
Università degli Studi di Catania
Dept. of Mathematics and Computer Science

PhD course in Computer Science

Fabio D’Urso

From the concept to the real-world implementation:

design, simulation and deployment of multi-UAV

autonomous control algorithms

Doctoral Dissertation

Supervisor
Prof. C. Santoro

Cycle XXXIII

Abstract

In recent years usage of small remotely piloted aircraft (also known as drones
or UAVs, Unmanned Aerial Vehicles) has been spreading, usually quadrotors or
hexarotors. They are professionally employed in a multitude of fields: entertain-
ment, art and technical applications, such as photographic surveys (aerial pho-
togrammetry) or surveys with specialised sensors (thermographic inspections, hy-
drogeological monitoring, precision agriculture). In most cases, these tasks are
still controlled manually by the pilot. In this work, we aimed at building a frame-
work to simplify autonomous UAV programming, modelled after real needs, learnt
through direct experience in translating research ideas into programs used on the
field. The proposed framework follows the software development lifecycle from
the initial prototype to the final real-world deployment, including the important
steps of prototype validation and simulation of the final program. We drew spe-
cial emphasis on two aspects: one is the development of multi-robot algorithms,
in which a group of UAVs cooperates to achieve a common goal; the other is the
need for a realistic simulation environment, in terms of modelling both physics
and UAV’s control software, that has to expose the same API to software being
validated as a real drone, so that it can then be executed on the field with no need
for adaptation. Therefore, throughout this work, three heterogeneous case studies
will be presented: a decentralised and fault-tolerant multi-UAV algorithm for area
coverage; a single-UAV algorithm for landing on a moving target, based on com-
puter vision, and a multi-UAV algorithm to locate and pop balloons, also based
on computer vision and with shared airspace. The software architecture, suitable
for the implementation and validation of the envisioned algorithms, will be defined
and, lastly, we will present the experimental results that we obtained for each of
them. In particular, the last two problems were the subject of the MBZIRC (Mo-
hamed Bin Zayed International Robotics Challenge) held in Abu Dhabi, in which
the University of Catania ranked fourth in 2017 (out of 24 international teams)
and ninth in 2020 (out of 22), using the framework proposed in this thesis.

Sommario

Negli ultimi anni si sta diffondendo l’utilizzo di piccoli aeromobili a pilotaggio
remoto (noti anche come droni o UAV, Unmanned Aerial Vehicles), solitamente
quadrirotori oppure esarotori. Essi vengono impiegati professionalmente in una
moltitudine di campi: intrattenimento, arte ed applicazioni tecniche, come ad
esempio rilievi fotografici (fotogrammetria aerea) o con sensori specializzati (ispe-
zioni termografiche, monitoraggio idrogeologico, agricoltura di precisione). Nella
maggior parte dei casi, queste operazioni vengono ancora gestite manualmente dal
pilota. In questo lavoro ci si è posti come obiettivo la realizzazione di un framework
che semplifichi la programmazione di UAV autonomi, modellato sulle base di esi-
genze reali, apprese mediante esperienza diretta nella traduzione di idee di ricerca
in programmi utilizzati sul campo. Il framework proposto segue il ciclo di sviluppo
del software dal prototipo iniziale fino alla messa in campo finale, passando per le
importanti fasi di validazione del prototipo e di test in simulazione del program-
ma finale. Su due punti si è posta particolare enfasi: il primo è lo sviluppo di
algoritmi multi-robot, in cui un gruppo di UAV coopera per la realizzazione di un
obiettivo comune; il secondo è la necessità di un ambiente di simulazione realistico,
sia nella modellazione del sistema fisico che nel software di controllo degli UAV,
che offra al software da validare le stesse API che offrirebbe un drone reale, in
modo da poterlo poi eseguire sul campo senza la necessità di adattamenti. Nel
corso del lavoro, dunque, verranno presentati tre casi di studio con caratteristiche
eterogenee: un algoritmo multi-UAV decentralizzato e tollerante ai guasti per la
copertura di un’area; un algoritmo per singolo UAV per l’atterraggio su un obiet-
tivo in movimento, basato su visione artificiale, ed un algoritmo multi-UAV per
l’individuazione e lo scoppio di palloncini, anch’esso basato su visione artificiale
e con spazio aereo condiviso. Verrà poi definita l’architettura software, adatta
per l’implementazione e la validazione degli algoritmi ideati, ed, infine, verranno
presentati i risultati sperimentali ottenuti per ciascuno di essi. In particolare, gli
ultimi due problemi sono stati oggetto della competizione di robotica internazio-
nale MBZIRC (Mohamed Bin Zayed International Robotics Challenge) svoltasi ad
Abu Dhabi, nella quale l’Università di Catania ha conseguito il quarto posto nel
2017 (su 24 squadre internazionali) ed il nono posto nel 2020 (su 22), utilizzando
il framework proposto in questa tesi.

CONTENTS iv

Contents

Contents iv

List of Figures vii

1 Introduction 1

1.1 Scope of the thesis . 2

1.2 Organisation of the thesis . 2

2 Background and related work 4

2.1 Software architectures and wireless networks for groups of robots . . 4

2.2 Multirotor simulation . 8

2.3 Area Coverage and flocking . 9

3 A flocking algorithm for the Area Coverage problem 12

3.1 Problem definition . 13

3.2 The proposed algorithm . 14

3.3 Flock formation and overlay network 16

3.4 Distributed aggregation query . 20

3.5 Path planning and execution . 23

3.6 Acquiring and transmitting data to a Ground Control Station . . . 25

CONTENTS v

4 Modeling a flock of quadrotors 27

4.1 Control loop of a quadrotor . 28

4.2 A lightweight ad hoc simulator . 31

4.3 Simulation results . 33

5 Combining heterogeneous tools for realistic UAV simulation 39

5.1 Co-simulation of physics and networking 40

5.2 Flight stack architecture . 41

5.3 The gzuav environment . 42

6 A software architecture for UAV applications 47

6.1 Onboard software . 48

6.2 UAV-to-UAV protocol . 53

6.3 Ground Control Station protocol 55

6.4 Tuning Computer Vision Algorithms 58

6.5 Simulation . 60

7 MBZIRC 2017 and 2020 62

7.1 Landing on a moving vehicle (MBZIRC 2017) 63

7.2 Popping balloons with two cooperating UAVs (MBZIRC 2020) . . . 68

CONTENTS vi

8 Final remarks 75

8.1 Limitations and open issues . 76

8.2 Conclusion . 78

Bibliography 79

LIST OF FIGURES vii

List of Figures

2.1 Hidden and exposed node problems 7

3.1 Shape and axes of an area to be monitored 13

3.2 Sensor area representation . 13

3.3 Suboptimal formations . 15

3.4 Optimal formations . 15

3.5 Example of our algorithm’s R2 and R3x in action 16

3.6 Representation of area covered by a picture 20

3.7 Union of a set of records in a stripe 21

3.8 Aggregation query example . 23

3.9 Path planning . 24

3.10 Sensor positioning . 26

4.1 Motor layout and coordinate system 28

4.2 Acrobatic mode . 30

4.3 Manual mode . 30

4.4 Position mode . 31

4.5 Screenshot of a flock in the simulator 32

4.6 Finite State Machine that implements the UAV’s behavior 33

LIST OF FIGURES viii

4.7 Total mission time and average energy consumption 35

4.8 Overcoverage Distribution . 37

4.9 Time spent in each state . 37

5.1 Connection diagram of a quadcopter 41

5.2 Interactions among components for each simulation step 44

5.3 Connections among components in a two-UAV simulation 44

5.4 Interactions between high-level logic UAV processes and ns-3 44

5.5 Architecture of gzuavchannel in a distributed environment 45

6.1 Software architecture of an autonomous UAV 49

6.2 GPS-based TDMA slot assignment 55

6.3 Structure of a UDP packet . 57

6.4 VLOG tools can replay and receive live video from UAVs 59

6.5 The overall “VLOG” architecture 60

7.1 Arena and target specifications . 63

7.2 3D printed landing gear . 63

7.3 Customised DJI S900 for MBZIRC 2017 64

7.4 Vision Module for MBZIRC 2017 65

7.5 Variables used in Kalman filter . 65

7.6 Finite State Machine for MBZIRC 2017 66

7.7 Funnel-like descent volume . 67

7.8 Successful landing at the MBZIRC 2017 event 68

LIST OF FIGURES ix

7.9 Elements of MBZIRC 2020 Challenge 1 69

7.10 Our system to pierce balloons . 69

7.11 MBZIRC 2020 system simulation in the gzuav environment 70

7.12 Using Circle Hough Transform to refine the result 71

7.13 Strategy FSM for popping the balloons 73

7.14 A balloon popped during Competition Day 1 of the MBZIRC event 74

CHAPTER 1. INTRODUCTION 1

1
Introduction

In recent years, progress in the miniaturisation of electronics and sensors has made
it very cheap to make a robot fly. Unmanned aerial vehicles (UAV), and multiro-
tors in particular, are very easy to design and assemble using off-the-shelf compo-
nents (frame, motors, propellers, battery, and control board), even without specific
knowledge in mechanics and aerodynamics. Being such a powerful and cheap type
of machines, they have quickly become widespread for several professional and
recreational tasks.

Nonetheless, the current usage of multirotors is still “primitive” from a robotics
point of view. While equipped with GPS, wireless capabilities, general-purpose on-
board CPUs, and sometimes powerful GPUs, there is still a huge margin of automa-
tion because they are rarely fully autonomous: they are usually flown manually
by human operators or, in the best cases, they just follow a preset path. Further-
more, several classes of problems are inherently parallelisable and could be resolved
much more efficiently if multirotors were programmed to cooperate. For instance,
one of the most widely known applications of multirotors is aerial photography.
Apart from artistic applications, in which human supervision is inherently neces-
sary, there are several technical applications in which the tasks to be performed
are simple and repetitive. One of such applications is aerial photogrammetry,
which is rapidly becoming a necessity for precision agriculture [1, 2], maintenance
of large-scale plants (such as renewable energy production facilities [3, 4]), disaster
response and monitoring of hydrogeological instability [5]. These different scopes
have an important aspect in common: they all involve taking many pictures of a
static environment, an intrinsically parallelisable task.

When we start to think about automating and parallelising this kind of tasks,
we find a lot of research opportunities: to begin with, how can we control groups

CHAPTER 1. INTRODUCTION 2

of robots and multirotors in particular? How can we deal with hardware failures
which, when several robots are at work at the same time, have a non-negligible
probability? And what techniques and tools can we use to design, prototype,
develop and validate software controlling such systems?

1.1 Scope of the thesis

In the first part of this work, aerial photogrammetry is used as a case study. A
decentralised and fault-tolerant algorithm is proposed and validated with results
in a simplified simulated environment. Starting from that, the next step would
have been to put it in practice with a flock of real multicopters. Unfortunately,
due to the pandemic, we could not achieve this goal in time. However, while in
the process of implementing the proposed algorithm on real robots, we ended up
defining a robust general-purpose architecture for UAV applications and a flexible
simulation environment. Even if we could not complete the implementation of
the intended algorithm in time, such architecture was extensively employed in two
side projects: the two editions of an important international robotics competition,
in which, also thanks to such architecture, our autonomous multicopters ranked
very well. Furthermore, the autonomous tasks that they had to achieve in these
competitions entailed physical interaction with a dynamic environment, a feature
that had not been planned in the initial design of the architecture but, nonetheless,
was added effortlessly thanks to the architecture’s flexibility.

Real-world performance of the initial algorithm remained an open point, but
the tools that we designed proved to be effective even in different scenarios.

1.2 Organisation of the thesis

This dissertation is organised as follows.

In chapter 3, we present a multi-robot algorithm to solve the Single Area Cov-
erage problem that can be used to speed up tasks such as aerial inspection and
monitoring. In chapter 4 we validate such algorithm in an ad-hoc simulation en-
vironment. In particular, we develop a virtual quadrotor model and a 3D flocking
simulator in which high-level behaviours can quickly be evaluated. Such models
are then used for a performance analysis of the proposed algorithm.

CHAPTER 1. INTRODUCTION 3

In chapter 5, we analyse the problem of simulating flocks of multi-robots from
a more general point of view: we combine quadrotor physics with wireless net-
working simulation, obtaining an environment that makes it possible to write and
debug full-fledged autonomous programs, implementing any algorithm and not
just the previously presented one. An important feature of the new simulation
environment is that, once a piece of software is tested in it, it can run, without
further modifications, on a real UAV platform too.

In chapter 6, we move the focus from the simulation environment to UAV pro-
grams themselves. We present a modular, robust, and general-purpose architecture
for UAV applications. A technique to implement a collision-free decentralised wire-
less network, suitable for the requirements of the flocking algorithm is presented
too.

Chapter 7 presents the two side projects, which are actually two different UAV
problems that were solved within the proposed framework: landing on a moving
vehicle and cooperatively locating and popping balloons. The proposed solutions
were implemented and validated at the Mohamed Bin Zayed International Robotics
Challenge (MBZIRC) in Abu Dhabi, where our university’s team participated in
both editions, and ranked fourth (2017) and ninth (2020).

Chapter 8 summarises the scientific results that were obtained, some open
points and possible future research directions concerning the topics addressed in
this dissertation. Lastly, it presents the concluding remarks.

CHAPTER 2. BACKGROUND AND RELATED WORK 4

2
Background and related work

2.1 Software architectures and wireless networks

for groups of robots

Robot control software is full of implementation details: it can become very closely-
coupled to the hardware it will run on, and it must implement appropriate inter-
faces/drivers for the many peripherals that a robot is composed of. Conversely,
there are a lot of software procedures, from basic “textbook” algorithms to com-
plex state-of-the-art computer vision pipelines, that can be seen as general-purpose
building blocks.

Robot Operating System (ROS) [6] is a middleware/framework for Linux that
addresses these issues by promoting the usage of loosely-coupled software compo-
nents: every component (called “Node” in ROS) runs in a separate process. Nodes
can communicate through a publisher/subscribe paradigm, in which ROS itself is
the broker; and they can be implemented and distributed independently from each
other: they do not even need to be programmed in the same language, because
all programming languages supported by ROS (such as C++ and Python) can be
used for any Node. Nodes do not even necessarily correspond to programs running
on the same host: if a robot contains several interconnected Linux boards, ROS
can transparently route messages among nodes running on them. This flexibility,
of course, comes at a price:

• Increased inter-node communication latency, because the publish/subscribe
paradigm is much slower than a direct call (this is especially true considering
the fact that, by default, ROS transmits messages over TCP sockets);

CHAPTER 2. BACKGROUND AND RELATED WORK 5

• Loss of flexibility, because the datatypes of all messages need to be for-
mally defined in a ROS domain-specific language: the ROS framework, at
compile-time, will parse those definition files and generate appropriate seri-
alisation/deserialisation routines. This mandatory serialisation pass (that is
necessary in order to support message-passing among heterogeneous boards)
will also add latency, compared to a plain send call with raw data in a local
process;

• Loss of control: as a result of component reuse, third-party nodes behave as
“black boxes”. Application-specific customization or optimization may not
be possible unless the node has explicit support for it written in advance.

Pre-made ROS nodes are grouped into “ROS packages”, which are available for
many purposes. For instance, interfacing with open-source multicopter controllers
is possible with the mavros [7] package. It should be noted that, even though ROS
is designed for robotics applications, it offers no real-time guarantees because it
runs on top of Linux, which is not a real-time operating system.

Some researchers use ROS as the foundation for higher-level frameworks. For
instance, ROSBuzz [8, 9] bridges mavros with Buzz [10], a programming language
specifically targeted at robot swarm programming.

Communication among different robots is also an important topic. Communi-
cations involving multirotors can be categorized into three categories [11]:

• Air-to-Air (A2A): Messages transmitted by a flying robot to another flying
robot;

• Air-to-Ground (A2G) and Ground-to-Air (G2A): Messages exchanged be-
tween a flying robot and a base station on the ground.

Wireless networks involving multirotors have special characteristics, such as a
very dynamic topology (in other words, its nodes move very frequently) and, often,
a diameter (in metres) much bigger than a single node’s transmission range. This
class of networks is called Flying Ad-hoc Network (FANET). A survey on FANET
technologies and performance can be found in [11] and [12].

If Internet Protocol (IP) connectivity among robots is available (as required
by ROS), in the case of flying robots the underlying technology will almost in-
evitably be some variant of IEEE 802.11 [13], also known as “WiFi”. In its most

CHAPTER 2. BACKGROUND AND RELATED WORK 6

widespread setup (called “infrastructure” mode), this type of network is based on
an access point (AP) node that periodically transmits a beacon packet, which client
nodes (STA) listen for in order to synchronise their state. This type of network
is widely supported by off-the-shelf hardware and it offers very good throughput.
Its downsides are the relatively low range (in the order of a few hundreds of me-
tres at best) and the need for a centralised AP, which represents a single point
of failure: indeed, if the AP fails, or simply goes out of range, communication
becomes impossible. A slightly different 802.11 variant is the Independent Basic
Service Set (IBSS, also known as “ad-hoc mode”), in which there is no designated
AP, but one of the peers dynamically takes the responsibility to generate beacons.
Lastly, another interesting variant is 802.11s (“mesh”): similarly to IBSS, it is also
a peer-to-peer network, but it adds dynamic routing in order to work even when
not all nodes are within other nodes’ transmission range.

802.15.4 [14] is another interesting type of wireless network. It focuses on
low power consumption and its throughput and range are smaller than 802.11.
However, IEEE 802.15.4 devices are usually much simpler and customisable than
those implementing 802.11. For instance, it is often possible to customise chan-
nel contention policies (e.g. tune the thresholds for clear channel assessment for
CSMA-CA or disable it completely for immediate transmission). Furthermore,
with the addition of Ultra-wide Band support (802.15.4-UWB), some devices also
implement the “ranging” function, which can compute the distance (in metres) be-
tween the transmitter and the receiver by measuring the radio waves propagation
time. Therefore, they can be used to build positioning systems too [15, 16, 17].
IEEE 802.15.4 also has provisions for selecting some devices as “coordinators” to
emit beacons, assign Guaranteed Time Slots (GTS) and synchronise other devices;
higher-level protocols, such as Zigbee [18], build upon this feature. However, the
presence of a coordinator is not mandatory in an 802.15.4 network.

IEEE 802.11 and IEEE 802.15.4 can be used for all types of transmissions
(A2A, A2G and G2A) and work on an unlicensed band (i.e. they do not require a
radio license or dedicated band spectrum). Another common aspect is that they
are both greatly affected by the hidden and exposed node problems:

• A hidden node problem (fig. 2.1a) occurs when a node is transmitting and
another node, out of its transmission range, determines that the channel is
free and starts transmitting too. As a consequence of this, a collision will
occur and both messages will be corrupted1.

1IEEE 802.11 has a built-in mechanism to mitigate the hidden node problem, called Request-
to-send/Clear-to-send (RTC/CTS) [19].

CHAPTER 2. BACKGROUND AND RELATED WORK 7

• An exposed node problem (fig. 2.1b) occurs when a node detects that the
channel is in use and refrains from transmitting, even if doing that would not
result in a collision. As a consequence of this, throughput will be suboptimal.

(a) Hidden node problem. (b) Exposed node problem.

Figure 2.1: Hidden and exposed node problems.

Another possibility for FANETs is to rely on the cellular network. This type
of networks operate on licensed bands and are administered by telecommunication
companies. In this case, flying robots simply register to the network (as if they
were cellular phones) and exchange data traffic with the company’s base station,
which possibly routes it on the Internet. Depending on the network technology, the
technical name of the elements of the network differs: for instance, in LTE, mobile
nodes are called “User Equipment” (UE) and the base station is called “NodeB”.
The mobile data network cannot be used for direct A2A messages, because all
messages have to go through the NodeB. Because of this, FANETs based on the
cellular network have a single inevitable point of failure: the cell’s NodeB. With
the advent of 5G networks and the so-called “Tactile Internet”, the latency of
end-to-end messages will be reduced to approximately one millisecond [20].

The Global Positioning System (GPS) is not strictly a communication network,
but it is worth mentioning too: satellites continuously emit a signal containing the
current date and time (according to their precise onboard atomic clock) and their
position. GPS receivers monitor such signals and, by comparing relative arrival
timestamps according to a local clock, can compute their own position. Basic
GPS receivers have a 15-metre precision. Through the usage of differential GPS
techniques, such as Real-Time Kinematic (RTK), it can be improved up to less
than one centimetre [21]. An interesting note is that, as well as the receiver posi-
tion, GPS receivers can determine the current time and data with a precision in

CHAPTER 2. BACKGROUND AND RELATED WORK 8

the order of tenths of nanoseconds. In addition to GPS, which was the first con-
stellation of satellites for this purpose (launched by the USA), other nations have
developed similar systems, such as Galileo (European Union), GLONASS (Russia)
and BeiDou (China). Modern receivers can use, at the same time, satellites from
different constellations.

2.2 Multirotor simulation

There are several software environments to simulate multirotors. Some are geared
towards end users only and do not expose an API (such as DJI’s own Flight
Simulator [22]), others do not emulate the API that a programmable multirotor
would offer in the real world (such as ARGoS [23]). Furthermore, commercial
flight control units are usually closed source. One the other end, other simulation
environments are specifically designed for Software-In-The-Loop (SITL) simulation
of open-source control software stacks (i.e. they can run the same control loops, in
simulation, that would run in a real multirotor).

The most well-known example is probably Gazebo [24]. It is widely used to
simulate several types of robotic platforms, including UAVs such as multirotors,
thanks to a greatly customizable plugin-based system. Interestingly, there are
ready-made plugins designed to integrate it with the two biggest open-source flight
control software projects: PX4 [25] and ArduPilot’s project ArduCopter [26]. Both
projects implement a SITL interface, which has the advantage of offering the same
API that a real multirotor platform would offer, which is an essential requirement
for the final validation of autonomous flight code before deployment in the real
world.

Regarding the physics engine, one of the advantages of using a general-purpose
robotics simulator is that it is easy to integrate other types of objects (e.g. balls,
pliers, onboard cameras, auxiliary robots such as rovers, ...) in the simulation.
Gazebo has been designed aiming at the realistic simulation of sensors and objects
in the environment. At its core, it runs a physics simulation using one of the
supported physics engines (ODE [27], Bullet [28], Simbody [29] and DART [30]).
Models are defined in terms of rigid bodies (with optional attached sensors) and
joints by means of XML files. A “world” XML file acts as the root and other XML
files can be recursively included. Gazebo also offers a flexible plugin interface,
which makes it possible to program custom behaviours and sensors: plugins are
compiled as Linux shared libraries (.so files) from C++ source code. Plugins can
interact with the simulation using Gazebo’s API (based on a publisher-subscriber

CHAPTER 2. BACKGROUND AND RELATED WORK 9

paradigm), but also with the host operating system using its native API (such as
IPC mechanisms and sockets). As we will see in the next section, gzuav heavily
uses the latter to integrate the other components. Gazebo maintains a separation
between its GUI (gzclient program) and the simulation itself (gzserver program),
which makes it possible to run simulations headless. Simulations can be run in
real-time (at the same rate as the host’s clock) or faster/slower. Lastly, thanks to
its widespread adoption, Gazebo offers a wide library of open-source ready-made
models and plugins: for instance, the quadrotor model that we use is the built-in
iris with standoffs model, along with the built-in LiftDragPlugin and a custom
GzUavPlugin (derived from ArduCopterPlugin).

As for the fight stack, PX4 and ArduCopter are the most widespread ones.
They can both run in SITL mode in combination with Gazebo. ArduCopter
implements control loops for several types of multicopters (such as quadrotors and
hexarotors); other ArduPilot subprojects support rovers, boats, helicopters and
fixed-wing planes. Furthermore, ArduPilot is easier to run at non-real-time speed,
because its internal SITL architecture is less tied to the host’s clock than PX4.

Other examples of SITL-capable simulators are jMAVSim [31] for PX4, and
X-Plane [32], JSBSIM [33] and AirSim [34] for ArduCopter.

SITL-based simulation environments are powerful, flexible and realistic. How-
ever, developing for these environments usually takes the same programming effort
as programming the final system, if not more. Furthermore, these environments
are very heavyweight and slow. Therefore, they are not very useful during the ini-
tial prototyping/validation of a new flocking algorithm, when changes are frequent
and the developer needs a quick response. As we will see in chapter 4, this is the
reason why we developed a new lightweight simulation framework.

2.3 Area Coverage and flocking

Aerial photogrammetry, which we adopted as a case study, is a particular instance
of the Area Coverage problem. In detail, Area Coverage problems can be divided
into two subcategories [35]:

• Single Area Coverage aims to cover each point of interest exactly once. If
a given point is not covered, it is an issue in that the result will be incomplete;
redundant coverage of a point is an issue too because it is just wasted effort
with no additional value.

CHAPTER 2. BACKGROUND AND RELATED WORK 10

• Repeated Area Coverage aims to cover each point of interest at least once,
but possibly more than once, during the same mission, according to mission-
dependent factors, such as the importance of each point and predetermined
frequency of visits.

The algorithm that will be described in chapter 3 falls into the former category.
Therefore, it will have two goals: i) to ensure that the whole target area is scanned
and ii) to minimise mission time; in other words, any given point must be visited
at least once, but ideally no more than that.

In an Area Coverage problem, it is important to define how the area is subdi-
vided. A number of approaches exist, such as Exact-cell [36] and Approximate-
cell [37] decompositions. In the Exact-cell decomposition, the target area is sub-
divided into stripes along the sweeping direction, forming a set of triangular or
trapezoidal cells around obstacles. The Approximate-cell decomposition, instead,
recursively subdivides the target area in a quadtree-like fashion. As we will see
later, our algorithm assumes that no obstacles are present and then uses a vari-
ant of the Approximate-cell decomposition to keep track of the points that have
already been visited.

Other important topics in multi-robot algorithms are fault-tolerance and net-
work connectivity. If the number of agents is small, it is reasonable to assume that
agents are reliable and direct wireless communication is always possible. However,
in large multi-robot systems, the probability of failures increases dramatically.
Furthermore, in large UAV flocks, which can be hundreds of meters large, full
direct connectivity among agents is impossible. In these cases, an overlay network
such as in [38] is necessary. Furthermore, it is necessary to avoid formation shapes
that cause excessive distance between two agents, which would result in network
partitions [39].

Task allocation techniques are often market-based or bio-inspired. In market-
based approaches such as [40] and [41], tasks are assigned through bids placed by
each robot, according to a cost/utility function, and administered by an auctioneer.
This type of algorithms offer built-in robustness to agent failures: if a bidder fails,
its task will be reassigned to the next best bidder. Furthermore, if the robots
inform other team members about their tasks, the auctioneer too can be replaced,
should it fail.

Bio-inspired works, including the one that will be presented in this disserta-
tion, are often based on the three flocking rules invented by Craig Reynolds [42],

CHAPTER 2. BACKGROUND AND RELATED WORK 11

namely2:

R1 Separation: if too close to another flock member, turn away in the opposite
direction;

R2 Alignment : turn towards the average orientation of known flock members;

R3 Cohesion: turn towards the average position of known flock members.

An interesting work about flocking is [43], in which the authors obtained for-
mations of different shapes in a fully decentralised way.

2R1 is mutually exclusive to R2 and R3, which are themselves seemingly contradictory. In
fact, the “steering forces” from R2 and R3 are meant to be linearly combined.

CHAPTER 3. A FLOCKING ALGORITHM FOR THE AREA COVERAGE PROBLEM 12

3
A flocking algorithm for the Area

Coverage problem

Aerial photogrammetry is widely used for many applications, such as mapping,
inspection, 3D modelling and precision agriculture. However, images are usually
acquired by flying a single UAV3 over a predetermined path [44]. This approach
is unsuitable for large-scale inspections, which are still usually performed using
aeroplanes or helicopters. Such large manned vehicles present several issues, such
as high mission cost, the need for an experienced pilot and the inherent risks in
flying over dangerous areas (e.g. disaster response missions).

The main obstacle preventing the use of UAVs in large-scale missions is the
maximum flight time, imposed by battery capacity, which is usually somewhere
between 10-20 minutes, due to physical constraints (bigger batteries imply more
weight and, therefore, more energy consumption). Furthermore, even if there were
no battery capacity issues at all, a single UAV would probably take too long to
complete the mission.

The approach we propose in this chapter is to use several UAVs, each taking
care of a fraction of the total area, thus completing the mission in a fraction of the
time that a single UAV would have required. The proposed algorithm mimics the
way birds fly and organizes the UAVs in a flock [45, 46].

3If taken literally, the term “UAV” can refer to any type of unmanned aerial vehicles (in-
cluding even fixed-wing military planes operated remotely), in addition to the relatively-small
toy/professional vehicles with multiple rotors that have gained traction in the last years (which
are technically called “multirotors” or “multicopters”). Even if formally incorrect, for the sake
of brevity, all occurrences of the term “UAV” in this dissertation are to be intended as synonyms
of “multirotor”/“multicopter”.

CHAPTER 3. A FLOCKING ALGORITHM FOR THE AREA COVERAGE PROBLEM 13

(H, W)

(0, 0)

x

y

Figure 3.1: Shape and axes of an area to
be monitored.

FWD

Zsensor

Ysensor

Xsensor(x, y)

Figure 3.2: Sensor area representation.

The key aspect of the proposed solution is the decentralised control approach
with built-in fault tolerance: any subset of UAVs is allowed to fail. In case of
failures, the mission will simply take longer, but the acquired data at the end of
the mission will still be complete.

The proposed solution can be generalised not only to aerial photogrammetry
but also to all those types of inspections where a sensor must scan a predetermined
area (e.g. thermal inspection of photovoltaic plants, LIDAR-based elevation map-
ping and so on).

3.1 Problem definition

Let us assume that the area to be monitored is a H×W rectangle4, with W ≤ H.
Let us also assume that one of its corners is the origin of a 3D Cartesian coordinate
system oriented towards the H axis (fig. 3.1).

We also assume that the sensor (e.g. camera) is capable of acquiring data
corresponding to a Xsensor×Ysensor rectangular surface, if flown at Zsensor altitude
and oriented like the x axis5 (fig. 3.2). Then, each acquisition (e.g. image) can be
identified with the (x, y) coordinates of the UAV at the moment it was taken and
its rectangular outline is identified by:

(X1, Y 1, X2, Y 2)

with X1 ≡ x− Xsensor

2
X2 ≡ x+ Xsensor

2

Y 1 ≡ y − Ysensor

2
Y 2 ≡ y + Ysensor

2

(3.1)

4If it is not the case, we can always find the smallest rectangle that encloses it.
5As we will see later, the sensor will be turned off when the altitude is different from Zsensor

or the orientation is different from the H axis.

CHAPTER 3. A FLOCKING ALGORITHM FOR THE AREA COVERAGE PROBLEM 14

We assume that each UAV is equipped with a wireless transceiver, able to
transmit/receive messages to/from UAVs within direct wireless range. We do not
further characterise the size and range of the radiation pattern, but we do assume
that if an agent is within reception range (i.e. we can receive its messages) then
it is also within transmission range (i.e. it can receive our messages). We assume
that no collisions occur and physical propagation delay between the transmitter
and the receiver is negligible. We also assume that any UAV can fail and, in such
a case, the contents of its onboard storage are irrecoverable.

The goal of the mission is to ensure that, in the end, every point within the
area to be inspected has been covered by at least one acquisition (e.q. 3.2), while
minimising mission time.

(0, 0, H,W) ⊆
⋃︂

(X1, Y 1, X2, Y 2) (3.2)

3.2 The proposed algorithm

One of the defining aspects of flocking algorithms is the shape of the formation.
If we only apply Reynold’s three rules (separation, alignment and cohesion; see
section 2.3), a flock will emerge, but it will not have a predictable orientation or
direction, and large flocks tend to split into separate partitions [47]. Furthermore,
such basic flocking rules do not take into account the characteristics of the sensor,
resulting in far-from-ideal area coverage (fig. 3.3a): in this formation, each agent
moves in a different direction, there is no guarantee that every point will be covered
at least once and, conversely, many points will be covered more than once. Even if
we could somehow make all agents agree on a common heading and direction, that
would not solve under/overcoverage issues (as fig. 3.3b shows, agents that are too
far from the flock would lead to “holes” in the resulting coverage, and agents that
are behind other agents would basically only over-cover points already covered by
the first agents). Therefore we need to obtain a compact formation in which agents
do not stay behind other agents.

Optimal formations, satisfying the above constraints, are those in fig. 3.4a and
3.4b, but the simplest good one is a “line formation”, shown in fig. 3.4c: this type
of formation keeps agents tight to each other while also imposing a fixed distance,
which virtually removes the possibility of missing or overlapping coverage. It is
possible to augment the basic three rules to impose a common goal and make
the flock behave more coherently. Our line formation can indeed be obtained by

CHAPTER 3. A FLOCKING ALGORITHM FOR THE AREA COVERAGE PROBLEM 15

(a) Result of Reynold’s three
rules.

(b) With a common orientation.

Figure 3.3: Suboptimal formations.

(a) V-shaped formation. (b) Diagonal line.

(c) Horizontal line.

Figure 3.4: Optimal formations.

modifying the basic three rules, as will be detailed later.

To impose a common goal upon the flock we also defined a criterion to select
a leader agent (on which all agents can quickly converge). The leader follows its
own rules, different from the other agents’ three flocking rules. We have slightly
modified their rules so that they explicitly follow the leader’s movements, instead
of the generic flock average. The leader’s position is known to all agents almost in
real-time, and the leader’s local y axis is used as the flock line. The new rules for
non-leader agents are (fig. 3.5):

R1 Separation: if we are too close6 to the projection of another flock member,
fly away in the opposite direction (without altering the heading and only in

6The threshold determines the desired distance between consecutive agents, which ideally
corresponds to Ysensor. In fact, it is set to a slightly smaller value (e.g. 25% smaller) to avoid
introducing holes in the resulting coverage due to the inevitable control latency and oscillations
and, at the same time, offer some common keypoints for post-processing (e.g. image stitching)
of data acquired by adjacent agents.

CHAPTER 3. A FLOCKING ALGORITHM FOR THE AREA COVERAGE PROBLEM 16

parallel to the flock line, i.e. without going forward/backwards with reference
to the leader);

R2 Alignment : copy the leader’s heading;

R3 Cohesion: two independent rules:

R3x move towards our projection on the flock line unless that direction is
obstructed by another agent;

R3y move towards the leader in parallel to the flock line.

Rules R2 and R3x are always applied, rule R1 and R3y are mutually exclusive.

Figure 3.5: Example of our algorithm’s R2 and R3x in action.

3.3 Flock formation and overlay network

As will be seen later, apart from take-off and landing, all phases of the mission
take place at a fixed altitude Zsensor above ground level. Therefore, for the rest of
this chapter, the z coordinate will be omitted and assumed to be equal to Zsensor.

In our approach, all agents know the state of all the other agents, albeit with
a propagation delay. Each agent maintains a local database of information about
the other agents (called Agents Database, or ADB). Each record contains:

• The other agent’s ID.

• Sequence number, x, y and heading from the latest known message from the
other agent.

• Distance between this and the other agent (as the number of hops).

• Age of the previous information (in milliseconds).

CHAPTER 3. A FLOCKING ALGORITHM FOR THE AREA COVERAGE PROBLEM 17

Each agent periodically7 broadcasts the following information:

• A sequence number, incremented for every message emitted by the agent.

• The agent’s current x and y coordinates.

• The agent’s target heading.

• A full copy of the agent’s ADB.

When such a message is received by another agent, its contents are merged with
the local ADB (alg. 1). In particular, for each agent mentioned in the message, the
corresponding ADB’s record is checked and updated only if its sequence number is
older than the received one. Furthermore, every millisecond a local timer triggers
the aging procedure (alg. 2) in each agent, which compares every record’s age with
its expected value (which is proportional to the distance), and evicts records about
failed agents (i.e. agents that have not recently emitted a newer message). As a
consequence of such algorithms, in this gossip-based scheme, an overlay network is
created, in which information and failures become quickly known to all the agents.

Thanks to the fact that all agents know about all other agents’ existence, a
very simple criterion for selecting the leader can be used: the agent with the lowest
ID acts as the leader. The leader will know that it is indeed the leader because
no agents with a lower ID exist; similarly, non-leader agents will know that they
are not the leader, because at least another agent with a lower ID exists. If the
leader agent fails, it will disappear from the remaining agents’ ADBs and they will
quickly converge to a new leader.

Non-leader agents will follow the rules given in section 3.2 and implemented in
algorithm 3. The leader follows different rules, that are described in section 3.5.
With the algorithm described above, non-leader agents tend to maintain their
relative position with respect to the leader. Therefore, with proper movements of
“guidance”, the leader can direct the whole flock towards uncovered portions of
the target area.

7We found that 8 times per second is a good trade-off between latency and bandwidth re-
quirements.

CHAPTER 3. A FLOCKING ALGORITHM FOR THE AREA COVERAGE PROBLEM 18

Algorithm 1 Processing of incoming messages

function On Incoming Message(SenderID, SenderSeq, SenderX,
SenderY , SenderHeading, SenderADB)

for all r in SenderADB do
if r.ID ̸= LocalID then

Merge(r.ID, r.Seq, r.x, r.y, r.heading, r.distance+ 1, r.age)
end if

end for
Merge(SenderID, SenderSeq, SenderX, SenderY , SenderHeading, 1, 0)

end function
function Merge(ID, Seq, X, Y , Heading, Distance, Age)

if ID /∈ LocalADB ∥ LocalADB[ID].Seq < Seq then
LocalADB[ID]← (Seq,X, Y,Heading,Distance, Age)

end if
end function

Algorithm 2 Aging timer handler

function On Aging Timer ▷ Runs every millisecond
for all r in LocalADB do

NewAge← r.Age+ 1 ▷ Increment by 1 ms
if NewAge ≤ Max Allowed Age(r.Distance) then

LocalADB[r.ID].Age← NewAge
else

Drop(LocalADB[r.ID])
end if

end for
end function

CHAPTER 3. A FLOCKING ALGORITHM FOR THE AREA COVERAGE PROBLEM 19

Algorithm 3 Flocking rules pseudocode

function Controller NonLeader(LeaderID, LocalX, LocalY ,
LocalHeading, LocalADB, ∆T)

diffX ← LocalADB[LeaderID].x− LocalX
diffY ← LocalADB[LeaderID].y − LocalY
parallelDirX ← cos(targetHeading), parallelDirY ← sin(targetHeading)
orthoDirX ← cos(targetHeading + π/2), orthoDirY ← sin(targetHeading + π/2)
parallelDiff ← parallelDirX ∗ diffX + parallelDirY ∗ diffY
orthoDiff ← orthoDirX ∗ diffX + orthoDirY ∗ diffY

▷ Apply R2 (alignment):
yawTargetSpeed← Saturate(

kp R2 ∗ AngDiff(LocalADB[LeaderID].heading, LocalHeading), sR2)
▷ Apply R3x (cohesion along X axis):

if parallelDiff ≥ 0 then
R3x dir ← targetHeading

else
R3x dir ← targetHeading + π

end if
if IsDirectionObstructed(LocalX, LocalY,R3x dir, LocalADB) then

parallelTargetSpeed← 0
else

parallelTargetSpeed←PiController(kp R3x, kI R3x, parallelDiff , sR3x)
end if

▷ Apply R1 (separation) or R3y (cohesion along Y axis):
nearestAgentParallelDist, nearestAgentOrthoDist←

DistanceToNearestAgent(LocalX, LocalY, LocalHeading, LocalADB)
if |nearestAgentOrthoDist| < DR1 then

sep← cp R1 ∗ nearestAgentParallelDist2 + co R1 ∗ [1− (nearestAgentOrthoDist
DR1

)dR1]
orthoTargetSpeed← Saturate(sep, sR1) ∗ sgn(nearestAgentOrthoDist)

else
orthoTargetSpeed← Saturate(kp R3y ∗ (−orthoDiff), sR3y)

end if
end function

function AngDiff(α, β) ▷ Compute α− β and normalise it within [−π; +π]
γ ← α− β
if |γ| > π then

γ ← γ − 2π ∗ sgn(γ)
end if
return γ

end function

function Saturate(v, s) ▷ Constrain v within [−s; +s]
return min(s,max(−s, v))

end function

CHAPTER 3. A FLOCKING ALGORITHM FOR THE AREA COVERAGE PROBLEM 20

3.4 Distributed aggregation query

Before describing the leader’s rules of movement, we need to define how the leader
gets to know what parts of the area have been covered by the flock, and what
parts are still unexplored. Given the decentralised and fault-tolerant nature of the
proposed algorithm, we assume that, whenever an agent fails, all of its acquired
data is considered lost. In other words, should an agent fail, every part of the area
that it had covered reverts back to the unexplored state8 and must be covered
again. Furthermore, should the leader fail, the new leader must be able to acquire
the same information about current coverage that the old leader had. With these
goals in mind, we designed a distributed algorithm to efficiently query the flock’s
overall coverage map.

Let us subdivide the rectangular area to be monitored into a set of stripes.
Such stripes are parallel to the y axis, and their height is approximately equal
to Xsensor. All pictures taken by the UAVs will be axis-aligned. Furthermore,
camera trigger logic ensures that only pictures fully covering a stripe along the x
axis (fig. 3.6) are saved.

xIndex

yStart yEnd

x

y

Figure 3.6: Representation of area covered by a picture.

Under the above assumptions, the area covered by a picture can be identified
by the xIndex of the stripe (i.e. the index of the discretised x coordinate of the
rectangular area) and the coordinates of the start and the end of the covered area
(yStart, yEnd) along the y axis (with yEnd− yStart = Ysensor).

Each agent maintains a local database of the coordinates of the pictures it
has taken, called Area Parts Database (APD). Let us see how, in the proposed

8Unless another agent happens to have redundantly covered the same area. Note that redun-
dancy is not a desired effect, because the algorithm tries to minimise overall mission time and,
thus, repeated coverage.

CHAPTER 3. A FLOCKING ALGORITHM FOR THE AREA COVERAGE PROBLEM 21

approach, the leader can efficiently query and aggregate the APDs of all agents in
the flock.

An APD is stored as an array of N lists (with N = number of stripes, known
in advance to all agents). An APD is said to be in normal form if each list is such
that every pair of consecutive entries has yEndi < yStarti+1. An APD can be
normalised by merging overlapping pictures within the same stripe as if they were
a single wider one and then sorting the resulting elements in increasing yStarti
order.

It is also possible to aggregate several APDs into a single one, which will
represent the union of the covered areas, by concatenating each stripe’s data and
then applying alg. 4 (whose working at stripe level is shown in fig. 3.7).

input1

input2

...

inputn

output

+1

+1

−1

−1

+1

+1 −1

−1

0 1 2 1 0 1 2 1 0

Figure 3.7: Union of a set of records in a stripe.

The leader starts an APD query operation by sending the first message. All the
agents work as retransmitters and partial aggregators. Every message includes:

• the ID of the node that started the query (messages with a value different
from the current leader’s ID are ignored upon reception);

• a unique monotonic query ID;

• an APD containing the current partial result;

• an array of IDs of agents that have responded so far.

CHAPTER 3. A FLOCKING ALGORITHM FOR THE AREA COVERAGE PROBLEM 22

Algorithm 4 APD normalisation and union

function Merge APDs(APD1, APD2)
result← ∅
for all xIndex do ▷ For each stripe

tmp← Concatenate Lists(APD1[xIndex], APD2[xIndex])
result[xIndex]← Normalize Stripe(tmp)

end for

return result
end function

function Normalize Stripe(listOfPatches)
discontMap← ∅ ▷ Initialise to an empty associative array
for all xStart, xEnd in listOfPatches do ▷ For each patch of covered area

if xStart ∈ discontMap then
discontMap[xStart]← discontMap[xStart] + 1

else
discontMap[xStart]← +1

end if
if xEnd ∈ discontMap then

discontMap[xEnd]← discontMap[xEnd]− 1
else

discontMap[xEnd]← −1
end if

end for

result←Make Empty List()
sum← 0
for all x in discontMap do

prevSum← sum
sum← sum+ discontMap[x]
if prevSum = 0 ∧ sum > 0 then

xStart← x
else if prevSum > 0 ∧ sum = 0 then

xEnd← x
Append To List(result, (xStart, xEnd))

end if
end for

return result
end function

CHAPTER 3. A FLOCKING ALGORITHM FOR THE AREA COVERAGE PROBLEM 23

The initial message, sent by the leader, contains the leader’s own APD and an
array with a single entry (the ID of the leader itself). The agents that receive a
message merge the received APD with their own and produce a new aggregated
message. Further agents will do the same until, in the end, a message citing all
agents in the flock bounces back to the leader, which will find the result of the
query in the APD field.

In order to avoid flooding the network and be tolerant to lost messages, each
agent keeps retransmitting, at a fixed rate, its last message. As a further opti-
misation, an extra list of acknowledged agent IDs is appended to all transmitted
messages. If all neighbours within wireless range (which are known from the ADB)
have acknowledged the latest sent message, the retransmissions stop. Fig. 3.8
shows the messages transmitted at each step for an example graph (edges repre-
sent wireless connectivity in an example graph).

L

A

B

C D

E

F

(a)

L

A

B

C D

E

F

(b)

L

A

B

C D

E

F

(c)

L

A

B

C D

E

F

(d)

L

A

B

C D

E

F

(e)

L

A

B

C D

E

F

(f)

Figure 3.8: Aggregation query example.

3.5 Path planning and execution

As soon as the aggregation query returns its result, the leader can proceed with
the computation of an optimal path over areas that have not been covered yet.

Given the distributed nature of the flocking algorithm, we decided to avoid
partitioning the flock (which would imply loss of connectivity among the parti-
tions) at all costs. Therefore, the flock always flies in tight formation. It is the
leader’s responsibility to guide it so that area coverage is maximised under these

CHAPTER 3. A FLOCKING ALGORITHM FOR THE AREA COVERAGE PROBLEM 24

(a) Two possible paths are considered. (b) The one that is closer is chosen, thesh-
olded and smoothed.

Figure 3.9: Path planning.

constraints.

Using the coverage map obtained from the result of the query, the leader com-
putes two possible paths, respectively on the frontier of the left and the right sides
of the explored area (fig. 3.9a). It then discards the one that is farther from the
current position of the flock; the remaining one is thresholded (by removing control
points that would cause excessive lateral movement) and smoothed (fig. 3.9b).

To drive the flock over the unexplored areas, the leader estimates the width
of the flock (using only its own local ADB) as well as its own relative position in
it. Using this knowledge, the leader translates so that the edge of the flock lies
over the beginning of the planned path (with a 20% margin to compensate for
width oscillations due to control and network latency) and then starts translating
according to the planned path until the overall flock reaches the other end of the
rectangle.

After waiting for the whole flock to complete, a new query is started and, unless
the whole rectangle has been covered, the process repeats. Otherwise, if the whole
rectangle has been covered, the mission is regarded as completed.

CHAPTER 3. A FLOCKING ALGORITHM FOR THE AREA COVERAGE PROBLEM 25

3.6 Acquiring and transmitting data to a Ground

Control Station

When at Zsensor altitude, each agent continuously checks whether its sensor (e.g.
camera) is currently framing an area such that:

• intersects with the rectangle to be covered (fig. 3.10a);

• the sensor’s orientation is aligned to the rectangle x axis (fig. 3.10b);

• does not cross a stripe boundary (fig. 3.10c);

• it has not been already acquired yet.

If all the above conditions are met (fig. 3.10d), data is acquired and the coordi-
nates of the sensor area’s projection are added to the local APD. The actual data
is stored onboard for later retrieval, and not shared with the other UAVs.

As a further optimisation, if we assume that a fast (but possibly unreliable)
cellular network is available, acquired data can be transmitted to a Ground Control
Station (GCS) on a best-effort basis. In this case, the onboard storage will work
as an outgoing data buffer. Apart from the obvious advantage of making acquired
data available even before the end of the mission, this optimisation can improve
recovery times: if the UAV that fails had managed to send acquired data to the
GCS before failing, there is no need to go with the whole flock back to re-acquire
its data.

In this optimised variant, the GCS periodically sends all UAVs the map of the
sensor data that it has received so far (in the same format as an APD). Before
planning a new path, the leader merges the result of the aggregation query with
the latest APD received from the GCS and then proceeds as before. An interesting
note is that, despite the presence of a centralised GCS, the algorithm gracefully
degrades to non-optimised operation if the GCS (or the communication link) fails:
in other words, the algorithm is still tolerant to the failure of any agent (GCS and
UAVs). It will simply take longer to complete the overall mission.

Simulation results of the algorithm presented in this chapter will be shown in
section 4.3.

CHAPTER 3. A FLOCKING ALGORITHM FOR THE AREA COVERAGE PROBLEM 26

(a) Not intersecting with target area. (b) Misaligned sensor.

(c) Crossing stripe boundaries. (d) Good sensor position.

Figure 3.10: Sensor positioning.

CHAPTER 4. MODELING A FLOCK OF QUADROTORS 27

4
Modeling a flock of quadrotors

Flocking algorithms, such as the one described in the previous chapter, describe
the high-level behaviour of a set of UAVs. To actually run (or simulate) such
algorithms, we need to define a model for the UAVs and the wireless network.
Depending on the chosen model, the UAVs and the network will be more or less
realistic in terms of:

• physical dimensions (e.g. is time measured in generic “simulation epochs” or
real-world seconds? are lengths expressed in pixels or meters?);

• primitives offered to the high-level algorithms (in other words, is the “Appli-
cation Programming Interface”, or API, offered by the simulated UAV the
same as the real UAV?);

• latency of UAV commands and wireless messages;

• reliability of UAVs (real-world UAVs sometimes fail; is this aspect modelled?)
and wireless network (e.g. percentage of lost packets).

The simplest physical UAV model is a pointwise approximation, capable of
any instantaneous movement (i.e. with neither inertia nor maximum speed). This
approximation can be useful to validate the early design phases of a new algorithm,
but it quickly becomes inadequate if real-world quantities are to be measured (such
as total mission time, energy consumption and so on).

In the initial part of this chapter, we describe the basic control laws of a UAV
and how they can be simulated.

CHAPTER 4. MODELING A FLOCK OF QUADROTORS 28

Wireless networks can, similarly, be simulated with varying levels of detail.
Starting from basic wireless range modelling (i.e. do not deliver messages to agents
more than a preset number of meters away) and predetermined loss rate, there are
much more advanced models. For instance, they can take into account collisions
among multiple transmitters, the hidden and exposed terminal problems, asym-
metry and physical obstacles to the signal propagation.

In the second section of this chapter, a custom realistic lightweight simulator
(with basic wireless networking) is presented. In the third section, the simulator
is used to validate the algorithm described in the previous chapter with flocks of
up to 40 UAVs.

4.1 Control loop of a quadrotor

At its core, a multirotor is made of a frame (the physical structure), a battery, a
set of motors with propellers and a Flight Control Unit (a microcontroller with
some sensors). Multirotors with four motors are called quadrotors. In this section,
the control loop of a quadrotor is described. As it is often the case in robotics,
complex behaviour is obtained by cascading different controllers, starting from the
basic rate controller to a full-fledged GPS-based position controller [48].

There are several layouts for quadrotors. The most common one is probably
the “×” layout (fig. 4.1). As can be seen from the picture, motors are identi-
fied by a number: the odd ones rotate in clockwise direction, the even ones in
counterclockwise direction.

FRONT
(local x axis)

RIGHT
(local y axis)

4 3

21
x (roll)

6

-
y (pitch)

��@@
m

z (yaw)

Figure 4.1: Motor layout and coordinate system9.

9The z axis enters the paper plane.

CHAPTER 4. MODELING A FLOCK OF QUADROTORS 29

Let us consider how each motor contributes to the “unbalancing” and thrust
of the quadrotor using a simplified model10. Let Mk be the normalised duty cycle
applied to the k-th motor (0 ≤ Mk ≤ 1). The actual units of measure and
the lever arms can be ignored because we are only interested in finding relations
of proportionality. The total torque along the x axis (Tx) is affected positively
by motors on the left and negatively by motors on the right (eq. 4.1); the total
torque along the y axis (Ty) is affected positively by motors on the front and
negatively by motors on the back (eq. 4.2; note that the x and y axes share the same
proportionality factor); the total torque along the z axis (Tz) is affected positively
by motors that spin clockwise and negatively by motors that spin counterclockwise
(eq. 4.3); the total thrust (F) is resultant force on the quadrotor, i.e. the sum of
the individual forces by each motor (eq. 4.4).

Tx = α (+M1 −M2 −M3 +M4) (4.1)

Ty = α (+M1 +M2 −M3 −M4) (4.2)

Tz = β (+M1 −M2 +M3 −M4) (4.3)

F = γ (+M1 +M2 +M3 +M4) (4.4)

⎡⎢⎢⎣
M1

M2

M3

M4

⎤⎥⎥⎦ =

⎡⎢⎢⎣
+1 −1 −1 +1
+1 +1 −1 −1
+1 −1 +1 −1
+1 +1 +1 +1

⎤⎥⎥⎦
−1 ⎡⎢⎢⎣

Tx/α
Ty/α
Tz/β
F/γ

⎤⎥⎥⎦ (4.5)

The four equations above can be seen as 4 × 4 linear system, that can be
inverted as shown in eq. 4.5. This function, which transforms the target torques
and thrust into the individual duty cycles to be applied to each motor, constitutes
the mixer block, which sits at the bottom of a flight control stack11. Immediately
above the mixer block, there is always a rate controller block, which drives the
mixer’s torque inputs according to target angular speeds (by means of a PID
controller). The mixer’s thrust input can be either similarly driven by a Z-axis
velocity controller or, in some flight modes, directly taken from the pilot.

This is the reason why proportionality factors do not need to be known explic-
itly at all: they are either absorbed in the gains of an upstream controller or, only

10This model is the one that is actually used in some flight stacks, such as CleanFlight [49].
11By keeping the mixer block separated, supporting a different multirotor layout becomes a

matter of simply replacing the mixer, without affecting the rest of the flight stack.

CHAPTER 4. MODELING A FLOCK OF QUADROTORS 30

in some flight modes and for the thrust only, known by design because the pilot’s
input is naturally normalised over the range of his/her radio-controller throttle
stick, therefore γ = 1.

In detail, multirotors can be controlled by the user in several “flight modes”:
the simplest one is called “acrobatic” mode, in which the input from the radio is
directly passed to the three rate controllers, except for the thrust, which is simply
scaled and used as F (fig. 4.2).

Figure 4.2: Acrobatic mode.

Flying a multirotor in acrobatic mode is extremely difficult because the pilot
has to actively keep the multirotor horizontal; furthermore, releasing all sticks
(i.e. letting the springs move them to the neutral position) leaves the UAV in the
current orientation, possibly tilted. Even simple toy drones, therefore, offer an
easier mode, called “manual”, in which the pilot controls the target attitude along
the x and y axis instead of the rate (fig. 4.3). In manual mode, the multirotor
stays horizontal if all sticks are released.

Figure 4.3: Manual mode.

Professional drones (which are equipped with a GPS receiver) are usually flown
in “position” mode. From the point of view of the pilot, this mode is even simpler
because the user simply moves a virtual target point, which is chased by a posi-
tion+velocity control loop (fig. 4.4). In this mode, if all sticks are released, the
multirotor stays still (hovering).

CHAPTER 4. MODELING A FLOCK OF QUADROTORS 31

Figure 4.4: Position mode.

“Position” mode is also the most common mode in which autonomous UAVs are
commanded by high-level algorithms (that, therefore, feed the control loop with a
sequence of position setpoints, also called waypoints). Another widespread control
mode for autonomous UAVs is the one that bypasses the outer controllers and
directly applies velocity setpoints, usually computed in real-time by some upstream
application-specific controller.

4.2 A lightweight ad hoc simulator

In section 2.2, several realistic UAV simulators were presented. We developed
a simpler and much more lightweight simulator, specifically targeted at quickly
prototyping algorithms for medium-scale flocks of UAVs [50, 51].

The proposed simulator [50, 51] is built in C++ on top of the Bullet physics li-
brary [28]. Quadrotors are implemented as a single rigid body, with each motor ap-
plying a perpendicular force and a torque. Real-time visualisation is implemented
in OpenGL [52] for the 3D Views and Qt 5 [53] for the GUI controls (fig. 4.5). It
is possible to run the simulations “headless”, i.e. in batch mode without the GUI,
to collect numeric data and store statistics as CSV files.

The simulator has built-in support for the notion of agents, physical agents
and inter-agent communication: a ground station can be implemented as an agent;
UAVs are physical agents, a specialisation of the agents category with a position
property. Two communication channels are implemented:

• the long-range channel can be used by all types of agents, to send unicast
messages;

CHAPTER 4. MODELING A FLOCK OF QUADROTORS 32

Figure 4.5: Screenshot of a flock in the simulator.

• the short-range channel can be used by physical agents only, to send broad-
cast messages to neighbouring agents.

Thanks to the simplicity of the simulator, in which all agents run in the same
address space, messages do not need to be serialised (thus simplifying the algo-
rithm prototyping phase). Instead, the message dispatcher module of the simula-
tor simply shares reference-counted read-only references of the original message to
the intended recipient(s). The dispatcher module can also optionally discard ran-
dom messages (according to a configurable loss rate) and, for short-range channel
messages, it can restrict the delivery to only physical agents closer than a preset
distance threshold from the sender.

In addition to the configurable message loss rate, it is possible to simulate entire
UAVs failing with a preset failure rate: a periodic simulation task will randomly
“kill” (i.e. immediately disable) one or more UAVs accordingly. The simulator will
also kill UAVs that collide with either the ground or other UAVs (both UAVs will
be killed).

The core of the simulator is separated from the code that instances the simula-
tion: it is trivially possible to reuse the core for a different simulation without even
recompiling it. Simulation-specific code goes into a simulation-specific executable,
which loads the core as a dynamic library. Simulations can be configured through

CHAPTER 4. MODELING A FLOCK OF QUADROTORS 33

text files in .ini format (to set, e.g. the initial position and the number of UAVs,
the target area size and the simulated failure probability).

4.3 Simulation results

The algorithm described in chapter 3 has been implemented and tested in the
simulator. A Finite State Machine (FSM) was implemented (fig. 4.6) to clearly
identify the different states:

• Taking Off : This is the initial state, in which agents turn on the motors
and reach Zsensor altitude, while also starting to build the overlay network to
discover other flock members. Depending on the presence of another agent
with a lower ID, the next state is either Querying or Non-Leader ;

• Querying : A new query starts when this state is entered and this is the
leader’s state while an aggregation query is in progress. When the query is
completed, if its result is that the area has not been fully covered yet, the
next state becomes Deploying ; otherwise the flocking logic is disabled and
the agent enters the Going Home state;

• Deploying : This is the leader’s state while it waits for the rest of the flock
to reach the planned path’s initial position;

• Running : This is the leader’s state while it is executing a planned path;

• Waiting : This is the leader’s state while it waits for the rest of the flock to
complete the planned path;

Figure 4.6: Finite State Machine that implements the UAV’s behavior.

CHAPTER 4. MODELING A FLOCK OF QUADROTORS 34

• Non-Leader : This is the state of non-leader agents, obeying to flocking rules.
It can be entered at any time from any of the leader’s states if a new agent
with a lower ID is detected (i.e. the current agent loses the leader role);
similarly, it can be left if the current leader fails and the local agent has the
lowest ID among the remaining ones (i.e. the current agent gains the leader
role).

• Going Home: This state consists in going back to the take-off position (with
simple rules to steer away from other agents on the way) and then slowly
descending to the ground, while continuously broadcasting a “going home”
message that makes other agents immediately enter this state too (this is the
mechanism to propagate the information that the mission is completed).

• Landed : This is the final state, in which motors are turned off.

The simulated environment consists of a square target area (H = W = 600
m). The flight altitude was chosen so that the sensor’s projection on the ground
is Xsensor = 7 m and Ysensor = 10 m. The constants referenced by alg. 3 have been
set to the values in table 4.1.

Symbol Description Value
DR1 Threshold for R1 (separation) 7.5
cp R1 Multiplier for parallel distance component 0.5
co R1 Multiplier for orthogonal distance component 0.6
dR1 Exponent for orthogonal distance component 0.4
sR1 Saturation for R1 (separation) 0.8
kp R2 Proportional gain for R2 (alignment) 5
sR2 Saturation for R2 (alignment) 180

kp R3x Proportional gain for R3x (cohesion along X axis) 0.2
kI R3x Integral gain for R3x (cohesion along X axis) 0.0005
sR3x Saturation for R3x (cohesion along X axis) 2
kp R3y Proportional gain for R3y (cohesion along Y axis) 0.1
sR3y Saturation for R3y (cohesion along Y axis) 2

Table 4.1: Constants used in the simulator.

CHAPTER 4. MODELING A FLOCK OF QUADROTORS 35

400

500

600

700

800

900

1000

10 15 20 25 30 35 40

Avg. energy (mAh)

600

700

800

900

1000

1100

1200

1300

1400

1500

Number of agents

Mission time (s)

E
ne

rg
y

(m
A

h)

Ti
m

e
(s

)

Figure 4.7: Total mission time and average energy consumption.

We analysed the total mission time (from take-off to landing) with a varying
number of agents. Fig. 4.7 shows the total mission time and average energy con-
sumption12 without injected artificial faults (i.e. randomly “killed” agents). As
can be observed, if we add more agents (until 25), both the mission time and the

12Assuming a 3-cell Li-Po battery (nominal voltage: 11.1 V). In detail, power consumption
was computed using a simplified model as follows:

For each motor k, let Tk be its thrust. If we assume that its vertical speed is zero, we can
compute its mechanical power Pk using eq. 4.6 [54] (where A is the propeller area, D is its
diameter and ρ = 1.225 kg/m3 is the air density).

Pk =
T

3
2

k√
2ρA

with A =
π

4
D2 (4.6)

If we also take into account the average propeller efficiency (η1 = 0.7) and average motor
efficiency (η2 = 0.75), the electrical power is given by eq. 4.7.

P ′
k =

Pk

η1η2
(4.7)

Let Pcontrol be the power consumption of the onboard control boards. The total power con-
sumption is given by eq. 4.8 and the current is given by eq. 4.9.

Ptot = P ′
1 + P ′

2 + P ′
3 + P ′

4 + Pcontrol (4.8)

itot =
Ptot

11.1 V
(4.9)

CHAPTER 4. MODELING A FLOCK OF QUADROTORS 36

average energy consumption decrease. However, starting from 25 agents, there is
almost no advantage in adding further agents.

We also ran the same experiment with an artificial agent failure rate (between
0.01% and 0.9%, applied every 10 s). The results are aggregated in table 4.2 into
two categories: trials where the number of failed agents was between 0 and 10, and
trials where it was between 10 and 30. As can be seen, the latter group presents
high variability, whereas the former group is more consistent, proving that, in the
presence of a realistic number (i.e. less than 10) of failed agents, the algorithm
stays effective.

In detail, we analysed the ratio of failed agents (and the resulting repeated
coverage) with a varying artificial failure probability (table 4.3). Details about the
resulting overcoverage distribution are shown in fig. 4.8. The experimental results
prove that, when agents fail, some overcoverage is present, but it is at negligible
levels and the algorithm stays efficient.

Mission Time (s) Energy consumption (mAh)
N. of Failed Agents Avg Std Dev Avg Std Dev

0-10 719 63 479 44
10-30 1360 418 913 282

Table 4.2: Effect of failed agents on mission time and energy consumption.

Failure prob. Failed agents Distance flown to recover from failed agents
0.0005 2.50 % 0.0000 %
0.0007 3.75 % 0.1493 %
0.0009 5.00 % 0.2095 %
0.001 3.75 % 0.1924 %
0.003 12.16 % 0.5015 %
0.005 10.94 % 0.7475 %
0.007 38.33 % 0.6517 %
0.009 28.57 % 1.3916 %

Table 4.3: Ratio of failed agents vs extra distance for recovery.

CHAPTER 4. MODELING A FLOCK OF QUADROTORS 37

1e-06

1e-05

0.0001

0.001

0.01

0.1

1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

A
re

a
(r

at
io

)

Coverage (times)

0
0.0001
0.0003
0.0005
0.0007
0.0009

Figure 4.8: Overcoverage Distribution.

0.0001

0.001

0.01

0.1

1

10 15 20 25 30 35 40
Number of agents

Waiting
Querying

Deploying
Running

Figure 4.9: Time spent in each state.

We also analysed the relative time spent in each state of the FSM. The results
show that time spent in “service” states is always below 2% (fig. 4.9, note: Going
Home and Landed states have been excluded from the statistics) and, unsurpris-
ingly, the percentage of time spent in this state increases when we add more agents.

CHAPTER 4. MODELING A FLOCK OF QUADROTORS 38

In conclusion, if we analyse all the experimental results that we obtained, 25
seems to be the optimal number of agents. It is important to note that this is
not an absolute outcome: this number is likely to change if we consider a target
area of different size (parameters W and H), a sensor with different Xsensor and/or
Ysensor, or change any of the parameters listed in table 4.1.

More experimental results are presented in [51].

CHAPTER 5. COMBINING HETEROGENEOUS TOOLS FOR REALISTIC UAV SIMULATION39

5
Combining heterogeneous tools for

realistic UAV simulation

As presented in section 2.2, several options to simulate autonomous UAVs exist.
Some are more realistic than others (e.g. accurate physics, API, scenery). Similarly,
several tools to simulate wireless networks exist, with different levels of detail and
flexibility.

In the work presented in this chapter [55, 56] we combined two heterogeneous
simulation tools:

• A UAV simulator, Gazebo with ArduCopter13 SITL, to provide accurate
physics and API;

• A wireless network simulator, by integrating the well-known ns-3 network
simulator.

The proposed architecture also lets you run several UAVs in the same simula-
tion (e.g. to simulate flocks) and makes it possible to spread part of the simulation
workload over a LAN. Unlink the simulator presented in the previous chapter, this
simulation environment is meant to be used for the final development and valida-
tion, running the same code that can be run on the real UAV.

13We chose ArduCopter over PX4, because of its simpler yet flexible codebase (PX4 is based on
a publisher-subscribe framework called uORB, whereas ArduCopter is based on a plain object-
oriented design).

CHAPTER 5. COMBINING HETEROGENEOUS TOOLS FOR REALISTIC UAV SIMULATION40

The resulting work, called gzuav, has been made available for download at
https://gzuav.dmi.unict.it (with full source code and precompiled Ubuntu
.deb packages). It includes a Gazebo plugin, an ns-3 plugin, a customised Ar-
duCopter SITL backend and source code for the gzuav infrastructure, as well as
launch scripts and usage examples in Python.

5.1 Co-simulation of physics and networking

Network simulation is a widely studied topic with a wide range of available tools,
such as ns-2, ns-3 [57] (successor to ns-2) and OMNeT++ [58]. However, network
simulation tools are only focused on the networking aspect and nodes’ behaviour
are usually idealised models (e.g. “simulate a node that transmits random 1000
bytes payload ten times a second”). In our approach, we cannot use such a simple
model, because the behaviour of each node depends on the rest of the simulation.
More precisely, we wanted to combine Gazebo’s physics simulation with a realistic
network simulator (this approach of mixing two or more heterogeneous tools is
called “co-simulation”). We selected ns-3 because it has a plugin-like architecture
that makes it possible to define a custom event loop without affecting the rest of
the system; this aspect is peculiar to our co-simulation needs: “plain” network
simulations would run on ns-3’s standard event loop but, in our case, we needed
to synchronise network events with the rest of the simulation components, namely
Gazebo, the High-Level logic and ArduCopter, as we will see in the next section.

Other works, similar to our own, that combine different simulations tools are
[59], in which the authors combine a custom physics engine (written in MATLAB)
with OMNeT++, and [60], in which X-Plane [32] produces flight paths that are
consumed in real-time by an OMNeT++ simulation (however, the communication
flow between the two simulators in not bidirectional: network events cannot be
used to make decisions about subsequent flight paths). Another interesting exam-
ple is [61]: it simulates a group of robots (with the ARGoS [23] robotics simulator)
interacting over a wireless channel (simulated in ns-3). This approach is similar to
our own; however, the modifications made by the authors to the two simulators are
much more invasive than ours (making integration more difficult for the end-user);
furthermore, the behaviour of the robots must be programmed with APIs that are
different from those of the real robot.

https://gzuav.dmi.unict.it

CHAPTER 5. COMBINING HETEROGENEOUS TOOLS FOR REALISTIC UAV SIMULATION41

5.2 Flight stack architecture

Before presenting the simulation architecture, let us analyse the components of
the flight stack on a real drone.

The propellers are attached to brushless motors, mounted on each leg of the
frame (whose shape can be ×, +, hexarotoror, ...). Each brushless motor is con-
nected to an Electronic Speed Control (ESC) module, which drives the three phases
of the motor so that it reaches a reference speed, controllable by means of a digital
PWM signal.

Motors are controlled (through the ESC’s PWM signal) by the Flight Control
Unit (FCU), usually a microcontroller running a real-time control firmware (such
as ArduCopter or PX4). Some sensors (usually the accelerometer, the gyroscope
and the barometer) are soldered on the FCU board too. The FCU must be as
close as possible the UAV’s centre of mass for optimal performance. The GPS
and magnetometer sensors are usually placed externally, above the motor plane,
to have a better sky view and less electromagnetic interference from the motors.

Manually controlled UAVs need an RC receiver unit14, which is also connected
to the FCU. Depending on the RC receiver type, several protocols exist to encode
the input signal, but they all transfer the same information: the position of the
sticks in the pilot’s RC transmitter.

FCU

Motor 1

Motor 2

Motor 3

Motor 4

ESC

ESC

ESC

ESC

Voltage Regulator

Mag

RC

Gyro BaroAccel

Voltage Divider Li-Po
Battery

 Microcontroller

I²C/SPI

PWM

TIMER

ADC

GPS UART

Figure 5.1: Connection diagram of a quadcopter.

14Autonomous UAVs are usually equipped with an RC receiver too, for safety or emergency
takeover.

CHAPTER 5. COMBINING HETEROGENEOUS TOOLS FOR REALISTIC UAV SIMULATION42

Lastly, the ESCs and the FCU need to be powered15. Li-Po batteries are
usually employed because of their good energy density and discharge rate. An
Analog-Digital Converter (ADC) on the FCU can monitor the battery voltage to
detect the remaining charge.

Fig. 5.1 summarizes the hardware connections explained above.

The FCU continuously receives measurements from the sensors and updates
the estimation of the current pose in real-time, usually with a Kalman filter to
perform sensor fusion. The estimated pose (x, y, z, roll, pitch, yaw) and its deriva-
tive (linear and angular velocities) are consumed by the algorithms described in
section 4.1.

If UAV is autonomous, an external “companion computer” (e.g. a System-
on-a-chip, or SoC, such as a Raspberry Pi) can be connected to the FCU to i)
receive pose updates in real-time; ii) execute its own autonomous control logic;
iii) send position/velocity commands. In PX4 and ArduCopter-based FCUs, the
connection happens over a UART with an open protocol called MAVLink [62]. In
a multi-UAV application, the SoC is also connected to an RF antenna (e.g. IEEE
802.11 and/or IEEE 802.15.4-UWB) to communicate with the other agents.

It is worth noting that, from the point of view of the companion computer, the
“MAVLink” protocol is the API of the FCU. Therefore, as we will see in the next
section, our simulation environment lets simulated companion computers interact
with the associated UAV through a MAVLink channel.

5.3 The gzuav environment

In our proposed simulation architecture [55, 56], each UAV is split into six inter-
connected software modules:

• Gazebo Visual Model: 3D graphical representation of the UAV, only used if
the simulation is running with a GUI (i.e. not in batch/headless mode);

• Gazebo Physical Model: 3D description of the rigid bodies that compose the
UAV (propellers, motors+frame) and joints that connect them;

15The RC receiver and the sensors are usually powered in cascade by the FCU.

CHAPTER 5. COMBINING HETEROGENEOUS TOOLS FOR REALISTIC UAV SIMULATION43

• GzUavPlugin instance: an instance of our plugin for Gazebo, which exposes
the physical model to the external components;

• ArduCopter process: an ArduCopter instance, running in SITL mode;

• UAV Node: module that acts as a proxy for the UAV within the network
simulation process;

• High-Level Logic: an instance of the software that would run on the com-
panion computer, provided by the user.

A middleware called “gzuavchannel” lies at the core of the gzuav architecture,
whose purpose is to synchronise the execution of the other components. We de-
fined a protocol, comprising two phases called Phase 0 and Phase 1 (fig. 5.2).
Synchronisation begins when, at the beginning of each time step, each instance
of the Gazebo plugin emits a Begin-Tick-AC message16. Such messages are for-
warded as-is to the corresponding ArduCopter processes. At the same time, an
additional Begin-Tick-017 is generated and sent by gzuavchannel to the UAV’s
High-Level Logic process. Therefore, ArduCopter and the High-Level Logic run
in parallel. When they complete the processing of the time step, they both send
a signal (ArduCopter sends End-Tick-AC18 and ArduCopter sends End-Tick-
019). When all End-Tick-AC and End-Tick-0 messages have been collected
from all the UAVs, gzuavchannel generates and sends a Begin-Tick-120 to the
ns-3 process. Upon reception of such message, our ns-3 module updates the po-
sition of the simulated nodes, runs the events associated to the current time step
and, in the end, sends End-Tick-121. When gzuavchannel sees this message, it
forwards the End-Tick-AC messages it had received to the respective Gazebo
plugin instances, thus completing one cycle of the simulation protocol.

16The Begin-Tick-AC message contains the current simulation timestamp (according to the
simulated clock), vehicle’s pose, linear/angular velocity and acceleration.

17The Begin-Tick-0 message contains the current simulation timestamp.
18The End-Tick-AC message contains the simulated PWM duty cycle for each motor.
19The End-Tick-0 message contains no payload.
20The Begin-Tick-1 message contains the current simulation timestamp and each vehicle’s

position.
21The End-Tick-1 message contains no payload.

CHAPTER 5. COMBINING HETEROGENEOUS TOOLS FOR REALISTIC UAV SIMULATION44

ENDTICK1

BEGINTICK1

BEGINTICK0

gzuavchannel Phase 1 subscriber
(ns-3)

ArduCopter
instance

Phase 0 subscriber
(high-level logic) ArduCopterPluginSyncUDS

BEGINTICKAC

BEGINTICKAC

ENDTICKAC

ENDTICKAC

ENDTICK0

For each UAV (in parallel)

Figure 5.2: Interactions among components for each simulation step.

 Ns-3 process

Gazebo physics
simulator
(gzserver)

Unix Process

GzUavPlugin

Unix-domain
Socket

ArduCopter process
(in SITL mode)

Unix Process

TCP
Connection

TCP
Connection

High-level logic

UAV Node

Unix Process

Unix-domain
Socket

GzUavPlugin Unix-domain
Socket

ArduCopter process
(in SITL mode)

Unix Process

TCP
Connection

TCP
Connection

High-level logic

UAV Node

MAVLink
(TCP)

TCP
Connection

Unix-domain
Socket

GZUAVCHANNEL

MAVLink
(TCP)

UAV 2

UAV 1

Figure 5.3: Connections among components in a two-UAV simulation.

ns-3

BEGINTICK0

ENDTICK0

gzuavchannel High-level logic

ENQUEUENS3

ACK

For each
message

(a) Messages sent by UAVs are enqueued in
ns-3 during Phase 0.

ENQUEUEHLL

ACK

ns-3

BEGINTICK1

ENDTICK1

gzuavchannel High-level logic

For each
message

(b) Ns-3 runs the network simulation, includ-
ing the delivery of messages to UAVs, during
Phase 1.

Figure 5.4: Interactions between high-level logic UAV processes and ns-3.

CHAPTER 5. COMBINING HETEROGENEOUS TOOLS FOR REALISTIC UAV SIMULATION45

Gazebo physics
simulator
(gzserver)

GzUavPlugin

GzUavPlugin

TCP Link

TCP Link

GZUAVCHANNEL
GzUavPlugin

GzUavPlugin

GzUavPlugin

GzUavPlugin

Node A Node C

TCP Link

TCP Link

GZUAVCHANNEL

Node B

Node D

Node E

ArduCopter

GZUAVCHANNEL
ArduCopter

High-level Logic

High-level Logic ArduCopter

GZUAVCHANNEL
ArduCopter

High-level Logic

High-level Logic

ArduCopter

GZUAVCHANNEL
ArduCopter

High-level Logic

High-level Logic

Node F

ns-3 network
simulator

UAV Node

UAV Node

UAV Node

UAV Node

UAV Node

UAV Node

TCP Link

TCP Link
TCP Link

TCP Link

TCP Link

TCP
Link

TCP
Link

UAV Nodes are
interconnected
within ns-3's

simulated network
according to the
network model

Figure 5.5: Architecture of gzuavchannel in a distributed environment.

Fig. 5.3 shows all the connections that exist for a two-UAV simulation. Most
components are connected through gzuavchannel, which also transfers basic data
along with timing messages, as outlined above. Two communication channels
are direct between the involved components: one of them, the MAVLink channel
between ArduCopter and the High-Level Logic, is simulated with a direct TCP
connection.

The other direct channel is the one between ns-3 and the High-Level logic. It
is also a TCP connection, and we defined a protocol to send and receive messages
over it. A peculiar aspect is that messages can only be sent by the High-Level
Logic during Phase 0 (while it is running) and dispatched by ns-3 during Phase
1 (fig. 5.4). As a consequence of this, all messages have a minimum latency,
introduced by the simulation architecture, equal to the simulation step duration.
The user can configure the step duration: typical values are in the 1-5 ms range.
Smaller values result in more accurate physics in Gazebo and lower artificial latency
in ns-3; however, they also result in increased CPU usage and, if the CPU saturates,
slower-than-real-time simulations22.

A desirable side effect of the modular architecture is that different processes can
be run on different nodes. This makes it possible to run distributed simulations.
The gzuavchannel program supports being run in a master-slave fashion, where
the master node runs Gazebo, and the slave nodes run ArduCopter, ns-3 or the
High-Level Logic processes. Fig. 5.5 shows this kind of setup in practice.

22In case of excessive CPU usage, the simulation slows down. However, its correctness is
not affected, provided the High-Level Logic synchronizes its timers to the timestamps received
in Begin-Tick-0 and does not use any timekeeping system call offered by the host operating
system.

CHAPTER 5. COMBINING HETEROGENEOUS TOOLS FOR REALISTIC UAV SIMULATION46

Thanks to the usage of the ArduPilot project, another interesting side effect is
that different supported vehicle types (e.g. fixed-wing planes, rovers) can be inte-
grated into the same framework. However, we have not investigated this possibility
in detail.

Lastly, it should be noted that, although the next chapter will present an ad-hoc
C++ framework for MAVLink programming, any existing MAVLink library can
be employed by user programs. In fact, gzuav itself, in its downloadable package,
includes some High-Level Logic program examples written in Python using the
DroneKit [63] library.

CHAPTER 6. A SOFTWARE ARCHITECTURE FOR UAV APPLICATIONS 47

6
A software architecture for UAV

applications

In the previous chapter we defined an environment to realistically simulate UAVs
that can be controlled through the MAVLink [62] API. We also said that, in
real UAVs, the MAVLink channel is usually connected to an onboard “companion
computer”.

In detail, the “companion computer” is usually a Linux SoC board such as a
Raspberry Pi, NVIDIA Tegra TX1/TX2 or Odroid XU4. There are many libraries
for writing Linux applications that communicate with a MAVLink FCU, such as
DroneKit [63] (for Python) and MAVROS [7] (for the ROS framework). A plain
“mavlink” library exists too [62]; however, it only provides the implementation
of the message serialisation/deserialisation routines. In fact, all of the previously
mentioned libraries are actually wrappers libraries around it.

In this chapter we propose a software architecture, implemented as a C++
framework that uses the “mavlink” library too, while also providing a range of
useful features for UAVs applications in a uniform and integrated fashion. In
particular, the framework has support for:

• Controlling a UAV over a MAVLink channel;

• Tuning and monitoring Proportional-Integral-Derivative (PID) controllers;

• Acquiring live images from a connected camera (such as a RaspiCam or a
USB camera);

CHAPTER 6. A SOFTWARE ARCHITECTURE FOR UAV APPLICATIONS 48

• Delivering such images to instances of computer vision algorithms;

• Routing the output of such algorithms to the control loops that need it;

• Logging and transmitting live telemetry data, such as vehicle pose/state and
(annotated) video feed to a Ground Control Station over IEEE 802.11;

• Exchanging application-specific direct messages with other robots over IEEE
802.15.4-UWB (A2A, in a decentralised way);

• Exchanging application-specific messages and synchronizing clocks with a
specialised Ground Control Station (A2G and G2A, e.g. to coordinate groups
of robots in a centralised way) over IEEE 802.11.

Furthermore, when an application based on this framework is executed in the
GzUav simulation environment, its clock is transparently synchronised to the sim-
ulation clock. This is especially useful if the application contains time-dependent
routines, such as timers or PID controllers.

While the architecture currently only supports MAVLink FCUs, it would be
very straightforward to repurpose it for different types of FCUs or even different
types of robots (e.g. rovers).

6.1 Onboard software

In robotic systems, many external inputs can be processed as events : an event
might be the reception of a message from another robot, a byte over a serial port,
a grabbed frame from a connected camera or the expiration of a timer (e.g. to
trigger an iteration of the control loop). Even in the case of continuous data
sources, such as a digital or analog input pin, a fixed sampling rate is usually
imposed by software; therefore, continuous data can be exposed as sample events
too. The proposed architecture runs on Linux and uses its epollfd interface to
efficiently manage event handlers.

The epollfd interface is similar in purpose to the select and poll system calls,
which enable processes to wait for events from any file descriptor in a given set.
But, unlike those system calls, that require the caller to pass the list of file de-
scriptors to each call, with epollfd they can be registered only once. An interesting
aspect is that epollfd instances are themselves valid file descriptors, that can be

CHAPTER 6. A SOFTWARE ARCHITECTURE FOR UAV APPLICATIONS 49

Service	Manager

Camera	Driver Camera	Driver

Image	Processor Image	Processor

High-Level	Behavior

GzUav	Clock	Synchronization	Controller
(only	in	simulation)

Image	Processor

Logging	and
Live	Streaming
IEEE	802.11	/	5G

Logging	and
Live	Streaming
IEEE	802.11	/	5G

Logging	and
Live	Streaming
IEEE	802.11	/	5G

MAVLink

UAV-to-UAV	Gateway
IEEE	802.15.4-UWB

PID	Tuning

Ground	Control	Gateway
IEEE	802.11	/	5G

Figure 6.1: Software architecture of an autonomous UAV.

added to other epollfd instances. This aspect, in particular, makes them particu-
larly useful to encapsulate and combine several low-level components (e.g. a serial
port and a set of timers) into a higher-level one (e.g. a robust abstraction of a
serial protocol with timeouts).

Another goal of this architecture is the isolation of faults. Control software
tends to be multi-threaded, e.g. to decouple real-time activities such as control
loops from background tasks such as image processing. Faults may happen for
various reasons, such as hardware failures (e.g. loose cables) or programming errors;
in monolithic software, they usually result in a segmentation fault or similar types
of crashes, that cause immediate process termination by the operating system,
with all of its threads. While this behaviour can be tolerable if only one UAV is
involved23, in the case of an architecture designed to control groups of UAVs, this
behaviour would be very undesirable: if several UAVs stopped in-flight, there might
not be enough time for individual manual recovery actions, before the batteries
run out.

The proposed architecture isolates modules by executing them in different pro-
cesses and only allowing inter-process communications over well-defined channels.
Within each process, one or more threads run, each having its own event loop.
Fig. 6.1 shows the diagram of the processes in a typical autonomous UAV system
with onboard computer vision algorithms. In this scheme, if a process crashes, only
that module’s functions are affected (and, possibly, the ones that depend on it).

23Provided watchdogs to stop further movements are in place (i.e. automatically start hovering
until the human pilot takes control), and manual recovery is possible.

CHAPTER 6. A SOFTWARE ARCHITECTURE FOR UAV APPLICATIONS 50

For instance, let us suppose that the “High-Level Behavior” process crashes: then,
the “MAVLink” process will still be there allowing a new, respawned, “High-Level
Behavior” process (or a different one, such as a process that runs an automatic
emergency landing procedure) to take control.

The following modules are present in a typical autonomous UAV system:

• “High-level Behaviour”: implements the autonomous behaviour;

• “MAVLink”: connects to the microcontroller over a serial port and abstracts
the low-level MAVLink protocol;

• “Ground Control Gateway”: is the single entry-/exit-point of all messages
from/to the Ground Control Station (A2G and G2A) via WiFi or mobile
data network;

• “UAV-to-UAV Gateway”: is the single entry-/exit-point of all messages
from/to other robots (A2A) via 802.15.4-UWB;

• “PID Tuning”: lets user alter PID gains and monitor related control variables
live;

• “Camera Driver”: acquires frames from connected cameras (one instance for
each camera);

• “Image Processor”: processes acquired frames (one instance for each pro-
cessing pipeline);

• “Logging and Live Streaming”: compresses and optionally sends an anno-
tated video stream to the Ground Control Station in real-time via WiFi or
mobile data network;

• “GzUav Clock Synchronisation Controller” (only in simulation): if running
within the simulation environment described in chapter 5, it offers an al-
ternative timer implementation that is synchronised to the simulation clock
instead of the host computer’s.

Each thread in each process runs its own event loop (one for each thread),
monitoring only its own file descriptors and responding to their events. Most pro-
cesses are single-threaded by design: in general, the proposed architecture prefers
message-passing rather than shared memory, in order to avoid the possibility of
race conditions. For instance, the “MAVLink” process consists of a single thread

CHAPTER 6. A SOFTWARE ARCHITECTURE FOR UAV APPLICATIONS 51

that monitors the serial port for incoming data from the UAV’s microcontroller, a
timerfd -based timer for heartbeat generation and set of sockets to receive and reply
to messages from other processes. “MAVLink” is, in turn, a client to the “Ground
Control Gate” process using a different socket for message-passing. In general, in
such an architecture, which is essentially a distributed one, processes use direct in-
ternal sockets (more specifically, Unix domain sockets) to communicate with each
other.

This type of message-passing happens among local processes only. Keeping
this in mind, in order to simplify development and maintain efficiency, a simple
serialisation library (based on C++ templates) was developed, that directly passes
binary memory dumps of messages, whenever possible24. In order to further reduce
development time, we save the developer from having to explicitly write code
to dispatch different types of received messages to different routines. Instead, a
Remote Procedure Call (RPC) layer is adopted, where each request message is
prefixed by the library with the address of the routine that should be called in the
receiving process, with the rest of the data as an argument; response messages (i.e.
messages sent in reply, by the receiving process, that contain the serialised return
value of the called routine) do not have this field. This mechanism was wrapped
in a set of object-oriented C++ template classes, so that using it is as simple
as defining one abstract and two concrete classes (see alg. 5): the MyInterface
class defines the interface of the services offered by a module, MyServer is the
concrete implementation of such services (which runs in the isolated process) and
MyProxy is a thin layer that runs in client processes and enables them to call the
offered services. A direct socket connection exists between server and client: such
connections are established through the “Service Manager” process, which is also
the one that starts all the other processes at initialisation time (by forking25), and
then works as a broker for connection establishment.

In the proposed architecture, all inter-process messages are implemented using
the above scheme, except for:

• Output from the “Image Processor” processes to the “High-level Behavior”,

24Unlike other serialisation libraries that, in order to ensure binary-compatibility among dif-
ferent processors/languages/compilers, require messages to be explicitly defined in some domain-
specific language, we aim at local messages only; therefore, our simple library serializes C++
Plain Old Datatypes (POD) as plain memory dumps and STL containers as length-prefixed
streams of contained objects (which are recursively serialised using the library itself).

25All involved processes must fork from a common parent; otherwise, the addresses of called
functions would not match due to the operating system’s Address-Space Layout Randomisation
(ASLR) mechanism.

CHAPTER 6. A SOFTWARE ARCHITECTURE FOR UAV APPLICATIONS 52

Algorithm 5 Minimal Remote Procedure Call example

class MyInterface { // abstract class

public:

virtual int accumulate(int val) = 0;

}

class MyServer : public MyInterface {

public:

MyServer(UnixSeqPacketServer *unixDomainServer)

: rpcServer(this, unixDomainServer) {

total = 0;

}

int accumulate(int val) {

return total += val;

}

private:

RPCServer<MyInterface> rpcServer;

int total;

}

class MyProxy : public MyInterface, public RPCClient<MyInterface> {

public:

MyProxy(UnixSeqPacketConnection *unixDomainSocket)

: RPCClient(unixDomainSocket) {

}

int accumulate(int val) {

return rpcInvoke(&MyInterface::accumulate, val);

}

}

CHAPTER 6. A SOFTWARE ARCHITECTURE FOR UAV APPLICATIONS 53

which employs serialised messages over Unix domain sockets like the rest of
the system, but in one direction only and without the RPC layer.

• Frames from the “Camera Driver” to connected “Image Processor”, that are
propagated in a zero-copy fashion over a triple-buffered shared memory area,
protected by cross-process mutexes (PTHREAD PROCESS SHARED).

• Incoming UAV-to-UAV and Ground Control messages, which are transmit-
ted by the “UAV-to-UAV Gateway” or “Ground Control Gateway” to the
intended recipient over raw Unix domain sockets sockets.

Since the position comes from the MAVLink input channel in geographic co-
ordinates (i.e. as a lat, lon, alt triplet), in order to make it simpler to manipulate
it, the “MAVLink” module converts, with negligible approximation (provided the
UAV does not go further than a few kilometres around the origin), to a local 3D
Cartesian reference system centred in (lat0, lon0, alt0) and rotated by hdg0 radians,
using eq. 6.126.

⎡⎣xy
z

⎤⎦= lla2xyz

⎛⎝ lat
lon
alt

⎞⎠=

⎡⎣ coshdg0 sinhdg0 0
− sinhdg0 coshdg0 0

0 0 1

⎤⎦⎡⎣ R(lat− lat0)
R(lon− lon0) cos lat0

alt0 − alt

⎤⎦ (6.1)

6.2 UAV-to-UAV protocol

In a multi-UAV scenario, UAVs usually need to communicate with other UAVs.
One possibility is to have the Ground Control Station relay UAV-to-UAVmessages,
i.e. a message is first sent to the ground station (A2G) and then retransmitted to
the final recipient (G2A). There is no explicit support for this schema by the
framework, because it can easily be implemented at the application level, with a
few lines of Ground Control Station code.

A more interesting possibility is to send direct A2A messages. In the proposed
solution, we adopted IEEE 802.15.4 as the medium for direct UAV-to-UAV mes-

26Angles are expressed in radians. R is the equatorial radius of the Earth (6378100 m). Note
that the lla2xyz function is invertible; therefore xyz2lla can be defined too and used for the
inverse transform.

CHAPTER 6. A SOFTWARE ARCHITECTURE FOR UAV APPLICATIONS 54

sages27. An interesting aspect of this choice is that it also enables local broadcasting
of messages, i.e. sending a message that will be received only by agents within the
transmission range. Indeed, this type of broadcasting is very useful to imple-
ment bio-inspired flocking algorithms (because they often propagate information
to/from neighbours only), such as the one presented in chapter 3.

As mentioned in section 2.1, IEEE 802.15.4’s CSMA/CA mechanism does not
work well in presence of hidden/exposed node conditions, which are frequent in
our type of applications. In the proposed architecture, we replace it with a custom
TDMA mechanism synchronised to the GPS clock. In particular, we assume that
the transceiver’s built-in CSMA/CA mechanism is disabled and that an external
real-time system (such as a microcontroller) can trigger the immediate transmission
of a frame. We also assume that all distinct GPS modules emit a synchronised
pulse once a second (therefore, the period of the pulse is T = 1). Then, letN be the
number of robots and let D (with D < T/N) be the maximum time between the
generation of a “send frame” command (on the microcontroller) and the completion
of its transmission (on the transceiver). Then, we subdivide the GPS’s clock signal
period T into slots of duration D. Each slot is statically allocated to a single UAV
which, at a given time, will be the only one transmitting on the channel. As fig. 6.2
shows, slots are assigned sequentially and the sequence restarts after period T . If
D is not a divisor of T , the last slot goes wasted; if ND is not a divisor of T , the
last subsequence will be truncated.28.

In such a system, no collisions can occur by design and a UAV, during its slot,
can transmit (unicast or broadcast) to its neighbours. The maximum latency in
such a system is bounded: a UAV has to wait for its next slot before being able
to transmit a message. In the worst case29, the latency will be less than 2ND.

27Therefore, UAVs must be equipped with an IEEE 802.15.4 transceiver. If the application
does not require A2A connectivity, the 802.15.4 transceiver can be omitted and this part of the
framework can be excluded.

28We validated the effectiveness of the proposed schema with three Microchip MRF24J40
transceivers, each connected to a u-blox C94-M8P RTK GPS receiver and a Microchip
dsPIC33FJ128GP802 microcontroller. We experimentally verified that all messages were de-
livered correctly without collisions.

29The worst case occurs with D
T /∈ N and T

ND /∈ N, when the last UAV is already transmitting
and it needs to send another message, which queues up, while in the second-to-last subsequence.

CHAPTER 6. A SOFTWARE ARCHITECTURE FOR UAV APPLICATIONS 55

UAV
#2

UAV
#1

UAV
#3

UAV
#1

UAV
#4

UAV
#2

UAV
#4

UAV
#3

UAV
#1

UAV
#2

UAV
#1

UAV
#3

D

Synchronised 1 Hz pulse (generated by GPS module)

Figure 6.2: GPS-based TDMA slot assignment.

6.3 Ground Control Station protocol

In addition to UAV-to-UAV communication, UAVs usually need to communicate
with a central Ground Control Station. A Ground Control Station can be useful for
safety purposes (e.g. monitoring and emergency recovery), but also during normal
operation, as a central coordination node (e.g. to collect/relay information to/from
UAVs).

In the proposed architecture, we assume that IP connectivity is available be-
tween each UAV and the Ground Control Station (for A2G and G2A communi-
cation). We do not require IP connectivity among UAVs (A2A, if needed, can be
served with the method presented in the previous section). Examples of compatible
wireless technologies are Wi-Fi and mobile data network30.

This type of wireless links is usually unreliable, with tight bandwidth con-
straints. The TCP protocol adds reliability, but its automatic retransmission can
be problematic: some types of messages are not worth retransmitting if more re-
cent data is already available (e.g. it would be better for a UAV to transmit the
current position instead of retransmitting an unacknowledged “current position”
message emitted one second ago). On the other hand, plain UDP would not offer
any retransmission at all.

With the above considerations in mind, we developed a simple protocol (whose
frames are encapsulated in UDP packets) that offers built-in reliability and more

30In Wi-Fi networks, full connectivity among UAVs (mediated by the Access Point) would
actually be possible. In cellular data networks, nodes can usually only connect to public addresses
on the Internet; therefore, the Ground Control Station must be on a publicly-reachable network.

CHAPTER 6. A SOFTWARE ARCHITECTURE FOR UAV APPLICATIONS 56

fine-grained control of retransmission policies. In this protocol, the programmer
must associate a “topic ID” (a 16-bit integer) to each message type. The highest
bit in the topic ID determines the retransmission policy:

• If the highest bit is one (i.e. the topic ID is between 0x8000 and 0xffff),
only the most recent message with that topic ID can be retransmitted - if a
new one is pushed to the outgoing queue, the old one is immediately dropped;

• If the highest bit is zero (i.e. the topic ID is between 0 and 0x7fff), older
messages in the outgoing queue are not dropped and can be retransmitted if
necessary.

Rate-limiting is achieved by periodically gathering all outgoing messages (both
first-time transmissions and retransmission, from all topic IDs) into a single UDP
packet. This rate is fixed (e.g. 10 Hz by default) and can be tuned to find a
trade-off between packet rate and maximum acceptable latency.

In addition to outgoing messages, UDP packets also contain acknowledgements
for messages received in the opposite direction. Until a message is acknowledged,
it is retransmitted in every UDP packet (according to the policy associated with
the topic ID’s highest bit).

Fig. 6.3 shows the packet structure: it is made of a fixed-size header, a variable
number of ACK records and a variable number of message records. In addition
to message-related data, the Ground Control Station also writes its transmission
timestamp in each packet. Upon reception, each UAV estimates the difference
between its local clock and the Ground Control’s clock using alg. 6, whose error
corresponds to the shortest of the propagation delays of the observed received
packets31. Timestamps are useful in many aspects of robotic applications (e.g.
logging, rendez-vous, correlating data acquired by different robots at the same
time): using the estimated time difference, UAVs can convert timestamps from
local time to reference time (i.e. Ground Control’s clock) and the other way round.

31Note that the algorithm only compensates for clock offset; clock drift is not taken into
account because we consider it negligible for this type of short-term algorithms.

CHAPTER 6. A SOFTWARE ARCHITECTURE FOR UAV APPLICATIONS 57

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

‘G’ ‘C’ Session ID

Time reference in nanoseconds32 (bits 0-31)

Time reference in nanoseconds32 (bits 32-63)

Sender ID33 0 (unused) # of ACK records

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
Header

ACK records and Message records
. . .

Acknowledged sequence number

Topic ID

}︄
ACK record

Message sequence number

Topic ID Payload length

Payload
. . .

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
Message record

Figure 6.3: Structure of a UDP packet.

Algorithm 6 UAVs’ Time Difference Update Algorithm

▷ Initialisation (only once):
time difference← nil

▷ On UDP packet received:
received time← read time reference from received packet()
local time← get current local time()
if time difference = nil or time difference > local time − received time
then

time difference← local time− received time
end if

32The Ground Control’s current time, if sent by the Ground Control; or zero, if sent by a UAV.
33UAVs = 0 . . . 254; Ground Control Station = 255 (reserved ID).

CHAPTER 6. A SOFTWARE ARCHITECTURE FOR UAV APPLICATIONS 58

6.4 Tuning Computer Vision Algorithms

Autonomous UAVs systems usually need to sense the environment in real-time.
One of the most complex types of sensors are cameras, whose frames must be
processed onboard with computer vision algorithms.

This class of algorithms usually requires a lot of fine-tuning and offline analysis.
Furthermore, it is desirable to be able to watch the video stream in real-time, while
debugging the High-Level Behaviour and/or vision algorithms themselves, in order
to better understand why the robot is behaving in a certain way. Frames processed
by computer vision algorithms can be annotated for debugging in two ways:

• overlay drawings: these include coloured rectangles, circles and text painted
over the original frame;

• printf-like output: textual output describing non-visual data, such as num-
bers, lists and counters.

We developed a video container format (that we called “Video Log”, vlog file
extension) capable of storing the compressed video stream, with such debugging
information attached, as well as a set of classes to write VLOG files in a multi-
threaded way (so that, for instance, a slow video encoder cannot block the image
processing loop). A VLOG file is made of a VLOG header (which only describes
the codec, e.g. MJPEG, H264, ...) followed by a number of variable-length frame
records, one for each stored frame. Each frame record contains the following sub-
fields:

• timestamp, in microseconds;

• “keyframe” flag (always set for MJPEG, set only in I-frames for H264);

• encoded frame: original image, as captured from the camera, compressed
using the selected codec34;

• overlay drawings: serialised representation of paint commands;

• printf-like output: textual output associated with the frame.

34On the Raspberry Pi and NVIDIA TX1/TX2 platforms, the VLOG writer can use the
platform’s hardware-accelerated H264 encoder.

CHAPTER 6. A SOFTWARE ARCHITECTURE FOR UAV APPLICATIONS 59

(a) “VLOG Player”. (b) “VLOG Live Monitor”.

Figure 6.4: VLOG tools can replay (a) and receive live video from UAVs (b).

VLOG files are stored on board and can be extracted from the UAV’s storage
(e.g. SD card, internal eMMC) and replayed offline with a custom tool named
“VLOG Player” (fig. 6.4a). In addition to regular in-order playback, thanks to
the keyframe flag, it can quickly seek to any frame35; once a frame is decoded,
the tool can optionally overlay the drawings (by deserializing and executing the
attached paint commands) and also show the associated printf-like output. It
should be noted that, thanks to the fact that the video stream is encoded without
the drawings, it can easily be exported to a regular video file (without even being
re-encoded) and be used as input data for offline training/tuning.

In addition to being stored for later playback, the same data can also be
streamed live by the UAV. In this architecture (fig. 6.5), each UAV (more specif-
ically, each instance of the “Logging and Live Streaming” module) periodically
announces the names of its stream and codec parameters to a designated receiving
station (or, alternatively to the network’s broadcast address). A custom client
program (called “VLOG Live Monitor”, fig. 6.4b), which runs on the receiving
station, monitors the announcements and presents a list of available streams to
the user. When the user selects one of the streams, the receiving station sets up
two UDP channels and registers them with the UAV: the first one is used as the
Real-Time Protocol (RTP) channel to receive the live video stream; the second
one carries the metadata, i.e. overlay drawings and printf-like output. Packets

35If the target frame of a seek command is not a keyframe, the tool first seeks to the nearest
keyframe before it, then decodes all the frames up to the requested one behind the scenes. Note
that, in case of H264, the encoder is configured using the “baseline profile”, so that it never
produces B-frames.

CHAPTER 6. A SOFTWARE ARCHITECTURE FOR UAV APPLICATIONS 60

received through the metadata channel are synchronised to RTP packets using a
common timestamp. A keep-alive timer ensures that the UAV stops transmitting
in case of loss of link to the receiving station.

UAV																																																																																																												

Camera	Driver Image	Processor
(i.e.	Computer	Vision	Algorithm)

Video	Encoder
(e.g.	H264	codec)

Metadata	Queue:
Drawings	and	Text

VLOG	Frame	Record
Reassembler On-board

Storage

 Wireless
							Network

Stream	Announcement
(e.g.	“UAV1	/	balltracking”)

Receiving	Station Register	/	Keep-alive
VLOG

Streaming
Server

RTP	packets

Metadata	packets

Timestamp	Sync

Video	DecoderDisplay

Drawings	Painter

Figure 6.5: The overall “VLOG” architecture.

6.5 Simulation

The proposed architecture is integrated with the GzUav simulation framework in
two ways:

• the “MAVLink” component can connect to ArduCopter’s TCP channel, in-
stead of the serial port that the real MCU exposes;

• the event loop framework supports transparent replacement of the timer
backend, in order to synchronise the simulated periodic tasks and timeouts
to the rest of the simulation, instead of the host computer’s clock.

In particular, clock synchronisation is achieved through a process called “GzUav
Clock Synchronisation Controller”, which keeps track of all active timeouts created
by other processes and subscribes to GzUav’s “start of simulation step” (Begin-
Tick-0) signal. When one or more timeouts expire (according to GzUav’s clock),
the corresponding processes are woken up. However, the “GzUav Clock Synchro-
nisation Controller” process does not send the “end of simulation step” (End-
Tick-0) signal back to GzUav immediately: it waits until all the other processes

CHAPTER 6. A SOFTWARE ARCHITECTURE FOR UAV APPLICATIONS 61

have completed a simulation step or, in other words, until no pending events are
left. In detail, for each process, this “consent to signal the end of tick” condition
is defined as follows: a process is considered as having completed the current sim-
ulation step if it is: i) waiting for a timeout whose expiration timestamp is in the
future, ii) waiting for an event that does not depend on time (e.g. a message from
the Ground Control Station) or iii) waiting for a combination the previous cases.

Note that, in such a scheme, a simulation step is considered complete only when
all the processes are back in waiting state. As a consequence, if a process enters
a CPU-intensive section without any I/O call, the simulation will not advance
at all until that section is completed. This behavior is, in fact, quite common
with computer vision (CV) algorithms, which are wakened when a new frame is
generated by the simulated camera, and then take relatively long to process it.
Without any special consideration, the simulation will progress correctly but very
slowly because, as long as at least one CV algorithm is running, the simulation
cannot advance. As a workaround for this problem, we introduced a new process
state called detached-timing, which CV processes enter before starting a CPU-
intensive section and leave immediately afterwards36. The effect of this state is
that it “detaches” the CPU time of the associated process from the “GzUav Clock
Synchronisation Controller”, enabling it to run uninterrupted for a preset number
N of simulation steps. If the CPU-intensive section completes earlier than those
N steps, the state will mutate into a regular timeout with the given expiration;
conversely, if the simulation completes N steps but the CPU-intensive task has not
finished yet, the simulation will be blocked until it completes. The effect is that no
unnecessary latency is introduced and, in every respect, the CPU-intensive section
appears to take exactly N steps. An interesting side-effect is that, if N is chosen
so that it mimics the execution time of the CV algorithm on real hardware, this
mechanism turns into an efficient tool to simulate the real system’s CV latency.

36Any I/O operation is forbidden while in detached-timing state.

CHAPTER 7. MBZIRC 2017 AND 2020 62

7
MBZIRC 2017 and 2020

The Mohamed Bin Zayed International Robotics Challenge (MBZIRC)37 is a bi-
ennial international competition organised by Khalifa University in Abu Dhabi
(UAE), aiming at involving universities from all over the world in the research on
real-world robotics tasks.

It is currently at its second edition and we, as the University of Catania, were
present in both. For each edition, three challenges (each involving unrelated tasks)
were defined by the organizers.

In the 2017 edition, our team played only “Challenge 1”, in which the UAV had
to autonomously land on a moving vehicle, controlled by the organizers, following
an eight-shaped path.

In the 2019 edition (postponed to early 2020 by the organizers), our team
played “Challenge 1” and “Challenge 2”. The first challenge involved popping
five randomly-placed balloons (anchored to poles at known height) and stealing a
ball from an “enemy” UAV controlled by the organizers, following an eight-shaped
path; the second challenge consisted in picking bricks and building walls using
UAVs and a rover. We also played the “Grand Challenge” (i.e. all challenges at
the same time) in cooperation with University of New South Wales, Sidney.

A prototype of the architecture presented in the previous chapter was used for
the 2017 edition; the full architecture, as described in the previous chapter, was
used in 2020. This chapter presents software developed for both editions, which
can be seen as two “case studies” of the aforementioned architecture.

37http://www.mbzirc.com/

http://www.mbzirc.com/

CHAPTER 7. MBZIRC 2017 AND 2020 63

7.1 Landing on a moving vehicle (MBZIRC 2017)

For MBZIRC 2017 Challenge 1, the teams had to design a UAV capable of landing
on a moving ground vehicle, driven by a human operator, following an eight-shaped
path in an outdoor arena (90×60 m, fig. 7.1a). The approximate shape of the path
was known, as well as the speed of the vehicle (15 km/h for the first 8 minutes,
then 5 km/h). A visual marker (1.5 × 1.5 m, fig. 7.1b) was present on the target
vehicle, placed on a flat ferromagnetic surface.

(a) Arena. (b) Target dimensions.

Figure 7.1: Arena and target specifications.

Figure 7.2: 3D printed landing gear.

CHAPTER 7. MBZIRC 2017 AND 2020 64

Figure 7.3: Customised DJI S900 for MBZIRC 2017.

We customised a DJI S900 hexacopter, replacing the landing gear with a 3D
printed one, with a damper, and magnets and microswitches on the pads (fig. 7.2).
A oCam-1MGN-U camera (grayscale, with 111°×65° FOV), mounted on a two-axis
gimbal programmed to always point down, was connected (to locate and track the
visual marker) and an NVIDIA TX1 SoC (quad-core ARM A57 CPU; NVIDIA
Maxwell GPU; 4 GB RAM) ran our software, detailed below. A u-blox C94-M8P
RTK GPS was connected to the FCU, in order to obtain centimetric precision.
The resulting UAV is depicted in fig. 7.3.

The 2017 software architecture was not formally defined, but many pieces that
would later become part of the framework described in the previous chapter were
already present: “MAVLink” interface, support for in-flight “PID Tuning”, “Image
Processor” (decoupled from “Camera Driver”) and “Logging and Live Streaming”.

A vision algorithm, running at around 7 fps, constantly searched the visual
marker. In detail, the algorithm was made by combining OpenTLD [64, 65] to
detect and track the marker, with the Circle Hough Transform to improve the
precision of the resulting coordinates (fig. 7.4). Output 2D coordinates (in image
space) are converted to 3D coordinates (in arena space) using camera calibration
data, the pinhole model formula and the fact that the distance between the UAV
and the marker could be inferred from the GPS altitude. The 3D coordinates are
transformed from the camera reference system to the arena reference system with
a rototranslation (using knowledge of the current UAV position and heading), and
then used to update a Kalman filter estimating the pose of the truck.

CHAPTER 7. MBZIRC 2017 AND 2020 65

Figure 7.4: Vision Module for MBZIRC 2017: the bounding rectangle produced
by OpenTLD (blue) is refined with a Circle Hough Transform (green).

(a) Arc length. (b) Dimensions.

Figure 7.5: Variables used in Kalman filter.

In particular, the truck position is tracked in terms of arc length (over the
expected trajectory, see fig. 7.5a) and lateral displacement (fig. 7.5b). The Kalman
Filter has the following state variables:

• t (m): Arc length corresponding to the truck position (more precisely, cor-
responding to the projection of the truck on the “eight” shape);

• vt (m/s): Forward/backward speed of the truck (i.e. derivative of t);

CHAPTER 7. MBZIRC 2017 AND 2020 66

Figure 7.6: Finite State Machine for MBZIRC 2017.

• l (m): Lateral displacement (0 corresponds to the truck being perfectly on
the ideal path; for other values, the side is identified by the sign);

• vl (m/s): Lateral speed (derivative of l), usually a vary small value.

The Kalman filter state is initialised when two points are available (we need
two points so that the initial speed and direction can be estimated). It is then
updated every time a new measured truck position is available, taking into account
that the measurement is subject to image processing latency. In particular, the
truck coordinates detected by the computer vision are tied to the original image
acquisition timestamp: when a new measurement is available, such timestamp is
compared to the previous one and the Kalman state is repeatedly predicted until
it matches the new timestamp. Then, one final correction using measured data
is performed. However, because of the image processing latency, such timestamps
are in the past: the current (and future) truck positions can be extrapolated using
basic kinematics formulas from the stored state. This approach is similar to the
“Delayed Time Horizon” approach [66] used by PX4 and ArduPilot for the UAV
pose.

The high-level behaviour was implemented as a Finite State Machine with the
following states (fig. 7.6):

• “Start”: This is the state during the initial take-off;

CHAPTER 7. MBZIRC 2017 AND 2020 67

Figure 7.7: Funnel-like descent volume.

• “Go To Centre”: Go to the centre of the area (i.e. the most likely truck
location) at 8 m altitude. As soon as the truck is seen and the Kalman filter
initialized, transition to the “Intercept” state;

• “Intercept”: Using the extrapolated future positions of the truck and the
speed profile of the UAV, go to the most convenient point that is suitable
to intercept the truck. When on the interception point, transition to “Wait
Until Visible”;

• “Wait Until Visible”: Start to move at half the truck speed (to minimise the
speed difference) and search the truck with the camera for up to 12 seconds.
When it is seen, proceed to the “Approach” phase; otherwise, go back to
“Intercept” (first miss) or “Go To Centre” (second miss);

• “Approach”: Slowly descend until the microswitches detect contact with
the truck. In this phase, a PID control loop tries to keep UAV above the
truck (in particular, within the volume in fig. 7.7, which is regarded as safe;
when outside of that volume the UAV climbs up for safety). During the last
centimetres, the target marker is too close and the camera cannot see it in
its entirety: for this reason, we allow up to 8 seconds of “open-loop” descent;
past such timeout we assume that we lost the tracking and go back to “Go
To Center”.

• “Landed”: When at least one of the microswitches touches the truck, this
state is entered and all motors are instantaneously shut off.

At the MBZIRC event, our team landed in 140 seconds (fig. 7.8) and ranked
4th out of 24. A detailed description of our solution can be found in [67, 68].

CHAPTER 7. MBZIRC 2017 AND 2020 68

Figure 7.8: Successful landing at the MBZIRC 2017 event.

7.2 Popping balloons with two cooperating UAVs

(MBZIRC 2020)

For the MBZIRC 2019 edition (actually held in early 2020), our team played
“Challenge 1”, “Challenge 2” and the “Grand Challenge”. However, “Challenge 2”
was not carried out autonomously; therefore, only “Challenge 1” and the “Grand
Challenge” are reported in this document.

For MBZIRC 2020 Challenge 1, the teams could deploy up to three UAVs to
carry out two tasks:

1. Pop five randomly-placed green balloons (anchored to poles at a fixed height,
around 3.0 m above ground level – fig. 7.9a);

2. Steal a yellow ball from an “enemy” UAV, controlled by the organizers and
following an eight-shaped path (fig. 7.9b).

We only achieved the first task, using two fully autonomous UAVs, coordinated
by software running on the ground control station38.

38We did not employ direct A2A communication due to technology constraints imposed by the
competition’s rules.

CHAPTER 7. MBZIRC 2017 AND 2020 69

(a) Green balloons. (b) “Enemy” UAV with yellow
ball.

Figure 7.9: Elements of MBZIRC 2020 Challenge 1.

(a) Cutter blades. (b) Our UAV.

Figure 7.10: Our system to pierce balloons.

We used two DJI F550 quadcopters, equipped with an array of cutters blades
on the front side, to pierce the balloons (fig. 7.10a). An oCam-1CGN-U camera
(39°×21° FOV), mounted on a two-axis gimbal programmed to always look for-
ward, was mounted along with an NVIDIA TX2 SoC (six-core ARM Denver2+A57
CPU; NVIDIA Pascal GPU; 8 GB RAM), mounted on an Orbitty carrier board
(by Connect Tech). The same type of RTK GPS as the one used for MBZIRC
2017 (u-blox C94-M8P) was employed in order to reach centimetric precision. The
resulting UAV can be seen in fig. 7.10b.

The system ran on the software architecture described in chapter 6. A custom
ground control station software was developed: it displayed markers for the UAVs
as well as other application-specific markers overlaid on top of a rectangle repre-
senting the MBZIRC arena. The ground control software also takes part in the

CHAPTER 7. MBZIRC 2017 AND 2020 70

Figure 7.11: MBZIRC 2020 system simulation in the gzuav environment.

airspace allocation protocol described below (to avoid mid-air collisions among our
UAVs) and offered a GUI to monitor, start and land all the UAVs at the same time.
All simulations, which included our three UAVs and the ground control software,
were carried out in the gzuav environment described in chapter 5 (fig. 7.11).

Three vision algorithms were developed: an algorithm to detect green balloons,
another algorithm to detect the yellow ball and a further algorithm to detect the
enemy UAV. Since we only succeeded in popping the green balloons, only the
first one was actually used in the final solution. The algorithm was based on the
LINE [69] algorithm, followed by a colour filter and a Circle Hough Transform to
refine the coordinates (fig. 7.12). The 3D position of the balloon was estimated
using the 2D size and shape of the ball with the PnP method [70]. Lastly, a
temporal filter discarded false positives and a low-pass filter reduced the noise.

The UAV strategy was developed as a Finite State Machine (FSM)39, compris-
ing the following states:

39Only the strategy for the drones in charge of popping the balloons (that we called “S0” and
“S1”) is reported in this document. The third UAV (called “I”) was in charge of stealing the
yellow ball and its software was also developed as a different FSM; however, the “I” UAV could
not fly at the MBZIRC competition due to technical issues.

CHAPTER 7. MBZIRC 2017 AND 2020 71

Figure 7.12: Using Circle Hough Transform to refine the result.

• “Preflight”: This is the initial state, in which the UAV stays on the ground
with the motors off while waiting for the reception of the start command
over the STATE topic. When the start command is received from the ground
control station, the “Take-off” state is entered;

• “Take-off”: This is the state during the initial take-off. When altitude 5 m
is reached, a transition to “Go Side Center” is executed;

• “Go Side Center”: In this state the UAV reaches the midpoint of one of
the long sides of the arena rectangle (“S0” goes to a side and “S1” to the
opposite one), maintaining the current altitude. The heading is adjusted so
that the camera points towards the inner part of the arena;

• “Go Scan Altitude”: The UAV keeps the position on the midpoint but de-
scends to 3 m (“S0”) or 3.5 m (“S1”). When the target altitude is reached,
“Blind Scan” is entered;

• “Blind Scan”: In this state, the UAV slowly translates sideways while looking
for green balloons and maintaining the current altitude. When a corner of
the arena rectangle is reached, the direction of the translation is inverted
and the operating altitude is swapped (3 m becomes 3.5 m and vice versa).
Whenever a green balloon is detected, a transition to the “Area Allocation
Request” is immediately executed. After two full scans (one at 3 m and
another one at 3.5 m) the UAV, which is back at the midpoint, transitions
to the “Land” state;

• “Area Allocation Request”: In this state, the UAV is on its side of the arena
with a green balloon in front of it. Before entering the “Pierce” state, it has
to obtain permission from the ground control software in order to enter the
arena. This is necessary in order to avoid having both UAVs trying to pierce
the same balloon, thus colliding. A simple airspace allocation mechanism is

CHAPTER 7. MBZIRC 2017 AND 2020 72

implemented: the UAV sends its position of the AIRSPACE topic and stops
until it receives the same value in reply40. At any time, should the balloon be
no longer visible (e.g. if popped by the other UAV while waiting), the request
can be cancelled by sending a NaN position over the AIRSPACE topic;

• “Pierce”: In this state, the UAV moves forward, while adjusting its lateral
and vertical position so that the balloon stays horizontally centred and at
the same height as the strip of blades. During the last meters, the balloon
does not fully fit in the camera’s field of view; for this reason, this state is
maintained for 10 seconds after the balloon was last detected. After such
timeout (i.e. the tracked balloon was either popped or lost), the UAV moves
backwards in order to resume the “Blind Scan” operation and deallocates
the area with a NaN message over the AIRSPACE topic;

• “Land”: In this state, the UAV reaches a pre-designated landing spot, starts
a slow descent and, eventually, turns off the motors.

Fig. 7.13 shows the transitions described above. In addition to those, at any
time and from any state, a transition to the “Land” state can be commanded by
the ground control software with a further message over the STATE topic, e.g. in
case of emergency.

At the MBZIRC event, we played four times (once for the rehearsal, twice
for the competition and one more time for the “Grand Challenge”). We were
always able to pop all five balloons, a result that highlights the repeatability of
the proposed solution (see table 7.1). Fig. 7.14 shows a popped balloon, as seen
by the onboard camera in the “Pierce” state.

We played the “Grand Challenge” (i.e. Challenges 1, 2 and 3 at the same time)
in partnership with University of New South Wales, Sidney. We provided the UAV
for Challenge 1; they provided the robots for the other challenges.

We ranked 9th (out of 22) at “Challenge 1” and 8th out of 17 at the “Grand
Challenge”.

40The ground control software receives AIRSPACE messages from both UAVs and, therefore,
knows if they are trying to get too close. If they are sufficiently apart, it replies to both.
Otherwise, it only replies to the first one and the other one has to wait.

CHAPTER 7. MBZIRC 2017 AND 2020 73

N. of burst balloons Time [s]
Rehearsal 5/5 162
Competition Day 1 5/5 126
Competition Day 241 5/5 306
Grand Challenge42 5/5 262

Table 7.1: Burst of the balloons: task execution time.

PREFLIGHT

Take-off

Go side centre

Go scan altitude

Blind scan

Area
allocation
request

Pierce

LAND

wait for
take-off
command take-off command

by GC

safe altitude
not reached

safe altitude
reached

scan position
not reached

scan position
reached

scan altitude
not reached

scan altitude
reached

no balloon
detected

balloon detected

arena scanning
completed

area access
not granted

balloon
no longer
detected

area access
granted

balloon
still detectedballoon

no longer
detected

Figure 7.13: Strategy FSM for popping the balloons.

41Due to a malfunction in one UAV, only the other UAV was able to pop the balloons. Hence,
it took twice the regular time to pop all five balloons. This event also highlighted the robustness
of the proposed solution.

42Due to additional constraints imposed by the “Grand Challenge”, we could only deploy one
UAV to pop the balloons. Hence, in this case too, it took twice the regular time to pop all five
balloons.

CHAPTER 7. MBZIRC 2017 AND 2020 74

Figure 7.14: A balloon popped during Competition Day 1 of the MBZIRC event.

CHAPTER 8. FINAL REMARKS 75

8
Final remarks

In this dissertation, a methodology to develop, validate and implement multi-UAV
control algorithms has been presented.

Chapters 3 and 4 presented and validated a distributed fault-tolerant flocking
algorithm that solves the area coverage problem, which can be applied in several
scenarios. The proposed solution is based on two modules: the first module con-
trols the flocking behaviour, using a bio-inspired approach, and achieves the goal
of maintaining a compact “line formation” (which is the ideal type of formation
for the intended applications); the second module defines an online distributed
protocol, executed repeatedly during a mission, to collectively plan the next use-
ful path (considering that data lost due to failed agents must be re-acquired),
which is covered by the flock as a whole immediately afterwards. Furthermore, a
new lightweight simulation environment is described in chapter 4, which lets one
quickly prototype flocking algorithms in C++. In this environment, we validated
the proposed algorithm under a number of conditions, including artificially induced
failures. The algorithm proved to be effective and always able to guaranteed suc-
cessful area coverage, with minimal overhead. The results also highlighted that
adding more agents results in shorter mission time until a “steady-state” is reached
(in our test environment, it is reached when 25 or more agents are employed).

Chapters 5 and 6 focused on the “toolchain” for the implementers of control
algorithms meant to be run on real-world multicopters. We presented two interop-
erating pieces of software: one to simulate UAVs with wireless networking capabil-
ities and another one, which is actually a framework, to develop autonomous con-
trol programs. Programs developed in the proposed environment can then be run,
without further adaptations, on real UAVs. In addition to basic control primitives
(such as the ability to set waypoints, aim the camera gimbal, operate a gripper),

CHAPTER 8. FINAL REMARKS 76

the framework offers support for many recurring needs in UAV programming, such
as fault isolation, inter-agent communication (A2A), customizable ground control
station software and A2G/G2A communication, live tuning of PID gains, logging
of flight data, integration of computer vision/image processing pipelines for visual
servoing (with built-in support for hardware-accelerated live video streaming and
logging). Great care has been put in ensuring that all such aspects work consis-
tently in simulation and in the real world (not only API-wise, but also by making
the simulated timing of events match the real one). The final result is, therefore, a
framework in which a program can be thoroughly and safely tested in simulation,
and then deployed to real UAVs only when the developer is confident that it will
work as expected.

Lastly, chapter 7 presented two real-world case studies: two autonomous UAV
competitions in which the University of Catania was present as a team, and whose
programs were developed using the proposed software architecture. In the 2017
edition, we had to land on a moving vehicle that followed an eight-shaped path.
The implemented control program processed images in real-time to locate the
landing pad. Its 2D coordinates were then transformed into 3D space, filtered
and chased by a proper controller overlooked by a finite state machine. For the
2020 edition, the goal was to pop some randomly-located balloons using multiple
UAVs. We implemented a solution comprising two UAVs equipped with cameras
and blades. A centralised ground station allocated access to common areas in order
to prevent UAVs from colliding. In both editions, we recreated all the competition
elements in the simulation environment and everything was tested in simulation in
advance. As proof of the validity of the proposed approach, we never had any UAV
crash due to software bugs, neither at the competition nor during the countless
hours of development and field tests. The resulting robots proved competitive,
with a 4th place (out of 24 teams) in 2017 and a 9th place (out of 22) in 2020.

The distributed flocking algorithm was also planned to be implemented and
validated, as a third case study, with the proposed architecture and its UAV-to-
UAV communication capability. Unfortunately, due to the coronavirus pandemic,
this activity could not be completed.

8.1 Limitations and open issues

In the gzuav environment, if the simulated word has many elements (e.g. UAVs,
sensors, passive objects), simulations can become very slow. While there are mech-
anisms in place to keep the simulated clock coherent, it is frustrating for the user to

CHAPTER 8. FINAL REMARKS 77

have to wait and see everything happening in “slow motion”. The design of gzuav
makes it possible to spread the workload, by running Gazebo’s core, Gazebo’s GUI,
ns-3, ArduCopter SITL processes and the user-provided application each, poten-
tially, on a different computational node. We have investigated neither which of
those processes requires most CPU time, nor if they block other processes, nor
what is the optimal way to distribute them. Future work might try to run gzuav
in a cluster and benchmark it, in order to address such issues.

Other possible directions regarding gzuav could be the integration with al-
ternative simulators, possibly through the definition of an abstract “pluggable”
interface, and support for different types of vehicles (e.g. rovers for UGV-UAV
cooperation). In this regard, it is interesting to note that the ArduPilot project
supports rovers, boats, helicopters and fixed-wing planes too, while exposing the
same SITL backend and MAVLink frontend as multirotors: therefore, it would not
probably be too hard to add support for such vehicles.

Ns-3 supports many network types. However, each network type has different
characteristics that cannot be abstracted (e.g. different internal API within ns-
3, different network address format, different data layout, ...). For instance, in
order to implement support for simulating our GPS-synchronised TDMA, we had
to implement the “firmware” of the microcontroller (i.e. the TDMA mechanism)
within ns-3, and then defined a set of commands exposed over gzuav ’s send/receive
primitives, which a module in the user program can call. In other words, for each
different network technology, a “proxy” has to be developed within ns-3 and a
corresponding “driver” has to be developed within the user program. It would
be interesting to add support for other technologies, in addition to our GPS-
synchronised 802.15.4, and make them built-in: in this way, gzuav could also be
used as a tool to evaluate the suitability of a range of network technologies for a
given UAV application. Another limitation of ns-3 is that it does not take into
account the presence of obstacles, that would affect signal propagation in the real
world.

As already mentioned, testing the flocking algorithm with real UAVs (using
the proposed architecture) remained an open point. Apart from that, another
future expansion might be to try to employ inter-UAV distances (measured using
802.15.4-UWB ranging), to make the algorithm more robust to GPS positioning
errors and glitches.

CHAPTER 8. FINAL REMARKS 78

8.2 Conclusion

In conclusion, we designed and validated a way to enable the implementation of
smarter algorithms for applications with one or more UAVs. Throughout the the-
sis, we tried to answer the questions raised in the introduction, regarding flocking,
fault-tolerance and development methodology.

The contribution of this work extends beyond the presented control algorithms.
We tried to prove that it is possible to make programming complex autonomous
UAVs easier, thanks to the scalability and modularity of the proposed framework:
software written in it runs isolated from other components, benefits from ready-
made components offered by the framework and can easily be tested in simulation.

In other words, the proposed approach aimed at enabling the transition to
smarter, autonomous and coordinated UAVs, and doing so in a robust, convenient
and safe way.

BIBLIOGRAPHY 79

Bibliography

[1] Habib Ayman, Youkyung Han, Weifeng Xiong, Fangning He, Zhou Zhang,
and Melba Crawford. Automated Ortho-Rectification of UAV-Based Hyper-
spectral Data over an Agricultural Field Using Frame RGB Imagery. Remote
Sensing, 8(10), 796, 2016.

[2] Philipp Lottes, Raghav Khanna, Johannes Pfeifer, Roland Siegwart, and
Cyrill Stachniss. UAV-based crop and weed classification for smart farm-
ing. IEEE International Conference on Robotics and Automation (ICRA),
pages 3024–3031, 2017.

[3] John Tsanakas, Long Duy Ha, and Franck Al Shakarchi. Advanced inspection
of photovoltaic installations by aerial triangulation and terrestrial georefer-
encing of thermal/visual imagery. Renewable Energy, 102, pages 224–233,
2017.

[4] Fabio Leonardi, Fabrizio Messina, and Corrado Santoro. A Risk-Based Ap-
proach to Automate Preventive Maintenance Tasks Generation by Exploiting
Autonomous Robot Inspections in Wind Farms. IEEE Access, 7, pages 49568–
49579, 2019.

[5] Abdulla Al-Rawabdeh, Fangning He, Adel Moussa, Naser El-Sheimy, and
Habib Ayman. Using an Unmanned Aerial Vehicle-Based Digital Imaging
System to Derive a 3D Point Cloud for Landslide Scarp Recognition. Remote
Sensing, 8(2), 95, 2016.

[6] Morgan Quigley, Brian Gerkey, Ken Conley, Josh Faust, Tully Foote, Jeremy
Leibs, Eric Berger, Rob Wheeler, and Andrew Ng. ROS: an open-source
Robot Operating System. IEEE International Conference on Robotics and
Automation (ICRA), Workshop on Open Source Software, 2009.

[7] MAVLink extendable communication node for ROS. https://github.com/
mavlink/mavros.

[8] Vivek Varadharajan, David St-Onge, Ivan Svogor, and Giovanni Beltrame. A
Software Ecosystem for Autonomous UAV Swarms. International Symposium
on Aerial Robotics (ISAR), 2017.

https://github.com/mavlink/mavros
https://github.com/mavlink/mavros

BIBLIOGRAPHY 80

[9] David St-Onge, Vivek Varadharajan, Ivan Svogor, and Giovanni Beltrame.
From Design to Deployment: Decentralized Coordination of Heterogeneous
Robotic Teams. 7, 51, 2020.

[10] Carlo Pinciroli and Giovanni Beltrame. Buzz: An extensible programming
language for heterogeneous swarm robotics. IEEE/RSJ International Con-
ference on Intelligent Robots and Systems (IROS), pages 3794–3800, 2016.

[11] Samira Hayat, Evşen Yanmaz, and Raheeb Muzaffar. Survey on Unmanned
Aerial Vehicle Networks for Civil Applications: A Communications View-
point. IEEE Communications Surveys and Tutorials, 18(4), pages 2624–2661,
2016.

[12] İlker Bekmezci, Ozgur Koray Sahingoz, and Şamil Temel. Flying Ad-Hoc
Networks (FANETs): A survey. Ad Hoc Networks, 11(3), pages 1254–1270,
2013.

[13] IEEE Standard for Information technology – Telecommunications and in-
formation exchange between systems Local and metropolitan area networks
– Specific requirements – Part 11: Wireless LAN Medium Access Control
(MAC) and Physical Layer (PHY) Specifications. IEEE Std 802.11-2016.

[14] IEEE Standard for Local and metropolitan area networks – Part 15.4: Low-
Rate Wireless Personal Area Networks (LR-WPANs). IEEE Std 802.15.4-
2011.

[15] Antonio Jiménez and Fernando Seco. Comparing Ubisense, BeSpoon, and
DecaWave UWB Location Systems: Indoor Performance Analysis. IEEE
Transactions on Instrumentation and Measurement, 66(8), pages 2106–2117,
2017.

[16] Yanjun Cao, Chenhao Yang, Rui Li, Alois Knoll, and Giovanni Beltrame.
Accurate position tracking with a single UWB anchor. IEEE International
Conference on Robotics and Automation (ICRA), pages 2344–2350, 2020.

[17] Yanjun Cao, Meng Li, Ivan Švogor, Shaoming Wei, and Giovanni Beltrame.
Dynamic Range-Only Localization for Multi-Robot Systems. IEEE Access, 6,
pages 46527–46537, 2018.

[18] Zigbee Alliance. https://zigbeealliance.org/.

[19] Periklis Chatzimisios, Anthony Boucouvalas, and Vasileios Vitsas. Effective-
ness of RTS/CTS handshake in IEEE 802.11a Wireless LANs. Electronics
Letters, 40(14), pages 915–916, 2004.

https://zigbeealliance.org/

BIBLIOGRAPHY 81

[20] Jens Pilz, Matthias Mehlhose, Thomas Wirth, Dennis Wieruch, Bernd
Holfeld, and Thomas Haustein. A Tactile Internet demonstration: 1ms ul-
tra low delay for wireless communications towards 5G. IEEE Conference on
Computer Communications Workshops (INFOCOM WKSHPS), pages 862–
863, 2016.

[21] Yiming Quan, Xiaolin Meng, Lei Yang, and Scott Stephenson. Network RTK
GNSS Quality Assessment. European Navigation Conference (ENC), 2013.

[22] DJI Flight Simulator. https://www.dji.com/simulator. 2018.

[23] Carlo Pinciroli, Vito Trianni, Rehan O’Grady, Giovanni Pini, Arne Brutschy,
Manuele Brambilla, Nithin Mathews, Eliseo Ferrante, Gianni Di Caro, Freder-
ick Ducatelle, Timothy Stirling, Alvaro Gutiérrez, Luca Maria Gambardella,
and Marco Dorigo. ARGoS: A modular, multi-engine simulator for hetero-
geneous swarm robotics. IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), pages 5027–5034, 2011.

[24] Nathan Koenig and Andrew Howard. Design and Use Paradigms for Gazebo,
An Open-Source Multi-Robot Simulator. IEEE/RSJ International Confer-
ence on Intelligent Robots and Systems (IROS), pages 2149–2154, 2004.

[25] Lorenz Meier, Dominik Honegger, and Marc Pollefeys. PX4: A Node-Based
Multithreaded Open Source Robotics Framework for Deeply Embedded Plat-
forms. IEEE International Conference on Robotics and Automation (ICRA),
pages 6235–6240, 2015.

[26] ArduPilot: Open Source Autopilot. http://ardupilot.org/.

[27] Open Dynamic Engine. http://www.ode.org/.

[28] Erwin Coumans. Bullet physics library. http://bulletphysics.org. 2013.

[29] Michael A. Sherman, Ajay Seth, and Scott L. Delp. Simbody: multibody
dynamics for biomedical research. IUTAM Symposium on Human Body Dy-
namics, 2, pages 241–261, 2011.

[30] Jeongseok Lee, Michael X. Grey, Sehoon Ha, Tobias Kunz, Sumit Jain, Yut-
ing Ye, Siddhartha S. Srinivasa, Mike Stilman, and C. Karen Liu. DART:
Dynamic Animation and Robotics Toolkit. Journal of Open Source Software,
3(22), 500, 2018.

[31] Anton Babushkin. jMAVSim - Simple multirotor simulator with MAVLink
protocol support. https://github.com/PX4/jMAVSim. 2014.

https://www.dji.com/simulator
http://ardupilot.org/
http://www.ode.org/
http://bulletphysics.org
https://github.com/PX4/jMAVSim

BIBLIOGRAPHY 82

[32] X-Plane Flight Simulator. https://www.x-plane.com/.

[33] Jon Berndt. JSBSim: An Open Source Flight Dynamics Model. AIAA Mod-
eling and Simulation Technologies Conference and Exhibit, 2004.

[34] Shital Shah, Debadeepta Dey, Chris Lovett, and Ashish Kapoor. AirSim:
High-Fidelity Visual and Physical Simulation for Autonomous Vehicles. Field
and Service Robotics (FSR), pages 621–635, 2017.

[35] Pooyan Fazli, Alireza Davoodi, and Alan K. Mackworth. Multi-robot repeated
area coverage. Autonomous robots, 34(4), pages 251–276, 2013.

[36] Jean-Claude Latombe. Exact Cell Decomposition. Robot Motion Planning,
pages 200–247. Springer, 1991.

[37] Jean-Claude Latombe. Approximate Cell Decomposition. Robot Motion Plan-
ning, pages 248–294. Springer, 1991.

[38] Julien Schleich, Athithyaa Panchapakesan, Grégoire Danoy, and Pascal
Bouvry. UAV fleet area coverage with network connectivity constraint.
ACM international symposium on Mobility management and wireless access
(MobiWac), pages 131–138, 2013.

[39] Vivek Shankar Varadharajan, Bram Adams, and Giovanni Beltrame. Failure-
Tolerant Connectivity Maintenance for Robot Swarms. Computing Research
Repository (CoRR), 2019.

[40] M. Bernardine Dias and Anthony Stentz. A market approach to multirobot
coordination. 2000.

[41] M. Bernardine Dias, Robert Zlot, Nidhi Kalra, and Anthony Stentz. Market-
based multirobot coordination: A survey and analysis. Proceedings of the
IEEE, 94(7), pages 1257–1270, 2006.

[42] Craig Reynolds. Flocks, Herds and Schools: A Distributed Behavioral Model.
International Conference on Computer Graphics and Interactive Techniques
(SIGGRAPH), pages 25–34, 1987.

[43] Gábor Vásárhelyi, Csaba Virágh, Gergő Somorjai, Norbert Tarcai, Tamás
Szörényi, Tamás Nepusz and Tamás Vicsek. Outdoor flocking and formation
flight with autonomous aerial robots. IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS), 2014.

https://www.x-plane.com/

BIBLIOGRAPHY 83

[44] I-Kuai Hung, Daniel Unger, David Kulhavy, and Yanli Zhang. Positional Pre-
cision Analysis of Orthomosaics Derived from Drone Captured Aerial Imagery.
Drones, 3(2), 46, 2019.

[45] Massimiliano De Benedetti, Fabio D’Urso, Fabrizio Messina, Giuseppe Pap-
palardo, and Corrado Santoro. Self-Organising UAVs for Wide Area Fault-
tolerant Aerial Monitoring. Workshop “From Objects to Agents” (WOA),
pages 135–141, 2015.

[46] Massimiliano De Benedetti, Fabio D’Urso, Fabrizio Messina, Giuseppe Pap-
palardo, and Corrado Santoro. UAV-based Aerial Monitoring: A Performance
Evaluation of a Self-Organising Flocking Algorithm. IEEE International Con-
ference on P2P, Parallel, Grid, Cloud and Internet Computing (3PGCIC),
pages 248–255, 2015.

[47] Noury Bouraqadi and Arnaud Doniec. Flocking-Based Multi-Robot Explo-
ration. National Conference on Control Architectures of Robots, volume 4,
pages 78–86, 2009.

[48] Corrado Santoro. How does a Quadrotor fly? A journey from physics, mathe-
matics, control systems and computer science towards a “Controllable Flying
Object”. 2014.

[49] Cleanflight: Open-Source flight control system. https://github.com/

cleanflight.

[50] Massimiliano De Benedetti, Fabio D’Urso, Fabrizio Messina, Giuseppe Pap-
palardo, and Corrado Santoro. 3D Simulation of Unmanned Aerial Vehicles.
Workshop “From Objects to Agents” (WOA), pages 7–12, 2017.

[51] Massimiliano De Benedetti, Fabio D’Urso, Giancarlo Fortino, Fabrizio
Messina, Giuseppe Pappalardo, and Corrado Santoro. A Fault-tolerant Self-
organizing Flocking Approach for UAV Aerial Survey. Journal of Network
and Computer Applications (JNCA), 96, 2017.

[52] Dave Shreiner, Graham Sellers, John M. Kessenich, and Bill Licea-Kane.
OpenGL programming guide: The Official guide to learning OpenGL, version
4.3. Addison-Wesley, 2013.

[53] Qt. https://www.qt.io/.

[54] Moses Bangura, Marco Melega, Roberto Naldi, and Robert Mahony. Aero-
dynamics of Rotor Blades for Quadrotors. Physics.flu-dyn, 2016.

https://github.com/cleanflight
https://github.com/cleanflight
https://www.qt.io/

BIBLIOGRAPHY 84

[55] Fabio D’Urso, Corrado Santoro, and Federico Fausto Santoro. Integrating
Heterogeneous Tools for Physical Simulation of multi-Unmanned Aerial Ve-
hicles. Workshop “From Objects to Agents” (WOA), pages 10–15, 2018.

[56] Fabio D’Urso, Corrado Santoro, and Federico Fausto Santoro. An integrated
framework for the realistic simulation of multi-UAV applications. Computers
and Electrical Engineering (CEE), 74, pages 196–209, 2019.

[57] George F. Riley and Thomas R. Henderson. The ns-3 Network Simulator.
Modeling and Tools for Network Simulation, pages 15–34. Springer, 2010.

[58] András Varga and Rudolf Hornig. An overview of the OMNeT++ simulation
environment. International Conference on Simulation Tools and Techniques
for Communications, Networks and Systems (SimuTools), 60, 2008.

[59] Sabine Hauert, Severin Leven, Maja Varga, Fabio Ruini, Angelo Cangelosi,
Jean-Christophe Zufferey, and Dario Floreano. Reynolds flocking in real-
ity with fixed-wing robots: Communication range vs. maximum turning
rate. IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), pages 5015–5020, 2011.

[60] Laurent Ciarletta, Adrien Guenard, Yannick Presse, Virgine Galtier, Ye-
Qiong Song, Jean-Christophe Ponsart, Samir Aberkane, and Didier Theil-
liol. Simulation and platform tools to develop safe flock of UAVs: a CPS
application-driven research. International Conference on Unmanned Aircraft
Systems (ICUAS), pages 95–102, 2014.

[61] Michal Kudelski, Luca M. Gambardella, and Gianni A. Di Caro. RoboNetSim:
An Integrated Framework for Multi-robot and Network Simulation. Robotics
and Autonomous Systems (ROAS), 61(5), 14, pages 483–496, 2013.

[62] MAVLink Micro Air Vehicle Communication Protocol. http://mavlink.

org/.

[63] DroneKit: Developer Tools for Drones. http://python.dronekit.io.

[64] Zdenek Kalal, Krystian Mikolajczyk, and Jiri Matas. Tracking-learning-
detection. IEEE Transactions on Pattern Analysis and Machine Intelligence,
34(7), pages 1409–1422, 2012.

[65] OpenTLD. https://www.gnebehay.com/tld/.

[66] Alireza Khosravian, Jochen Trumpf, Robert Mahony, and Tarek Hamel. Re-
cursive Attitude Estimation in the Presence of Multi-rate and Multi-delay
Vector Measurements. American Control Conference (ACC), 2015.

http://mavlink.org/
http://mavlink.org/
http://python.dronekit.io
https://www.gnebehay.com/tld/

BIBLIOGRAPHY 85

[67] Sebastiano Battiato, Luciano Cantelli, Fabio D’Urso, Giovanni Maria
Farinella, Luca Guarnera, Dario Guastella, Carmelo Donato Melita, Giovanni
Muscato, Alessandro Ortis, Francesco Ragusa, and Corrado Santoro. A Sys-
tem for Autonomous Landing of a UAV on a Moving Vehicle. Image Analysis
and Processing (ICIAP), pages 129–139, 2017.

[68] Luciano Cantelli, Dario Guastella, Carmelo Donato Melita, Giovanni Mus-
cato, Sebastiano Battiato, Fabio D’Urso, Giovanni Maria Farinella, Alessan-
dro Ortis, and Corrado Santoro. Autonomous landing of a UAV on a moving
vehicle for the MBZIRC. International Conference on Climbing and Walking
Robots and the Support Technologies for Mobile Machines (CLAWAR), pages
197–204, 2017.

[69] Stefan Hinterstoisser, Stefan Holzer, Cedric Cagniart, Slobodan Ilic, Kurt
Konolige, Nassir Navab, and Vincent Lepetit. Multimodal templates for real-
time detection of texture-less objects in heavily cluttered scenes. International
Conference on Computer Vision (ICCV), pages 858–865, 2011.

[70] Martin A. Fischler and Robert C. Bolles. Random Sample Consensus: A
Paradigm for Model Fitting with Applications to Image Analysis and Au-
tomated Cartography. Communications of the ACM, 24(6), pages 381–395,
1981.

	Contents
	List of Figures
	Introduction
	Scope of the thesis
	Organisation of the thesis

	Background and related work
	Software architectures and wireless networks for groups of robots
	Multirotor simulation
	Area Coverage and flocking

	A flocking algorithm for the Area Coverage problem
	Problem definition
	The proposed algorithm
	Flock formation and overlay network
	Distributed aggregation query
	Path planning and execution
	Acquiring and transmitting data to a Ground Control Station

	Modeling a flock of quadrotors
	Control loop of a quadrotor
	A lightweight ad hoc simulator
	Simulation results

	Combining heterogeneous tools for realistic UAV simulation
	Co-simulation of physics and networking
	Flight stack architecture
	The gzuav environment

	A software architecture for UAV applications
	Onboard software
	UAV-to-UAV protocol
	Ground Control Station protocol
	Tuning Computer Vision Algorithms
	Simulation

	MBZIRC 2017 and 2020
	Landing on a moving vehicle (MBZIRC 2017)
	Popping balloons with two cooperating UAVs (MBZIRC 2020)

	Final remarks
	Limitations and open issues
	Conclusion

	Bibliography

