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1. Introduction

In this article we consider the following quasilinear boundary value problem−div(a(x, u(x))Du(x)) = f (x), x ∈ Ω

u = 0, x ∈ ∂Ω
(1.1)

where Ω ⊂ Rn, with n ≥ 3, f , u : Ω → RN , with N ≥ 2, and a : Ω × RN → RN2n2
is a matrix valued

function whose entries are aα,βi, j (x, u) with i, j ∈ {1, . . . , n} and α, β ∈ {1, . . . ,N}. Therefore the first line
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in (1.1) is a system of N equations of the form

−

n∑
i=1

Di

 n∑
j=1

N∑
β=1

aα,βi, j (x, u)D juβ
 = f α α = 1, . . . ,N. (1.2)

For the treated problem there is an extensive literature in the scalar case N = 1.
In particular, for the existence of a suitably defined solution, the Reader can refer to the papers

[9, 10, 14, 58, 69] while, relatively to uniqueness and a priori estimates, we can quote respectively
the papers [67] and [3]. For what concerns the regularity of a solution we cite the works [35, 38].
Moreover, similar conclusions for the nonlinear case can be found in [2, 8, 12] and for the anisotropic
case in [4, 36]. Subsequently the aforementioned results have been extended to the operator with
lower order terms too (see also [15–17, 20, 51]). In this context one can also see [7, 11, 12, 24, 25, 30].
Furthermore, in [37] the right hand side appears in divergence form, that is f = −divF and in [1] the
biharmonic operator is studied.

For further regularity results concerning elliptic operators the Reader is invited to refer to the
foundamental works [5, 6, 26–28, 41–48, 64] and the survey [65].

As it is shown by the De Giorgi’s counterexample [29], see also [39, 40, 49, 60, 61], the good
regularity properties obtained in the scalar case can not be in general extended to the vectorial one,
unless new structural assumptions are introduced.

An existence result of bounded weak solution for nonlinear degenerate elliptic systems is obtained
in [55], using a componentwise coercivity condition. In several other papers, conditions on the support
of the off-diagonal coefficients aα,βi, j (x) have been used to address different problems. Let us mention
that a maximum principle result is obtained in [66] where the assumption is aα,βi, j (x, y) = 0 for α , β
when yα is large and in [52] where different shapes of support are considered. Hölder continuity of
the solutions is proved in [70] for a tridiagonal system, aα,βi, j = 0 for β > α. L∞ regularity results are
obtained in [53] for an oblique type of support for the coefficients and in [54] for a butterfly support.
Measure data problems are faced in [56] and [57] where the support of aα,βi, j (x, y) is contained in squares
along the yα = ±yβ diagonals.

These kind of assumptions on the coefficients have been recently employed also to deal with
degenerate elliptic systems. In this context there are results on problem (1.1) when the datum f ∈ Lm,
which extend the ones contained in [14] for the scalar case. Namely, in [31] the existence of a
bounded solution is proved when m > n

2 , assuming a butterfly support for the off-diagonal coefficients;
moreover in [32] the case of a datum f with an intermediate grade of integrability (m < n

2 ) is treated,
thanks to an appropriate choice of the support for the off-diagonal coefficient.

In this paper we extend to the degenerate vectorial problem (1.1) an existence result concerning
degenerate scalar operators, with the datum f in a suitable Marcinkiewicz space, contained in [14, 62,
63] (see also [21, 22]). Since we are dealing with the vectorial case the support of the coefficients is
required to have a particular structure. In Section 2 we give the precise notions of degenerate ellipticity
and Marcinkiewicz spaces, see respectively (A2) and definition 2.1, while the assumption on the shape
of the support of the coefficients is stated in (A3).

Also in this context the extension to the vectorial case of the known result in the scalar one is not
obvious. Indeed, starting from De Giorgi’s counterexample, it is possible to construct an example of
an elliptic system with datum f ∈ Lp for every p < n, whose unique solution is unbounded and has
low integrability, see [31] for details on the counterexample.
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When dealing with systems of N equations, like (1.2), whose coefficients are only measurable with
respect to x, little is known. Most articles are devoted to study existence or regularity of solutions of
systems with right hand side f α ∈ Lm, either when m is large, or when m is small. When m is large,
namely m > n

2 , existence of bounded solutions is obtained in [31].
When m is small, namely m = 1, or even when f α is a measure, existence of solutions have been

studied for general systems

−

n∑
i=1

Di
(
Aα

i (x, u,Du)
)

= f α, α = 1, . . . ,N, (1.3)

under structure conditions on Aα
i . Namely, in [33] and [34], authors assume that

0 ≤
n∑

i=1

Aα
i (x, y, ξ) ((Id − b × b) ξ)αi (1.4)

for every b ∈ RN with |b| ≤ 1. On the other hand, in [71], the author assumes the componentwise sign
condition

0 ≤
n∑

i=1

Aα
i (x, y, ξ)ξαi (1.5)

for every α = 1, . . . ,N. When N = 2, (1.4) implies (1.5): it is enough to take first b = (1, 0), then
b = (0, 1). Note that, in the present paper, we address the quasilinear case

Aα
i (x, y, ξ) =

N∑
β=1

n∑
j=1

aα,βi, j (x, y)ξβj ; (1.6)

in this case, as far as one off-diagonal coefficient aα̃,β̃
ĩ, j̃

(x, y) is non zero, then (1.5) is no longer true: it is

enough to take α = α̃, ξβj = 0 if β < {α̃, β̃}, ξα̃i = 0 if i , ĩ, ξα̃
ĩ

= 1, ξβ̃j = 0 if j , j̃, ξβ̃
j̃

= t
aα̃,β̃

ĩ, j̃
(x,y)∣∣∣∣aα̃,β̃ĩ, j̃
(x,y)

∣∣∣∣2 with

t → −∞. When N = 2, failure of (1.5) implies failure of (1.4). We recall that the study of quasilinear
systems (1.2) with f α ∈ L1 is contained in [57] under the assumption that the support of off-diagonal
coefficients is contained in a sequence of squares with side lenght r along the diagonals of the yα − yβ

plane.
Concerning existence and regularity of suitable defined solutions of linear ellitptic systems

−

n∑
i=1

Di
(
Aα

i (x)Du
)

= f α, α = 1, . . . ,N,

with VMO coefficients and datum f = ( f α) in a Lebesgue space Lγ with γ ∈ (1, 2n
n+2 ] (i.e., below the

duality exponent) or in a suitable Lorentz-Morrey space one can refer also to [50]. While if f belongs
to the natural dual Lebesgue space but the linear operator in not coercive due to the presence of a lower
order term, called “drift term”,

−

n∑
i=1

Di
[
Aα

i (x)Du − Eα
i (x)u

]
= f α(x)
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then existence and regularity results can be found in [19]. The above result has been extended to non
linear operator under the so-called Landes condition (similar to (1.4)) with datum being in L1 or in L

2n
n+2

respectively in [18, 23].
In the present work we address the existence of a regular solution to (1.2) when f α has an

intermediate degree of integrability, namely, f α ∈ Mm with 1 < 2n
n+2−θ(n−2) < m < n

2 and Mm is the
Marcinkiewicz space. In this case, the higher degree of integrability of the right hand side f α allows
us to weaken the condition on the support of off-diagonal coefficients.

In the next section we present assumptions on the coefficients and on the datum f and our result. In
Section 3 we consider a sequence of approximating non degenerate problems and we prove estimates
on their weak solutions; then, with a limit procedure, we get the result for our problem.

2. Assumptions and result

For all i, j ∈ {1, . . . , n} and all α, β ∈ {1, . . . ,N} we assume that aα,βi, j : Ω × RN → R satisfies the
following conditions:

(A0) x 7→ aα,βi, j (x, y) is measurable and y 7→ aα,βi, j (x, y) is continuous;
(A1) (boundedness of all the coefficients) there exists c > 0 such that

|aα,βi, j (x, y)| ≤ c

for almost every x ∈ Ω and for all y ∈ RN;
(A2) (degenerate ellipticity of all the coefficients) there exist constants ν > 0 and θ ∈ (0, 1) such that

N∑
α,β=1

n∑
i, j=1

aα,βi, j (x, y)ξαi ξ
β
j ≥ ν

N∑
α=1

|ξα|2

(1 + |yα|)θ
,

for almost every x ∈ Ω, for all y ∈ RN and ξ ∈ RN×n;
(A3) (support of off-diagonal coefficients) there exists L0 ≥ 1 such that (A′3) and (A′′3) hold, where

(A′3) (support of off-diagonal coefficients contained in a central square) if aα,βi, j (x, y) , 0 and 0 ≤ |yα| <
L0, then it holds also 0 ≤ |yβ| < L0;

(A′′3) (support of off-diagonal coefficients contained in the union of a geometric progression of squares)
if aα,βi, j (x, y) , 0 and there exists t ∈ N ∪ {0} such that 2tL0 ≤ |yα| < 2t+1L0, then it holds also
2tL0 ≤ |yβ| < 2t+1L0.

Let us remark that from assumption (A2) it follows that we have degeneracy in the α equation when
uα is large. In [13] is treated for N = 2 the case in which degeneracy in the α equation arises when uβ

is large, with β , α.
Note that (A′3) and (A′′3) are always fulfilled when α = β. On the contrary, when α , β, (A3)

forces the support of aα,βi, j (x, y) to be contained in the union of infinite squares along the diagonals, see
grey region in Figure 1.
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Figure 1. Assumption (A3).

On f we assume that it belongs to the Marcinkiewicz space Mm(Ω,RN), with

2n
n + 2 − θ(n − 2)

< m <
n
2
.

For the convenience of the Reader, we recall the definition of Marcinkiewicz spaces, also known as
weak Lebesgue spaces.

Definition 2.1. Let m be a positive number. We say that a measurable function f : Ω → R belongs to
the Marcinkiewicz space Mm(Ω,R) if there exists a positive constant c sucht that

|{x ∈ Ω : | f (x)| > t}| <
c
tm , ∀t > 0; (2.1)
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in such a case we set
Mm( f ,Ω) = (inf{c > 0 such that (2.1) holds })

1
m .

Mm(Ω,RN) is the space of functions f = ( f 1, . . . , f N) such that f i ∈ Mm(Ω,R) for each i. Moreover
Mm( f ) =

∑N
α=1 Mm( f α).

We recall some properties on Marcinkiewicz spaces:

Lm(Ω) ⊂ Mm(Ω) ⊂ Lm−ε(Ω), ∀m > 1, ∀ 0 < ε ≤ m − 1 (2.2)

and ∫
E
| f |dx ≤ Mm( f ,Ω)|E|1−

1
m , ∀ f ∈ Mm(Ω), ∀E ⊂ Ω. (2.3)

For more details on Marcinkiewicz space see [10, 68].
Let us explicitly remark that, being 0 < θ < 1, from (2.2) it follows that

f ∈ L
2n

n+2 (Ω), ∀ f ∈ Mm(Ω) with m >
2n

n + 2 − θ(n − 2)
. (2.4)

Under our set of assumptions we prove the following theorem:

Theorem 2.1. Assume (A0), (A1), (A2), (A3), with n ≥ 3. If f ∈ Mm(Ω,RN), with 2n
n+2−θ(n−2) < m < n

2 ,
then there exists u ∈ W1,2

0 (Ω,RN) ∩ Mr(Ω,RN), with

r =
nm(1 − θ)

n − 2m
, (2.5)

weak solution of the problem (1.1), that is such that∫
Ω

N∑
α,β=1

n∑
i, j=1

aα,βi, j (x, u(x))D juβ(x)Diϕ
α(x)dx =

∫
Ω

N∑
α=1

f α(x)ϕα(x)dx (2.6)

for all ϕ ∈ W1,2
0 (Ω,RN).

3. Approximation and estimates

We set for all k ∈ N
ãα,βi, j,k(x, y) = aα,βi, j (x, y) +

1
k
δα,βδi, j

with

δi, j =

1 if i = j

0 if i , j.

We consider the following family of approximating problems−
∑n

i=1 Di

(∑n
j=1

∑N
β=1 ãα,βi, j,k(x, uk)D ju

β
k

)
= f α, x ∈ Ω

uk = 0, x ∈ ∂Ω.
(P̃k)

Mathematics in Engineering Volume 5, Issue 3, 1–23.



7

We want to show the existence of a weak solution for each problem (P̃k), that is a function uk ∈

W1,2
0 (Ω,RN) such that∫

Ω

N∑
α,β=1

n∑
i, j=1

ãα,βi, j,k(x, uk(x))D ju
β
k(x)Diϕ

α(x)dx =

∫
Ω

N∑
α=1

f α(x)ϕα(x)dx (3.1)

for all ϕ ∈ W1,2
0 (Ω,RN).

Let us first show some properties of the coefficients ãα,βi, j,k. From assumption (A1) it follows that

|ãα,βi, j,k(x, y)| ≤ c + 1. (Ã1)

Using assumption (A2) we have the following non degenerate ellipticity condition

N∑
α,β=1

n∑
i, j=1

ãα,βi, j,k(x, y)ξαi ξ
β
j =

=

N∑
α,β=1

n∑
i, j=1

aα,βi, j (x, y)ξαi ξ
β
j +

1
k

N∑
α,β=1

n∑
i, j=1

δα,βδi, jξ
α
i ξ

β
j ≥

≥ ν

N∑
α=1

|ξα|2

(1 + |yα|)θ
+

1
k
|ξ|2.

(Ã2)

Now let us show that for all f ∈ Mm(Ω,RN), with m > 2n
n+2−θ(n−2) , the linear operator

F : W1,2
0 (Ω,RN)→ R

v 7→

∫
Ω

N∑
α=1

f α(x)vα(x)dx

is continuous. Indeed, using Hölder inequality, (2.4) and Sobolev embedding, we have for a suitable
constant C > 0

|F(v)| =

∣∣∣∣∣∣∣
∫

Ω

N∑
α=1

f α(x)vα(x)dx

∣∣∣∣∣∣∣ ≤
N∑
α=1

∫
Ω

| f α(x)vα(x)|dx ≤

≤

N∑
α=1

‖ f α‖
L

2n
n+2
‖vα‖

L
2n

n−2
≤

≤ C
N∑
α=1

‖ f α‖
L

2n
n+2
‖v‖W1,2

0 (Ω,RN )

and the continuity of F is proved. Therefore we can apply the surjectivity result of Leray-Lions,
see [59], and we have the existence of a weak solution uk for the problem (P̃k), that is, there exists
uk ∈ W1,2

0 (Ω,RN) such that (3.1) holds true for every ϕ ∈ W1,2
0 (Ω,RN).

In the next Lemma 3.1, arguing as in [14], we prove that the sequence {uk}k∈N is bounded in
W1,2

0 (Ω,RN) ∩ Mr(Ω,RN). We first recall the following elementary inequalities that will be used in the

Mathematics in Engineering Volume 5, Issue 3, 1–23.
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proof of Lemma 3.1. We have

M∑
α=1

ap
α ≤ M

 M∑
α=1

aα

p

, (3.2) M∑
α=1

aα

p

≤ Mp
M∑
α=1

(aα)p, (3.3)

M∑
α=1

(aα bα) ≤

 M∑
α=1

aα

  M∑
α=1

bα

 , (3.4)

provided aα, bα ≥ 0 for all α ∈ {1, . . . ,M} and p > 0.

Lemma 3.1. Assume that f ∈ Mm(Ω,RN) with 2n
n+2−θ(n−2) < m < n

2 and let uk be a weak solution of
(P̃k). Then the sequences ‖uk‖W1,2

0 (Ω,RN ) and Mr(uk,Ω), with r given in (2.5), are bounded by a positive
constant which depends only on L0, θ, m, n, N, ν, |Ω| and Mm( f ,Ω).

Proof. For any t ∈ N∪ {0} and for L0 ≥ 1 given by assumption (A3), we define the following functions

G2tL0(s) =

0 if |s| ≤ 2tL0

s − 2tL0
s
|s| if |s| > 2tL0

and

T2tL0(s) =


s if − 2tL0 ≤ s ≤ 2tL0

2tL0 if s > 2tL0

−2tL0 if s < −2tL0.

We consider as test function in (3.1) the function ϕt ∈ W1,2
0 (Ω,RN) defined as

ϕt = (ϕ1
t , . . . , ϕ

N
t ) = (T2tL0(G2tL0(u

1
k)), . . . ,T2tL0(G2tL0(u

N
k ))). (3.5)

We introduce the sets

Aα
k,2tL0

= {x ∈ Ω : |uαk | ≥ 2tL0} and Bα
k,2tL0

= {x ∈ Ω : 2tL0 ≤ |uαk | < 2t+1L0}.

For all α ∈ {1, . . . ,N} we have

suppϕαt ⊂ Aα
k,2tL0

, |ϕαt | ≤ 2tL0 and Diϕ
α
t = Diuαk IBαk,2t L0

, (3.6)

where IB(x) = 1 if x ∈ B and IB(x) = 0 otherwise. Moreover, using (A′′3), we have

aα,βi, j (x, uk(x))IBα
k,2t L0

(x) = aα,βi, j (x, uk(x))IBα
k,2t L0

(x)IBβ
k,2t L0

(x). (3.7)

Indeed, if aα,βi, j (x, uk(x)) = 0 or x < Bα
k,2tL0

, then the (3.7) is obvious. If aα,βi, j (x, uk(x)) , 0 and x ∈ Bα
k,2tL0

,
that is 2tL0 ≤ |uαk | < 2t+1L0, then for (A′′3) we have 2tL0 ≤ |u

β
k | < 2t+1L0 so that x ∈ Bβ

k,2tL0
.

From (3.6), (3.7) and (A2) we have
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N∑
α,β=1

n∑
i, j=1

ãα,βi, j,k(x, uk(x))D ju
β
k(x)Diϕ

α
t (x) =

=

N∑
α,β=1

n∑
i, j=1

(aα,βi, j (x, uk(x)) +
1
k
δα,βδi, j)D ju

β
k(x)Diuαk (x)IBα

k,2t L0
(x) =

=

N∑
α,β=1

n∑
i, j=1

aα,βi, j (x, uk(x))D ju
β
k(x)IBβ

k,2t L0

(x)Diuαk (x)IBα
k,2t L0

(x)+

+

N∑
α=1

n∑
i=1

1
k
|Diuαk (x)|2IBα

k,2t L0
≥

≥ ν

N∑
α=1

|Duαk (x)IBα
k,2t L0

(x)|2

(1 + |uαk (x)|)θ
.

(3.8)

Then, replacing in the left side of (3.1) the test function (3.5) and using (3.8), we get

∫
Ω

N∑
α,β=1

n∑
i, j=1

ãα,βi, j,k(x, uk(x))D ju
β
k(x)Diϕ

α
t (x)dx ≥

≥ ν

N∑
α=1

∫
Bα

k,2t L0

|Duαk (x)|2

(1 + |uαk (x)|)θ
dx ≥ ν

N∑
α=1

∫
Bα

k,2t L0

|Duαk (x)|2

(1 + 2t+1L0)θ
dx

=
ν

(1 + 2t+1L0)θ

N∑
α=1

∫
Bα

k,2t L0

|Duαk (x)|2dx.

(3.9)

Combining (3.9) with (3.1), we get

N∑
α=1

∫
Bα

k,2t L0

|Duαk (x)|2dx ≤
(1 + 2t+1L0)θ

ν

∫
Ω

N∑
α=1

f α(x)ϕαt (x)dx =

=
(1 + 2t+1L0)θ

ν

N∑
α=1

∫
Aα

k,2t L0

f α(x)ϕαt (x)dx.

(3.10)
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Using Sobolev’s embedding and (3.10) we have∫
Aα

k,2t L0

|ϕαt (x)|2
∗

dx


2

2∗

=

(∫
Ω

|ϕαt (x)|2
∗

dx
) 2

2∗

≤

≤ CS

∫
Ω

|Dϕαt (x)|2dx = CS

∫
Ω

n∑
i=1

|Diϕ
α
t (x)|2dx =

= CS

∫
Ω

n∑
i=1

|Diuαk (x)IBα
k,2t L0
|2dx = CS

∫
Bα

k,2t L0

n∑
i=1

|Diuαk (x)|2dx =

= CS

∫
Bα

k,2t L0

|Duαk (x)|2dx,

(3.11)

where CS is the Sobolev embedding constant. Summing on α in (3.11) and using (3.10), we have

N∑
α=1

∫
Aα

k,2t L0

|ϕαt (x)|2
∗

dx


2

2∗

≤ CS

N∑
α=1

∫
Bα

k,2t L0

|Duαk (x)|2dx ≤

≤ CS
(1 + 2t+1L0)θ

ν

N∑
α=1

∫
Aα

k,2t L0

f α(x)ϕαt (x)dx.

(3.12)

From (2.4) we have f ∈ L
2n

n+2 (Ω) and, by Sobolev immersion, we have also ϕt ∈ L2∗ = L
2n

n−2 . Then,
using the Hölder inequality with exponents 2n

n+2 and 2n
n−2 = 2∗ and applying (2.3) to the function | f α|

2n
n+2 ∈

M
(n+2)m

2n (Ω), we deduce for all α = 1, . . . , n∫
Aα

k,2t L0

f α(x)ϕαt (x)dx ≤

≤

∫
Aα

k,2t L0

| f α(x)|
2n

n+2


n+2
2n

∫
Aα

k,2t L0

|ϕαt (x)|2
∗

dx


1

2∗

≤

≤ Mm( f α,Ω)|Aα
k,2tL0
|

n+2
2n (1− 2n

(n+2)m )

∫
Aα

k,2t L0

|ϕαt (x)|2
∗

dx


1

2∗

.

(3.13)

From (3.12) and (3.13) it follows that

N∑
α=1

∫
Aα

k,2t L0

|ϕαt (x)|2
∗

dx


2

2∗

≤

≤ CS
(1 + 2t+1L0)θ

ν

N∑
α=1

Mm( f α,Ω)|Aα
k,2tL0
|

mn+2m−2n
2nm

∫
Aα

k,2t L0

|ϕαt (x)|2
∗

dx


1

2∗

≤

≤ C1(2tL0)θ
N∑
α=1

|Aα
k,2tL0
|

mn+2m−2n
2nm

∫
Aα

k,2t L0

|ϕαt (x)|2
∗

dx


1

2∗

,
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where C1 is a constant depending only on Cs, ν, Mm( f ,Ω).
Now, using last inequality and (3.3), (3.4), (3.2), we have N∑

α=1

∫
Aα

k,2t L0

|ϕαt (x)|2
∗

dx


2

2∗

≤ N
2

2∗

N∑
α=1

∫
Aα

k,2t L0

|ϕαt (x)|2
∗

dx


2

2∗

≤

≤ N
2

2∗C1(2tL0)θ
N∑
α=1

|Aα
k,2tL0
|

mn+2m−2n
2nm

∫
Aα

k,2t L0

|ϕαt (x)|2
∗

dx


1

2∗

≤

≤ N
2

2∗C1(2tL0)θ
 N∑
α=1

|Aα
k,2tL0
|

mn+2m−2n
2nm


 N∑
α=1

∫
Aα

k,2t L0

|ϕαt (x)|2
∗

dx


1

2∗
 ≤

≤ N1+ 2
2∗C1(2tL0)θ

 N∑
α=1

|Aα
k,2tL0
|

mn+2m−2n
2nm


 N∑
α=1

∫
Aα

k,2t L0

|ϕαt (x)|2
∗

dx


1

2∗

;

Therefore  N∑
α=1

∫
Aα

k,2t L0

|ϕαt (x)|2
∗

dx


1

2∗

≤ N1+ 2
2∗C1(2tL0)θ

N∑
α=1

|Aα
k,2tL0
|

mn+2m−2n
2nm . (3.14)

Since ϕαt = T2tL0(G2tL0(u
α
k )), for all t ∈ N ∪ {0}, we have∫

Aα
k,2t L0

|ϕαt (x)|2
∗

dx


1

2∗

≥

∫Aα
k,2t+1L0

|ϕαt (x)|2
∗

dx


1

2∗

=

=

∫Aα
k,2t+1L0

(2tL0)2∗dx


1

2∗

= 2tL0|Aα
k,2t+1L0

|
1

2∗ ;

Then, summing on α and using (3.2) we have N∑
α=1

∫
Aα

k,2t L0

|ϕαt (x)|2
∗

dx


1

2∗

≥
1
N

N∑
α=1

∫
Aα

k,2t L0

|ϕαt (x)|2
∗

dx


1

2∗

≥

≥
1
N

N∑
α=1

2tL0|Aα
k,2t+1L0

|
1

2∗ .

(3.15)

From (3.14) and (3.15) it follows that

1
N

N∑
α=1

2tL0|Aα
k,2t+1L0

|
1

2∗ ≤ N1+ 2
2∗C1(2tL0)θ

N∑
α=1

|Aα
k,2tL0
|

mn+2m−2n
2nm

and then
N∑
α=1

|Aα
k,2t+1L0

|
1

2∗ ≤
1

(2tL0)1−θ N2+ 2
2∗C1

N∑
α=1

|Aα
k,2tL0
|

mn+2m−2n
2nm .
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From the last inequality and using (3.3) and (3.2) we have N∑
α=1

|Aα
k,2t+1L0

|


1

2∗

≤ N
1

2∗

N∑
α=1

|Aα
k,2t+1L0

|
1

2∗ ≤

≤
1

(2tL0)1−θ N2+ 3
2∗C1

N∑
α=1

|Aα
k,2tL0
|

mn+2m−2n
2nm ≤

≤
1

(2tL0)1−θ N3+ 3
2∗C1

 N∑
α=1

|Aα
k,2tL0
|


mn+2m−2n

2nm

;

Therefore
N∑
α=1

|Aα
k,2t+1L0

| ≤
C2

(2tL0)(1−θ)2∗

 N∑
α=1

|Aα
k,2tL0
|


mn+2m−2n

m(n−2)

, (3.16)

where C2 is a positive constant depending only on N, n, CS , ν and Mm( f ,Ω).
Let us set

γ =
mn + 2m − 2n

m(n − 2)
∈ (0, 1)

and let us remark that for r given in (2.5) the following equality holds

r − (1 − θ)2∗ = rγ. (3.17)

Now, for all h > 0 and for r given in (2.5), let us define

ρ(h) = hr
N∑
α=1

|Aα
k,h|. (3.18)

For all t ∈ N ∪ {0}, it follows from (3.16) that

ρ(2t+1L0) = (2t+1L0)r
N∑
α=1

|Aα
k,2t+1L0

| ≤

≤ 2r(2tL0)r C2

(2tL0)(1−θ)2∗

 N∑
α=1

|Aα
k,2tL0
|


mn+2m−2n

m(n−2)

=

= 2rC2(2tL0)rγ

 N∑
α=1

|Aα
k,2tL0
|

γ =

= 2rC2

(2tL0)r
N∑
α=1

|Aα
k,2tL0
|

γ = 2rC2[ρ(2tL0)]γ.

Therefore we obtain that there exists a constant C3 = max(1, 2rC2) ≥ 1, depending only on N, n,
CS , ν, Mm( f ,Ω), θ and m such that, for all t ∈ N ∪ {0}, we have

ρ(2t+1L0) ≤ C3[ρ(2tL0)]γ
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and, arguing by induction, it follows that

ρ(2sL0) ≤ C
∑s−1

h=0 γ
h

3 [ρ(L0)]γ
s
≤ C

∑+∞
h=0 γ

h

3 [ρ(L0)]γ
s
, ∀s ∈ N. (3.19)

Being γ < 1 and ρ(L0) ≥ 0, the elementary inequality

[ρ(L0)]γ
s
≤ 1 + ρ(L0), ∀s ∈ N (3.20)

holds. Using the notation C4 = C
∑+∞

h=0 γ
h

3 = C
1

1−γ

3 and putting together (3.19) and (3.20), we have

ρ(2sL0) ≤ C4(1 + ρ(L0)), ∀s ∈ N, (3.21)

where C4 ≥ 1 is a constant depending only on N, n, CS , ν, Mm( f ,Ω), θ and m.
Using (3.21), we want to prove that there exists a constant C5 depending only on N, n, CS , ν,

Mm( f ,Ω), θ, m, L0 and |Ω| such that

ρ(h) = hr
N∑
α=1

|Aα
k,h| ≤ C5, ∀h ≥ L0. (3.22)

Indeed, for h ∈ [L0, 2L0], we have

ρ(h) = hr
N∑
α=1

|Aα
k,h| ≤ (2L0)r

N∑
α=1

|Ω| = (2L0)rN|Ω|. (3.23)

For all h ≥ 2L0 there exists s ∈ N and w ∈ [L0, 2L0) such that h = 2sw. Then, using (3.21) and (3.23),
we have for all h ≥ 2L0

ρ(h) = ρ(2sw) = (2sw)r
N∑
α=1

|Aα
k,2sw| ≤

≤ (2s+1L0)r
N∑
α=1

|Aα
k,2sL0
| = 2r(2sL0)r

N∑
α=1

|Aα
k,2sL0
| =

= 2rρ(2sL0) ≤ 2rC4(1 + ρ(L0)) ≤
≤ 2rC4(1 + (2L0)rN|Ω|) := C5.

(3.24)

From (3.23) and (3.24) follows (3.22).
For all h ≥ L0, using (3.22), we have

N∑
α=1

|{x ∈ Ω : |uαk | > h}| ≤
N∑
α=1

|Aα
k,h| =

ρ(h)
hr ≤

C5

hr ; (3.25)

for h ∈ (0, L0) we have

N∑
α=1

|{x ∈ Ω : |uαk | > h}| ≤
N∑
α=1

|Ω| = NΩ ≤
N |Ω|Lr

0

Lr
0

<
N|Ω|Lr

0

hr . (3.26)

Mathematics in Engineering Volume 5, Issue 3, 1–23.
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Then, setting C6 = max(C5,N |Ω|Lr
0), from (3.25) and (3.26), we get

N∑
α=1

|{x ∈ Ω : |uαk | > h}| ≤
C6

hr , ∀h > 0,

proving the boundness of the sequence {uk}k∈N in Mr(Ω).
It remains to prove that the sequence {uk}k∈N is bounded in W1,2

0 (Ω,RN).
From (3.10), for all t ∈ N ∪ {0}, we have

N∑
α=1

∫
Ω

|Duαk (x)|2dx =

N∑
α=1

∫
{|uαk |<L0}

|Duαk (x)|2dx +

N∑
α=1

∫
{|uαk |≥L0}

|Duαk (x)|2dx =

=

N∑
α=1

∫
{|uαk |<L0}

|Duαk (x)|2dx +

+∞∑
t=0

N∑
α=1

∫
{2tL0≤|uαk |<2t+1L0}

|Duαk (x)|2dx =

=

N∑
α=1

∫
{|uαk |<L0}

|Duαk (x)|2dx +

+∞∑
t=0

N∑
α=1

∫
Bα

k,2t L0

|Duαk (x)|2dx ≤

≤

N∑
α=1

∫
{|uαk |<L0}

|Duαk (x)|2dx +

+∞∑
t=0

(1 + 2t+1L0)θ

ν

N∑
α=1

∫
Aα

k,2t L0

f α(x)ϕαt (x)dx.

(3.27)

Now we estimate the right hand side of (3.27).
Observing that |ϕαt (x)| ≤ 2tL0, for all x and for all t ∈ N ∪ {0}, and using (2.3), we have∫

Aα
k,2t L0

f α(x)ϕαt (x)dx ≤ 2tL0

∫
Aα

k,2t L0

| f α(x)|dx ≤

≤ 2tL0Mm( f α,Ω)|Aα
k,2tL0
|1−

1
m ≤ 2tL0Mm( f ,Ω)|Aα

k,2tL0
|1−

1
m .

Summing on α = 1, ..,N the previous inequality, by (3.2), the definition of ρ in (3.18) and (3.22),
we get

N∑
α=1

∫
Aα

k,2t L0

f α(x)ϕαt (x)dx ≤ 2tL0Mm( f ,Ω)
N∑
α=1

|Aα
k,2tL0
|1−

1
m ≤

≤ 2tL0Mm( f ,Ω)N
( N∑
α=1

|Aα
k,2tL0
|
)1− 1

m
= 2tL0Mm( f ,Ω)N

(ρ(2tL0)
(2tL0)r

)1− 1
m
≤

≤ C1− 1
m

5 2tL0Mm( f ,Ω)N(2−tr)1− 1
m L−r(1− 1

m )
0 =

= C1− 1
m

5 Mm( f ,Ω)N(21−r(1− 1
m ))tL1−r(1− 1

m )
0 .

From this inequality it follows that
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+∞∑
t=0

(1 + 2t+1L0)θ

ν

N∑
α=1

∫
Aα

k,2t L0

f α(x)ϕαt (x)dx ≤

≤

+∞∑
t=0

(1 + 2t+1L0)θ

ν
C1− 1

m
5 Mm( f ,Ω)N(21−r(1− 1

m ))tL1−r(1− 1
m )

0 =

=
C1− 1

m
5 Mm( f ,Ω)NL1−r(1− 1

m )
0

ν

+∞∑
t=0

(1 + 2t+1L0)θ(21−r(1− 1
m ))t ≤

≤
C1− 1

m
5 Mm( f ,Ω)NL1−r(1− 1

m )
0

ν

+∞∑
t=0

(2t+2L0)θ(21−r(1− 1
m ))t =

=
C1− 1

m
5 Mm( f ,Ω)NL1−r(1− 1

m )
0

ν

+∞∑
t=0

22θ2tθLθ0(21−r(1− 1
m ))t =

=
C1− 1

m
5 Mm( f ,Ω)N22θL1−r(1− 1

m )+θ
0

ν

+∞∑
t=0

(
2θ+1−r(1− 1

m ))t
.

(3.28)

Since 2n
n+2−θ(n−2) < m < n

2 , it results that θ + 1 − r(1 − 1
m ) < 0 and the series in the right side of the last

inequality converges; we have

+∞∑
t=0

(1 + 2t+1L0)θ

ν

N∑
α=1

∫
Aα

k,2t L0

f α(x)ϕαt (x)dx ≤ C7, (3.29)

where C7 is a positive constant depending only on n,N,m, θ, ν, Mm( f ,Ω), |Ω|,CS , L0.

Now, let us prove that
∑N
α=1

∫
{|uαk |<L0}

|Duαk (x)|2dx is bounded.

To this aim we use ψ =
(
ψ1, ..., ψN)

=
(
TL0(u

1
k), ...,TL0(u

N
k )

)
as a test function in the weakly

formulation (3.1) of problem (P̃k). Observing that

Diψ
α = Diuαk IBαk,0(x)
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where Bα
k,0 = {x ∈ Ω : 0 ≤ |uαk (x)| < L0}, we have∫

Ω

N∑
α=1

f α(x)ψα(x)dx =

∫
Ω

N∑
α,β=1

n∑
i, j=1

ãα,βi, j,k(x, uk(x))D ju
β
k(x)Diψ

α(x)dx =

=

∫
Ω

N∑
α,β=1

n∑
i, j=1

(
aα,βi, j (x, uk(x)) +

1
k
δα,βδi, j

)
D ju

β
k(x)Diuαk (x)IBαk,0dx =

=

∫
Ω

N∑
α,β=1

n∑
i, j=1

aα,βi, j (x, uk(x))D ju
β
k(x)Diuαk (x)IBαk,0dx+

+

∫
Ω

N∑
α=1

n∑
i=1

1
k
|Diuαk (x)|2 IBαk,0dx ≥

≥

∫
Ω

N∑
α,β=1

n∑
i, j=1

aα,βi, j (x, uk(x))D ju
β
k(x)Diuαk (x)IBαk,0dx.

(3.30)

From (A′3), we get
aα,βi, j (x, uk(x))IBαk,0 = aα,βi, j (x, uk(x))IBαk,0(x)IBβk,0(x). (3.31)

Combining (3.30), (3.31) and (A2), we deduce that

∫
Ω

N∑
α=1

f α(x)ψα(x)dx ≥

≥

∫
Ω

N∑
α,β=1

n∑
i, j=1

aα,βi, j (x, uk(x))D ju
β
k(x)Diuαk (x)IBαk,0dx =

=

∫
Ω

N∑
α,β=1

n∑
i, j=1

aα,βi, j (x, uk(x))D ju
β
k(x)IBβk,0(x)Diuαk (x)IBαk,0(x)dx ≥

≥

∫
Ω

ν

N∑
α=1

|Duαk (x)|2IBαk,0(x)

(1 + |uαk (x)|)θ
dx ≥

ν

(1 + L0)θ

N∑
α=1

∫
Bαk,0

|Duαk |
2dx.

(3.32)

From (3.32) and (2.3), it follows that

N∑
α=1

∫
Bαk,0

|Duαk |
2dx ≤

(1 + L0)θ

ν

∫
Ω

N∑
α=1

f α(x)ψα(x)dx ≤

≤
(1 + L0)θL0

ν

N∑
α=1

∫
Ω

| f α(x)|dx ≤

≤
(1 + L0)θL0

ν

N∑
α=1

Mm( f ,Ω)|Ω|1−
1
m =

=
(1 + L0)θL0N

ν
Mm( f ,Ω)|Ω|1−

1
m .

(3.33)
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Therefore, combining (3.27), (3.29) and (3.33), we have

N∑
α=1

∫
Ω

|Duαk (x)|2dx ≤

≤

N∑
α=1

∫
{|uαk |<L0}

|Duαk (x)|2dx +

+∞∑
t=0

(1 + 2t+1L0)θ

ν

N∑
α=1

∫
Aα

k,2t L0

f α(x)ϕαt (x)dx ≤

≤ C7 +
(1 + L0)θL0N

ν
Mm( f ,Ω)|Ω|1−

1
m := C8,

where C8 is a positive constant depending only on n,N,m, θ, ν, Mm( f ,Ω), |Ω|,CS , L0, and the
boundedness of uk in W1,2

0 (Ω,RN) is proved.
�

Proof of Theorem 2.1

Proof. Let uk be a solution of (P̃k). Lemma 3.1 states that the sequence of {uk} is uniformly bounded
in Mr(Ω,RN) and in W1,2

0 (Ω,RN). Then there exists a positive constant C such that Mr(uk,Ω) ≤ C and
‖uk‖W1,2

0 (Ω,RN ) ≤ C for all k ∈ N. Being {uk} bounded in W1,2
0 (Ω,RN) there exists a subsequence {ukλ}

weakly converging in W1,2
0 (Ω,RN) to a function u ∈ W1,2

0 (Ω,RN). Moreover, by Rellich-Kondrachov
embedding Theorem, Sobolev space W1,2

0 (Ω,RN) is compactly embedded in L2(Ω,RN); then, there
exists a subsequence, not relabeled, also in the sequel, strongly converging to u in L2. From L2

convergence we get pointwise convergence almost everywhere, up to a further subsequence. Briefly
we write

ukλ ⇀ u in W1,2
0 (Ω),

ukλ → u in L2(Ω),
ukλ(x)→ u(x) almost everywhere in Ω, (3.34)
Mr(uk,Ω) ≤ C, ‖ukλ‖W1,2

0 (Ω,RN ) ≤ C.

Now, we pass to the limit as λ → +∞, in the weak formulation of problem (P̃k), written when k = kλ,
to prove that u solves problem (2.6). More precisely, we verify that for all ϕ ∈ W1,2

0 (Ω,RN)

lim
λ→+∞

∫
Ω

N∑
α,β=1

n∑
i, j=1

ãα,βi, j,kλ
(x, ukλ(x))D ju

β
kλ

(x)Diϕ
α(x)dx =

=

∫
Ω

N∑
α,β=1

n∑
i, j=1

aα,βi, j (x, u(x))D juβ(x)Diϕ
α(x)dx.

To this aim, we estimate∣∣∣∣∣∣∣
∫

Ω

N∑
α,β=1

n∑
i, j=1

ãα,βi, j,kλ
(x, ukλ(x))D ju

β
kλ

(x)Diϕ
α(x)dx+

−

∫
Ω

N∑
α,β=1

n∑
i, j=1

aα,βi, j (x, u(x))D juβ(x)Diϕ
α(x)dx

∣∣∣∣∣∣∣ ≤
Mathematics in Engineering Volume 5, Issue 3, 1–23.
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≤

∣∣∣∣∣∣∣
∫

Ω

N∑
α,β=1

n∑
i, j=1

[aα,βi, j (x, ukλ(x)) − aα,βi, j (x, u(x))]D ju
β
kλ

(x)Diϕ
α(x)dx

∣∣∣∣∣∣∣ +
+

∣∣∣∣∣∣∣
∫

Ω

N∑
α,β=1

n∑
i, j=1

aα,βi, j (x, u(x))[D ju
β
kλ

(x) − D juβ(x)]Diϕ
α(x)dx

∣∣∣∣∣∣∣ +
+

∣∣∣∣∣∣∣
∫

Ω

N∑
α=1

n∑
i=1

1
kλ

Diuαkλ(x)Diϕ
α(x)dx

∣∣∣∣∣∣∣ :=

= Ikλ + IIkλ + IIIkλ .

We obtain the result by proving that Ikλ , IIkλ , IIIkλ tend to zero as λ → +∞. We start to estimate Ikλ .

Using Hölder inequality and boundedness of the sequence {ukλ} in W1,2
0 (Ω) we have

Ikλ =

∣∣∣∣∣∣∣
∫

Ω

N∑
α,β=1

n∑
i, j=1

[aα,βi, j (x, ukλ(x)) − aα,βi, j (x, u(x))]D ju
β
kλ

(x)Diϕ
α(x)dx

∣∣∣∣∣∣∣ ≤
≤

N∑
α,β=1

n∑
i, j=1

(∫
Ω

|aα,βi, j (x, ukλ(x)) − aα,βi, j (x, u(x))|2|Diϕ
α(x)|2dx

) 1
2

‖D ju
β
kλ
‖L2 ≤

≤ C
N∑

α,β=1

n∑
i, j=1

(∫
Ω

|aα,βi, j (x, ukλ(x)) − aα,βi, j (x, u(x))|2|Diϕ
α(x)|2dx

) 1
2

.

(3.35)

For any i, j = 1, . . . , n and for any α, β = 1, . . . ,N, using pointwise convergence in (3.34) and continuity
of functions y→ aα,βi, j (x, y) we have that

|aα,βi, j (x, ukλ(x)) − aα,βi, j (x, u(x))|2|Diϕ
α(x)|2 → 0 as λ→ +∞;

moreover from (A1) we get

|aα,βi, j (x, ukλ(x)) − aα,βi, j (x, u(x))|2|Diϕ
α(x)|2 ≤

≤ (|aα,βi, j (x, ukλ(x))| + |aα,βi, j (x, u(x))|)2|Diϕ
α(x)|2 ≤

≤ (c + c)2|Diϕ
α(x)|2 ∈ L1(Ω);

therefore, by dominated convergence theorem, we obtain that(∫
Ω

|aα,βi, j (x, ukλ(x)) − aα,βi, j (x, u(x))|2|Diϕ
α(x)|2dx

) 1
2

→ 0 as λ→ +∞.

The above limit and (3.35) imply that Ikλ tends to zero as λ→ +∞.
Observing that uβkλ ⇀ uβ in W1,2

0 (Ω), for any i, j = 1, . . . , n and for any α, β = 1, . . . ,N, we have∫
Ω

aα,βi, j (x, u(x))[D ju
β
kλ

(x) − D juβ(x)]Diϕ
α(x)dx→ 0 as λ→ +∞,

hence IIkλ tends to zero as λ→ +∞.
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Using Hölder inequality and (3.34), it results that

IIIkλ =

∣∣∣∣∣∣∣
∫

Ω

N∑
α=1

n∑
i=1

1
kλ

Diuαkλ(x)Diϕ
α(x)dx

∣∣∣∣∣∣∣ ≤ 1
kλ

N∑
α=1

n∑
i=1

‖Diuαkλ‖L2‖Diϕ
α‖L2 ≤

≤
1
kλ

nNC‖ϕ‖W1,2
0 (Ω,RN ).

Passing to the limit as λ→ +∞, we obtain that IIIkλ tends to zero and the proof is completed.
�
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