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A B S T R A C T   

Immunotherapy has revolutionized cancer treatment and brought new aspects into tumor immunology. Effective 
immunotherapy will require using the suitable target antigens, optimizing the interaction between the antigenic 
peptide, the APC, and the T cell, and the simultaneous inhibitor of the negative regulatory process that inhibits 
immunotherapeutic effects and develop resistance. Tumor heterogeneity and its microenvironment is the leading 
cause of resistance in patients. Recently by emerging the single-cell RNA sequencing technology and its com-
bination with immunotherapy, now we can specifically evaluate the mechanism of tumors in the face of 
immunotherapy agents at the single-cell resolution by detecting the transcriptional activity of immune check-
points, screening neoantigens with high transcription levels, identifying rare cells, and other important processes. 
This review focuses on scRNA-seq, particularly on its application in cancer immunotherapy.   

1. Introduction 

Cancer remains a serious problem despite recent breakthroughs in 
many fields of medicine, as it is the second leading cause of death in 
developed countries. For the past 50 years, cancer specialists have relied 
mainly on three treatment strategies: surgery, radiation therapy, and 
chemotherapy. Meanwhile, tremendous strides have recently been 
achieved in our understanding of cancer biology. Immune-based cancer 
treatments, which were just introduced within the last five years, 
fundamentally revolutionize therapeutic modalities [1]. Cancer immu-
notherapy includes targeted immune-based approaches that unleash the 
immune system for fighting cancer. Continuous research and clinical 
trials have been conducted to create novel therapeutic methods that lead 
to even further breakthroughs [2]. Despite these promising discoveries, 

most patients who get new immunotherapies do not respond or relapse 
[3,4]. According to recent research, only a few patients potentially 
respond to immune checkpoint inhibitors (ICIs) therapy [5]. Also, a 
more considerable proportion of patients who undergo CAR-T treat-
ment, especially for solid tumors, may relapse because immunotherapies 
work better for some types of cancers, such as hematological cancers 
[6–8]. Tumor heterogeneity is the most significant obstacle for effective 
cancer therapy, which plays an essential role as a primary cause of ac-
quired resistance against all treatments. Immunotherapy can generate 
selective pressure towards antigen-negative cells due to the immune 
system’s reaction to particular tumor antigens, a major cause of relapse 
in the clinic. As a result, there is a pressing need to improve these 
immunotherapy approaches to overcome obstacles. This effectiveness is 
based on a better knowledge of cancer cell activity and the tumor 
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microenvironment (TME) [9,10]. Fortunately, it is now possible to 
examine the gene expression profile of tumor cells at the single-cell level 
with the recent introduction of scRNA-seq technology, allowing for 
remarkable high-resolution insights into the genetic makeup of the TME 
and immune system [11]. Furthermore, scRNA-seq analyses have 
described special transcriptional programs in the TME, allowing for 
unprecedented high-resolution knowledge and insight into the TME’s 
unique transcriptional programs and the discovery of new cellular 
subsets; it can also highlight the degree of "inter and intra tumoral 
heterogeneity [12]. 

2. Strategies for cancer immunotherapy 

In today’s immune-based cancer treatments, different immunother-
apeutic techniques have shown significant clinical usefulness to many 
patients with various advanced cancers, which we summarized in the 
following subtitles: 

2.1. Monoclonal antibodies 

Kohler and Milstein proposed producing mAbs as therapies in 1975, 
using hybridomas generated from immortal myeloma cells and murine 
lymphocytes to produce antibodies against a single epitope of an antigen 
[13]. This crucial breakthrough paved the way for the efficient pro-
duction of antibodies for a wide range of therapeutic applications, which 
are now regarded as desirable molecules for the diagnosis and/or ther-
apy of a wide range of disorders, including cancer [14]. In clinical 
practice, mAbs are the main widely applied and approved cancer 
immunotherapy technique. Antibody-based immunotherapy is a 
particular treatment approach based on the variable fragment’s (Fv) 
affinity for antibody targeting and the constant fragment (Fc) region’s 
capacity to interact in host immune system components [15]. The 
effectiveness of mAbs in cancer immunotherapy is dependent on three 
main methods. These mechanisms include the following:  

(i) Antibody binding inhibits factors and receptors which initiate 
signal pathways employed by cancer cells in division and 
angiogenesis.  

(ii) The antibody-dependent cellular cytotoxicity (ADCC) is made up 
of target monoclonal antibodies formed from either chimeric or 
fully human antibody components that bind to specific tumor- 
associated antigens (TAAs). 

(iii) Complement-dependent cytotoxicity (CDC) by complement acti-
vation [16,17]. 

Even though mAbs have distinct modes of action, they have become 
routine treatment in conjunction with chemotherapy and/or radiation 
[18]. However, uncontrolled and widespread immune system activa-
tion, known as cytokine release syndrome, can be life-threatening and 
also critical in immunotoxicological research on mAbs [19]. In the past 
few years, the number of approved or in-development mAbs for cancer 
treatment has increased. Although cancer immunotherapy research is 
ongoing, practical applications are still limited. As cancer biology be-
comes more well-understood, the number of hypotheses and research 
projects in this field grows [20]. 

2.2. Immune checkpoint inhibitors 

The advent of ICIs is a revolutionary milestone in cancer immuno-
therapy. Tumor cells escape immune detection and develop many ways 
to escape, such as activation of immune checkpoint pathways that 
inhibit antitumor immune responses. ICIs are monoclonal antibodies 
that disrupt immunological inhibitory pathways, allowing cancerous 
cells to be eliminated by the immune system [3]. PD-1/PD-L1 and 
CTLA-4 inhibitors are among the ICIs that have demonstrated remark-
able clinical efficacy in various forms of cancer and are quickly 

revolutionizing medical oncology. Some have been approved for specific 
cancer therapies, whereas others are still in clinical studies [10,21,22]. 
The balance between autoimmunity and immunological tolerance will 
be altered if immune checkpoints are blocked. Overall, anti-PD-1/PD-L1 
therapy used for a prolonged time induces significant immune reactions. 
Hepatic enzyme abnormalities (AST and ALT) in serum levels have also 
been described as a side effect of anti-PD-1 treatment [23]. As a result, 
despite the effectiveness of anti-CTLA-4 and anti-PD-1/PD-L1 therapies, 
a small percentage of patients do not respond to them. Because anti-
tumor immunity is controlled by a complex set of components in the 
TME, It can trigger various immune responses [24]. On the other hand, 
numerous issues about the best dose and timing for PD-1/PD-L1 
checkpoint blockers remain unresolved. As a result, an especially sen-
sitive test for identifying the expression of biomarker in a patient group 
is required to evaluate the efficacy of ICIs therapy. 

2.3. Cytokines 

Cytokines are molecules that stimulate immune cell intercommuni-
cation, and they are first utilized as an immunotherapeutic strategy 
[25]. Several cytokines inhibit tumor cell development either directly 
(anti-proliferative or pro-apoptotic) or indirectly (stimulating immune 
cell cytotoxicity against tumor cells) [26]. The FDA has approved two 
cytokines as cancer therapeutics: IL-2 for metastatic melanoma and 
kidney malignancy and IFN-α for stage III melanoma adjuvant treatment 
[27]. IFNs-α belongs to the type I IFN family of pleiotropic cytokines. 
These cytokines have a lengthy history of therapeutic usage in patients 
with cancer and viral infections. IFN-α may also have various biological 
effects, including inducing/promoting apoptosis and inhibiting cell 
proliferation. Notably, endogenous IFN-α has been proposed to mediate 
some autoimmune diseases, which are frequently found in IFN-treated 
individuals [28], even in pegylated form and at low doses [29]. IL-2 is 
an influential immune growth factor with pleiotropic effects on the 
immune system that aids in the maintenance of T cell responses. Because 
of the ability of IL-2 in increasing T cells without causing them to lose 
functioning, it was used in cancer immunotherapy early on. Although 
IL-2 has been shown to cause full and long-lasting regressions in cancer 
patients, it has also been linked to immune-related adverse effects (irAE) 
[30]. The short half-life of most cytokines and restricted therapeutic 
windows just with moderate anti-tumor effectiveness, at least as mon-
otherapies, are some of the limitations of utilizing cytokines [26]. 

However, due to the low response rate and severe toxicity related to 
high IL-2 and IFN- treatment, these cytokines have been pushed to the 
sideline in clinical practice in favor of targeted therapy and ICIs [31] and 
look for predictive biomarkers to help choose the people who are most 
likely to respond. Cytokines have been shown to be beneficial in cancer 
treatment. There is little question that they will continue to significantly 
impact the growth of cancer immunotherapy in the future [32]. 

2.4. Cancer vaccines 

Clinical trials have been conducted on several cancer vaccine ther-
apies since the FDA approved the first therapeutic cancer vaccine, pri-
marily by inducing cellular (T-cell-mediated) immune responses [33]. 
Choosing antigens is crucial in the development of cancer vaccines. 
Because the antigen should typically be produced only by tumor cells, 
present on all of them, essential for tumor cell maintenance (so that 
tumor cells cannot evade immune response through downregulation of 
the antigen) [34]. Limited, whether any, antigens satisfy all of these 
characteristics; however, there have been numerous classes of antigens 
that are used in cancer vaccines. In particular, cancer vaccine targets 
may be divided into two categories: TAAs and TSAs [35]. Antigens 
produced through oncoviruses and neoantigens encoded by cancer 
mutations make up TSAs. As a result, high-affinity T lymphocytes could 
be expressed and significantly activated by these antigens. Individual 
oncovirus antigens are produced in specific cancer types (for example, 
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the HPV E6 and E7 antigens in cervical cancer); however, this happens 
in a large number of patients [36]. 

Furthermore, shared neoantigens are antigens encoded by oncogenic 
driver mutations seen in various patients and tumor types. The vast 
majority of neoantigens (private neoantigens) are specific to individual 
patients’ malignancies, necessitating the development of personalized 
treatment [37,38]. 

Regarding vaccine platforms, for cancer therapy, three types are 
being developed: cellular vaccines, virus vector vaccines, and molecular 
vaccines made up of peptides, DNA, or RNA. These technologies provide 
benefits and drawbacks, and they are currently in development [37]. 
Building on the enormous amount of information that has been created 
in immunology over the last 50 years and using a rational, 
evidence-based approach, we believe that cancer vaccines will emerge 
as an essential tool for cancer management in the future years. 

2.5. Cell-based immunotherapy 

Cell-based immunotherapy applies mechanisms for helping immune 
cells by identifying tumor antigens and then destroying the cancer cells 
[39]. Immune cells are used as a therapeutic agent in cell-based 
immunotherapy. By this means, the cells are taken out of the body, 
activated or changed, expanded, and then re-infused back into the pa-
tient. These are just some of the techniques that are presently being 
researched:  

(i) Adoptive T cell treatment: This kind of cell therapy aims to 
increase the number of tumor-specific T cells. This method 
has been utilized with a variety of T cell types from different 
sources: Ex vivo genetic engineering of peripheral blood T 
cells or ex vivo expansion of tumor-infiltrating lymphocytes 
(TILs) to express a tumor-specific T cell receptor (TCR) or a 
chimeric antigen receptor (CAR; CAR-T cells) versus a tumor 
epitope [40,41].  

(ii) Natural killer cell therapy: NK therapy stimulates the body’s 
immune system. Adoptive transfer of ex vivo expanded NK 
cells has emerged as a novel strategy in treating solid ma-
lignancies. NK cells differ from cytotoxic T lymphocytes in 
that they attack cancer cells that escape from the immune 
detection of the host by the down-regulation of the self- 
antigen presentation. According to new research, NK cells 
can also target tumor progenitor cells [42].  

(iii) Dendritic cell therapy: Professional APCs, such as DCs, 
stimulate the immune system. To increase the presence of a 
tumor-specific antigen, DCs are pulsed ex vivo with tumor 
lysate or even a specific tumor antigen or genetically modi-
fied to display the antigen. T cells stimulate the adaptive 
immune response when the APCs are re-infused into the 
patient. Combining DC vaccines with conventional cancer 
medicines such as chemotherapy and mAbs, on the other 
hand, might result in effective cancer medications [43]. 

(iv) Macrophage-based therapy: Macrophages are powerful im-
mune effector cells whose functional flexibility allows them 
to serve as both antitumor and protumor cells in various 
situations. This flexibility has resulted in significant at-
tempts to deplete or repolarize tumor-associated macro-
phages. Furthermore, following ex vivo genetic alteration, 
macrophages could be adoptively transferred. In general, 
there are two types of macrophage states: M1 that has been 
activated in the traditional way or M2 that have alterna-
tively activated [44]. M1 macrophages increase the number of 
Th1 cells in the inflammatory region by secreting cytokines that 
induce a pro-inflammatory Th1 response. M1 also up-regulates 
antigen processing and presentation genes and also 
co-stimulatory molecules to boost T-cell reactions. These func-
tions are necessary for antitumor immunity to work. In 

comparison, M2 macrophages have a significant role in normal 
immunological performance and homeostasis, including pro-
moting Th2 responses and immunoregulation. Particular M2 
macrophage subsets potentially have a key function in cancer 
development [45]. Whereas anti- or pro-inflammatory responses 
are necessary, therapy techniques aim to transition from M1 to 
M2 or the other way around. Thus, reducing anti-inflammatory 
macrophages while increasing pro-inflammatory (antitumor) 
macrophages is a major objective of macrophage-based cancer 
therapy [46]. However, Recently, in contrast to traditional M1 
and M2 cancer polarization frameworks, researchers demon-
strated that macrophage activation in some malignancies, such as 
NPC and PC, has an M1–M2 coupled pattern, wherein M1 and M2 
are not separate states but rather coupled programs [47,48]. It is 
important to notice that new treatments such as Monoclonal 
Antibodies, cell-based immunotherapies, cancer vaccines, cyto-
kines, and checkpoint therapies are not without adverse effects; 
novel immunotherapies that are personalized to the genetic 
profile of patients, have longer responses, and don’t show any 
immune resistance. Even existing methods for non-responding 
patients, such as those targeting checkpoint molecules, tumor 
ligands, and gene-related treatments, are challenging to utilize. 
Immune resistance is most commonly caused by tumor hetero-
geneity [10]. 

Tumor structure is incredibly complicated, including various tumor 
cell types with an extensive range of genetic and epigenetic variations. 
This heterogeneity is a continual challenge to immunotherapies because 
subclones with acquired resistance mechanisms and self-renewing 
characteristics often survive therapy and stay quiescent until the selec-
tion pressure is gone. ScRNA-seq is a powerful method for deconvolution 
heterogeneous cell populations and decoding the gene expression pro-
files of individual cells that gain a deeper understanding of the tumor 
composition and microenvironment [49]. 

3. ScRNA-seq technologies 

The bulk RNA-seq methods have been commonly applied for tran-
scriptome studies, the patterns of splicing, and determining the level of 
genes and transcripts expression. despite its popularity, this approach 
does not enable researchers to investigate cell heterogeneity in tran-
scriptome dynamics. scRNA-seq offered, investigating gene expression 
patterns at the single-cell level have, and the expression profiles of the 
vast majority of numerous issues have been deciphered [50]. It allows 
for a much greater resolution measurement of intra-population hetero-
geneity, possibly identifying dynamics in different cell populations and 
complex tissues. Because of these improvements, scRNA-seq can be 
employed in various medicinal purposes, such as cancer immunotherapy 
[51] ( Fig. 1). 

3.1. Tissue dissociation and single-cell suspension 

The starting material in all single-cell procedures is a cell suspension 
consisting of fully dissociated, intact, and live cells. RNA integrity 
should be preserved entirely [52]. Different techniques can be employed 
to obtain an even cell suspension. Mechanical methods as mashing, 
dicing, or slicing might be employed to disseminate tissues. Enzymatic 
digestion is recruited to remove collagen and other structural compo-
nents found in the extracellular matrix. This step is necessary when the 
cells in the tissue are embedded in a high densely packed matrix. The 
enzyme used for each tissue will be determined by the extracellular 
matrix composition, including molecules like fibronectin and various 
kinds of collagen [53]. Cold-active protease is a Recently developed 
protocol in which tissue dissociation is performed on ice and conse-
quently eliminates extracellular matrix [54]. Experiments with intricate 
designs in which specimens cannot be handled quickly exert significant 
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constraints and obstacles. In this condition, samples must be maintained 
either as intact tissue or as a dissociated single-cell suspension. Some 
biases are created depending on the procedure for generating cell sus-
pension that must be addressed when designing and processing data 
from a single-cell experiment; nevertheless, they are yet poorly under-
stood [52]. When a suspension of cells is prepared, now it’s time for 
single-cell isolating. Current cell separation approaches may be divided 
into two groups depending on the different concepts employed. The first 
group includes physical characteristics such as size, density, electric 
changes, and deformability. 

The second group, which includes affinity techniques, is based on 
cellular biological features [55]. In this way, various isolation methods 
for separating the requested cells have been presented in recent years, 
including Manual Micromanipulation, Robotic Micromanipulation, 
Fluorescence-Activated Cell Sorting (FACS), Immuno-panning, Mag-
net-Activated Cell Sorting (MACS), Laser Microdissection, and 

Microfluidics [56] (Table 1). Their selection, however, is influenced by 
cell type, cost information, and single-cell production. Microfluidics 
technology is acknowledged as a significant facilitator for single-cell 
sorting among them [55]. Unlike FACS and MACS, which are depen-
dent on the labeling strategies, microfluidics avoids this technique [57]. 
Recently several microfluidic systems for single-cell gene expression 
studies have been created. For single-cell transcriptomics, many droplet 
microfluidics methods, like Drop-Seq, Microwell-seq, and Indexing 
droplet RNA sequencing (inDrop), have been reported [58]. Although 
significant development has been achieved in single-cell isolation in 
recent years, we still require to design more effective techniques in this 
area to solve the enigma of cellular heterogeneity completely. 

3.2. ScRNA-seq platforms 

ScRNA-seq technology, which is quickly improving, provides 

Fig. 1. Workflow of a typical scRNA-seq experiment vs. traditional bulk RNA sequencing.  
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remarkable accuracy in designing single-cell sequencing platforms, 
particularly in the RNA sequencing field [59]. However, there are con-
cerns about the difference between the accuracy and repeatability of 
platforms. The primary platforms have relied on low-throughput 
methods that took much longer to capture cells of interest and had 
problems with transfer effectiveness (the percentage of cells effectively 
moved from the medium to the collector); the cost per cell was quite 
high, considering whole-genome amplification (WGA) and whole tran-
scriptome amplification (WTA), which are both expensive. The impor-
tant benefit of these approaches was that they could select just relevant 
cells for investigation based on morphology or antibody staining, which 
could then be confirmed visually using a microscope. With the intro-
duction of high-throughput methods, it is now feasible to produce a 
massive number of cells in a short time while also reducing the per-cell 
analysis cost. They are notably appropriate for the identification of rare 
cells. However, these methods generally need a greater number of cells, 
to begin with, do not permit for visual observation, and the ability to 
choose cells is restricted [59]. Some platforms, like the Chromium Sys-
tem (10 × Genomics), the Nadia or RNA-Seq System (Dolomite Bio), the 
InDrop System (1CellBio), the Single-Cell Sequencing Solution (Illu-
mina, Bio-Rad), the Tapestri Platform (MissionBio), and the Rhapsody 
Single-Cell Analysis System/Resolve (BD), are based on high-throughput 
approaches. Fluidigm C1, Clontech iCell8 (previously Wafergen), and 
10x Genomics Chromium are three of the most successful and prominent 
commercial scRNA-seq platforms. The sensitivity, specificity, 
throughput, and other analytical characteristics of these platforms are 
different [60]. For example, the integrated microfluidic chip (IFC) is 
used for storage in the Fluidigm C1 platform to collect, image, and do 
cell lysis, reverse transcription (RT), and first PCR reactions for single 
cells. IFCs are divided into two types: 96 and 800 HT, which could 
capture 96 and 800 cells, respectively. 

Furthermore, each form of IFC makes it easier to capture cells with 
diameters ranging 5–25 µm [61]. Clontech’s iCell8 technology is built 
on an alloy nanogrid wafer with 5184 nano wells. Oligonucleotides 
comprising poly d(T), unique molecular identifiers (UMIs), and unique 
good barcodes are preprinted within each nano-well. An automated 
system distributes cells from the main 384-well plate into each 
nano-well. According to the Poisson distribution, on average, ~1800 
single cells can be collected optimally. The automated imaging system 
can detect and pick single living cells. The iCell8 system can handle cells 
with a diameter of up to 100 µm [61]. 10 × Genomics Chromium is the 
third platform, a droplet-based technology that can characterize and 
profile thousands to millions of cells [59]. It is the GemCode system for 
barcoding (Gel bead in Emulsion) that permits capturing input cells 
[62]. The gel beads are covered with oligonucleotides, including RT 
primers, UMIs, and cell barcodes, mixed with RT reagents and cells in an 
oil environment to form droplets in which cDNA is synthesized. The 
droplets are then collected, dissolved, and a UMI-containing cDNA li-
brary is created. With a very low doublet rate, the technique can achieve 
a cell capture efficiency of 65% [59]. The Chromium scRNA-seq chem-
istry has been provided in two versions (V1 and V2), with the final 
RNA-seq library configuration differing between the two versions [63]. 
This platform suggests processing cells with a diameter of less than 

50 µm [64]. The three single-cell systems have different productivity, 
single-cell track-ability, and ultimate single-cell libraries due to their 
different designs, indicating that scRNA-seq technologies have not yet 
reached complete development [65]. So, efforts must be continuous to 
produce new instruments to overcome these barriers. 

3.3. ScRNA-seq downstream data analysis 

Thanks to the scRNA-seq, researchers can address new biological 
questions at the single-cell level; however, it represents a unique and 
distinct set of challenges. Due to the limited amount of material avail-
able per cell, observations are fraught with uncertainty. Amplification 
adds technical noise to the resulting data when it is used to generate 
more material. Furthermore, any increase in resolution leads to a rapid 
increase in dimension in data matrices. As a result, there is a significant 
need for analysis tools to better utilize these relatively small amounts of 
data. Normalization, batch effect correction, drop out and dimension-
ality reduction, and cell clustering and annotation are all part of the 
overall pipeline for scRNA-seq data analysis. Nonetheless, clarification 
for this aspect of the study is beyond the scope of this review, and 
readers should refer to related papers for more information (Table 2). 

Here we briefly review the most recent scRNA-seq analysis method, 
including cell-cell communications, lineage reconstruction, and pre-
diction of intercellular communication. 

Table 1 
Progress in single-cell capturing approaches.  

Capturing method Number of cells Operation times Equipment Application 

Micromanipulation (mouth pipetting) Rare samples (~ 100) Time-consuming No Tang-seq, Smart-seq/Smart-seq2 
Laser capture microdissection Rare samples (~ 100) Time-consuming Yes Smart-seq/Smart-seq2 
Flow cytometry Hundreds of cells Fast Yes Smart-seq/Smart-seq2, CEL-seq/CEL-seq2, MARS-seq, STRT-seq 
Integrated microfluidic circuits Hundreds of cells Fast Yes Smart-seq/Smart-seq2, CEL-seq/CEL-seq2, STRT-seq 
Microwell platform Thousands of cells Fast No Cyto-seq, Seq-well, Microwell-seq 
Microdroplet platform Thousands of cells Fast Yes Drop-seq, inDrop 
In-situ barcoding Tens of thousands Fast No SPLit-seq, Sci-RNA-seq  

Table 2 
Packages for single-cell analysis.  

Step Name Ref. 

Normalization DCA [66]  
SAUCIE [67]  
Auto Impute [68]  
Deep Impute [69]  
DeepMc [70]  
sc Scope [71]  
scVI [72] 

Data correction ResNets [73]  
MNNs [74]  
Scanorama [75]  
BBKNN [76]  
DESC [77]  
Batch-Free Encoding [78]  
BERMUDA [79] 

Drop out DCA [66]  
scScope [71]  
TRANSLATE [80] 

Dimensionality reduction scvis [81]  
VASC [82]  
scVI [72]  
BasisVAE [83]  
GOAE and GONN [84]  
SAUCIE [67] 

Clustering and cell annotation DESC [77]  
scAnCluster [85]  
scVAE. [86]  
scDeepCluster. [87]  
GOAE and GONN [84]  
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3.3.1. Cell-cell communication 
Cell-cell communication (CCC) is a basic method for studying cell 

interactions that involve the discovery and quantification of intercel-
lular signaling pathways. The signaling pathways that lead to CCC are 
mainly regulated through protein interactions, including ligand- 
receptor, receptor–receptor, and extracellular matrix–receptor in-
teractions. Receiver cells activate downstream signaling via cognate 
receptors, resulting in changes in transcription factor activity and gene 
expression in most cases. Then these cells with changed expression 
interact with their microenvironment. For understanding the ’land-
scape’ of biological systems, we need to decipher the CCCs at every stage 
of development and in any multicellular community by using gene 
expression data. Previously, CCC could only be examined via in vitro 
studies using one or two cell types and a few genes. But CCC affects a 
wide range of cell types and activates a large number of genes, and these 
studies remain incomplete [88,89]. Fortunately, with the emergence of 
scRNA-seq technology, the analysis of single-cell transcriptomics has 
begun to transition from “ just ” focusing on what cells are present to also 
focusing on what interactions between cells are present. Now re-
searchers can quantitatively infer and investigate intercellular commu-
nication networks from scRNA-seq data and predict main signaling 
inputs and outputs for cells as well as how those cells and signals co-
ordinate for functions through applying network analysis and pattern 
recognition methods [90]. The number of techniques has rapidly 
expanded in recent years, but additional unique approaches are needed 
to move this fast-expanding field ahead in important ways. 

3.3.2. Lineage reconstruction 
Single-cell lineage reconstruction effectively identifies the cellular 

basis of development, regeneration, and disease. It means that this 
ability of scRNA-seq provides critical information on the fates of single 
cells to researchers. Tracing cell lineages has previously been accom-
plished via low-throughput and invasive procedures like tagging cells by 
dyes or radioactive tracers or inserting genetic elements. Recent de-
velopments in scRNA-seq have made it possible to track genome-wide 
omics data from thousands of individual cells and predict the direc-
tion of these cells along developmental paths computationally. In this 
way, Over 70 trajectory inference tools have already been created to 
analyze extremely vast and intricate single-cell datasets and rebuild cell- 
state transitional trajectories. Most of the time, the resulting trajectories 
are linear, bifurcating, or tree-shaped, but more modern approaches can 
also detect more intricate topologies, such as cyclic or disconnected 
networks. Despite these advances, we still have a long way to go in 
comprehending cellular differentiation as well as cell fate decisions. 
Hence there is a great need to introduce more integrative approaches to 
address long-standing concerns about cell fate decisions and lineage 
specification [91,92]. 

3.3.3. Intercellular communication 
scRNA-seq is a promising tool for investigating intercellular 

communication within tissues. Extracellular signals created by cells in 
their microenvironment could affect cells and are crucial for organizing 
a broad range of biological processes, such as development, differenti-
ation, and inflammation. Profiling gene expression in interacting cells is 
one way to investigate these intricate communications. Many recent 
findings have shown that single-cell transcriptomics can be used to 
examine intercellular communication and assess the physical cell-cell 
interaction network. To carry out these analyzes, several methods 
have been developed. They all start with a database of interacting mo-
lecular partners (such as ligand and receptor pairs) then use their 
expression patterns to anticipate a list of possible signaling pathways 
across cell types. These research findings may be beneficial in under-
standing the mechanics of different tissues made up of a range of cell 
types [93,94]. 

4. ScRNA-seq applications in cancer immunotherapy 

During the last decade, precision medicine and immunotherapeutic 
methods have grown increasingly prominent in oncology. The devel-
opment of scRNA-seq has recently improved the potency to explore the 
immune system and broken the immunological constraint. The ability to 
divide subpopulations in the ecosystem defines developing hierarchies, 
finds new drivers, rate possible therapeutic responses, and identify ad-
vances in scRNA-seq technology that have provided infiltrating-immune 
surveillance/evasion relevant to cancer. Although early clinical studies 
yielded encouraging findings, response rates in phase III trials have not 
been very optimal. Following translational studies have revealed the 
efficacy of targeting the TME in the fight against immunotherapy 
resistance. It is critical to address both inter-and intra-tumoral hetero-
geneity in this era of precision medicine. Single-cell analysis is a cutting- 
edge technique for better defining the tumor cell population and iden-
tifying new immunotherapy or combination treatment targets. Modern 
cancer therapy is shifting from a “one drug fits all” strategy toward a 
personalized approach based on biomarkers, mutational studies, and 
examination of the TME, especially immune cell type. Tumors are 
composed of complicated admixtures of diverse cell populations that 
interact with non-malignant cells in the surrounding area. 

Regarding their approval for melanoma and non-small-cell lung 
cancer (NSCLC), there is increasing attention in utilizing ICIs to treat 
additional solid tumors like HCC. But, only a small number of people 
benefit from immunotherapy, and scientists don’t know why the ma-
jority of them are resistant. ScRNA-seq can give a more specialized look 
at the immunological component in the tumor, allowing researchers to 
examine the precise molecular mechanisms needed to overcome the 
failure of therapy or find novel therapies. ScRNA-seq has also discovered 
novel critical components and cellular subpopulations that either drive 
tumor development or make malignancies immune-resistant [47,95]. 

4.1. Determining the dominant drivers of cancer immunity 

The heterogeneity of cancer cells, their immunogenicity, and their 
interaction with their environment and immune system are at the center 
of the difficulties in developing a long-lasting therapy. Cytotoxic cells 
are the primary drivers of the immune response to the tumor. Cytotoxic 
T cell infiltration or elevated PD-L1 expression by tumor cells are both 
signs of inflamed tumors. Chemoimmunotherapy (CIT) response is 
linked to inflamed or "hot" tumors. TGF-β signaling in the stroma, 
myeloid inflammation, and angiogenesis are all hallmarks of immune- 
excluded tumors, which also respond weakly to CIT. However, there is 
some indication that using anti-TGF-β and anti-PD-L1 together can make 
these tumors "hot" and sensitive. Immune desert tumors have a high rate 
of tumor cell growth, are metabolically active, and are stressful, making 
them good candidates for pathway-specific treatments that block the 
metabolic pathways that these cancer cells rely on. Tumor antigenicity is 
another driver of cancer immunity: antigenicity for tumor cells is 
created by genomic instability characterized by MSI or high tumor 
mutational burden (TMB), and biomarkers such as IFNg signatures and B 
cells reflect the presence of antitumor immunity. CIT is generally 
effective against inflamed tumors with a high antigenicity [96]. 
Signaling and epigenetic components are other important drivers of 
immune activities, and they are probably to be druggable, making them 
potential therapeutic targets. Most of these drivers are difficult to 
investigate, so they are named ‘hidden drivers’ because they are 
changed by post-translational changes (PTMs; e.g., phosphorylation) or 
other processes rather than being genetically altered or differently 
expressed at the mRNA or protein level. 

Furthermore, both intracellular gene networks and cross-talk among 
various kinds of immune cells in particular tissues and their microen-
vironment are involved in immune responses, and their dysfunction 
leads to diseases such as malignancy and inflammatory conditions. 
Overall, molecular and cellular networks in cancer immunity and their 
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drivers and ‘hidden’ drivers are difficult to identify using traditional 
techniques. They must be analyzed using higher-resolution techniques 
like scRNA-seq to create effective and curative cancer immunotherapies 
[97]. With the help of scATAC-seq, today, researchers can study epige-
netics or post-translational changes to profile the chromatin accessibility 
environment at a single cell level and highlight cell-to-cell diversity in 
gene regulation. scATAC works by inserting sequencing primers into 
open chromatin areas with the help of a transposase. At single-cell res-
olution, this technique, like classical ATAC-Seq, generates profiles of 
open and accessible chromatin regions indicative of active regulatory 
areas. In a study by Zhang et al., they searched for a potential cell of 
origin for renal cell carcinoma (RCC) subtypes through scRNA seq. 
Finally, they discovered that tumor epithelial cells in clear cell renal cell 
carcinoma (ccRCC) are the reasons which actively promote immune 
infiltration; eventually, they emphasized the TME’s critical involvement 
in ccRCC biology and treatment response [98]. Zhao et al. performed a 
study on the nasopharyngeal carcinoma from three NPC cancerous tis-
sue using scRNA-seq. They proved that in NPC tumors, immune cells 
have a diverse makeup and the various active states of T cells. Their 
findings shed light on the processes by which immune cells in the 
microenvironment remove tumors, which would promote the develop-
ment of targeted and immunological treatments for NPC [99]. 

In another study by scRNA-seq, Chung et al. categorized non-tumor 
cells into three types of immune cells: T cells, B cells, and macro-
phages, each having activating and suppressive gene expression pat-
terns. They discovered numerous T cells with significant cytokine and 
chemokine expression in immune cell infiltrates predominantly 
collected from triple-negative breast cancer (TNBC) tumors, indicating 
continuing immunological responses [100]. Altogether, these findings 
show the potential effect of intra-tumoral heterogeneity and indicate 
that single-cell transcriptome profiling might uncover and define clini-
cally relevant subpopulations that may be the drivers of cancer immu-
nity, making them excellent options for targeted therapies. 

4.2. Pathways targeted through immunotherapy 

In diverse kinds of cancer, novel therapies based on the usage of ICIs 
have shown to be highly effective. Unfortunately, most patients do not 
respond or have long-term responses, and the reasons for this remain 
unknown. Over the last two decades, an urgent need to fully characterize 
either the TME or the cells that control the immune response has 
motivated researchers to combine data from conventional techniques 
with data from newer approaches, such as single-cell methods [101]. 
The advent and application of scRNA seq helped researchers understand 
the cells and pathways better than immunotherapy drugs target, 
resulting in a higher success rate in clinical trials. A significant step 
forward can be accomplished if immunotherapy targets cells and path-
ways are identified at high resolution before and after treatment in 
clinical cohorts and model systems [102]. 

In this way, Kim et al. employed scRNA seq of CD45+ TILs from 
untreated controls, AB680-treated, and PD-1-blockade-treated murine 
CRC in vivo models to better realize the mechanism of AB680 compared 
with that of a neutralizing antibody against murine PD-1 using it as a PD- 
1 blocker. They discovered that the expressions of Nt5e (a CD73 gene) 
and Entpd1 (a CD39 gene) influence TCR diversity and transcriptional 
profiles of T cells, indicating that these genes are important in T cell 
exhaustion within tumors. The TCR heterogeneity of Entpd1-negative T 
cells and Pdcd1-positive T cells was dramatically enhanced by PD-1 
inhibition. AB680 also enhanced the anti-cancer activities of immuno-
suppressed cells like Treg and exhausted T cells, whereas the PD-1 
blocker decreased Malat1high Treg and M2 macrophages quantita-
tively [103]. 

Yu et al., by using scRNA-seq of mouse bone marrow progenitors, 
discovered innate lymphoid cells (ILC) precursor subsets, defined 
particular ILC progress steps and pathways, and reported that significant 
expression of programmed death 1 (PD-1hi) characterized a committed 

ILC progenitor which was similar to an innate lymphoid cell progenitor. 
They established PD-1hiIL-25Rhi as an early checkpoint in ILC2 for-
mation that was disrupted by a Bcl11b defect but restored by IL-25R 
overexpression. PD-1 was up-regulated on activated ILCs in the same 
way it was on T cells. In a mice influenza infection model, a PD-1 
antibody decreased PD-1hi ILCs and lowered cytokine levels, as well 
as blocking papain-induced acute lung inflammation. Their findings 
suggest that PD-1 and its ligand (PD-L1) might be used in immuno-
therapy to effectively manipulate the immune system for disease control 
and treatment [104]. 

Based on scRNA-seq research, these findings will open up more sig-
nificant and novel therapeutic options for immunotherapy drug dis-
covery pipelines in the future, allowing for the quick development of 
successful immunotherapies and data-driven design. 

4.3. Molecular mechanisms of immunotherapy resistance 

As mentioned, immunotherapy has brought a new era in cancer 
treatment, yet despite these promising outcomes, most of the patients 
who are treated with innovative immunotherapies don’t react or 
relapse. According to recent research, only 10% of patients may respond 
to ICB treatment, and 30–60% of patients may relapse. So, the devel-
opment of resistant cancer cells is a significant obstacle to full cures. 
Secondary mutations can induce resistance; however, there are cases in 
which there is no apparent genetic reason, increasing the potential of 
non-genetic rare cell heterogeneity [105,106]. Studying the activity of 
cancer cells and the TME before, during, and after immunotherapy will 
be critical in optimizing these new treatments to overcome resistance. 
ScRNA-seq is developing rapidly as a helpful tool for dissecting diverse 
cell populations, a complex network of proliferating malignant cells, 
immunological infiltrates, and tumor stroma [107]. In 2021 in a study 
by Sehgal et al., they used scRNA-seq to discover a distinct subpopula-
tion of immunotherapy persister cells (IPCs) that resisted CD8+ T 
cell-mediated death in murine organotypic tumor spheroids following 
PD-1 inhibition. In mice, combining PD-1 inhibition with Birc2/3 
antagonism decreased IPCs and increased cancer cell death in vivo, 
resulting in a long-lasting response that matched TNF cytotoxicity 
thresholds in vitro. These results indicate how high-resolution func-
tional ex vivo analysis can reveal underlying mechanisms of immune 
escape from long-lasting anti-PD-1 responses while also recognizing 
IPCs as a tumor cell subpopulation that can be targeted by particular 
treatment combinations [108]. 

In that year, Jiang et al. used scRNA-seq data from patients before 
and after anti-PD-1 therapy to evaluate resistance to anti-PD-1. They 
discovered a cluster of T cells with a unique ligand/receptor expression 
pattern utilizing ligand/receptor gene analysis of tumor-specific 
exhausted CD8 T cells. After anti-PD-1 treatment, these cells expressed 
more survival- and tissue-residence-related genes, such as heat shock 
protein genes and the interleukin-7 receptor (IL-7R), CACYBP, and 
IFITM3 genes. These findings shed light on the processes behind anti-PD- 
1 treatment response and provide a wealth of information for future 
immunotherapy methods [109]. Before and after treatment with tipi-
farnib, Lee et al. used scRNA-seq to evaluate the matching 
patient-derived xenograft (PDX). Tipifarnib had a lot of anti-cancer ac-
tions, but it couldn’t get a complete response. The characteristics of 
tipifarnib-refractory cancer cells and the tumor-supporting microenvi-
ronment were identified by a comparative scRNA-seq study of pre-and 
post-tipifarnib-treated PDX. A PD-L1 inhibitor, atezolizumab, was clin-
ically used dependent on upregulation of programmed death-ligand 1 
(PD-L1) in surviving cancer cells and the formation of multiple 
immune-suppressive subsets from post-tipifarnib-treated PDX; This 
resulted in a positive reaction from the patient who had developed 
tipifarnib resistance [110]. 

Kieffer et al. discovered eight tumor-associated fibroblasts (FAP+/ 
CAF-S1) clusters that promote immunosuppression in breast tumors 
using scRNA-seq. These myofibroblasts are a sign of initial 
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immunotherapy resistance, although their diversity and influence on 
immunotherapy response are unclear. ECM-myCAF and TGF-myCAF, 
two of the five most prevalent clusters, are mainly linked with an 
immunosuppressive surrounding, as their frequency corresponds with 
that of PD-1+ and/or CTLA4+ CD4+ T cells. These findings indicate an 
intriguing reciprocal cross-talk between particular ecm-myCAF and 
TGF-myCAF with CD4+ CD25+ T cells, which might increase immuno-
suppression and be implicated in immunotherapy resistance [111]. Ma 
et al. found that IFN-γ signaling pathway genes are highly heteroge-
neous expressed and coregulated with other genes in single tumor cells, 
included MHC II genes, using primary lung adenocarcinoma cells and 
cell lines. An acquired resistance phenotype is associated with the 
downregulation of genes in IFN-γ signaling pathways in cell lines. They 
recommended using multiantigen combination treatments for inhibiting 
cancer escape and set the foundation for future prognostic measures 
depending on intratumor heterogeneity [112]. 

Wang et al. published a study in 2019 on mice with breast cancers 
that developed resistance to a combination treatment that included the 
CDK4/6 inhibitor Palbociclib. Surprisingly, scRNA-seq showed signifi-
cant numbers of immunosuppressive immature myeloid cells in CDK4/ 
6-resistant cancers, which up-regulated Kit and Met’s oncogenic 
drivers. In mice, utilizing cabozantinib in conjunction with ICB to target 
Kit and Met resulted in substantial breast tumor reduction and consid-
erably increased survival time [113]. Jerby-Arnon et al. by using clinical 
scRNA-seq data and different patient cohorts, mapped tumor cell states 
related to ICI resistance indicating a cohesive program that might be 
therapeutically targeted. They showed that a CDK4/6 inhibitor reverses 
the resistant cell condition, activates components of SASP (Sen-
escence-Associated Secretory Phenotype: suppressed component in the 
resistance pathway), and enhances ICI, and improves responses to ICI in 
vivo. According to a recent finding, CDK4/6 inhibitors given in a phased 
fashion might possibly relieve ICI resistance in certain melanoma pa-
tients. In general, the program’s in vitro suppression may be used to 
search for other compounds that make melanoma cancers more sensitive 
to ICI [114]. 

Ho et al., by studying human melanoma cells and looking for drug- 
resistant cellular populations that react to targeted BRAF inhibitors 
(BRAFi), discovered both new and recognized resistance markers. They 
found that BRAFi resistance markers overlap with previous in-
vestigations in various melanoma cell lines, and they also confirmed one 
new resistance marker gene, DCT, which has failed to recognize by bulk 
RNA-seq studies due to its high expression in the majority of BRAFi- 
resistant cells and permit expression in 99% of the parental popula-
tion. High AXL, JUN, and NRG1 expression were also linked to a rare 
cancer cell population that was in a “pre-resistant” state [115]. Such 
findings have proven the practical guidance provided by scRNA-seq in 
the creation of novel immunotherapeutic regimens and would provide a 
wealth of insights for future immunotherapy methods, as well as allow 
strategic choices to avoid treatment failure for many malignancies. 

4.4. Finding novel immunotherapy targets 

Inhibition of the PD1/PDL1 pathway has resulted in significant 
clinical success for immunotherapy in some individuals, while it has 
little or no effect in others. To improve immunotherapy efficacy, it is 
important to screen out new targets in order to produce successful 
therapies or for use in combination treatments, but this requires a 
greater understanding of tumors and their microenvironments. Intra- 
tumoral and TME heterogeneity has recently been discovered through 
scRNA-seq analyses of human tumors, which is important for deeply 
studying tumor-related processes and revealing the critical elements 
engaged in the vulnerability of tumor-induced immunological changes, 
which can be used to advance novel immunotherapy techniques. As a 
result, it’s critical to look into new targets in order to produce successful 
therapies or to employ them in joint treatments. 

Deng et al. identified seven main CD8+ T cell subpopulations in 

melanoma TME, each of which, and the decrease or increase of the 
proportion between them perform distinct roles in prognosis, progres-
sion of the disease, and response to immunotherapy. They discovered 
that three overexpressed genes, PMEL, TYRP1, and EDNRB, which are 
just expressed in exhausted CD8+ T cell subpopulation 2, are noticeably 
linked to poor prognoses and possess the highest expression in mela-
noma in comparison to other cancers. Still, these three genes, along with 
immunosuppressive checkpoint genes, can be used as potential targets 
for melanoma treatment [116] ( Fig. 2). 

About Papillary thyroid carcinoma (PTC), Wang et al. discovered 
that inhibitory checkpoints TIGIT and CD96 are more suitable targets for 
immune treatment than PD-1 in PTC patients with LN metastases. PD-1, 
TIGIT, and CD96, on the other hand, might be effective immunotherapy 
targets for PTC patients without Lymph node metastases [117]. 

Pancreatic ductal adenocarcinoma (PDAC) has imperfect manage-
ment for immunotherapy, in this way, Wang et al. found a new subtype 
of cancer-associated fibroblasts (CAFs) with a highly activated meta-
bolic state (meCAFs) in loose-type PDAC, especially in comparison to 
dense-type PDAC, which is essential for PDAC progression, and discov-
ered that patients with abundant meCAFs had an increased risk of 
metastasis and decreased prognosis, but interestingly, had a signifi-
cantly stronger answer to PD-1 blockade treatment [118]. 

Li et al. identified sialic acid-binding Ig-like lectins (Siglecs) as new 
immunotherapy targets, with the ability to improve the efficacy of 
current ICIs in glioma immunotherapy. Because they displayed distinct 
expression patterns in gliomas and performed various roles in the 
immunosuppression process, interacting with various immune check-
points, a combination of Siglec inhibitors and immune checkpoint in-
hibitors has a high capability to solve the current immunotherapy issue 
in glioma [119]. 

5. Single-cell TCR sequencing 

T-cell receptors are heterodimers made up of two chains, TCRα and 
TCRβ, that cause peptides to be recognized in the context of MHC 
molecules. A variable region and a constant region make up each of the 
two chains. There are two constant region gene segments in the TCRβ 
chain, Cb1, and Cb2, which share certain sequences. Ca is the only 
constant region gene segment in the TCRα chain. The variable region of 
the b chain is made up of three gene segments: variable (V), diversity 
(D), and junctional (J); however, only the V and J sections make up a 
chain. There are three hypervariable areas, or complementarity- 
determining regions, within each V segment (CDR1, CDR2, and 
CDR3). The V segment encodes CDR1 and CDR2, whereas the CDR3 
regions originate from the juxtaposition of the V, (D), and J segments. 
TCR’s excellent structure enables a lot of variation, which is enhanced 
even more by the α and β chains’ heterodimeric coupling. The whole 
number of potential combinations is believed to be more than 1018. 
TCRs’ high diversity is required for their specific capacity to identify 
antigenic targets, such as infections or tumor cells. TCR must contact the 
MHC molecule on the cell surface via antigen identification, which is 
done primarily through particular interactions with CDR1 and CDR2. 
The TCR interacts with the peptide given by the MHC molecule in a 
variety of ways, the most common of which is through a particular 
contact with the CDR3. T-cells also play a role in immune response and 
cancer treatment. Because the discovery of antigen-specific TCRs, as 
well as cancer antigens, is a prominent investigate subject. Despite the 
existence of tumor-specific T cells in cancer patients’ TILs and peripheral 
blood, even after checkpoint immunotherapy, the existence of these cells 
is typically insufficient to cause cancer regression. In order to answer 
such concerns, a greater understanding of the biology of TCRs in cancer 
immunotherapy is required. Recent improvements in scRNA-seq 
methods have opened up new avenues for TCR research, allowing sci-
entists to find novel biology in T-cell receptors at the single-cell level. 
This powerful tool couldn’t just confirm earlier results made using 
traditional methods, but it can also open the door for novel discoveries, 
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like previously unknown T-cell subpopulations that may be involved in 
clinical consequences in patients [120]. 

Lu et al. used scRNAseq to examine T cell-mediated responses 
following immunotherapy using neoantigen-specific TCR obtained from 
three melanoma and three colorectal tumor tissues. They initially 
extracted tumor-infiltrating T cells from a tumor sample, then used 
neoantigen-loaded DCs to activate T cells, followed by sc-seq for TCR 
and T-cell activation markers, IFN-γ, and IL-2. Finally, they discovered 
that IFN-γ and IL-2 expression levels are two indicators for accurately 
identifying neoantigen-specific TCRs, and they discovered a total of 28 
neoantigen-specific TCRs [121]. 

Wang et al. give important insights on exhausted T cell subsets in 
leukemia by analyzing functional T cell clusters, which may be used to 
design immunotherapy methods and predict clinical outcomes in leu-
kemia. They used scRNA-seq to discover 13 T cell clusters in patients 
with B cell acute lymphoblastic leukemia (B-ALL) depending on the 
molecular characteristics in T cells separated from the peripheral blood 
of healthy people and patients with B-ALL. Patients with B-ALL have all 
11 major T cell subsets present in healthy people, with the patients’ 
counterparts displaying higher activated features across the board. In B- 
ALL patients, two exhausted T cell populations with ten sub-clusters 
have been identified [122]. 

Zheng et al. studied the full TCR sequences and transcriptomes of 
> 5000 single T cells derived from HCC patients using scRNA-seq 
techniques. They discovered 11 different T cell subsets, each with its 
specific tissue distribution pattern. These subgroups’ connection and 
probable developmental route were found using a combination of 
expression and TCR-based studies. They looked at signature genes for 
exhausted CD8+ T cells and tumor-specific Tregs, such as LAYN. They 
discovered that overexpressing LAYN in primary CD8+ T cells inhibited 
interferon (IFN) production implying that LAYN has a regulatory func-
tion. Their large-scale transcriptome data of T cells can be utilized to 

learn more about TILs’ fundamental features and perhaps guide effective 
immunotherapy techniques [123]. 

Zhao et al. do scRNA-seq on tumor cells coupled with TCR scRNA-seq 
from immune cells, recognize the diverse T cell clonotypes and expan-
sion distribution in individual cancers, and show different types of im-
mune cells in the microenvironments of NPC. Their study of TCR variety 
revealed the asynchronous characteristics of polyclonal T cell activation 
or heterogeneity between different patients. They discovered that EBV- 
positive tumor samples had more T cell clonal expansion, suggesting 
that sequence analysis of these TCRs could be linked to EBV-specific 
antigens. Their research will aid in advancing immunotherapies for 
NPC, like adoptive T cell therapy [99]. 

ScRNA-seq is a helpful method for TCR sequencing in individual 
cells, which is essential for detecting viral antigens or cancer-specific 
neoantigens presented by the MHC. TCR-seq study has become an 
essential means for understanding T cell biology in healthy people and 
people with a variety of pathological conditions, and it is being used not 
just to investigate the biology of immunological-mediated diseases but 
also to track immune responses to treatments. Recently, there has been 
an increase in interest in T cells’ function in TME and cancer immuno-
therapy, making it a hot issue for research ( Fig. 3). 

6. Challenges and future perspective 

ScRNA-seq is a powerful new technique that allows for individual 
cell transcriptome research. It’s a potent tool for dealing with the 
intrinsic complexity of malignancies and the tumor environment, paving 
the path for personalized treatment. However, as a newly advanced 
method, scRNA-seq still has limitations, such as preserving cell integrity 
and survival, critical for subsequent single-cell analyses. This means that 
single cells must be isolated from each other rapidly and correctly with 
minimal cell damage during the single-cell isolation procedure to 

Fig. 2. CD8þ T cell subpopulations in melanoma TME. Seven primary CD8+ cells, including four cytotoxic subpopulations, two exhausted subpopulations, and one naive/ 
memory subpopulation, were identified based on the Single-cell RNA-sequencing analyses [116]. 
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achieve the highest cell viability. Thus, there is a necessity to progress 
methods to empower the efficient “gentle” extraction and capture of 
living cells and avoid the possible damage to single cells. Another re-
striction is the considerably high cost of single-cell sequencing; never-
theless, modern technologies have reduced the cost of sequencing each 
cell to an acceptable level; yet, the total price is too high because tens of 
thousands of cells should be examined in some instances. Decreasing 
sequencing costs would make scRNA-seq more widely used in cancer 
research possible. ScRNA-seq also requires modern data processing 
techniques to exploit and quantify biological variation properly. 
Dropout difficulties in single-cell datasets, for example, provide serious 
challenges for downstream analysis such as data normalization, 
dimensional reduction, and clustering. It would be beneficial to develop 
techniques specifically for sparse single-cell data [124]. 

All of these restrictions, however, are expected to be overcome by 
fast scientific and technical progress. The use of scRNA-seq in cancer 
biology investigations might help us learn more about tumor heteroge-
neity, get insight into molecular processes of tumor development and 
metastasis, and identify new immunotherapy medicines for more suc-
cessful personalized cancer care because tumor heterogeneity and the 
complexity of its ecosystem are significant biological challenges in the 
way of treatment. Considering tumor cell populations are very diverse 
both between tumors and within a tumor, identifying tumor sub-
populations and uncommon cell types, such as cancer stem cells, can 
sometimes be challenging. Tumor plasticity and the continuous process 
of tumor development, in addition to heterogeneity, provide significant 
obstacles to establishing a tumor ecosystem. Other cells in the TME, such 
as T cells, are just as complex as tumor cells. While CD4+ or CD8+ T cell 
lineage commitment is permanent, some lineage commitments may be 
more adaptable than previously thought. 

Nonetheless, instead of focusing on tumor heterogeneity and 
adaptability, the mystery of tumor biology may be addressed by looking 
for the key to creating such a complex environment. Recent single-cell 
research described here is beginning to show a network of cellular in-
teractions in the cancer-immune landscape, which might help us better 
understand resistance mechanisms and create better combination 
treatments. In an ideal world, the single-cell analysis would be utilized 
to develop comprehensive cellular atlases for each patient, but this is 
still a concept for the future. 

Despite the significant advancements in scRNA-seq fields, one of the 
most challenging aspects of this method is that it recognizes cell sub-
populations within tissue but does not capture their spatial distribution 
or demonstrate local networks of intercellular communication acting in 
situ, so spatial information in the tissue context is lost. Multiplexed in 
situ hybridization, in situ sequencing, and spatial barcoding are just a 
few recently developed techniques for localizing RNA within the tissue 
that can aid with this problem [94]. The gene expression of individual 
cells at their original site can be distinguished using spatial tran-
scriptome sequencing technologies. The technique is critical for 

determining tissue function, following developmental processes, and 
detecting clinical and molecular alterations. Because different ap-
proaches have different encoding efficiency and application contexts, 
the key to spatial transcriptomics is encoding the position information 
[125,126]. 

7. Conclusions 

Up to date, immunotherapy therapies have been beneficial in treat-
ing a variety of malignancies, including melanoma, lung cancer, 
gastrointestinal tumors, non-nasopharyngeal squamous cell carcinoma 
of the head and neck, and urologic cancer. However, the underlying 
processes remain unknown due to tumor heterogeneity and TME, which 
limited the bulk investigations. Deep scRNA-seq is required to shed light 
on this intricacy and better comprehend the immune landscape in ma-
lignancies. ScRNA-seq provided enlightening insights into the analysis 
of tumor heterogeneity and enabled a more comprehensive under-
standing of tumor formation, progression, and resistance, all of which 
are critical for designing targeted therapy and achieving personalized 
management. The widespread adoption of scRNA-seq might result in a 
dramatic shift in our knowledge of cancer, paving the way for devel-
oping more effective treatment approaches to prevent cancer recurrence 
and increase survival rates. 
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[76] K. Polański, M.D. Young, Z. Miao, K.B. Meyer, S.A. Teichmann, J.-E. Park, 
BBKNN: fast batch alignment of single cell transcriptomes, Bioinformatics 36 (3) 
(2020) 964–965. 

[77] D.-J. Shiau, W.-T. Kuo, G.V.N. Davuluri, C.-C. Shieh, P.-J. Tsai, C.-C. Chen, Y.- 
S. Lin, Y.-Z. Wu, Y.-P. Hsiao, C.-P. Chang, Hepatocellular carcinoma-derived high 
mobility group box 1 triggers M2 macrophage polarization via a TLR2/NOX2/ 
autophagy axis, Sci. Rep. 10 (1) (2020) 1–14. 

[78] U. Shaham, Batch effect removal via batch-free encoding, bioRxiv, 2018, 380816. 
[79] T. Wang, T.S. Johnson, W. Shao, Z. Lu, B.R. Helm, J. Zhang, K.J.G.b. Huang, 

BERMUDA: a novel deep transfer learning method for single-cell RNA sequencing 
batch correction reveals hidden high-resolution cellular subtypes, vol. 20(1), 
2019, pp. 1–15. 

[80] M.B. Badsha, R. Li, B. Liu, Y.I. Li, M. Xian, N.E. Banovich, A. Qiuyan, Imputation 
of single-cell gene expression with an autoencoder neural network running title: 
autoencoder for imputation of single-cell gene expression, Quant. Biol. 8 (1) 
(2020) 78–94. 

[81] J. Ding, A. Condon, S.P. Shah, Interpretable dimensionality reduction of single 
cell transcriptome data with deep generative models, Nat. Commun. 9 (1) (2018) 
1–13. 

[82] D. Wang, J. Gu, VASC: dimension reduction and visualization of single-cell RNA- 
seq data by deep variational autoencoder, Genom. Proteom. Bioinforma. 16 (5) 
(2018) 320–331. 

[83] K. Märtens, C. Yau, BasisVAE: translation-invariant feature-level clustering with 
variational autoencoders, arXiv preprint arXiv:2003.03462, 2020. 

[84] J. Peng, X. Wang, X. Shang, Combining gene ontology with deep neural networks 
to enhance the clustering of single cell RNA-Seq data, BMC Bioinform. 20 (8) 
(2019) 284. 

[85] L. Chen, Y. Zhai, Q. He, W. Wang, M.J.G. Deng, Integrating deep supervised, self- 
supervised and unsupervised learning for single-cell RNA-seq clustering and 
annotation, vol. 11(7), 2020, 792. 

[86] C.H. Grønbech, M.F. Vording, P.N. Timshel, C.K. Sønderby, T.H. Pers, O. Winther, 
scVAE: variational auto-encoders for single-cell gene expression data, 
Bioinformatics 36 (16) (2020) 4415–4422. 

[87] T. Tian, J. Wan, Q. Song, Z. Wei, Clustering single-cell RNA-seq data with a 
model-based deep learning approach, Nat. Mach. Intell. 1 (4) (2019) 191–198. 

[88] A.A. Almet, Z. Cang, S. Jin, Q. Nie, The landscape of cell-cell communication 
through single-cell transcriptomics, Curr. Opin. Syst. Biol. 26 (2021) 12–23. 

[89] X. Shao, X. Lu, J. Liao, H. Chen, X. Fan, New avenues for systematically inferring 
cell-cell communication: through single-cell transcriptomics data, Protein Cell 11 
(2020) 866–880. 

[90] S. Jin, C.F. Guerrero-Juarez, L. Zhang, I. Chang, R. Ramos, C.-H. Kuan, P. Myung, 
M.V. Plikus, Q. Nie, Inference and analysis of cell-cell communication using 
CellChat, Nat. Commun. 12 (1) (2021) 1–20. 

[91] T. Lu, S. Park, J. Zhu, Y. Wang, X. Zhan, X. Wang, L. Wang, H. Zhu, T. Wang, 
Overcoming expressional drop-outs in lineage reconstruction from single-cell 
RNA-sequencing data, Cell Rep. 34 (1) (2021), 108589. 

[92] W. Saelens, R. Cannoodt, H. Todorov, Y. Saeys, A comparison of single-cell 
trajectory inference methods, Nat. Biotechnol. 37 (5) (2019) 547–554. 

[93] R. Browaeys, W. Saelens, Y. Saeys, NicheNet: modeling intercellular 
communication by linking ligands to target genes, Nat. Methods 17 (2) (2020) 
159–162. 

[94] S.K. Longo, M.G. Guo, A.L. Ji, P.A. Khavari, Integrating single-cell and spatial 
transcriptomics to elucidate intercellular tissue dynamics, Nat. Rev. Genet. 22 
(2021) 1–18. 

[95] A.M. Laughney, J. Hu, N.R. Campbell, S.F. Bakhoum, M. Setty, V.-P. Lavallée, 
Y. Xie, I. Masilionis, A.J. Carr, S. Kottapalli, Regenerative lineages and immune- 
mediated pruning in lung cancer metastasis, Nat. Med. 26 (2) (2020) 259–269. 

[96] P.S. Hegde, D.S. Chen, Top 10 challenges in cancer immunotherapy, Immunity 52 
(1) (2020) 17–35. 

[97] J. Yu, J. Peng, H. Chi, Systems immunology: integrating multi-omics data to infer 
regulatory networks and hidden drivers of immunity, Curr. Opin. Syst. Biol. 15 
(2019) 19–29. 

[98] Y. Zhang, S.P. Narayanan, R. Mannan, G. Raskind, X. Wang, P. Vats, F. Su, 
N. Hosseini, X. Cao, C. Kumar-Sinha, Single-cell analyses of renal cell cancers 
reveal insights into tumor microenvironment, cell of origin, and therapy 
response, Proc. Natl. Acad. Sci. USA 118 (24) (2021), e2103240118. 

[99] J. Zhao, C. Guo, F. Xiong, J. Yu, J. Ge, H. Wang, Q. Liao, Y. Zhou, Q. Gong, 
B. Xiang, Single cell RNA-seq reveals the landscape of tumor and infiltrating 
immune cells in nasopharyngeal carcinoma, Cancer Lett. 477 (2020) 131–143. 

[100] W. Chung, H.H. Eum, H.-O. Lee, K.-M. Lee, H.-B. Lee, K.-T. Kim, H.S. Ryu, S. Kim, 
J.E. Lee, Y.H. Park, Single-cell RNA-seq enables comprehensive tumour and 
immune cell profiling in primary breast cancer, Nat. Commun. 8 (1) (2017) 1–12. 

[101] L. Gibellini, S. De Biasi, C. Porta, D. Lo Tartaro, R. Depenni, G. Pellacani, 
R. Sabbatini, A. Cossarizza, Single-cell approaches to profile the response to 
immune checkpoint inhibitors, Front. Immunol. 11 (2020) 490. 

[102] I. Yofe, R. Dahan, I. Amit, Single-cell genomic approaches for developing the next 
generation of immunotherapies, Nat. Med. 26 (2) (2020) 171–177. 

[103] M. Kim, Y.K. Min, J. Jang, H. Park, S. Lee, C.H. Lee, Single-cell RNA sequencing 
reveals distinct cellular factors for response to immunotherapy targeting CD73 
and PD-1 in colorectal cancer, J. Immunother. Cancer 9 (7) (2021), e002503. 

[104] Y. Yu, J.C. Tsang, C. Wang, S. Clare, J. Wang, X. Chen, C. Brandt, L. Kane, L. 
S. Campos, L. Lu, Single-cell RNA-seq identifies a PD-1 hi ILC progenitor and 
defines its development pathway, Nature 539 (7627) (2016) 102–106. 

[105] K.C. Yuen, L.-F. Liu, V. Gupta, S. Madireddi, S. Keerthivasan, C. Li, 
D. Rishipathak, P. Williams, E.E. Kadel, H. Koeppen, High systemic and tumor- 
associated IL-8 correlates with reduced clinical benefit of PD-L1 blockade, Nat. 
Med. 26 (5) (2020) 693–698. 

[106] Y. Wang, S. Liu, Z. Yang, A.P. Algazi, S.H. Lomeli, Y. Wang, M. Othus, A. Hong, 
X. Wang, C.E. Randolph, Anti-PD-1/L1 lead-in before MAPK inhibitor 
combination maximizes antitumor immunity and efficacy, Cancer Cell 39 (10) 
(2021) 1375–1387, 1375-1387. e6. 

[107] P. Guruprasad, Y.G. Lee, K.H. Kim, M. Ruella, The current landscape of single-cell 
transcriptomics for cancer immunotherapy, J. Exp. Med. 218 (1) (2020), 
e20201574. 

[108] K. Sehgal, A. Portell, E. Ivanova, P. Lizotte, N. Mahadevan, J. Greene, A. Vajdi, 
C. Gurjao, T. Teceno, L. Taus, Dynamic single-cell RNA sequencing identifies 
immunotherapy persister cells following PD-1 blockade, J. Clin. Investig. 131 (2) 
(2021). 

[109] Y.-Q. Jiang, Z.-X. Wang, M. Zhong, L.-J. Shen, X. Han, X. Zou, X.-Y. Liu, Y.- 
N. Deng, Y. Yang, G.-H. Chen, Investigating mechanisms of response or resistance 
to immune checkpoint inhibitors by analyzing cell-cell communications in tumors 
before and after programmed cell death-1 (PD-1) targeted therapy: an integrative 
analysis using single-cell RNA and bulk-RNA sequencing data, Oncoimmunology 
10 (1) (2021) 1908010. 

[110] H.W. Lee, W. Chung, H.-O. Lee, D.E. Jeong, A. Jo, J.E. Lim, J.H. Hong, D.-H. Nam, 
B.C. Jeong, S.H. Park, Single-cell RNA sequencing reveals the tumor 
microenvironment and facilitates strategic choices to circumvent treatment 
failure in a chemorefractory bladder cancer patient, Genome Med. 12 (2020) 
1–21. 

[111] Y. Kieffer, H.R. Hocine, G. Gentric, F. Pelon, C. Bernard, B. Bourachot, 
S. Lameiras, L. Albergante, C. Bonneau, A. Guyard, Single-cell analysis reveals 
fibroblast clusters linked to immunotherapy resistance in cancer, Cancer Discov. 
10 (9) (2020) 1330–1351. 

[112] K.-Y. Ma, A.A. Schonnesen, A. Brock, C. Van Den Berg, S.G. Eckhardt, Z. Liu, 
N. Jiang, Single-cell RNA sequencing of lung adenocarcinoma reveals 
heterogeneity of immune response–related genes, JCI Insight 4 (4) (2019). 

[113] S.A. Hogan, A. Courtier, P.F. Cheng, N.F. Jaberg-Bentele, S.M. Goldinger, 
M. Manuel, S. Perez, N. Plantier, J.-F. Mouret, T.D.L. Nguyen-Kim, Peripheral 
blood TCR repertoire profiling may facilitate patient stratification for 
immunotherapy against melanoma, Cancer Immunol. Res. 7 (1) (2019) 77–85. 

[114] L. Jerby-Arnon, P. Shah, M.S. Cuoco, C. Rodman, M.-J. Su, J.C. Melms, R. Leeson, 
A. Kanodia, S. Mei, J.-R. Lin, A cancer cell program promotes T cell exclusion and 
resistance to checkpoint blockade, Cell 175 (4) (2018) 984–997.e24, 984-997. 
e24. 

[115] Y.-J. Ho, N. Anaparthy, D. Molik, G. Mathew, T. Aicher, A. Patel, J. Hicks, M. 
G. Hammell, Single-cell RNA-seq analysis identifies markers of resistance to 
targeted BRAF inhibitors in melanoma cell populations, Genome Res. 28 (9) 
(2018) 1353–1363. 

[116] W. Deng, Y. Ma, Z. Su, Y. Liu, P. Liang, C. Huang, X. Liu, J. Shao, Y. Zhang, 
K. Zhang, Single-cell RNA-sequencing analyses identify heterogeneity of CD8+ T 
cell subpopulations and novel therapy targets in melanoma, Mol. Ther.-Oncolytics 
20 (2021) 105–118. 

[117] Z. Wang, Y. Rixiati, W. Jiang, C. Ye, C. Huang, C. Tang, Z. Yin, B. Jiao, Single-cell 
RNA sequencing reveals a novel cell type and immunotherapeutic targets in 
papillary thyroid cancer, medRxiv, 2021. 

[118] Y. Wang, Y. Liang, H. Xu, X. Zhang, T. Mao, J. Cui, J. Yao, Y. Wang, F. Jiao, 
X. Xiao, Single-cell analysis of pancreatic ductal adenocarcinoma identifies a 

N. Erfanian et al.                                                                                                                                                                                                                               

http://refhub.elsevier.com/S0753-3322(21)01345-7/sbref62
http://refhub.elsevier.com/S0753-3322(21)01345-7/sbref62
http://refhub.elsevier.com/S0753-3322(21)01345-7/sbref62
http://refhub.elsevier.com/S0753-3322(21)01345-7/sbref63
http://refhub.elsevier.com/S0753-3322(21)01345-7/sbref63
http://refhub.elsevier.com/S0753-3322(21)01345-7/sbref64
http://refhub.elsevier.com/S0753-3322(21)01345-7/sbref64
http://refhub.elsevier.com/S0753-3322(21)01345-7/sbref64
http://refhub.elsevier.com/S0753-3322(21)01345-7/sbref64
http://refhub.elsevier.com/S0753-3322(21)01345-7/sbref65
http://refhub.elsevier.com/S0753-3322(21)01345-7/sbref65
http://refhub.elsevier.com/S0753-3322(21)01345-7/sbref66
http://refhub.elsevier.com/S0753-3322(21)01345-7/sbref66
http://refhub.elsevier.com/S0753-3322(21)01345-7/sbref66
http://refhub.elsevier.com/S0753-3322(21)01345-7/sbref67
http://refhub.elsevier.com/S0753-3322(21)01345-7/sbref67
http://refhub.elsevier.com/S0753-3322(21)01345-7/sbref68
http://refhub.elsevier.com/S0753-3322(21)01345-7/sbref68
http://refhub.elsevier.com/S0753-3322(21)01345-7/sbref68
http://refhub.elsevier.com/S0753-3322(21)01345-7/sbref69
http://refhub.elsevier.com/S0753-3322(21)01345-7/sbref69
http://refhub.elsevier.com/S0753-3322(21)01345-7/sbref70
http://refhub.elsevier.com/S0753-3322(21)01345-7/sbref70
http://refhub.elsevier.com/S0753-3322(21)01345-7/sbref70
http://refhub.elsevier.com/S0753-3322(21)01345-7/sbref71
http://refhub.elsevier.com/S0753-3322(21)01345-7/sbref71
http://refhub.elsevier.com/S0753-3322(21)01345-7/sbref71
http://refhub.elsevier.com/S0753-3322(21)01345-7/sbref72
http://refhub.elsevier.com/S0753-3322(21)01345-7/sbref72
http://refhub.elsevier.com/S0753-3322(21)01345-7/sbref73
http://refhub.elsevier.com/S0753-3322(21)01345-7/sbref73
http://refhub.elsevier.com/S0753-3322(21)01345-7/sbref73
http://refhub.elsevier.com/S0753-3322(21)01345-7/sbref74
http://refhub.elsevier.com/S0753-3322(21)01345-7/sbref74
http://refhub.elsevier.com/S0753-3322(21)01345-7/sbref74
http://refhub.elsevier.com/S0753-3322(21)01345-7/sbref74
http://refhub.elsevier.com/S0753-3322(21)01345-7/sbref75
http://refhub.elsevier.com/S0753-3322(21)01345-7/sbref75
http://refhub.elsevier.com/S0753-3322(21)01345-7/sbref75
http://refhub.elsevier.com/S0753-3322(21)01345-7/sbref75
http://refhub.elsevier.com/S0753-3322(21)01345-7/sbref76
http://refhub.elsevier.com/S0753-3322(21)01345-7/sbref76
http://refhub.elsevier.com/S0753-3322(21)01345-7/sbref76
http://refhub.elsevier.com/S0753-3322(21)01345-7/sbref77
http://refhub.elsevier.com/S0753-3322(21)01345-7/sbref77
http://refhub.elsevier.com/S0753-3322(21)01345-7/sbref77
http://refhub.elsevier.com/S0753-3322(21)01345-7/sbref78
http://refhub.elsevier.com/S0753-3322(21)01345-7/sbref78
http://refhub.elsevier.com/S0753-3322(21)01345-7/sbref78
http://refhub.elsevier.com/S0753-3322(21)01345-7/sbref79
http://refhub.elsevier.com/S0753-3322(21)01345-7/sbref79
http://refhub.elsevier.com/S0753-3322(21)01345-7/sbref79
http://refhub.elsevier.com/S0753-3322(21)01345-7/sbref80
http://refhub.elsevier.com/S0753-3322(21)01345-7/sbref80
http://refhub.elsevier.com/S0753-3322(21)01345-7/sbref81
http://refhub.elsevier.com/S0753-3322(21)01345-7/sbref81
http://refhub.elsevier.com/S0753-3322(21)01345-7/sbref82
http://refhub.elsevier.com/S0753-3322(21)01345-7/sbref82
http://refhub.elsevier.com/S0753-3322(21)01345-7/sbref82
http://refhub.elsevier.com/S0753-3322(21)01345-7/sbref83
http://refhub.elsevier.com/S0753-3322(21)01345-7/sbref83
http://refhub.elsevier.com/S0753-3322(21)01345-7/sbref83
http://refhub.elsevier.com/S0753-3322(21)01345-7/sbref84
http://refhub.elsevier.com/S0753-3322(21)01345-7/sbref84
http://refhub.elsevier.com/S0753-3322(21)01345-7/sbref84
http://refhub.elsevier.com/S0753-3322(21)01345-7/sbref85
http://refhub.elsevier.com/S0753-3322(21)01345-7/sbref85
http://refhub.elsevier.com/S0753-3322(21)01345-7/sbref86
http://refhub.elsevier.com/S0753-3322(21)01345-7/sbref86
http://refhub.elsevier.com/S0753-3322(21)01345-7/sbref86
http://refhub.elsevier.com/S0753-3322(21)01345-7/sbref87
http://refhub.elsevier.com/S0753-3322(21)01345-7/sbref87
http://refhub.elsevier.com/S0753-3322(21)01345-7/sbref87
http://refhub.elsevier.com/S0753-3322(21)01345-7/sbref88
http://refhub.elsevier.com/S0753-3322(21)01345-7/sbref88
http://refhub.elsevier.com/S0753-3322(21)01345-7/sbref88
http://refhub.elsevier.com/S0753-3322(21)01345-7/sbref89
http://refhub.elsevier.com/S0753-3322(21)01345-7/sbref89
http://refhub.elsevier.com/S0753-3322(21)01345-7/sbref90
http://refhub.elsevier.com/S0753-3322(21)01345-7/sbref90
http://refhub.elsevier.com/S0753-3322(21)01345-7/sbref90
http://refhub.elsevier.com/S0753-3322(21)01345-7/sbref91
http://refhub.elsevier.com/S0753-3322(21)01345-7/sbref91
http://refhub.elsevier.com/S0753-3322(21)01345-7/sbref91
http://refhub.elsevier.com/S0753-3322(21)01345-7/sbref91
http://refhub.elsevier.com/S0753-3322(21)01345-7/sbref92
http://refhub.elsevier.com/S0753-3322(21)01345-7/sbref92
http://refhub.elsevier.com/S0753-3322(21)01345-7/sbref92
http://refhub.elsevier.com/S0753-3322(21)01345-7/sbref93
http://refhub.elsevier.com/S0753-3322(21)01345-7/sbref93
http://refhub.elsevier.com/S0753-3322(21)01345-7/sbref93
http://refhub.elsevier.com/S0753-3322(21)01345-7/sbref94
http://refhub.elsevier.com/S0753-3322(21)01345-7/sbref94
http://refhub.elsevier.com/S0753-3322(21)01345-7/sbref94
http://refhub.elsevier.com/S0753-3322(21)01345-7/sbref95
http://refhub.elsevier.com/S0753-3322(21)01345-7/sbref95
http://refhub.elsevier.com/S0753-3322(21)01345-7/sbref96
http://refhub.elsevier.com/S0753-3322(21)01345-7/sbref96
http://refhub.elsevier.com/S0753-3322(21)01345-7/sbref96
http://refhub.elsevier.com/S0753-3322(21)01345-7/sbref97
http://refhub.elsevier.com/S0753-3322(21)01345-7/sbref97
http://refhub.elsevier.com/S0753-3322(21)01345-7/sbref97
http://refhub.elsevier.com/S0753-3322(21)01345-7/sbref98
http://refhub.elsevier.com/S0753-3322(21)01345-7/sbref98
http://refhub.elsevier.com/S0753-3322(21)01345-7/sbref98
http://refhub.elsevier.com/S0753-3322(21)01345-7/sbref98
http://refhub.elsevier.com/S0753-3322(21)01345-7/sbref99
http://refhub.elsevier.com/S0753-3322(21)01345-7/sbref99
http://refhub.elsevier.com/S0753-3322(21)01345-7/sbref99
http://refhub.elsevier.com/S0753-3322(21)01345-7/sbref99
http://refhub.elsevier.com/S0753-3322(21)01345-7/sbref100
http://refhub.elsevier.com/S0753-3322(21)01345-7/sbref100
http://refhub.elsevier.com/S0753-3322(21)01345-7/sbref100
http://refhub.elsevier.com/S0753-3322(21)01345-7/sbref101
http://refhub.elsevier.com/S0753-3322(21)01345-7/sbref101
http://refhub.elsevier.com/S0753-3322(21)01345-7/sbref101
http://refhub.elsevier.com/S0753-3322(21)01345-7/sbref101
http://refhub.elsevier.com/S0753-3322(21)01345-7/sbref102
http://refhub.elsevier.com/S0753-3322(21)01345-7/sbref102
http://refhub.elsevier.com/S0753-3322(21)01345-7/sbref102
http://refhub.elsevier.com/S0753-3322(21)01345-7/sbref102
http://refhub.elsevier.com/S0753-3322(21)01345-7/sbref102
http://refhub.elsevier.com/S0753-3322(21)01345-7/sbref102
http://refhub.elsevier.com/S0753-3322(21)01345-7/sbref103
http://refhub.elsevier.com/S0753-3322(21)01345-7/sbref103
http://refhub.elsevier.com/S0753-3322(21)01345-7/sbref103
http://refhub.elsevier.com/S0753-3322(21)01345-7/sbref103
http://refhub.elsevier.com/S0753-3322(21)01345-7/sbref103
http://refhub.elsevier.com/S0753-3322(21)01345-7/sbref104
http://refhub.elsevier.com/S0753-3322(21)01345-7/sbref104
http://refhub.elsevier.com/S0753-3322(21)01345-7/sbref104
http://refhub.elsevier.com/S0753-3322(21)01345-7/sbref104
http://refhub.elsevier.com/S0753-3322(21)01345-7/sbref105
http://refhub.elsevier.com/S0753-3322(21)01345-7/sbref105
http://refhub.elsevier.com/S0753-3322(21)01345-7/sbref105
http://refhub.elsevier.com/S0753-3322(21)01345-7/sbref106
http://refhub.elsevier.com/S0753-3322(21)01345-7/sbref106
http://refhub.elsevier.com/S0753-3322(21)01345-7/sbref106
http://refhub.elsevier.com/S0753-3322(21)01345-7/sbref106
http://refhub.elsevier.com/S0753-3322(21)01345-7/sbref107
http://refhub.elsevier.com/S0753-3322(21)01345-7/sbref107
http://refhub.elsevier.com/S0753-3322(21)01345-7/sbref107
http://refhub.elsevier.com/S0753-3322(21)01345-7/sbref107
http://refhub.elsevier.com/S0753-3322(21)01345-7/sbref108
http://refhub.elsevier.com/S0753-3322(21)01345-7/sbref108
http://refhub.elsevier.com/S0753-3322(21)01345-7/sbref108
http://refhub.elsevier.com/S0753-3322(21)01345-7/sbref108
http://refhub.elsevier.com/S0753-3322(21)01345-7/sbref109
http://refhub.elsevier.com/S0753-3322(21)01345-7/sbref109
http://refhub.elsevier.com/S0753-3322(21)01345-7/sbref109
http://refhub.elsevier.com/S0753-3322(21)01345-7/sbref109
http://refhub.elsevier.com/S0753-3322(21)01345-7/sbref110
http://refhub.elsevier.com/S0753-3322(21)01345-7/sbref110


Biomedicine & Pharmacotherapy 146 (2022) 112558

13

novel fibroblast subtype associated with poor prognosis but better 
immunotherapy response, Cell Discov. 7 (1) (2021) 1–17. 

[119] G.-Z. Li, K.-N. Zhang, Z. Wang, H.-M. Hu, Z.-L. Wang, R.-Y. Huang, H.-Y. Jiang, 
Y. Zhai, Y.-M. Feng, Y.-H. Chang, Siglecs, novel immunotherapy targets, 
potentially enhance the effectiveness of existing immune checkpoint inhibitors in 
glioma immunotherapy, OncoTargets Ther. 12 (2019) 10263–10273. 

[120] A. Pasetto, Y.-C. Lu, Single-cell TCR and transcriptome analysis: an indispensable 
tool for studying T-cell biology and cancer immunotherapy, Front. Immunol. 12 
(2021) 1972. 

[121] Y.-C. Lu, Z. Zheng, F.J. Lowery, J.J. Gartner, T.D. Prickett, P.F. Robbins, S. 
A. Rosenberg, Direct identification of neoantigen-specific TCRs from tumor 
specimens by high-throughput single-cell sequencing, J. Immunother. Cancer 9 
(7) (2021). 

[122] X. Wang, Y. Chen, Z. Li, B. Huang, L. Xu, J. Lai, Y. Lu, X. Zha, B. Liu, Y. Lan, 
Single-cell RNA-Seq of T cells in B-ALL patients reveals an exhausted subset with 
remarkable heterogeneity, Adv. Sci. 8 (2021) 2101447. 

[123] C. Zheng, L. Zheng, J.-K. Yoo, H. Guo, Y. Zhang, X. Guo, B. Kang, R. Hu, J. 
Y. Huang, Q. Zhang, Landscape of infiltrating T cells in liver cancer revealed by 
single-cell sequencing, Cell 169 (7) (2017) 1342–1356, 1342-1356. e16. 

[124] S. Ding, X. Chen, K. Shen, Single-cell RNA sequencing in breast cancer: 
understanding tumor heterogeneity and paving roads to individualized therapy, 
Cancer Commun. 40 (8) (2020) 329–344. 

[125] C. Weber, Single-cell spatial transcriptomics, Nat. Cell Biol. 23 (11) (2021) 1108, 
1108-1108. 

[126] Y. Zhou, E. Jia, M. Pan, X. Zhao, Q. Ge, Encoding method of single-cell spatial 
transcriptomics sequencing, Int. J. Biol. Sci. 16 (14) (2020) 2663–2674. 

N. Erfanian et al.                                                                                                                                                                                                                               

http://refhub.elsevier.com/S0753-3322(21)01345-7/sbref110
http://refhub.elsevier.com/S0753-3322(21)01345-7/sbref110
http://refhub.elsevier.com/S0753-3322(21)01345-7/sbref111
http://refhub.elsevier.com/S0753-3322(21)01345-7/sbref111
http://refhub.elsevier.com/S0753-3322(21)01345-7/sbref111
http://refhub.elsevier.com/S0753-3322(21)01345-7/sbref111
http://refhub.elsevier.com/S0753-3322(21)01345-7/sbref112
http://refhub.elsevier.com/S0753-3322(21)01345-7/sbref112
http://refhub.elsevier.com/S0753-3322(21)01345-7/sbref112
http://refhub.elsevier.com/S0753-3322(21)01345-7/sbref113
http://refhub.elsevier.com/S0753-3322(21)01345-7/sbref113
http://refhub.elsevier.com/S0753-3322(21)01345-7/sbref113
http://refhub.elsevier.com/S0753-3322(21)01345-7/sbref113
http://refhub.elsevier.com/S0753-3322(21)01345-7/sbref114
http://refhub.elsevier.com/S0753-3322(21)01345-7/sbref114
http://refhub.elsevier.com/S0753-3322(21)01345-7/sbref114
http://refhub.elsevier.com/S0753-3322(21)01345-7/sbref115
http://refhub.elsevier.com/S0753-3322(21)01345-7/sbref115
http://refhub.elsevier.com/S0753-3322(21)01345-7/sbref115
http://refhub.elsevier.com/S0753-3322(21)01345-7/sbref116
http://refhub.elsevier.com/S0753-3322(21)01345-7/sbref116
http://refhub.elsevier.com/S0753-3322(21)01345-7/sbref116
http://refhub.elsevier.com/S0753-3322(21)01345-7/sbref117
http://refhub.elsevier.com/S0753-3322(21)01345-7/sbref117
http://refhub.elsevier.com/S0753-3322(21)01345-7/sbref118
http://refhub.elsevier.com/S0753-3322(21)01345-7/sbref118

	Immunotherapy of cancer in single-cell RNA sequencing era: A precision medicine perspective
	1 Introduction
	2 Strategies for cancer immunotherapy
	2.1 Monoclonal antibodies
	2.2 Immune checkpoint inhibitors
	2.3 Cytokines
	2.4 Cancer vaccines
	2.5 Cell-based immunotherapy

	3 ScRNA-seq technologies
	3.1 Tissue dissociation and single-cell suspension
	3.2 ScRNA-seq platforms
	3.3 ScRNA-seq downstream data analysis
	3.3.1 Cell-cell communication
	3.3.2 Lineage reconstruction
	3.3.3 Intercellular communication


	4 ScRNA-seq applications in cancer immunotherapy
	4.1 Determining the dominant drivers of cancer immunity
	4.2 Pathways targeted through immunotherapy
	4.3 Molecular mechanisms of immunotherapy resistance
	4.4 Finding novel immunotherapy targets

	5 Single-cell TCR sequencing
	6 Challenges and future perspective
	7 Conclusions
	Funding
	CRediT authorship contribution statement
	Conflict of interest statement
	Data Availability Statement
	References


