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1 Introduction 

The research in the field of material science is fundamental, considering the variety of applications 

in scientific areas including nanotechnology, metallurgy, biomaterials, and cultural heritage. Many 

of the most urgent scientific problems that humans currently face, are related to the limits of available 

materials and how these can be used. Thus, material characterization and investigation are the key for 

the design and discovery of new structures, and for the advance understanding of causes of injury or 

damage of the systems. 

Not only did the development of materials science permit the advancement of the technology, but 

these days it is also expanding its applications to the biomaterials field. Some clear examples are 

tissue engineering constructs, medical or dental implants, prostheses and devices and drug delivery1. 

As well as for technology, the characterization of these materials is essential for biocompatibility 

studies. Undoubtedly, the investigation of the materials’ structures often requires the support of 

computer modelling and other advanced experimental methodologies2. However, breakthroughs in 

materials science are likely to significantly affect the future of technology and the chemical imaging 

characterization together with the computational science support can give a real contribution in this 

direction3. 

Scientists have long relied on the power of imaging techniques to help them see things invisible to 

the naked eye and thus achieve advance scientific knowledge. For instance, in medicine, techniques 

such as X-ray imaging and magnetic resonance imaging (MRI) have added a level of insight beyond 

traditional lab tests into the workings of the human body and identification of disease. But also, 

microscopy, which has been in use since the sixteenth century, is now powerful enough to detect and 

track single structures even inside living cells. Despite these innovations, today’s demands on 

imaging have grown well beyond traditional “photographic” imaging. 

The new frontiers in microelectronics, disease detection and treatment, as well as cultural heritage 

study and preservation demand an ability to visualize and understand molecular structures, chemical 

composition, and interactions and reactions in materials, even below micrometer order. In fact, in 

many areas, including new material development and understanding of cellular function in disease 

and health, the great steps forward will depend upon the development of new and innovative imaging 

techniques. Considering the growing interest towards micro- and nano- structure systems, the 

importance of high-sensitive techniques became evident, since they show at the same time high lateral 

resolution able to provide detailed information, but the molecular structure too. 

Nowadays, there are new “less typical” scientific fields, which need the support of analysis and 

characterization techniques such as the cultural heritage field. As a matter of fact, heritage science is 
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a new interdisciplinary domain of scientific study of heritage, and it involves different human and 

social sciences, chemistry, biology and engineering disciplines. The term “heritage science” was 

coined in 2006 and it focuses on enhancing the understanding, care and safeguard of the cultural 

patrimony allowing it to enrich people's lives, not just today, but also for the future generations4. For 

this reason, material science research on objects of art and cultural heritage is developing fast, even 

though it presents many practical challenges, and it is still necessary to develop the best 

methodologies. 

However, all the imaging techniques produce extensive quantities of data, categorized as big data, 

which need to be handled and interpreted. For this reason, the support of the computer sciences is 

necessary for the imaging data processing, and it is emerging as a novel and an innovative space in 

computing research and applications. The integration and interaction of the two broad fields of image 

processing and big data have already shown great potential in various areas5,6. Therefore, it is 

fundamental to enhance the computing applications applied on imaging techniques, in order to 

achieve a better interpretation and evaluation of the data. 

More specifically, the study of systems containing spatially non-homogeneous composition requires 

the development of techniques able to provide laterally resolved molecular profiling (3D imaging). 

For a best interpretation and comprehension of matter properties, both chemical-physical and 

mechanical ones, it is fundamental that these analysis techniques pull molecular information out from 

the samples. As a result, scientists and engineers are constantly pushing the limits of technology in 

the pursuit of chemical imaging — the ability to visualize molecular structures and chemical 

composition in time and space — from the smallest dimension of a biological system to the widest 

expanse of a distant galaxy. 

 

1.1 Imaging Techniques 

A chemical image is a powerful tool able to yield the molecular information of both homogeneous 

and non-homogeneous systems, for each spatial coordinate of a sample. Among the techniques used 

to probe chemical structures we can find electron and X-ray microscopy techniques, and proximal 

probe techniques (force microscopy, near field, field enhancement), which can furnish a high spatial 

resolution but cannot give molecular information. Optical imaging techniques such as Raman, 

infrared [IR], and fluorescence ones and magnetic resonance technique (NMR) can detect the 

molecule structures or higher-order chemical systems providing chemical images7. In contrast to 

approaches which use higher- energy radiations (X-rays, electrons, etc.), these techniques allow 

largely non-destructive analyses both under in vivo or in situ conditions, even with soft matter. 
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However, they have several weaknesses. In fact, these techniques lack the inherent spatial resolution 

of the higher-energy approaches. More specifically, magnetic resonance is the lowest-energy method 

and it uses the longest-wavelength radiation. Thus, since atomic interactions can be measured, very 

good detail in molecular structure can be defined. But, on the other hand, the detail about the atomic 

interactions is accompanied by a low intrinsic sensitivity, thus the signal requires extensive averaging 

over many molecules, which limits the intrinsic temporal and spatial resolution.  

Vice versa, optical spectroscopy uses radiation at an energy level high enough to measure individual 

photons easily with modern detection equipment, so imaging data are obtained at an individual 

molecule level of sensitivity. The inherent temporal and spatial resolutions are also increased 

proportionately, but the resonance itself is broad because environmental influences are not averaged 

out within the inherent time scale of interaction between the molecules and this frequency of 

radiation. As a result, the structural information content of optical spectra is considerably lower than 

that of magnetic resonance, particularly in the electronic region of the spectrum3. 

As a matter of fact, the long-term technical challenge is to extract the maximum possible information 

from each type of resonance, combining both technologies in order to provide a detailed structural 

picture of the chemistry at the molecular level with the spatial resolution of individual molecules and 

a temporal resolution on the time scale of chemical bonding. Moreover, the use of these techniques 

requires systems with specific optical properties able to emit characteristic signals attributable to 

specific molecules. 

Mass spectrometry techniques can represent an excellent compromise to overcome the several issues 

which still affected the other techniques and therefore to provide the best quality imaging in the actual 

instrumentation landscape2. 

 

1.2 Mass Spectrometry Imaging (MSI) 

The impossibility of simultaneously obtaining high molecular sensitivity and coherent time-space 

resolution, and the necessity of samples with specific optical properties, motivates the importance of 

studying and developing techniques which can provide images with all kinds of samples. Mass 

spectrometry imaging can simultaneously deliver the spatial distribution of a wide range of atomic 

and molecular ions detected from the surface of biological samples and surfaces2. By combining high 

sensitivity with the specificity to detect subtle differences between molecules, nowadays mass 

spectrometry techniques have become one of the most powerful approaches for imaging. 

MS imaging is and will become increasingly fundamental for many aspects of materials science. One 

example is in the semiconductor industry, where the ability to provide spatial and chemical 

information on the length scales of current integrated circuit fabrication (50 nm or better) with depth 
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profiling to provide layer-by-layer maps of the fabricated layers is critical for the constant progress 

of the computer industry.  

Moreover, molecular imaging of biological samples by MS is also foreseen to play a pivotal role in 

understanding numerous biological processes in fields ranging from neuroscience to cancer research8. 

The fundamental contributions of technology in providing molecular-weight-specific images rapidly, 

at relatively high resolution and sensitivity, will yield important information in the investigation of 

cellular processes in both health and disease. As a matter of fact, while the imaging technology can 

rapidly distinguish protein markers of interest, their identification is still a slow and work-intensive 

process and MS imaging represent an extraordinary discovery tool for this aim, since it is not 

necessary to know in advance either the specific proteins or their fragmentation patterns for the 

identification. Furthermore, it allows the study of drug delivery carriers, combining the detection of 

the drugs and their exactly distribution inside the carrier systems. Therefore, MS imaging tools 

promise to promote new discoveries in biology and medicine and a more rapid throughput in the 

technologies of materials. 

Also, cultural heritage science demands new characterization methodologies. In fact, sampling and 

analytical strategies for unique art objects must provide as much information as possible about the 

composition, history and condition of the artefacts, while ensuring minimal intervention, i.e., minimal 

sampling9. The pursuit of more accurate data using ever smaller samples has been a significant driving 

force in this field, and mass spectrometry – with its combination of precision and sensitivity – has 

become a key tool in the study of works of art since its first applications in museum studies were 

published in the 1960s10.  

A mass spectrometer needs to be equipped with a computer-controlled sample stage capable of 

motion about the x-y coordinate plane working in conjunction with a probe capable of producing ions 

from the sample surface (ionization process). By means of specialized software, the motion of the 

sample stage can be programmed to allow discrete or continuous rastering across the sample area 

whereby individual mass spectra can be collected and assigned to a defined area (x, y) of the sample 

creating a pixel. After the data acquisition, a software is used to assemble these pixels into an image 

where the relative intensity of an ion is displayed as a scaled false colour allowing the visualization 

of the molecular distribution across the surface of the sample for any given observed mass. 

Despite these promising attributes, mass spectrometry was not considered the best approach for 

imaging in the past and scientific adoption was much slower than other techniques. In part this may 

be due to the lack of specific workflows to provide an exact identification of the molecules, since so 

few of the many observed signals can be accurately interpreted. As a matter of fact, theoretically 

molecules observed in a mass spectrum are among the most abundant in the sample and it is 
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challenging to identify all the signals, even when it is known in advance which molecules are present. 

As some articles have highlighted, this still represents a general gap in knowledge, not just for 

imaging, but the entire mass spectrometry field11, 12. On the other hand, the great advantage of MS 

imaging is its ability to specifically pinpoint masses of interest that can be further investigated, which 

has been further enhanced by means of computer data treatments. In fact, thanks to the recent 

development of data science methods now it is possible to collect data from a multitude of different 

sources, to organize the information, to translate the data into results13, and it can be today applied to 

MS imaging dataset. 

Thanks to all these promising applications and computational tools, in the last decades the adoption 

of MS techniques for imaging is going to increase significantly. Figure 1.1 shows the number of 

publications on mass spectrometry imaging per year from an ISI (Institute for Scientific Information) 

Web of Science14.  

 

Figure 1.1: : Number of publications per year from an ISI Web of Science search of the topics “imaging mass 
spectrometry” and “mass spectrometry imaging”14. 

As a part of this scientific landscape, this thesis works presents some ToF-SIMS imaging approaches 

giving a contribution to the enhancement of the mass spectrometry imaging field. 

 

1.3 MSI History and State of Art 

Historically, MS imaging studies began with laser microprobe mass spectrometry (LMMS) and laser 

microprobe mass analysis (LAMMA), commercially available in the late 1970s15. LMMS has been 

used in the analysis of biological samples as well as inorganic samples, wherein a focused UV laser 

pulsed is used to desorb and ionize solid samples without matrix. The evolution of these techniques 
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gave birth to MALDI (Matrix Assisted Laser Desorption Ionization). In MALDI experiments, a 

sample, assisted by a matrix, is mounted on a conductive target plate. A UV or IR wavelength laser 

beam is used to generate pulsed light which shoots the sample. The energy is first absorbed by the 

matrix and, via a black box mechanism, transferred to the analyte to induce ionization16, 17. Both 

positive and negative ions are generated by most matrices, however certain matrices will favor 

positive or negative ion formation.  Along the time, this technique was coupled with different mass 

analysers e.g., time of flight (ToF) and Fourier transform ion cyclotron resonance (FT-ICR)18, 19. 

Contextually, the development of static SIMS in the late 1960s20, which was combined then with the 

high-sensitivity of ToF analyser, has given birth to ToF-SIMS a powerful tool for mass spectrometry 

imaging21. In SIMS experiments, samples are mounted on a conductive surface and subjected to 

etching by a beam of high energy particles. Upon collision with the sample surface, the energy of 

these primary ions is transferred to the analyte dislodging secondary ions. 

The most recent technique is desorption electrospray ionization (DESI) which has been widely 

studied since its inception in 2004 by Zoltan Takàts et al. 22. Samples for DESI are mounted on a non-

conductive surface where a pneumatically assisted stream of charged solvent droplets is directed at 

the sample surface. The experiment is performed by the interaction of electrospray generated charged 

droplets with the sample surface. The impact of the droplets with the surface produces a second 

generation of charged droplets with dissolved surface molecules. These secondary droplets proceed 

through an electrospray-type mechanism to form gaseous ions which are directed into an atmospheric 

inlet of the mass spectrometer23. The charge of the ions is determined largely by the solvent used. 

Figure 1.2 shows the different ionization processes for the three mass spectrometry techniques 

MALDI, SIMS and DESI. 

 

 

Figure 1.2 Ionization mechanisms for MALDI, SIMS and DESI (picture source24 ) 

 

Up until to the 1970s and 1980s, the use of ToF-SIMS technique was mainly confined to the 

characterization of inorganic materials. Its application to the study of organic systems was highly 
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limited by the low yield of secondary ions and by the extensive damaging phenomena and 

modification of the material due to the chemical reactions induced by the interaction with the primary 

ions beam25. For a long time, the organic material analysis has been possible only using static SIMS 

conditions that minimize the damaging effect of the surface and allow to obtain information about 

the molecular nature of the surface itself. On the other hand, static SIMS does not allow studying the 

composition as a function of the depth, since during the measurement, by definition, only a small part 

of a monolayer is sputtered.  

Therefore, the in-depth investigation of the materials was for a long time carried out with other 

techniques. Especially in the case of organic materials, other mass spectrometry techniques performed 

the analyses. As a matter of fact, MALDI and DESI technique families can cover a broader range of 

biomolecules- including proteins, peptides, and nucleotides. In particular, the ability of detecting 

proteins brought to a great late success of these techniques in biochemistry and biomedicine field. In 

fact, nowadays MALDI is the prominent MSI method utilized in bioanalytic research26. 

Despite the great advantages which these techniques offer and their successful applications, the 

traditional apparatus of MALDI and DESI are only capable of resolving features as small as 20 µm 

and 100 µm, respectively. Meanwhile, the ToF-SIMS lateral resolution can be below 1µ, offering a 

complementary perspective to these MSI techniques27 (Figure 1.3).  

 

 

Figure 1.3 : comparison between the lateral resolution and the chemical specificity of MALDI, DESI and ToF-

SIMS 27 

 

For this reason, to enhance the spatial resolution, all the mass spectrometry imaging techniques 

require a proper handling and preparation of the sample, the selection of correct analysis conditions 
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and a valid post-facto data treatment method. In the several last decades, many instrumentation and 

techniques upgrades have been developed to improve the quality of the data. 

Nevertheless, each mass imaging technique shows specific advantages and disadvantages. As far as 

DESI is concerned, it has provided influential results across a number of biological samples, thanks 

to the possibility of ambient surface sampling without sample pre-treatment. This allows the chemical 

nature of the samples to not be altered, which is especially important for biological samples. On the 

other hand, this technique is still not able to reach the lateral resolution values of the other MS imaging 

techniques and it also shows some inherent drawbacks. Additionally, DESI is still incompatible with 

specific samples28. Like many extraction-based approaches, the solvent selection heavily influences 

the analytes that can be desorbed and ionized from any given sample. The solvent system also impacts 

the desired spatial resolution of the resulting image since very viscous solvents (such as those with 

high percentages of organics) rapidly diffuse across a sample. This phenomenon has somewhat 

limited the technique to solvents miscible with water, precluding some of the more non-polar organic 

molecules from detection. However, DESI offers a relatively little destruction to the sample. This 

advantage allows longitudinal studies and real time monitoring, but it may also not permit the 

identification of structures at the surface of the sample.  

In order to partially overcome the spatial resolution limitations of DESI, Julia Laskin et al. developed 

nanoDESI29. The major contribution that this innovation brought to the DESI platform was to create 

constant droplets from solvent exposed to high voltage using a fused capillary. This allows for a 

controlled desorption of analytes with the reported spatial resolutions ranging from 10 – 200 microns, 

depending on the solvent mixture and the molecular source (even though the standard resolution 

reported in the past for natural products-based sample is 50–200 microns). Nevertheless, the recent 

papers have shown that high quality high lateral resolution images (with 5 µm spatial resolution) can 

be accomplished only by means of a laborious post analysis data processing protocol, which needs 

several postprocessing operations. 

Notwithstanding these recent upgrades, DESI still presents several limitations for high resolved 

spatial imaging, and for this reason MALDI and SIMS are more recommended for high detailed 

imaging of small objects. In particular, both SIMS and MALDI techniques, especially if coupled with 

ToF analyser, allow a broad mass range detection (m/z ∼1–100,000), that together with the high 

sensibility and mass accuracy, make them attractive for biology and medicine imaging purposes30. 

Similar to DESI, several strategies were tested in order to achieve high spatial resolution together to 

high mass resolution also for MALDI and SIMS. To accomplish this aim, the approach involved the 

more intuitive strategy of decreasing the spot of size of the laser or ion beam. In MALDI, a coaxial 
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object has been employed to decrease the laser spot size to 1 micron or better31. However, fluence 

considerations limit the applicability of this approach.  

An alternative approach to increase the spatial resolution is the microscope mode imaging 

technology32. This approach allows to make the obtainable spatial resolution independently from the 

desorption and ionization spot size. Indeed, the spatial resolution is determined by the quality of the 

optics components of the instrumentation, which form the image, the x-y position chosen, and the 

time detector used. These parameters can be more easily controlled in SIMS. 

New evolutions of MALDI sources for high mass resolution and high mass accuracy mass analysers, 

such as FT-ICR and FT-Orbitrap (FT-MS) have been introduced, as well as new ToF analyser, 

Orbitrap system and ToF MS/MS detector in SIMS. At the same time new generation mass 

spectrometry techniques were developed, such as NanoSIMS33. These new systems allow the 

separation of ions with the same nominal mass and confident assignment for unambiguous peaks 

guaranteeing a new level of mass resolution, mass accuracy and transmission. 

Among all the new instrumental and technique developments, nanoSIMS shows the highest lateral 

resolution at a few tens of nanometres. As a consequence, however, it is limited to the collection of 

elements and only small fragments such as CN-. The strengths of the instrumentation have 

successfully been exploited by Lechene and co-workers, who have applied stable isotope labelling to 

develop a ‘multi-isotope mass spectrometry’ approach34, 35 on a range of biological samples including 

stem cell division34.  

MALDI is a well-established technique, but, in contrast with the NanoSIMS, has imaging resolutions 

at the opposite end of the scale: a few tens of micrometres. The advantage of this technique is that 

large intact biomolecules with exceptionally large molecular weights (y10 000 Da) can be collected. 

The technique has therefore been routinely applied for mapping proteins and peptides36,37. However, 

detection below a mass to charge (m/z) ratio of 500 cannot be detected in these systems due to the 

matrix ions used to enhance the secondary ion (SI) signal.  

Considering all the strengths and weaknesses of the mass spectrometry techniques for imaging in the 

today’s landscape, ToF-SIMS imaging seems to be a valid compromise, falling somewhat between 

the other techniques (and being complimentary to MALDI38). A spatial (lateral) resolution of y 200 

nm can be achieved in ToF-SIMS, allowing subcellular features to be resolved. This is coupled with 

good ion detection between up to 1500 Da and possibly up to 2500 Da range. In the light of these 

considerations, ToF-SIMS is an excellent characterization technique that can address these analysis 

requirements through both depth profiling analysis and direct 3D chemical imaging.  

Despite all the powerful possibilities that this technique can offer, several issues must be resolved to 

achieve best quality imaging for all the kinds of samples, from the inorganic to the biological ones.  
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As well as for the other MS imaging techniques, these issues involve the sample preparation, the 

optimal instrument set-ups, and necessity for a powerful data treatment method able to extract 

information from low quality spectra and images. In fact, whatever mass imaging technique is chosen, 

in most cases, a post analysis computing treatment and study is necessary. Examples include the 

acquired images have not enough counts, or the file data is too big to handle in conventional way, or 

both. Therefore, computing data treatment is fundamental to extrapolate good results from the 

datasets. 

In this thesis, several examples of ToF-SIMS imaging will be shown, together with the specific 

necessary sample preparation and data treatment; the ongoing challenges will be also discussed along 

with recent developments that might offer improved ToF-SIMS imaging prospects soon. 

 

1.4 ToF-SIMS Imaging 

1.4.1 ToF-SIMS sample preparation 

As mentioned previously, the sample preparation is a critical step for good analysis and performance 

for all the mass spectrometry techniques, and sometimes it is crucial for successful detection of 

desired molecules39,40. In order to achieve both more chemical and spatial information from imaging 

experiments, careful handling and preparation is required. In fact, it is well known that both the choice 

of matrix and the deposition methodology dictate the molecular weight range observed. Avoiding 

surface diffusion of analytes in MALDI analyses and the appropriate solvent selection in DESI are 

crucial for a good mixing of the sample analytes and obtaining convenient dimensions of the drops. 

As well as for the other mass spectrometry techniques, sample preparation is also key for ToF-SIMS 

to obtaining high quality data, in order to benefit from the high surface sensitivity that this technique 

can offer. 

Two basic samples requirements are demanded for the analyses: (i) the sample must be compatible 

with the ultrahigh vacuum (since the analysis occurs at 10-10 mbar) and (ii) the sample surface 

presented to the analytical ion beam must be as much flat as possible since the surface roughness will 

reduce the mass resolution of the analysis. Additionally, due to ToF-SIMS’s sensitivity to the surface 

and its composition, the sample handling procedure must alter the surface in the least possible manner. 

Otherwise, the integrity of the samples may not be maintained, especially in the case of biological 

samples41. Therefore, surface contaminations must be avoided or at least recognized. The most 

frequent contamination is from polydimethylsiloxane (PDMS), which in most of the case, once 

identified can be removed by means of sputtering. Sectioned biological tissue may also contain high 

levels of Na+ and K+ ions. These native salts must be removed before SIMS analysis, as they can lead 
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to unreliable secondary ion signals. In these cases, protocols such as washing not only can minimize 

the ion suppression, but it also can allow to enhance the ionization of specific molecules.39,42 

For biological samples, several procedures have been developed for ToF-SIMS analysis and imaging. 

Among these, fixation, freeze fracturing, frozen hydration and freeze-drying are the most used43, 44. 

Initially, some of these procedures were deemed unreproducible, but the development of specialist 

sample stages has improved the results possible via this procedure45. Hybrid biomaterials, or in 

general, porous-like materials pose other problems as they are constructed from a network of 

interconnected pores. Two methodologies have been assessed by Wang et al.46 in order to achieve 

useful SIMS data: “soak and solid” approach, whereby a resin is used to fill the pores and form a flat 

sample surface, and “mark and map” process, where fiducial marks are made in the regions of interest 

on scaffold struts using a FIB. For organic and inorganic/organic hybrid scaffolds, the “soak and 

solid” technique was found to mask compounds of interest, whereas the “mark and map” was the 

preferred strategy, providing clearer data. 

In some cases, to improve the ionization probability of the samples, metal-enhanced and matrix-

assisted SIMS have been demonstrated, allowing the detection of a broader range of analytes than 

unmodified surfaces47. In particular, enriching the sample with metals or using a matrix may act to 

reduce the energy of the chemical bonds between the sample molecules, allowing the transfer into the 

gas phase of an intact molecular ion of low internal energy. Protonation or cationization can then take 

place in the selvedge. Alternatively, the matrix may act to reduce the probability of near-surface 

neutralization of sputtered ions. Moreover, literature reports the capability of SIMS to provide 

qualitatively useful mass spectra of non-volatile or thermally fragile molecules48. The matrix-assisted 

or metal-enhanced SIMS techniques are relatively simple and sample preparation is more 

straightforward than in competitive methods. In addition, these methodologies yield spectra which 

show noteworthy similarities to those obtained by other desorption methods, although the formation 

of transition metal adducts is at present unique to SIMS. 

 

1.4.2 ToF-SIMS imaging issues 

SIMS was the first mass spectrometry technique used to generate two-dimensional ion density maps 

or images from a variety of solid materials and thin sections of biological tissues49,50. As is well 

known, ToF-SIMS involves the bombardment of a sample with a pulsed beam of ions (typically Bin
+) 

having energies in the low kiloelectronvolt range (10 to 25 keV). The impact of these energetic ions 

on the surface of the sample initiates desorption o reionization processes. The bombarding beam can 

be tightly focused on the surface of the sample in a smaller than 1 μm2 area. From a raster of the 
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surface of the sample, ion density maps or images at specific mass-to-charge (m/z) values are 

generated.  

The primary ion energy is transferred to target atoms via atomic collisions, and a so-called collision 

cascade is generated. Part of the energy is transported back to the surface, allowing surface atoms and 

molecules to overcome the surface binding energy. The interaction of the collision cascade with 

surface molecules is soft enough to permit even large and non-volatile molecules with masses up to 

10,000 atomic mass units (amu) to escape with little or no fragmentation. Most of the emitted particles 

are neutral, but a small proportion of these are also positively or negatively charged. Subsequent mass 

analysis of the emitted ions provides detailed information on the elemental and molecular 

composition of the surface. The dimensions of the collision cascade are rather small, and the particles 

are emitted within an area of a few nanometres’ diameter. Providing such finely focused primary ion 

beams, microanalysis with remarkably high lateral resolution (50 nm to 1 μm), can be carried out. To 

receive chemical information on the original undamaged surface, the primary ion dose density must 

be kept low enough (<1012/13 cm 2) to prevent a surface area from being hit more than once. This so-

called static SIMS mode is widely used for the characterization of molecular surfaces. 

Furthermore, a wide range of various, sputtering ion beams are also available such as Cs+, Ga+, Ar+, 

Xe+, and In+. These kinds of beams can be used to erode the solid samples in a controlled manner to 

obtain information on the in-depth distribution of elements. This dynamic SIMS mode is widely 

applied to analyse thin films, layer structures, and dopant profiles. Cluster ion beams are the most 

recent sputtering beams, including Arnn
+, Aunn

+, O2
+, SF5

+, Cn
+ and they tend to be more efficient for 

desorption and ionization of higher-molecular-weight organic compounds. The molecular range that 

could be analysed depends on the technique which is chosen for imaging mass spectrometry. With 

SIMS detectable ions are typically limited to a narrow mass range, below 1 kDa; however, by using 

cluster ion sources as primary beam it is possible to extend this limit to ~2 kDa51. 

ToF-SIMS is provided with a powerful software to control the whole system and to acquire the data, 

because of the complexity and rapidity of the required temporal sequences and because of the waste 

flux of data produced during a ToF-SIMS measurement. Practically, for each position (x, y, z), the 

value of time-of-flight, signal intensity and sputter time, is noted. In other words, for each point of 

investigated area and each primary ion pulse, one complete mass spectrum is stored. Once completed 

the analysis, the software can reconstruct overall spectra (summing each single spectrum) or spectrum 

of a region of interest (summing the spectra of the pixel included in that area). In this way, it is 

possible to obtain intensity distribution maps of a selected species on the surface or on a vertical 

section, basically a depth profile from any selected area. The reconstruction of mass spectra of each 

point of the whole investigated volume generates a 3D image (Figure 1.4). In fact, it is possible to 
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execute the retrospective data analysis offline and generate 3D image by saving the complete mass 

spectrum of each pixel of each image during the depth profiling. 

 

 

Figure 1.4: parallel acquisition allows the retrospective analysis 

 

In SIMS, 3D imaging is achieved by stacking 2D images (Figure 1.4). There are two methods used 

to accomplish this result: using a sputtering ion beam to sputter away material without creating 

significant sub-surface damage (Dual Beam Modality) or through a focussed ion beam (FIB) to mill 

a trench exposing sub-surface material in a plane perpendicular to the top sample surface. In each 

case, the exposed surface is subsequently reconstructed as mass spectrum of that sample area and the 

process is repeated to create a 3D image. The first is significantly more popular, since modern ToF-

SIMS are normally equipped with different sources and provided with specific software for data 

reconstruction. The latter method has advantages for hybrid inorganic-organic materials where 

sputtering yields are strongly different or where there are holes in the sample, which cause strong 

distortions in an image using the former approach.  

Nevertheless, in most cases, the 3D high-resolution imaging is accomplished using a dual beam 

approach with multiple and sequential cycles of sputtering and analysis. On one hand, this approach 

has the advantage of decoupling the analysis beam and sputtering beam allowing their individual 

optimisation, on the other hand, it has a drawback or rather the material sputtered with the second 

beam is wasted. If an ion dose ratio of 1% (typical value) and similar sputtering rates are assumed 

(which is reasonable for Cs+ and C60
+ or Ar2000

+), then around 99% of the material is not analysed. 

This wastefulness reduces the intensity of the signal and therefore sensitivity in a significant way. If 
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the dose ratio is increased, the sensitivity could improve, but often this is not possible because of the 

molecular damage. 

As a matter of fact, the erosion process can damage some of the layers below the surface, provoking 

“mixing and fragmentation” phenomena. These phenomena do not affect significantly inorganic 

materials while they represent a limit for depth profiling and imaging of organic (both biological and 

polymeric) materials. If damage accumulation happens into the sample, only an elementary analysis 

can be performed, losing information about molecular fragments represented for that sample. Until 

some years ago, organic sample characterization was carried out only by static mode, since the low 

value of primary beam fluence avoids damage but provides enough sensitivity. Notwithstanding, it 

does not allow obtaining molecular information along the depth.  

Certainly, the advent of cluster and reactive beam has improved ToF-SIMS technique for organic 

material investigation52, 53, but several limitations are still to be overcome. In most cases, whatever 

the scope or the fields, we have to run into analyse exceedingly small objects. From microcircuits 

with truly little layers of different materials in the microelectronic industry, to the drugs detection in 

liposomes, mitochondria, and various organelles for biotechnical industry. Due to the small size, only 

a limited number of ions can be created and measured. Thus, the first big challenge is related to the 

secondary ion signal intensity.  

The ToF-SIMS signal intensity of a generic species A, called IA (ions/s), is given by Equation 1.1: 

 

IA=Ip × CA × YTOT × αA
± × TADA 

Equation 1.1 

where 

 Ip is the primary ion current flux (ions/s) 

 CA is the A species concentration 

 YTOT is the total sputtering yield 

 αA
± is ionization probability 

 TADA are instrumental factors related to transmission and efficiency of detection 

 

When dealing with small samples, the secondary ion intensity IA, is limited by several factors. 

The primary method in SIMS to generate more secondary ions is to the increase the dose of the 

primary ion beam. However, high primary ion doses can damage the sample molecules and prevent 

their detection. Therefore, the secondary ions are already limited by the low primary ion floods. 

Second, the limited sample volume indicates a small concentration of the species of interest in the 
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sample to begin with, i.e., Ca is incredibly low. Third, YTOT is comprised of many factors, including 

the specific chemical nature of the material and in many cases, it shows extremely low values. Fourth, 

the ionization probability for the species of interest is related to the surrounding atoms and therefore 

the chemical structure of the sample. 

One of the most challenging issues which must be solved in ToF-SIMS imaging is obtaining sufficient 

signal for each pixel. In other words, for a given pixel size there is a finite number of molecules 

available for analysis because of the relation between the ionization yield and concentration of that 

molecule in the analysed area. Therefore, in order to achieve statistically meaningful counts, more 

sputtering time is required for generating sufficient ions. This means that for acquiring a good quality 

image long analysis times are necessary. Moreover, extra sputtering time can damage the molecules, 

actually decreasing ionization with time. In some cases, however, the size of the sample is too small, 

and enough ions cannot be collected even with extended analysis times. 

Sputtering yield (Y) is another problematic parameter that influences the signal intensity.  The total 

sputtering yield is defined as the total number of removed atoms (whatever it is their state, isolated 

or inside molecules, fragments or cluster, and the number of charges) for incident primary ion, and it 

is peculiar for each material for a defined sputtering beam and energy. This parameter can be easily 

evaluated from a depth profile of a homogeneous sample, if it is known the total fluence required for 

eroding a definite thickness (which is estimated through independent measurements). The sputtering 

yield is defined by the equation 1.2: 

 

Y =
dAρ

NA

M

I
t
e

 

 

Equation 1.2 

where the numerator represents the emitted atoms number, and the denominator represents the 

incident ions number; in particular 

• d is the thickness of eroded layer of the sample 

• A is the investigated area 

• ρ is the material density 

• M the atomic mass  

• I is the employed ionic current  

• e is the unitary charge 

• t is time necessary to sputter the measured thickness 
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The sputtering yield is often calculated as volumetric sputtering yield, or rather the eroded volume 

for incident ion (nm3/ion).  

Finally, the sputter velocity is defined as eroded thickness for time unit. For many materials, 

sputtering yield values are between 0,1 and 10, using low energy monoatomic beam. When the beam 

hits the sample, it could cause damage, especially for the organic compounds. Indeed, the beam 

bombarding may induce radical reactions, which lead to significant transformations until the organic 

material becomes carbon. This phenomenon often provokes the sputtering yield decrease, thereby 

lowering the signal intensity and making the image reconstruction difficult.   

The ionization efficiency is also related to the ionization probability αA
±, as we can see from the 

Equation 1. The ionization probability αA
± is defined as the fraction of emitted ions positively or 

negatively compared to the total number of charged or neutral species emitted during sputtering and 

it is typically less than 0.01 and sometimes even smaller of several magnitude order than this 

indicative value. This parameter varies from several magnitude order depending on many variables, 

such as species nature, chemical surrounding, residual gases pressure and primary ion features, 

provoking dramatic variation on ionization efficiency. Consequently, no quantification is possible. 

This process is known as Matrix Effect54. In extreme cases, the ion yield may be completely 

suppressed. Therefore, it should always be remembered that just because an ion is not detected, it 

does not mean that the molecule is not there. It is important to note that the Matrix Effect affects all 

the mass spectrometry imaging methods.  

Different strategies can be used to increase IA. The first of these strategies is increase the signal- noise 

ratio. To do this, it is necessary to collect many scans of the same sample area. In this way the noise, 

which is determined by instrumental factor, will remain constant. Meanwhile, the number of counts 

comprising the signal peaks will be enhanced, because the ion intensity is a sum of the intensity from 

all scans. One drawback, however, is the additional time to acquire extra scans, which may preclude 

this method from some applications (i.e., when data for many samples is desired). The second strategy 

is to the increase the primary ion current, which is causally related to the secondary ion intensity. Yet, 

this method is dramatically limited especially for organic species, in both static-SIMS and dynamic-

SIMS applications. Static SIMS already puts a limitation on the dose for maintaining the surface, and 

dynamic SIMS can be affected by molecule damage from too high of a dose. The next strategies focus 

on the creating a positive matrix effect to increase the ionization probability. These include modifying 

the sample composition, the changing the primary ion beam, or by gas dosing the chamber. In all 

three methods, the surrounding environment of the species of interest is altered to enhance ionization. 

The final approach deals with treatment of the acquired data post-analysis. This approach requires 
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computing modelling and programs able to handle limited signals and extrapolating to a higher 

quality result.  

When changing the application to imaging mode, all of these ToF-SIMS signal limitations are 

exacerbated. Indeed, imaging a sample requires a high spatial resolution only achievable with a sharp, 

low-current primary beam. As a matter of fact, it is necessary a good focusing of the ion beam and 

enough signal intensity detection from the analysed area in order to give sufficient counting statistics. 

By Equation 1, it is clear that imaging-mode will suffer a lower secondary ion intensity and obtaining 

sufficient signal will be even more complicated. The signal intensity may be increased by acquiring 

data for long time for increasing the dose. However, as previously said, for organic samples the signal 

intensity is reduced because of ion beam induced damage. Therefore, in most of the cases, the amount 

of signal that can be integrated is limited. Kollmer55 introduced the concept of Useful Lateral 

Resolution (L), which defined the resolution that could be achieved with a given signal-noise ratio 

for molecules with a given disappearance cross-section. Equation 1.2 was later modified56 for the 

general case; in this way the Useful Lateral Resolution L for a signal-to-noise ratio s is: 

𝐿(𝑑) = 𝑠√
𝐴

∑ 𝐼𝑑
0

    

Equation 1.3 

where I is the signal intensity which may vary with depth from an area A and d is the thickness of the 

consumed material. Therefore, if I is constant as material is sputtered then L improves as √d.   

As pointed out before, the focusing of the primary ion beam is also an important parameter to achieve 

a good spatial resolution. The focus of source guns can be improved by using smaller apertures, but 

this strongly attenuates the beam current and, thus, the number of secondary ions produced. 

Moreover, if the beam current is too low it becomes impractical to consume enough material in a 

reasonable time. The only method to enhance the image is through treatment of the data post analysis.  

Transforming imaging analyses data is not a trivial task due to the dimension of the data. In fact, 

imaging-SIMS belongs to the well-known definition of big data. Consider first the standard 2-

dimensional SIMS image. In this case, each x- y- point contains a mass spectrum and possibly more 

depending on the number of analyses scans. Therefore, each image is comprised of thousands of mass 

spectra depending on the number pixels defined at the start of analysis. 2D surface images already 

represent a large data file. In the case of 3D imaging, the depth dimension increases the file size 

further by the total number of data cycles selected for the acquisition. Thus, particularly for the case 

of SIMS imaging, we need to address big data, and utilize the numerical strategies and methodologies 

to enhance the image files post analysis.  
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1.4.3 Big ToF-SIMS data  

Big data is a term for massive data sets having large, more varied and complex structure with the 

difficulties of storing, analysing and visualizing for further processes or results. The process of 

research into massive amounts of data to reveal hidden patterns and secret correlations named as big 

data analytics.  

As above mentioned, ToF-SIMS analyses often give origin to big data sets, especially in the case of 

imaging, which need to be handled through big data analytics methodologies. As a matter of fact, 

modern ToF-SIMS spectrometers generate hyperspectral image data sets usually containing 128 × 

128, 256 × 256, or even a larger number of pixels. For each pixel, a high-resolution mass spectrum is 

stored, composed by up to several millions of time-of-flight channels. If sputtering is carried out, by 

alternating imaging cycles with erosion cycles, it is possible to obtain a 3D description of the sample, 

essentially composed by a stack of 2D images. This leads to a rapid growth of the size of the data sets 

that must be handled. The amount of stored data can be even larger in recently introduced 

instrumentation that combines different types of mass analysis, e.g., ToF and Orbitrap. 

As said, these kinds of data sets require specific methods of post-analysis treatments. Research into 

computational methods for ToF-SIMS imaging data, as well as for the other mass spectrometry imaging 

techniques, has touched upon different aspects, including spectral pre-processing, data formats, 

dimensionality reduction, spatial registration, sample classification, statistical and differential analysis 

between the experiments and data‐driven57,58. From these initial studies many defined data treatment 

methodologies based on machine learning have been developed. Within these data mining different 

methodologies, there are clear distinctions between supervised and unsupervised approaches59. Supervised 

methods seek to model a specific recognition task. For example, classification approaches applied to in a 

digital pathology context can predict tissue classes and tumour labels after having been shown 

representative example measurements annotated by a pathologist.  Unsupervised approaches, on the other 

hand, are not focused on a particular recognition task, but instead seek to discover the underlying structure 

within a dataset, uncovering trends, correlations, and associations along the spatial and spectral domains. 

These methods are generally applied to provide a more open‐ended exploratory perspective on the data, 

without particular spatial areas or ions of interest in mind. The structure they find in the data can be 

employed for aiding human interpretation but can also serve to reduce the dimensionality and 

computational load for subsequent computational analyses. Unsupervised methods include, for example, 

factorization methods such as principal component analysis (PCA) and nonnegative matrix factorization 

(NMF), but also clustering approaches seeking to delineate underlying groups of spectra or pixels with 

similar chemical expression, and manifold learning60,61. 
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Currently, the most popular approaches for handling and interpretation of ToF-SIMS data are based 

on multivariate analysis methods. Among these, principal component analysis (PCA) and other 

related techniques became a sort of standard approach in the ToF-SIMS community62,63. PCA is a 

multivariate procedure, which allows to extract features from a complex set of data. Practically, PCA 

rotates the data until the maximum variability is projected onto the axes. The main aim is to reduce 

the dimensionality of a data set while retaining as much information as possible in order to obtain a 

compact and optimal description of the data set. This approach has been extensively applied 

successfully to ToF-SIMS dataset of various samples, such as proteins, synthetic polymers, human 

tissues, or also defects, contaminants and so on.  

Despite the PCA applicability, in the case of extremely big datasets or low-counts datasets, due to 

computational limitations, PCA treatment requires a pre-processing of the data set in order to decrease 

substantially its size or to extract latent information. Typical pre-treatments can include unit mass 

binning or peak picking and integration (either manual or automated) and they are often combined 

with pixel binning64. Such pre-treatments can lead to a loss of resolution (both mass and spatial 

resolution) and, moreover, they can be biased by subjective analyst’s decisions and by errors of 

automated peak search/integration routines. Recently, a few methods for unattended multivariate 

analysis of raw and unbinned data set have been reported, with the aim of avoiding some of the above-

mentioned drawbacks65,66. However, the large amount and high‐dimensional nature of data generated 

by mass imaging techniques make automated computational analysis indispensable, preventing the 

necessity of a pre-treatments that can bring to errors and losses of the data. 

For these reasons, developing and designing new approaches for the big data SIMS it is nowadays a 

priority for the enchantment of this technique. Moreover, in many cases and especially for single 

pixel data, ToF-SIMS datasets can exhibit extremely low intensity (typically up to 99% of zero-signal 

channels)67. Therefore, methods that take advantage of such scarcity of signal dispersed in a big data 

set are especially useful to cope with the continuous increase of information collected by means of 

modern instrumentation. 

Nowadays, whichever field, research is affected by several complex problem settings. Such 

complexity evokes an increasing need for computer applications that show “intelligent behaviour”. 

In fact, these applications are desired to support decision-making, to control processes or to recognize 

and interpret patterns. Computational intelligence approaches are able to accomplish such tasks. 

As well as for other complex data settings, computational intelligence approaches can be applied 

successfully also for big data SIMS treatment, allowing to extract latent chemical information form 

ToF-SIMS data from uncompressed and unbinned raw data sets. 
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1.5 Conclusions 

In this chapter, the topic of imaging and its applications was introduced. Several techniques were 

presented with a focus on mass spectrometry. ToF-SIMS was shown as one of the most powerful 

techniques because it shows several advantages for sample handling, non-destructive analysis of the 

sample, several equipment possibilities that can be optimized for different samples, reconstruction of 

acquired data, and post analysis data treatments.  

It was moreover discussed that multivariate analysis approaches, employed so far for big data SIMS 

treatments, can be insufficient for a good data handling, because of several limitations.  

Computational intelligence approaches can offer a high-performance alternative for such aim. The 

dissertation in the next chapters will explore the use of ToF-SIMS technique applied to several 

different “model” samples, exploring all the possibilities that this technique can offer and providing 

new approaches for sample preparation and post analysis data treatments. 
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Outline of Thesis Work 

In view of the above-mentioned issues, this thesis work deals with ToF-SIMS characterization 

and imaging of different kinds of organic “model” samples. These “model” samples have been chosen 

in order to explore the opportunities this technique can offer and to study which variables or 

phenomena can undermine the results and the image quality. The samples that have been investigated 

encompass several organic materials or molecules. They exhibit different composition and structure 

both in the surface or in the volume and each one of their components can show varied ionization 

yield. Therefore, they represent an objective and a tangible difficulty for the analysis. A deeper 

knowledge of materials and molecules allows their use in the best and the most convenient way. Each 

“model” sample has a different aim and field of application, but all of them require further 

investigation to reach a deeper comprehension and ultimately utilization. This thesis work 

demonstrates the potentiality of ToF-SIMS and new capabilities in the post analysis data treatment, 

to probe a wide range of materials and molecules and advance their understanding. Moreover, some 

computational approaches for ToF-SIMS data treatment are presented. These approaches show 

procedures which can be easily automatized and therefore can be applied for several different 

purposes. 

Chapter 2 deals with the Solid Lipid Nanoparticles (SLNs) analysis. The dissertation shows the SLNs 

potential applications in pharmacodynamics, but at the same time, it points out the lack of a complete 

spatial and compositional characterization, which may be essential to increase their efficacy. The 

chapter displays the achieved results of the ToF-SIMS characterization of these systems, in particular 

the 3D images that for the first time have been acquired for SLNs. Moreover, it is also presented a 

new approach of solid sample preparation which allows to overcome the aggregation of the particles. 

Chapter 3 shows the results of ToF-SIMS application is Cultural Heritage. In particular, textiles from 

19th century were characterized by means of ToF-SIMS analysis and imaging in order to find out the 

chemical nature of the dyes employed for colouring them. The results show that for one sample, it 

was possible to identify the chemical nature of the dye, and chemical images of the textile were 

acquired. Moreover, principal component analysis was chosen as post analysis data treatment of the 

images. The PCA results were able to find out components of different chemical nature and, with the 

support of the literature it was also possible to unveil a 19th century colouring technique. 

Chapter 4 presents the results of the ToF-SIMS imaging of a polymer blend, in particular a PET 

(75%)- PC (25%) blend. It is shown a thermal ageing experiment, more specifically, on one of the 

PET-PC samples underwent a temperature ramp from -10°C up to 320°C. The results demonstrate 

that by mean of ToF-SIMS imaging, it was possible to monitor the domain structured surface of the 

sample and in this way to identify the modification occurred at different temperature. This experiment 
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was performed thanks to the ToF-SIMs instrumentation apparatus which easily allows to apply a wide 

ramp of temperature and therefore, to test the material stability at various temperatures. These kinds 

of experiments may support the material science research for the design and production of new and 

more efficient materials made out of immiscible molecules.  

In chapter 5 a different approach for polymer recognition is presented. When dealing with low-counts 

ToF-SIMS datasets, it can be difficult to distinguish spectra belonging to different species. This 

problem is exacerbated when dealing with polymers, since they can show very similar spectra and a 

wrong assignment of the peaks can occurred. Generally, it becomes necessary to increase the number 

of counts by acquiring data for long time. However, does this strategy not only require additional 

time to acquire extra scans, but also it can cause beam induced damage, especially in the case of 

organic and polymeric samples. A possible strategy to overcome this issue can be a post-analysis 

computational approach. As discussed in the introduction, the most popular is multivariate analysis 

e.g., PCA, which is able, in most of the cases, to distinguish features in samples with different 

chemical species. However, as stated in the introduction, PCA often requires pre-processing 

treatments, especially in the case of low-counts datasets. These treatments can bring to loss of data 

quality. The chapter presents a different approach for polymer recognition based on computer 

intelligence method: a probabilistic neural network (PNN) was designed and trained to provide a 

correct classification of four different polymers. It is demonstrated that this neural network can extract 

latent chemical information from ToF-SIMS imaging data of four different polymers, working on the 

uncompressed and unbinned raw data set.  

Chapter 6 shows that a computer intelligence approach for ToF-SIMS imaging can successfully be 

applied for identification of contaminants in overlapped fingerprints. This sample represent a truly 

difficult challenge, since overlapped fingerprints imaging can give rise to an extended massive big 

data. As a matter of fact, a sample of two fingerprints were analyzed by ToF-SIMS in macroraster 

modality, acquiring a macroraster of 7000 × 7000 pixels image. This kind of file contains so much 

information that it is not possible to handle in a conventional way. For this purpose, an unsupervised 

dimensionality reduction procedure was employed which allows to extract relevant information from 

big datasets having poor statistics such as those obtained from analyses performed in macroraster 

modality. 
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2 ToF-SIMS imaging of Solid Lipid Nanoparticles (SLN) 

As stated in the introduction, ToF-SIMS can be an excellent technique also in the field of 

pharmaceutical and medical sciences. In fact, its applications include the investigation of systems for 

drug delivery, for which it is very important to provide a complete three-dimensional chemical 

characterization. An example of drug delivery systems, whose use is spreading in the pharmaceutical 

field, is constituted by the solid lipid nanoparticles (SLNs). 

SLNs are a recent pharmaceutical delivery system introduced in 1991 and they represent an 

alternative carrier system to traditional colloidal carriers, such as emulsions, liposomes and polymeric 

micro- and nanoparticles. They combine the advantages of lipid emulsion and polymeric nanoparticle 

systems while overcoming the temporal and in vivo stability issues that trouble the conventional as 

well as polymeric nanoparticles1. These particles can incorporate both lipophilic and hydrophilic 

drugs and avoid the use of organic solvents (therefore they do not show biotoxicity). Moreover, they 

allow the possibility of controlled drug release and drug targeting, also increasing the drug stability 

compared to other carrier systems and have large scale production potential.  

The morphology of these systems has been investigated by means of several techniques, such as 

electronic or atomic force microscopies2,3,4. However, these characterization methodologies do not 

allow to provide a spatial chemical distribution of the components, which is fundamental for a correct 

forecast of their biocompatibility and bioavailability. For this reason, a ToF-SIMS imaging 

characterization can be essential to complete the studies around these systems because of the great 

contribution it provides to the understanding of these drug deliverers. ToF-SIMS was already 

employed for a general characterization of the SLNs’ chemical composition5. So far, however, no 

imaging has been carried out on these systems and literature still misses a complete three-dimensional 

characterization. 

SLNs imaging can represent a very challenging analysis to perform, regardless of imaging technique 

employed. In fact, these particles are dispersed in a solution and when deposited on a solid substrate 

they tend to aggregate. When the aggregation occurs, the images display a unique big cluster of 

particles and no detailed pictures of a single particle are obtained. Therefore, it is necessary to select 

a solid matrix which allow to stabilize each single SLN, avoiding the aggregation; in this way, it can 

be possible to investigate a single particle’s morphology and, by means of ToF-SIMS, molecular 

composition. In this thesis, a ToF SIMS analyses and imaging of drug loaded SLNs are presented, by 

using a solid trehalose stabilizing matrix for the sample preparation. 
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2.1 SLNs chemical composition 

As previously stated, thanks to their features, the development of solid lipid nanoparticles is one of 

the emerging fields of lipid nanotechnology in clinical medicine, as well as in other discipline. In fact, 

due to their unique size-dependent properties, lipid nanoparticles offer the chance to incorporate drugs 

and are considered generally well-tolerated, thanks to their composition based on physiologically 

similar lipids. This last feature allows to enable the pharmaceutical industry to overcome the lack of 

bioavailability for water-soluble drugs, since lipophilic molecules can be encapsulated and transport 

via lymphatic delivery is promoted. Therefore, they could be a great promise for attaining the 

bioavailability enhancement along with controlled and site-specific drug delivery.  

In order to perform a clearer understanding of the results, a presentation about the chemistry of these 

systems is reported. The chemical composition of these systems is constituted by solid lipids with a 

mean initiate recrystallization (recrystallization can be initiated, e.g. by lyophilisation), typically 

spherical, with an average diameter between 10 and 1000 nanometres. They have a solid lipid core 

that can solubilize lipophilic molecules. The lipid core is stabilized by surfactants (emulsifiers). The 

lipidic composition can include triglycerides (e.g. tristearin), diglycerides (e.g. glycerolbahenate), 

monoglycerides (e.g. glycerol), fatty acids (e.g. stearic acid), steroids (e.g. cholesterol), and waxes 

(e.g. cetyl palmitate). As far as the content of emulsifiers is concerned, the choice depends on the 

charge and the molecular weight of the components to stabilize the lipid dispersion.  

As said before, SLNs offer the possibility to incorporate a drug in order to carry it through the body 

and release it where is needed. There are different models of drugs encapsulation inside the SLNs’ 

structure: 

 solid solution model 

 drug-enriched shell model 

 drug-enriched core model 
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Figure 2.1: schematic depiction of the three models of drug encapsulation for SLNs, a) solid solution model, b) 

drug-enriched shell model, c) drug/drug-enriched core model.  

In the case of the solid solution model (Figure 2.1 a), the drug is molecularly dispersed in the lipid 

matrix when the particles are produced by the cold homogenization technique using no surfactant nor 

drug-solubilizing surfactant. The drug must have strongly pronounced interactions with the lipid. In 

the drug-enriched shell model (Figure 2.1 b) of drug incorporation is concerned, a solid lipid core 

forms when the recrystallization temperature of the lipid is reached. By reducing the temperature of 

the dispersion, the drug concentrates in the still liquid outer shell of the SLN6. For the drug-enriched 

core model (Figure 2.1 c) of drug incorporation, the nano emulsion is cooled leading to a 

supersaturation of the drug, which is dissolved in the lipid melt at (or close to) its saturation solubility 

and the drug precipitates prior to lipid recrystallization. Further cooling finally leads to the 

recrystallization of the lipid surrounding the drug as a membrane7. 

The drug incorporation modality is crucial because it is strictly related to the drug release pattern and 

then its bioavailability.  Moreover, the production method of SLN influences the final composition.  

For instance, the drug-loaded lipid phase remains primarily in the solid state in the case of production 

by cold homogenization technique. Drug release is prolonged over several weeks since mobility of 

the drug molecularly dispersed in colloidal particles is very limited. 

Even the particle size – the entire particle size due to the general formulation of the nanoparticle, 

including the additives such as surfactant/surfactant mixture, the amount of drug incorporated, the 

structural properties of lipids and drugs chosen – assumes an important role, affecting the drug release 

rate directly. The release process can be deduced through various parameters, such as the composition 

and the formulation of SLN, and conditions such as time, production temperature, equipment, 
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sterilization and lyophilisation. In some cases, the administration of SLNs with a certain structure 

rather than another could invalidate the therapy for a patient. It is possible to affirm that a chemical 

characterization of SLNs and their structure is a fundamental tool for the understanding of the 

chemistry of the drug encapsulation process and the evaluation of the particles’ dimensions. Gaining 

this information can represent an excellent tool for a better design and formulation of this drug carrier 

system. 

 

2.2 ToF-SIMS Imaging of SLNs 

2.2.1 Prior ToF-SIMS investigations 

Seeing as ToF-SIMS is one of the most powerful techniques for the chemical characterization of 

solids’ surface, some research groups have already chosen this technique for the chemical 

investigation of SLN surfaces. In particular, ToF-SIMS can be extremely useful for evaluating the 

molecules’ migration or in general composition modifications occurred after specific chemical 

treatments and procedures and to test the time stability of the system.  

For instance, in 2016 Hilda Amekyeh et al. 8 investigated the stability of amphotericin B (AmB) and 

paracetamol (PAR) solid lipid nanoparticles with changes in particle surface chemistry. In particular, 

the aim of their work was the comparison of the AmB SLNs when challenged by simulated GI media 

and an identical SLN formulation containing paracetamol. Thanks to the differences between the 

ToF-SIMS spectra of the pure drugs, drug-free and drug-loaded SLNs, they were able to evaluate the 

encapsulation efficiency of the particles by following some characteristic diagnostic peaks of  the 

molecules: AmB (C47H73NO17, 923.49 g/mol), PAR (C8H9NO2, 151.163 g/mol)  on the SLNs and the 

drug-free SLNs. The showed peaks are [C20H27O2] at m/z 299.20, [C20H29O2] at m/z 301.22, 

[C17H21NO4] at m/z 303.23, and [C7H7O] at m/z of 107.05 (Figure 2.2). 
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Figure 2.2: Negative ion ToF-SIMS spectra showing pure drugs [(a) AmB or (b) PAR], drug-free SLNs and 

the respective drug-loaded SLNs. [* = diagnostic peaks]8. 

 

As a matter of fact, by comparing the peak intensities of the diagnostic ions in the pure AmB and the 

AmB SLNs spectra, the authors found out that the drug was present only in small quantities on the 

surface of the AmB SLNs. These small quantities could be due to the excipients in the formulation. 

These results proved the high encapsulation efficiency of 91.2 ± 3.0% obtained for the drug enriched 

AmB SLNs. 

As far as the PAR SLNs is concerned, the authors showed that the intensity of the PAR diagnostic 

peak was higher on the drug-loaded SLNs than on the drug-free particles, which indicates that the 

peak intensity is a combination of the drug itself and the excipients. These results, therefore, indicate 

that there is a little amount of PAR on the surface of the fresh PAR SLNs, unlike the AmB SLNs, 

which had a negligible amount of AmB on the SLNs. Indeed, the PAR SLNs showed a relatively low 

encapsulation efficiency of 60.7 ± 0.26% 

Via ToF-SIMS analyses, the researchers could also test the stability of the systems in different media. 

The results are showed in Figure 2.3. 
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Figure 2.3: Negative ion ToF-SIMS spectra showing the drugs [(a) AmB or (b) PAR] on the surface of the respective fresh 

SLNs and after their incubation in simulated GI fluids. [* = diagnostic peaks]8 

 

For the AmB SLNs, it was observed that higher drug counts were detected on the particles after the 

exposure to the SGF + SIF medium. These higher intensities were correlated to the diffusion of AmB 

towards the surfaces of the SLNs. For the PAR SLNs, the spectra showed more intense PAR counts 

on the fresh PAR nanoparticles in comparison to those incubated in the media. As a matter of fact, 

PAR tends to undergo different chemical modifications in the different media. In particular, it is 

hydrolysed in acidic solutions (SGF) and furthermore it is very soluble at the pH of SIF. These 

chemical reactions in the media can bring to a low PAR count on the particles. As with the AmB 

SLNs, the highest drug intensity was detected on the PAR SLNs after their incubation in SGF + SIF, 

which means that there is a higher rate of drug diffusion out of the particles in SGF + SIF and , 

therefore, this is the best dissolution medium for both drugs.  

The results showed that ToF-SIMS analyses were able to indicate that drug loading typology for these 

SLNs possibly followed the core-shell model and that the AmB SLNs may have a more drug-enriched 

core than the PAR SLNs do. Furthermore, they could give information about the stability of the SLN 

formulations in the simulated GI media. This paper is an example of the potential applications of the 

ToF SIMS analysis on SLNs. In fact, it can allow for the investigation of the chemistry of these 

systems and, therefore, to give more information about their suitability for oral delivery. Significantly, 
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ToF-SIMS has high potential to investigate the SLNs’ three-dimensional structure in order to acquire 

more detailed information on the drug loading efficiency and their stability. By plotting the 

distribution of chemical compounds against position with submicrometric resolution, a chemical map 

of the SLN as a function of depth from the surface can be generated, which so far is missed in 

literature. In this way, the encapsulation efficiency of the drug loaded into the particles can be directly 

verified. 

 

2.2.2 Single particle imaging issue 

As said, other imaging techniques were already used to study SLNs’ shape and dimension. However, 

carrying out ToF-SIMS imaging can be a great tool to combine the spatial information with the 

molecular, thanks to the high spatial and mass resolution that this technique can offer. The study of 

single solid lipid nanoparticle presents significant challenges due to the fundamental complexity 

associated with any drug delivery system. Sample preparation is of critical importance in controlling 

this complexity, owing to the instable nature of these systems and to the need to characterize them in 

their pristine state, free of chemical or physical changes. As a matter of fact, this ToF-SIMS imaging 

analysis requires first a solid sample suitable for ultra-high vacuum which allows to keep separated 

the particles and an instrument set-up which permit to maintain high spatial and mass resolution in 

order to identify some diagnostic fragments in the spectra. 

As far as sample preparation is concerned, biological samples, as well as structured organic samples, 

are the most challenging. Due to the ultrahigh-vacuum conditions typically required for a ToF-SIMS 

experiment, special precautions must be taken to conserve sample integrity. To obtain mass spectral 

data with sufficient quality, both substrate and sample preparation must be chosen in order to maintain 

the shape and distribution of sample chemical components9.  

Generally, biological samples like cells need to be fixed either cryogenically or chemically. Thus, 

commonly used sample preparation methods include chemical fixation, freeze fracturing, frozen 

hydration and freeze-drying10,11. Yet, all these techniques modify the chemical composition of the 

biological samples. Moreover, certain samples tend to collapse, causing the lack of dimensional 

localization and curvatures. To solve this issue, a different approach was tested in the 2000s: finding 

a stabilizing matrix that simplistically preserves native three-dimensional composition while 

enhancing lateral resolution9. In particular, the use of trehalose was successfully demonstrated12. In 

fact, trehalose is a disaccharide of glucose where two cyclic glucopyranose constituents are bound by 

their reducing, anomeric α-carbons, making it a nonreducing sugar. Under dry conditions, this 

disaccharide is particularly resistant to crystallization and, if desiccated, it forms a highly viscous 
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amorphous glass, which stabilizes entrained biomolecules. The extreme viscosity allows to prevent 

the movement and diffusion of the samples’ constituents, effectively “freezing” the various 

component in the space. From preliminary analyses, it was possible to verify that this sugar has a high 

sputtering yield under ion bombardment. Therefore, the trehalose matrix can be eroded quite fast and 

avoids degradation phenomena or carbonification, even without the use of cluster ion beams. 

 

2.3 Thesis Work 

In this thesis work, ToF-SIMS analyses and imaging of drug loaded SLNs will be presented. The 

particles’ core is constituted of Compritol® 888 ATO, which is a mixture of long chain fatty acid, 

triglycerides, and other species; Lutrol® F-127 was employed as surfactants. Both these mixtures are 

covered from proprietary secret; therefore, preliminary analyses of the single SLNs’ components had 

been necessary to achieve information of their own composition. Moreover, the SLNs were loaded 

with an anti-inflammatory drug, more specifically Palmitoylethanolamide which belongs to the o the 

class of nuclear factor agonists and it exerts several biological effects related to chronic inflammation 

and pain; in order to facilitate the acquisition of high spatial resolution images, the average dimension 

of the synthetized SLNs was purposely around 1 micron.  

In order to perform this imaging study, a solid stabilizing matrix was employed for the sample 

preparation. After literature had been consulted and several attempts were carried out, it was found 

out a trehalose matrix can give promising results. This research had the aim to not only to present 

three-dimensional images of SLNs, but also to demonstrate to the scientific community a successful 

and efficient procedure to enable a rigorous chemical study of these systems in a pristine state. In so 

doing, provide a pathway to enhance and improve SLNs for the purpose of drug delivery. 

 

2.4 Materials and Methods 

The SLNs were furnished by Professor Puglia (University of Catania, Department of Pharmaceutical 

Science), together with the main commercial products used for the synthesis process:  Compritol® 

888, Lutrol® F-68, and Palmitoylethanolamide (PEA). The particles dimension (around 1 μm) was 

also provided by means of specific analysis techniques by Prof. Puglia’s research team. The particles 

were provided as an aqueous dispersion and the concentration was unknown.  

For the sample preparation, first the aqueous dispersion was properly diluted (1:10 ratio in milliQ 

water) and dropped directly on Si wafer; successively, the diluted SLNs dispersion was added in a 

trehalose solution (3% in milliQ water), then deposited on Silicon wafer by drop casting and let it dry 
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overnight. For reference, each single components of the synthesis mixture, as well as the pure solution 

of trehalose, were dropped on Si wafer and let them dry. 

The ToF-SIMS analyses were carried out by a ToF SIMS IV spectrometer (IONTOF, Germany), 

equipped with a LMIG Bismuth source, and with a dual source (Fullerene and Cesium) ion gun. Bi3
+ 

was employed as analysis beam, with average energies of 50 KeV (0.5 pA). The analyses were 

acquired both for the drug loaded SLNs on Si and for the single components used for the synthesis 

on Si, as well as for the drug loaded SLNs dispersed in the trehalose matrix and the pure trehalose 

matrix. For the so-called "bunched mode" (BU) the bismuth beam was operated at 10 kHz (resolution 

M/ΔM of 7000 measured at m/z 29); the Bi3 + dose delivered to the sample during each analysis cycle 

was of the order of 1010 ions cm-2. 

For all same samples, burst alignment (BA) mode analyses were likewise acquired. In the burst mode, 

the long pulses (170 ns in this study) are cut into a burst of successive short ion pulses by a sine 

blanker operating at 40 MHz (i.e., 6 pulses of 2 ns every 25 ns). In the burst alignment mode, the ion 

beam is not bunched to avoid the energy dispersion that causes the degradation of the spatial 

resolution. The nominal mass resolution was around e000 in BU mode, and >5000 in the BA mode. 

By combining imaging with molecular depth profiling, a complete 3-dimensional rendering of the 

particles was possible. Bi3 + was typically rastered over a 200 × 200 μm2 area, centered inside a 500 

× 500 μm2 C60
++ crater. Target currents were measured separately before each measurement in the 

pulsed mode for Bi3 
+ and in the direct current mode for C60

++. More specifically, the Bi3 
+current was 

0.2 pA in the BU mode (< 1 ns pulse width) and 0.08 pA in burst alignment (100 ns pulse width); the 

C60
++ current was between 0.15 and 1 nA. All images were reconstructed in false colours employing 

the ION-TOF palette Thermomap1. 

 

2.5 Results and Discussion 

2.5.1 ToF-SIMS preliminary analyses  

Figure 2.4 shows a) the negative spectrum of the PEA loaded SLNs on Si, b) the negative spectrum 

of pure PEA on Si and c) the negative spectrum of Compritol® 888 ATO on Si. 
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Figure 2.4: negative spectra of a) of SLNs on Si; b) PEA on Si; c) Compritol® 888 ATO on Si 

 

As mentioned, Compritol® 888 ATO is a mixture of long chain fatty acid, triglycerides and other 

species and it constitutes the solid structure of the particles. It is generally utilized as lipid excipient, 

in particular in cosmetic industry as viscosity-inducing agent in emulsions or creams. It is made of a 

blend of different esters of behenic acid with glycerol. Behenic acid (also known as decosanoic acid), 
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is a carboxylic acid with formula C21H43COOH (molar mass 340.592 g·mol−1). The chemical 

structure is shown in Figure 2.5. 

 

 

Figure2.5 : Behenic Acid structure 

 

The anti-inflammatory drug (PEA) is a fatty acid amide: the chemical formula is C18H37NO2 and the 

molar mass 299.499 g·mol−1. The chemical structure is shown in Figure 2.6. 

 

Figure2.6: Palmitoylethanolamide structure 

It is possible to discriminate in Figure 2.4 c) the molecular peak of behenic acid ([M-H]-: C22H43O2
- 

m/z 339.3), and in Figure 2.4 b) the molecular peak ([M-H]-: C18H37NO2
-) of PEA at m/z 299.3. Figure 

2.4 a) shows that the ToF-SIMS analyses allowed to reveal both molecular fragments in the sample. 

Table 2.1 and 2.2 show the cluster isotopic distribution detected in the negative spectrum, respectively 

of behenic acid molecular peak C22H43O2
-, and PEA molecular peak C18H37NO2

-, with the relative 

standard deviations. 

 

Table 2.1: cluster isotope distribution of C22H43O2
- 

Peak Theoretical m/z Detected m/z Standard deviation 

(%) 

C22H43O2
- 339.3263 339.3090 -52.6 

13CC21H43O2
- 340.3297 340.3083 -64.1 

13C2C20H43O2
- 341.3330 341.3111 -63.7 

C22H43
18OO- 341.3306 341.3198 -61.7 

 

Table 2.2: cluster isotope distribution of C18H37NO2
- 
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Peak Theoretical m/z Detected m/z Standard deviation 

(%) 

C18H37NO2
- 299.2830 299.2732 -32.7 

13CC17H37NO2
- 300.2863 300.2676 -62.2 

13CC16H37NO2
- 301.2897 301.2698 -66.04 

 

Figure 2.7 shows the positive spectra of a) SLN sample on Si b) PEA on Si and c) Compritol® 888 

ATO on Si.  
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Figure 2.7: positive spectra of a) SLNs on Si b) PEA on Si and c) Compritol® 888 ATO on Si 

 

In the positive spectrum of PEA (figure 2.7 b) it is possible to see the molecular peak [M+H] + 

(C18H38NO2
+) of the drug at m/z 300.3. Additionally, a strong peak is observed at m/z 322, which is 
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the adduct of PEA plus sodium [M+Na]+. The sodium likely comes from the solution provided by 

Prof. Puglia. On the other hand, the molecular peak of behenic acid is not present in the positive 

spectrum of Compritol® 888 ATO. Indeed, since it is a carboxylic acid, its emission as positive ion 

is not favourable. Nevertheless, some characteristic peaks in the regions of 400 and 750 m/z are 

observed. These typical fragments together with PEA molecular peak were found in the positive 

spectrum of the sample (Figure 2.7 a)). 

These preliminary spectra are indeed extremely rich of peaks. However, it was not possible to provide 

a rigorous assignment for most of these signals. Indeed, Compritol® 888 ATO is a very complex 

mixture of several substances and the detailed composition is subject to trade secret. Yet, this product 

constitutes the structure of the particles and therefore it is deduced that most of the spectral peaks 

come from the Compritol® 888 ATO composition. Moreover, the PEA diagnostic peak is perfectly 

visible in the particles’ spectra. Thus, it is reasonable to expect the drug is also on the surface of the 

particles. 

 

2.5.2 High mass resolution Imaging 

Even though the BU mode does not allow for high spatial resolution, these analyses are fundamental 

to study the signals of the samples’ components in high mass resolution in order to permit an easier 

peak attribution and identification in the high lateral resolution analyses. These preliminary secondary 

ions images showed the presence of several regions with different chemical composition. One of the 

regions was characterized by molecular fragments of Lutrol® F-127. As specified, Lutrol® F-127 is 

a mixture of polymers, including polyethylene oxide and polypropylene oxide, which as surfactants 

allow the suspension of the particles in a water solution. The chemical structures of the main 

components are shown in Figure 2.8. 

 

Figure 2.8: polyethylene oxide structure (left); polypropylene oxide structure (right) 

In Figure 2.9 b) some diagnostic regions of Lutrol® F-127 positive spectrum (coloured boxes) are 

pointed out; the same sequences of peaks were found in the positive spectrum of the sample (Figure 

2.9 a)). 
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Figure 2.9: positive spectra of a) SLNs on Si (top) and b) Lutrol® F-127 on Si 

 

Figure 2.10 shows the secondary ions images in false colours of some signals of PEA-SLNs on Si 

acquired in BU mode (positive polarity). In particular, the spatial distribution of a) signal at m/z 87.06, 

b) signal of the substrate Si+ at m/z 27.9, c) PEA molecular signal C18H38NO2
+ at m/z 300.3 and d) 

the overlay of m/z 87.06 (blue), C18H38NO2
+ (red) and Si+ (green).  
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Figure 2.10 : HCBU images of SLNs on Si (positive polarity) of a) m/z 87.06, b) Silicon substrate signal (Si+), 

c) PEA molecular signal, d) overlay of m/z 87.06 (blue), C18H38NO2
+ (red), Si+ (green) 

It is possible to see that the PEA molecular signal C18H38NO2
+ at m/z 300.3 is all concentrated in a 

certain region of the chemical map, which reveals the presence of some aggregated particles. In fact, 

in this chemical map, the particles’ dimension ranges from 50 to 200 µm. The signal at m/z 87.06, 

characteristic of Lutrol® F-127 reveals that the surfactant mixture spread through the substrate 

surface after the solution deposition. In the solution, as well known, the surfactant’s role is the 

stabilization of the particles. This can occur by means of repulsive surface charges or for a steric 

effect. It is conceivable that the aggregation phenomenon is increased by the spread of the surfactant 

mixture, which is not able to surround the particles and therefore stabilize them.  

Figure 2.11 shows BU secondary ions images in negative polarity of a) PEA molecular peak, 

C18H37NO2
-, at m/z 299.3; b) m/z 121.03 signal, c) Compritol® 888 ATO molecular peak C22H43O2

- 

at m/z 399.3; d) a characteristic signal of Lutrol® F-127 at  m/z 85.3 signal; e) the overlay of 

C18H37NO2
-(green), m/z 121.03 (red), C22H43O2

- (blue), m/z 85.3 (yellow). 
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Figure 2.11: negative HCBU chemical map in false coloured of a) PEA molecular peak C18H37NO2
- at m/z 

299.3; b) m/z 121.03 signal, c) Compritol® 888 ATO molecular peak C22H43O2
- at m/z 399.3; d) m/z 85.3 signal; e) the 

overlay of C18H37NO2
-(green), m/z 121.03 (red), C22H43O2

- (blue), m/z 85.3 (yellow)  

The signal at m/z 121.03 belongs likely to another component of Compritol® 888 ATO as we can 

observe in figure 2.12, which shows the comparison between the negative spectra of SLNs on Si (top) 

and Compritol® 888 ATO on Si. Indeed, it is possible to observe the same peak at m/z 121.03 in both 

spectra. These negative secondary images reveal again the presence of aggregated particles and the 

diffusion on the substrate’s surface of the Lutrol. In addition, it is possible to the separation between 

the lipidic structure of the particles and the drug. 
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Figure 2.12: negative spectra of SLNs on Si (top) and Compritol® 888 ATO on Si (bottom) 

 

In both positive and negative chemical maps, it is evident that this sample preparation methodology 

does not allow the investigation of the particles’ structure. In fact, dropping the SLN emulsion directly 

on the substrate entails an agglomeration of the particles. This agglomeration phenomenon is 

probably caused by the decay of the electrostatic interactions (coulomb forces), which maintain the 

particles in solution. As a matter of fact, by measuring the size of the particles (figure 2.13), it is 

possible to estimate the diameter dimension around 25 µm, which is a considerably larger compared 

to the expected value.  

 



47 

 

 

Figure 2.13: line scan of signal intensity to highlight the size of a single particle. 

 

2.5.3 ToF-SIMS imaging by using a solid trehalose matrix 

As stated before, literature reports the use of matrixes only for biological samples which are 

particularly challenging from a sample preparation point of view. However, as well as biosamples, 

the solid lipid nanoparticles represent a difficult sample to analyse with a quite complex three-

dimensional structure. For this reason, utilizing a trehalose matrix for these particles was considered 

favourable and remarkable. 

BU trehalose spectra were acquired in both polarities, in order to highlight some characteristic 

fragments which are not overlapped with other component signals. Figure 2.14 shows the positive 

spectra of drug loaded SLNs dispersed on the trehalose matrix and dropped on Si (top) and trehalose 

on Si (bottom). It is possible to observe a characteristic region on trehalose positive spectrum from 

m/z 99 to 101 (displayed in coloured box), which is also present in the sample positive spectra 

(displayed in coloured box) and it do not overlap with other components’ characteristic fragments. 

The matrix characteristic fragments in the SLNs spectra are explained by the presence of trehalose 

also in the surface of the particles since it covers and surrounds the entire system.  
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Figure 2.14: positive spectra of SLNs dispersed on a trehalose matrix on Si (top) and trehalose on Si (bottom)  

 

In order to confirm that this sample preparation methodology allows to avoid the particles 

agglomeration and to investigate on the particles dimension in the sugar matrix, BU secondary ions 

images were acquired. Figure 2.15 shows the BU chemical maps (positive polarity) of a) PEA 

molecular peak C18H38NO2
+ at m/z 300.3, b) a characteristic peak of trehalose at m/z 101.07, c) 

overlay of C18H38NO2
+(red) and m/z 101.07(green). 

It is evident from these images that the agglomeration of the particles was avoided, allowing to 

observe the single particles inside the trehalose matrix. The overlay of the chemical maps reveals how 

the trehalose matrix can surround the particles. It is presumable that after the deposition of the solution 

the sugar crystalize around the particles preventing the agglomeration. As a matter of fact, the 

measure of the particles’ dimension showed a diameter around 2 µm (Figure 2.16). 
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Figure 2.15: positive chemical maps of a) C18H38NO2
+ at m/z 300.3, b) m/z 101.07, c) overlay of 

C18H38NO2
+(red) and m/z 101.07(green) 

 

 

Figure 2.16: measure of the particles dimension 

 

2.5.4 High spatial resolution imaging 

For obtaining high spatial resolution images, BA mode analyses were carried out. Figure 2.17 displays 

high lateral resolution chemical maps of a) the sum of two characteristic signals of Compritol® 888 

ATO at m/z 339.3 and 721.2, b) trehalose characteristic peak at m/z 101.07 c) PEA molecular peak at 

C18H38NO2
+ m/z 300.3 and d) the overlay of C18H38NO2

+ m/z 300.3 (red), m/z 101.07 (green), m/z 

339.3 (blue). 

The BA mode permitted to drop to smaller framing (50 × 50 µm2) achieving a more define sight of 

the particles. The high lateral resolution distinguished even the smallest particles in the trehalose 
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matrix and enabled correct identification of the signals by comparing them with the BU high mass 

resolution spectra. 

 

 

Figure 2.17: high lateral resolution chemical maps of a) sum of two characteristic peaks of Compritol® 888 

ATO m/z 339.3 and 721.2, b) trehalose characteristic peak m/z 101.07 c) PEA molecular peak C18H38NO2
+ m/z 300.3  d) 

overlay of C18H38NO2
+ m/z 300.3 (red), m/z 101.07 (green), m/z 339.3 (blue) 

 

Figure 2.18 shows 3D high lateral resolution images of a) the sum of m/z 339.3 and 721.2, 

characteristic signals of Compritol® 888 ATO, b) PEA molecular peak at C18H38NO2
+ m/z 300.3, c) 

the sum of trehalose characteristic signal at m/z 101.07 and Lutrol® F-127 characteristic signal at 

87.06, d) the overlay of sum of m/z 339.3 and 721.2 (blue), C18H38NO2
+  m/z 300.3 (red) and sum of 

m/z 101.07 and 87.06 (green).  
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Figure 2.18: 3D BA images of a) Sum of m/z 339.3 and 721.2, b) C18H38NO2
+ m/z 300.3, c) Sum of m/z 

101.07 and 87.06, d) Overlay of sum of m/z 339.3 and 721.2 (blue), C18H38NO2
+  m/z 300.3 (red) and sum of m/z 101.07 

and 87.06 (green) 

 

In these images, some agglomerated particles are present along with isolated single particles. 

Nevertheless, by plotting a 3D rendering on one of the signals of Compritol® 888 ATO (figure 2.19), 

the size of the particles was estimated along z axes. The value is around 2 µm, confirming the 

expected dimensions of the particles. 
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Figure 2.19: 3D rendering of m/z 339.3 (Compritol® 888 ATO) 

 

2.6 Conclusions 

The chemical three-dimensional structure of solid lipid nanoparticles assumes a critical role for the 

drug releasing process during the drug delivery, reflecting its effects on the patient’s drug 

assimilation. This thesis shows that ToF-SIMS imaging is a valid tool for providing structure 

information about these systems. Notwithstanding, SLNs imaging with ToF-SIMS had not been 

realized before and despite the lack of supporting literature, it was possible to provide an efficient 

procedure for SLNs imaging. In fact, particles’ agglomeration phenomenon did not permit analysis 

by dropping the particles directly on Si. However, by exploring several procedures, it was found out 

that solid trehalose matrix permitted both the dispersion and stabilization of the single particles and 

was suitable as an ultra-high vacuum solid sample. Thanks to the high sputtering yield, this matrix 

can be easily eroded and avoids the damage processes induced by primary ions, even without the use 

of giant cluster ion beams. 

Another issue that was overcome was the identification of molecular signals. In fact, the chemical 

composition of the SLNs components is protected by an industrial patent. Therefore, it was necessary 

to carry out several high mass resolution analyses in order to achieve a correct peak attribution. This 

is essential to obtain BA images where mass resolution is very scarce.  

Having resolved the main issues that prevented previous analysis, here isolated SLN particles were 

observed and their dimensions, even in 3D, were measured using ToF-SIMS imaging. Further, it was 

possible to identify the molecular peak of the anti-inflammatory loaded inside lipidic core drug. Thus, 
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these promising results demonstrated the development a TOF-SIMS imaging procedure for the 

discrimination between 1st and more structured 2nd and 3rd generations SLNs.  
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3 ToF-SIMS Detection, Identification, and Imaging of Dyes on 

Textiles from 19th Century and PCA Data Treatment 

As stated in the introduction, ToF-SIMS is a powerful tool for the study of surfaces in materials 

science and has become particularly relevant for many different fields of research including cultural 

heritage. The first reviews of its use for the study of ancient glasses or metal artefacts already existed 

in the literature since 2000s. In general, these studies were limited to inorganic materials. 

Nevertheless, especially after the introduction of cluster beams, ToF-SIMS application spread out 

also in the study of organic materials from cultural heritage artefacts. This technique allows not only 

the identification, but also the distribution, by means of imaging, of organic components present in 

artworks. Thanks to its excellent lateral resolution and its minimal sample preparation, ToF-SIMS 

currently has become one of the primary reference techniques for chemical imaging by mass 

spectrometry for cultural heritage analysis. Moreover, the investigation of the materials’ structures 

often requires the support of computer modelling and other advanced experimental methodologies. 

This is particularly true in the case of complex samples, such as artworks, where not all the 

components are entirely known and understood.  

During the second year of the PhD course, I had the possibility to be hosted and work at the 

Laboratoire d’Archéologie moléculaire et Structurale (LAMS) in Paris under the supervision of 

Doctor Alain Brunelle, who is the Directeur de Recherche (DR1) Centre national de la recherche 

scientifique (CNRS). LAMS is a research unit associated to Sorbonne University (Campus Pierre et 

Marie Curie) and the CNRS since 2012, which deals with the characterization of cultural heritage 

objects of different origin and constitution, such as paintings, ceramics, textiles, and frescos. There I 

applied the ToF-SIMS technique to the identification and imaging of dyes on ancient textiles from 

19th century. In particular, the analysed textiles come from a 19th century dye catalogue, which is the 

third tome of a French dye collection called “Revue Générale des Matières Colorants et des 

Industries qui s’y rattachent”. 

The study of textile dyes is fundamental to obtain important information about the materials and the 

techniques involved in old dyeing processes. In particular, the characterization of the textiles from 

XIX century yields an understanding of how the chemistry evolved during the industrial revolution 

and which kinds of processes were developed. The classical characterization procedure requires a 

hydrolysis step, various extraction techniques, separation by a chromatographic technique, and finally 

the identification of the individual compounds present1. Nowadays, it is known that ToF-SIMS is a 
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promising alternative method, because it avoids the phase of extraction which can result in the 

possible destruction of the molecular structure of the sample.2 

In this thesis, the results obtained for a textile taken from a 19th century French catalogue are reported. 

This catalogue contains 480 samples and each of them is coloured with a different dye, i.e. 480 

different dyes. For this reason, an accurate selection of the samples on the catalogue was needed. A 

set of ten samples were selected to be analysed, two representatives of the colours red, purple/pink, 

orange/brown, blue and black. Because of the difficulties verifying or even obtaining the lineage of 

the samples, thorough results could only be provided for one of the selected. Nevertheless, the 

detection and identification, as well as PCA data treatment was provided for on dye used for colouring 

a textile named Bleu méthylène-Imprimé avec la gomme végétale, produced by (B.A.S.F.) contained 

in the catalogue. 

The analyses of this sample have been very challenging for their interpretation as many chemical 

components were unknown. As said, these kinds of analyses require specific methods of post-analysis 

treatments, in order to provide tools for the data interpretation. Currently, the most popular 

approaches for handling and interpretation of ToF-SIMS data are based on multivariate analysis 

methods. Among these, principal component analysis (PCA) and other related techniques became a 

sort of standard approach in the ToF-SIMS community. In fact, PCA can extract features from a 

complex set of data, allowing the recognition of chemically different areas in the same sample. In this 

thesis work, PCA data treatment methodology was performed in a textile sample for the recognition 

of unidentified different chemical components. 

 

3.1 Thesis work and ToF-SIMS dyes on textiles analysis issues 

The aim of this project was to provide the detection, identification, and the spatial distribution of 

ancient dyes used for colouring several different textiles, according to the methodologies used in the 

19th century. Although this purpose can seem banal, it was necessary to overcome several issues 

related to the antiquity of these samples. From the end of 18thcentury and during the first and second 

industrial revolution in the 19th century, many scientific discoveries were achieved3. Among these, 

many new molecules were synthetized, including dyes4,and the first textile colouring techniques at 

an industrial level were developed5. Especially in France and Germany, many important industrial 

companies started to build their own plants and produce their own dyes. Rules and regulations were 

not present, thus no check or control on the possible impact of the molecules on the human health 

was undertaken. Likewise, no respect for the patents or the paternity of the discoveries was imposed. 

The industries were “let loose” to produce as many structural variations of the molecules as they 
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wanted, and to appropriate of the paternity of new dyes just changing their names. This out of control-

behaviour of the industries has given many consequences on the catalogues from 19th century, which 

display long lists of dyes, creatively named, without any chemical information for scientists and 

historicists.   

The previous studies on ToF-SIMS textiles analysis show that ToF-SIMS is an excellent technique 

for ancient textiles6. Compared to other techniques, smaller sample sizes are utilized and the solvent 

extraction of the dyes from the fibres is avoided. So far, the reports have been limited to the analysis 

of natural dyes such as curcumin, quercetin or indigo, however. For textiles originating from the 19th 

century, a further complication is added: the molecules used for dying these textiles have a synthetic 

nature. Although their core structure was often taken from natural organic groups (such as for instance 

Fluorone or Benzidine), these synthetic dyes are the results of several chemical processes, and their 

final structures are unknown. As a matter of fact, the identification of the composition for most of 

these dyes is very difficult and, unfortunately most of time impossible, because of several problems:  

 The lack of information and literature about the samples. During the periods discussed earlier, 

industries used to name the new synthetic molecules with creative names and were not obliged 

to reveal the chemical structure or to patent their syntheses process. This entailed chaos in the 

chemical nomenclature of new molecules. In fact, different industries produced the same 

molecules, and each attributed a different name to them. Therefore, the only information for 

certain was the coloration.  In some cases, however, the name of the dye was reminiscent of 

a well-known chemical structure and can provide a clue as to its nature. 

 The incompatibility to the reference samples. For all the investigated samples, the results were 

compared with references. Nevertheless, most of the spectra were not comparable to the 

reference ones. These differences might be correlated to many causes. In the case of cultural 

heritage objects’ characterization, the long passage of time must be considered since 

degradation phenomena can occur7. This group of processes ranges from the photooxidation 

induced by the exposition to the light, to the mechanical damage caused to the human 

handling. The ageing the textiles underwent can be also visible through the discoloration of 

the dyes (loss of brilliance or lowering of tonality), the creases along the textiles, and also 

some stains (either dark/brown or white). All of these processes have likely provoked  

chemical modifications of the dye molecules and therefore they cannot show the same spectra 

of the pristine molecules. Consequently, despite the understandable nomenclature, it was 

impossible to provide a robust identification for most of the samples. Additionally, the 

references were in the form of a salt, generally chlorides, while the interaction between the 

dyes and the textiles implicates either secondary bonds (Van der Waals, London, Coulomb 
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forces) or chemical covalent bonds. These kinds of chemical interactions can modify the 

electronic system of the molecules, distorting the orbitals, and thus, influence the chemical 

behaviour under ion bombardment of the dyes on textiles. However, the aim of this project 

was the identification of the dye molecules, and these chemical modification reactions and 

ageing phenomena will not be delved into. 

 The complex matrix of the samples. Moreover, even though ToF-SIMS is a powerful 

instrument to analyse hybrid solid sample, these textiles represent a very complex matrix since 

they were woven with thin and hairy fibres, which can cause charging phenomena. Indeed, 

many textile typologies easily undergo charging phenomena, because of the presence of a 

high thickness of hair, which can increase the surface charge. 

Despite all the issues which affected the analysis of these samples, this thesis work presents the ToF-

SIMS analyses for Bleu méthylène-Imprimé avec la gomme végétale, produced by (B.A.S.F.) from 

the 19th century catalogue. Thanks to the PCA treatment of the acquired data the ancient dyeing 

technique used for colouring this textile was identified together with other components in the textile. 

 

3.2 Materials and Methods 

The ancient catalogue, including the samples, belongs to a private collection. It contains 480 pieces 

of textiles of different composition, such as wool, silk, linen, and cotton (of course just natural textiles, 

since at that time the synthetic fibres were not developed yet). Among these samples, some textiles 

show a unique and homogeneous coloration, others show several decorations, either geometrical or 

with flowers and plants drawing, of different colours. 

 

Figure 3.1: sample picture of Bleu méthylène-Imprimé avec la gomme végétale, produced by (B.A.S.F.) 
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The results are reported for the sample Bleu méthylène-Imprimé avec la gomme végétale : page N°33, 

échantillon N° 82. The sample (figure 3.1) shows blue flower decorations (supposed to be realized 

with Bleu méthylène) on a white background which is probably the textile treated for the colouring 

process. 

As far as the textile sample preparation is concerned, an appropriate protocol was employed to make 

the samples compatible with high voltage and ultra-high vacuum and to avoid surface charging. A 

minimal number of filaments were extracted from the samples on the lateral side using tweezers. 

Then, the filaments were glue on a conductive substrate, by means of a conductive double-sided tape.  

Successively, they were wet with some drops of distillate water and left inside a press for about one 

hour. This process would decrease the thickness of the hair and mitigate the charging phenomena, 

which could had compromised the analysis. Lastly, they were dehydrated in a desiccator overnight. 

Figure 3.2 show the comparison between the fibres before and after the procedure. 

 

 

Figure 3.2: pictures of (left) Filament of Bleu méthylène-Imprimé avec la gomme végétale before pressing, 

(right) after pressing 

To compare the sample spectra to a reference, Methylene Blue was purchased from Sigma Aldrich 

(CAS Number 28983-56-4, C16H18N3S+Cl-   319.09 amu, C16H18N3S+ [M+] 284.12 amu). For 

predisposing the reference to the ToF-SIMS analysis, an ethanol : MilliQ Water (3:1) solution was 

prepared. Some drops of the solution were placed on a silicon wafer. Then, the solvent was evaporated 

overnight.  

The ToF-SIMS analyses were carried out by a TOFSIMS IV spectrometer with delayed extraction 

(IONTOF, Germany), equipped with a LMIG Bismuth source and an Argon cluster beam source 

(GCIB). The HCBU mode was used for the analyses of both the sample and the reference. For these 

analyses, a 25 keV Bi3
+ ion beam was selected with an incidence angle of 45°. This ion source 

operating mode ensures a high mass resolution (M/ΔM=6×103). The primary ion dose density was 
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4.37×1011 ions per cm2, below the so-called ‘static SIMS limit’, in order to preserve the molecular 

information. The Bi3
+(100µs) current was measured 0.48 pA on the Faraday cup. A low energy 

electron flood gun was activated to neutralize any residual charge on the surface of the samples.  

Secondary ion images were also acquired in HCBU mode over a sample surface of 200 μm × 200 

μm. The mass resolution was 7000 M/ΔM measured at mass 29. In order to manage the amount of 

data and make it possible the interpretation of the results, a Principal Component Analysis (PCA) was 

carried out. 

 

3.3 Results and Discussions 

3.3.1 Preliminary analyses 

First ToF-SIMS analyses of the reference Methylene Blue were carried out. The positive spectrum 

(Figure 3.3) reveals the molecular peak at 284.1257 (zoomed in the insert) with the associated isotope 

cluster distribution, which is reported in Table 3.1. 

 

Figure 3.3: reference positive ion mass spectrum 

Table 3.1: cluster isotopic calculation of C16H18N3S+ 

Peaks  Theoretical 

m/z 

Measured m/z Dev. (ppm) Relative 

Abundance 

C16H18N3S+ 284.1221 284.1206 -5.28 78.88 
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C15
13C1H18N3S+ 285.1255 285.1013 -84.87 13.65 

C16H18N3
34S+ 286.1179 286.0994 -64.7 3.56 

C14
13C2H18N3S+ 286.1289 286.0994 -103.1 1.11 

C16H18
15NN2

34S+ 285.1192 285.0975 -76.1 0.87 

C16H18N3
33S+ 285.1215 285.0947 -94.00 0.63 

 

As well as the molecular peak, a series of patterns of the fragments related to the loss of 14 and 16 

amu were identified. They probably derive from fragmentation processes which provoke the loss of 

one CH2 group and H2 (284-14amu = 270, -2 amu, m/z 268), followed by another loss of CH2 and H2 

(-14 amu, m/z 254, -2 amu, m/z 252). The C15H14N3S+ peak at m/z 268.0848 and C14H10N3S+ peak at 

m/z 252.0489 were also found in the reference positive spectrum, presumably originated from the 

same fragmentation process.  

Then, sample spectra and reference spectra were compared in figure 3.4. It is evident from figure 3.4 

that the dye on the textile underwent a different fragmentation process. As a matter of fact, the sample 

positive spectrum shows peaks related to the loss of methylene groups (-CH2) but not methylene plus 

H2. Within the literature, this behaviour has also been confirmed8, and has been described as a 

photodegradation process. The peaks within that study closely correspond to those reported for the 

dye on textile sample. Considering the age of this sample it is quite possible that photodegradation  

occurred and strong peaks were observed for the CH2 degradation pathway. In contrast, in the 

reference spectrum, the molecular peak is the most intense. Therefore, it is reasonable affirm that the 

other peaks in the reference originated only by fragmentation and no degradation occurred.  

One of the interesting peaks observed in the spectra acquired from the sample is at m/z 270. In the 

literature this has been identified as Azure B C15H16ClN3S. The chemical structure of Azure B is 

reported in figure 3.5. Azure B is an active metabolite of methylene blue and nowadays it is used as 

histological dye, a fluorochrome, and a drug metabolite. Moreover, it can be used as dye itself. 

Previous study of the photodegradation process in Methylene Blue also identified this peak as Azure 

B. The positive spectrum of the Bleu méthylène-Imprimé avec la gomme végétale on textile (figure 

3.4, bottom) shows the molecular peak [M] + of the Azure B with the related cluster isotope 

distribution, reported in the table 3.2. The strong intensity of this peak confirms the presence of this 

molecule on the textile. 
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Figure 3.4: comparison between the reference spectrum (top, previously shown in the figure 3.15) and the 

textile spectrum (bottom) 

 

Figure 3.5: Structure of Azure B molecule 

 

Table 3.2: cluster isotopic calculation of C15H16N3S+ 

 

Peaks Theoretical m/z Detected m/z Dev. (ppm) 

C15H16N3S+ 270.1059 270.0486 -212.13 
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C14
13CH16N3S+ 271.1093 271.0550 -200.29 

C15H16N3
34S+ 272.1017 272.0560 -167.95 

 

The presence of Azure B can have two possible origins. The first, as supported in the literature, is 

that methylene blue degradation gives rise to the Azure B molecule. Thus, considering the age of the 

sample, significant degradation may have occurred, leading to the stronger intensity of Azure B vs. 

Methylene Blue molecular peak. The other possibility is the use of Azure B within the original dye 

itself. Historically, this molecule was used as a blue dye. Considering the lack of control in the textile 

dyeing industrial processes in the past, it may be possible that the Methylene Blue colour was mixed 

with other blue dyes such as Azure B. This could also justify such intense Azure B molecular peak 

in the spectrum of the sample. Another possibly is a combination of the two cases. Further 

investigations of historical documentations are needed to determine the origin of this dyeing 

procedure. 

ToF-SIMS analyses rise important questions about this textile, whether the dye was pure initially and 

simply photodegraded, or it was mixed purposely with other dyes. ToF-SIMS therefore can represent 

a tool to answer to questions on ancient textiles’ analyses. For the purpose of further investigations, 

the secondary ion images were acquired and will be discussed in the next section.  

 

3.3.2 Secondary ion imaging and PCA data treatment 

As stated in the introduction PCA is a powerful tool for the processing of large and/or complex data 

sets and is recently becoming popular within the ToF-SIMS community. Nowadays it is also included 

in the vendors software dedicated to ToF-SIMS instruments. In this study, the preliminary analyses 

have shown the presence of chemically different areas in the sample besides the areas coloured with 

Methylene Blue. In the light of these results, a further investigation about the surrounding matrix was 

carried out. To highlight the presence of other components, a multivariate analysis (PCA) was 

fulfilled by using SurfaceLab 7 PCA by IONTOF. From the study of the original total area spectrum, 

every single peak was manually integrated to be evaluated by PCA. Several principal components 

were obtained and, among these, PC1, PC2 and PC3 were evaluated to study the different chemical 

components of the sample. 

Figure 3.6 shows PC1 image (left) and total ion count (TIC) image (right). PC1 explains the maximum 

variability of the data, that in the case of ToF-SIMS imaging is given by the discrimination between 

the pixels which contains any peaks’ intensity and pixels with zero counts for the entire mass spectra. 

Thus, PC1 is always comparable to TIC in ToF-SIMS imaging and Figure 3.6 confirms PCA is 
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operating correctly. In Figure 3.7 PC1 loadings are not able to discriminate any difference between 

the peaks, since as said PC1 identifies just the peaks with intensity more than zero. In contrast, if a 

difference was observed, PCs would plot negative features on the y-axes of the loading graph. Indeed, 

in general, loadings define the relationship between the new PCs and the original spectral coordinates 

(peaks). Because no discrimination was observed in the loading graph, the chromatic variation in the 

PC1 image is probably associable to the topography trend.  

 

 

Figure 3.6: Image of Principal Component 1 (PC1, left) and of total ion count (right) 

 

Figure 3.7: PC1 loading 
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Figure 3.8 shows PC2 representation, where it is evident a non-homogeneous distribution of the 

variables. In comparison to PC1, which looks at the greatest variability in the spectra i.e. counts vs. 

no-counts, PC2 searches for groups of peaks which are clustered in certain pixels of the image. As it 

is clear in figure 3.8, coloured pixels represent the area of the sample characterized by these groups 

of peaks. In contrast the black coloured pixels represent areas of the sample where these peaks have 

no counts. 

 

Figure 3.8: PC2 representation 

 

Figure 3.9: PC2 loadings 
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By studying the loadings (figure 3.9), it is evident that PC2 can discriminate between two different 

types of variables. In particular, the positive variables in the loadings are those visible in the PC2 

image. In this case, the negative loadings correspond to the dark areas. In the positive side of PC2 

loadings, several m/z values assignable with reasonable certainty to hydrocarbon fragments (CnHm, 

aliphatic-like) were found. Among the negative variables, the dye characteristic peaks (C16H18N3S+ 

and C15H16N3S+) were found. This indicates in the PC2 image certain regions do not contain the dye. 

Considering Figure 3.2 which shows the original sample, it is clear that the blue dye is not present 

over the entire textile and certain areas are white. PC2 highlighted this feature.  

 

Figure 3.10: PC3 representation 

 

Figure 3.11: PC3 loading 
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As well as PC2, PC3 image in figure 3.10 shows a different clustering of certain peaks. The PC3 

loadings (Figure 3.11) reveal a discrimination between positive and negative variables. In this case, 

the positive variables are represented by inorganic cluster and metal ions. On the other hand, the 

negative variables include organic fragments including the dye characteristic ones.  Thus, PC3 is 

discriminating the regions of organic species from the regions characterized by inorganic ion peaks.  

Both PC2 and PC3 were able to highlight regions with different chemical composition which do not 

include the dye. PC2 revealed hydrocarbon fragments in the positive side of the loadings and PC3 

showed inorganic peaks for the positive side of the loadings. Therefore, PC2 and PC3 made it evident 

that certain regions of textile were not coloured by the dye. To confirm PCA findings, the peaks 

identified in Figure 3.9 and 3.11 were summed and plotted. In particular, Figure 3.12 shows the sum 

of the signals C2H5
+, C4H8

+, C5H8
+, C5H11

+, C6H14
+, C7H12

+, C8H10
+ from PC2 positive loadings. This 

chemical map presents the same spatial distribution of PC2 image (Figure 3.8). The m/z values of 

these peaks are shown in table 3.3 with the relative deviation values. Figure 3.13 displays the chemical 

maps of the sum of Al+, Ti+, Ca+, CaH+, Mg+, CaH+, Si2
+, Si2H+ signals from PC3 positive loadings, 

which looks very similar to PC3 image (figure 3.10). The m/z values of these peaks are shown in table 

3.4 with the relative deviation values. 

 

 

Figure 3.12: Image of the sum of C5H11
+, C6H14

+, C7H12
+, C2H5

+, C4H8
+, C5H8

+, C8H10
+ ions 

Table 3.3: PC2 peak assignment  

 

Signals Theoretical m/z Measured m/z Deviation (ppm) 

C2H5
+ 29.0386 29.0428 144.64 
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C4H8
+ 56.0621 56.0591 -53.51 

C5H8
+ 68.0621 68.0574 -69.05 

C5H11
+ 71.0855 71.0932 108.32 

C6H14
+ 86.1090 86.0962 -148.65 

C7H12
+ 96.0934 96.1015 84.3 

C8H10
+ 106.0777 106.0653 106.9 

 

 

 

Figure 3.13: image of the sum of image of the sum of Al+, Ti+, Ca+, CaH+, Mg+, CaH+, Si2
+, Si2H

+ 

signals 

Table 3.4: PC3 peak assignment  

 

Signals Theoretical m/z Measured m/z Deviation (ppm) 

Mg+ 23.9845 23.9429 -173.4 

Al+ 26.9810 26.9759 -189.0 

Ca+ 39.9620 39.9586 -85.1 

CaH+ 40.9699 40.9655 -107.4 

Si2
+ 55.9533 55.9459 -132.25 

Si2H+ 56.9611 56.9588 -41.4 

 

The results from these two figures confirmed the PCA findings which are summarized in Figure 3.14  

o (red) the sum of C16H18N3S+ and C15H16N3S+ signals, characteristic of the dye. 

o (green) the sum of C5H11
+, C6H14

+, C7H12
+, C2H5

+, C4H8
+, C5H8

+, C8H10
+ signals 

o (blue) the sum of Al+, Ti+, Ca+, CaH+, Mg+, CaH+, Si2
+, SiH+ signals 
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Figure 3.14: 3-color overlay showing the distribution of the sum of  C16H18N3S
+ and C15H16N3S

+ ions, 

characteristic of the dye (red), the distribution of sum of C5H11
+, C6H14

+, C7H12
+, C2H5

+, C4H8
+, C5H8

+, C8H10
+ ions (green), and 

distribution of the sum of Al+, Ti+, Ca+, Mg+, CaH+, Si2+, SiH+ ions (blue) 

In order to ensure the assignment of the principal components and confirm the chemical distribution 

of the species in the sample, three ROIs were extracted from the original spectrum (Figure 3.14): 

from the red areas ROI 1, from the green areas ROI 2 and from the blue areas ROI 3, showed in 

Figure 3.15. 

ROI 1 shows the peaks of the Methylene Blue dye. ROI 2 reveals some aliphatic fragments, found 

also in PC2 positive loadings. These aliphatic fragments  probably come from the textile which was 

treated with a natural gum in order to prevent the colouration process in certain areas of the textile. 

Among the colouring technique employed in the 19 th century industries, a technique called Batik  

makes use of natural gums. Indeed, it is well known from the literature that the Batik colouring 

technique9,10 was already employed since ancient times in the Indian and Japanese civilizations for 

dying a tissue only in some specific areas. This technique spread throughout Europe in the beginning 

of the 19th century and it was performed by covering certain regions of the textiles, which were not 

supposed to be coloured, with waxes or vegetal paste made of gums or hydroxyicolloidal 

phytopolymers. The Batik procedure is generally carried out on soft textiles with thin fibres woven 

in a regular and flat weft, which allows a precise drawing realization. The most commonly chosen 

textiles are silk, cotton, and linen. The materials used to cover the textiles are named “waterproofing” 

and they can be either paraffin-based or polysaccharide-based11. In this particular case, it was used a 

pure vegetal gum. Historically, the use of the gums spread in Europe only from the beginning of 19th 

century thanks to the Montgolfier brothers which discovered how to waterproof textiles with gums.  

Finally, ROI 3 reveals inorganic fragments which are likely related to the conductive tape used to 

glue the textile. 
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Figure 3.15: ROIs extracted from the original positive spectrum 
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Overall, the PCA analysis revealed a hidden characteristic of the dye textile sample. In fact, it could 

bring to the light the presence of areas with a different superficial chemical composition, associated 

with the use of different materials. Only the PCA was able to discriminate these localized regions 

where the dye was not present and, in this way, it was also possible to identify an 19th century 

colouring technique which was used to obtain decoration on the ancient textiles.  This result 

demonstrates the usefulness of ToF-SIMS application to Cultural Heritage study, in particular for 

ancient textiles. Moreover, with the support of PCA data analysis,  it can represent a powerful tool to 

discovered ancient procedure in the colouring techniques of textiles. 

3.4 Conclusions 

This chapter showed that ToF-SIMS can be a powerful technique for cultural heritage ancient objects. 

Not only did it allow us to identify molecules, but it allowed the preservation of the samples by 

avoiding the use of chemical products and scratching or cutting them. Only a tiny filament taken from 

the corner of the textile was necessary for the analysis.  

In particular, for a 19th century textile coloured with Bleu méthylène-Imprimé avec la gomme végétale, 

the ancient dye was identified as Methylene Blue. Additionally, a post-analysis data treatment was 

carried out by means of Principal Component Analysis method. This analysis allowed to identify the 

other unknown components found in the sample and to discover the ancient colouring technique 

employed  for this textile. 

The results presented in this thesis demonstrate that ToF-SIMS can be a valid means of investigating 

for ancient textile, and it can represent a great source of information for ancient art objects. As future 

prospective, other further investigations should be conducted since it was not possible to provide a 

robust identification for most of the textile samples contained in the catalogue. Further research must 

be carried out in order to identify ancient synthetic molecules and then succeed in their recognition. 

However, ToF-SIMS 3D imaging could represent a valid strategy for the investigation of dyes’ 

distribution along the depth. Discovering the spatial position of the dye molecules is important to 

determine which areas of the textile are more damaged, and how deep inside the dye molecules have 

penetrated the textile fibres. This could provide more information about the chemical nature of the 

bond between the dye and the textile. Moreover, the results presented in this thesis demonstrate that 

ToF-SIMS can be a valid means of investigating ageing phenomena, for instance comparing sample 

spectra to virgin textiles. Obtaining information about ageing processes would be very useful for 

restorers and the art conservators. Finally, it would be important to spend further time searching in 

literature sources (history books, revolution industrial period essays, and textile papers) for clues as 

to the molecular structures of ancient synthetic dyes.  
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4. ToF-SIMS imaging of PET-PC blends 

The research on polymeric blends has been extensively developed in the past decades. Indeed, 

polymer blends have always been considered to be interesting combinations to obtain new high-

performance polymeric materials without synthesizing completely new polymers1. This is especially 

true when the properties of two or more polymers are synergistically combined.  

Mixing two or more polymers is a useful methodology for the development of new materials in which 

the physical-chemical properties of the starting polymers are combined to achieve new blends2. This 

strategy is often more convenient and faster that studying new monomers with new synthesis 

techniques, which are the fundamental to the production of new polymers. Another advantage of the 

polymer blends is the possibility to control the final properties of the obtained material by varying 

the composition of the mixing. Currently, polymer-blend-based materials are very widespread and 

occupy a waste area of the market of many fields such as the automotive and building industry, 

electric and electronic or packing. 

However, blending is not always simple. Sometimes polymers are not entirely miscible, and they tend 

to form two or more separate phases3. In order to obtain a unique phase, it is necessary that the mixing 

free energy 𝛥𝐺𝑚𝑖𝑥 (equation 4.1) has a negative value4. 

 

𝛥𝐺𝑚𝑖𝑥 =  𝛥𝐻𝑚𝑖𝑥 −  𝑇𝛥𝑆𝑚𝑖𝑥  

Equation 4.1 

When two polymers with a high mass weight are mixed, it is generally possible to neglect the 𝛥𝑆𝑚𝑖𝑥  

contribution since they have very few degrees of freedom. Therefore, the 𝛥𝐺𝑚𝑖𝑥 is influenced 

principally by the 𝛥𝐻𝑚𝑖𝑥  contribution. According to the thermodynamic law shown in Equation ,  it 

is necessary that the process is exothermic (𝛥𝐻𝑚𝑖𝑥 < 0), or rather, specific interactions between the 

components have to occur. In most cases, the interactions belong to the Van der Waals type and the 

complete mixing of different polymers is rare. 

Three types of polymer blends can be distinguished: 

 Blends showing complete miscibility, characterized by a homogeneous structure (at least on 

nanometric scale); this kind of blend has one transition temperature (𝑇𝑔) between those of the 

starting polymers. 

 Blends showing partial miscibility; in these cases, a little amount of one component is 

dissolved in the other, revealing a morphology with small domains and interfacial regions 
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where the polymers are chemically bonded; each of the components is homogeneous and has 

its own Tg. The new Tg value is shifted towards one of the other.  

 Blends showing total immiscibility (most frequent), characterized from a structure with 

domains and prominent interfaces. The adhesion between the domains is poor and each 

component retains its own Tg. 

The most interesting typology are the polymer blends belonging to the 3rd type, since they are 

generally characterized by a total immiscibility and, therefore, show a complex morphology with 

different domains of both homopolymers. The complexity of the morphology of these blends depends 

on the polymers’ features and on the method of preparation. The result is less predictable especially 

when the polymer mixture is confined into thin films.  

Since in thin films the ratio between surface and volume is high, surface effects can occur. 

Consequently, the separation phase of thin films can be considerably different from the morphology 

of thick films (which show a more-like bulk behaviour) despite using the same concentrations and 

conditions for the preparation. In some cases, it is possible to notice the inhibition of the separation, 

probably due to entropy factors.  

Generally, polymer blends are synthetized by melt mixing procedure, which consists in mixing 

together the polymers in melting physic state, in an appropriate mixer. However, more interesting 

results can be achieved by using the spin-coating technique for the deposition of thin films. As a 

matter of fact, in the spin-coating technique, the solution is poured on a rotating plate which produces 

a quick decrease of the mobility of the molecules. This “freezes” the solution with a separation of the 

phases corresponding to a non-equilibrium state.  

 

Figure 4.1: graph showing the miscibility curve of a binary polymer mixture (composition of the mixture Φm ) in the 

function of solvent concentration. 
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Theoretical studies show that the final phase of a binary polymeric system is influenced also by the 

solvent evaporation rate. Figure 4.1 shows, the mixture of two homopolymers A and B is stable in 

the case of high solvent concentration or low concentration of one of the two homopolymers. For low 

solvent concentration or high concentration of the two homopolymers, the mixture is instable, and 

the polymers are completely separated. Therefore, it is possible to affirm that inside the “bell of 

immiscibility” the mixture will be always instable, while outside the mixture will be stable.  

If the solvent concentration decreases quickly, for a certain composition of the solution Φc (critical 

composition), the mixture becomes unstable from the equilibrium and collapses in the grey metastable 

zone. In that zone, the mixture is in a non-equilibrium thermodynamic condition and the blend 

morphology is characterized by alternated homopolymer domains of small dimensions. Many types 

of morphology can be obtained through this procedure for immiscible polymers. Overall, one of the 

challenges in studying immiscible polymer blends is the use of appropriate characterization 

techniques. For these reasons, providing a strategy for their characterization can give a great 

contribution for the enhancement of the materials design of new polymer blends. 

 

4.1. PET-PC Blend 

Polycarbonate (PC) and poly (ethylene terephthalate) (PET) have been identified in the past as 

technical polymers due to their high level of properties. However, their commercial importance has 

brought their application in the field of commodity polymers and, for this reason, these polymers are 

widely spread in the industry of the plastic matter. This widespread use also comes with several 

consequences, first of all the increasing volume of polymer wastes (especially PET) due to their use 

in the packaging industry.  

As stated before, polymeric blends have been extensively investigated in the twenty past years. In 

fact, blending can give origin to new high-performance polymeric materials especially when the 

properties of two or more polymers are synergistically combined. It is also one of the most important 

routes of polymer recycling because it makes the sorting step much simpler during a recycling 

process.  

In particular, PET-PC blends’ development and study have caused much interest, thanks to their 

interesting combination of properties. PET added to PC makes the latter more resistant to organic 

solvents, provides an opportunity to control the flow viscosity of the molten blend, and reduces the 

material’s cost. PC is helpful in increasing PET’s impact strength and improves dimensional stability 

under operating conditions5. Moreover, the blending of these polymers can also be used as recycle 

procedure. In fact, in the case of PET, recycling is a complex process because of the chemical and 

mechanical degradation the polymer undergoes. Consequently, re-processing affects mechanical 
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properties of the recycled products. These properties can clearly be improved by the addition of 

polycarbonate6. As a matter of fact, PET-PC blends have gained scientific and industrial interest since 

they represent a large potential market in post-consumer sector7,8. Because of their significant 

commercial potential, PET/PC blends have been investigated rather intensively. However, the mixing 

of these polymers is complex and in most of the cases it gives origin to immiscible blend.  As a matter 

of fact, several blending procedures have been experimented in order to test their miscibility9,10.  

A certain grade of miscibility was reported only after transesterification, as per melt-mixing at high 

temperature (300 °C) or for long processing time5. Melt mixing technique involves a thermal 

treatment of the polymer blend above the melting point of both of the two polymers, leading to the 

formation of random copolymers through exchange (transesterification) reaction11. The final 

composition can be affected by side degradation reaction (mainly CO2 and aliphatic carbonate 

losses)12, that can be minimized by adding a catalyst (usually titanium butoxide), that allow to obtain 

a reasonable exchange reaction rate at relatively low temperature (about 240-270 °C)13. However, the 

solubility of PET in solid state PC is rather low, and on cooling phase separation of PET takes place. 

Indeed, the estimated decreasing 𝑇𝑔 of PC with increasing PBT content indicates instability of the 

blends.14,15 

When the two polymers are deposited on a substrate from a unique solution via spin-coating, PET/PC 

blends result in a totally immiscible mixture16,17. Many types of morphology can be obtained through 

this procedure for immiscible polymers. The type of morphology depends on the nature of the 

polymers (interfacial tension, viscosities, and the ratio of these viscosities), their volume fractions 

and the processing conditions. The structure of the final blend can be categorized into four basic 

morphology types (Figure 4.2):  

a) Matrix-dispersed particle structures  

b) Matrix–fibre structures  

c) Lamellar structures  

d) Co-continuous structures  
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Figure 4.2: four basic morphology types a) Matrix-dispersed particle structures, b) Matrix–fibre structures, c) Lamellar 

structures, d) Co-continuous structures 

 

Depending on the evaporation rate of solvent and the volume ratio of the polymers in the solution, it 

is possible to obtain many different types of highly structured thin films18. For all the possible 

morphologies, however, the polymers are not chemically mixed. Rather, the polymers are constrained 

in a “out-of-equilibrium” state, which makes them very unstable. This instability can yield structure 

modifications, especially following thermal or photo degradation events. The extent of structure 

modifications highly depends on the different interfacial mobilities of the two polymers, which is 

influenced by the temperature19. 

Long-term properties of polymer blends under environmental stresses are strongly influenced by the 

chemical-physical properties of the individual component polymers. The final state of the blends at 

the end of their lifetime is difficult to predict from the basis of the individual polymers, however. 

Consequently, the degradation behaviour of blends is not understood without experiments20. As a 

matter of fact, the type of the morphology and its phase dimensions determine the final properties of 

a polymer blend. For this reason, the investigation of the mechanisms involved in thermal and photo-

degradation of immiscible polymer blends assumes a fundamental role in the forecast of the chemical-

physical properties of the final materials21. Therefore, an accurate investigation of the polymer blends 

can provide a better understanding of the long-term behaviour of virgin blends. 
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Monitoring a thermal ageing process can be very challenging, however. The standard experimental 

set-up for thermal ageing involves annealing in specific environmental chambers in a nitrogen 

atmosphere for a given amount of time. After the annealing procedure is completed, an imaging 

technique is required for the investigation of the post-thermal ageing morphology. Several techniques 

have been explored for this aim, such as electronic microscopies, atomic force microscopy or 

scanning tunnelling microscopy 22,23,24. In particular, the latter have been extensively used for the 

investigation of the surface properties. Yet, in previous times, these techniques above have provided 

results only after the annealing has been completed.  

In order to deepen the understanding of the mechanisms of thermal ageing phenomena on polymer 

blends, performing an analysis of the surface’s chemistry and morphology during the annealing 

process could provide much needed information about the specific times and/or temperatures for 

changes to be seen in the blend. Since prediction of blend behaviour is not possible from the individual 

polymers’ behaviour, the prior methodology could require many successive attempts of annealing 

then characterization to discover at what temperature and time the blend change is occurring. 

Misunderstandings could occur if care is not taken, and significant time may be required to ensure 

accurate determination of the behaviour. In addition, the behaviour of the blend during a transition is 

lost since the characterization takes place before and after the anneal is complete. Thus, an in situ 

characterization providing chemical and morphological information during an anneal, would 

represent a significant advance in how new blends could be understood. 

In this thesis work, ToF-SIMS imaging performed during a thermal treatment experiment is presented 

for a PET-PC blend. This work demonstrates that ToF-SIMS can provide information on the 

microstructure modification of the blend, in particular on the surface, over the course of the annealing 

experiment. While this was performed for a PET-PC blend, this technique can be extended to other 

polymer blends, and is evidence for the usefulness of ToF-SIMS for the development and 

understanding of polymer science. 

 

4.2. Thesis work 

As stated previously, blends of PET and PC represent a perfect example of the complex interplay 

between two immiscible polymers. In fact, even in the presence of transesterification reactions, this 

blend shows several kinds of phase separation. In particular, the spin coating deposition technique 

can yield many unpredictable behaviours and a wide range of different morphologies for the 

polymers. 

ToF-SIMS is a powerful imaging technique, and it has been extensively exploited for the investigation 

of polymer structures25. In fact, in comparison with other imaging techniques, it is able to provide 
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molecular information and chemical bonding of materials under the micrometre scale. Thanks to this 

sensitivity, ToF-SIMS has been utilized for the study of the polymers’ surface26,27, which is 

fundamental to the understanding of their interaction with the exterior. 

In this thesis, it is shown that different morphological typology can be achieved depositing thin films 

of PET/PC blends via spin-coating. Since this deposition technique is unpredictable, spin-coating is 

a model for demonstrating the superiority of ToF-SIMS to rapidly ascertain ageing phenomena 

without an a priori understanding of a blend’s behaviour. By using the high spatial resolution of ToF-

SIMS, these different morphologies can be distinguished. As well, the capability of ToF-SIMS to 

reveal even small differences in the surface structure was exploited to monitor the changes due to 

thermal treatment. In particular, temperature-programmed ToF-SIMS experiments were carried out 

by acquiring ToF-SIMS images along a certain temperature ramp. It was therefore possible to “see” 

in real time how the “out-of-equilibrium” polymers behaved and to gain some information about their 

physical-chemical properties. 

 

4.3. Materials and Methods 

4.4.1 Preparation of the films  

Polyethylene terephthalate (PET) and poly-bisphenol-A-carbonate (PC) were purchased from Sigma 

Aldrich (molecular structures in Figure 4.3). A 2% w/w solution was prepared in 

chloroform/1,1,1,3,3,3-hexafluoro-2-propanol (90/10 vol%) (Sigma Aldrich), using a 75% PET- 25% 

PC composition. The solution was poured on a rotating plate of a spin-coater using a silicon wafer as 

substrate. In order to explore different blend morphologies, two different coating programs were set, 

differing each other for the maximum rotation speed (1000 rpm or 2000 rpm) that was reached in 

both cases with the same acceleration (40 rounds s-2). Once the maximum rotation speed value was 

reached, it was maintained for 800 sec in order to allow for complete solvent removal. 

The film thickness measurements were carried out by means of a stylus profilometer KLA-Tencor P7 

equipped with a capacitive sensor which allows surface roughness measurements to be carried out for 

many kinds of materials with high resolution. The thickness was measured as height difference 

between the average height of film surface and the substrate exposed at the bottom of a straight 

incision created on the polymeric films by gently scratching the film by means of a razor blade.  

The profilometer parameters were set as follows: scan speed 20 μm/s, sampling rate 50 Hz, point 

interval 0.4 μm, applied force 0.50 mg and vertical resolution 8 nm. The average film thicknesses 

were evaluated to be about 800 nm.  
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Figure 4.3: chemical structure of polycarbonate (right) and polyethylene terephthalate (left)  

 

4.4.2 Temperature programmed ToF-SIMS imaging 

For the temperature programmed experiments, the temperature control was achieved by using an IPS 

Eurotherm unit, which is able to monitor and tune the temperature of the sample, that is mounted on 

the commercial heat/cool sample holder produced by ION-TOF. In these experiments, samples 

underwent a temperature ramp from -10°C to 330°C, inside the ToF-SIMS main chamber. The cold 

temperatures were reached by cooling the sample through a LN2 cold finger in thermal contact with 

the sample holder. The controlled increase of temperature is obtained by resistive heating of the 

holder by means of the feedback circuit of IPS unit which constantly monitors the surface temperature 

with a thermocouple and provides the right heating current in order to obtain the desired temperature 

ramp.  

ToF-SIMS images were acquired by means of a TOFSIMS IV spectrometer (IONTOF) in bunched 

modality by using a pulsed Bi3
+ ion beam (25 keV, 0.5 pA) with a raster of 500×500 µm2 area and 

256 × 256 pixels. Surface charge compensation was accomplished by pulsed low energy electron 

flood, in order to avoid charging effects.  

Every temperature increases of 15 °C a secondary ion image was acquired on the same sample area. 

In order to minimise ion-beam-induced sample damage, the primary ion fluence was kept below 

2×1011 ions cm-2 for each single experimental point, so that the ion fluence experienced by the sample 

along the entire temperature-programmed experiment remained < 5×1012 ions cm-2. This allowed the 

observation of the same sample area during the whole temperature treatment. The images were 

reconstructed by following two diagnostic fragments of the polymers, C14H11O2
- (m/z 211.07) for PC 

and C7H5O2
-
 (m/z 121.02) for PET, and successively shown in false colours with the ION-TOF palette 

respectively Thermomap1.  
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4.4. Results and Discussion  

4.4.1 Preliminary analyses  

Figure 4.4 shows the typical postive spectrum, acquired at ambient temperature, of a PET(75%)-

PC(25%) blend, deposited via spin coating, according to the procedure described in the section 

“materials and method”. It is possible to observe characteristic peaks of both polymers, although the 

most intense signals pertain to PET. In particular, C6H4
+ (m/z 76.03), C7H4O

+ (m/z 104.02) C8H5O3
+ 

(m/z 149.02) are specific fragments of PET (blue) while C9H11O
+ (m/z 135.08) is a specific fragment 

of PC (red). 

 

Figure 1.4: positive spectra of PET-PC blend 

 

Table 4.1 and 4.2 display the theoretical m/z values of the fragments, the m/z detected values and the 

standard deviations, which allowed to verify the accuracy of the identification. 

Table 4.1: main PET characteristic signals (positive polarity) 

PET Fragment  Theoretical Mass (m/z) Detected Mass (m/z) Standard deviation (%) 

C6H4
+ 76.0308 76.0285 -30.1 

C7H4O
+ 104.0257 104.0238 -17.9 

C8H5O3
+ 149.0233 149.0280 31.1 



   

 

83 

 

 

Table 4.2: main PC characteristic signals (positive polarity) 

PC Fragment  Theoretical Mass (m/z) Detected Mass (m/z) Standard deviation (%) 

C9H11O
+ 135.0804 135.0817 9.6 

 

Figure 4.5 shows an example of the negative spectrum of a the same blend with the assignment of 

some characteristic peaks of both polymers. We indicated in blue the characteristic fragments of PET 

C6H4
- (m/z 76.03), C7H5O2

- (m/z 121.02), [M-H]- (m/z 191.05). The characteristic peaks of PC C6H5
- 

(m/z 77.03), C6H4O
- (m/z 93.03), C8H5O

- (m/z 117.03), C9H9O
- (m/z 133.06), C14H11O2

- (m/z 211.07), 

C15H11O4
- (m/z 255.06) are shown in red. Table 4.3 and 4.4 report the standard deviation of the 

detected m/z values as compared to the theoretical ones.  

 

Figure 4.5: negative spectrum of PET-PC blend 

 

Table 4.3: PET characteristic fragments (negative polarity) 

PET Fragment  Theoretical Mass (m/z) Detected Mass (m/z) Standard deviation (%) 

C6H4
- 76.0318 76.0291 -35.7 

C7H5O2
- 121.0295 121.0336 33.8 

[M-H]- 191.0502 191.0484 -9.9 
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Table 4.4: PC characteristic fragments (negative polarity) 

PC Fragment  Theoretical Mass (m/z) Detected Mass (m/z) Standard deviation (%) 

C6H5
- 77.0397 77.0438 54.1 

C6H4O
- 93.0346 93.0300 -49.6 

C8H5O
- 117.0346 117.0209 -117.0 

C9H9O
- 133.0659 133.0517 -106.8 

C14H11O2
- 211.0765 211.0502 -124.3 

C15H11O4
- 255.0663 255.0963 117.6 

 

 

4.4.2 PET-PC blend imaging 

The characterization of morphology for melt mixed PET-PC blends has already been reported in the 

literature. For blends obtained by this methodology, the morphology varies from a quasi-

homogeneous to separation of domains, according to the melt mixing procedure employed and the 

presence of catalysts8. When domains are observed, the system is constituted of a PET matrix and a 

PC dispersed phase with interfacial regions consisting of bridge-like structures, linking the matrix 

and the dispersed domains. These bridges are correlated to the presence of a PET-PC block copolymer 

obtained through chemical reactions occurring during blending in the molten state24.  

In the case of spin cast blends, the studies are not numerous. Notwithstanding, it is well known that 

phase separation occurs for this immiscible polymer blend, but no robust investigations on spin- cast 

PET-PC morphology are reported. As stated previously, the structure of an immiscible polymer blend 

can be categorized into four basic types of morphology: matrix-dispersed particle structures, matrix–

fibre structures, lamellar structures, and co-continuous structures. Of all the possible morphologies, 

the co-continuous morphology is the least predictable. As a result, its identification can be particularly 

challenging and requires several analyses through different techniques. 

To investigate possible morphologies that can be obtained through the spin-coating, two classes of 

samples made of PET/PC were prepared by varying the spin coating parameters. Figure 4.6 shows 

secondary ions images (negative polarity) of 75% PET- 25% PC thin film, obtained at a spinning rate 

of 2000 rpm. In Figure 4.6 we report: a) the sum of PET characteristic peaks (C6H4
- at m/z 76.03 and 

C7H5O2
- at m/z 121.03) and b) the sum of PC characteristic peaks (C14H11O2

- at m/z 211.07 and 

C9H9O
- at m/z 133.07). In this case the morphology appears as a matrix-dispersed particle type, 

characterized by two polymeric domains with circular “patchworked” structures of PC embedded in 

a PET matrix. 
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Figure 4.6: negative chemical maps of a) the sum of PET characteristic peaks, b) the sum of PC characteristic peaks 

 

Figure 4.7 displays the secondary ion images for a sample deposited by spin coating at lower spinning 

rate, namely 1000 rpm, from the same PET-PC solution. In this case, the negative polarity showed 

stronger intensity and this, together with the fact that PC signals are more abundant in negative 

polarity, is the reason why, for the sake of easier comparison, negative ion polarity images are 

reported for all the samples. In Figure 4.7 the intensity distribution of a) the characteristic fragment 

of PET C7H5O2
- at m/z 121.03 and b) the PC characteristic fragment C14H11O2

- at m/z 211.07 are 

reported. A phase separation is again evident. However, with a lower spinning rate for film deposition, 

a matrix–fibre structure was obtained in contrast with the matrix dispersed type of the 2000 rpm case. 

 

 

Figure 4.7: negative chemical maps of a) PET characteristic peak, b) PC characteristic peaks. 
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Summarizing, Figures 4.6 and 4.7 represent the typical morphologies obtained for the 75% PET- 25% 

PC solution at spinning rate of 2000 and 1000 round/min, respectively. At decreased spinning rate, 

we observe a change from dispersed PC domains in a PET matrix to a fibre morphology of PET in 

PC. As mentioned in the introduction, however, the relationship between the spin-coating parameters 

and resulting morphology is not of trivial explanation. As the aim of this work was the demonstration 

of ToF-SIMS as a characterization tool to aid in polymer development, rather than the polymer 

development itself, the observation of the two morphologies and the demonstration that it is possible 

to distinguish them through the secondary ions images was satisfactory per se. Further studies to 

observe the effect of other deposition conditions on the deposited morphology would be appropriate, 

if the aim was to understand how the morphology affects the properties of the blend. However, such 

study is outside the scope of the present work so that, for now, a proof that the ToF-SIMS 

measurement can distinguish the different regions with high resolution must be considered 

satisfactory. 

 

4.4.3 Temperature-programmed ToF-SIMS experiments 

Following the initial “morphological” investigation, the subsequent goal was to investigate the 

capability of ToF-SIMS to show in real-time (“live”) the changes that an immiscible polymer blend 

undergoes during a thermal treatment procedure and possibly to determine temperature’s effect on its 

stability, either chemical or morphological. In contrast to other reported methods, where 

characterization is made after a previously performed annealing, here the attempt is to monitor blend 

morphology and chemistry during the annealing experiment, and to observe the temperature at which 

changes do occur. It cannot be underestimated the advantage of this approach which would allow – 

if successful – the study of temperature behaviour of the blend within a single annealing experiment.   

In a broad sense, the term “degradation of polymers” includes all changes in chemical structure and 

physical properties of polymers due to external chemical or physical stresses leading to materials with 

characteristics different from those of the starting material28. Thermal ageing is one of the most 

frequent and important stresses that affect polymer properties and can cause irreversible damage. As 

stated previously, PET-PC mixtures are totally immiscible and unstable especially when deposited 

via spin-coating. In fact, this technique brings the system to an out-of-equilibrium condition, where 

the polymers’ chains are “frozen” in a non-minimum-energy status which is challenging to 

investigate. So far, a real-time in situ imaging investigation of the thermal behaviour of spin cast 

PET-PC blend has never been reported.  
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When energy is provided to the polymer chains, for instance by increasing temperature, they will 

have the possibility to migrate to find new positions or configurations which allows the system to 

stabilise at lower surface free energy. The exact energy required for a change to occur is not known 

a priori, especially with a new polymer blend. In the case of PET/PC, its temperature behaviour has 

been extensively studied in melt-mixing studies. However, as pointed out above, the spin-coating 

process can lead to difficult-to-foresee metastable situations that can, in some way, mimic the 

situation of a “new” blend. Characterizing the “new” blend with ToF-SIMS imaging while annealing 

it in-situ, can be a quick and effective way for characterising the thermal evolution of the system. 

Based on the study reported in § 4.4.2, a sample prepared at 1000 round/min was chosen for the 

temperature-programmed SIMS imaging study. The fibres-matrix morphology was selected since 

literature already reports annealing studies carried out on polymer blends with this morphology. In 

particular, it was found out that the fibres tend to break up during annealing. This was proved by 

extraction experiments before and after the annealing29. 

Figure 4.8 shows the secondary images in negative polarity, in particular the intensity maps of two 

characteristic polymers’ signals: C7H5O2
- at m/z 121.02 for PET and C14H11O2

- at m/z 211.07 for PC. 

Images were acquired along a temperature ramp from -10°C up to 320°C with 15°C intervals. 
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Figure 4.8: chemical maps of PET and PC at various Temperatures 

 

These images show that at lower temperatures it is possible to distinguish the matrix-fibres 

morphology. With increasing temperature, important changes occur approximately between 100°C 

and 150°C, when it becomes increasingly difficult to distinguish the PET fibres, while the PC 

counterpart retains, in some extent, the original morphology up to about 185°C, when it starts to 

become blurred and then to disappear at higher temperatures.  

Some additional indication useful for the interpretation of the temperature evolution of the blend film 

can be obtained by plotting, as function of temperature, the intensity of the same characteristic peaks 

considered in Figure 4.8.  
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The intensities of the two characteristic signals for PET and PC as function of temperature are 

reported in Figure 4.9, along with the chemical maps corresponding to some key points of the plot. 

The initial decay of both intensities, reasonably, is due to the desorption of volatile species at the 

surface (most probably water condensed during the initial sample freezing) that can affect the 

ionization probability of both polymers. Starting from 20°C, we observe a general trend of slow 

decrease of the intensities, that could be due, at least partly, to thermal degradation of the polymers. 

Also, a contribution due to the accumulation of beam-induced damage cannot be ruled out. 

Superimposed to this intensity drift, we note some sudden and relatively sharp variations, more 

evident on PC signal, in the temperature interval at approx. 90° and 150°C.  

In fact, we observe that a decrease of about 50% of PC intensity occurs around 100°C, followed by 

its strong increase up to a maximum at about 145°C. Above this temperature, a continuous decay is 

observed. This signal variation has been carefully verified and we can exclude that it is due to 

instability of the analytical beam. Rather, one should hypothesize that the observed variations are 

associated with some characteristic property of the binary system under investigation.  

 

 

 

Figure 4.9: the intensities of the two characteristic signals for PET and PC as function of temperature  

 

×2 

Figure 9 
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Actually, it is well known that Tg of PET is around 85°C and Tg of PC is around 145°C, and the sharp 

intensity variations in the plot of figure 9 do occur remarkably close to these temperatures.  This 

observation is consistent with the presence, at lower temperatures, of separate domains of pure 

polymers, as indicated also by ToF-SIMS data which, within the limits given by the non-optimal 

lateral resolution connected with the high mass resolution imaging modality – bunched mode – used, 

show no intermixing of the two components. Indeed, as stated in the introduction, in the case of 

completely immiscible blends, each component polymers should retain its individual Tg value. DSC 

experiments, reported in literature for melt-mixed PET-PC blends, show that when transesterification 

does not take place, because of absence of catalysts or insufficient processing time, no copolymer 

blocks are formed and in such a situation the blend exhibits two glass transitions, indicating the 

presence of two amorphous phases. Moreover, no shifts of the Tg values occur18, and the two polymers 

maintain their own individual Tg. In the present case, since we observe that there are two transition 

points at temperatures which are close to the glass transition temperatures of the two individual 

polymers, we can conclude that, at least in the experimental condition used, no major reaction/mixing 

phenomena do occur in the system. This is confirmed by the fact that no signals specific of 

transesterification reaction fragments25 do appear in the spectra. 

It must be pointed out that a precise interpretation of the evolution of the intensities or the two 

characteristic peaks reported in Figures 4.8-4.9, however, is difficult because a change in the structure 

of each polymer around the glass transition can already produce variations in SIMS intensities.  

Moreover, we must consider that, when polymers are in the physical state of elastic solid, well below 

the glass transition temperature (Tg), no chain movements can occur, but above the glass transition 

the polymer chains acquire more degrees of freedom, allowing movements which can deform the 

morphology of the solid structure and also allow the migration and or segregation of chain segments.  

Such enhanced chain mobility above the glass transition temperature can favour the preferential 

surface segregation of certain chain segments, and this, in turn, can cause a variation of the observed 

SIMS intensities because of both the increased surface concentration of certain chain segments and 

the possible matrix effect associated with these compositional changes at the surface.  

In spite of the difficulties in the detailed interpretation of the data presented in figures 4.8 and 4.9, we 

can surely state that the in-situ temperature-programmed ToF-SIMS imaging measurements allowed 

us to get an overall picture of the behaviour of the blend under examination, providing evidence of 

its behaviour, at least up to 150°C, as immiscible two-components system which is retaining the glass 

transition temperatures of each component. At higher temperatures, the imaging data show a 

progressive disruption of the original morphology, which is consistent with the fact that PC is 

expected to melt in the temperature range 185-230 °C31 and PET undergoes melting in the range 230-
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260°C31. Although the detailed melting behaviour is known to depend on the thermal history of the 

sample (and on its crystallinity)30,31 we observe that the total disappearance of the initial morphology 

in the chemical maps of figure 8 occurs in the same temperature interval, confirming again the 

potentiality of temperature-programmed ToF-SIMS imaging for in-situ study of the thermal evolution 

of complex polymer systems. This also in view of the fact that, for each temperature point, a large 

amount of data can be extracted from the high-resolution mass spectra reconstructed from the 

acquired raw data. 

 

 

4.5. Conclusion 

In this chapter we presented the imaging study of PET/PC blends spin cast with different deposition 

parameters. A preliminary ToF-SIMS imaging characterization allowed us to recognise different 

microstructures formed in the different deposition conditions. Although not unexpected, this result 

was used for choosing a particular starting morphology for a temperature-programmed ToF-SIMS 

imaging experiment, which represents the innovative part of the study. Indeed, at our knowledge, no 

previous experiment of this type has been reported previously. The images obtained at different 

temperatures, together with the behaviour of overall intensities of some characteristic fragments, 

allowed us to individuate the changes in morphology and surface composition connected with the 

glass transition temperatures of the two component polymers of this well-known model system. 

Moreover, it was possible to follow the surface morphology and composition of the system up to 

more than 300°C when the system is expected to be in a melt state. The information extracted from 

the experiment shows that, in the temperature range explored and in the timescale of the experiment, 

no detectable transesterification reaction occurs. 

It is probably worth to remark that the results described in this chapter, beyond the specific 

information grasped about the particular model system under study, constitute a novel proof-of-

concept of the applicability of temperature-programmed ToF-SIMS imaging for the study or the 

thermal evolution of structured organic systems. Moreover, some limitations in the interpretation of 

the acquired data, arisen in the present study, could be overcome through the application of specific 

data treatment methodologies such as those applied to the systems in the next two chapters of this 

thesis work. 
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5. Probabilistic Neural Network-Based Classifier for ToF-SIMS 

Polymer Single-Pixel Spectra 

 

ToF-SIMS is one of the most powerful techniques for spatially resolved chemical imaging of surfaces 

and thin films and is widely applied within the fields of science, technology, and biology. 

Nevertheless, ToF-SIMS technique still has some apparent limitations and, in some cases, carrying 

out the analyses becomes impossible for certain organic and hybrid materials because of their low 

signal intensity.  In fact, as state in previous chapters, set of problems relating to the impossibility to 

achieve a high intensity of the signals still affects this technique, especially for imaging. This issue 

limits the acquisition of good quality images for a wide range of samples, and in extreme cases, 

imaging cannot be carried out. 

To overcome this issue of low signal-to-noise ratio, one method to increase the signal is collecting 

many scans of the same sample area. However, does this strategy not only require additional time to 

acquire extra scans, but also it can cause beam induced damage, especially in the case of organic and 

polymeric samples. Moreover, a further complication in the large size of the acquired dataset is 

introduced. These datasets are difficult to handle, and they represent a critical issue especially in the 

elaboration of the ToF-SIMS images. 

As a matter of fact, acquiring more scans generates hyperspectral image data sets, which usually 

contain 128 × 128, 256 × 256, or even larger number of pixels. For each pixel, a high-resolution mass 

spectrum is stored which includes several millions of time-of-flight channels. In the case of 3D 

imaging, which consists of alternating imaging with erosion cycles to create a stack of 2D images, 

the amount of data is increased by the number of these cycles. Very rapidly the size of the datasets 

grow beyond which normal data processing can handle. Recently introduced instrumentation can 

further complicate the problem, because they can combine different types of mass analysis, e.g., ToF 

and Orbitrap1. As a result, normal data processing is not possible because the dataset dimensions. 

Ultimately, this leaves the user in the same position of being unable to characterize or provide 

information about a material.  

For this reason, it is fundamental to design and develop computing modelling programs able to rework 

limited signals. Currently, the most popular approaches for handling and interpretation of ToF-SIMS 

data are based on multivariate analysis methods. Among these, principal component analysis (PCA) 

and related techniques increasingly became a sort of standard approach in the surface analysis 

community2. Likewise, in the last chapter of this thesis, PCA was used for the study of the secondary 
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ion images of a 19th century textile coloured with Methylene Blue. PCA shed light on different hidden 

components of the sample and assisted in the identification of their chemical composition. This 

approach has shown to be efficacious in the analysis of complex chemical images, where different 

components and species are present. 

Despite the promising results that PCA can perform, in the case of low-counts datasets, PCA can fail 

due to computational limitations. Therefore, it is sometimes necessary to perform a pre-processing 

treatment of the dataset3, 4. Such pre-treatments (e.g., unit mass binning, peak picking, and 

integration) often lead to a loss of resolution (either mass or spatial resolution, or both). Moreover, 

they can be biased by subjective analyst’s decisions and by errors of automated peak 

search/integration routines. In order to avoid these consequences, some methods for multivariate 

analysis of raw and non-binned data sets have been reported recently. However, none of them are 

able to overcome aforementioned drawbacks5. Consequently, complex datasets still require data pre-

treatments, including subsampling, pre-processing wavelet-based, and data compression6.  

In addition to the problem of the large number datasets, as mentioned previously, ToF-SIMS also 

carries the problem of low signal. In many cases, ToF-SIMS datasets are coming from a single pixel, 

and while they are almost free of noise, can exhibit very low-intensity (typically up to 99% of zero-

signal channels). Therefore, it is necessary to develop methods which exploit such scarcity of signal, 

but, at the same time, to avoid the continuous increase of information collected by the modern 

instrumentations.  

Neural networks play an active role in pattern recognition, and for this reason their use in science has 

spread in many fields, including imaging. Many neural network methodologies have been developed, 

such as multilayer perceptron, time delay neural networks, backpropagation, radial basis function 

networks and fuzzy neural networks. Among them, Probabilistic Neural Network (PNN) has 

demonstrated in many cases the ability to learn more quickly than other neural network models and 

has had success on a variety of applications. Indeed, PNN supplies flexibility and straightforward 

design, which make the system easy to operate along with the successful classification results. 

In this thesis work such an approach is described and has been published in the literature7, which can 

extract latent chemical information from ToF-SIMS data, working on uncompressed and unbinned 

raw data set. In the following, a review of the candidate’s work in this article will be provided. In 

particular, thin films of four different polymers (Polystyrene PS, polymethylmethacrylate (PMMA), 

polyalphamethylstyrene (PaMS), and polyethylenterephthalate-co-isophthalate (PETi)) were 

analysed by ToF-SIMS. Successively, a probabilistic neural network (PNN) was designed and trained 

by the team with the support of the candidate, to provide a correct classification of these four different 

polymers.  
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5.1. Thesis work 

 

As stated above, for every primary beam pulse in a ToF-SIMS analysis, a huge number of data are 

recorded. As a matter of fact, for each primary beam pulse, the flight time information is split in 50-

ps-long channels and then collected and stored in a specific format raw data file. Then, these raw data 

files can be exported in a general readable format. Moreover, for each ion count, the ToF-SIMS files 

contain several information, including scan number, primary ion shot number, x and y pixel 

coordinates of the primary ion beam raster, and ToF channel. Therefore, even a single pixel spectrum 

can be considered belonging to “big dataset”, since it contains an impressive amount of recorded data. 

In this thesis work, it is demonstrated that a computational method can offer the possibility to a correct 

classification of single pixel spectra, containing signals which look more like a barcode rather than 

an interpretable mass spectrum. In particular, the main objective of this chapter is to describe the 

possible use of a probabilistic neural network in solving problems arising low-counts ToF-SIMS 

signal processing and pattern recognition. 

A PNN is predominantly understood as a classifier since it can map any input pattern to a number of 

classifications. This neural network method has been chosen thanks to its several advantages. In fact, 

it can supply a fast-training process and an inherently parallel structure, which allows the convergence 

to an optimal classifier as the size of the representative training set increases. Moreover, the training 

samples can be added or removed without extensive retraining. Accordingly, PNNs learn more 

rapidly than many neural network models and have had success on a variety of applications. Based 

on these facts and advantages, PNN can be considered as a supervised neural network, capable of 

system classification and pattern recognition for ToF-SIMS imaging data.  

In order to verify the success of this pattern recognition method, four different polymers’ single 

spectra were recorded and used as training for a probabilistic neural network. Once designed and 

trained, this neural network was able to provide a correct classification of the spectra acquired through 

an automated procedure. After the acquisition of the single pixel spectra, the presence of a sequence 

of counts containing a discriminating feature is determined by studying the distribution of the Δmi 

values in the Fourier transform domain. For a quantitative description of the similarities and 

differences between spectra from different pixels, skewness, and kurtosis of the probability density 

distribution of the Fourier transform moduli were selected. Then, the two component vectors were 

used as an input for the artificial neural network classifier. The procedure is fast and low-demanding 
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in terms of CPU performances, and it is also able to evaluate the similarity/dissimilarity in the Fourier 

transform domain of extremely low intensity single pixel spectra. 

Overall, this study proves the power of this new data processing method, where a large dataset with 

a lack of signal intensity was input into the neural network, and for each analysed polymer, a correct 

classification of single pixel spectra was provided. This was done without pre-treatment of the data, 

so that biases were removed, and relatively little effort by the analyst. As a result, this probabilistic 

neural network approach represents an exciting new possibility for ToF-SIMS to analyse previously 

unmanageable materials. 

 

5.2. The Probabilistic Neural Network (PNN) 

 

A probabilistic neural network (PNN) is a unidirectional neural network and represents a special form 

of Radial Basis Function (RBF) network. It is a powerful instrument to solve classification and pattern 

recognition problems since its algorithm minimizes the probability of misclassification8. Because of 

the complexity of the theory behind the PNN, a substantial mathematic discussion would be necessary 

for a deep comprehension of the neural network construction. Since the purpose of this thesis work 

is the demonstration of the PNN application for polymer identification and not the PNN construction 

itself, a methodical and robust mathematic support will not be provided in this thesis. However, some 

base mathematic information will be provided in the following to guide the understanding of this 

thesis work.  

 

Figure5.1: block diagram of the used neural network. 
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A PNN consists of several sub-networks, and each sub-network represents a parent probability 

distribution function (PDF) for each of the investigated classes. The PDF of each class allows to 

estimate the class probability of a new input data. In PNNs, the operations are organized into a multi-

layered feedforward network with a strictly layered structure consisting of a pattern layer, a 

summation layer, an output layer, and finally an input layer which is always fully connected to the 

hidden layer because of the computation distance (all coordinates are used to determine the distance).  

In this case, a specific scheme was employed (showed in figure 5.1) to design the layers: 

 

1. Skewness and kurtosis were used as input for the realization of the input layer.  

2. The second layer was composed of 300 neurons activated by Gaussian functions; for the 

setting of the Gaussians centres (Ci) the train set points were used, which were previously 

provided by the input layer.  

3. The third level performed the average of the second layer outputs for each class.  

4. The fourth layer was made of five neurons which were correlated by a linear transfer function; 

it provided a vote, selecting the largest value. 

5. At the end of this procedure the labels were determined for each class910 

 

All the no-class-belonging outputs are labelled as “None of these”. As a matter of fact, the PNN 

training set comprises both spectra subsets belonging to one of the class, and spectra subsets which 

are different to ones belonging to the polymers we want to classify.  

In PNNs, radial basis functions are employed as activation functions. Functions like these can be 

illustrated by considering a circle. Indeed, a circle is defined as the set of points that have the same 

fixed distance from a given point. This fixed distance is called the radius of the circle. In the same 

way, these functions describe a set of output points which have a characteristic distance from the 

centre. The region hypothetically described by the function assumes an important role in the 

classification process. In fact, these functions allow the assignment of each neuron to a kind of 

“catchment region”, which mainly influences the output of the neural network. For this experiment, 

skewness and kurtosis state the centre of this region. Intuitively, the neuron radial basis function and 

its parameters determine the “size” of the catchment region of the neuron by specifying how strong 

the influence of an input vector is depending on its distance from the weight vector described by the 

radial function. 

A Gaussian function was chosen as radial basis function for the neurons, which is explained by 

equation 5.1: 

φ(r) = 𝑒−(
r

σ
)

2
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Equation 5.1 

This is the so-called simple radial basis function network, in which each training example is covered 

by its own radial basis function. In other words, the hidden layer contains exactly as many neurons 

as the training examples. The weights of the connections from the input neurons to the hidden layer 

neurons are determined by the training examples: each hidden neuron receives a training example 

and the connection weights given to the hidden neurons are simply initialized with the elements of 

the input vector of this training example.  

Mathematically this can be understood by the following. Let Lfixed = {l1,….,lm} be a fixed learning 

task with m training patterns l = (i (l) , o (l) ). Since each pattern is used as the centre of its own radial 

function, there are m neurons in the hidden layer. Let these neurons be v1,..., vm, then it is possible to 

write the equation 5.2: 

 

∀k ∈ {1,..., m} :      𝑤𝑣𝑘
  =   𝑖𝑙𝑘 

Equation 5.2 

When Gaussian activation function is chosen, like in our case, the radii σk are often initialized to equal 

values according to the heuristics in the equation 5.3: 

 

∀k ∈ {1,..., m} :  σk = 
𝑑𝑚𝑎𝑥

√2𝑚
 

Equation 5.3 

where dmax is the maximal distance between the input vectors of two training patterns and m is the 

number of training set spectra. The distance function d is computed with the network input function 

chosen for the hidden neurons and it expressed by the equation 5.4: 

 

dmax = max
𝑙𝑗 ,𝑙𝑘∈𝐿𝑓𝑖𝑥𝑒𝑑

𝑑( 𝑖𝑙𝑗, 𝑖𝑙𝑘) 

Equation 5.4 

This choice has the advantages that the Gaussian bell curves are not too narrow (there are not isolated 

peaks in the input space), but also not too wide (there are not peaks overlapping). Since the parameters 

of the hidden layer (centres and radii) were known, it was possible to calculate the outputs of the 

hidden neurons for every training example by an iteratively computational process, which allowed to 

determine the connection weights and the bias values. 
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Since the network input function is a weighted sum of linear functions (that is its inputs and its 

activation and output functions), each training example yields for each output neuron one linear 

function according to equation 5.5: 

 𝐸 =
1

2
 ∑ (𝑑𝑗 −  𝑦𝑗)

2𝑚
𝑗=𝑙 = 

1

2
 ∑ 𝑒𝑗

2𝑚
𝑗=𝑙  

𝑤𝑖,𝑗
𝑛𝑒𝑤= 𝑤𝑖,𝑗

𝑜𝑙𝑑- η1 
𝜕𝐸

𝜕𝑤𝑖,𝑗
 

𝑐𝑖
𝑛𝑒𝑤= 𝑐𝑖

𝑜𝑙𝑑- η2 
𝜕𝐸

𝜕𝑐𝑖
 

𝜎𝑖
𝑛𝑒𝑤= 𝜎𝑖

𝑜𝑙𝑑- η3 
𝜕𝐸

𝜕𝜎𝑖
 

Equation 5.5 

where η1, η2 and η3 are learning rate coefficients, σi is the smoothing parameter controlling the spread 

of the ith Gaussian function, dj, e yj are respectively the desired output and the actual one output 

obtained from the jth spectrum input. 

 

5.3. Materials and Methods 

 

Several polymeric thin films were prepared by spin-casting technique. In particular, four polymers 

were utilized showed in figure 5.2: polystyrene PS, polymethylmethacrylate (PMMA), 

polyalphamethylstyrene (PaMS), and polyethylenterephthalate-co-isophthalate (PETi) purchased 

from Source Polymer Inc. (Canada).  
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Figure 5.2: chemical structure of PS, (PMMA), (PaMS), and (PETi) 

 

For each polymer, chloroform (Aldrich) solutions 1% w/w were prepared. The solutions were spin 

coated cast at 1500 rpm with acceleration 2000 rpm/s for 15 s, on Si substrates, which were previously 

treated with UVO3 for 15 min and rinsed in ethanol (Aldrich).   

For the ToF-SIMS analysis Bi3
+ was used as analysing beam (25 keV, 0.1 pA) and for all samples an 

area of 300 × 300 μm2 was investigated (128 × 128 pixel). For each pixel, only one shot was acquired. 

Low energy electron flooding was used to reduce surface charging. For each polymer film, 5 spectra 

were acquired. Each spectrum was exported in a generic readable format (ASCII) and handled 

through a Python script (a registered trademark of the Python Software Foundation). These single 

pixel spectra were supplied as input to the PNN for the training treatment. 

The signal discrimination procedure is based on the presence of specific fragmentation patterns along 

the spectrum which each material generally gives rise to. In order to extract the chemical information 

for the signal classification from these very low-count data, it was necessary to perform a careful 
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analysis of the spectra to recognize the presence of specific counts sequences’ repetition, which reveal 

a discriminating feature of the material. To highlight these features, the Fourier transform was applied 

on the acquired single pixel spectra. The information containing the specific counts’ repetition can be 

embedded in the symmetry or asymmetry relationships of the distribution of the Δmi values in the 

Fourier transform domain.  

The Fourier transform (FT) is a mathematical operator that decomposes a function (often a function 

of time, or a signal) into its constituent frequencies. More specifically, the Fourier transform gives 

rise from a time function to a complex-valued function of frequency, which is described by two 

factors: the magnitude (absolute value) representing the amount of that frequency present in the 

original function, and the argument which is the phase of the basic sinusoid in that frequency. Note 

that for this purpose, only the intensity (modulus) of the Fourier transform was considered, since its 

argument presents a high level of noise. 

Figure 5.3 shows an example of the Fourier series representation of a single pixel ToF-SIMS spectrum 

(in this case PS spectrum) converted in terms of Δmi. As we can see, the data now is described as a 

sort of Gaussian curve which shows its own distribution of the values around the mean.  

 

Figure 5.3:  Fourier series representation of a PS single pixel ToF-SIMS spectrum 

In order to evaluate the differences between these new representations of the data, a quantitative 

description of these features is necessary. In fact, it is fundamental to find a tool which allows the 

translation these features from the Fourier transform’s domain to the images’ pixels. Therefore, 

skewness, and kurtosis of the probability density distribution of the Fourier transform moduli were 

calculated to provide a quantitative description of the similarity between different pixels of an image. 

In fact, the evaluation of a dataset by means of location and variability is performed for almost all the 
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statistical investigation. For this purpose, in many cases, a further characterization of the data includes 

skewness and kurtosis.  

In probability theory and statistics, skewness is a measure of symmetry, or more precisely, the lack 

of symmetry of the probability distribution of a real variable around its mean. A distribution, or data 

set, is symmetric if it looks the same to the left and right of the centre point. Kurtosis is a measure of 

the "tailedness" of the probability distribution of a real variable, relative to a normal distribution. Both 

skewness and kurtosis describe the shape of a probability distribution and they can provide a 

quantification of the theoretical distribution. Data sets with high kurtosis tend to have heavy tails, 

while data sets with low kurtosis tend to have light tails.  

For univariate data Y1, Y2, ..., YN, the formula for skewness is expressed by equation 5.6: 

∑ (𝑌𝑖 − 𝑌)
3
/𝑁𝑁

𝑖=1

𝑠3
 

Equation 5.6 

where 𝑌 is the mean, s is the standard deviation, and N is the number of data-points. For univariate 

data Y1, Y2, ..., YN, the formula for kurtosis is expressed by equation 5.7:  

∑ (𝑌𝑖 − 𝑌)
4
/𝑁𝑁

𝑖=1

𝑠4
 

Equation 5.7 

where 𝑌 is the mean, s is the standard deviation, and N is the number of data-points. 

These two vectorial components therefore represent two discriminating features for the different one-

pixel count dataset of the four polymers. They represent a tool for the “numerical translation” of the 

differences in the Fourier transform’s domain.  For this reason, they were employed as input for the 

artificial neural network classification training.  

In other words, first the neural network has learned a numerical feature for the recognition of each 

polymer, which is represented by a certain value of skewness and kurtosis. This numerical feature 

includes a quite large range of values. This can yield misclassification errors especially in the case of 

similar datasets, like the ones obtained from polymers. Nevertheless, this approach can furnish useful 

results for a rapid identification of polymeric mixture. 

 

5.3. Results and discussion 

 

In Figure the ToF-SIMS PS 128×128 pixels scan from an area of 300×300 µm2 static spectrum is 

reported. While it is easy to recognize specific molecular fragments from the spectrum in Figure 5.4 
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a), it is not possible to identify any characteristic pattern from the spectrum in Figure 5.4 b).  Indeed, 

the signal in the lower spectrum looks more like a barcode rather than an interpretable mass spectrum. 

As a matter of fact, a correct interpretation of ToF-SIMS data is quite difficult when the signal counts 

are low. The lack of counts often manifests in the case of 3D analysis. In this type of the acquisition, 

the use can cause damage within the same which decreases the secondary ions emission and 

ultimately the intensity counts. Often, this issue is overcome by performing a binning of some 

neighbouring pixels in order to increase the signal and obtain comprehensible spectra. However, this 

strategy cannot be applied in the case of structured multi materials samples where each acquired pixel 

could contain signals from different components. Such binning can also dramatically decrease the 

lateral resolution, which limits the ability to discriminate between components. 

 

 

 

 

Figure 5.4: a) static mode ToF-SIMS spectrum of Polystyrene. The spectrum is obtained as the sum of the 

signals originating from 128 × 128 pixels. (b) typical single pixel spectrum  

 



107 

 

In this experiment, we had to deal with the co-presence of four different polymers. In addition, the 

PS and PaMS polymers have a remarkably similar chemistry and thus have similar mass spectra. 

Thus, the PNN approach can be extremely useful for the polymer recognition. In order to train and 

test the PNN a dataset composed of 450 single-pixel ToF-SIMS spectra was built such as the one 

reported in (Figure 5.4 b). The dataset was organized according to this procedure: from the entire 

dataset, 200 spectra (50 for each class) were randomly selected in addiction with 100 spectra of other 

different polymers (complementary class). The testing set consists of 150 spectra (30 for each class 

including the complementary class) which are not included in the training set. 

Indeed, the training set is selected in order to find the model parameters for the neural network, that 

is, the number of neurons, the smoothing parameters σi and the network’s weights. Once trained, the 

PNN was tested on the test set, obtaining a misclassification error of 11.7%. 

Figure 5.5 displays the decision boundaries for the classification of the four different polymers 

obtained with the trained network.  

 

Figure 5.5: The decision boundaries for the classification of the four different polymers obtained with the used 

neural network (left) and the confusion matrix relative to the results of the neural classification (right). 

More explicitly, as we can see from the confusion matrix, the misclassification error contributions 

come from the network mixing up between PS and PaMs (4.2%) and PETi and PMMA (7.5%) 

outputs. 

Indeed, the misclassification between these two pairs of polymers, PS/PaMS and PETi/PMMA is 

easily explained from similarities of the polymers’ molecular structures. More specifically, PS and 

PsMS are extremely similar to each other: both do not contain oxygen and simply differ in alpha-

positioned methyl compared to phenyl. On the other hand, even though PETi and PMMA are not 
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particularly similar from a molecular point of view, they show a similar chemical composition, since 

they contain also oxygen in addition to carbon and hydrogen.  

Therefore, we can affirm that this approach is capable of discriminating various polymers with an 

excellent approximation, simply by analysing the spectrum acquired from a single pixel, despite the 

scarcity of its data.  

Although this thesis reports the PNN application only on polymeric thin films, this approach could 

be valid even with different chemical nature samples. More in general, the statistical approach can be 

widely applied to organic, inorganic, hybrid organic-inorganic samples and biological samples. 

For the particular case of ToF-SIMS analysis, it could be extremely useful especially for depth 

profiling and 3D imaging. In fact, depth profiling and 3D imaging produce a huge amount of data, 

and the application of this method could allow to identify the chemical composition directly from a 

single pixel spectrum, simplifying and speeding the analyses of laterally structured samples, without 

any implementation of pixel-binning which would irremediably lower the lateral resolution. 

 

5.4. Conclusions 

This thesis shows a computer enhanced method capable to easily extract chemical information from 

single pixel ToF-SIMS spectra. This kind of spectra are not otherwise interpretable since they look 

like a bar code rather than a mass spectrum. The developed procedure is based on a probabilistic 

neural network and it operates directly on raw data without any data treatment. It could allow to 

automate the study of big data from ToF-SIMS analysis acquired in 3D-imaging mode from 

biological samples or complex hybrid materials of technological interest without any necessity to 

perform procedures, such as mass-binning, that cause the reduction of the analytical resolution of the 

technique. 
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6 Defining Contamination and Sequence of Overlapped 

Fingerprints by Unsupervised Treatment of Hyperspectral 

Secondary Ion Mass Spectrometry Dataset 

 

In the previous chapters, a notable number of challenging samples, such as cells, particles for drug 

delivery, structured or hybrid samples, and cultural heritage objects, have been analysed with ToF-

SIMS. Each of these samples represents an objective challenge for chemical imaging, and ToF-SIMS 

has demonstrated its ability to deal with such complicated analyses. In addition to all of these 

examples, this chapter will address another successfully applied, but challenging sample for analysis, 

the chemical imaging of invisible fingerprints. Indeed, ToF-SIMS can provide an enormous amount 

of forensic information when analysing such a sample and can therefore be fundamental for an 

investigation. The fingerprints, however, represent a challenge outside of the norm for ToF-SIMS for 

several reasons. Chemically, a large number of compounds can be present on the fingerprint sample, 

and oftentimes it is unknown which compounds to search for in the mass spectra. Accurate 

interpretation can be overwhelming. In addition to the challenge of identification, acquisition of the 

spectra for an entire fingerprint is problematic. An entire print covers an area in the millimetre scale. 

In comparison, typical ToF-SIMS analyses are acquired up to the micron scale. Having the 

instrumentation be able to accurately map the fingerprint without drifting is therefore vital. Finally, 

since the image will be made of thousands of pixels, the size of the dataset for such a large area will 

require a computational protocol to handle such complicated task.  

Fingerprints originate from the friction of cutaneous finger crests to a surface because the physical 

secretions produced by cutaneous glands leave a strictly defined pattern. Dactyloscopy is the forensic 

chemistry technique1 which studies the identification of minuscule conic papillae, which form thin 

crests divided by subtle furrows. Crests leave curves, bows and vortices, and have dimensions and 

relative distance characteristic of each human finger. For this reason, already at the end of 19th 

century it was clear that fingerprints are individual anatomic features.  

Even though the major component of the glands’ secretion is water, also inorganic, and organic 

substances are present in the surface of fingerprints. These substances can include drugs, physical 

signs, gun and explosive residues, poisons, and arsons. Thus, they can reveal what an individual has 

recently handled, and their detection can be fundamental in a forensic investigation. Fingerprints can 

be either visible prints, which are left because of the presence of coloured substances such as blood, 

ink, pollutants or other chemicals, or invisible prints which require specific treatments in order to be 
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revealed by specific substances. The choice of the revealing substance must be accurate to avoid 

damaging the surface on which the process needs being carried out. Unfortunately, many of these 

methods can destroy the trace because of the chemicals involved.  

For this reason, another strategy has recently been experimented – using investigation techniques 

capable of performing a chemical imaging of latent fingerprints and collect their molecular signals. 

Mass spectrometry imaging techniques are strongly suited to accomplish this purpose. As a matter of 

fact, this approach is becoming increasingly more established, due to the enormous amount of 

forensic information that can potentially be extracted by using mass spectrometry techniques2,3,4. 

Among these, ToF-SIMS has been successfully applied for chemical imaging of invisible fingerprints 

on banknotes5, to identify illicit drugs on fingerprints6, as well as their dating age, following the 

diffusion of organic molecules or the chronology of the deposition on questioned printed documents 

, etc7, 8.  

Nevertheless, fingerprints imaging analysis can be difficult, since these traces cover such a large area 

of surface. When the spatial distribution of the analytes in the sample is much larger than the typical 

raster size of a ToF‐SIMS primary ion beam, the acquisition of the images can be arduous. In order 

to solve this problem, some modern instruments, such as ToF-SIMS, provide macroraster mode that 

enable imaging analysis of such large areas. Despite the possibility that macroraster mode can offer, 

this kind of acquisition yields a huge amount of data, whose handling is almost impossible by the 

typical commercial software furnished by the vendors. Thus, these kinds of dataset require specific 

postprocessing treatments.  

Recently techniques for automating data treatment have become increasingly popular. As previously 

discussed, the most common unsupervised approach to deal with big datasets is based on Principal 

Component Analysis, which is nowadays considered a standard protocol. In fact, it is now included 

in the vendors software dedicated to ToF-SIMS instruments. Meanwhile, the application of artificial 

intelligence and machine learning to ToF-SIMS data has received extensive attention over recent 

years9. Self-organizing map (SOM)10,  t-distributed stochastic neighbour embedding (t-SNE) and 

uniform manifold approximation and projection (UMAP)11 have been applied to ToF-SIMS dataset 

to reduce the dimensions producing so-called similarity maps. In the literature, the ability of these 

methodologies to handle the complexity and dimension of such data sets has already been shown12.   

However, these methodologies have been applied to datasets with relatively small size in terms of 

pixels, although extraordinarily complex in terms of chemical composition. This thesis work presents 

a new strategy to deal whit big dataset, based on a preliminary training of the neural network on a 

binned dataset.  
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6.1. Thesis work 

 

As stated previously, fingerprints represent an objectively challenging sample for analysis. In fact, 

the secretions left by the hands are a complex chemical mixture and thus many molecules with 

different chemical nature are present on the surface of fingerprints. Moreover, on the hands it is 

possible to find some residual substances coming from the products that have been handled during 

the day. Therefore, this chemical mixture is for the most part unknown.  

Moreover, human fingerprints do not belong to the micro or nano categories of samples. Indeed, their 

prints are enough large to cover an area of millimetres. Most imaging techniques have been developed 

and designed in order to visualize objects under the micrometre scale. Therefore, the areal dimension 

of fingerprints is quite larger than usual samples analysed by imaging techniques. These instrumental 

issues in most cases can be easily overcome, however, this is not always true for the handling of the 

big dataset that can be obtained from such sample sizes. In this thesis work, it will be shown that ToF-

SIMS imaging of overlapped fingerprints via macroraster modality yields a huge dataset which cannot 

be handled by the common software provided by the vendor. Moreover, the macroraster modality 

ToF-SIMS imaging requires long timescales to perform the analysis. These times prevent to 

acquisition of sufficient scans to obtain high intensities. Therefore, the images will contain 

insufficient counts and statistics. 

In this thesis work, it will be demonstrated that relevant information can still be extracted from big 

datasets having poor statistics, such as those obtained from analyses performed in macroraster mode. 

The method involves first training a neural network on a binned dataset. This binning is required so 

that sufficient signal is present in the pixels so the network can be trained. However, using the binned 

dataset leads to a loss of lateral resolution. Therefore, the trained neural network is reapplied back to 

the original, non-binned dataset that contains the high lateral resolution data. The method has been 

applied to samples of relevant forensic interest, in this case fingerprints. However, this methodology 

can be exploited to other imaging experiments, such as 3D imaging analysis of biological samples 

for which the statistics are poor. Oftentimes, it is not possible to accumulate many scans for biological 

samples, since avoiding the of accumulation of damage is a priority. In this case, this new 

methodology could be used to enhance the signals obtained for such experiments. Thus, this technique 

of training the neural network represents an exciting new methodology for generating relevant 

information from previously considered poor or unusable analyses.  
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6.2. Uniform Manifold Approximation and Projection (UMAP) 

Mathematical Bases 

 

For more than a decade, t-Distributed Stochastic Neighbour Embedding (tSNE) has been one of the 

most widely used dimensionality reduction techniques. However, Uniform Manifold Approximation 

and Projection (UMAP), which is based on Riemannian geometry and algebraic topology, has 

recently emerged as an alternative to t-SNE, offering better efficiency and applicability. In fact, 

recently it became a popular nonlinear dimensionality reduction technique13. UMAP stands out for 

its fast computation time. It is approximately three times faster than tSNE implementation and has a 

better stability between runs. It also has support for non-metric distance measures, such as the cosine 

distance and correlation distance. Since its introduction, UMAP has been quickly adopted by diverse 

disciplines, such as life sciences, physics, and computer science, attesting to its powerful 

performances.  

In this thesis work UMAP is applied for the data reduction of ToF-SIMS imaging in macroraster 

modality of fingerprints. UMAP is used to extract certain parameters from each datapoint in the 

original dataset. These parameters, which represent the original data, are then projected in a lower 

dimensional space. In this way, it is possible to evaluate and discriminate each point of the dataset in 

a space with less dimensions. A detailed description of the underlying mathematics related to UMAP 

can be found in the literature11. Briefly, the algorithm first constructs a fuzzy topological 

representation of the dataset, then it optimizes the low dimensional representation to have as close a 

fuzzy topological representation as possible, measured by cross entropy. Although UMAP is 

grounded in a complex mathematical foundation, in the following paragraph a brief mathematic 

description is provided, in order to understand how this algorithm works. 

The UMAP computation method can be divided into two parts. The first part aims to calculate the 

numerical features of each datapoint, which are then projected for a graph construction. The second 

part deals with the optimization of the computed parameters, in order to minimize the loss of 

information caused by the passage to a lowdimensional space. UMAP starts by generating a weighted 

k-nearest neighbour graph that describes the distances between the data points in the high-

dimensional space. Given an input dataset X = {x1,..., xN}, defined are k, the number of neighbours 

to consider, and d, the distance metric. UMAP first computes Ni , which is the k-nearest neighbours 

of xi respect to d. Then, UMAP computes two parameters, ρi and σi , for each data point xi in order 

to identify two numerical values which represent its local metric space. ρi is a nonzero distance from 

xi to its nearest neighbour, and it is obtained according to Equation 6.1: 
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ρi = min
j∈Ni

{d(xi , x j) | d(xi , x j)  > 0} 

Equation 6.1 

σi must satisfy the condition below (Equation 6.2) and it is found using binary search: 

 

∑
exp( −max(0,𝑑(xi ,x j)−ρi) 

σij∈Ni  = log2(k) 

Equation 6.2 

Using ρi and σi , UMAP computes v j|i, which is the weight of the edge from a point xi to another 

point x j. As well as for v j|i,  v i|j indicates the weight of the edge from  point xj to point xi. They are 

calculated according to Equation 6.3: 

 

v j|i = exp
( −max(0,d(xi ,x j)−ρi) 

σi
 ) 

Equation 6.3 

In order to obtain a symmetric result, UMAP computes a single edge combining the resulting weights 

of v j|i and vi|j, according to equation 6.4:  

vij = v j|i +vi|j −v j|i · vi|j  

Equation 6.4 

The resulting parameter, vij, indicates the similarity between points xi and x j in the original space. 

Let yi be the projection of xi in a lowdimensional projection space. The similarity between two 

projected points yi and y j is given by equation 6.5:  

wij = (1+a||yi − y j ||2
2𝑏 ) −1 

Equation 6.5 

where a and b are positive constants defined by the user. Then, it is necessary optimize the differences 

between the original space and the new lowdimensional space, or rather, UMAP has to find the yi 

that minimizes the difference (or loss) between vi j and wi j. For accomplishing this, UMAP measures 

the cross entropy between vi j and wi j (equation 6.6): 

CUMAP = ∑ [vi j ·  log( 
vi j

wi j
 ) − (1 − vi j) ·  log( 

1− vi j

1− wi j
)]i≠j  

Equation 6.6 
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Therefore, yi will be initialized through spectral embedding and iteratively optimized to minimize 

CUMAP. The result of this computing procedure is 2D and 3D-coloured maps where the datapoints are 

localized according their similarity or dissimilarity. 

  

6.3. Materials and Methods 

 

The fingerprints used in this study were impressed on a Si surface from two volunteers. Purposely, 

the prints were partially overlapped to test the ability of the network to discriminate between them. 

Without any further treatment, the sample was analysed by ToF-SIMS. High-mass resolution static 

SIMS images were acquired with a TOF-SIMS IV spectrometer (ION-TOF) using a Bi+ analysis 

beam (bunched mode, 25 KeV, ∼0.1 pA, 256×256 pixels, single scan rastered over 500 µm × 500 

µm, PI fluence < 3×1011 ions×cm−2). In order to analyse both fingerprints a macroraster modality was 

executed by collecting 30 × 30 stacked single raster scans, thus 15 mm × 15 mm was investigated.  

The workstation used was equipped with 16 cores i9 9900K processors and 256 GB of RAM. Datasets 

were exported from SurfaceLab software (IONTOF GmbH) to General Raw Data format and 

imported into Python 3.8 based scripts developed in our lab. NumPy was imported as linear algebra 

library, Matplotlib for data plotting, PIL for image editing and umap-learn for Uniform Manifold 

Approximation and Projection. The Python based “pseudo code” is reported below: 

 

import umap 

import numpy as np 

 

def rebin(arr, new_shape): 

    """Rebin 2D array arr to shape new_shape by averaging.""" 

    shape = (new_shape[0], arr.shape[0] // new_shape[0], 

             new_shape[1], arr.shape[1] // new_shape[1]) 

    return arr.reshape(shape).mean(-1).mean(1) 

    

 """load dataset""" 

x = np.load('foo.npy').astype(np.uint8) 

x = x.reshape(7000,7000,518) 

 

"""binning dataset""" 

binning_to = int(700) #binning factor 

y = np.zeros((binning_to,binning_to,518)) 

for i in range (518): 
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    print (i) 

    y[:,:,i]=rebin(x[:,:,i], (binning_to,binning_to)) 

y = y.reshape(binning_to**2,518) 

 

"""learn on binned dataset""" 

mapper = umap.UMAP(n_neighbors = 15, n_components=3, low_memory=True, 

metric='cosine',init = 'spectral', spread = 1.0, min_dist = 0.1, verbose = 'true').fit(y) 

 

"""transform NON binned dataset""" 

x = x.reshape(7000*7000,518) 

transformed = np.zeros((7000**2,3)) 

for i in range(0,1000*7000,100000): 

       transformed[start*7000+i:start*7000+i+100000,:]= 

mapper.transform(x[i:i+100000,:]) 

 

6.4. Results and Discussion 

Figure 6.1 a) shows the spectrum of total ions relative to the sum of all the scans that make up the 

macroraster. Significant peaks up to m/z of about 400 are present. In particular, 518 peaks were 

identified in the spectrum, which were used to compose a dedicated peak list. Figure 6.1 b) shows the 

total ion map of the macroraster represented by 49 million pixels (7000 x 7000). Hence, a 

multispectral analysis of the raw file builds a data matrix consisting of 49 million times 518 elements. 

Such size falls within the category of big data and requires special data processing to handle the 

dimensions.   

On the other hand, by looking at the colour bar in Figure 6.1 b) it is possible to notice that the 

maximum total intensity per single pixel of all integrated 518 sectors does not exceed 100 counts. 

This indicates that while the data to be processed is exceptionally large, the signal is very weak and 

does not have sufficient statistics. In fact, the typical spectrum of the signal acquired from a single 

pixel reports only single counts, as shown in Figure 6.1 c). The statistical analysis shown in Figure 

6.1 d) reveals that for the majority of the pixels, a maximum of a single count is obtained from 

integration of all 518 peaks. An example of this problem is shown in Figure 6.1 e) which displays the 

false-colour map associated with the signal integration of the peak assigned to carbon. Despite being 

one of the most intense peaks in the total ion spectrum (see Figure 6.1 a)), the image is in black and 

white because the counts are often either null (black colour) or unitary (white colours).  This is a quite 

common condition when dealing with ToF-SIMS data acquired by means of macroraster or during 

3D imaging with dual-beam mode of organic-based samples. In both these cases in fact, the 

acquisition time is compressed in order to either avoid damage accumulation phenomena and/or 



118 

 

decrease time duration needed for the entire analysis. This reduction of the acquisition time forces 

the operator to make conservative choices that create problems in the post-acquisition data 

investigation.  

 

 

Figure 6.1: a) mass spectra of total ion count for the macroraster. b) total ion map for the fingerprint sample. c) 

typical spectra for a single pixel. d) statistical analysis of the number of counts acquired in individual pixels. e) signal 

integration for C peak for all pixels. 

One solution could be to use analysis conditions that enhance the yield of secondary ions. Some 

examples have been reported in the literature. These include the enhancement of the secondary ion 

yield by means of reactive gases14, metal nanoparticles15, primary reactive beams16, and others. 

However, these protocols are not always applicable since they are largely influenced by the chemical 

nature of the sample under investigation, and satisfactory results are not a guarantee. Hence, the most 

reliable procedure for increasing the secondary ion signal without relying on changes to the sample 
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or analysis environment is through post-analysis data treatment. In this study, the approach was to 

perform a binning of neighbouring pixels. This procedure aims to accumulate statistically significant 

signal by exploiting the information coming from the surrounding pixels and recalibrate an individual 

pixel with this additional signal. 

 

Figure 6.2: a) mass spectra of a 10x10 pixel binning. b) false color image after binning is applied to all pixels. 

Figure 6.2 a) shows the spectrum related to a binning of 10×10 neighbouring pixels. The spectrum 

now appears richer in counts and looks much less like an unintelligible barcode. Figure 6.2 b) shows 

the false-colour image relative to the integration of the peak assigned to the C, which has the centre 

at m/z = 12. When comparing this image to the original un-binned image shown in Figure 6.1 e), it is 

possible to notice that Figure 6.2 a) is undoubtedly richer in statistically relevant information. Overall, 

the binning procedure generates multispectral data matrices that are less massive and, at the same 

time, richer in useful information for data processing. On the other hand, pixel binning leads to a loss 

of lateral resolution, nullifying the high spatial resolution capabilities that ToF-SIMS could offer.  

This thesis work demonstrates a new and exciting strategy based on machine learning methodologies 

to boost the signal intensity of a large dataset and generate an intelligible interpretation of the acquired 

data. Since the raw data was statistically poor, the pixel binning process results were used to enable 

the training of the neural network in order to then correctly recognize and clusterize the original non-

binned data. Thus, the lateral resolution of the non-binned data was not sacrificed. The procedure is 

schematized in Figure 6.3.  
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Figure 6.3: iconographic representation of the proposed data treatment method 

First, the sample containing the fingerprints was analysed according to the macroraster procedure to 

obtain the raw data. The raw data was exported in a format readable by non-proprietary vendor 

software (nominally GRD)17. The total ion spectrum was summed (Figure 6.1 a)) and a peak list 

containing 518 peaks was assembled. The peak list integration gave rise to a hyperspectral array. 

Each of the 518 maps was binned by summing the data from neighbouring pixels, in order to reduce 

the size of the hyperspectral images from 49M pixels to 250K pixels (for example see Figure 6.2 b)).  

The binned matrix was then subjected to dimensional reduction in the mass domain (the time-of-

flight) and, after transposition, in the spatial domain (the pixels). A manifold learning technique for 

dimension reduction called UMAP (Uniform Manifold Approximation and Projection) was employed 

for these purposes.  

Uniform Manifold Approximation and Projection (UMAP) is a dimension reduction technique that 

can be used for visualisation, but it can also be used for general non-linear dimension reduction. 

Indeed, UMAP was recently applied to non-linear dimension reduction of hyperspectral data gathered 

from some mass spectrometry techniques, including ToF-SIMS13. A detailed description of the 

underlying mathematics related to UMAP can be found in 11. In brief, the algorithm first constructs a 

fuzzy topological representation of the dataset, then it optimizes the lower dimensional 

representations to match. In this way, it was possible to apply a reduction in the mass domain up to 

three embeddings. The trained neural network was used to back fit the non-binned dataset. As a result, 

high-resolution similarity maps were achieved, showed in colour scale (RGB) mapping. Only two 

embeddings were sufficient for reduction in the spatial domain. Using a hierarchical clustering 
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algorithm, it was possible to map in false colours the peaks belonging to each cluster. Similar to the 

mass domain, the trained neural network enabled the reconstruction of the characteristic spectra for 

each cluster. The output is the product between the percentage belonging to the cluster (identified by 

the hierarchical algorithm), and the counts of the non-binned dataset. 

Figure 6.4 a) shows the three-dimensional projection of the 49 million pixels resulting from UMAP 

embedding. It is evident that three dimensions are sufficient to identify four clusters. These four 

clusters of data are represented with a specific colour, in the RGB mapping, and each pixel belongs 

to one of these clusters. Three clusters are well-separated (green, blue, and light pink colour) while a 

fourth cluster (red) links the other three in the three-dimensional projection map. Since the index of 

each pixel in the dataset is known, it is possible to reconstruct similarity maps in false colours.  

Figure 6.4 b) shows the reconstruction of the non-binned dataset. It is clear that this approach 

recognized the presence of two fingerprints characterized by different chemical features (specified by 

blue and light pink colour) placed on a substrate (green colour). Moreover, the lateral resolution is 

maintained, and it is possible to inspect in detail complex portions of the sample even in areas where 

the two fingerprints are overlapped. Figure 6.4 c), for instance, shows one portion. By properly 

separating the colour channels it is possible to have a greater detail of the 4 clusters, as displayed in 

Figure 6.4 d). In fact, that the fingerprint assigned to the blue colour is unequivocally placed under 

the other assigned to the light pink colour. The pixels clustered and represented by red are related to 

areas belonging to both of the fingerprints that probably have a similar, non-discriminable chemical 

composition. 
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Figure 6.4: a) three-dimensional projection of the 49 million pixels as resulting from UMAP embedding b) 

false color image of the non-binned dataset coloring each pixel according to a RGB mapping of the 3 embeddings 

scaled normalizing between 0 and 255, c) zoomed portion of yellow portion, d) false color images of the non-binned 

dataset. 
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Figure 6.5 a) displays the two-dimensional embedding of the processed dataset after matrix 

transposition. We can see that the 518 selected values are divided in clusters and plotted with different 

colours, blue, pink, green and orange. In addition, the grey colour represents the noisy points which 

were not clustered by the algorithm.  

 

Figure 6.5: a) two-dimensional embedding of the transposed dataset, colour represents the belonging to a 

cluster as evaluated by the hierarchical clustering algorithm, b) mass spectra relative to each cluster coloured in red in 

the right panels and the corresponding false-colour map as depicted in Figure 6.4 d)  
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Figure 6.5 b) shows the mass spectra relative to each cluster and the corresponding false-colour map. 

Therefore, each cluster contains mass values which are characteristic of a certain area of the sample. 

The assignment of the peaks allowed the characterization of the chemical composition of the different 

areas. In particular: 

 The blue cluster values belong to the pixels having the mass spectrum of the substrate (i.e., 

silicon oxide-based glass).  

 The pink cluster values describe one fingerprint (coloured in violet in the false-colour map), 

which has characteristic peaks at low masses, assigned to nitrogen-containing organic 

fragments, and at high masses (between 250 and 350 m/z). These last peaks at high m/z show 

differences in masses assigned to small organic fragments.  

 The green cluster contains mass values belonging to the other fingerprint (coloured in blue in 

the false-colour map), which presents a very peculiar mass spectrum characterized by peaks 

assigned to fragments of compounds containing phosphate ions at masses below 100, and 

fragments of compounds based on oligomers of ethylene oxide, a component normally used 

in cosmetics.  

 The area clustered with the orange colour has a characteristic spectrum rich in high masses 

peaks and presents some hydrocarbon fragments peaks at low masses, confirming that these 

are not strongly discriminating zones.  

A comparative analysis to databases or a more detailed assignment of the characteristic fragments of 

the various clusters would shed light on the origin of these chemical features. However, this rigorous 

forensic investigation was not the aim of this work. Here, the demonstration of the successful 

methodology or tool to enhance the sensitivity in ToF-SIMS and utilize the neural network to 

discriminate the features was the main goal. These results demonstrate that this bigdata processing 

procedure is applicable in an unsupervised mode to ToF-SIMS datasets, derived from analysis with 

high mass resolution and pixel definition in the order of tens of Megapixels. The only choice left to 

the analyst is the extent of binning between neighbouring pixels. 

In fact, this binning parameter fact affects how UMAP balances local versus global structure in the 

data. It does this by constraining the size of the local neighbourhood UMAP will utilize when 

attempting to learn the manifold structure of the data. This means that low values of n neighbours 

will force UMAP to concentrate on very local structure. On the other hand, large values will push 

UMAP to look at larger neighbourhoods and lose the fine detail structure for the sake of the broader 

description of the data. 
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Figure 1: False colour image of a portion of the image with binning a) 70 × 70, b) 35 × 35, c) 14 × 14, d) 9 × 9, 

e) 4 × 4, f) 2 × 2 

As a demonstration, Figure 6 shows the performance of this methodology for the same fingerprint 

dataset with neural networks trained by different binning levels. The results show that excessive 

compression of the initial data leads to a loss of the information needed to discriminate each 
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fingerprint. Indeed, by performing a strong binning between nearby pixels (Figure 6.6 a) 70×70 or 

Figure 6.6 b) 35×35) the neural network is able to discriminate the substrate pixels from the 

fingerprints. However, it is not able to distinguish between the fingerprints. By performing a coarser 

binning, the results are unsuitable for an appropriate training of the network since the initial data is 

poor in statistics (Figures 6.6 c) and d), 14×14 and 9×9, respectfully). Figures 6.6 e) and f) show that 

by decreasing the binning to 4×4 or 2×2, the distribution of the dots in the 3D-embedding plot is very 

scattered. Thus, the substrate cannot be discriminated from the two fingerprints.   

Therefore, the best condition is at intermediate binning values around 14×14, reducing the 7000×7000 

whole hyperspectral images to 500×500. This value is utilized throughout the study shown above. 

Nevertheless, this value is sample-dependent and for any dataset the proper one must be found. 

Currently, a unique protocol is being developed. However, the procedure is easily automated, and the 

user can choose judiciously which is the best level of binning for his purposes in the same way as it 

is typically done applying any other compression methodology. 

 

6.5. Conclusions 

 

In this work, a new approach for big data treatment is presented based on data dimensional reductional 

algorithm. The uniform manifold approximation and projection (UMAP) algorithm was successfully 

applied on the dataset obtained from overlapped fingerprints acquired via ToF-SIMS macroraster 

imaging. As is known, macroraster mode enables imaging on an area much larger of the normal ToF-

SIMS raster size. However, this larger raster area gives rise to huge dataset which cannot be 

interpreted with normal data processing protocols. The UMAP algorithm enabled the use of the big 

dataset obtained from two overlapped fingerprints and was able to extract important information from 

the sample. By a judicious extension of neighbouring pixel binning, it was possible to train a neural 

network with much smaller size dataset in order to prepare it for the discrimination of features in the 

true big dataset. Thanks to the embedding maps it was possible to “clusterize” a peak list of 518 m/z 

values and distinguish four areas of different chemical composition in the macroraster image. The 

spectra in each area of the image confirmed the obtained chemical features. In this way, the two 

fingerprints’ pixels were identified and compositionally characterized, as well as for the substrate. In 

fact, characteristic fragments were assigned to each component of the image. Moreover, it was 

possible to demonstrate that the best protocol performance was achieved with an intermediate binning 

values, but this choice can be different for each sample. Nevertheless, the procedure is easily 

automated, it can be applied beyond the fingerprint analysis in this study. 
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General Conclusions 
 

The overall theme of this thesis project aimed at developing 3D and 2D characterization of non-

conventional samples using ToF-SIMS. For this reason, some non-conventional “model” samples 

were selected in order to be investigated, and were chosen for the specific role in their respective 

application field. As a matter of fact, the strength of ToF-SIMS characterization in terms of the 

knowledge it can provide within these fields, and how it could be used to fill the gaps in the literature, 

was the driving force behind these efforts.  

All the characterized samples had micrometre scale structures, which normally can be visualized by 

using electronic microscopies. These microscopic techniques provide optical information about a 

sample but omit any molecular information. Meanwhile, techniques which give the possibility to 

combine chemical mapping in the microscopy techniques, only provide elemental and not molecular 

information. By ToF-SIMS analysis, it was possible to extract molecular information thanks to the 

high mass resolution, as well as to study samples structure morphologies thanks to the high spatial 

resolution. 

Moreover, the issue of big data handling was addressed. As a matter of fact, ToF-SIMS gives rise to 

hyperspectral images which represent a challenge dimension data-file for many software. For this 

reason, today more than ever, the imaging needs the support of computational and programming 

science. Many strategies, such as Principal Component Analysis or Machine Learning algorithms 

have been developed aiming to decrease the number of the file variables or reducing the data 

dimension. This thesis work has presented some computational data handling approaches which can 

be successfully applied for ToF-SIMS imaging datasets. 

The first work in this thesis presented a demonstration of Solid Lipid Nanoparticles (SLNs) imaging. 

SLNs are lipidic particles used in drug delivery to release drugs in human body. In fact, they are 

generally loaded with pharmaceutic molecules and produced as aqueous solution by adding 

surfactants as stabilizers. This specific sample was characterized by the presence of an anti-

inflammatory molecule PEA and a lipidic core structure. The particles dimension was around 2 

microns. Considering the minimal literature focusing on this recent topic, filling the gaps especially 

in the chemical structure is essential to advancing the SLNs use.  

In fact, spatial characterization could assist in the improvement of their design and consequently of 

their efficiency. ToF-SIMS surface analyses have been already reported in literature with successful 

results for efficiency evaluation. However, no ToF-SIMS imaging characterizations have been carried 

out. Therefore, this is the first specific study on ToF-SIMS imaging, and it has shown the usefulness 

of the knowledge obtained from this technique. For this study, a specific method for the sample 
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preparation was developed, avoiding the agglomeration phenomenon, and thus achieving single 

particles dispersed in a solid matrix. Typically, they are only stabilized in aqueous solution which is 

unsuitable for ultra-high vacuum. The use of trehalose “imprisoned” particles in a solid sample 

matrix, suitable for ultra-high vacuum. Both 3D and 2D high lateral resolution images were 

successfully carried out, which let us examine particles structure in space. Indeed, it was possible to 

detect some signals which are characteristic of the sample components and also detect the molecular 

peak of the drug inside the particles. Notwithstanding, this sample shows an extraordinarily complex 

matrix, whose composition is covered up by industrial patent and is made up of several mixtures of 

different chemical substances. 

The second topic presented in this thesis was the use of ToF-SIMS analysis within the field of cultural 

heritage. As part of a research project submitted by LAMS (Laboratoire D'archéologie Moléculaire 

Et Structurale) led by Dr Alain Brunelle, ToF-SIMS characterization of dyes stemming from ancient 

19th century textiles was performed. In the field of cultural heritage, the sample preparation assumes 

a vital role. Dealing with valuable cultural heritage, often fragile, and limited in availability, it is 

essential that minimal sample fragments are used in order to preserve the integrity of the precious 

objects. To achieve this aim, ToF-SIMS is convenient because its high sensitivity precludes the need 

for large sample quantities. Moreover, ToF-SIMS allows the identification of molecular signals even 

when chemical composition is unknown, thanks to its high mass resolution. These advantages were 

essential to reveal and identify the chemical nature of the dyes. In addition, by using the multivariate 

analyses, it was possible to discover the ancient dying technique performed on these textiles. This 

research project and its successful results were presented in October 2019, during the 22nd 

International SIMS Conference (SIMS 22) in Kyoto, Japan. 

In the fourth chapter, a PET-PC blend ToF-SIMS study is shown. This polymeric blend has been 

extensively studied and nowadays the physical-chemical properties, as well as the miscibility 

conditions are known. Despite this system is not new, this chapter presents a novel investigation 

procedure. In fact, temperature-induced aging experiments are often carried out on polymeric blends 

(or more in general on materials) registering the results only before and after the procedure. In this 

thesis work, ToF-SIMS imaging was applied for a temperature programmed experiment which 

allowed to monitor in real-time the modification occurred on the blend surface. In particular, for the 

experiment presented in this thesis, the blend was prepared by spin-coating and it shows characteristic 

structured morphologies typical for this system. The obtained structures’ changes were monitored 

during the whole temperature programmed experiment. This allowed to observe two different Tg 

corresponding to those of the homopolymers, and to verify that no blending actually occurred, 

because of the absence of transesterification reactions. The results obtained through temperature 
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programmed ToF-SIMS imaging testify the capability of this technique for the investigation of 

material surface modification and demonstrate the interesting prospective of future applications for 

various organic structured systems. 

The following chapter presented the application of a probabilistic neural network (PNN) for the 

identification of polymers. This approach provided the extraction of latent chemical information from 

ToF-SIMS data, working on uncompressed and un-binned raw data sets. It was demonstrated that this 

computational method, opportunely designed and trained, was capable of distinguishing and 

classifying four different polymers by recognizing some characteristic sequences of counts from their 

single pixel spectra. This approach could enable automated study of big data from ToF-SIMS analysis 

from other 3D-imaging analyses, such as biological samples or complex hybrid materials. It thus 

represents an exciting potential for ToF-SIMS to rapidly advance knowledge of these materials of 

technological interest, without any necessity to upgrade the instrumentation or alter the samples prior 

to study. 

The last work presented in this thesis deals with the detection of contaminants on fingerprints with 

ToF-SIMS by means of an unsupervised machine learning treatment. Fingerprints represent an 

objective challenging sample because the human secretions left by the hands are a complex chemical 

mixture in addition to any residues from what a person has handled. Since fingerprints are enough 

large to cover an area of millimetres, macroraster analysis has to be performed. This in turn generates 

large hyperspectral files which are problematic with typical data processing. Therefore, a method to 

both boost the low sensitivity within the data acquisition, as well as interpret a big dataset, was 

developed. For this thesis work two overlapped fingerprints were analysed by ToF-SIMS in 

macroraster modality, obtaining an image of 49000×49000 pixels. The uniform manifold 

approximation and projection (UMAP) algorithm was successfully applied to reduce the dataset size 

so that a neural network could be trained. Once the training was completed, this network was capable 

of identifying like-mass spectra on the un-binned data, and discriminate the features and chemistry 

of each fingerprint on the sample substrate. The result is extremely promising for any number of ToF-

SIMS applications, because it is capable of turning previously unusable data into an accurate 

intelligible characterization. 

These results presented in this thesis work aimed to demonstrate that, among other imaging 

techniques, ToF-SIMS is quite versatile and can be utilized to advance the understand of materials 

many application fields. Despite the age of this technique and its widespread use in the literature, 

there are still unexplored fields of investigation in which ToF-SIMS can reveal information which 

could not be extracted by other techniques. Moreover, the support that computational methods can 
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provide to this technique, results in a powerful tool for imaging, which can be applied for any kind 

of challenging samples. 


	1 Introduction
	1.1 Imaging Techniques
	1.2 Mass Spectrometry Imaging (MSI)
	1.3 MSI History and State of Art
	1.4 ToF-SIMS Imaging
	1.4.1 ToF-SIMS sample preparation
	1.4.2 ToF-SIMS imaging issues
	1.4.3 Big ToF-SIMS data

	1.5 Conclusions

	2 ToF-SIMS imaging of Solid Lipid Nanoparticles (SLN)
	2.1 SLNs chemical composition
	2.2 ToF-SIMS Imaging of SLNs
	2.2.1 Prior ToF-SIMS investigations
	2.2.2 Single particle imaging issue

	2.3 Thesis Work
	2.4 Materials and Methods
	2.5 Results and Discussion
	2.5.1 ToF-SIMS preliminary analyses
	2.5.2 High mass resolution Imaging
	2.5.3 ToF-SIMS imaging by using a solid trehalose matrix
	2.5.4 High spatial resolution imaging

	2.6 Conclusions

	3 ToF-SIMS Detection, Identification, and Imaging of Dyes on Textiles from 19th Century and PCA Data Treatment
	3.1 Thesis work and ToF-SIMS dyes on textiles analysis issues
	3.2 Materials and Methods
	3.3 Results and Discussions
	3.3.1 Preliminary analyses
	3.3.2 Secondary ion imaging and PCA data treatment

	3.4 Conclusions

	4. ToF-SIMS imaging of PET-PC blends
	4.1. PET-PC Blend
	4.2. Thesis work
	4.3. Materials and Methods
	4.4.1 Preparation of the films
	4.4.2 Temperature programmed ToF-SIMS imaging

	4.4. Results and Discussion
	4.4.1 Preliminary analyses
	4.4.2 PET-PC blend imaging
	4.4.3 Temperature-programmed ToF-SIMS experiments

	4.5. Conclusion

	5. Probabilistic Neural Network-Based Classifier for ToF-SIMS Polymer Single-Pixel Spectra
	5.1. Thesis work
	5.2. The Probabilistic Neural Network (PNN)
	5.3. Materials and Methods
	5.3. Results and discussion
	5.4. Conclusions

	6 Defining Contamination and Sequence of Overlapped Fingerprints by Unsupervised Treatment of Hyperspectral Secondary Ion Mass Spectrometry Dataset
	6.1. Thesis work
	6.2. Uniform Manifold Approximation and Projection (UMAP) Mathematical Bases
	6.3. Materials and Methods
	6.4. Results and Discussion
	6.5. Conclusions

	General Conclusions

