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ABSTRACT 

This thesis is devoted to the modelling, design and implementation of systems that can be 

integrated into magnetic fusion plant controllers. These systems, usually referred to as control 

and data acquisition systems, supply the interface to all the instrumentation required for the 

nuclear fusion plant. At an extremely high level of description, control and data acquisition 

systems can be divided into two main subsystems: plasma control and integrated control 

systems. The plasma control system (PCS) controls the fusion reactor runtime operation, it runs 

on heavily customised hardware platforms real-time, high frequency, data acquisition and 

control loops. The integrated control system (ICS), instead, controls the auxiliary plants like 

electric distributors, water, and cryogenic cooling pumps, running on off-the-shelf hardware 

(PLC/PAC/PXI).  

The presented work result falls under the PCS subsystem categorisation and follows a path 

starting with the study of the model for the vertical stabilisation of the plasma position, with an 

insight on the RFX experiment. The study also evaluated the possibility to implement a circuital 

analogous of the plasma model, to enable the rapid development and validation of real-time 

control strategies using hardware-in-the-loop (HIL) and software-in-the-loop (SIL) platforms.  

The second part of the thesis will present the contribution to the development of MARTe2, a 

framework deployed in several fusion real-time control systems PCS. The contribution was 

aimed (1) at the integration of the MARTe2 framework with ICS field peripherals 

(PROFINET®) and (2) at the porting of the framework on ARM-based platform, both as CPU 

(Central Processing Unit) and MCU (Micro Controller Unit).  

Purpose of the porting is to bring the standardisation, modularity and reusability offered by the 

MARTe2 framework on devices able to directly work with the field, which would otherwise 

require ad-hoc firmware solutions and approaches.  

The PROFINET® component, as part of the MARTe2 components suite, adds several 

opportunities related to the interaction of the framework with the ICS field, which will be 

discussed thoroughly in the designated chapter.  

While the ARM porting of the MARTe2 framework will be employed as part of the magnetic 

sensor diagnostic system, the PROFINET® component will serve the electron cyclotron 

resonance heating (ECRH) factory acceptance testing (FAT) tools suite. Aside main research 



and development activities, several side quests enrich the contribution given to one of the 

International Thermonuclear Experimental Reactor – ITER software frameworks, contributing 

to the development of real-time diagnostics of the PCS subsystem. 
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CHAPTER 1. INTRODUCTION 

Development in the nuclear fusion field is one of the most challenging tasks nowadays. From 

the research point-of-view, nuclear fusion covers an extremely wide area, ranging in every field, 

from plasma physics, control engineering, computer science, landing to socio-economic and 

cultural impact of the availability of an unlimited power source. In this chapter a quick overview 

on the fusion and on the currently running experiments will be given. Afterwards the context 

of this work will be examined, to have a better understanding of the topics that will be debated. 

The last part of the chapter will present a summary of the activities that will be discussed in the 

operational core of the thesis work. Information on this introductory chapter will be organised 

as a flow which will naturally lead to the core chapters of the thesis with the necessary 

knowledge to deal with the presented contents. 

1.1 CHAPTER KEY POINTS 

- The energy powering the stars, as the Sun, comes from the fusion of hydrogen atoms 

together to form helium. Gravitational forces on the stars create the ideal conditions 

from fusion, on Earth, instead, the ideal condition must be recreated by confining the 

fuel inside a reaction vessel. 

- Current readily feasible reaction is the fusion of Deuterium and Tritium isotopes of the 

Hydrogen. Fusion technologies operate the confinement of the plasma to obtain its 

ignition.  

- Several approaches are pursued in control systems to contain the plasma, recreating the 

temperature, density and confinement conditions needed to obtain the ignition. 

- Magnetic confinement inside toroidal-shaped vessels is one of the most common 

approaches. The ITER project vessel will be the largest operating reactor in the world 

with this configuration. Inertial confinement is another approach, which relies on a 

different principle. 

- Mathematical models, supported by heavy field experimentations, help understanding, 

predicting, and formulating strategies to control the plasma behaviour on the fusion 

reactor. 
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- Fusion reaction and all the auxiliary components in the plant are controlled by a complex 

network of systems which run a combination of off-the-shelf and custom hardware and 

software solutions.  

- MARTe2, a software framework used in some systems that belong to the ITER plasma 

control system (PCS), is used in many fusion experiments around the world. Its layered 

and modular architecture create a standardised approach to the solution of many 

common real-time control systems problems. 

- Main contribution of the thesis work is related to the MARTe2 software framework and 

to its component’s suite development. A model driven approach, called circuital 

analogous technique is also explored, to model, simulate and control a specific aspect 

of the plasma behaviour. 

1.2 BACKGROUND: NUCLEAR FUSION 

The following introductive chapters outline the context where the research and development 

work are located. Their main purpose is to introduce the reader to the themes, terms, problems, 

and solutions commonly used in the nuclear fusion field. As many technical solutions are 

available in the field, only relevant to the discussion are treated, in order to keep this 

introduction as lean as possible. Moreover, as the work is extremely specific, it also serves to 

the reader to locate the scopes and circumscribe the operational field of the presented solutions.  

Nuclear fusion starts by bringing together two light elements so that they can fuse and form a 

heavier element. The resulting element will have a slightly lower mass than the sum of the 

starting two, the mass difference results in the release of energy. The released kinetic energy of 

the product elements is then trapped to be used for power generation. The most practical fusion 

reaction for power generation is the Deuterium-Tritium reaction (D + T), due to the lower 

energy requirements.  

To accomplish the fusion, particles must overcome the electric repulsion barrier. Beyond the 

repulsion barrier, called Coulomb Barrier, the particles will be close enough for the strong 

nuclear force to act. Three parameters: (1) temperature, (2) density and (3) confinement time, 

often referred to as triple product represents a useful figure of merit to threshold the ignition 

conditions for the plasma. Once the ignition condition is reached, the fusion reaction becomes 

self-sustaining and external heating sources can be de-activated. Parameters of the triple 

product are strictly interconnected among them. 
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To obtain the required temperature, plasma in the reactor must be heated. Initial heating is 

obtained by ohmic heating, which is an effect that can be assimilated to the heating process that 

heats up a wire where current is flowing. Ohmic heating is commonly used in the plasma pre-

heating, as it does not allow the plasma to reach the required temperature for the fusion. In fact, 

as plasma temperature arises, the collision frequency and the resistivity both decrease Due to 

the described effect, Ohmic heating allows only the plasma to reach temperatures up to a few 

keV, of the around 15 keV needed. To reach the needed temperatures, two main methods are 

available: the first technique is based on injecting a beam of high-energy neutral particles to the 

plasma (Neutral Beam Injection – NBI), the second one is based on the radiofrequency 

irradiation (RF). Radiofrequency irradiation is obtained injecting waves with frequencies 

resonating with the natural plasma frequencies into the plasma vessel, some techniques used 

are the electron cyclotron (ECRH) and ion cyclotron resonance heating (ICRH). 

In the heated plasma, the high kinetic energy would render collisions extremely unlikely. To 

bring the plasma to the ideal density and have it circulating in the reaction vessel, a system 

based on vessel-positioned electromagnets, driven by a complex control system, controls 

plasma position and thus the density. Also, density must be carefully controlled: if it goes over 

the optimal range, collisions happen between nuclei and electrons, creating large amount of 

radiation, called bremsstrahlung, which impairs fusion taking away energy from the plasma. 

The third parameter, confinement time (often denoted with the Greek letter τ - tau), denotes the 

time duration during which newly created Helium atoms are confined within the plasma, 

allowing them to transfer their energy to the unburnt fuel and keep the ignition condition. 

The ignited plasma must be confined into the reactor vessel, also keeping it away from the 

surrounding walls. The two main approaches to achieve the confinement are (1) magnetic and 

(2) inertial. 

Magnetic confinement relies on the electromagnetic properties of the plasma, controlling it 

through interaction with magnetic fields. The objective is to restrict the motion of the plasma 

particles across the magnetic field lines of force, conversely allowing it to move freely along 

them. The most efficient vessel configuration to achieve the magnetic confinement is the 

tokamak (тороидальная камера с магнитными катушками – toroidal chamber with 

magnetic coils) concept. 

Inertial confinement, instead, bases its operating principle on the heating and on the 

compression to extremely high densities of a solid fuel pellet. The compression is obtained by 
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heating a spherical hollow target uniformly to trigger an implosion of the fuel. Energy is 

provided by pulsed lasers or ion beams from an accelerator. 

In a tokamak, the plasma is shaped in a torus, by using a toroidal and a poloidal magnetic field. 

The toroidal field is produced by ring coils around the vessel, the poloidal field is instead 

produced by passing a current in the plasma itself. Plasma, ideally, can be seen as a secondary 

winding of a transformer, where the primary winding is an inductor placed in the hollow centre 

of the tokamak torus. 

The resulting helical shaped field has a characteristic pitch which is often referred to as safety 

factor or q, where safety refers to the resulting plasma stability. An additional magnetic field, 

called vertical is needed to avoid the plasma outwards expansion. The vertical field is obtained 

with torus-concentric positioned coils. 

Amongst technical advances in tokamaks, in an aim to obtain a higher efficiency in plasma 

confinement, it has been found that the optimal configuration is not a circular but a D-shaped 

torus. The D shape is regulated by two parameters called triangularity and elongation and are 

characteristics of the tokamak vessel. 

Currently, tokamaks are the most advanced fusion reactors based on magnetic confinement. 

The tokamak configuration in fact, as most promising candidate for the first generation of 

reactors, was chosen for the ITER experiment. [1] [2] [3] [4] 

1.3 TOWARDS THE CONTROL 

The confinement of the plasma is an extremely complex control task, as it is unstable. Arising 

instabilities are linear, non-linear, with different wavelengths and frequencies. The plasma itself 

shows self-organizing behaviours [5]. When the plasma collides with the walls, it is terminated: 

it is called plasma disruption. Disruption is the result of a large-scale magnetohydrodynamic 

(MHD) instability. Small-scale instabilities also exist due to gradient in plasma parameters and 

cause anomalous transport: their collective effect can also drive fluctuations which result in 

large-scale instabilities. [6] [7] 

Plasma control is essential for the practical power generation and for the reactor machine 

integrity. In fact, discharges are also detrimental to the life of the vessel wall materials, other 

than the immediate termination of the fusion reaction. Extremely complex models exist to 

model the plasma behaviour, often called codes. Modelling activity is essential to the 
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development of the control laws to keep the fusion steady state. They are used in offline 

computations, to derive control laws and in online computations, in the plasma control system, 

to estimate plasma parameters that cannot be directly measured. There are many models, each 

one for a particular aspect of the fusion reaction, their development is supported by the ongoing 

measurements in all the fusion experiments around the world and their employment drives 

further discoveries and refinements to them, in a positive feedback scheme. 

Plasma modelling and control is based on the possibility to measure the plasma parameters. A 

branch of the research, called plasma diagnostics, oversees finding ways and supporting 

systems to measure, directly or indirectly, the plasma parameters. Plasma diagnostics is a 

complex field with roots in an extremely high number of fields. Purpose of the plasma 

diagnostic systems is to measure operating parameters for the control, safety and for the physics, 

like temperatures, relative positions, magnetic fields, currents. Diagnostics must also be an 

extremely flexible and expandable system, which must evolve faster than the other components 

in the system. [2] 

1.4 THE PLANT CONTROL SYSTEM 

All the different plant systems that constitute a fusion device are organised in a hierarchical tree 

going from the field sensors and actuators up to the central supervisory, monitoring and data 

handling facilities. ITER facility designates the entire system as Plant Instrumentation & 

Control (Plant I&C). In these systems there is a high degree of integration between standardized 

and custom (non-standardized) controllers. A standardized system means an off-the-shelf 

device which can be a programmable logic controller (PLC, standalone) or a reconfigurable I/O 

(RIO, integrated in rack mounted PCs). A non-standardized system, instead is based on a 

custom board which runs a custom software, specifically designed for the controlled 

environment. The hierarchical tree components are networked by using several networks 

(physical or logical): relying on optical fibre or on copper media, they guarantee the data 

exchange keeping network traffic segregated by category (Data Archiving, Time 

Communication, Audio/Video, Synchronous Communication, Safety and Interlocks). 

Another common categorization amongst plant controller systems is the speed. Fast controllers, 

usually employed in diagnostics, plasma control and closed-loop plant control systems, run on 

high-performance network with hard real-time constraints at high sampling rates (up to tens of 

kHz). Hardware platforms for fast controllers is usually a dedicated system with RIOs or custom 
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hardware boards. Slow controllers instead are employed in auxiliary systems control, are based 

on PLCs, and operate at low sampling rates (up to hundreds of Hz). [8] 

1.5 QUICK OVERVIEW OF SOFTWARE IN REAL-TIME PLASMA CONTROL 

Drilling down through the plasma control and diagnostics systems, where fast controllers run 

high sampling rates control loops, software is key to succeed in the operation. This is especially 

true since significant portions of the PCS run on custom hardware solutions. One common 

software framework for the development of real-time control applications, in the fusion field is 

MARTe2. 

MARTe2 is a multiplatform software framework, deployed in many nuclear fusion real-time 

control systems (e.g., ITER or JET tokamaks). The framework offers a comprehensive suite of 

tools to develop an application, both for developers and for users. Developers can benefit from 

the MARTe2 architecture to build drivers to interact with the field or processing algorithms by 

defining the “construction blocks” of the control applications. Users, instead, develop their 

control applications by leveraging already existing “blocks” and facilities using a descriptive 

configuration language which helps connecting block and defining the control algorithm. [9] 

1.6 QUICK OVERVIEW ON THE FUSION REACTORS OF CONCERN 

For the mentioned experiments in the presented thesis, a quick reference on their main 

specifications is given.  

1.6.1 ITER 

ITER (International Thermonuclear Experimental Reactor) also metaphorically recalling the 

Latin word iter meaning “the way” or “the path”, is an undergoing research and development 

project aimed at obtaining the nuclear fusion. ITER, currently under construction at the moment 

of writing, will be the world’s largest magnetic confinement tokamak-based experimental 

nuclear reactor. It is in the southern France, at Saint-Paul-lés-Durance, near the Cadarache 

technological research and development centre for energy. ITER is considered the most 

complicated engineering project in human history, seeing thousands of engineers and scientists 

involved in a 35-year collaboration. ITER has a series of objectives to reach during its roadmap: 
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- Create a milestone for the integration of nuclear fusion technologies and allow and 

assess studies on plasma for the current and future generations of nuclear fusion 

machines. 

- Obtain ignition, by the D-T fusion reaction and sustain it for a prolonged period, as a 

starting point for production power plants, also demonstrating the safety of the 

technology. 

- Demonstrate the tritium breeding, by producing tritium in the vessel, as current tritium 

availability will not suffice the estimated need of the future fusion plants. 

- Produce 500 MW of power from the fusion and operate on a ten-fold return ratio 

(Q>10), by inputting 50 MW of heating power. Produced energy however will not be 

converted and exported to the grid. [10] [11] 

 

Table 1 ITER main relevant parameters and dimensions 

Description Value 

Total Fusion Power 1.5 GW 

Neutron Wall Loading 1 MW/m2 

Plasma Radiuses (Major/Minor) 8.1/2.8 m 

Plasma Current 21 MA 

Toroidal Field @ 8.1 m Radius / Toroidal Field Coil 5.7 T / 12.5 T 

Auxiliary Heating Power 100 MW 

 

1.6.2 REVERSED FIELD EXPERIMENT - RFX 

Situated in Padua, in the RFX consortium facility, it was built in 1991, saw first plasma in 1992 

and underwent a first package of upgrades (RFX-mod) in 2004. It was operative until 2016 and 

currently undergoes another major upgrade (RFX-mod2). Its configuration is slightly different 

from the tokamak, and is called reversed field pinch, where the largest part of the controlling 

magnetic field is sourced directly from the plasma itself, instead of being supplied with external 

coil sources. RFX is the world's largest reversed field pinch machine and has one of the most 

advanced plasma control systems, based on 192 coils distributed on the toroidal chamber. The 

coils can be independently or tandem controlled. Its main contribution was in the field of the 

active plasma control techniques, based on the saddle coils on the reactor vessel, running real-

time control loops at kHz sampling rate. Results from the RFX experiments contributed to the 

development of several other nuclear fusion experiments, including ITER itself. Due to its 

ability to induce 2 MA of current in the plasma, by applying 20 V of voltage potential to the 
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plasma ring, it can produce 40 MW of heating power, causing the typical tokamak heating 

system to be useless. [12] [13] 

 

Table 2 RFX parameters and dimensions 

Description Value 

Torus radiuses (inner/outer) 0.459 / 2 m 

Maximum plasma current 2 MA 

Toroidal field 0.7 T 

 

1.6.3 DIVERTOR TOKAMAK TEST - DTT 

DTT project is a tokamak-based experiment, specifically designed to evaluate different divertor 

performances. A divertor is a device that is used to extract heat and by-products ashes from the 

in-vessel plasma. The DTT experiment, started in 2018, will help solving the divertor design 

challenge for the DEMO project, the ITER successor. [14] 

 

Table 3 DTT parameters and dimensions 

Description Value 

Torus radiuses (inner/outer) 0.65 / 2.10 m 

Maximum plasma current 5.5 MA 

Auxiliary Heating Power 45 MW 

Toroidal field 6 T 

 

1.6.4 FUSION FOR ENERGY 

European Joint Undertaking for ITER and the Development of Fusion Energy, shortly named 

Fusion for Energy and abbreviated in F4E is the EU body responsible for the contribution to 

the ITER project. It is based in Barcelona (Spain) with offices also in Cadarache (France, ITER 

plant) and Garching (Germany). It was established in 2007 for a period of 35 years. Its mission 

is to contribute to the development of demonstration fusion reactors by offering technical 

knowledge and expertise. [15] [16] [17] 

1.6.5 ENI – CNR JOINT RESEARCH AGREEMENT 

The Italian multinational oil and gas company signed a Joint Research Agreement for the 

development of strategic assets, as the magnetic confinement fusion, for the energy transition. 

The ENI-CNR partnership has led to innovative solutions in various fields and is actively 
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contributing to the development of magnetic fusion, also through the Commonwealth Fusion 

Systems (CFS). 

1.6.6 COMMONWEALTH FUSION SYSTEMS (CFS) 

Commonwealth Fusion Systems is a Massachusetts Institute of Technology (MIT) spin-out 

actively working in the development of fusion for industrial applications. CFS aims at creating 

a synergy between the scientific and industry world and has a collaboration with the Plasma 

Science and Fusion Center of the MIT. 

1.7 CONTRIBUTION AND ORGANISATION OF THE THESIS WORK 

The thesis contribution can be divided into two main achieved goals. One is related to the 

modelling and simulation of a specific aspect of the plasma, recurring to a hybrid theoretical-

practical approach based on electronic components, using RFX experiment models. 

The other part, developed under a traineeship agreement with Fusion for Energy in the CODAC 

Group, is based on contributions to the development of the MARTe2 framework: in particular, 

the porting of the framework on a custom hardware board, which is the main digital component 

of the magnetic diagnostics system of the ITER tokamak and a driver to interface MARTE2 

with the PROFINET field bus, to complete the ITER ECRH heating system factory acceptance 

test tools suite. 

The core of this work is organised into three chapters: 

- Chapter 2 presents the study of plasma behaviours that are due to the nature of the 

containing vessel: the Resistive Wall Modes (RWM). After an explanation on the 

RWM, one of the mathematical models describing this behaviour is presented, in order 

to try to reduce its complexity. The reduction is aimed at obtaining a circuital analogous 

implementation. A circuital analogous implementation is a physical circuit built upon a 

model set of differential equations. Although a circuital analogous implementation has 

several advantages, its implementation becomes unfeasible as the model grows in size. 

An attempt to reduce the model size is presented, preserving the unstable plasma states 

which are subject of the stabilisation control. 

- Chapter 3 presents the development of an interface driver between the real-time control 

framework MARTe2 and the PROFINET® field network, called ProfinetDataSource. 

The chapter goes through all the implementation steps details of both the protocol layer 
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and the framework interfacing, ending with a presentation of the main usage scenario 

of the driver and a complete series of implications that originated from the 

implementation strategy. The chapter ends with a presentation of the achievements, as 

the ProfinetDataSource became part of the ITER Electron Cyclotron Resonance 

Heating, Factory Acceptance Test Tools (ECRH FAT-Tools) software suite. 

- Chapter 4 presents the work of porting MARTe2 real-time control application 

framework on ARM platform, both for bare metal (without operating system) and 

FreeRTOS (real-time operating system). The work also goes through a complex 

approach, called Asymmetrical Multi-Processing (AMP), where all the cores in a 

multicore equipped processor are used independently, as totally different units. The 

chapter ends with a presentation of the achievements, as the porting became part of the 

ITER Magnetics Diagnostics project, where ARM Systems-On-Module (SOMs) 

acquire, process and stream data coming from the magnetics sensor on the vessel to 

compute plasma parameters. 



CHAPTER 2. RESISTIVE WALL MODES MODELLING AND CONTROL 

Resistive wall modes (RWM) are global magnetohydrodynamic (MHD) instabilities that are 

common to many toroidal confinement devices like tokamaks, spherical tokamaks and reverse 

field pinches (RFP). In a tokamak configuration they are one of the most severe limits in 

achieving the advanced tokamak regime. In the reverse field pinch configuration, RWMs are 

found as current driven instabilities. During the last years, significant efforts have been spent 

to develop efficient control strategies [18].  

2.1 CHAPTER KEY POINTS 

- RWM instabilities are common in tokamaks experiments, their mitigation and control 

are key to the achievement of plasma regimes. 

- Several models (codes) exist to describe the RWM instabilities, helping the 

development of control strategies, also to be applied in real-time. 

- Codes rely on large dynamic models, with great numbers of inputs, outputs and states. 

- An approach, called circuital analogous, allows the implementation of the equations of 

a dynamic system into a physical circuit. 

- As circuits rely on components which are not perfect, nor ideal, a circuital analogous 

offers some advantages over pure mathematical approach. The control strategy in this 

scenario is nearer to the real-world implementation. 

- Circuital analogous suffer from a heavy drawback, due to the growing size and 

complexity of implementation as the number of I/O’s and states of the dynamic model 

grows. 

- Integrating the RWM model into a circuital analogous requires an extreme model 

simplification, which shall not disregard the essence of these kind of instabilities while 

keeping a feasible approach. 

2.2 RESISTIVE WALL MODES 

In many “reversed field pinch” (RFP) experiments the plasma is surrounded by a highly 

conducting, close-fitting wall that stabilizes the plasma to all ideal, free-boundary instabilities. 
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A perfectly conduction wall forces the radial component of the magnetic field at the boundary 

to vanish. For an ideal plasma, in which the plasma is frozen to the field, the radial velocity is 

also zero at the boundary. Hence, the boundary is fixed. Instabilities that require the boundary 

to move are stable with a conducting boundary. As a result, existing experiments that operate 

with a highly conducting shell avoid free-boundary instabilities. However, if the plasma 

duration is sufficiently long, the effect of any wall with finite electrical conductivity will 

eventually disappear, as the plasma duration exceeds the electrical penetration time of the shell. 

[2] 

2.3 RWM CODES 

Codes dedicated to the study of RWMs can be divided roughly into two groups: 

- 2D thin wall approximation, codes which investigate thoroughly the physics of RWMs 

including kinetic effects into MHD equations but using a simplified description of the 

boundary. 

- 3D geometry on the mode dynamics for a much more realistic description of the 

structures surrounding the plasma. 

The control system of a plant is usually developed around these models. [19] 

This work of thesis starts from the RFX CarMa code, literature, and bootstrap scripts to study 

the model itself and understand its internals and responses in an attempt to find a possible 

reduction. The attempt to reduce the model was aimed at a circuital analogous implementation, 

for the dominant instabilities. 

The CarMa code provides a linearized model of plasma response as regards the dynamics of 

RWMs in the presence of active and passive conducting structures. The version, which was 

made available from the RFX Consortium, the code is derived from the coupling of MARS-F 

and CARIDDI. [19] 

The CarMa works on the mesh, represented with its toroidal and poloidal gaps, with 2550 

degrees of freedom describing the 3D current density in the shell. All the 192 independently 

fed active coils are represented in the mesh, with their actual geometry. Similarly, the 192 

saddle loops provide the linked flux measurement (mean radial magnetic flux over the saddle 

area). [19] 
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2.4 CIRCUITAL ANALOGOUS APPROACH 

Electronics circuit can be used to implement a physical representation of a dynamic model.  The 

approach consists in writing the system in canonical control form, to have the most explicit 

input/output relationship and, once obtained the equation set, off-the-shelf components are used 

to implement it. This technique has advantages and drawbacks which derive both from the 

physical nature of the mathematical representation. The behaviour of the system becomes a 

physical system with electrically measurable quantities. On the immediate advantages some 

derive from the imperfection of the implementation, as electronic circuits are subject to noise, 

non-linearities, deviations from the nominal value, variations of the value due to the operating 

conditions (e.g., temperature). A system subject to these imperfections leads to a more robust 

implementation of the controllers. A physical implementation of a dynamic model can run real-

time, compared to its mathematical representation, although the size limitation makes this 

advantage negligible. Circuital analogues become more and more difficult to implement as the 

number of inputs/outputs/states grows, thus hard limiting its employment in complex system 

representation.  

This is the specific case of the CarMa model, which consists in a linear MIMO model with 192 

inputs, 192 outputs and 2550 state variables. The size of the system and the internal dimension 

of its dynamics makes it hard and nearly impossible to be implemented practically with a 

circuital analogous, either considering analog, digital, or hybrid approaches. In order to propose 

a more compact model, the possibility to reduce the internal order of the dynamics has been 

investigated. 

Usually, model order reduction is performed on the basis of some internal quantities of the 

linear system, which are invariant under state transformation, that is they are independent on 

the specific state space representation adopted and contain signature information on the input-

output dynamics of the system. Model order reduction techniques are often based on balanced 

representations, that is representations for which a given signature information, related to 

controllability and/or observability or to passivity, is put in evidence. Open-loop balanced 

representations allow to determine the degree of controllability and observability of each state 

variables, thus providing information on their importance in the model. However, open-loop 

balanced representations, which are based on the diagonalization of the systems Gramian 

equations, assume a significance for model order reduction under the hypothesis of asymptotic 

stability of the dynamics. The singular values, which are the elements of the diagonal Gramians, 



 
23 Chapter 2. Resistive wall modes modelling and control 

measure therefore the importance for the input-output relationship. In this case, the state 

variables associated to the lower degree of controllability and observability are less important 

from an input-output point of view and can be neglected, thus leading to a reduced order model 

of the dynamics. The error of the novel model is directly related to the sum of the singular 

values associated to the discarded variables. 

The CarMa model is intrinsically unstable, with several modes associated to positive real-part 

poles, therefore a different model order reduction strategy must be exploited. Let us consider 

the closed-loop balanced representation which can be obtained also for unstable systems and is 

based on the diagonalization of the positive definite solutions of the Control Algebraic Riccati 

Equation and that of the Filtering Algebraic Riccati Equation. Thus, the closed-loop balanced 

representation highlights the importance of the state variables in a feedback control scheme. 

The characteristic values, which are the ordered quantities contained in the diagonal of the 

positive definite solutions in a closed-loop balanced representation, quantify this role. In this 

case, the order reduction, rather than be related to the model dynamics is referred to the 

dimension of the state which is actually fed back for control purposes. 

Since the CarMa model is essentially oriented toward the control of the model behavior, the 

possibility of closing a feedback control loop which is based on reconstructing and feeding back 

a limited, reduced, number of state variables is of practical interest.  

The characteristic values of the CarMa model have been computed and the highest 25 are 

reported ordered in the shown figure. As it is possible to observe, the first 14 characteristic 

values are of three orders of magnitude higher that the remaining 2536. Therefore, a control 

loop can be based on the feedback of only 14 variables, rather than the whole 2550 state 

dimension. 

The number of state variables that must be fed back is therefore at least 14, in fact, if a lower 

number r of state variables is considered at least one eigenvalue assumes positive real part in 

the controlled system. This is according to a linear relationship, as shown above. Moreover, the 

compensator H(s) with r=14 fed back state variables is asymptotically stable. 
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Figure 1 - Contribution of the first relevant group of singular values 



CHAPTER 3. DEVELOPMENT FOR MARTE2 FRAMEWORK 

Control systems in nuclear fusion experiments rely on a combination of custom and off-the-

shelf hardware and software solutions. Having a standardised approach and a reference 

framework for the development of the control system software is an extremely important and 

desirable feature. Many nuclear fusion experiments rely on a software framework, MARTe2. 

This framework structure and implementation gives several advantages, both for the 

development of new components and for its porting on different architectures. 

3.1 CHAPTER KEY POINTS 

- MARTe2, a framework for the development of real-time control systems applications 

is used in many fusion experiments around the world. 

- Its implementation philosophy allows developers, physicists and control systems 

experts to work together in team, with well-defined roles. Its Quality Assurance system 

renders it suitable for critical real-time control applications. 

- Its code structure is specifically designed to allow the porting to other architectures and 

environments. 

- A component to interface MARTe2 with PROFINET field I/O devices was 

implemented. It will become actively used and its implementation foresees larger 

employment scenarios. 

3.2 INTRODUCTION TO THE FRAMEWORK 

MARTe2 is a software framework, written in C++, specifically for the development of real-

time control systems. One of the objectives of MARTe2 framework is to avoid the writing of 

highly specific (vertical) code, bound to an application and targeted to a platform and 

environment, which is a frequent practice when dealing with these scenarios. The verticalized 

approach, tightly bound to a hardware and software combination is not particularly suitable for 

growing project where multi-disciplinary teams are involved in the development. Moreover, 

reusability and maintainability factors play a key role, allowing the developers to establish a 

common code base. 
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MARTe2 offers two perspectives during the development of applications: developer and user. 

For the developer, MARTe2 establishes a clear separation of concerns between hardware 

interfaces, software algorithms, platform, and environment, allowing both the reuse of 

components and the ability to develop and test the control solutions in systems which may differ 

from the production environment. For the user, it offers a configuration system with a data 

driven approach, where sources, algorithms and sinks for the data follow a logical flow. Blocks 

expose data signals requiring to the user the specification of their interconnection scheme and 

real-time execution environment (CPU, thread). 

MARTe2 is developed under strict quality assurance standards and processes and is 

MISRAC++ 2008 compliant. Moreover, the establishment and growth of the MARTe2 

community has also exposed the existing code base to different applications, thus increasing its 

quality and robustness.  

MARTe2 and its predecessor, MARTe, are deployed in many real-time fusion control systems, 

notably the JET tokamak and will be deployed in the ITER experiment plant instrumentation 

and control. [9] [20] [21] [22] [23] [24] 

Its code can be divided into two main sets: hardware interfacing and user algorithms. Hardware 

interfaces are called DataSources, while user algorithms are called GAMs (Generic Application 

Modules). A MARTe2 application, called RealTimeApplication, is the result of the 

interconnection of DataSources and GAMs. [25] [26] 

A generic application module, often referred to as GAM, is the MARTe2 component where the 

user algorithm resides. An extremely important concept in GAMs is that no interfaces with the 

hardware (direct or indirect) shall be implemented, except for the allocation of memory. A 

DataSource provides a real-time interface for the exchange of input and output signals to and 

from the hardware. Finally, the real-time application is the result of the interconnection of 

DataSources and GAMs together. GAMs are assigned to real-time threads, and states, which 

means specific execution units’ selection and evolution of a global state machine controlled by 

the framework. [27] [28] 

MARTe2 is engineered in tiers and layers: three tiers (BareMetal, FileSystem and Scheduler) 

and seven layers. Tiers are independent libraries, BareMetal is implemented to be independent 

from the other two, allowing the framework to be deployed also in resource-limited embedded 

systems. Each layer encapsulates functionalities and only depends on the facilities provided by 

levels below. [25] 
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3.3 MARTE2 QUALITY ASSURANCE 

The development of MARTe2 follows a well-defined quality assurance process. This process 

is extremely important to ensure that the heterogeneous contributions from the community do 

not compromise the project overall quality. To increase the robustness of the code, MARTe2 

uses only a controlled subset of C++, where all the aspects of the language that are considered 

dangerous for critical systems are removed. C++ version is ISO/IEC 14882:2003 (C++03) and 

coding rules are defined by the standard MISRA C++:2008. Unit and integration tests are 

implemented for each module of the framework, assuming black-box unit testing. Code 

coverage for accepted components must be above 80%. Source code is kept under versioning 

(git + GitLab) by following a specific flow, based on master/develop branches and user story 

(feature) branch. All feature branches are created from the develop branch and merged back 

only if quality checks are successfully passed. The agile workflow for the management of the 

resources and the lifecycle of the development is helper with Redmine tool. Code coverage is 

implemented with gcov/lcov, static analysis and compliance is performed using Gimpel 

FlexeLint. The Google test framework is used to perform the test routine, however a portable 

simplification was also developed as part of this thesis work, to suit the embedded system’s 

needs. [29] 

3.4 PROFINET® DATASOURCE 

A PROFINET® DataSource was developed as part of this thesis work, to allow MARTe2 

integration as slave periphery on the PROFINET® field communication bus. The DataSource, 

which is now included in the MARTe2 components official suite is also part of the ITER 

electron gyrotron heating (ECRH) factory acceptance test (FAT) tool suite [30] [31]. 

Purpose of the ProfinetDataSource is to abstract a PROFINET® slave in a PROFINET® bus. 

This slave appears on the bus as a real physical peripheral and can reflect its status 

(Input/Output) to and from MARTe2. The ProfinetDataSource was implemented primarily to 

suit the needs of the ITER ECRH FAT Tools, however the requirements were scaled to create 

a generic component which can be used also in different scenarios that will be discussed further 

in a specific section. 

The ProfinetDataSource, as part of the MARTe2-components official bundle, was also put 

under QA and it is MISRA C++:2008 compliant for the relevant portions of it. It also includes 
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a comprehensive test unit, which runs within a soft-PLC environment the component validation 

logic. 

3.5 PROFINET® STANDARD 

3.5.1 INTRODUCTION 

The description of the implementation work on the ProfinetDataSource relies heavily on 

concepts and practices of the PROFINET® protocol. For this reason, an introductory chapter 

on the argument will be given. For each described PROFINET® feature, the MARTe2 

DataSource implemented counterpart is introduced, in order to have a clear spatial collocation 

of the work in the implementation description. 

PROFINET® is a communication standard for automation, based on Ethernet IEEE 802 and 

described in IEC 61158 and IEC 61784. The cited standards form the basis for device or 

application-specific profiles, also creating planning, engineering and commissioning steps. 

Functions supported by PROFINET IO is divided into four conformance classes (CC), where 

each CC (CC-A, CC-B, CC-C, CC-D) provides a summary of the minimum properties. The 

standard follows the producer/consumer model to accomplish the data exchange. Three device 

classes are defined for PROFINET IO: 

- Controller: the programmable logic controller on which the automation software runs 

(PLC). It produces the outputs and consumes input of the field IO devices. 

- Device: a peripheral I/O device on the field. It produces the input data and consumes 

the output data. 

- Supervisor: a field programming device used for commissioning (PD), a standard 

personal computer (PC) or a human-machine interface (HMI) used for diagnostic and 

supervisory purposes. 

A plant must contain at least one controller and one or more IO devices. PD is usually integrated 

temporarily for commission and troubleshooting; PC and HMI can be integrated for the plant 

supervision and control. Automation devices can simultaneously fulfil the controller and 

device classes. [32] 

The ProfinetDataSource behaves as a PROFINET IO Device, produces input and consumes 

output to and from MARTe2 real-time application. 
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3.5.2 IO DEVICE MODEL 

The device access point (DAP) defines a device in terms of possible technical and functional 

features. The DAP is always placed in slot 0 – subslot 0. The slot and subslot structure 

designates a device as modular where the slot is the place where a module can be inserted. Each 

module occupies a subslot. Process inputs and outputs reside within a subslot. IO devices can 

be differentiated between compact and modular. Compact devices have a fixed slot/subslot 

structure while modular devices allow the user to change it at configuration time. [32] 

Similarly, ProfinetDataSource is engineered as a modular IO device, where the slot/subslot 

configuration can be modified by intervening on the MARTe2 configuration file. The 

ProfinetDataSource allows the represented field IO device to assume an infinite set of 

input/output configurations, based on the description given at real-time application level. 

However, this description must be matched from the controller side, where a PROFINET 

counterpart description must reside. The PROFINET description of device characteristics is 

called General Station Description (GSD). 

3.5.3 GENERAL STATION DESCRIPTION MARKUP LANGUAGE (GSDML)  

Field device internal configuration resides into an XML-based description which is called 

GSDML (General Station Description Markup Language) [32]. The GSD file contains both 

relevant data for the engineering tool and for the IO controller expected data formats. It is 

usually supplied by the manufacturer. In the ProfinetDataSource there are two possible 

scenarios, which will be discussed in the dedicated chapter: 

- MARTe2 configuration file is matched with the GSDML structure of an existing 

manufacturer device, in order to have a MARTe2 IO device behaving like the physical 

one (emulation mode). 

- MARTe2 and GSDML files are built together to be matching, in order to build a custom 

MARTe2-PROFINET bridge (bridging mode). 

3.5.4 APPLICATION AND COMMUNICATION RELATIONS (AR / CR) 

During the start-up phase, a data exchange occurs between the IO controller and the IO device, 

to establish the communication paths. These paths, established during the setup allow the cyclic 

data exchange (IO), acyclic data exchange and alarms exchange. An IO controller can establish 

an application relation with an IO device, using one or several IOs for the data exchange. During 

the start-up, the AR is created specifying all the cyclic and acyclic I/O data, which is intended 

to be exchanged, plus the specification on expected modules/submodules layout. Matching 
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between the expected and actual configuration determines the initiation of the cyclic exchange, 

and eventually the arising of acyclic (alarms) condition. [32] 

The ProfinetDataSource establishes one application relation and supports cyclic and acyclic 

data exchange with the IO controller. During the start-up phase the expected 

modules/submodules layout from the IO controller is received and matched with the MARTe2 

configuration specified layout. The matching process (called modules/submodules plugging) 

determines the initiation of the cyclic exchange phase. 

3.5.5 CYCLIC AND ACYCLIC DATA EXCHANGE 

Data from cyclic exchange contains real-time representation of the inputs and outputs and is 

exchanged as real-time unacknowledged stream for a configurable period, called cycle time. 

Cycle times can be selected in a range from 250 µs up to 512 ms. Monitoring of the connection 

uses a multiple of the cycle time, where each consumer (caveat: a consumer is located on both 

communication sides) monitors the failure in arrival and sends a notification to the application. 

The cyclic exchange happens on layer 2 Ethernet by marking the packet with Ether Type = 

0x8892. Acyclic exchange, instead, like diagnostic, identification and maintenance information 

(I&M) can be requested from any device at any time (notably, the engineering tool). The I&M 

data is subdivided in five blocks (IM0 to IM4) addressed separately by index. IM0 support is 

mandatory and contains the hardware and firmware data on the IO device. [32] 

ProfinetDataSource supports the cyclic exchange at every PROFINET rate, given that the 

MARTe2 application is configured accordingly to be synchronised with the exchange. As the 

real-time application must maintain precise scheduling requirements, some expedients and 

adaptations were made at the interface between the stack and the DataSource. Acyclic exchange 

is also supported for I&M data for reading but writing is volatile, persistence is guaranteed only 

during the DataSource execution lifespan and is not applied on the matched MARTe2 

configuration file. 

3.5.6 PROFINET STACK 

The ProfinetDataSource is based on the rt:labs p-net PROFINET device stack, that is a C stack 

supporting v2.4 level specification in conformance classes A and B. It provides a portability-

ready layer and has a small footprint, suitable for embedded systems. C++ is also supported. 

The p-net stack is an IO device stack only, with support for cyclic and acyclic data exchange. 

It is open source with dual-licensing method (GPL v3 and commercial). The p-net library relies 

itself on an OSAL library (Operating System Abstraction Layer) which is also provided by 
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rt:labs [33] [34]. OSAL contains OS related features needed by the p-net stack (mutexes, 

semaphores, network access) [35]. As the OSAL library shares intentions with MARTe2 

BareMetal and FileSystem tiers, it is also foreseen a deeper integration between the two, totally 

replacing the OSAL with MARTe2 itself. 

3.6 PROFINETDATASOURCE IMPLEMENTATION 

The ProfinetDataSource behaves as a PROFINET slave (IO device) connected to the 

PROFINET bus. It supports cyclic (real-time exchange) and acyclic (I&M exchange) reflecting 

MARTe2 inputs and outputs. The DataSource becomes an I/O for the PROFINET master (IO 

controller) thus reflecting its process image, having MARTe2 positioned on the field side of the 

IO device. The ProfinetDataSource can be generally subdivided in three layers: 

- rt:labs p-net library: the stack upon which the ProfinetDataSource relies. 

- ProfinetDataSourceAdapter: an adaptation layer between the MARTe2 and the stack 

world. 

- ProfinetDataSource: the MARTe2 DataSource itself. 

 

Figure 2 - ProfinetDataSource block diagram for the architecture 
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While the p-net layer was already described in the introductory paragraph, the core of the 

ProfinetDataSource, which represents one of the presented thesis contributions, will be 

described in their internals. 

3.6.1 THE PROFINETDATASOURCEADAPTER 

The ProfinetDataSourceAdapter is an adaptation layer between the p-net stack and the 

MARTe2 DataSource interface. It is not properly named after the Gang-Of-Four Adapter 

pattern [36], as it does not follow the prescribed implementation, however it shares the 

adaptation philosophy with it. The ProfinetDataSourceAdapter was designed with a standalone 

capability in mind, however its interface follows the MARTe2 DataSource philosophy thus its 

interface also suits the context interfacing needs. 

The first adaptation layer provided is needed to map 1:1 the C stack implementation with the 

C++ OOP paradigm. The adapter defines a bank of callback mappers, defined as a first step 

into the p-net stack. These mappers are then both defined inside and outside the adapter, by 

using the free argument provided. With this strategy the p-net stack callbacks are moved inside 

OOP C++ logic to match the instance of the p-net library with the instance of the adapter class. 

In order to avoid disruption of the OOP data hiding principle, the callback bank is accepted into 

the adapter as C++ friend methods. 

[…] 

/* (A) */ 

profinetConfigurationHandle->connect_cb = pnetds_connect_ind; 

[…] 

/* (B) */ 

friend int pnetds_connect_ind(pnet_t * net, void * arg, uint32_t arep, pnet_result_t * 

p_result); 

[…] 

/* (C) */ 

int pnetds_connect_ind(pnet_t *net, void *arg, uint32_t arep, pnet_result_t * p_result) { 

return static_cast<ProfinetDataSourceAdapter*>(arg)->ConnectIndication(net, arep, 

p_result); 

} 

[…] 
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In the above snippet, three relevant regions of the adapter code are marked (A, B, C) describing 

the overall adaptation strategy. The region (A) shows how the p-net handle expects the callback 

assignment for the specific connection indication. The connection indication expects a specific 

function with the signature shown in region (B), note that the method (function in this case) is 

marked as friend. In the region (C) the callback “pnetds_connect_ind” is mapped with 

the adapter “ConnectIndication” method with the instance of the adapter, which is 

passed to the callback as pass-through parameter arg. Note also that, to meet readability 

requirements of the MARTe2 QA process, functions belonging to the p-net stack callback (C 

structured context) follow snake-case convention while the inner MARTe2 calls (C++ OOP 

context) follow Pascal Case naming convention. The callback mapping involves fifteen 

internal p-net stack events which represents the evolution of the stack state machine in the 

PROFINET protocol implementation (e.g., connect/release, read/write, module/submodule 

plug/unplug, new data, alarm, reset and led). One important thing related to the stack is that, 

for each module and submodule, a portion of RAM memory must be allocated and mapped, for 

the callbacks to be able to read (produce) and write (consume) data. The memory management 

is overseen by the ProfinetDataSource, which allocates, based on the MARTe2 configuration 

file, memory for the signals represented by the IO device. This memory mapping process will 

be thoroughly described in the specific chapter. Allocated memory is shared between the p-net 

and the DataSource and its access is arbitrated using MARTe2 provided synchronisation and 

mutual exclusion primitives. 

The ProfinetDataSourceAdapter exposes an interface to the MARTe2 ProfinetDataSource 

which is used to interact with the stack. Interaction is intended in terms of the definition of the 

behaviour of the stack as instructed by MARTe2 real-time application evolution. Exposed 

methods are related to the configuration of the device, with settings related to the a-cyclical 

(I&M) parameters (vendor, hardware and software revision, serial number), to the physical 

configuration in slots/subslots with the related modules/submodules ending with the 

configuration of the cyclical data exchange. 

3.6.2 THE PROFINETDATASOURCE 

The DataSource implements the MARTe2 aspects of the PROFINET exchange and can be 

reduced to a double-buffered heap of RAM memory. The heap is first split in two halves (inputs 

and outputs) and second in other two halves: one is exclusively accessed from MARTe2 while 

the other is shared with the ProfinetDataSourceAdapter. The latter is also passed to the p-net 
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stack to minimize the number of copies, thus positively impacting on the overall performances 

of the DataSource. 

In MARTe2 terms, the ProfinetDataSource is a synchronised DataSource. Without going too 

deep in MARTe2 implementation details, a synchronised DataSource can constrain the real-

time application task pace. When asking data to a synchronised DataSource, the entire 

application is locked waiting for the synchronisation point to happen. A synchronisation point 

usually corresponds to an event of data or peripheral readiness. 

On the ProfinetDataSource synchronisation checkpoint two essential things are happening, at 

memory layout level: 

- The MARTe2 input portion is copied in the adapter input portion. 

- The adapter output portion is copied in the MARTe2 output portion. 

In other words, the double-buffer mechanism moves data between the two portions of it, 

considering the data direction. The double buffer guarantees data independence and race 

avoidance. This mechanism was thought with the PROFINET stack in mind, as it is agnostic 

on the transported data at subslot unit (i.e., the variables contained into a subslot unit are moved 

as a whole binary-blob. MARTe2, on its side instead, knows the signals layout and uses the 

slot/subslot convention to group and place signals into the memory bank. Signals are wisely 

placed on a contiguous memory block and are assigned sequentially, from the MARTe2 side. 

Given the contiguous nature of the MARTe2 half of the buffer and the agnostic behaviour of 

the stack at signal level, the synchronisation operation is reduced to a single memory-copy step. 

This choice was fundamentally driven by the performance requirements of the DataSource and 

by the real-time nature of MARTe2 application. 

Leveraging the dynamic signal handling capability of MARTe2, the ProfinetDataSource adds 

two further signals, LED and Ready, which give further information about the PROFINET stack 

status: 

- The LED signal gives information about the peripheral status and can be controller both 

from the master and from the engineering tool. It is not particularly useful during normal 

runtime operations but can be used to virtually localise the peripheral. The LED 

presence is mandated by the PROFINET specifications. 

- The Ready signal instead is extremely useful to inform the downstream MARTe2 

GAMs about the data readiness, especially during start-up or problematic phases, as 
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during offline operations the DataSource keeps the last valid data. The ready signal thus 

is intended to be used from downstream GAMs to tell apart fresh from stale signal data. 

 

Figure 3 - ProfinetDataSource memory utilisation profile 

The ProfinetDataSource relies on a complex interface inheritance layout. Aside from the 

MARTe2 framework mandated DataSourceI implementation, several interfaces were 

developed to accomplish the task. These interfaces are used mainly to realise decoupling 

between the ProfinetDataSourceAdapter and the ProfinetDataSource. The DataSource, adapter 

and brokers share a common philosophy: they all promote the tidiness and avoid over-coupling 

data structures and modules. For these reasons every coupling between the different aspects of 

the DataSource happens through the dedicated interface. Accelerator structures are also 

implemented, especially to quickly map between PROFINET and MARTe2 signals. Interfaces 

between the DataSource internals are: 

- ICyclicNotifiable: offers an interface for the cyclic notification of an event. Relies on 

the NotifyCycle method entry point. It is used by the adapter in its cyclic update loop to 

notify the DataSource about the correct completion of an update loop where both the 

IOxS (producer - IOPS and consumer – IOCS) were updated. The cyclic update is 

regulated by a MARTe2 service thread which runs at the PROFINET peripheral scan 

rate. 

- ITimerEntryPoint: provides the entry point for the timer service, exposing the TimerTick 

method. The TimerTick method is called at the PROFINET peripheral scan rate. 
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- IMainThreadEntryPoint: provides the entry point for the main thread executor, relying 

on the MainThread method, which uses a status flag as input and returns the processed 

status flags. 

- IProfinetEventNotifiable: provides the interface for the listener, to allow underlying 

stack bubble events to the upper layer, bringing the event type. 

- ISynchronisableInput / ISynchronisableOutput: these two interfaces provide the 

synchronisation entry point, as a specialisation of the MARTe2 Synchronise method, 

where differentiation between input and output synchronisation shall occur. 

- IOperationalSignalsEntryPoint: provides the interface for the listener to bubble the 

LED and Ready status signal change. These two signals are referred to as operational 

or ancillary signals. 

3.6.3 HELPERS 

The ProfinetDataSource relies its operations on two helper classes, which are in turn relying on 

the MARTe2 thread executor service. The ProfinetMainThreadHelper and 

ProfinetTimerHelper: 

- The ProfinetMainThreadHelper stays idle waiting for an event to occur. Once an event 

has occurred, the right handler is executed. The handle selection relies on the status flag, 

previously described, where input events are processed, and the output flag sees them 

cleared once they are served by the underlying system. 

- The ProfinetTimerHelper is the vital event for the PROFINET stack. The timer ticks at 

the IO device declared rate, regulating the whole stack execution. Note that also the 

timer is an event, and its occurrence is handled in the ProfinetMainThreadHelper. 

Regardless of the source or helper, the handling logic is always executed inside the 

ProfinetDataSourceAdapter. 
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Figure 4 - ProfinetDataSource scheme of interactions among modules 

3.6.4 INPUT AND OUTPUT BROKERS 

In MARTe2 terminology, a broker is the interface between the GAM memory and the 

DataSource hardware data (memory in the specific case). The brokers are called before and 

after the GAM execution to actualise the required input (before) and outputs (after) the user 

algorithm is executed. 

The ProfinetDataSource relies on two custom-implemented brokers, to suit the specific needs. 

These brokers (MemoryMapSynchNMutex [Input, Output] Broker) share the logic with the 

MARTe2 bundled MemoryMapSynchronised brokers. Considering the heap (I/O memory bank 

with process image) is shared between the DataSource and the adapter/stack, these two brokers 

implement a different synchronisation/termination phase. This customisation logic was a 

structural design choice, to avoid the p-net stack side locking and, consequent impairment, of 

the MARTe2 real-time application cycle time. In fact, MARTe2 side always uses a Try-Lock 

mechanism in the broker which, in the event of failure of the PROFINET stack (especially with 

an acquired lock on the heap), translates only into a stale data propagation. Obviously, to 

maintain general real-time application requirements, careful tuning between the PROFINET 

and MARTe2 tasks must take place. For this reason, a parameter called Reduction Ratio, was 

also implemented to avoid copying and updating data every cycle while keeping the IO device 

online for the IO controller. This can be also said in PROFINET stack terms equivalent, as only 
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an IOCS occurs (consuming) at the timer tick event occurrence. The IOPS (production) of data 

is skipped, for the copying event between the two sides of the double buffer to be avoided. 

 

Figure 5 - Interaction between DataSource and custom brokers 

3.6.5 CONFIGURATION AND OPERATION 

As a MARTe2 component, the ProfinetDataSource requires a specific section in the MARTe2 

configuration file. Aside from the MARTe2 requirements, this section in the configuration file 

must follow a particular scheme which reflects the PROFINET stack internals and the GSDML 

peripheral descriptor. The matching between the GSDML and MARTe2 configuration file is 

key to the correct operation of the DataSource and demonstrates its ability of to represent 

virtually any type of IO device. 

The module which will be “represented” by MARTe2 must have a slots/subslots layout known 

in advance. As previously stated, slots and subslots are a sort of virtual bays which contain the 

I/O modules and submodules. An engineering tool is used to configure the IO controller (PLC) 

by importing the GSDML descriptor file. The engineering tool usually provides an interface 

which allows, given the supported peripheral slots/subslots, the insertion of modules and 

submodule. This step materialises the IO device configuration scheme. 

When the ProfinetDataSource starts, using the slot/subslot layout contained in the MARTe2 

configuration file, the stack expects a configuration which essentially informs it that a particular 

subslot has a specific data direction (input/output) and is represented with a certain number of 
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bytes. Key to the understanding of the whole process is the usage of the term expects. The 

expectation resides on the fact that, once started, the IO controller, based on the GSDML 

configuration, sends a specific layout. The matching step with the expectations, occurring in 

the PROFINET stack, is called plugging and happens during the start-up phase. The plugging 

event triggers the generation of the IO controller sent layout which is then matched internally 

with the DataSource expected layout. These terms are used consistently across the configuration 

files, respecting those used across the PROFINET standard and, consequently on the stack side. 

The ProfinetDataSource is specifically built to match 1:1 the GSDML description file. 

 

Figure 6 - Plugging and layout 

The configuration scheme needed into the MARTe2 configuration file strictly adheres to the 

PROFINET standard for the peripherals, retracing concepts previously described in the protocol 

introduction. Basic configurations need the network interface for the binding, the station name, 

the periodic interval and reduction ratio. As a requirement, the underlying operating system (or 

bare metal) must be able to send full-sized L2 raw ethernet frames. Except for the network 

interface and reduction ratio, the parameters need to be strictly matching to them described in 

the GSDML file, following this scheme: 

Table 2 MARTe2 to GSDML base parameters 

MARTe2 cfg GSDML 

StationName ApplicationProcess/DeviceAccessPointList/DeviceAccessPointItem 

PeriodicInterval ApplicationProcess/DeviceAccessPointList/MinDeviceInterval 

      
                
              
                     

      

      

   

        

   

        

        

   

        

        

   

        

            
              

            
              

            
              

                                      

                                     

                                     



 
40 Chapter 3. Development for MARTe2 framework 

 

For the base identification and for the I&M data, same matching rules apply, as depicted in the 

following two excerpts. 

 

In the snipped above, notice how the (1), (2) and (5) keys have a matching counterpart, while 

(3), (4) and (6) can be freely customised. Again, same rules apply for the whole I&M data 

block. 

The slot and subslot layout, as previously stated, defines the layout of the IO device. This layout 

represents the exact module configuration which must match the GSDML configuration. The 

configuration file uses the Expected suffix to underline the concept previously described. 

 

Figure 7 - Slots and subslots structure 

The MARTe2 signal related portion of the configuration file need additional keys to place the 

signal in the correct slot/subslot/offset (i.e., the position in the memory bank) plus a direction 

       
       
            
          

          
               
                   
                       
                   
                    

 
 

 

                                         

                                             
                        

                                          
                                                    
            
                                                  
          
                          
               
           
            
                      
                                            
                                                     
                                               

                                                                                                                                             
                                                                                                                                        
                   

VendorIdentifier = 0xFEED [1] 

DeviceIdentifier = 0xBEEF [2] 

OEMVendorIdentifier = 0xC0FF [3] 

OEMDeviceIdentifier = 0xEE01 [4] 

DeviceVendor = "rt-labs" [5] 

ManufacturerSpecificString = "PNET demo" 

[6] 

<DeviceIdentity VendorID="0xfeed[1]" 

DeviceID="0xbeef[2]"> 

    <InfoText TextId="IDT_INFO_Device"/> 

    <VendorName Value="rt-labs[5]"/> 

</DeviceIdentity> 
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attribute (input/output). The last parameter, NeedsSwapping is used to manage the endianness 

between the PROFINET standard and the architecture standard. It should be set to 1 (true – 

enabled) to let PROFINET manage automatically the endianness but can be disabled if a binary 

blob needs to be transferred. Moreover, an internal mapper takes care of the conversion between 

IEC 61131 types and MARTe2 types, to make sure the data exchange is consistent. 

 

Figure 8 - Signal declaration and GSDML matching counterpart 

Last words on the ancillary signals, previously referred to as operational signals. They are also 

made available from the DataSource and are used to represent the PROFINET IO device LED 

status and the readiness signal. The latter comes handy to inform downstream GAMs that data 

coming from the DataSource is stale and should not be considered for the computation. This 

may happen during the start-up phase but can also happen if any problem occurs. 
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Figure 9 - Ancillary (operational) signals layout 

3.6.6 DEVELOPMENT AND TEST 

The ProfinetDataSource was entirely developed, from scratch, as part of the collaboration with 

Fusion for Energy. Its main purpose is to support the factory acceptance tests (FAT) for the 

Electron Cyclotron Resonance Heating system at the ITER plant (ECRH) [31].  

It is currently part of the MARTe2-components bundle (Components / DataSources / 

ProfinetDataSource) currently hosted on the F4E GitLab and GitHub servers [30]. It is also 

under QA, has a comprehensive suite of tests to bring the coverage to the community standards 

and is also kept under the F4E continuous integration (CI/CD) system. The DataSource was 

also successfully linted against the MARTe2 MISRA C++:2008 rule set, for the relevant part 

(ProfinetDataSource and ancillary classes and interfaces). Portions of the adapter, due to its 

internal dependencies on the p-net stack, are not subject to the linting process. 

During the development steps, to emulate the IO controller, a CODESYS instance was deployed 

on a Raspberry Pi model 3B (CODESYS Control for Raspberry Pi SL). This instance allows 

the execution of a PLC on a single board computer. As engineering tool, an instance of 

CODESYS was also installed on a standard machine, to load and test configuration code and 

GSDML on the PLC. The CODESYS environment was chosen to allow a comfortable 

environment for the continuous integration toolchain. The CI toolchain test is based on a run of 

a fully-fledged MARTe2 real-time application with the DataSource and a simple “loopback 

code” on the PLC which copies input on outputs and the MARTe2 application matching sent 
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with received data. The loopback uses all the different data-formats available to consider also 

representation problems. 

The ProfinetDataSource also underwent an on-field testing using the production PLC 

environment (Siemens SIMATIC S7-1500 equipped with PROFINET interface) and 

engineering tool (Siemens TIA Portal) to assess the validity and correctness of the DataSource 

operation. 

The extensive test campaign allowed the discovery of a problem in the p-net library. The opened 

issue (issue #315 – Correct Shutdown Sequence) allowed the stack library developers to fix the 

encountered bug with the proposed solution. The commit (Set SO_REUSEADDR for Linux 

UDP sockets to enable fast restarts) closes the case and was merged into the main branch of the 

rt:labs p-net library, available on their GitHub official repository (close #374 for issue #315) 

[37]. 

3.6.7 PROFINETDATASOURCE CONTEXT 

ITER ECRH & CD system 

The ITER Electron Cyclotron Resonance Heating and Current Drive (ECRH&CD) system is 

designed to inject 20 MW of millimetre-wave at 170 GHz into the vacuum vessel. The EC 

system is composed of different sub-systems, each one with its own local controller called 

Subsystem Control Unit (SCU). The main sub-systems are the High Voltage Power Supplies 

(HVPS), RF sources (Gyrotrons), Transmission Lines (TL), Ex-vessel Waveguides (EW) and 

Launchers. The integration of all the sub-systems, the system preparation for operation and the 

execution of real-time requests coming from the plasma control system are some of the main 

EC Plant Controller (ECPC) functions. 

The main functions of the ECPC are: 

- Manage EC subsystems parameters and waveforms 

- Allow operation of each single EC subsystem 

- Coordinate the state machines of the EC plant 

- Control the EC plant following real-time requests and references coming from the 

PCS 

- Implement fast and slow protection functions 

- Publish to CODAC (Control, Data Access and Communication) signals to be 

monitored 
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Figure 10 - ECCS Architecture and, in dotted rectangle, the ECPC 

The ECPC interfaces with the ITER central I&C, which is composed of the following control 

and protection functions: 

- The Central Safety System (CSS): plant-wide nuclear (CSS-N) and occupational safety 

(CSS-OS) 

- The Central Interlock System (CIS): plant-wide investment protection 

- CODAC Systems and Networks: overall plant systems coordination, supervision, plant 

status monitoring, alarm handling, data archiving, plan visualization (HMI) and remote 

experiment functions. 

The ECPC state machine is the highest node in the hierarchy of the state machines. It interfaces 

to Central I&C and coordinates all the systems of the plant which are to be operated 

synchronously [38].  

FAT-Tools and ProfinetDataSource 

The factory acceptance testing tools system (FAT-Tools) is a hardware/software toolset used 

to emulate systems which are connected to and controlled by the ECPC, to validate the correct 

operation of the control logic. The emulation takes place in emulated sub-system control units 

which are functionally equivalent to the real ones. The ProfinetDataSource is used in the SCU2, 



 
45 Chapter 3. Development for MARTe2 framework 

where the FAT-Tools project provides a SCU-PLC in the form of a MARTe2 application, that 

is used for the SCUs simulation. The objective of the SCU2-PLC MARTe2 simulator 

application is to simulate a PLC, allowing communication with ECPC-PLC through 

PROFINET [31]. 

3.6.8 EXTENDED USAGE SCENARIOS AND CONCLUSIONS 

While the ProfinetDataSource need was dictated by the needs of the ECRH FAT-Tools suite 

scenario, its development and vision achieved a wider result than the basic intended. In fact, 

the ProfinetDataSource can be used in the entirety of scenarios where the interfacing with 

PROFINET bus is needed. Two main operating modes were identified: 

- Slave emulation mode: the DataSource can be used to emulate the field, to assess, 

validate and test PLC software algorithms. The field data, generated inside specific 

MARTe2 applications, can be presented in the PROFINET bus with the DataSource, by 

perfectly emulating a manufacturer IO device and its GSDML description. Testing the 

PLC logic, especially without the field, can be seen as an accelerator and helps 

improving the overall quality of the code, also taking into account the number of tests 

that can be driven by emulating each possible field condition in a production-ready 

environment. The ProfinetDataSource, with MARTe2 driven field data supply, can 

emulate almost every field configuration, presenting data at the IO device inputs and 

behaving like a controlled field. 

- Bridging mode: the DataSource can be used to bridge the industrial field control with 

other worlds that are not directly compatible (e.g., Data Acquisition Cards) by using 

MARTe2 as a bridge and translating signals between the worlds. The bridging mode 

also allows the creation of “intelligent” field peripherals, that are seen by the field as IO 

devices but can run opportunely configured MARTe2 instances to accomplish logics 

that are not normally available in this kind of devices (signal pre-processing, complex 

logic). This scenario is extremely interesting, considering the portability of MARTe2 

(also part of this thesis work) on microcontroller-based devices. What happens is 

essentially that a MARTe2 real-time application can source or sink data from the 

ProfinetDataSource. Sourcing (or sinking) signals from the PROFINET bus allows slow 

controllers (PLC) to send or receive) data to/from otherwise non-compatible devices 

and viceversa, using MARTe2 as bridge to adapt data between the two worlds. 
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The bridging mode can also be seen, in a wider vision, as a first step to move towards the 

integration between the off-the-shelf solutions typical of the ICS world with the custom 

solutions of the PCS world [39]. In this vision, the two systems, that actually require a 

separation between the two contexts, can also be integrated together towards a totally integrated 

plant monitoring and control system. The interesting scenario brought by the merging of the 

PROFINET bridging use case with the MARTe2 porting on ARM platforms, especially for the 

STM32 series of microcontrollers, opens interesting ways to rapidly develop powerful control 

systems solutions, ready for the field application. 

 



CHAPTER 4. MARTE2 PORTING ON ARM 

The MARTe2 tiers and layers structure also encompass the definition of an additional 

subdivision, with respect to previously described layered structure. Two sub-layers, 

architecture and environment contain the definition of the hardware (architecture) related 

aspects of the framework and underlying software connections (environment). As the tier/layer 

structure is tightly followed, in terms of dependency chain, this further differentiation allows 

the porting of the framework become a streamlined process [25]. 

Porting MARTe2 to another architecture, reduces the activity to the writing of the two sub-

layers code (architecture and environment), located inside the lowermost (L0 and L1) and 

uppermost (L6) layers of the framework structure. The fact that there are no explicit 

dependencies on the platform, outside of the designated containers, allows the porting of the 

framework also to bare-metal platforms, without an underlying operating system. 

4.1 CHAPTER KEY-POINTS 

- Porting was developed starting with several platforms, to abstract and generalise the 

procedure. This step resulted in core framework modifications. 

- The activity landed to the final production environment, allowing MARTe2 to run on 

high performance embedded platforms. 

- The target embedded platform and specifically developed MARTe2 applications will 

run in the magnetics diagnostics system to acquire, process and stream sensor data at 

the ITER experiment. 

- The sensor data processing application required further development of MARTe2 

components. 

- All the developed modifications, porting and components become part of the MARTe2 

framework. 

4.2 INTRODUCTION TO THE PORTING 

The porting of MARTe2 was developed as part of the traineeship collaboration with Fusion for 

Energy, to create a signal processing platform for the ITER magnetics diagnostics project. The 
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porting main objective was to run MARTe2 on two custom boards based on the AMD Xilinx 

Zynq Ultrascale+ SoC (Quad ARM Cortex A53 + Dual ARM Cortex R5 + ARM Mali 400 + 

FPGA). On the two boards, two specific MARTe2 applications are executed to process the 

sensors signal from the ITER tokamak vessel-positioned magnetic probes.  

An operating scheme, not very common for multi-core CPUs, called Asymmetrical Multi-

Processing (AMP), sees the quad-core CPU as four single-core independent units, each one 

running a separate MARTe2 application. The on-board RAM is split in 4 partitions and a 

complex scheme based on shared memory is used to share signals data between cores. On one 

of the two bespoke hardware solutions, the three independent MARTe2 applications are also 

different: two of them run a bare-metal porting while one is based on a real-time operating 

system. While the first uses the full core power to process the ADC data coming from the 

magnetic probes, the latter runs a monitoring, diagnostic and control application on the real-

time OS. 

The porting activity also included the generalisation of the original MARTe2 porting scheme, 

together with a porting stub that can be used, and the targeting of ARM Cortex F4 series of 

microcontrollers, which are common is STMicroelectronics STM32 series and the Raspberry 

Pi’s Cortex A53/72, again in bare-metal configuration. The first, MCU based target, running 

MARTe2, represents a perfect solution for the rapid development and deploying of cost-

effective field control solutions. 

In this chapter, the thesis work in the field will be explored, starting with an introduction to all 

the techniques and challenges that were encountered during the development. 

4.3 EMBEDDED SYSTEMS AND ARM 

On the yearly production of around ten billion of processors, only the 2% of them becomes the 

central part of personal computers. The largest shareholders of processors are the embedded 

systems manufacturers. Every modern device, from household and toys to the vehicles and plant 

controllers run a processor with a custom software to do a specific thing. This leads to the 

definition of embedded system, a combination of hardware and software designed to perform a 

specific task. Some definitions to the embedded system add other clauses or restrictions to the 

term, but the essence is that the system becomes embedded when the controller unit is a 

fundamental part of a complete device relying on a bespoke electrical, electronic and sometimes 
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mechanical solution. Embedded systems are dedicated to a specific task, leading engineering 

processes to optimize performances, energy usage, reliability or every other aspect which is key 

to the success of the controlled system. 

The thesis work is centred on two classes of embedded systems: the System-on-Chip (SoC) and 

the Microcontroller (MCU): 

- System-on-Chip: they integrate most (or all) components of an electronic system into a 

single die. A SoC may integrate CPU, GPU, I/O devices, FPGA, RAM and secondary 

storage, DSP and everything else needed for the target application. SoCs are the hearth 

of smartphones, tablets and mobile/edge computing systems. 

- Microcontroller: in an approach like the SoC, microcontrollers tend to integrate the 

needed peripherals inside the chip die. Microcontrollers tend to integrate less 

computational and more field related peripherals (i.e., no GPU, lower performance 

cores, less RAM, little secondary storage but lots of I/O, ADC/DACs, interconnection 

buses like I2C, SPI, USART, CAN). MCUs are the hearth of most automation 

controllers’ systems. 

The AMD Xilinx Zynq Ultrascale+ belongs to the SoC class of embedded systems, as 

previously stated it integrates four ARM Cortex A53 cores, Two ARM Cortex R5 cores, an 

ARM Mali 400 GPU and an AMD Xilinx FPGA, plus a series of ancillary devices. The STM32 

F-series belongs to the MCU class of embedded systems, it integrates a single ARM Cortex M 

core aside a multitude of external interfaces (ADC/DACs, general purpose I/O, I2C, SPI, CAN, 

USART) [40]. 

ARM is a semiconductor design company based in England. It provides design for 

semiconductor intellectual property core (SIP or IP cores), reusable components which can be 

used in the design of systems. Usually, an ARM core IP is bought by an original design 

manufacturer, which integrates it with other parts and peripherals to produce a complete device 

which can be successively built by a semiconductor fabrication plant. Smartphones are the most 

notable example of this kind of market, where Samsung Exynos or Apple A/M series are, 

essentially ARM Cortex cores IPs with customisation and integration of application-oriented 

peripherals (radio/modem, notably). 
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4.4 BARE-METAL VS OPERATING SYSTEM 

In a usual configuration, a CPU is used in conjunction with an operating system which manages 

and mediates access to all the hardware available on the platform, by means of drivers. User 

code, sometimes called programs run in the context of the operating system. Reference to the 

hardware is not always necessary in a user program which runs under an operating system, 

system calls are used instead, to ask access to a peripheral, by means of an operating system 

driver. The driver oversees accessing the hardware while the OS mediates and abstracts the call 

into a more generic one. A simple example is represented by the access to the file system or the 

network, where, instead of caring of network or disk related issues (disk geometry, sectors, 

heads, physical layers, media converters), the user simply calls an OS primitive (connect, bind, 

send, receive, open, close, read, write, …). Among the various tasks accomplished by the 

operating system we can find the core and memory management and the sharing of the 

resources (time, memory, execution unit). 

An operating system takes care of a multitude of behind-the-scenes tasks, allowing the user to 

concentrate on the application itself and not on the management. This approach eases the 

development of applications but at the cost of a reduction in overall performances (not always 

true but realistic, as long as the resource usage of the user application moves close to the 

performance limits of the platform), especially in terms of jitter (fluctuations around 

periodicity). 

In complete contrast with the Operating System approach, the bare-metal programming has no 

supporting operating system taking care of the sharing, mediation and arbitration on the 

available resources. The user code is the only code running on the platform and is responsible 

for everything happening. Drivers are usually a mere layer of libraries (hardware abstraction 

libraries – HAL) and hardware access is almost direct.  

A halfway solution between bare-metal and operating system is the availability of real-time 

operating systems (RTOS). There are many solutions, from commercial to open-source ones. 

The key in a RTOS is the complete control over the execution time and deadlines of all the 

tasks running on the platform. Some real-time operating systems offer an almost bare-metal 

approach where a minimal real-time scheduler with abstractions related to CPU time sharing 

management are offered. In some RTOSes, networking stack and filesystem access is achieved 

similarly to bare-metal approach (libraries relying upon hardware abstraction layers, like lwIP 

or FatFs). 
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The presented work of thesis, in the topic of the MARTe2 porting, deals with both the bare-

metal and real-time operating system porting of the framework on ARM cores. A key 

understanding is that MARTe2 offers layers that can be mapped both directly on hardware 

(bare-metal) and upon an operating system (OS, also RTOS). The upper layers are hinged on 

these contact points and have no further dependencies, allowing the porting to virtually any 

device. 

4.5 ASYMMETRICAL VS SYMMETRICAL MULTIPROCESSING 

Common embedded systems available nowadays rely on multiple core (or multiple CPU) on 

the same die. From software point of view, two strategies are possible: Asymmetrical and 

Symmetrical Multiprocessing (AMP vs SMP). In Asymmetrical multiprocessing configuration 

each core (or CPU) operates as it is alone on the platform. In Symmetrical multiprocessing, the 

operating system (or a software called hypervisor) runs on all the cores and manages its 

workload across them. AMP mode can be achieved also on different cores and CPUs 

(heterogeneous vs homogeneous). For SMP to happen, instead, the system must be 

homogeneous (all cores or CPUs of the same identical architecture). SMP is an extremely 

common approach, it is used by the almost every operating system (Linux, *NIX, Windows, 

etc.) while AMP is not very common and is used in very particular applications, especially in 

its bare-metal AMP flavour. 

The thesis work deals with the porting of MARTe2 on: 

- Bare-metal AMP (AMD Xilinx Zynq Ultrascale+ Cortex A53) 

- FreeRTOS AMP (AMD Xilinx Zynq Ultrascale+ Cortex A53) 

- HAL-based single core and AMP (STM32 ARM Cortex M4, ARM Cortex A53/A72) 

The first two porting flavours, bare-metal and FreeRTOS AMP on the Ultrascale+ platform, are 

used for the ITER Magnetics Diagnostic bespoke electronics. These boards oversee the 

processing sub-system connected to the magnetic probes using a combination of FPGA and 

MARTe2 processing to produce filtered streams of data coming from the magnetic sensors. 

The scope of the work is planted on the porting of MARTe2 platform, on the transfer of the 

FPGA processed data inside the MARTe2 real-time application, on the inter-core, real-time 

data exchange in AMP configurations and on the coexistence of bare-metal and FreeRTOS on 

three cores of the same CPU. The work proceeded along a staged pipeline of tasks with short 
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term objectives where all of them became part of the MARTe2 framework bundle, the specific 

Ultrascale+ application instead is part of the 55.A0 Magnetics Electronics and Software 

interface project, serving as interface between the magnetic diagnostic sensors and the ITER 

CODAC I&C networks. Some side projects, like the Raspberry Pi and STM32 portings still 

need some refinements to reach the quality level needed to be released, however they represent 

an extremely important milestone and the growing interest, especially towards the STM32 

MCU porting, will surely impact the future development objectives. 

4.6 MARTE2 CODE ORGANISATION 

As previously stated, MARTe2 is organized in tiers and layers, where the lowermost (L0 and 

L1) and the uppermost (L6) layers contain two sub-level differentiation: Architecture and 

Environment. The architecture sublevel contains abstraction related to the hardware platform 

while the environment contains abstractions related to the underlying software or operating 

system, specifically the layer interested in the porting are: 

- BareMetal 

o L0 Types contains the definition of the basic types used across the framework 

(architecture only) 

o L1 Portability contains the atomic operations and memory management 

operations (both architecture and environment) 

o L6 App contains the base application kickstart (environment only) 

- FileSystem 

o L1 Portability contains the code for sockets and filesystem access (plus other 

abstractions) (environment only) 

o L6 App contains the base application kickstart which depends on the filesystem 

(environment only) 

- Scheduler 

o L1 Portability contains the scheduler code aside OS or architecture dependent 

primitives (both architecture and environment) 

The porting process consists of writing platform code for the highlighted layers, caring for 

upper layer primitives’ expectations. This is true and simple when dealing with a porting for an 

operating system but, when dealing with bare-metal platform, extra steps must be taken to 

ensure that the hardware is correctly initialised and ready before running MARTe2 on-top. The 
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work undertaken for this thesis work explored several platforms before landing on a suitable 

universal solution which required some modifications to the structure of the framework. 

Amongst them, entry points for the hardware initialisation before and after the whole MARTe2 

framework initialisation where introduced. In the Ultrascale+ platform, this work was 

exacerbated by the presence of an extremely complex platform which needed initialisations at 

several stages of MARTe2, plus hooks to handle the network stack and UART output. 

4.7 MARTE2 PORTING SCAFFOLDING 

This procedure started from the existing MARTe2 porting code and guidelines to achieve a 

streamlined porting procedure, also with the help of a “empty porting stub” which was 

specifically made. Official MARTe2 porting before the start of the presented work were 

available for Linux (architecture x86_gcc, environment Linux) and Windows (architecture 

x86_cl, environment Windows). 

4.7.1 THE MAKEFILE MECHANISM 

As previously described, layer folders may contain one or both the Architecture and 

Environment subdirectories, with the relevant code kept into them. Architecture and 

Environment folders contain other folders, in turn which represents the specific platform 

(architecture) and operating system/environment (environment). A porting is represented by a 

complete couple of architecture-environment. This convention and naming scheme is done to 

encourage code reusage across the possible combinations and avoid the proliferation of 

(Architecture x Platform) combinations of mostly copy-paste code. 

Bundled (official) MARTe2 architecture and environment directories must reside under the 

MARTe2 tree, before the rework of the Makefile mechanism. One of the modifications brought 

to the framework was the introduction of the support for the external custom porting placement. 

With this modification, “unofficial” or own work can be kept well clean outside the MARTe2 

directory tree, with all the deriving advantages. This mechanism is obtained by leveraging the 

MARTe2 Makefile structure. 

This mechanism is based on the directory MakeDefaults which contains two files 

(MakeStdLibDefs and MakeStdLibRules) for each couple of Architecture and Environment. 

Official portings have these two files placed under the MARTe2/MakeDefaults. The introduced 

new mechanism allows own or “unofficial” work to re-define the MakeDefault path with an 
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environment variable to suit for a specific directory placement. This mechanism also allows 

partial porting (Architecture or Environment only) to exist outside of the MARTe2 directory 

tree, to further encourage code base re-utilisation (e.g., reuse bundled architecture with user 

own environment or vice-versa). 

4.7.2 ARCHITECTURE AND ENVIRONMENT UNBINDING 

Another introduced concept was the Architecture/Environment unbinding. Some scenarios 

(notably the Zynq Ultrascale+ platform) need a customisation to the architecture or 

environment porting which contains elements bound to the platform itself, resulting in a 

genericity loss. For instance, the armv8-gcc porting types in the Ultrascale+ platform is bound 

to the platform itself and contains definitions which are clearly outside the scope of armv8-gcc 

universality. In these scenarios, the approach expects a modification in the generic porting 

which, using a directive defined in the MakeDefaults selects the right specialisation for the 

platform. This mechanism also offers a fallback to the default “clean” implementation. 

4.7.3 TEST ENVIRONMENT PORTABILITY 

MARTe2 quality assurance is based on an extensive test suite. This test suite is in turn based 

on the Google Test (GTest) unit testing library for the C++ programming language [41]. The 

GTest suite is not always portable to all architectures, especially on embedded systems. The 

need to have the ARM porting integrated into the MARTe2 QA and CI systems leaded to the 

choice to implement a small suite which could replicate the behaviour of the GTest suite and 

keep a 1:1 compatibility with the already implemented MARTe2 test codebase. 

For these reasons a Portable Test Environment was implemented and integrated into the 

MARTe2 test toolchain. This test environment relies on the static linking of the library under 

test and exposes the relevant test macros in order to maintain full compatibility with the existing 

test suite. As the static linking of both the framework and test suite generates binaries which 

could be larger than the storage (especially true in MCU porting scenarios), a link filter was 

also implemented. This link filter can work in two modes, which essentially select the 

granularity of the selection (layer or library mode) and the inclusion or exclusion (whitelist or 

blacklist mode).  
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he GTest “emulation” mechanism is based on a suite of macros, which, when compiled expand 

the single test suite to a static binary which calls sequentially all the test cases. It also provides 

an output mechanism to generate the same output as GTest, for the continuous integration 

mechanism to produce the pass/fail report. 

  

The two snippets above show two macros that are “emulated” from the GTest suite 

(ASSERT_TRUE / ASSERT_FALSE) and how the macro-based expansion mechanism 

manages to generate the test suite from the sources, keeping the compatibility. 

The moving from GTest to a custom Portable Test suite had a series of advantages, both 

applicable to the development of the porting itself and to the integration of it in the MARTe2 

QA/CI/CD process. Moreover, keeping the same interface avoided a complete rewriting of all 

the test suite and allowed the inheritance of the actual code metrics, without impairing future 

releases or modifications to the sources. 

4.7.4 START-UP HOOKS AND BOOTSTRAP PROCESS 

The MARTe2 application (MARTeApp) already includes a main function which starts up the 

application, after the complete initialisation of the platform. Moreover, before the entry point, 

static initialisation of some MARTe2 vital structures takes place. Some platforms, especially 

embedded systems and microcontrollers, require hardware and peripheral initialisation to occur 

before everything else. 

Three hooks where added, two occurring before the MARTe2 GlobalObjectsDatabase 

constructor begins its initialisation loop and one occurring inside the L6 Application bootstrap, 

which is the MARTe2 entry point. 

#define ASSERT_TRUE(x) \ 

this->testResult = x; \ 

printf("%s", \ 

(this->testResult)? \ 

" PASS\n":" FAIL!\n") 

 

#define ASSERT_FALSE(x) \ 

this->testResult = !x; \ 

printf("%s", \ 

(this->testResult)? \ 

" PASS\n":" FAIL!\n") 

 

#define TEST(x,y) \ 

class Tester_##x##_##y : \ 

public TestMarkerInterface {\ 

public: \ 

Tester_##x##_##y() : \ 

TestMarkerInterface(#x, #y) {} \ 

virtual void Test(); \ 

}; \ 

 

static \ 

Tester_##x##_##y \ 

Test_##x##_##y; \ 

Bootstrapper \ 
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These three hooks are: 

- InitHardware(): called first 

- InitPlatform(): called immediately after InitHardware() 

- MARTe2HardwareInitialise(): called in the MARTe2 main 

Note that the two early hooks (Hardware/Platform) follow the MARTe2 

Architecture/Environment separation of concerns. This is done again to promote the code reuse 

and maintain the same philosophy across the whole framework. 

The MARTe2 FreeRTOS porting on the Ultrascale+ platform raised another scenario which 

resulted in further modifications to the application start-up process. FreeRTOS on the 

Ultrascale+, when using networking, requires that some initialisation relative to the network 

physical layer occurs before the GlobalObjectsDatabase start-up. Conversely, the initialisation 

of the networking stack (lightweight IP – lwIP) must occur inside the FreeRTOS environment; 

that initialisation step must instead execute once and before the MARTe2 task is executed. 

Moreover, the network initialisation task must run another task which oversees the data 

transfers to and from the stack and manages the timers (timeout, TCP, DHCP). This twist, which 

requires the suspension of the main MARTe2 task until the networking initialisation one has 

finished, required a modification of the start-up process. The MARTe2 application, instead of 

implementing directly the main function entry point, calls a further entry point passing the 

desired code for the main function to be executed in the Bootstrap. In this way, the Bootstrap 

porting, which knows the specific environment needs, decides if calling directly the desired 

main function (as in the standard Linux or bare-metal) or to execute it in the context of a task 

(as in the FreeRTOS implementation). The FreeRTOS environment specific MARTe2 

bootstrap calls a pre-loader function which suspends itself using the vTaskSuspend() 

primitive until the context inside the MARTe2HardwareInitialise. The 

MARTe2HardwareInitialise itself spawns another task which initialises the network and signals 

the resume to the pre-loader function. Finally, the resumed pre-loader can run the MARTe2 

application and tasks devoted to initialisation can be safely deleted. This extremely intricated 

situation happens since a particular execution order of operations that must execute in the 

context of a task is required. The execution order cannot be guaranteed by FreeRTOS, which 

would have scheduled tasks and started its time slicing. However, the need to force the 

execution order led to the development of a general solution for the start-up initialisation and 

order of execution. 
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4.7.5 PORTING STUB 

The porting activity landed to the implementation of a “porting stub” which is a collection of 

“empty” files which only contain a structure ready to be filled. The stub is also supported by a 

walkthrough with a per-class implementation hints, procedures and suggestion. The stub is 

available, together with the walkthrough and porting guide, as part of the MARTe2 

documentation. 

4.7.6 ACHIEVEMENTS 

The described framework for the porting, the stub, the companion walkthrough and all the 

modifications made are now merged and part of the MARTe2 framework on the master 

(release) branch. The documentation work became part of the MARTe2 official documentation 

and is available for users to launch their own porting. The code, documentation, the stub and 

all the presented comments are available on the Fusion for Energy code repository both on 

GitLab and GitHub. 

4.8 MARTE2 PORTING FOR THE BARE-METAL RASPBERRY PI 

One of the first attempts to port MARTe2 was targeted to the Raspberry Pi bare-metal. The 

justification for this particular choice was related to the fact that the Raspberry Pi single-board 

PC offers a cost-effective solution with some expansion capabilities which suit the possibility 

to run MARTe2 in a practical control application. As a plus, foreseeing the Zynq Ultrascale+ 

platform porting in bare-metal, it was deemed a fundamental step to investigate porting 

opportunities beforehand, also considering that some Raspberry Pi models share the same cores 

of the Zynq Ultrascale+ (i.e., ARM Cortex A53 – ARMv8, which can be found in Pi3B, Pi3B+, 

Pi3A+, Pi02W). 

Moreover, the bare-metal porting of MARTe2 on the Raspberry Pi was also considered for its 

QA implications in the maintenance on the CI of the ARMv8-gcc architecture. This idea was 

also enforced by the fact that a Raspberry Pi could be emulated using Quick EMUlator (QEMU) 

virtualisation technology and its image could be quickly deployed into the CI chain. 

The Raspberry Pi porting is based on the Circle bare-metal programming environment, targeted 

for almost every Raspberry Pi (except for Pico). It is written in C++ and provides facilities 

which match the requirements of MARTe2, to access the filesystem and the network stack. The 

Raspberry Pi porting was also key to the development of the test framework, which 
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implementation posed first porting problems. However, the Raspberry Pi porting still is not 

deemed mature enough to be included in the MARTe2 master branch and to the current date 

resides in a dedicated branch (develop-circle), waiting for a further development cycle. Beside 

the achievement of having MARTe2 running bare-metal on the RPi, the extensive testing with 

the MARTe2 framework allowed the discovery of a bug in the circle-stdlib library, on which 

the bare-metal circle library relies. The problem was related to a memory move (memmove) 

primitive call in AARCH64 environment (Issue #22 Bad memmove behaviour). Fix for this 

bug was implemented and become part of the library with the version v44.1 and circle-stdlib 

v15.8 (commit 86094cf, “Implemented fix for issue #22”). 

4.9 MARTE2 PORTING FOR STMICROELECTRONICS STM32 

An early attempt to port MARTe2 on microcontroller was developed, starting from an already 

existing codebase from the MARTe2 repository. Some modifications were made, essentially to 

demonstrate the capability of the MARTe2 platform when running on this class of devices, 

which already own plenty of interfacing options for the field. Modifications that were made 

served to suit the newer boilerplate HAL code produced by the STMicroelectronics Integrated 

Development Environment (STM32CubeIDE) with the existing implementation. 

The MARTe2 porting for the STM32 platform was successfully tested on an STM32F746 

platform (ARM Cortex M7 core) and two custom DataSources were developed, specifically 

one to access the ADC and the other the UART peripheral. Although the code is not deemed 

mature enough to be included in the MARTe2 master branch, the porting on this class of devices 

seems extremely promising for the field of real-time control applications. 

This particular platform for the execution of MARTe2 can be considered as a turnkey solution 

even for complex real-time control applications, where MARTe2 is used in conjunction with 

the plethora of onboard peripherals available. The porting, which now is currently in standby, 

will return in development and brought to operation as there is growing interest in its 

potentialities and use cases. 

4.10 MARTE2 PORTING FOR THE AMD XILINX ULTRASCALE+ PLATFORM 

Another key development is represented by the porting of MARTe2 on the AMD Xilinx Zynq 

Ultrascale+ Multiprocessor SoC (MPSoC) hosted on the Trenz Electronics TE0808 System-on-
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Module (SoM). The Ultrascale+ SoC is integral part of the bespoke electronics for the 55.A0 

magnetics electronics and software, providing the interface between the magnetic diagnostic 

sensors and the CODAC I&C networks. 

The development activity for the Ultrascale+ platform was not only limited to the porting of 

MARTe2 but also included the assembly of a complex real-time control application which 

spawned on three of the four ARM Cortex A53 cores onboard, the development of ancillary 

modules to support the inter-core communication and the data transfer from the FPGA to the 

CPU (Programmable Logic – PL to Processing System – PS) and an extensive test campaign to 

validate the performance requirements of the whole hardware/software ensemble. 

Before retracing all the development steps and achievements, an introduction to the magnetics 

diagnostics and on the context will be given, to allow a deeper understanding of the architectural 

and implementation choices that were made. [42] 

4.10.1 INTRODUCTION TO THE MAGNETIC DIAGNOSTICS IN GENERAL 

Magnetic diagnostics is a passive diagnostic method which is used to measure the field and flux 

of the plasma, by means of magnetic probes. The magnetic diagnostic allows the assessment of 

macroscopic plasma characteristics and, under favourable conditions, the plasma parameters in 

detail and the MHD activity. These measurements allow the detection of several key plasma 

parameters, such as: 

- Plasma current defines plasma equilibrium, is measured with multiple distributed 

solenoids called Rogowski coils, which surround the plasma column. The plasma 

current value is obtained by integrating the signal from the probe. The current can also 

be obtained by applying Maxwell-Ampère equation to a set of discrete pick-up coils. 

Independent measurements of the plasma current are key to the machine operation 

reliability. 

- Plasma vertical speed for vertical stabilisation control. 

- Loop voltage characterizes plasma contamination with impurities and is one of the 

parameters used to compute the average resistivity, together with plasma current and 

cross section. 

- Position along the major radius, serves to avoid contact between plasma and plasma 

facing components. 

- Shape of the outer magnetic surface. 
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- Plasma MHD perturbation parameters, amplitude, frequency, mode structure, 

correlation coupling by measuring field fluctuation characteristics. 

Magnetic measurements involve some difficulties, especially in large machines. As the 

estimation of many parameters requires the integration of the sensor signal (to compute the 

flux/field from the measured voltage), when the discharge duration is long a value drifting is 

encountered, leading to a degradation of the integrated measurement. [2] 

4.10.2 55.A0 MAGNETICS DIAGNOSTICS 

The ITER magnetic diagnostic, 55.A0, provides measurements of the magnetic properties of 

the plasma, from raw parameters (local field and flux changes) through time-integrated 

quantities (field and fluxes) to complete equilibria and derived plasma properties (shape, 

position, speed, energy, slow and fast instabilities). To do this the diagnostic uses multiple 

sensor groups as subsystems: 

- Set of pick-up coils, saddle and voltage loops mounted on the inner wall of the vacuum 

vessel. 

- Rogowski coil mounted around earth straps of the blanket shield modules. 

- Sets of pickup coils, Rogowski coils and shunts mounted on the divertor diagnostic 

cassettes. 

- Sets of pick-up coils, loops and steady state sensors mounted on the outer surface of the 

vacuum vessel. 

- Continuous poloidal (Rogowski) loops mounted within the TF coil case. 

Signals from these sensors are conditioned, calibration factors are applied, and plasma 

properties are derived, in quasi-real time and offline using a dedicated set of processing I&C. 

The basic end-to-end outline of the system is relatively simple. The 25 groups of sensors 

transmit their signals via wiring systems to a set of conditioning units that are placed as close 

to the machine as feasible. Another set of wiring transmits the signals to the ITER diagnostic 

hall where the final analog conditioning takes place. The signals are acquired by dedicated 

ADCs and distributed to software modules that reside within the CODAC system. 
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Figure 11 - General overview of the ITER Outer Vessel A3/A4 Magnetic Sensors and side view of the CER loop in the TF 

coil 

The ITER plasma diagnostics system is required to provide accurate measurements of plasma 

behaviour and performance. There are three categories of parameters to be measured: 

- Group 1a1 includes those measurements needed for machine protection 

- Group 1a2 includes those measurements needed for basic machine control 

- Group 2 includes those measurements required for evaluation and physics studies 

The machine is unable to operate without a working diagnostic providing every Group 1a 

parameter. Group 1b includes those measurements required for advanced plasma control. For 

advanced operation, the machine is unable to operate without a working diagnostic providing 

every Group 1b parameter. The machine may operate without a Group 2 parameter diagnostic 

in operation.  

4.10.3 INSTRUMENTATION AND CONTROL SPECIFICATIONS 

The magnetics diagnostics will provide proportional (generally flux variation) and integral 

(flux) magnetics measurements to the Plant System Controller. These signals will then be used 

to computer relevant plasma parameters, such as the plasma shape and position. The estimated 

parameters will be used: 

- To control in real-time plasma parameters (e.g., position, shape, velocity, MHD 

instabilities). 

- To protect the machine from operating outside its operating space (e.g., interlock control 

of maximum plasma current values). 

- To study plasma physics. 
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The signal processing chain of the magnetics diagnostics is composed by three key layers: 

- A signal acquisition component, responsible for acquiring the probe signal and 

digitising, called “bespoke electronics”. 

- A DSP section which verifies the quality of the signal, performs the digital integration 

and routes data to the archiving network, to the interlock system and finally to the fast 

controllers that are responsible for executing scientific algorithms and marshalling 

validated data. 

The main function of the 55.A0 magnetics electronics and software is to condition, validate and 

supply the magnetic sensors output to the real-time plasma control, to the CIS interlock and to 

the Data Archiving Network (DAN) for post-pulse physics data analysis. 

As described in figures below, the main components of the anticipated systems are: 

- An integrator board to acquire data from the sensors. 

- A data processing board to aggregate and distribute data from many integrator boards. 

- A computing system to compute the physics parameters and distribute the results to the 

above-described systems. 

Considering the long plasma pulse duration foreseen for the ITER experiment, the integrators 

must exhibit extreme stability and low drift, for the reasons also described above. The large 

number of sensors (> 1600) and the fact that they are spatially scattered over the tokamak vessel, 

needs a highly distributed I&C architecture with many cubicles and components, 

interconnected with networks with latencies < 100 µs and bandwidth > 200 Gbps. 

 

Figure 12 - Bespoke electronics component 

 

Figure 13 - Analog stages of the integrator board 
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Figure 14 - Functional scheme of the digital integrator board 

Referring to previous diagrams, describing the architecture and components of the bespoke 

electronic, a short description of each stage is given. 

Input stage. Adapts the input voltage to electronic levels, it is kept as simple as possible in 

order to minimize the thermal voltages. This stage attenuates the larger input signals so they fit 

within the ADC input range. The integral channel includes a capacitor implementing a first 

order filter in order to remove the high-voltage high frequency signals. 

Chopper. Square-wave modulation, only for the integral channel. This stage is the key 

component of the digital integrator and provides a conceptual barrier between the input stage 

and the following electronics. The modulation stage consists of an analogue chopper which 

inverts the signal periodically with a 50% duty cycle. Being a square modulation, the signal is 

spread around the chopper frequency. 

Electronics post-chopper. Very high input impedance segregates the input stage from the 

antialiasing filter, avoiding overloading the input stage. This stage is a simple buffer in a 1 gain 

configuration. It increases the impedance seen by the chopper aiming at reducing any current 

to a minimum and avoiding the asymmetric voltages that these currents might generate. 

Anti-aliasing filter. Operational amplifier with a second order low-pass filter. It is 

implemented as multi-feedback second order filter with a fully differential operational 

amplifier. The response type is Bessel, to avoid over voltages on the chopper transients. The 

cut-off frequency depends on the channel: 

- Proportional channel has a cut off frequency of 1 MHz. This value allows to measure 

the 500 kHz of the AJ coils and, at the same time, it attenuates the frequency above the 

Shannon limit. In addition to the anti-aliasing filter, the PCB is placed inside an 

aluminium box and the cables are shielded and twisted. 
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- Integral channel has a cut-off frequency of 3 MHz, to allow for a better demodulation. 

A lower cut-off frequency could generate an unwanted DC voltage if the input 

frequency is twice the chopper frequency.  

ADC. Analog to digital converter, running at a maximum 2 Msps with a 22 bits resolution, 

aiming to obtain the maximum possible effective number of bits (ENOB). 

All the electronics are isolated: the communication of the FPGA with the outside world is done 

via capacitive coupling, while the power supplies are isolated via push-pull converter with 

magnetic coupling. The full isolation of the electronics avoids ground loops and outside noise. 

The main goal of the integral path is to keep the offset as low as possible and its subsequent 

drift after integration in order to meet the 500 µV*s in 3600 s drift requirement. [43] [44] [45] 

 

 

Figure 15 - High level architecture of the signal acquisition subsystem 

4.10.4 AREA OF INTEREST 

Two components of the 55.A0 magnetics diagnostics are interested in the MARTe2 porting 

activity. One is relative to the Main FPGA aggregator board and the other to the Best Ip board.  
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The Main FPGA board carries on the signal processing for all measures. It first performs an 

Electronic Offset (EO) compensation with a calibration parameter received from the 

configuration functions. After EO compensation the system demodulates the signal that has 

been inverted by the chopper. In parallel, the system performs the integration of the Wiring 

Offset (WO) calibration parameter received from the configuration functions. Then the signal 

is integrated and corrected with the results of the WO integration. After integration the signal 

is converted to physical units and decimated (filtered and down sampled) to 2 kHz. Each board 

integrates up to 30 ADC signals. 

Processed sensor data will then be sent to the functions for the computation of the plasma 

parameters for interlock.  The functions to compute the plasma current for interlock will 

perform the following activities: 

- Select the sensors to be used for the computation of a plasma current. 

- Perform plasma current validation. 

- Compute Best Ip with all the valid plasma currents. 

- Send the Best Ip to CIS PPM. 

- Send the individual Ip to CIS supervisor. 

In simple words, the Main FPGA board provides the interface between the integrator sensors 

and all the CODAC I&C networks.  

The Best Ip board, instead, implements the interlock function of computing the best plasma 

current with all the valid plasma currents. The best plasma current is sent to CIS PPM and other 

individual plasma currents are sent to CIS supervisor. The computation of the plasma current 

for interlock involves three sub functions: 

- Select sensor data from Ip. 

- Compute 6 / 12 Ip. The function computes the Ip as a linear combination of sensors. 

- Compute Best Ip averaging all the valid plasma currents. 

The quality parameter for the Ip is not computed in real-time but provided through 

configuration. 

Both the boards run on an AMD Xilinx Zynq Ultrascale+ MPSoC and TE0808 SoM and also 

using the same carrier board. 
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The porting activity was aimed at having a stable software platform able to run on the hardware 

modules to accomplish the signal processing and data streaming tasks required for the two 

applications. The power of delegating the solution to MARTe2 applications allows to go beyond 

the classical vertical firmware development approach, where the effort is concentrated for the 

specific solution with only a small (or non-existent) portion of reusable software components 

produced. With the MARTe2 approach, the effort goes solely into the direction of implementing 

correctly the porting, by meeting the framework expectation. The effort has twofold advantage: 

once MARTe2 is ported, all the robustness and dependability characteristics of the framework 

(QA, MISRA C++:2008, test suites) are ported and, with the fully fledged framework ported, 

all the existing (and tested) MARTe2 components bundle becomes available. Moreover, as the 

framework is maintained, new features and fixes become available, these will be also readily 

available also for the newly integrated platforms. 

4.11 MARTE2 BARE-METAL PORTING 

The activity of porting MARTe2 on the Zynq Ultrascale+ platform followed the process which 

was previously defined. The process, as aforementioned, requires the implementation of the 

code in architecture and environment portions of the framework outer layers. As some of the 

processes were already mentioned in the previously dedicated paragraph, only the relevant and 

peculiar implementations will be further analysed. The porting target is defined as a 

combination of arm_gcc architecture and BareUS environment. 

4.11.1 L0 TYPES 

The L0 types, which contains the mapping between MARTe2 and hardware types was ported 

using the Xilinx provided type-wrapper header. The usage of the manufacturer’s provided 

header for supported types, instead of the standard one (stddef/stdint), provides a homogeneous 

implementation and application across the whole Xilinx supported processors family. 

During the porting, the possibility to support (explicitly) also the NEON instruction set and, 

consequently, the needed NEON types was also explored. However, it was not deemed 

necessary, nor convenient as current algorithms are not suitable to support those types. 

Moreover, the explicit support or reference to hardware-related aspects in GAMs is strictly 

prohibited in the MARTe2 framework. 
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Xilinx provided types are all in the form [u - unsigned, s – signed] [8, 16, 32, 64] bits plus float, 

double and char (e.g., s32 for the C/C++ standard signed int type). 

4.11.2 BAREMETAL / L1 PORTABILITY / ARCHITECTURE 

The porting of this layer relies on ARM gcc built-in functions for memory model aware atomic 

operations. These functions are all prefixed with __atomic. These built-in functions require a 

memory order to be specified, that was defined using the less relaxed __ATOMIC_SEQ_CST 

[46], which enforces total ordering with all atomic operations. The choice to implement the 

most restrictive was done to favour safety over efficiency which would derive by the usage of 

a more relaxed requirement. 

Endianness conversion functions were delegated to the intrinsic __builtin_bswap[16, 32, 64] 

bits functions [47]. 

4.11.3 BAREMETAL / L1 PORTABILITY / ENVIRONMENT 

The MARTe2 high resolution timer abstraction leans above the Xilinx XTime library, which 

abstracts the access to the Cortex A53 MP core timer. The library is a simple wrapper to the 

CPU register read but takes care of eventual timer start-up and exposes convenient constants 

which define the tick frequency. In the Cortex A53 for the considered setup, the timer ticks at 

33.333.332 ticks per second (33,33 MHz, thus giving the microsecond accuracy needed for the 

framework). 

4.11.4 BAREMETAL / L6 BOOTSTRAP / ENVIRONMENT 

Hook functions are implemented to configure the memory management unit (MMU), 

instruction/data caches and execute low level initialisation for the clock distributor, which 

enables the network interfaces on the board. 

4.11.5 FILESYSTEM / L1 PORTABILITY 

The realised porting supports FatFs for the long-term storage, even though the production 

carrier board will have no direct usage. The FatFs can be used in SD Card mode or in RAM 

filesystem mode, the porting enables the RAM FS mode although it is never used. 

Networking stack was ported on lightweight IP (lwIP) stack in raw API mode. The raw API 

mode expects a specific stack call in the main loop function, that is not available in MARTe2, 

as the whole loop is internal and not exposed. To overcome this limitation, the network stack 

call was implemented directly inside the socket read and write functions via a specific hook 

function. This approach will allow the porting on similar platforms, which require an explicit 
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call to move data to/from the network interface inner ring-buffers to the user space. A select-

like behaviour was implemented, as receive function in raw API are callback based, instead of 

sequential. To implement the select behaviour a global singleton was created, where all created 

sockets are registered, with their respective handling callback. Once the packet is arrived, it is 

saved in the singleton structure aside ancillary data which help determine if the socket was 

selected and if a packet has arrived since then. In fact, while send functions are straightforward, 

with respect to MARTe2 expectations, the callback-based behaviour on receive is not directly 

suitable for the framework. The implementation uses the callback to fill a packet buffer and 

meets MARTe2 expectations in read function call, by returning the previously filled buffer. 

Another peculiar implementation is related to the multicast group join request for the BestIp 

board. In the standard lwIP foreseen implementation, the join request must be implemented in 

the main loop aside the network stack call. As this cannot be achieved, even with the usage of 

the hook, the join request enqueues its intention into a queue, which is progressively emptied 

in the network interface hook, when it is called, avoiding the stall situation which is created 

with the direct call. 

4.11.6 GAM BARE-METAL SCHEDULER (GAMBARESCHEDULER) 

To suit the needs of the bare-metal porting, a very simple scheduler was added to allow calling 

in an infinite loop all the GAMs that are declared in the MARTe2 real-time thread. The bare 

scheduler is not part of the porting itself but became directly part of the framework, as a drop-

in replacement for the standard GAM scheduler, which needs instead a more complex 

architecture to allocate thread, priority and CPU and other features that are not available on 

bare-metal.  

4.12 MARTE2 FREERTOS PORTING 

Again, the porting procedure followed rules described before, also for the FreeRTOS 

environment. This porting is backed by a real-time operating system. The real-time operating 

system adds to the MARTe2 application the multitasking ability, which is instead unavailable 

in the bare-metal porting. 

The bare-metal Architecture sub-layer code base is reused (arm_gcc) entirely, as mandated by 

the MARTe2 coding conventions. Changes are encountered in the Environment sub-layer, 
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where the framework relevant parts are laid upon the FreeRTOS real-time operating system. To 

avoid repeated descriptions, only the substantially different parts will be further described. 

4.12.1 BAREMETAL / L1 PORTABILITY / ENVIRONMENT 

MARTe2 differentiates between the concept of busy sleeping and operating system sleeping. 

The first implementation is based on a spinlock over the evolution of the timer counter value 

and its implementation resides inside the framework, the latter instead relies directly on the 

operating system sleep functions, which are rarely implemented as spinlock. OS sleep 

functions, instead, rely on the scheduler perception of time advancement. The sleep timespan 

can be strictly observed (as in real-time operating systems) or specified as minimum required 

time to sleep (as in best-effort / general purpose operating systems). The result is that the CPU 

is freed for the execution of another task until the time expires and the sleeping task can be 

scheduled again. In FreeRTOS the sleep function is implemented using the vTaskDelay() 

function, which requires a timespan expressed in scheduler ticks. In FreeRTOS, the scheduler 

tick rate is 100 Hz, meaning that the minimum allowed, OS-based sleep function is 0.01 s. As 

a side effect, the vTaskDelay() function call causes the task yielding (control released to 

the scheduler). In the MARTe2 porting, this aspect is taken into account as, when the sleep 

function calculates a number of ticks equals to zero using the ms-to-ticks conversion macro, the 

vTaskYIELD() is called, voluntarily releasing the control again to the scheduler. 

The standard heap functions were laid upon the pvPortMalloc() primitive. Using the 

pvPortMalloc() explicitly means relying on FreeRTOS internal memory management, 

independently from the selected heap management algorithm. The dual function, 

vPortFree() is also mapped for the opposite functionality. The FreeRTOS heap is pre-

allocated and allocation/deallocation primitives manage the access to the area (e.g., 

fragmentation, allotment, ...). 

4.12.2 BAREMETAL / L6 APP /ENVIRONMENT 

Referring to the MARTe2 boot process previously described, the loader function is passed as 

task argument, before calling the FreeRTOS scheduler start function. The pre-loader suspends 

itself, to give the hardware initialisation task the opportunity to complete its execution before 

calling the concrete Bootstrap main function. The hardware initialisation, on its side, must call 

the resume towards the pre-loader task before finishing, in order to allow the framework 

execution to proceed. 
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4.12.3 FILESYSTEM / L1 PORTABILITY / ENVIRONMENT 

While the FatFs layer is essentially the same, main differences can be found in the lwIP stack. 

It supports both the raw and socket APIs. The raw is implemented as already described for the 

bare-metal version. Socket API interface instead reflects almost identically the *UNIX socket 

interface. 

4.12.4 SCHEDULER / L1 PORTABILITY / ENVIRONMENT 

Thread, Event semaphores and Mutex semaphores are directly mapped to FreeRTOS equivalent 

functions. As FreeRTOS set of primitives to query the number of tasks and get related handles 

is system-wide scoped (returns all the tasks instead of ones related to MARTe2), the porting 

recurred to the usage of the MARTe2 internal ThreadDatabase to keep the inventory of 

MARTe2 owned tasks. This choice was also pursued to preserve test cases which relied on the 

thread count to pass.  

4.13 MARTE2 INTEGRATION CHALLENGES 

One of the key concepts pursued during the porting activity was to keep the board-specific 

implementation outside MARTe2. This requirement was achieved, as already shown, with the 

usage of hooks to abstract functionalities at key execution points of the framework, like the 

initialisation, execution, network transfers. This separation allows the usage of the common 

IDEs to build the platform environment (BSP, HAL) boilerplate code, thus reducing the user 

intervention to simple linking of the MARTe2 Application binary. 

However, some hardware related aspects must be kept outside the platform, because their code 

is extremely specific, not only in term of execution platform itself but also bound to the local 

configuration (e.g., the initialisation of an onboard peripheral needed to enable the networking 

subsystem, the interrupt controller configuration). 

In the specific MainFPGA and Best Ip need a precise order of initialisation in the main function 

for the platform, which takes place in the various hook function. These boards require: 

- MMU initialisation, in order to mark the correct portions of RAM as core-private or 

shareable (i.e., the shared memory DataSource requirement, discussed later). The MMU 

needs a setup of the translation lookaside buffer (TLB) which is carried out using a 

primitive function exposed from the board support package (BSP). The Double Data 

Rate RAM (DDR) is split equally between the three cores, leaving a small segment at 
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the end of the first bank to enable data sharing between cores (inter-core 

communication, data payloads), the TLB is configured to have it as an inner shareable 

portion. The On-Chip Memory (OCM) is also used for data sharing (inter-core 

communication, signalling) and is also marked as an inner shareable portion. Caching 

on the shareable OCM portion is disabled. 

- I-Cache and D-Cache setup and enable, in the hardware initialisation. These two calls 

enable the instruction cache and the data cache. 

- Generic Interrupt Controller (SCU-GIC) which is needed to handle interrupts and 

exceptions, a fundamental requirement for the network interface card and for the RTOS 

(ticks). The GIC needs to be configured in order to route network interface interrupt 

request (IRQ) to the right core. As each core uses independently a network interface, 

the GIC must be initialised in every core. The interrupt distributor instead must be 

configured only once, in the first core (core #0) and each core must configure the 

distributor to route interrupts correctly. The BSP has a special compilation symbol 

(USE_AMP), which disables the distributor initialisation in the other cores, while 

keeping the same code structure to setup and enable the GIC. 

- Network physical layer (PHY) initialisation, by means of a Si5345 (10 output 

programmable PLL clock multiplier + NVM OTP). The Si5345 is configured by using 

a custom interface library which was implemented. This library communicates with the 

Si5345 using the I2C bus. The library initialisation calls must be executed before the 

network interface and lwIP stack initialisations. 

- The MainFPGA board also requires the setup of the exchange system between the 

FPGA and CPU (Programmable Logic to Processing System – PL to PS), which is 

carried out using a DMA ring buffer. The specific mechanism and the linked DataSource 

implementation will be discussed in the dedicated chapter. To test and assess the whole 

chain, IP logic in the PL is also able to simulate the signal coming from the integrators 

with variable signals (constant, ramp, ramp chopper, waveform modulated). This also 

required the implementation of additional hooks, which are used in the dedicated 

DataSource. 



 
72 Chapter 4. MARTe2 porting on ARM 

4.14 MARTE2 ON THE MAINFPGA BOARD 

4.14.1 INTRODUCTION 

The MainFPGA board is part of the ITER 55.A0 Magnetics Diagnostic project. A MainFPGA 

board is equipped with the AMD Xilinx Ultrascale+ MPSoC on its carrier board and connected 

to 30 integrator boards via ADCs. Data produced by the ADCs is consumed by two MARTe2 

bare-metal applications while a third MARTe2 FreeRTOS application is used to generate a 

telemetry streaming and serves as control for the other two instances. Two of the three 

applications (one bare-metal and one with FreeRTOS) have their own private network interface. 

Some specific DataSources allow the data exchange between the FPGA (PL) and CPU (PS) and 

between the cores of the CPU. This chapter will introduce first the whole application to step 

into the specific components that were implemented. At the end an analysis of the performances 

will also be presented. 

4.14.2 MAINFPGA MARTE2 APPLICATION 

MainFPGA application runs on three of the four Cortex A53 cores. First (Core 0) and third 

(Core 2) run bare-metal MARTe2 porting, while the second core runs the FreeRTOS MARTe2 

porting. Schematically: 

- Core 0 transfers the ADC data with some additional diagnostic information from the 

PL, using a dedicated DataSource (PLPSDataSource) that was implemented. 

- Core 0 has not enough computation power to handle PL-PS transfer, computation and 

network streaming, so 19 out the 30 ADC channel data is moved to Core 2 where 

another bare-metal MARTe2 application is running. 

- Core 2 reads data coming from Core 0, executes the computation algorithm and returns 

processed data to Core 0. 

- Core 0 again merges own (11) channels with Core 2 processed (19) and streams them 

over ITER Synchronous Data Network via two streams, one at 10 kHz and the other at 

2 kHz. 

- Core 1, which runs the FreeRTOS porting of MARTe2, intercepts data transfers 

between cores and samples data at 10 Hz from the processed data chunk. 

- Core 1 also runs a system monitoring DataSource, which was specifically designed and 

implemented, to decorate the whole telemetry data produced with board diagnostic data. 

The so produced data stream is sent using the dedicated network interface to feed the 

ITER S/T network. 
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4.14.3 PL TO PS DATA EXCHANGE 

The PLPSDataSource is a DataSource which synchronises on the DMA Ring Buffer. The PL 

(FPGA) populates the ring buffer with ADC samples data. The PLPSDataSource works on a 

shared memory space which contains blocks of a struct. Each block contains a counter which 

is incremented by the PL on each written sample. The DataSource, on its side, synchronises on 

this counter and expects an incremented counter on the next synchronisation point. 

The MARTe2 DataSource is implemented following the separation of concerns philosophy: it 

is totally agnostic on the DMA aspects of the memory buffer. However, two hooks are provided 

to the DataSource, to obtain: 

- The base memory address of the data buffer, which in the specific is the DMA base 

address. 

- The maximum number of packets, together with the packet size, allow the pointer 

arithmetic to follow the ring buffer filling. 

A third hook, which is specifical to this implementation, is used to enable the FPGA IP which 

provide simulated signals instead of integrator fed data. 

These hooks are implemented as external functions in the DataSource and resolved at linking 

time as part of the BSP/HAL package. Hooks rely on Xilinx HAL for the DMA ring buffer 

management. The initialisation code for the DMA ring buffer takes part in the MARTe2 

platform initialisation hook, as previously described also for other scenarios. 

4.14.4 INTER-CORE COMMUNICATION 

The communication between the three cores where the MARTe2 MainFPGA application runs 

is achieved using a DataSource: RealTimeThreadCoreSynchDataSource. This DataSource 

allows to synchronise applications running in different CPU cores by using a sophisticated 

shared memory mechanism. A GAM, designed as writer, writes data on this DataSource, one 

or more GAMs running on different MARTe2 applications (in the specific also on different 

cores) will read and synchronise against their independent instance of this DataSource. This 

DataSource has a configurable mechanism which allows writers to lock on readers on request 

and a mechanism to allow the (aliased) down sampling of data, to allow readers at a lower 

frequency to be able to read data. 

The communication is backed by a shared memory library which uses both the on-chip memory 

(OCM) and the DDR memory (RAM). DDR contains the payload data (MARTe2 signals) that 
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is shared amongst cores, OCM contains ancillary data which are used to arbitrate the data 

exchange. The payload data instead is based on a dual-buffer, zero-copy mechanism: writers 

and readers work on two distinct payload areas that are swapped (only pointers) when the write 

is completed. It is also based on a writer-first approach, where the data produced is deemed 

more critical than the consumer, however this behaviour can be configured, in order also for 

the writer to wait for a defined number of readers to complete. The OCM is a 256 kB memory 

(4 x 64 banks) spatially near to the CPU with very high throughput support located on AXI 

interconnect bus with ECC support. 

4.14.5 ANCILLARY DATA 

Ancillary data, which is located on the OCM memory contains: 

- Pointer to the pointer (double star - **) to the write buffer 

- Pointer to the pointer (double star - **) to the read buffer 

- Pointer to the writer heart-beat signal location 

- Pointer to the mutex flag 

- Pointer to the reader mask 

- Pointer to the announcement mask 

The first two (read and write) are used to reference the two buffers, they are double-referenced 

to allow the zero-copy swap. 

Each write causes an update (increment) of the heartbeat, that is a 32-bit counter. The heartbeat 

is used to allow readers understand if the writer has already been started. It is used on the very 

first read attempt of a reader to read from the shared memory, which otherwise will fail its 

initial read cycles until a writer is seen. The heartbeat mechanism was implemented as cores 

are not aware of their reciprocal execution status, as start-up procedures require different 

periods for the MARTe2 application to start. 

The mutex flag is an 8-bit unsigned int that is used in conjunction with the atomic test-and-set 

intrinsic to guard the access to the shared ancillaries. The atomic test-and-set 

(__atomic_test_and_set) intrinsic is wrapped inside a convenient Mutex class. This portion of 

the code does not rely on MARTe2 layers, which could provide similar functionality, in order 

to have it available as independent software module. This approach also come handy during the 

development and testing. Although it is configurable (only at compile time, via a defined 

constant) the memory model used for the mutex are 
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- Acquire for the lock (__ATOMIC_ACQUIRE) [46]: barriers to hoisting of code and 

synchronizes with release (or stronger) semantic stores from another thread. 

- Release for the unlock (__ATOMIC_RELEASE) [46]: barriers to sinking of code and 

synchronizes with acquire (or stronger) semantic loads from another thread. 

The test-and-set (TSL) call, which is implemented in a loop, is interleaved with an ARMv8 

assembly YIELD instruction. The instruction belongs to the special subgroup of NOP 

instructions and is simply put to avoid extreme TSL pressure on the mutex flag. Two other 

companions are implemented, to enlighten the polled mutex flag, that are the time between two 

consecutive calls and the pause after the mutex release. There is also, optionally available a 

Test-And-Test-And-Set-Lock (TTSL) approach [48] available in the source code, as a result of 

the intensive test and performance assessment campaign that undertook the component. As no 

improvement was detected with the TTSL over TSL, it was disabled and cannot be enabled by 

configuration options. 

The announcement mask is used to inform the writer that a reader is present, in order to become 

able to wait correctly. Moreover, the announcement mask is used to avoid double 

announcement of the same reader with respect to a writer. A reader identifier is in fact 

configurable for this purpose. The announcement mask shall be seen as a bit mask, where each 

reader announces (sets to 1) the bit identified by its value. 

The reader mechanism, with a similar bit-flag based mechanism, is used both by the reader and 

writer. The writer uses (optionally, when configured) to wait until all readers have consumed 

the last produced sample while readers, synchronising on the falling edge (1 to 0) of their 

respective bit, know if a fresh sample has been produced. 

4.14.6 PAYLOAD DATA 

The payload data is simply a double buffer where the writers and readers work on their half. 

The two buffers’ pointers are exchanged as long a write operation occurs, thus avoiding 

multiple copies of data between cores. The output DataSource (writer) itself is structured to 

work directly on the writer half, while the input DataSource (reader) must copy on its own side 

the otherwise destroyed or corrupted data. This is mainly done because, while write operation 

usually occurs at the last stage of the data manipulation chain, the data read is instead at first 

stage. This means that read data samples must be manipulated, which is most probably a time-

consuming operation that could not be in synch with the writer operations happening on the 

other core. 
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4.14.7 INTER-PROCESSOR INTERRUPT 

While the polled approach is used in the MainFPGA MARTe2 applications, the DataSource 

internals allow also for an inter-processor interrupt (IPI) based version, where the exchange is 

based on the direct event notification using the interrupts issued between cores. The IPI 

mechanism allows for a core to send interrupts to another core (or more than one, via a mask). 

The interrupt carries a message which size can be up to 8 words (32 bytes). The DataSource 

uses the IPI message to signal other cores data is ready to be consumed, using the IPI message 

to carry a message code, a sequence number and 30 bytes of payload. 

The IPI mechanism can be enabled at runtime, via configuration parameters only after the 

related compilation flag has been enabled to include it. MainFPGA MARTe2 applications do 

not rely on the IPI mechanism for the inter-core communication signalling. [49] 

4.14.8 BOARD PARAMETERS MONITORING 

Board parameters are monitored using another implemented DataSource, which relies on 

internal SYSMON peripheral to retrieve its vitals. Parameters that are retrieved include 

voltages, temperatures, clocks and are provided by the onboard peripheral which is queried 

using AMD Xilinx BSP primitives. This DataSource is extremely vertical, as its provided data 

is thought to be binary compatible with the payload of network streamed diagnostic data. Its 

internals leverage a sequencer, which is programmed at the beginning of the DataSource 

execution cycle. The sequencer is instructed on the kind of variables to read, the sampling 

frequency and average filtering rules. The DataSource is synchronised, it waits for a fresh 

sample to become ready on the system monitoring PSU by polling the peripheral interrupt. 

Once data is ready, using the provided conversion function, data is converted and MARTe2 

DataSource output signal bank is populated with the samples. [50] 

4.14.9 SIGNAL PROCESSING 

Core 0 and 2 carry out the ADC data processing, following the data flow previously described. 

The processing task is split between the two cores and merged back before being streamed on 

the ITER SDN network. Splitting occurs since core 0 alone has no sufficient computational 

resources to copy from PL, run the signal processing algorithm and stream data on the network. 

The signal processing algorithm, that was developed by the Fusion for Energy team and is not 

part of this thesis, was only integrated with small modifications in the previously described and 

implemented signal processing chain that is instead part of the thesis work. 
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On the marginal modifications that were made to the PS algorithm, the most important was the 

conversion of the underlying socket from the advanced buffered to the simple unbuffered, to 

better suit the lwIP ported stack primitives. With the same philosophy, the Internet Group 

Management Protocol (IGMP) multicast join mechanism was also suited to the MARTe2 

ported, based on the join mechanism previously described. 

 

Figure 16 - MainFPGA Application running on core #0 

Core 0 simplified application layout is shown above, on the left and on the right in green the 

DataSources while in the middle the GAMs. GAMs run in the context of the MARTe2 real-

time thread with the specified order (top to bottom). All the components indicated were already 

in-depth analysed in previous chapters, 

- PLPSDataSource is the component used to move ADC data from the PL (FPGA) to the 

PS (CPU). The GAMDMA function (IOGAM) is a simple copy of the data in the DDB, 

which can be considered as a temporary heap to store signals and move them across 

functions and DataSources. 

- The Copy #2 to #0 algorithm and the Copy #0 to #2 move data between cores using the 

shared memory component. Their order is strategic, it allows to effectively parallelise 

the PS algorithm execution leaning on the simultaneous execution of the PS algorithm 
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on core 0 and 2. Intuitively it would have been placed at the end in a “merge” step, but 

doing so, all the time would have been spent in the whole loop (including the SDN send 

time). 

- PS Algorithm is the ADC data processing algorithm, working on 11 channels. 

- Bleed-off indicates the low-frequency data sent to Core #1 for telemetry and 

diagnostics, which is produced at 10 Hz. 

- Reset edge detector is used to find edges in the integrator reset signal, which is coming 

from the telemetry core (#1). 

- Histogram runs statistic data on the cycle execution time. 

 

Figure 17 - MainFPGA Application running on core #2 

As shown above, MARTe2 application on core 2 simply copies data, coming from core 0 and 

executes the PS algorithm plus statistics on the execution time data (histogram). Again, shared 

memory is used to move data back and forth cores. 

 

Figure 18 - MainFPGA Application running on core #1 

Previous diagram shows how the bleed-off data is merged with the telemetry data and 

diagnostic from the board system monitoring to produce the UDP output stream. Conversely, 
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the reset signals for the integrators are routed, using the shared memory, to cores 0 and 1 PS 

algorithm. The highlighted Timings DataSource is a built-in MARTe2 component which 

provides execution times at every GAM stage. When Timings is enabled, read and write times 

for each function can be tapped, as a precious instrument to assess and profile execution 

performances. 

 

 

Figure 19 - Simplified interconnection overview 

The diagram above shows a simplified view of the PL/PS and between cores interaction, briefly 

resuming previous paragraph explanations. 

4.14.10 CORE START-UP SEQUENCE 

The application requires a specific start-up order for cores, to ensure that the shared memory 

segments, data structures and dependencies (producer-consumer) are fulfilled. For the purpose, 

a Startup Manager library was developed. This library can formalize the before / after start-up 

ordering of cores. It must be instantiated and configured in the hardware initialization hook, 

before the MARTe2 framework. Its configuration requires three parameters: own core, previous 

core, next core. For each involved core, the library: 
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- Waits on the specific OCM area to see the previous (if any) core heartbeat signal (that 

is a switching between two values). 

- Once locked on the previous core heartbeat, the core starts its own heartbeat and waits 

to see the next core alive (if any). 

- Once the next core is seen alive, the core starts its own operations. 

The library exposes two methods, one to wait and the other to signal the startup has occurred. 

This mechanism allows inter-locked core start-up, verifying the correct dependency between 

them. Start-up management is based again on OCM, using a small portion at the end of the 

memory bank. It is independent from MARTe2 and must be considered as a part of the 

BSP/HAL. By design, MARTe2 shall remain unaware of these specific details. 

4.14.11 TRIGGER MODULO GAM 

A very small component (GAM) for MARTe2 was developed, to suit the need to have a 

reduction ratio mechanism for the sampling frequency, in the transfer of signals. The GAM has 

one input (the signal generating the trigger) and an output (the trigger signal itself) and works 

on an internal counter which is incremented on each algorithm execution. When the algorithm 

execution cycle matches the configured reduction ratio, the trigger signal is raised for one cycle. 

4.14.12 OTHER DEVELOPMENT 

A simple system to store board specific configuration data was implemented, although it is 

not part of the production environment nor of the official branches. It was developed to prepare 

the ground for non-volatile storage over the board flash of some data which can be part of the 

configuration (also factory) of the running application. This component, storage manager is a 

helper which can be used to access the TE0808 QSPI flash, however it should be compatible 

with any QSPI flash as it relies on some basic mechanisms shared across flash memories and 

on the AMD Xilinx BSP for Quad-SPI. 

The library supports flashes in single, stacked and parallel mode and uses the JEDEC identifier 

to search among all officially supported Xilinx brands and flash geometries. Using the JEDEC 

id, the internal dictionary provides: 

- Sector size and number of sectors 

- Page size and number of pages 

- Flash size 

- Sector start address mask 
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- Number of dies 

The library exposes the flash as three basic primitives (Read-Write-Erase). As a reminder, a 

flash memory cannot be written before being erased. The erase process (sector / bulk / die) is 

managed by the library. These exposed primitives are then used by another on-top built library 

which is used to structure a custom “file-format” on the flash, containing all the relevant data 

for the configuration. 

The library was implemented always following MARTe2 standards, although it is not subject 

to the strict QA process (linting/coverage). It is also bundled with a test suite to be run on the 

Ultrascale+ board. It is foreseen its integration as part of the production step of the boards, to 

provide a factory initialisation and customisation (upload same firmware, customise parameters 

writing data on flash, when application starts reading and customises its execution based on 

flash contents). 

4.14.13 AMP AND MIXED BARE-METAL / FREERTOS APPROACH 

One of the peculiarities of the MARTe2 application scheme in the MainFPGA implementation 

is the asynchronous multiprocessing scheme with two distinct operating systems over three 

cores. The choice comes as a result of a performance assessment campaign over the ability to 

meet sampling rate design requirements. In fact, using FreeRTOS, high sampling rate tasks (PS 

to PL, Shared Memory, Networking, PS Algorithm) were impaired by a periodic glitch 

exhibiting jitters over 10 ms over the 100 µs required by the 10 kHz stream. The 10 ms glitch 

culprit was pinpointed to the FreeRTOS scheduler settings, in particular the tick rate, pre-

emption and time slicing. An additional source of jitter, which could not be precisely assessed 

in the test environment, was due to the FreeRTOS task semaphore waking-up because of the 

arrival of packets on the network interface. Incrementing the tick rate up to 1 kHz was tested 

but was not deemed practical. FreeRTOS in fact does not impose a maximum tick rate, although 

some internal macros and time calculations cannot represent fractions of milliseconds, thus 

limiting the maximum attainable tick rate to 1 kHz. The increase in tick rate, in the MainFPGA 

scenario, brought no visible advantage but only a decrement in performances, due to the higher 

rate of context switching, causing the scheduler to effectively consume more processing power 

than the rest of application itself. 

Due to these limitations and glitches, that were assessed during the initial design steps, the bare-

metal approach has been chosen to suit the PS processing algorithm environment. Aside from 

the requirements and technical limitation of the RTOS, the bare-metal approach was preferred 
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due to the single-task nature of the application, giving to the MARTe2 porting the full control 

over the platform execution. 

Conversely, the telemetry application, which requires a parallelism in operations, albeit for a 

small fraction of operations, was laid upon FreeRTOS. As the sampling and loop execution 

frequencies are one order of magnitude smaller than the default OS tick rate, the flexibility was 

deemed to be more significant. 

 

Figure 20 - Excerpt from the FreeRTOS kernel behaviour settings 

4.14.14 ITER DATA EXCHANGE MODEL 

The three network interfaces on the MainFPGA board stream data to the ITER network, through 

different data models: Data Archiving Network (DAN), Synchronous Data Network (SDN) and 

Plan Operational Network (PON). DAN is used for data acquisition which require high 

sampling rate and bandwidth for multichannel data. As a matter of fact, DAN data is directly 

processed and streamed through PL IPs, which is part of the fast controllers. SDN is also used 

in fast controller but relies on the synchronicity, where each node achieves full bandwidth for 

an allocated communication slot. SDN communication relies on the topic concept, in a 

publisher-subscriber pattern based on the IGMP multicast concept of groups. In simple terms, 

the SDN topic is converted with a hashing algorithm to a multicast IP address and port 

combination. The PON is a low sampling rate network (in the picture above it is also marked 

as S/T). PON is sample oriented and generally include EPICS PV control variables with all the 

metadata and attributes related. Sample rate on the PON network is up to 10 Hz. [51] 

4.14.15 PERFORMANCE EVALUATION 

The whole setup was thoroughly tested to verify requirements meetings. First verification is 

easily done by leaning on the PL sample production rate on the ring, by using the 

PLPSDataSource and its internal sample counter. As the PL (FPGA) internal timing is 

extremely reliable, running the DataSource and evaluating if two consecutive counter values 
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can be read from the ring without losses gives an upper bound of the performances. As the main 

DataSource synchronises on the PL data production, all the downstream computation must 

occur in the period between two consecutive samples. This kind of assessment was immediately 

accomplished by simply running the whole MARTe2 application and adding ADC channels to 

the processing chain until a resynchronisation event occurs on the PL to PS DataSource, 

meaning that the allotted runtime was violated. 

First rough estimates were validated using MARTe2 timings DataSource, previously 

mentioned. The timing DataSource uses the MARTe2 high resolution timer as source, a 

component which was previously mentioned during the illustration of the porting steps. As 

aforementioned, high-resolution timer on the AMD Xilinx Ultrascale+ ARM Cortex A53 CPU 

core is backed by Xilinx BSP time functions, which in turn are a wrapper for the CNTPCT_EL0 

register timer [49]. This gives a hardware native and reliable time base for measurements. Test 

campaign was conducted measuring execution time of the whole data exchange between two 

bare-metal cores by executing a portion of the final MARTe2 MainFPGA. The portion that was 

executed and tested included a shared memory and an UDP streaming DataSource and excluded 

the algorithm itself. The test was conducted in this way as the only missing performance metric 

was the jitter. As the algorithm execution is not a source of jitter, it was excluded, to give instead 

computational headspace to keep and process enough counter samples. Tests assessed jitter at 

1, 10, 100, 1000, 2500, 5000, 10000 Hz frequencies by moving a small and a large payload of 

data between the two cores (100 bytes and 10000 bytes) and having already verified that DDR 

raw performances were orders of magnitude over the needed application performances. DDR 

performances were validated over datasheet declared rates using ZynqMP bundled DDR 

example and tests. Counter absolute values were converted in microseconds by dividing it for 

the sampling frequency (CNTFRQ_EL0) scaled value (33.333332). Results include both sides 

of the application and give a minimum, maximum, average, standard deviation value and the 

statistical distribution of the jitter across the min/max range for all the frequency/sizes couples. 

Only relevant extremes are presented, to avoid overwhelming data. 

A small table in the beginning of each measurement campaign summarizes results and is 

followed by two charts, a line representing the time trend of the jitter and a histogram 

representing the distribution of samples over the jitter values. 

Jitter line chart X axis reports the sample number (which can become time by multiplying it for 

the sampling frequency), Y axis reports the jitter expressed in microseconds. 
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Jitter histogram chart reports the bin on the X axis, expressed as range in microseconds, 

spanning over the minimum and maximum jitter. On the Y axis is reported the number of 

samples falling in the bin. 

Results are presented one per page, to better show graphs and demonstrate no surfacing of 

periodic or peculiar patterns. 

Presented results show that jitter maximum is well below 10 microseconds in the worst case 

growing as the loop frequency grows. Notice also that the maximum jitter is hit only 

occasionally during the time span, indicating that this is probably due to internally occurring 

interrupt (hardware queues). These measurements clearly show that the whole MARTe2 porting 

on the Ultrascale platform meets and exceeds the requirements for control loop frequency and 

jitter. 
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10 Hz, small payload 

Jitter min Jitter max Jitter average Jitter dev std 

Producer Consumer Producer Consumer Producer Consumer Producer Consumer 

-0,7 µs -1,5 µs 1,5 µs 2,1 µs 0,5 µs 0,5 µs 0,41 µs 0,67 µs 
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10 Hz, large payload 

Jitter min Jitter max Jitter avg Jitter devstd 

Producer Consumer Producer Consumer Producer Consumer Producer Consumer 

-0,7 µs -1,1 µs 1,6 µs 2,2 µs 0,5 µs 0,5 µs 0,44 µs 0,73 µs 
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1 kHz, small payload 

Jitter min Jitter max Jitter avg Jitter devstd 

Producer Consumer Producer Consumer Producer Consumer Producer Consumer 

-0,8 µs -2,2 µs 1,6 µs 2,9 µs 0,5 µs 0,5 µs 0,48 µs 0,74 µs 
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1 kHz large payload 

Jitter min Jitter max Jitter avg Jitter devstd 

Producer Consumer Producer Consumer Producer Consumer Producer Consumer 

-2,8 µs -4,6 µs 4,0 µs 5,7 µs 0,5 µs 0,5 µs 0,43 µs 0,73 µs 
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10 kHz small payload 

Jitter min Jitter max Jitter avg Jitter devstd 

Producer Consumer Producer Consumer Producer Consumer Producer Consumer 

-0,9 µs -5,2 µs 1,5 µs 6,3 µs 0,5 µs 0,5 µs 0,47 µs 0,71 µs 
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10 kHz large payload 

Jitter min Jitter max Jitter avg Jitter devstd 

Producer Consumer Producer Consumer Producer Consumer Producer Consumer 

-4,5 µs -5,3 µs 5,7 µs 6,4 µs 0,5 µs 0,5 µs 0,49 µs 0,67 µs 
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4.15 MAINFPGA DEPLOYMENT 

The solution for the MainFPGA board requires a multitude of steps to be correctly deployed. 

An outline of these includes: 

- Creation of the hardware project, starting from the HDF file. The HDF is a sort of 

container file which contains all the further files needed for the project, including the 

FPGA bitstream and the board configuration. A hardware project is the base for all 

subsequent projects. 

- Creation of the board support package (BSP) project. The SDK needs a BSP for each 

core / platform combination. The BSP is bound to the hardware project. 

- Creation of the application project, bound to the BSP. The application project is 

essentially an empty container which will be used for the complete compilation and 

linking on the final ELF binary. 

- Patching of the BSP related files, both by changing project variables and by modifying 

sources, for non-exposed parameters. Exposed parameters (e.g., FatFs interface) can be 

modified directly by issuing XSCT SDK commands and accessing BSP Project API 

variables. Non-exposed parameters require instead a direct-file patching approach (e.g., 

FatFs FF_USE_FIND and lwIP IGMP network card group join/leave to overcome 8 

maximum number of IGMP groups that can be joined). These patches are applied using 

GNU patch mechanism, that in turn relies on several patch files that were created with 

incremental functionalities. Direct line modifications are instead accomplished using 

GNU sed (stream editor). 

- Copying needed files into the application project (e.g., Si5345 library, MARTe2 

configuration file). 

- Setting the compiler, the needed include paths, link path, link libraries. 

- Compile MARTe2, MARTe2 components, 55A0 Magnetics Component, Ultrascale 

support pack components. 

- Create Shared Memory and Startup Manager projects. 

- Setting up the LD script to suit for DDR splitting, OCM usage, shared memory location 

(both of ancillary and payload portions), heap and stack sizes. 

- Put everything together, compile (where needed), link, generate the ELF binary and 

deploy (in RAM). 
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Figure 21 - Script execution and dependencies 

All these steps also change, based on the configuration and carrying out this procedure manually 

is an extremely error prone task, which also requires a considerable amount of time. This led to 

the creation of a standardised system to prepare and deploy the MARTe2 application starting 

from scratch. The system is based on a series of scripts, mainly bash and TCL, which can setup 

the whole environment to run MARTe2 on an Ultrascale+ board. These scripts are created in a 

layered fashion, each one runs on top of another. Top-level script is the final customization 

bash, which coordinates the whole environment creation. TCL scripts rely on AMD Xilinx SDK 

internal scripts to generate the needed code base and project structure. 

TCL scripts were structured in a configurable way, to be recycled across the different projects. 

They are independent (only their output artifacts have a dependency relationship) and have a 

complete command-line interface. The only vertical script is the final bash, which contains the 

platform and application specifics (type of application, core, needed libraries, network 

parameters, MARTe2 configuration file), as shown in following snippets. 

    set options { 

        { w.arg             "" "Workspace path" } 

        { hw.arg            "" "Hardware project name" } 

        { bsp.arg           "" "BSP project name" } 

        { c.arg             "" "Core number" } 

        { os.arg            "" "Operating system (standalone or 

freertos10_xilinx" } 

        { lwip.arg          "" "lwIP stack (raw or socket)" } 

        { fatfs.arg         "" "FatFs setup (1 FS on SD Card - 2 FS in RAM)" } 

        { rtosheap.arg      "" "FreeRTOS heap size" } 

        { rtosstack.arg     "" "FreeRTOS stack size" } 

    } 

 

 

    set options { 
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A script, which is not actually part of the suite but is foreseen its integration in a further step, 

was implemented to deploy MARTe2 on the QSPI flash. It takes care of the erase and write 

process of MARTe2 on the flash memory and has as requirement the creation of a first-stage 

bootloader (FSBL). The FSBL is in charge of initialising the platform and loading the bitstream 

onto the FPGA fabric. The FSBL and QSPI boot process was also tested. The FSBL however 

needs the setting of some physical dipswitches on the board to change the boot behaviour. To 

overcome the limitation of accessing physically to the board, a substitution to manually 

changing the dip was found and is based on the direct access to the BOOT_MODE_USER 

(CRL_APB) register using XSCT and command line to write it. The register can assume a series 

of values to boot from the PS JTAG, QSPI in 32- and 64-bit mode, SD Card, NAND, eMMC, 

USB, and PJTAG, with some of them being unavailable on the MainFPGA carrier board. The 

register is volatile (lost after a power cycle) and was a convenient quick way to test the MARTe2 

deployment on the flash NV storage. However, this script and the whole procedure of storing 

    set options { 

        { w.arg             "" "Workspace path" } 

        { hw.arg            "" "Hardware project name" } 

        { bsp.arg           "" "BSP project name" } 

        { c.arg             "" "Core number" } 

        { os.arg            "" "Operating system (standalone or freertos" } 

        { out.arg           "" "Output project name" } 

        { ramstart.arg      "" "Core reserved RAM starting address" } 

        { ramlen.arg        "" "Core reserved RAM length" } 

        { heapsize.arg      "" "Size of the heap" } 

        { stacksize.arg     "" "Size of the stack" } 

        { shmemstart.arg    "" "Shared memory start address in RAM" } 

        { shmemlen.arg      "" "Shared memory shared memory length" } 

        { lmarte2              "Link MARTe2 and MARTe2-components" } 

        { cstartup             "Creates and links the startup management 

library"} 

        { lstartup             "Links an already existing StartupManager 

library"} 

        { cshmem               "Creates and links the shared memory library" } 

        { lshmem               "Links an already existing shared memory library" 

} 

        { iic                  "Copy iic header/sources for SI5345 init/setup" } 

        { main                 "Include the main file for MARTe2 and core"} 

    } 

} 

 

 

    set options { 

        { w.arg             "" "Workspace path" } 

        { hw.arg            "" "Hardware project name" } 

        { bsp.arg           "" "BSP project name" } 

        { c.arg             "" "Core number" } 

        { os.arg            "" "Operating system (standalone or freertos" } 

        { out.arg           "" "Output project name" } 

        { ramstart.arg      "" "Core reserved RAM starting address" } 

        { ramlen.arg        "" "Core reserved RAM length" } 

        { heapsize.arg      "" "Size of the heap" } 

        { stacksize.arg     "" "Size of the stack" } 

        { shmemstart.arg    "" "Shared memory start address in RAM" } 

        { shmemlen.arg      "" "Shared memory shared memory length" } 

        { lmarte2              "Link MARTe2 and MARTe2-components" } 

        { cstartup             "Creates and links the startup management 

library"} 

        { lstartup             "Links an already existing StartupManager 

library"} 

        { cshmem               "Creates and links the shared memory library" } 

        { lshmem               "Links an already existing shared memory library" 

} 
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and booting MARTe2 from the QSPI needs to undergo some design, implementation and 

refinement steps, which are part of the foreseen work. 

4.16 THE BEST IP BOARD 

Using the previous accumulated knowledge, code base and scripts, another environment for the 

MARTe2 execution was implemented. The environment is suited for the Best Ip board, the 

aforementioned system in charge of computing the plasma current. While environment 

preparation was almost straightforward, requiring only small adaptations to the script, most of 

the work was concentrated on understanding Xilinx lwIP contrib porting due to a limitation on 

their implementation. The Best Ip board has to subscribe 14 IGMP multicast groups on SDN, 

each stream containing the 30 ADC channels from the 55.A0 Magnetic Diagnostics 

(MainFPGA) board to compute the best plasma current parameter. 

Current lwIP implementation by default supports only 4 IGMP groups, this number can be 

increased to 8 by changing the MEMP_NUM_IGMP_GROUPS parameter placed inside the 

main opt.h stack configuration header. To further increase the number of join-able IGMP 

groups, a more substantial modification was made on the concrete hardware porting of the stack 

(xemacpsif). The modification removes the limitation by directly calling the board hash update 

mechanism with the group information, skipping the management part internally used to keep 

track of the currently joined groups.  

Work on the Best Ip board is still undergoing, at the moment of this writing it is under test to 

verify the basic performance requirements are met, with respect to the stream incoming from 

the IGMP subscriptions. While the MainFPGA suite is already available on the main branch, 

Best Ip work still is not production ready as it misses parts of the processing algorithm and 

telemetry implementation details. 

4.17 OTHER MINOR CONTRIBUTIONS 

Aside from the two main development tasks, a series of smaller contributions were also brought 

to MARTe2. Some of these were assigned during the initial period of the collaboration, to 

become familiar with MARTe2 development, the QA and CI/CD chains. The contribution for 

these is marginal and no particular challenges were encountered that are worth of mention. 

However, they represented a key step for the further development, both for their gradually 
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increasing effort and comprehension of the whole framework. Amongst these contributions, 

work on an already existing component is worth mentioning instead: the Simulink Wrapper 

GAM. 

The SimulinkWrapperGAM is a GAM component of the MARTe2 components bundle which 

is able to run a Simulink® model generated and compiled with the MATLAB® Embedded 

Coder® tool. Although this component had already been actively developed and deployed, a 

new feature was requested from the user base: the ability to handle structured signal seamlessly 

in MARTe2. [52] 

The feature was implemented, the SimulinkWrapperGAM is now able to deal with structured 

signals (buses) as inputs and outputs. Reworking of the GAM code required new QA procedures 

(linting, add coverage for the new test cases) and is now available on the MARTe2 components 

official repository. 

Another small contribution was related to the VCIS system (GitLab, Wiki, Redmine, Jenkins), 

finalised to upgrade the whole underlying Linux distribution to CentOS 7 and to the staging of 

a Zabbix setup to monitor all the machines which compose the whole VCIS infrastructure. The 

migration procedure formalisation and testing, developed together with Fusion for Energy team 

members was carried out. The Zabbix monitoring task was accomplished by installing the 

Zabbix server on a dedicated machine to supervise with agents every network component. This 

task also included the creation of rules for warning and alarming for the whole infrastructure, 

dealing with operational status of each system (usage, free disk space, online status). 

4.18 CONCLUSIONS AND FORESEEN WORK 

The porting work started with a generic, readily available platform, with the same CPU as the 

final production platform. The development underwent a series of cycles, also touching other 

heavily different platforms (STM32), which helped gain needed abstractions to produce a 

general procedure to implement the porting. Following, the implementation of the porting stub 

and scaffolding allowed the necessary refinement to become able to move to the AMD Xilinx 

Ultrascale+ platform in a streamlined and organized way.  

The Ultrascale+ implementation presented several challenges, especially due to the 

asynchronous multiprocessing configuration that was chosen for the execution environment. 

The challenges were related to the correct handling of the CPU internals, the interrupt and the 
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correct routing, the management of the I and D caches, the TLB and MMU settings to allow 

private core and shared memory. Basic functionalities and performance assessment procedures 

led to several further development and refinement steps, to move towards a full understanding 

of the platform. 

Development and debugging, on a multicore AMP system is an extremely challenging task, 

that was greatly helped by the MARTe2 modular structure. MARTe2 layers were introduced, 

debugged and profiled gradually. The final integration works of MARTe2, developed 

components and hardware interfacing was eased thanks to the MARTe2 configuration file 

structure, which allowed quick reconfiguration of the whole platform by just changing it. 

Once porting was finished, the further step towards continuous integration and continuous 

delivery (CI/CD) led to the creation of generic scripts which now allow the quick setup of a 

MARTe2 application ready to be deployed on the platform. Moreover, the whole experience 

helped develop a procedure and code with the portability in mind, with several re-usable 

components and a solid and comprehensive documentation and code stub suite. 

The work for the MainFPGA and Best IP will be part of the ITER Magnetics Diagnostics 

system, serving and processing magnetic sensor data to feed the plant controller and safety 

systems. However, this work is already foreseen as a viable opportunity for other experiments 

which involve the MARTe2 framework in control loops for the field. A notable example is 

represented by the Divertor Tokamak Test (DTT) experiment in Frascati (Rome), where a 

similar SoM will be employed for data acquisition loops. 

This thesis work consolidated some MARTe2 concepts and practices into a standardised 

procedure for the development of further portings. By adding the support for the ARM based 

platforms, this work laid the foundation for the employment of embedded platforms running 

MARTe2 as convenient, flexible and proven systems to run control solutions also for loops 

running at tens of kHz sampling rates with high number of channels, also considering network 

streaming. 

The porting for the MCU series also opens a set of opportunities where these hardware solutions 

become directly part of field controllers, running a distributed control algorithm. The usage of 

MARTe2 over the development of custom firmware adds an enormous degree of flexibility, 

maintainability, robustness and ease of development. The employment of MARTe2 as 

alternative for firmware development on these systems also enables team working and co-

operation, where developers concentrate on platform aspects leaving control issues to the field 
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experts. The ability to use already existing or develop own components and reuse them across 

different solutions allows the rapid production of devices which are already field-ready. 

Moreover, once developed and tested, the same MARTe2 application setup can be run on 

different architectures. This demonstrated extremely important as debug and test on embedded 

platform is always a more difficult and time-consuming task, with respect to standard 

application debugging. 

The porting on MCU, together with the PROFINET is deemed to be a work with some potential 

wider audience and scope of application and will become part of some further implementation 

in the near future. It is foreseen that MARTe2 running MCU platforms, together with an 

industry standard protocol can represent a very interesting ground for the development of 

powerful and flexible field controllers, also as a cheaper alternative to the current consolidated 

solutions. 

In short words, MARTe2 demonstrated, also through this work, to be able to bring Hardware-

In-The-Loop, Software-In-The-Loop platforms and vertical firmware development combined 

advantages in systems ranging from the low-cost microcontroller to the HPC running complex 

models, bringing the same, consistent approach across them. This work also demonstrated the 

suitability of MARTe2 on MPSoC running bare-metal AMP for high performance control loop 

schemes. 

To conclude, MARTe2 represents an extremely flexible, ready and proven framework for the 

development of applications for the control. The support for different hardware platforms, its 

current portings and streamlined process to move towards new platforms give it an extremely 

convenient alternative to the vertical custom firmware development. Its approach based on 

functions and connections allows also a separation of tasks which allows field control expert to 

elaborate the control solution by working on the MARTe2 configuration file and leaving 

implementation and platform details to the MARTe2 core and components developers. 



5. CONCLUSIONS 

The presented work follows a logical path through the modelling, the implementation and the 

realisation of a control system, particularly oriented for the nuclear fusion field. The 

implemented code, as a result of the collaboration with the Fusion for Energy CODAC group, 

will become part of the ITER experiment plant I&C. 

The PROFINET component will become part of the ITER Electron Cyclotron Resonance 

Heating (ECRH) factory acceptance test suite (FAT-Tools), to emulate the field periphery to 

help develop and validate control algorithms, in particular for the gyrotrons power supplies. 

The streamlining of the porting process and the analysis of the procedure on several 

heterogeneous systems allowed the introduction of key features to the framework, which laid 

the foundation for the further development of the MARTe2 framework. These introductions 

helped moving MARTe2 framework towards the embedded SoC and MCU world. The 

flexibility, reliability and dependability of the MARTe2 framework running on these devices 

offer a lean yet powerful approach to the real-time control systems solutions development. 

The porting for the Ultrascale+ platform and the integration of the sensor data processing 

algorithms will become part of the ITER Magnetics Diagnostics system, helping process and 

stream data from the magnetics sensors to the Plasma Control System. 

On a bigger picture, the usage of MARTe2 framework on these platforms, allows an alternative 

approach to the custom firmware development, oriented to the control field. Leaning on 

MARTe2 brings all the framework advantages, in terms of quality of the solutions and ability 

to develop more complex schemes. The employment of microcontrollers, like the STM32, with 

MARTe2, allow the development of complex solutions for the control, also bringing the 

advantage of being field-ready, with plenty of analog and digital interfaces. 

As these platforms, both SoC and MCU, offer also a lot of other features (GPU, RPU, DSP), a 

lot of work can be done in the direction of a further MARTe2 integration, to leverage their full 

functionalities and processing power.
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