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1. Introduction
In this article we consider the following quasilinear boundary value problem

{—div(a(x, u(x))Du(x)) = f(x), xe€Q (L.1)

u=0, x €0Q

where Q ¢ R”, withn > 3, f,u : Q > R¥, with N > 2, and a : Q x RY — RV ig a matrix valued
function whose entries are ag}ﬁ (x,u) with i, j e {1,...,n}and @, B € {1,..., N}. Therefore the first line
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in (1.1) is a system of N equations of the form

—Zn:Di(Zn:ZN:aZf(x,u)Djuﬁ) =f* a=1,...,N. (1.2)
i=1

= =1 p=1

For the treated problem there is an extensive literature in the scalar case N = 1.

In particular, for the existence of a suitably defined solution, the Reader can refer to the papers
[9, 10, 14, 58, 69] while, relatively to uniqueness and a priori estimates, we can quote respectively
the papers [67] and [3]. For what concerns the regularity of a solution we cite the works [35, 38].
Moreover, similar conclusions for the nonlinear case can be found in [2, 8, 12] and for the anisotropic
case in [4,36]. Subsequently the aforementioned results have been extended to the operator with
lower order terms too (see also [15-17,20,51]). In this context one can also see [7,11,12,24,25,30].
Furthermore, in [37] the right hand side appears in divergence form, that is f = —divF and in [1] the
biharmonic operator is studied.

For further regularity results concerning elliptic operators the Reader is invited to refer to the
foundamental works [5,6,26-28,41-48,64] and the survey [65].

As it is shown by the De Giorgi’s counterexample [29], see also [39, 40, 49, 60, 61], the good
regularity properties obtained in the scalar case can not be in general extended to the vectorial one,
unless new structural assumptions are introduced.

An existence result of bounded weak solution for nonlinear degenerate elliptic systems is obtained
in [55], using a componentwise coercivity condition. In several other papers, conditions on the support
of the off-diagonal coefficients af}ﬁ (x) have been used to address different problems. Let us mention

that a maximum principle result is obtained in [66] where the assumption is aff}ﬁ (x,y) =0fora #
when y“ is large and in [52] where different shapes of support are considered. Holder continuity of
the solutions is proved in [70] for a tridiagonal system, af}ﬁ = 0 for B > a. L™ regularity results are
obtained in [53] for an oblique type of support for the coefficients and in [54] for a butterfly support.
Measure data problems are faced in [56] and [57] where the support of aZ}ﬁ (x,y) is contained in squares
along the y* = +y# diagonals.

These kind of assumptions on the coefficients have been recently employed also to deal with
degenerate elliptic systems. In this context there are results on problem (1.1) when the datum f € L™,
which extend the ones contained in [14] for the scalar case. Namely, in [31] the existence of a
bounded solution is proved when m > 7, assuming a butterfly support for the off-diagonal coefficients;
moreover in [32] the case of a datum f with an intermediate grade of integrability (m < 2) is treated,
thanks to an appropriate choice of the support for the off-diagonal coefficient.

In this paper we extend to the degenerate vectorial problem (1.1) an existence result concerning
degenerate scalar operators, with the datum f in a suitable Marcinkiewicz space, contained in [14, 62,
63] (see also [21,22]). Since we are dealing with the vectorial case the support of the coefficients is
required to have a particular structure. In Section 2 we give the precise notions of degenerate ellipticity
and Marcinkiewicz spaces, see respectively (A,) and definition 2.1, while the assumption on the shape
of the support of the coefficients is stated in (Aj3).

Also in this context the extension to the vectorial case of the known result in the scalar one is not
obvious. Indeed, starting from De Giorgi’s counterexample, it is possible to construct an example of
an elliptic system with datum f € L” for every p < n, whose unique solution is unbounded and has
low integrability, see [31] for details on the counterexample.
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When dealing with systems of N equations, like (1.2), whose coefficients are only measurable with
respect to x, little is known. Most articles are devoted to study existence or regularity of solutions of
systems with right hand side f* € L™, either when m is large, or when m is small. When m is large,
namely m > % existence of bounded solutions is obtained in [31].

When m is small, namely m = 1, or even when f“ is a measure, existence of solutions have been
studied for general systems

- > Di(Af(x,u,Dw) = £, a=1,...,N, (1.3)
i=1

under structure conditions on A?. Namely, in [33] and [34], authors assume that
0< ZA?()C, ¥,&)((d = b x D) &)Y (1.4)
i=1

for every b € RY with |b| < 1. On the other hand, in [71], the author assumes the componentwise sign
condition

05 ) AfCey. 8 (1.5)
i=1

for every @ = 1,...,N. When N = 2, (1.4) implies (1.5): it is enough to take first b = (1,0), then
b = (0, 1). Note that, in the present paper, we address the quasilinear case

N n
ANy, 8) = ) > df s (1.6)

p=1 j=1

in this case, as far as one off-diagonal coefficient a? }ﬁ(x, y) is non zero, then (1.5) is no longer true: it is

apB
a3 (x.y)

enough to take @ = &, & = 0if B ¢ (@B), & = 0if i # 1, &0 = 1,& = 0if j# j. & =1 ~ with

af.—li.ﬁ(x,y)
t = —oco. When N = 2, failure of (1.5) implies failure of (1.4). We recall that the study ofl’éluas'ilinear
systems (1.2) with f® € L' is contained in [57] under the assumption that the support of off-diagonal
coeflicients is contained in a sequence of squares with side lenght r along the diagonals of the y* — y#
plane.

Concerning existence and regularity of suitable defined solutions of linear ellitptic systems

-3 D@D = f7. a=1.....N.
i=1

with VMO coefficients and datum f = (f“) in a Lebesgue space L” with y € (1, n%] (i.e., below the
duality exponent) or in a suitable Lorentz-Morrey space one can refer also to [50]. While if f belongs
to the natural dual Lebesgue space but the linear operator in not coercive due to the presence of a lower

order term, called “drift term”,

= > Di[A¥(xX)Du - Ef(x)u] = f*(x)

i=1
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then existence and regularity results can be found in [19]. The above result has been extended to non
linear operator under the so-called Landes condition (similar to (1.4)) with datum being in L' or in L
respectively in [18,23].

In the present work we address the existence of a regular solution to (1.2) when f® has an
intermediate degree of integrability, namely, f* € M™ with 1 < #’tn_z) <m < 5 and M" is the
Marcinkiewicz space. In this case, the higher degree of integrability of the right hand side f* allows
us to weaken the condition on the support of oftf-diagonal coefficients.

In the next section we present assumptions on the coefficients and on the datum f and our result. In
Section 3 we consider a sequence of approximating non degenerate problems and we prove estimates
on their weak solutions; then, with a limit procedure, we get the result for our problem.

2. Assumptions and result

Forall i,j € {1,...,n} and all @,B € {1,..., N} we assume that aZ}fB : Q xRY — R satisfies the
following conditions:

(Ay) x> af}.ﬁ (x,y) is measurable and y — ag}ﬁ (x,y) is continuous;
(A;) (boundedness of all the coeflicients) there exists ¢ > 0 such that

P )l <

for almost every x € Q and for all y € R";
(A,) (degenerate ellipticity of all the coefficients) there exist constants v > 0 and 6 € (0, 1) such that

N i N |§a|2
> a2y ) s

aB=11i,j=1 a=1

for almost every x € Q, for all y € RY and & € RV";

(A3z) (support of off-diagonal coefficients) there exists Ly > 1 such that (A’;) and (A”3) hold, where

(A’3) (support of off-diagonal coeflicients contained in a central square) if a;ff(x, y) #0and 0 < |y <
Lo, then it holds also 0 < |y?| < Lo;

(A"3) (support of off-diagonal coeflicients contained in the union of a geometric progression of squares)
if aff(x, y) # 0 and there exists € N U {0} such that 2'Ly < [y?| < 2*'L,, then it holds also

2Ly < P < 21 L.

Let us remark that from assumption (A;,) it follows that we have degeneracy in the a equation when
u® is large. In [13] is treated for N = 2 the case in which degeneracy in the a equation arises when 1#
is large, with 8 # a.

Note that (A’3) and (A"3) are always fulfilled when @ = . On the contrary, when @ # B, (A3)
forces the support of aff(x, y) to be contained in the union of infinite squares along the diagonals, see
grey region in Figure 1.
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Figure 1. Assumption (Aj).

On f we assume that it belongs to the Marcinkiewicz space M™(Q, R"), with

2n - <n
m< —.
n+2-6n-2) 2

For the convenience of the Reader, we recall the definition of Marcinkiewicz spaces, also known as
weak Lebesgue spaces.

Definition 2.1. Let m be a positive number. We say that a measurable function f : Q — R belongs to
the Marcinkiewicz space M (€2, R) if there exists a positive constant ¢ sucht that

Hx € Q:|f(x)] >t} < ti’"’ vt > 0; (2.1
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in such a case we set
1
M, (f, Q) = (inf{c > O such that (2.1) holds }) .

M™(Q,RY) is the space of functions f = (f',..., f") such that f' € M™(Q,R) for each i. Moreover
Mm(f) = Zgzl Mm(fa)

We recall some properties on Marcinkiewicz spaces:
L"(Q)cM"(Q)cL"™Q), Vm>1,V0<e<m-1 (2.2)

and
flfldx < M,(f, Q)|E|1‘$, VfeM"(Q), VYEcCQ. (2.3)
FE

For more details on Marcinkiewicz space see [10, 68].
Let us explicitly remark that, being 0 < 6 < 1, from (2.2) it follows that

2n
n+2-0n-2)

feL(Q), VYfeM"(Q)withm> 24)

Under our set of assumptions we prove the following theorem:

Theorem 2.1. Assume (Ay), (A)), (Ay), (Az), withn > 3. If f € M™(Q,RY), with #ﬁn—m <m<3,
then there exists u € Wé’z(Q, RYYn M"(Q,RN), with

1-6
po =9 (2.5)
n—2m
weak solution of the problem (1.1), that is such that
N n N
f DD u)Dal (D" (x)dx = f D Pt (ndx (2.6)
Qop=1ij=1 Q=1
forall ¢ € W (Q,RY).
3. Approximation and estimates
We set for all k € N .
&35 ) = A (6,)) + 00561
with
| ifiz i
0ij = L
0 ifi+}
We consider the following family of approximating problems
— -1 D (Z?ﬂ S Zlgfk(% Mk)Djbtf) =f* xeQ 3
(Pr)
u, =0, x € 0Q.
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We want to show the existence of a weak solution for each problem (P,), that is a function u; €
W,(Q,R") such that

N
f Z S a8 DD (D (ol = fg 2 [ " (W (3.1)
a=1

aB=11,j=1

for all ¢ € W,*(Q,RY).
Let us first show some properties of the coeflicients a a .- From assumption (A,) it follows that

@ (el < e+ L. (A

Using assumption (A,) we have the following non degenerate ellipticity condition

Z Z ~j’,i(x e

apB=11ij=1
N n
a, i,j= =1i,j=

£ |? 2
Z L+l E'g' '

Now let us show that for all f € M™(Q,R"), with m > the linear operator

2n
n+2-0(n-2)°

F: W (QRY) - R

N
(04 (04 d
HL;NW (x)dx

is continuous. Indeed, using Holder inequality, (2.4) and Sobolev embedding, we have for a suitable
constant C > 0

N

N
Fol = || D e @dd < ) fg £ (0)ldx <
R a=1 a=1
P, 2 I, 2, <

a=1
N
< C N 2 g2z,
a=1

and the continuity of F is proved. Therefore we can apply the surjectivity result of Leray-Lions,
see [59], and we have the existence of a weak solution u; for the problem (f’k), that is, there exists
u € WS’Z(Q, RY) such that (3.1) holds true for every ¢ € WS’Z(Q, RM).

In the next Lemma 3.1, arguing as in [14], we prove that the sequence {u;}ien is bounded in
WS’Z(Q, RM) N M"(Q,RY). We first recall the following elementary inequalities that will be used in the
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proof of Lemma 3.1. We have

M p
Z a(,) , (3.2)
M p M
(Z aa] < MP Z(aa)p, (3.3)
M M
(da be) < [Z aa] [Z ba] : (3.4)
1

provided a,, b, > O forall @ € {1,..., M} and p > 0.

Lemma 3.1. Assume that { € M™(Q,RN) with #ﬁn—% < m < 5 and let w, be a weak solution of

(P)). Then the sequences ||uglly12,6 wv, and M, (uy, ), with r given in (2.5), are bounded by a positive
W2 (QRN)
constant which depends only on Ly, 6, m, n, N, v, |Q| and M,,(f, Q).

Proof. For any t € NU {0} and for Ly > 1 given by assumption (A3), we define the following functions

0 if [s| < 2'Ly

Gt S) =
214(5) {s—ZtLoﬁ if |s| > 2'Lo

and
S if —2'Ly<s<2

T2’L0(S) = 2[L0 if s > tho
—2tL0 if s < —ZZL().

We consider as test function in (3.1) the function ¢, € W(;’Z(Q, RY) defined as
@ = (@) @) = (Tarry(Gairy ), - -, Torpo (G (U))). (3.5)
We introduce the sets
Ay, ={xeQ:lufl > 2'Ly} and By oy, ={x€Q: 2'Ly < |uf] < 2" 'Ly}
Forall @ € {1, ..., N} we have

supp@; C Ay, 1 <2'Ly  and D! = Dy I[BZ,szO’ (3.6)

where [g(x) = 1 if x € B and I[3(x) = 0 otherwise. Moreover, using (A"3), we have

iy (o)L, () = a7 (6w, (Dl (). (3.7)

Indeed, if @ (x, ux(x)) = 0 or x & BY,, , then the (3.7) is obvious. If &} ¥(x, u(x)) # 0 and x € BY,,, ,
that is 2'Ly < |ug] < 2'*' Ly, then for (A”3) we have 2'Ly < |i}| < 2"*'Ly so that x € B

k2'Ly*
From (3.6), (3.7) and (A,) we have '
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N n
33 a (x u(ND (D)D) =

ap=1 ij—l

_ ¥ LS 5 D OOD U (e -
Z Z(a (x4 (0)) + 700583 )D (Dt (D, ()

afﬁlljl

= Z Z oG w D0y (DDl (x)+ (3.8)

aﬂIZJl

+ Z Z D (P Ly, >

a=1 i=1
v DU (Ol (O

(1 + lug (0)])°

a=1

Then, replacing in the left side of (3.1) the test function (3.5) and using (3.8), we get

f Z Z 4 k(x u(x))D; I/ﬁ(X)Di(p?(x)dx >

a,B’ 14,j=1
[Dutg (0 DUt ()
= (yz; L” (1 + |y (x)|)9 QZ; fBa (] + 2t+1L0)9d (3.9
S eam N oicof

Combining (3.9) with (3.1), we get

N 1 4 201y N
3 f DuoPdx < 2 ) gt -
a=1 k2! L a=1

1 2t+1L 0
MZ [ rodoa

kZ’L

(3.10)
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Using Sobolev’s embedding and (3.10) we have

2
z** 2
[ [ o dx] :( [ ercor dx) <
Alth Q
< [ Dgwpar=cs [ X, i ord =
= Cy f Zu) Ui, Fdx=Cs f D IDu (0Pdx =

B
k2try =1

(3.11)

= Cg f |Dut (x)]*dx,
B(Y

k201

where Cj is the Sobolev embedding constant. Summing on « in (3.11) and using (3.10), we have

i(L

a=1 k2L

el (o dX) <Cs Z f ) |Dul (x)|*dx <
Pty (3.12)

A (x)dx.

(1 +21+1L )9 i

=1 VA 211

From (2.4) we have f € L#2(Q) and, by Sobolev immersion, we have also ¢, € L* = L. Then,
using the Holder inequality with exponents % and n%”z = 2" and applying (2.3) to the function |f o|ir €

(n+2)m

" (Q), we deduce forall @ = 1,.

f [0 (x)dx <
A

:»Z’Lo
n+2 1
2n 2%
2n o *
< [ f |f“(x)|n+z) [ f i (D dx] < (3.13)
k2L k2L
QL
a « M(]—27")
< M (f%, QIAL |5 (P dx|
Ao,
From (3.12) and (3.13) it follows that
N 2%
Z[ f ¢ (P dx] <
a=1 AZthO
1
(1 + 2t+1L )H N @ mn+2m-2n a * :
S Cs = ) M (" QAT |5 r P dx| <
a=1 AZZ’LO
1
2%
mn+2m 2n *
< C1(2'Lo)’ Z'A"m f g ()P de ,
A:.Z’LO
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where C| is a constant depending only on Cy, v, M,,,(f, ).
Now, using last inequality and (3.3), (3.4), (3.2), we have

{Z f G dx] szvz*Z[ fA ) |so7<x>|2*dx) <
a=1

LZ’L kZILO
1
2¥

I‘P?(X)Iz*dX] <

@
k2L

< N#C,(2'Ly)’ Z AG |5 ( f

1
N ¥
2 nm+2m72n *
< N#C,Q2'LyY’ (Z A, ] Z[ f 6 (P dx] <
a=1 ZZ’LO
N >
mn+2m 2n *
N1+2*C (2tL0) (Z |Aker| )[Zf |907(x)|2 dx] ;
a=1 AZthO

Therefore

[Z f e (o de < N7 (2L ZIA"MI'""”’" (3.14)
k2!Lg a=1

Since ¢ = T (Gag,(uy)), for all £ € N U {0}, we have

1 2

( f e ()2 dx] z( f ¢ ()2 dx] =
Ay Al

/{,2t+1L0
1
¥

2%
¥ 1
- [f(, (2IL0)2 d-x] - 21L0|Ak 2+l |2 >
Ak2t+lL0

Then, summing on « and using (3.2) we have

1
2¥

N
Bi1, wora] 23S ([, wora] -

k2L

(3.15)
> — Z 2[L0|Ak 2t+1L ZL

From (3.14) and (3.15) it follows that

_Z2L0|Aksz |2i <N 1+2 C1(2’Lo) ZlA L, |w

a=1 a=1

and then

@ 1 1 2+ a /1m+2m 2n
Z'A PETAREE (2’L0)1 ey G ZlA EYN L
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From the last inequality and using (3.3) and (3.2) we have

N zi* N
1 €1
[Z |AZ,2H1L0|] S NZ* Z |AZ,2”1L()|2* S

1 2 a mn+2m 2n
T ClZlA ol

mn+2m=2n
2nm

1 3
(Z’Lo)l = a [Z e ;

Therefore

mn+2m—2n
m(n-2)

)
ZlAkmol < LT (Z IAmo) , (3.16)

where C, is a positive constant depending only on N, n, Cs, v and M,,(f, Q).
Let us set

mn+2m-—2n

Y=oy < Ob

and let us remark that for r given in (2.5) the following equality holds
r—(1-6)2"=ry. (3.17)
Now, for all & > 0 and for r given in (2.5), let us define

N
phy = I ) 1AL (3.18)

a=1

For all t € N U {0}, it follows from (3.16) that

p(2* Lo) = (2" Loy’ Z A | <

mn+2m—2n
m(n-2)

; G
<2 CL)S G e [Z A5 ] -
= 2'Cy(2'Ly)” (Z A} m)

Y
=2'Cy ((2[Lo) Z |Ak,2tLo|] =2"Ca[p(2'Lo)]".

a=1

Therefore we obtain that there exists a constant C3 = max(1,2"C,) > 1, depending only on N, n,
Cs,v, M, (f,Q), 8 and m such that, for all € N U {0}, we have

P2 L) < C3[p(2'Lo)]”
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and, arguing by induction, it follows that
K Z;,;é) 7’h s Z/ﬁ% Vh s
P2°Lo) < CT77 [p(Lo)" < CY7 [p(Lo)]”, Vs €N, (3.19)
Being y < 1 and p(Ly) > 0, the elementary inequality

(L)) <1+p(Ly), VseN (3.20)

holds. Using the notation Cy = C3Z Sl C,” and putting together (3.19) and (3.20), we have
p(2°Lo) < Cy(1 + p(Lo)), Vse€N, (3.21)

where C, > 1 is a constant depending only on N, n, Cs, v, M,,,(f,€2), 6 and m.
Using (3.21), we want to prove that there exists a constant Cs depending only on N, n, Cy, v,
M, (f,Q), 8, m, Ly and |Q| such that

N
pi) = H ) AL <Cs. Vh> L. (3.22)
a=1
Indeed, for i € [Ly,2L], we have
N N
p(h) = W' Y 1A, < 2LoY Y191 = 2Le)' NIQ. (3.23)
a=1 a=1

For all h > 2L there exists s € N and w € [Ly, 2L) such that &z = 2°w. Then, using (3.21) and (3.23),
we have for all & > 2L,

N
p(h) = p2'w) = 2wy Y AL | <
a=1

N N
< @ L) Y ALy = 2 @Lo) Y AL, | = (3.24)
a=1 a=1

=2'p(2’Ly) < 2'Cy(1 + p(Ly)) <
< 2'Cy(1 + (2Ly)'NIQ)) := Cs.

From (3.23) and (3.24) follows (3.22).
For all & > L, using (3.22), we have

N N ph) _ C
(03 a 5 .
DlxeQlugl > hil < ; Al = 5 < (3.25)

a=1

for h € (0, Ly) we have

NIQIL,  NIQIL,
< .
L %

N N
DllixeQ:lugl> < )|l =NQ <

a=1 a=1

(3.26)
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Then, setting Cs = max(Cs, N|Q|Lg), from (3.25) and (3.26), we get

N C
Z|{xeg:|ug|>h}|sh—f, Vh >0,

proving the boundness of the sequence {uy }iey in M"(Q).

It remains to prove that the sequence {u}cn 1s bounded in Wé’Z(Q, RM).
From (3.10), for all r € N U {0}, we have

DU (x)Pdx + Z f DU (x)Pdx =

vI<Lo} v1=Lo}

Z f |Duk(x)|2dx—z f
+o0 N
= Zfal N |Duz(x)|2dx+zz‘[ |Dug(x)|2dx:

0 4o JLoslut|<2+1Lo)

- Dt ()Pdx + \f DUt (0P dx <
Zf“| (o) ZZ D

=0 a=1 kZ’L

u t+1 0
< Zfl ot \Du (x)dx + Z d+2 LO) Z £ (.

A 2fL

(3.27)

Now we estimate the right hand side of (3.27).
Observing that |¢¢(x)| < 2Ly, for all x and for all € N U {0}, and using (2.3), we have

ﬁmﬁmmgﬂ{f ol <

AkyszO A:,szO
_1 o _1
<2 Ly m(fa Q)lAk 2L, |1 m < 2[L0Mm(f’ gz)lAk,th(J1 .

Summing on @ = 1, .., N the previous inequality, by (3.2), the definition of p in (3.18) and (3.22),
we get

N

Z f‘r f (X)QD, (X)dx < 2tLOMm(f Q)Z |Ak2’L | " S

a=1 Ak 2L a=1

_1 ZIL 1
<YL OV ) = 2o N

a=1
L= At —try1-1L —’(I—L)
< C, '"ZLOM,,,(f QNQ@ )R =
= Cy "M, (f, QNQ' Wy L - al

From this inequality it follows that
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N

1 2t+1L 0
Z 2 Wy f g <
a=1 k2! L
t+1 0
Z (1+2 Lo) S M(f, QN2 ,(l_i)) Ll -3 _

1 1-r(1- +00
m . Q NL
— (f ) § (l +2t+1LO)9(21—r(1—%))t <

v =0
(3.28)
1- 1-r(1- ) +o0
C m . Q NL
< (f ) Z(ZHZLO)E)(Q'I—V(I—%))’ —
4

t=0

1- 1-r(1-4) 4o
C w(f, Q NL,
_ (f ) § 2292[9L8(21—r(1—7)) _

\4
t=0

CI—E m(f Q)szng—r(l—;)"'e +00

5 i 0 Z (26+1—r(1—$))’_
v
=0

Since —2L— < m < 2, it results that 6 + 1 — 7(1 — 1) < 0 and the series in the right side of the last
n+2-0(n-2) 2 m

inequality converges; we have

(1 + 21 L) &
ZQZ f FU0¢ (0)dx < Cy, (3.29)
=0 v a=1 YA,

where C7 is a positive constant depending only on n, N, m, 6, v, M,,(f, Q2), €|, Cs, Ly.

Now, let us prove that Z -1 fl vl<Lo) |Dug(x)|2dx is bounded.

To this aim we use ¢ = (Y',...¥") = (Tr(u),....Tr,(u})) as a test function in the weakly
formulation (3.1) of problem (P;). Observing that

Dy* = DiuTge (x)
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where By, = {x € Q:0 < |u(x)| < Lo}, we have

f Zf”‘(x)t// (N)dx = f Z Z a6, (x, uk(0)D 16y (x) Dy (x)dlx =

apB=11ij=1
f Z Z (@ (x, u(2) + 6aﬁ5i, DDl () D ()] dx =
a,B 1i,j=1
f Z Z T8, we(X)D ) () D () dx+ (3.30)
a,B 1i,j=1 ,
f ZZ D (0 Iy dx >
Q a=1 i=1
N n
f D 2, e u o)D) D (0l v
a,B=11,j=1
From (A)), we get
ag}.ﬁ (x, ”k(x))HBZo = af}fg (x, ”k(x))I[BZo(X)I[BfO(X)' (3.31)

Combining (3.30), (3.31) and (A,), we deduce that

f Z FHCw* (x)dx >

a=1

f Z Z ﬁ(x ue(x))D 1l (x) Dii ()l dx =

a/ﬁlz/l

(3.32)
f Z Z 7 e, u (DD juty (0)Lp ()Di ()l (x)dx

(1/,811]1

X, 1D 0P, (0 y & .
f ey = (1+Lo)9;f3gﬁ D

=1

From (3.32) and (2.3), it follows that

N

0
Z f DufPdx < = (“LO) f 3w dx <
Qa:l

(1+L0)L0 f o
< — dx <
< Z} Ul <

(1 + L())HL()
< 7
< — Z

(3.33)
M, (f. QIO =

(1 + Lo)’LoN 1
= M (. QI
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Therefore, combining (3.27), (3.29) and (3.33), we have

Zleuk(x)lzdx<

a=1

1 2t+1L (7
< qug|<L0 |Dl/l (_x)lzdx+ Z( + 0) Z\[A; f(l(x)(p (x)dx <

k201

1+ Ly)’LoN
<C;+ A+ Loy LoN M (f, QIQ|" 7 = Cs,
4

where Cg is a positive constant depending only on n,N,m,6,v, M, (f,Q),|Q|,Cs, Ly, and the
boundedness of u; in WJ’Z(Q, R™) is proved.
O

Proof of Theorem 2.1

Proof. Let u; be a solution of (Py). Lemma 3.1 states that the sequence of {u,} is uniformly bounded
in M"(Q,R") and in W&’Z(Q, RY). Then there exists a positive constant C such that M, (i, Q) < C and
||”k||w(§v2(g,RN) < C for all k € N. Being {u;} bounded in Wé’Z(Q, RY) there exists a subsequence {ug, )

weakly converging in WS’Q(Q, RM) to a function u € W&’Z(Q, RY). Moreover, by Rellich-Kondrachov
embedding Theorem, Sobolev space WS’Z(Q,RN ) is compactly embedded in L*(Q2, RY); then, there
exists a subsequence, not relabeled, also in the sequel, strongly converging to u in L?. From L?
convergence we get pointwise convergence almost everywhere, up to a further subsequence. Briefly
we write

w, = u in Wy*(Q),

w, = u in LX(Q),

ur,(x) = u(x) almost everywhere in €, (3.34)

Mr(uk’ Q) < C7 ”uk/llle‘Q(Q,RN) <C.

Now, we pass to the limit as 4 — +oo, in the weak formulation of problem (Py), written when k = k,
to prove that u solves problem (2.6). More precisely, we verify that for all ¢ € WS’Z(Q, RM)

lim f Z Z a’ (x,ug,(x))Djuf] (x)Dig” (x)dx =

A—+o00
a,B= 11] 1
f Z a2, u(x)) D (X)Dig® (x)dx.
aB=11i,j=1

To this aim, we estimate

f Z Z ljk (x ukA(X))D I/{B (X)DISD (_x)dx+

aB=1i,j=1

f Z Z aﬁ(x u(x))D juf (x) D" (x)dx| <

ap=11,j=1
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N n
< f Z [a; jﬁ (x, uy, (%)) — aif(x, u(x))1D jui (x)D;p™(x)d x| +
Qop=1ij=1
' N n
+ f Z aif(x, u(x))[Djufll(x) — D (x)]D;p" (x)dx| +
Qup=1ij=1
N nJ 1
+ fzz k—Diuzl(x)Digoa(x)dx =
Qa—l i=1 Z

= Ikﬁ + Ilk/{ + IIIkA.

We obtain the result by proving that Iy, I1;,, 111, tend to zero as 4 — +oco. We start to estimate /.
Using Holder inequality and boundedness of the sequence {u,} in Wé’z(Q) we have

N n
I, = f D0 A e, (0) = a7 e, uCG)ID (DD (¥)dx| <
Qop=1ij=1
N n %
<> ( f i (x, uk/xx))—ajff(ac,u<x>)|2|Diso“(x>|2dx) 1D llp> < (3.35)
af=1ij=1 \Wa
N n %
<C) ). ( f '} (x, ug, () = a7 (x, u(x))|2|Diso“<x)|2dx) :
aB=lij=1 \WQ

Foranyi,j=1,...,nandforany o, = 1,..., N, using pointwise convergence in (3.34) and continuity
of functions y — azf (x,y) we have that

a0, g, () = @7 (x, u() D" (OF = 0 as A = +oo;

moreover from (A;) we get
" (x, i, () = a0, u())PIDi" () <
< (a2, i, ()| + a7 e, ()’ ID i (0 <

< (c+ o)’ ID"(x))* € L'(Q);

therefore, by dominated convergence theorem, we obtain that

1

2
( f P x, wi (x)) = (x, u(X))Ilei¢“(x)|2dx) -0 asd— +oo.
Q

The above limit and (3.35) imply that /;, tends to zero as 4 — +oo.
Observing that 11',; — i’ in Wé’Z(Q), foranyi,j=1,...,nand forany @, =1,..., N, we have

f a?(x, u(x)[Djud], (x) = Dl (0)]Dig(x)dx — 0 as A — +co,
o b
hence 11, tends to zero as 4 — +o0.
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Using Holder inequality and (3.34), it results that

N n N
1 i 1
1, = ‘ fg > - Dt (ODig" ()| < = Z;

a=1 i=1 @ i

n

1Dt |121Digg |2 <
=1

1
< k_/lnNC”"DHW(I)Z(Q,RN)

Passing to the limit as 4 — +oo, we obtain that //];, tends to zero and the proof is completed.
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