matrix where the indexes are the nodes and the elements are the edges. For simple 

graphs, 0 in the adjacency matrix represents absence of edge, while 1 would 

represent presence. In weighted graphs, the value of the element of the matrix can 

vary and the variation would indicate the difference in size, relevance, etc. of the 

relation, keeping 0 as the reference value for absence of relation. Matrices are 

notoriously fast structures for computation. This is a useful feature both for 

analysis and visual representation of networks. Indeed, in computationally 

intensive applications as in Statistical Mechanics, Bioinformatics, or Big Data, the 

‘networks-as-graphs’ paradigm prevailed. However, as noted by Crane (2018), 

traditional graphical tools are not always appropriate to represent real networks and 

in particular social networks as networks of social actors. 
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The alternative representation of networks would be a relational database of 2 

tables. One table has nodes as rows, the other edges as rows. In the table of the 

edges, one column references the first node of the pair (or for directed networks, 

the sender of the connection), and another column references the second node of 

the pair (or, the receiver node, in directed networks). Each table may have many 

columns, each column representing an observed attribute (a variable) of the entity. 

In the literature on networks, attributes of the nodes are not particularly 

problematic. Indeed, as long as edges have no attributes, a network is not properly 

multidimensional; but if edges are nominally differentiable at least through an 

attribute, then the network is multidimensional. Terminology is not always 

established (Barrett et al., 2012), but a core concept is the layer. The layer is the 

subset g of the graph G such that all the edges of g (Eg) share a common nominal 

value in one attribute. All the nodes (Vg) connected through Eg fall within sub-

graph g, too. Since the layer is associated with a (nominal) value of an attribute of 

the edgeset, often the word layer recalls simply that value (Kivelä et al., 2014, 

Dickison et al., 2016). 

The present manuscript is about inference on multidimensional network data. 

The theoretical issues of correlations among many variables are discussed referring 

to the approach of neutral models for statistical testing of hypotheses. In this aim, a 

generative technique of multidimensional networks is proposed. 

 

 

2. Multivariate models for multidimensional networks 

 

Mathematical representation of multidimensional networks is problematic 

because the adjacency matrix is insufficient to represent layers. Advanced 

mathematical solutions to represent layers involve the employment of tensor 

structures, but tensor algebra is much less known than matrix algebra. Its 

application could alienate researchers to pursue valid research questions involving 

representation of social groups as networks (demography of families, organization 

studies, marketing, etc.). The database representation has a benefit here: it makes 

easy to represent both variables (attributes) of the nodes and layer values of edges 

as additional columns of the tables. This allows to run traditional multivariate 

analysis models, as multilevel models, across nodes and edges (Vacca et al., 2019). 

Multilevel models are employed in population studies as a tool to avoid 

ecological fallacies (Gnaldi et al. 2018). Multilevel models account for cases where 

observations are nested within other observation, for example: in a list of high 

schools, these are nested within towns, and any analysis of the variance between 

high schools needs to account for the variance between town. Multilevel models 

(or, hierarchical models) are a special class of mixed models with fixed values. 
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The application of multivariate models to networks is important for the 

demographic data analysis. For example, in 2022 has been completed the mapping 

of the whole population network of the Netherlands (van der Laan et al., 2022): a 

database of more than 14 million nodes representing people inhabiting Netherlands 

in 2018, connected through more than 1.4 billion edges. One attribute identifies 5 

macro-layers of edges: family, household, neighbours, schools, and work. But then, 

for each of these layers are specified more detailed classes of relationships as 

additional variables in the database. For example, among the edges in the layer that 

are labelled as “family”, are nested classes of directed relationship as “parent of”, 

“cousin of”, etc (Table 1). 

Table 1  Example of a social network represented as a relational database. 

 
Node ID Name Surname Job High School … 

1 John Doe ABC Inc. Alighieri … 

2 Mary Smith FinanzGroup Cervantes … 

3 Jane Doe NA Shakespear … 

4 Paul Jones NA Shakespear … 

5 Peter Taylor ABC Inc. Shakespear … 

6 Luke Brown FinanzGroup Alighieri … 

… … … … … … 

      
Edge ID From To Macrolayer Microlayer … 

1 Node 1 Node 2 Family Married to … 

2 Node 1 Node 3 Family Parent of … 

3 Node 1 Node 5 Work Manager of … 

4 Node 2 Node 1 Family Married to … 

5 Node 2 Node 3 Family Parent of … 

6 Node 2 Node 6 Work Manager to … 

7 Node 3 Node 1 Family Child of … 

8 Node 3 Node 2 Family Child of … 

9 Node 3 Node 4 School Classmate of … 

10 Node 4 Node 3 School Classmate of … 

11 Node 5 Node 1 Work Managed by … 

12 Node 6 Node 2 Work Managed by … 

… … … … … … 

In Table 1 microlayers are properly nested within macrolayers. Mixed models 

of networks data are found in recent developments of applied network analysis to 

Economics (Jochmans and Weidner, 2019). With mixed models, it is possible to 

combine co-occurrences of different layers and attributes of nodes into very rich 

multivariate models with fixed effects, too. An example: i nodes are associated to a 

y numeric value standing for body weight. The researcher is interested in 

correlation of y with the average �̅�𝐽 in the ego-networks Ji of each i-node. But �̅�𝐽 

has a strong dependency on j nodes being men or women, so the model must 
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correct the estimate for this fixed attribute of the j-node. Then, the researcher can 

observe the differences in the coefficients across layers of relationships, for 

example family vs. co-workers. These values (family, co-workers, etc.), differently 

than gender, are not fixed per j, since each i has different relationships with j, hence 

the reference to mixed models. Panel models are a special case of mixed models 

with a differentiation in time (lagged regression) or just with a time-point (for 

example, the month) as a fixed control variable. 

 

 

3. Models of direct contagion in network data 

 

The relevance of a regression model of the attribute yi of i (ego) on the average 

�̅�𝐽 of its Ji ego-network implies that there are correlations between the value of yi 

and yj that are scientifically not trivial. The presence of positive correlations is also 

called assortativity, and negative correlations lead to disassortativity. Assortativity 

is also structurally tied to others indicators of correlation, like network clustering, 

etc. According to Christakis and Fowler (2013), assortativity has three explanations 

other than chance: 

- i-egos have a preference to associate subjects with similar attributes. 

Sometimes this preference is called homophily, but this term is also confused 

with assortativity itself; 

- i-egos and their Ji ego-networks might jointly experience unobserved 

simultaneous exposures to common omitted variables, confounding the 

correlation; 

- and Ji ego-network induces an effect on i. These explanations are not mutually 

exclusive, but they are hard to disentangle in causal models. 

Christakis and Fowler (2013) proposed an explicit model to estimate how a 

change over time in Y can be attributed to contagious effects:  

𝑔 (𝐸(𝑌𝑖,𝑡+1)) = α + β𝑖,𝑡𝑦𝑖,𝑡 + β𝐽,𝑡�̅�𝐽,𝑡 + β𝐽,𝑡�̅�𝐽,𝑡+1 + 𝐵(𝑍)   (2) 

where: 

- Y is the attribute under hypothesis of contagion 

- i is the ego 

- J is the set of its neighbours.  

- t is a time-point, assumed as fixed in the model 

- Z are controls variables, assumed as fixed in the model 
- 𝛽 is the coefficient of the type regression 

- B are the vectors of the coefficients of the controls.  
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The (2) expresses the link function g in a generic form so it can be adapted for 

different data types (linear for continuous Y, logit for binary, etc). It is actually a 

panel model that lies on the same methodological foundations of mixed models. 

Christakis and Fowler (2013) acknowledged that (2) is still problematic if omitted 

variables are not controlled within the set Z. In other words, the problem of 

identification of spillover effects in networks is analogous to the notorious problem 

of ignorability of missing variables (Imai et al., 2010). A non-parametric approach 

in modelling contagion is in Aral et al. (2009). They propose to statistically match 

nodes from two groups: 

- the null effect group of i0 such that i has less than k0 ties who shifted from y0 to 

y1 between t0 and t1, for example these are friends who adopted a new status 

y=1 in t1 for a binary Y; 

- and the alternative effect group i0 with more than k0 ties. 

The matching algorithm minimises the global differences in all the Z between 

the element i0 and the element i0. Aral et al. (2009) reached the conclusion that the 

coefficient of the contagion effects 𝛽𝐽,𝑡�̅�𝐽,𝑡 in (2) overestimates the effect of a factor 

roughly ~2.  

Shalizi and Thomas (2011) generalise the issue on the origin of assortativity for 

multidimensional networks. The idea is that more than homophily can be driven 

towards more than one attribute, and the co-existence of contagion dynamics and 

multidimensional preferential attachment would make very hard to properly 

estimate contagion effect. The simple example involves the difference between: 

- attribute assortativity: nodes show a tendency to cluster around values of one 

attribute. If this attribute is strictly nominal these clusters will approximate 

sub-graphs, few ties bridge between the clusters, and layers emerge naturally. 

If the attribute is ordinal or metric, nodes are attached to nodes with similar 

values of the attribute. 

- degree assortativity: a special case of a numerical attribute assortativity. It is 

observed when ties of the networks grow over time and new nodes have a 

preference to attach themselves to the more connected old nodes. 

Attribute assortativity does not imply degree assortativity but for any non-

Uniform distribution of an assortative attribute, it would be observed a significant 

positive correlation between k and �̅�𝐽 even in absence of a preference of new nodes 

to attach to old nodes. This is, hence, a technical value of degree assortativity, that 

is also the true null of the observed value, conditional to the observed value of 

attribute assortativity (Crawford et al., 2018). If the attribute that is the true source 

of assortativity is unobserved, then the technical effect on the coefficient could be 

confounded as misleading evidence for a mechanism of preferential attachment, in 

absence of both preferences and agency in the nodes. This is a simple case for one-

dimensional networks. The general case for multidimensional networks assumes 
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that general homophily (that is, assortativity across many attributes) confounds 

processes of influence at agent level. 

 

 

4. Neutral models 

 

Neutral models are simulation models that include all the relevant features of 

complex dynamics, except one, that is suppressed (neutered). The absence of the 

neutered feature can be considered as a treatment. They were originally developed 

in biology to test evolutionary hypotheses. Their role in epidemiological modelling 

is analogous to null hypothesis in statistical testing (Gotelli and McGill, 2006). 

In order to introduce the connection between proprieties of iterated simulations 

and null models, it is worth to mention a toy model (Figure 1) in Shalizi and 

Thomas (2011) because it allows to explain why pre-existing structural factors (e.g. 

religion) mask and confound agency (e.g. why capitalism spread?). 

Figure 1 represents this argument: the nodes are cities and the red colour 

indicates a high concentration of factories; the edges are natural trade routes; the 

two clusters are a Catholic nation and a Protestant one. The network at top is 

observed at Year 1600, the bottom one at Year 1900. Ideally, the argument of the 

authors is that there is no need of a causal impact of religion to cause the polarised 

spread of capitalism towards Protestant (or, Catholic) cities: natural trade routes 

(i.e. topology) can explain it already in its neutered state. In the toy model, either of 

the two clusters (Protestant and Catholic nations) could experience with the same 

probability a global rise in factories (red nodes). Reiterating the model many times, 

half of the time Catholics would experience the spread of Capitalism, and the other 

half the Protestants. Religion would look a relevant factor for how the Capitalism 

spreads only because “history cannot repeat itself”, or, alternatively, because trade 

routes are not accounted (omitted variables) in the original models of spread of 

industrialization. One can notice that this is the inverse case of confounding 

between structure and agency than the one presented in Aral et al. (2009). 

Simulation models can use estimates of coefficients from a regression model as 

parameters for agency (or, contagion) in multidimensional networks, and then can 

differentiate parameterisation between the neutral model (null hypothesis) and the 

alternative parameterisation. Simulation models iterate until is possible to infer 

steady stochastic averages of the iterating time series. The series themselves are the 

result of the simulation. If results of the neutral model vs. the alternative show no 

significant differences, then it possible to conclude that the suppressed feature had 

a no causal role in the final output. However, if differences emerge in the time 

series, it is possible to characterise the causal role of the feature in the model. 
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Figure 1  A 2-clusters network: before (top) and after (bottom) a contagion process.  

 
A network of 100 nodes structured in two clusters (communities). It is represented before the start (top) and after 

the end (bottom) of process of contagion. For 1000 iterations, a node is picked. With a probability it assumes the 
colour of another adjacent node. This probability is independent to the cluster of the node, hence the propensity 

for a node to adopt the colour of the majority of its cluster is null (neutered). Before the first iteration, there is no 

association between clusters and colours, but after the 1000th iteration, clusters and colours are correlated even 
in a neutral model. This as a by-effect of the fact the clusters exists, even in absence of a link to the probability to 

change colour (Shalizi and Thomas 2011, p. 24). 

Can this methodology be extended for multidimensional network? Yes, with a 

caveat. There are two general approaches for generation of a multidimensional 

network: formation through union of simpler networks and procedural formation. 

The latter implies that the network growths iteratively and new nodes, edges, and 

layers happen as statistical events over time, with specified probabilities. 

Procedural multidimensional models have issues regarding correct posterior 

parameterisation of homophily in neutral models (Dickison et al., 2016). The 

procedure of formation implies a micro-model of agency of the new nodes which 

have preferential attachment (whatever it is) towards old nodes. Any 

parameterisation of agency would bring technical alterations in the joint 

parameterisation of the null hypothesis, for the reasons explained in section 3. In 

other words, the implicit micro-model of multidimensional agency of nodes in 

attachment could mask and confound the model of contagion that is tested, instead.  

For any non-specific hypothesis on the agency in attachment, union of simpler 

networks is a safer choice. 
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5. Chimera networks: generating multidimensional networks as union of 

simpler models 

 

We refer to generative methods for multidimensional networks as ‘chimera’. 

The method involves a union of layers, disjointly generated before, hence truly 

statistically independent. The idea is to generate only one set of nodes, and many 

sets of edges. Each set of edges is a layer of the chimera edgeset. If the networks 

are recorded as tables, the union of the edges can be coded with commands 

common to all programming languages for data analysis, as append or join1. Layers 

are generated through a one-dimensional technique, that can be procedural or not. 

In both cases, parameters for formation of the layer as one-dimensional edgeset 

should be kept as an attribute in table of the nodes, as designed in section 1. 

For example, a layer can be generated through a stochastic blockmodel (SBM). 

This is not a procedural generative model. In a SBM, each node is assigned to a 

block. The probabilities of two nodes to be randomly connected are parameterised 

through a mixing matrix: a square matrix mapping all the possible combinations of 

pairs of blocks (Faust and Wasserman, 1992, Latouche et al., 2011). The 

information about the block of nodes i is stored as an attribute of the nodeset in the 

databases. 

One of the benefits of the chimera method is that it allows unbiased generation 

(i.e. draw) of random y attributes (characteristic attribute of the chimera), 

parameterised after other x attributes that are inherited from the disjoint layers: one 

generates many layers, each is a different SBM; the nodes will be associated to a 

set of variables DX: X1, X2, … Xd, each variable being a vector of parameters 

regarding a layer. It follows that: 

 𝑓𝑌(𝑥1,𝑖 , 𝑥2,𝑖, … 𝑥𝑑,𝑖)  =  𝑦𝑖       (3) 

allows to model the variable Y of a characteristic attribute of the chimera network. 

In the example (Figure 2), a multilayer toy network of 47 nodes is generated 

through union of layers. It represents a workplace where people are co-workers 

grouped in teams. Each member of a team is connected to any other member of the 

same team (the black edges in Figure 2). This formation is called ‘archipelago’. 

The expected team size is distributed as 

                                                      
1 Our personal suggestion is to adopt the command tidygraph::graph_join() in language R. The package tidygraph 

has been developed as a wrapper of software iGraph. Tidygraph re-arranges the structure of a mathematical graph 
object as a relational database. 
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𝑃𝑜𝑖𝑠𝑠𝑜𝑛(λ = 3) + 1        (4) 

so teams with no members are not allowed in the model. 

Figure 2  Chimera network: co-workers. 

 

Nodes are then randomly split between women and men. Genders work as 

blocks for a SBM layer. The SBM layer represents friendships outside the team, 

and it is parameterised with an expected value of connections per node equal to 3. 

While in the toy model the average is indeed ~3, it can be noticed in Figure 2 that 

most of light edges (friends layer) connects two woman (F) nodes. This is the result 

of the parameterisation of the mixing matrix of the SBM, that is: 

Table 2  Mixing matrix of Stochastic Blockmodel in 2-blocks 

 
 F M 

F .6 .1 

M .1 .2 

With an expectation of 𝟑 ⋅ 𝟒𝟕 = 𝟏𝟒𝟏 friendships, with .6 probability a 

uniformly random drawn woman is attached to any other uniformly random drawn 

woman, with .2 a uniformly random drawn man to a uniformly random drawn 

woman (or, viceversa), and with .2 a uniformly random drawn man to any other 

uniformly random drawn man.  
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A chimera allows to perform easily many neutral models. Given DX variables, 

one X explanans is selected to be tested.  

Then, it is possible to randomly shuffle all and only the edges of the layer 

associated to X, while keeping the values x ∈ X. This operation is equivalent to 

generate a null model where the agency of agents does not depend on the 

correlation between their social topology and the social structure of the layer (e.g. 

airports being built near polluted areas). It is possible also to randomly shuffle the 

values x ∈ X. This operation keeps the topology, but assumes that there are no 

differences in an explanans (e.g. pollution, as if pollution was the same in all the 

areas). Furthermore the models enable neutralizing the effect fx(X) on Y altering 

the function in (3). This operation keeps both the topology and the feature, but re-

models an alternative scenario of the impact of the feature, i.e. to test not the effect 

of the feature X on the outcome Y, but the sensibility of Y to the analytical choices 

regarding how to model fY. 
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SUMMARY 
 

Multidimensional networks are networks where edges are differentiated with different 

nominal classes, called layers. Inference of contagion effects has issues both in simple 

networks with only one layer and in multidimensional networks. However the inherent 

complexity of multidimensional networks makes almost impossible, at least with traditional 

approached based on regression models, a reliable inference of the “contagiousness” of a 

feature within a network. In the first part of the manuscript are provided introductory 

notions to run regression models and simulation models of multidimensional networks. The 

approach only requires knowledge of tabular data and mixed models of regression and not 

of tensor algebra, so the approach should be more congenial to social scientists. In the 

second part, it is introduced the concept of neutral model as a peculiar case of null model 

for statistical inference. Finally, given the aforementioned concerns, it is discussed why 

methods based on union of independent layers (chimera networks) are generally better than 

procedural model for parameterisation of neutral models of multidimensional networks. An 

example of chimera as a join of two blockmodels is provided.  
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