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Simple Summary: The CSN1S1 gene encodes for one of the primary milk proteins in goats. Its
polymorphism strongly affects αs1-casein levels and plays a crucial role in determining both milk
quality and quantity. The study aimed to evaluate whether a different energy intake level (70%,
100% and 150% of the total requirements indicated by INRA) could unveil any interactions with
the genotype at the αs1-casein gene with respect to milk yield and casein profile. The results
demonstrated that the higher energy input, along with the presence of the strong allele at the
CSN1S1 locus, improved milk production and casein concentrations, highlighting the existence of an
interaction between αs1-casein polymorphisms and diet on the dairy performance of goats.

Abstract: A total of twenty-seven Rossa Mediterranea lactating goats, consisting of nine homozygous
for strong alleles (AA), twelve heterozygous (AF) and six homozygous for weak alleles (FF) at the
CSN1S1 locus, were used to evaluate the effect of genotype, diet and genotype × diet interaction on
goat milk traits and casein profile. The goats were used in a 3 × 3 factorial arrangement of treatments,
with three genotypes (AA, AF and FF) and three different energy intake levels: high (H), medium (M)
and low (L). The diets supplied a complete pelleted feed containing 65% of alfalfa hay, respectively,
at 150%, 100% and 70% of the total energy requirements. Milk yield was significantly affected by the
genotype and diet: Lower levels were found in FF goats than in AA and AF genotypes (673.7 vs. 934.5
and 879.8 d/g, respectively; p = 0.002) as well as in goats fed with the L diet (651.5 vs. 1041 and
852.9 g/d for H and M diet, respectively, p < 0.001). The genotype influenced the casein profile.
Specifically, AA goat milk exhibited higher concentrations of total casein and αs1-casein compared
to AF and FF genotypes (for total casein and αs1-casein, respectively: 24.9 vs. 20.4 and 19.8 g/kg,
p = 0.001; 7.2 vs. 3.7 and 0.7 g/kg, p < 0.001), while the FF genotype showed higher values for
αs2-casein concentrations compared to homozygous AA and heterozygous AF goats (3.1 vs. 2.4 and
2.5 g/kg, respectively, p < 0.001). A significant genotype x diet interaction occurred for αs2-casein
levels (g/kg) (p = 0.034) and αs1-casein yields (p = 0.027): The αs2-casein level was not affected by
the diet in AA goats, whereas it increased with energy intake in AF and FF genotypes. Conversely,
the αs1-casein yield gradually increased with energy intake in AA and AF groups, whereas the diet in
FF goats did not modify it. The results demonstrated that high energy input, as well as the strong
allele at the CSN1S1 locus, enhanced milk production and casein concentrations. Furthermore, they
confirmed the existence of an interaction between αs1-casein polymorphism and diets, influencing
the milk casein composition and yield.
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1. Introduction

The CSN1S1 gene is responsible for encoding one of the primary milk proteins in goats
and plays a crucial role in determining milk quality. Genetic polymorphism in this gene
can have a significant impact on milk-related traits, including milk yield, composition, fat
concentration, fatty acid composition and clotting properties [1–5]. Eighteen alleles of the
CSN1S1 gene have been identified in goats and are categorized according to their effects
on αs1-casein synthesis in milk. Strong alleles (A, A3, B1, B2, B3, B4, C, H, L and M) each
produce 3.6 g/L of αs1-casein; intermediate alleles (E and I) produce 1.1–1.6 g/L; weak
alleles (F, D and G) produce 0.45–0.6 g/L; null alleles (01, 02 and N) are associated with
the absence of αs1-casein in milk. There are different frequencies of CSN1S1 alleles among
Italian goat breeds. A, E and F alleles are the most common in northern Italian breeds, while
strong and F alleles prevail in the autochthonous goat population in Southern Italy, whereas
the most abundant CSN1S1 allele observed in Sarda goats is B. Conversely, C, H, N and 01
alleles have a low frequency in Italian goat breeds [6]. In the Mediterranean environment,
variations in feeding levels are common in extensive goat breeding systems due to the
variability in the availability of forage resources linked to climate change. Such variations
in nutrient availability have significant effects on the conversion efficiency of the diet into
milk. Furthermore, the feeding level can also impact the qualitative characteristics of milk
due to changes in the regulation of the expression of genes involved in milk component
synthesis. However, the effect of feed restriction is not unique because it probably depends
on its duration and intensity or the lactation stage in which it occurs, as highlighted
in a bibliographic review by Leduc et al. [7]. Few studies have been conducted on the
interference of the diet on milk yield or qualitative characteristics of milk based on the αs1-
casein genotype. The effects of diet energy levels [1], fresh forage [2], extruded linseed [8]
and dietary protein content [9] were investigated in goats that are genetically predisposed
to produce more (strong) or less (weak) αs1-casein, demonstrating significant effects of the
interaction between diet and the αs1-casein genotype on some milk traits. In a previous
study. Pagano et al. [1] fed ad libitum Girgentana goats using diets with different energy
contents (modulating the hay content in the diet from 35 to 100%) and observed that the
higher energy input improved the efficiency of the diet-to-milk transformation and casein
yields in AA goats. In contrast, it did not exert noticeable effects in FF goats. However,
in those experimental conditions, extremely high intake was recorded for the three diets,
resulting in very high energy inputs even when the diet consisted of 100% hay. Therefore,
the objective of the present experiment was to evaluate whether different energy intake
levels (70%, 100% and 150% of the total requirements indicated by INRA) [10] could unveil
any interactions with the αs1-casein genotype with respect to milk traits and casein profiles.

2. Materials and Methods

The trial was carried out in the CRA-ZOE farm (Research Unit for Extensive Zootech-
nics, Via Appia, Bella Scalo 85054—Muro Lucano) located at 360 m a.s.l. (40◦21′ N; 15◦30′ E).

Twenty-seven multiparous Rossa Mediterranea goats, homogeneous in terms of days
of lactation (49 ± 5 d), were used in the study. At the beginning of the test, the animals had
a body weight of 49.1 ± 1.2 kg and milk production of 1.3 ± 0.3 kg/d. The subjects were
selected from a large herd based on their genotype at the CSN1S1 locus:

• Group AA: 9 goats homozygous for strong alleles at the αs1-casein locus;
• Group AF: 12 goats heterozygous for alleles at the αs1-casein locus;
• Group FF: 6 goats homozygous for weak alleles at the αs1-casein locus.

All goats used in the experimental trial were characterized by CSN1S2A and CSN2A al-
leles associated with normal amounts of αs2-casein and β-casein contents, respectively. Goat
DNA was obtained from hair bulbs following the method described by Bowling et al. [11].
The animals’ genotypes were determined using PCR methodology, as suggested by Jansà
Pérez et al. [12], Ramunno et al. [13], Ramunno et al. [14] and Cosenza et al. [15].
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2.1. Feeding Treatment

All animals were housed individually in single pens and subjected to three feeding
treatments. The diet provided for the goats consisted of a single pelleted feed with a
diameter of 6 mm and contained 150 g of mixed-hay dry matter. The constituent ingredients
of the pellet and its chemical composition are detailed in Table 1.

Table 1. Diet components and chemical composition.

Ingredients % As Fed

Pelleted alfalfa hay 65.0
Maize grain 15.8
Barley grain 8.2

Soybean meal 3.0
Carob pulp 3.0

Maize gluten meal 3.0
Vitamin and mineral premix 2.0

Chemical Composition

Dry matter (DM) % 85.7
Crude protein % DM 15.2

Crude fiber % DM 23.1
Neutral detergent insoluble (NDF) % DM 44.5

Ether extract % DM 2.6
Ash % DM 10.6
NFC % DM 27.1

Starch % DM 19.6
UFL 0.82

The three feeding treatments were as follows:

• H diet: Characterized by an energy intake equal to 150% of energy requirements;
• M diet: Characterized by an energy intake equal to 100% of energy requirements;
• L diet: Characterized by an energy intake equal to 70% of energy requirements.

The energy requirements were calculated according to the INRA System [10], and they
were determined as follows:

− Net energy requirements for maintenance (UFL/d) = 0.01 × live weight (kg) + 0.19;
− Net energy requirement for milk production (UFL/d) = milk yield normalized at 3.5%

of fat, kg/d × [0.4 + 0.0075 × (fat, g/kg − 35)].

The animals were divided into 3 blocks consisting of 3 AA, 4 AF and 2 FF goats.
Following a 3 × 3 Latin square scheme, the goats received the three different diets (H,
M and L) in succession in three phases (1, 2 and 3). Each phase consisted of 10 days of
adaptation to the scheduled feeding treatment and an 8-day experimental period in which
sample measurements were performed. The individual feeding intake was envisaged
by weighing the provided feed and measuring the amount refused. Nevertheless, all
administered feed was always consumed by the animals. The experiment lasted for a total
of 54 days.

2.2. Milk Production and Samples Collection

Individual milk production and milk samples were collected from morning and
evening milking at d 5 and 8 of each 8 d collection period. Then, proportional volumes
between the milk amount recorded at the respective times of morning and evening milking
were pooled to obtain the individual final samples intended for analyses. The collected
milk samples were stored at 4 ◦C until chemical analysis was conducted.
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2.3. Milk Analysis

Milk samples were analyzed for lactose, fat, protein and urea by using an infrared
method (Combi-foss 6000, Foss Electric, Hillerød, Denmark).

2.4. Capillary Zone Electrophoresis (CZE)

A Beckman P/ACEMDQ Capillary Electrophoresis system controlled by 32 Karat
Software, version 8.0 (Beckman Instruments, Fullerton, CA, USA), and equipped with
a UV detector set at 214 nm was used in this study. Separations were carried out us-
ing an uncoated fused silica capillary (57 cm length, 50 m i.d., 375 m OD slit opening
100 × 800 m; Beckman Instruments, Fullerton, CA, USA). Sample solutions were injected
for 20 s at 0.5 psi. Electrophoresis runs were carried out at 45 ◦C with a linear voltage
gradient from 0 to 25 kV in 3 min, followed by a constant voltage at 25 kV. Buffers for CZE
analyses were prepared according to Heck et al. [16]. The sample buffer (pH 8.6 ± 0.1)
comprised 167 mM hydroxymethyl-aminomethane (TRIS—BIO-RAD, Hercules, CA, USA),
42 mM 3-morpholinopropane sulphonic acid (MOPS—SIGMA, Burlington, MA, USA),
67 mM ethylenediamine–tetraacetic acid disodium salt dihydrate (EDTA—SIGMA), 17 mM
D-Ldithiothreitol (DTT—BIO-RAD), 6 M urea (BIO-RAD) and 0.05% (w/w) hydroxypropyl
methylcellulose (HPMC—SIGMA). The running buffer (pH 3.0 ± 0.1) comprised 0.19 M
citric acid (CARLO ERBA, Milan, Italy), 20 mM sodium citrate (CARLO ERBA), 6 M urea
and 0.05% (w/w) HPMC. Individual samples were prepared by mixing individual milk and
sample buffers (1:1.5); after 1 h at room temperature in the dark, samples were centrifuged
at 5000× g for 5 min, and the top fat layer was removed. Samples were analyzed without
further preparation. The caseins were identified by reference to the literature [17–20]. Since
CZE peak areas are inversely correlated with migration velocity, the relative concentration
of individual proteins was determined based on the corrected area using Equation (1), as
reported by Heck et al. [16]:

Cx =
Ax/tx

∑n
i=1(Ai/ti )

∗ 100% (1)

where Cx is the relative concentration, Ax is the area in the electropherogram, tx is the
migration time of protein x and n is the total number of peaks that together comprise
100% of the area. The quantities of individual caseins were calculated from the total casein
amount, as reported by Valenti et al. [21].

2.5. Statistical Analysis

Individual milk yield and composition data were analyzed using the GLM procedure
for repeated measures (SPSS for Windows, Inc., Chicago, IL, USA). The model included
the αs1-casein genotype, energy intake levels, blocks, periods, and αs1-casein genotype
x energy intake levels. Pre-experimental milk production and composition were used as
covariates for milk production and gross composition, respectively. When the covariate
was not significant, it was removed from the model. Individual data for casein profile
and body weight were analyzed using the GLM univariate procedure (SPSS for Windows,
Inc., Chicago, IL, USA), and analyses included the main effect of the αs1-casein genotype,
energy intake levels, blocks and genotype × diet interactions. Differences between means
were tested using least significant differences (LSDs).

3. Results

Table 2 reports milk yield and the gross composition of milk. Milk yield was signifi-
cantly affected by the genotype and energy intake; mean daily production was significantly
lower in FF compared to AF and AA goats and increased linearly with increasing energy lev-
els. Fat and protein were significantly higher, and lactose was lower in AA goats compared
to the other genotypes. Increasing energy levels significantly reduced the fat percentage
but did not influence protein or lactose levels. No treatment effects were evident for urea.
For each parameter, no interaction between these genotypes and diet was evident.
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Table 2. Milk yield and gross composition of milk.

CSN1S1 Genotype
(G)

Energy Intake Level
(E)

Significance
(p) SEM

AA AF FF L M H G E G × E

Milk yield g/d 879.8 b 934.5 b 673.6 a 651.5 a 852.9 b 1041.0 c 0.002 <0.001 0.547 34.0
Fat % 5.24 b 4.16 a 3.80 a 5.68 c 4.30 b 3.61 a <0.001 <0.001 0.590 0.14

Protein % 4.77 b 3.92 a 4.08 a 4.43 4.29 4.14 <0.001 0.975 0.974 0.07
Lactose % 4.38 a 4.62 b 4.65 b 4.49 4.50 4.62 0.010 0.695 0.968 0.03

Urea mg/dL 481.6 502.6 517.7 481.1 510.3 503.2 0.311 0.992 0.650 8.78
Live weight kg 40.8 a 39.4 a 44.1 b 39.3 41.7 42.3 0.017 0.114 0.982 0.51

Body condition score (BCS) 2.49 2.67 2.70 2.60 2.63 2.60 0.141 0.993 0.995 0.03
Milk efficiency 1 1.53 a 1.42 a 1.96 b 1.35 a 1.54 a 1.90 b <0.001 <0.001 0.408 0.05

1 UFL intake/kg latte. a,b,c Values within a row without a common superscript letter are significantly different
(p < 0.05).

In Table 3, the casein profile and yield are reported. The total casein level (g/kg) was
higher in AA compared to the other genetic groups, whereas no difference was evident
between AF and FF goats. The αs1-casein linearly decreased from strong homozygous
to weak homozygous goats. A significant opposite trend was evident for αs2-casein,
increasing from AA to FF. β-casein and k-casein were not affected by the genotype. The
effect of the energy level was evident only for α-s2 casein, which was significantly lower in
the L diet compared to M and H diets.

Table 3. Caseins profile and yield.

CSN1S1 Genotype
(G)

Energy Intake Level
(E)

Significance
(p) SEM

AA AF FF L M H G E G × E

Caseins profile g/kg milk
Total casein 24.9 b 20.4 a 19.8 a 21.2 22.3 21.4 0.001 0.523 0.260 0.54
αs1-casein 7.22 c 3.70 b 0.67 a 4.36 3.83 3.74 <0.001 0.873 0.910 0.32
αs2-casein 2.38 a 2.55 b 3.14 c 2.48 a 2.77 b 2.74 b <0.001 0.023 0.034 0.05
β-casein 12.7 11.8 13.4 12.1 13.1 12.4 0.052 0.511 0.090 0.29
k-casein 2.53 2.29 2.59 2.31 2.61 2.45 0.164 0.285 0.421 0.06

Casein yield g/d
Total casein 20.9 c 19.4 b 13.3 a 13.8 a 18.4 b 23.0 c 0.001 0.001 0.411 0.97
αs1-casein 6.09 c 3.50 b 0.46 a 2.82 a 3.31 a 4.45 b <0.001 0.006 0.027 0.36
αs2-casein 2.06 2.44 2.12 1.63 a 2.30 b 2.86 c 0.072 0.002 0.806 0.10
β-casein 10.6 b 11.3 b 8.94 a 7.88 a 10.7 b 13.1 c 0.046 0.004 0.553 0.51
k-casein 2.16 b 2.15 b 1.74 a 1.51 a 2.12 b 2.58 c 0.033 0.001 0.475 0.10

a,b,c Values within a row without a common superscript letter are significantly different (p < 0.05).

Regarding casein yields (g/d), the total casein and αs1-casein decreased from AA to
FF goats. B-casein and k-casein were lower in the FF group, whereas no differences were
observed between AA and AF genotypes. The casein yield was also affected by feeding:
Total caseins, αs2-casein, β-casein and k-casein regularly increased from the L to H diet.
αs1-casein was significantly higher in the H group, whereas no difference was observed
between L and M diets.

A significant genotype x diet interaction was found for αs2-casein levels (g/kg) and
αs1-casein yields (g/d) (Figure 1). The αs2-casein level was not affected by diet in AA goats,
whereas it increased with energy intake level in AF and FF genotypes. On the contrary,
the αs1-casein yield gradually increased as energy input increased in AA and AF groups,
whereas it was not modified by the diet in FF goats.
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Figure 1. Interaction between the CSN1S1 genotype (AA, AF and FF) and diet (L, M and H) for the
αs2-casein level (A) and αs1-casein yield (B). Values within genotypes with different superscript
letters are significantly different (p < 0.05).

4. Discussion

The pelleted diets individually offered to the animals (1.04, 1.49 and 2.23 kg DM/d,
respectively for L, M and H diets) and the hay were always entirely consumed; therefore,
the energy input coincided with the expected input, equal to 70%, 100% and 150% of
total needs. Including 65% pelleted hay ensured an adequate supply of neutral deter-
gent insoluble (NDF). The goats showed no clinical signs of metabolic disorders during
the trial. On average, milk yield was lower in the weak αs1-casein genotype. Similar
results were previously found in Girgentana goats [1,5,22], whereas opposite results were
found by Chilliard et al. [8] in Alpine goats. Fat and protein were higher in AA goats,
whereas lactose was lower. No parameter showed significant differences between AF
and FF goats. As expected, the protein content was positively associated with the higher
capability of αs1-casein synthesis in goats with strong alleles. Higher levels of fat in goats
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carrying strong alleles were reported in previous studies [1,8,9,23]. In a previous research
study, Ollier et al. [24] suggested a downregulation of the expression of genes involved in
milk fat synthesis in goats with weak alleles at the CSN1S1 locus, which could partially
explain our results. Milk urea was not affected by the genotype. In a previous paper,
Avondo et al. [5,22] found lower urea contents in milk from goats carrying strong alleles
at the αs1 locus, highlighting this expected result. The concentration of urea in milk is
related to the degree of the efficiency of utilization of the dietary protein by rumen mi-
croorganisms due to the dietary energy-to-protein ratio. Usually, milk urea increases as
the energy-to-protein ratio of the diet decreases. It should be underlined that in the cited
studies, animals were fed diets containing proteins exhibiting different degradability [5] or
freely selected diets containing different protein levels and degradability [22]. Conversely,
in the present paper, the animals always received the same pelleted feed with a constant
energy-to-protein ratio and protein quality across different feeding treatments. This could
explain the lack of differences between groups in our experimental conditions.

As expected, with varying energy intake, milk yield increased, and fat decreased (due
to a dilution effect), whereas no effects of the diet on protein, lactose, or urea were evident.

Live weight was significantly higher in FF compared to AF and AA goats. It is likely
that lower production in FF goats resulted in fattening, suggesting that energy input in
this genotype was channeled relative to the accumulation of fat reserves rather than milk
production. Indeed, the energy conversion efficiency into milk was significantly worse
in this genetic group compared to AF and AA. Nevertheless, body condition score (BCS)
values did not show substantial differences between genotypes. The feed restriction at 70%
of energy requirements (L diet) resulted in a corresponding drop in production equal to
76% compared to the 100% diet, while the increased energy intake to 150% of the basic
diet (diet H) resulted in an increase in milk production by only 122%. These results were
confirmed by the significant worsening of the energy transformation efficiency in milk
with the highest energy input. No interaction effect between the experimental factors was
reported for milk yield and gross composition. The higher milk production, reported by
Bonanno et al. [3] and Pagano et al. [13] for Girgentana goats with the strong genotype and
that were fed with high-energy diets, was not found in our experimental conditions. It
could be hypothesized that the Rossa Mediterranea breed may have responded differently
to variations in energy intake compared to the Girgentana breed used in previous studies. A
different response between breeds to feed restriction was recently observed in other species.
In a recent study that aimed to investigate the effects of feed restriction on mammary
miRNAs and coding gene expression in mid-lactation cows, feed restriction modified
the expression of 27 miRNAs and 374 mRNAs in mammary glands from Holstein cows,
whereas no significant miRNA change was observed in Montbeliarde cows [25].

Regarding the casein profile, all goats used in the trial were characterized by CSN1S2A

CSN2A alleles, which are associated with normal levels of αs2-casein and β-casein content.
Furthermore, it should be noted that the tested population was monomorphic at the k-
casein locus, as already observed by Albenzio et al. [26] in Garganica goats. Therefore,
assuming that other conditions are equal, the difference in αs1-casein levels observed
between genotypes was coherent with the capability of casein synthesis for the A and F
alleles, and these are indicated as equal to 3.6 and 0.45 g/L [27]. As2-casein, although
monomorphic in our experimental test, showed a gradual increase from the CSN1S1 AA

to the CSN1S1 FF group, thus highlighting an opposite trend compared to αs1-casein. The
hypothesis that αs1-casein in FF goats could be partially compensated by the synthesis
of other caseins has already been advanced by Valenti et al. [21]. However, despite the
trend of αs2-casein, the total casein gradually increased from the FF genotype to the AA
genotype. Beyond the results between genetic groups, it should be noted that significant
correlations were found between casein fractions. In particular, αs2-casein was negatively
correlated with αs1-casein (r = 0.36) and positively correlated with β-casein and k-casein
(r = 0.68 and 0.53, respectively). On the contrary, Song et al. [28] found that CSN1S1
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overexpression markedly downregulated β-casein expression but had no significant effect
on the expression level of αs2-casein and κ-casein.

Casein yields, of course, were associated with the daily milk yield, thus resulting in
gradual and significant reductions in total casein and αs1-casein production from the AA
genotype to the FF genotype, and it was significantly lower in FF goats compared to AA and
AF goats for β-casein and k-casein. The production of αs2, having shown an opposite trend
relative to αs1 in the casein profile, compensated for the differences in milk production
between genotypes, making its production non-significantly affected by genotypes.

The energy input only significantly modified the levels of αs2-casein, which were
significantly lower in the L diet than in the M and H diets but strongly reduced all casein
yields as the energy level decreased. Ollier et al. [29], by studying the impact of 48 h food
deprivation on goat mammary gene expression, found a downregulation for αs1 and αs2
precursors. Tsiplakou et al. [30], who investigated the impact of long-term underfeeding
and overfeeding on the expression of six major milk protein genes (αs1-casein, αs2-casein, β-
casein, κ-casein, α-lactalbumin and β-lactoglobulin) in the mammary goat tissue, observed
that underfeeding led to a decrease in the expression level of all genes, suggesting that our
experimental L diet could negatively impact milk protein synthesis.

A significant interaction genotype x diet was found for αs2-casein levels and αs1-
casein yields, which showed different sensitivity to the energy intake level in different
genotypes: αs2-casein levels gradually increased as a function of the energy input only in
AF and FF genotypes. In contrast, αs1-casein yields gradually increased from group L to
group H only in AF and AA genotypes. Both results substantially confirm previous findings
reported by Valenti et al. [21] in Girgentana goats fed ad libitum with diets at different
energy content. In particular, the maximum difference in αs1-casein synthesis between
strong and weak genotypes, equal to 8.18 g/d, occurred when the animals received the
highest energy level. Conversely, the lowest difference (4.13 g/d) was reached when they
were fed the lowest energy level. Schmidely et al. [31] found that the difference in milk
protein content between AA and FF goats was higher when the balance was positive. The
authors suggested that the maximal difference between the two genetic variants was related
to the energy status of the goat. In those experimental conditions, the effect of the genotype
on milk production was not evidenced. In our conditions, the interaction between the
genotype and the αs1-casein yield was not evident in the concentration of αs1-casein in
milk (g/kg), and this is likely due to a dilution effect caused by varying milk production,
masking the interactions’ impact.

5. Conclusions

In the presence of the strong allele at the CSN1S1 locus, the milk yield and percentages
of fat, protein and αs1-casein were higher, whereas the αs2-casein percentage was lower.
The hypothesis that a different energy intake level could interfere with milk traits and
the casein profile of goats with different CSN1S1 genotypes was partially confirmed. The
results demonstrated that the αs1-casein yield increased with energy input in goats carrying
the strong allele, whereas no difference was evident in homozygous goats carrying the
weak allele. This confirms the existence of an interaction between CSN1S1 polymorphism
and the diet, which influences milk casein composition and yield. These results suggest the
possibility of adapting the diet to the genotype in order to improve its transformation effi-
ciency.
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