
Università degli Studi di Catania
Dipartimento di Matematica e Informatica

Dottorato di Ricerca in Informatica
XXXV Ciclo

The Ethereum Technology applied to
Enterprise Decentralized Solutions.

Healthcare and Renewables Use Cases.

Giovanni Marotta

Tesi di Dottorato

Relatore: Chiar.mo Prof. Emiliano Tramontana

Correlatore: Chiar.mo Prof. Giuseppe Pappalardo



i

Acknowledgements

My immense gratitude goes to Prof. Emiliano Tramontana and Prof. Giuseppe

Pappalardo whose emphatic, yet not condescending support, allowed me to

complete my journey without losing direction. A special thanks also goes to

Dr. Andrea Fornaia, who sustained me in both good and gloomy moments.



ii

A remarkable oddity

What a weird coincidence occurred during the writing of my thesis! The

reader can notice that the first bibliographic reference is to one of the seminal

works in the blockchain genesis, which was written by Stuart Haber and W.

Scott Stornetta in 1990 at Bellcore Labs, Morristown, NJ, USA. Well, the

fact is that I was also working there, exactly at the same time, in an office

very similar to the one shown in the picture. A teammate of mine swears he

can recognize Stuart Haber from the picture, honestly I can’t. I just like to

think we were next-door neighbors...

...memories aside, I can still exhibit a proof of evidence of those times

spent unknowingly close to these two visionary guys: the Bellcore mug that I

proudly keep on using for my afternoon teas!



Abstract

Public blockchains have recently emerged as a disruptive technology in the

distributed systems arena because of the adoption of a predominant decen-

tralized approach. Initially dealing with the creation of a disintermediated

cryptocurrency and financial market, the blockchain technology has rapidly

caught the interest of a growing scientific and technological community will-

ing to develop novel applications, in varied contexts, based on the decentral-

ization paradigm, thus undermining the long established client-server model.

The birth of Ethereum, the first public blockchain introducing executable

programs into its core technology, has fostered the development of other sim-

ilar platforms specifically addressed to private implementations, capable of

mitigating well-known technological issues of the native public blockchains,

especially in terms of scalability, energy demands and performance costs.

This thesis aims at demonstrating that the Ethereum blockchain tech-

nology is also suitable to host effective and performing decentralized appli-

cations in enterprise contexts, without resorting to custom-built blockchains

for permissioned environments, provided that ad-hoc system enhancements

are introduced in the devised solutions. The novel applications are therefore

equipped with tailored features, such as properly designed smart contracts,

optimal use of the blockchain storage, and smooth integration with external

decentralized file systems, thereby ensuring that the developed Ethereum-

based solutions exhibit a secure, decentralized and scalable behaviour.

Two use cases, namely “contact tracing” and “renewable energy”, have

been investigated. Intensive test activities have thoroughly proven that a

sensible use of the Ethereum platform delivers the expected outcomes in the

explored enterprise contexts.

iii



Contents

Abstract iii

1 Introduction 1
1.1 The decentralization paradigm . . . . . . . . . . . . . . . . . . 1

1.1.1 Distributed and decentralized systems . . . . . . . . . 2
1.1.2 Decentralization in the blockchain . . . . . . . . . . . . 4

1.2 Blockchain and cryptocurrency . . . . . . . . . . . . . . . . . 6
1.3 New frontiers in blockchain applications . . . . . . . . . . . . 7

1.3.1 Smart contracts . . . . . . . . . . . . . . . . . . . . . . 8
1.3.2 Drivers of enterprise blockchain development . . . . . . 9
1.3.3 Use cases . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.4 Personal contributions . . . . . . . . . . . . . . . . . . . . . . 12

2 Background 15
2.1 Blockchain fundamentals . . . . . . . . . . . . . . . . . . . . . 15

2.1.1 Consensus algorithms . . . . . . . . . . . . . . . . . . . 16
2.1.2 Blockchain types . . . . . . . . . . . . . . . . . . . . . 18
2.1.3 Transactions . . . . . . . . . . . . . . . . . . . . . . . . 20
2.1.4 Tokens . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.2 The Ethereum platform . . . . . . . . . . . . . . . . . . . . . 22
2.2.1 Ethereum clients . . . . . . . . . . . . . . . . . . . . . 23
2.2.2 Account-based model . . . . . . . . . . . . . . . . . . . 25
2.2.3 Transaction-driven state machine . . . . . . . . . . . . 26
2.2.4 Token standards . . . . . . . . . . . . . . . . . . . . . 28
2.2.5 Digital wallets . . . . . . . . . . . . . . . . . . . . . . . 30
2.2.6 Ethereum’s smart contracts . . . . . . . . . . . . . . . 31
2.2.7 Ethereum’s blockchain . . . . . . . . . . . . . . . . . . 33
2.2.8 Open issues . . . . . . . . . . . . . . . . . . . . . . . . 35

2.3 Decentralized Applications . . . . . . . . . . . . . . . . . . . . 38
2.3.1 Solidity contracts . . . . . . . . . . . . . . . . . . . . . 39
2.3.2 Web3 Providers . . . . . . . . . . . . . . . . . . . . . . 43

iv



CONTENTS v

2.3.3 Front-end operations . . . . . . . . . . . . . . . . . . . 44
2.4 Digital identity . . . . . . . . . . . . . . . . . . . . . . . . . . 45

2.4.1 Self-Sovereign Identity . . . . . . . . . . . . . . . . . . 46
2.4.2 Decentralized Identifiers and Credentials . . . . . . . . 46

3 Related Work 48
3.1 Contact tracing solutions . . . . . . . . . . . . . . . . . . . . . 48

3.1.1 Blockchain-unequipped . . . . . . . . . . . . . . . . . . 49
3.1.2 Blockchain-equipped . . . . . . . . . . . . . . . . . . . 51

3.2 Renewable Energy Sources solutions . . . . . . . . . . . . . . . 53
3.3 Blockchain design topics . . . . . . . . . . . . . . . . . . . . . 55

3.3.1 Smart contract immutability . . . . . . . . . . . . . . . 56
3.3.2 Smart contract computational cost . . . . . . . . . . . 58
3.3.3 Smart contract storage . . . . . . . . . . . . . . . . . . 59
3.3.4 Security and scalability design . . . . . . . . . . . . . . 60

4 Contact Tracing solution 62
4.1 Hybrid decentralized version . . . . . . . . . . . . . . . . . . . 64

4.1.1 System overview . . . . . . . . . . . . . . . . . . . . . 65
4.1.2 Device Localization . . . . . . . . . . . . . . . . . . . . 67
4.1.3 Contact tracing . . . . . . . . . . . . . . . . . . . . . . 70
4.1.4 User interface . . . . . . . . . . . . . . . . . . . . . . . 72
4.1.5 Absolute localization tests . . . . . . . . . . . . . . . . 72
4.1.6 Comparative analysis . . . . . . . . . . . . . . . . . . . 74

4.1.6.1 Comparison with centralized solutions . . . . 75
4.1.6.2 Comparison with decentralized solutions . . . 75

4.1.7 Solution discussion . . . . . . . . . . . . . . . . . . . . 77
4.2 Highly decentralized version . . . . . . . . . . . . . . . . . . . 78

4.2.1 DApp v1 . . . . . . . . . . . . . . . . . . . . . . . . . . 79
4.2.1.1 Back-end decentralization . . . . . . . . . . . 80
4.2.1.2 Blockchain components . . . . . . . . . . . . 82
4.2.1.3 Operational workflow . . . . . . . . . . . . . . 84
4.2.1.4 Blockchain-related software . . . . . . . . . . 84
4.2.1.5 Gas consumption tests . . . . . . . . . . . . . 89

4.2.2 DApp v2 . . . . . . . . . . . . . . . . . . . . . . . . . . 94
4.2.2.1 Contact tracing in DApp v2 . . . . . . . . . . 96
4.2.2.2 Modified blockchain components . . . . . . . 97
4.2.2.3 Blockchain-related software . . . . . . . . . . 99
4.2.2.4 Gas consumption tests . . . . . . . . . . . . . 102
4.2.2.5 Decentralizing the system DB . . . . . . . . . 103

4.2.3 Comparative analysis . . . . . . . . . . . . . . . . . . . 107



CONTENTS vi

4.3 Complete solution wrap-up . . . . . . . . . . . . . . . . . . . . 109

5 DER management solutions 112
5.1 Blockchain environment . . . . . . . . . . . . . . . . . . . . . 114

5.1.1 Energy Web Decentralized Operating System . . . . . 114
5.1.2 Energy Web applications . . . . . . . . . . . . . . . . . 116

5.2 Smart Aggregator DApps . . . . . . . . . . . . . . . . . . . . 117
5.2.1 DER marketplace DApp . . . . . . . . . . . . . . . . . 120

5.2.1.1 Application description . . . . . . . . . . . . 120
5.2.1.2 Demand/offer matching . . . . . . . . . . . . 121

5.2.2 Smart metering DApp . . . . . . . . . . . . . . . . . . 123
5.2.2.1 Application overview . . . . . . . . . . . . . . 124
5.2.2.2 Data collection and storage workflow . . . . . 125

5.2.3 Grid flexibility DApp . . . . . . . . . . . . . . . . . . . 129
5.2.3.1 DApp overview . . . . . . . . . . . . . . . . . 135
5.2.3.2 Blockchain implementation . . . . . . . . . . 139
5.2.3.3 Back-end architecture . . . . . . . . . . . . . 144
5.2.3.4 Experimental assumptions . . . . . . . . . . . 145
5.2.3.5 Experimental results . . . . . . . . . . . . . . 149

5.3 Solution discussion . . . . . . . . . . . . . . . . . . . . . . . . 156

6 Conclusions 158

Bibliography 161



Chapter 1

Introduction

Concepts such as blockchain, cryptocurrency and distributed ledger technol-

ogy (DLT) have irreversibly impacted the academic and technological debate

among scientific communities, and entered the daily lexicon of industry pro-

fessionals and policymakers.

Although early proposals under the broader DLT umbrella have been

present since the early 90s’ [1], it was not until the publication of the ”Bitcoin

whitepaper” [2] in 2008 that the IT community had to deal with a rising

tide of innovation in the way crypto-content could be managed on the net,

with regard to ownership, security, transparency and reliability, thus allowing

peer-to-peer (P2P) distributed systems to unveil promising perspectives in

application development, until then quite underrated.

Whilst the initial hype was on new ways to create and exchange digital

money with no intermediation from ”trusted” financial third-parties, nowa-

days the interest has dramatically shifted towards a variety of new application

fields in which the blockchain technology has an opportunity to unleash its

transformative and disruptive capabilities and favour its mass adoption.

1.1 The decentralization paradigm

In the contemporary practice of distributed systems, a growing trend has

emerged towards administrative decentralization, i.e., taking the full con-

1



CHAPTER 1. INTRODUCTION 2

trol of an organization away from a central trusted authority, in favour of

a multiplicity of peer controlling agents. Accordingly, while conventional

client-server applications assume the centralized administration model for

the server, the recent and steady growth of the blockchain technology has

made the above-stated administrative decentralization paradigm (in the fol-

lowing “decentralization paradigm” for short) emerge alongside its counter-

part. Running a decentralized system entails several benefits, such as removal

of single points of failure, increased efficiency, and distributed trust in deci-

sion making, to name but a few.

At the heart of most decentralization schemes, distributed consensus plays

a primary role. Business-wise, consensus implies the final agreement between

two or more involved parties on the value of parameters of interest to all (i.e.,

the balance of a bank account). Typically, a central organization, such as a

bank, assumes the role of custodian of truth with respect to all the involved

parties. This implies that customers and other stakeholders have to trust

such a custodian faithfully.

The decentralization paradigm launches the challenge to reach a consen-

sus, among the involved parties, on the values of agreed-upon parameters,

without resorting to a central authority. This is a revolutionary idea since it

entails a radical change in the way facts are assessed without the traditional

trusted party.

1.1.1 Distributed and decentralized systems

To better understand the decentralization paradigm the notion of distributed

systems needs to be introduced and explained, since the two concepts are

related but often erroneously overlapped to a very large extent.

A distributed system is a computing architecture made up of two or more

nodes interacting in a coordinated fashion in order to achieve a common

goal. From the end user’s point of view, a distributed system is seen as a

single logical platform. Nodes are able to exchange messages with each other

and they have individual processing power and storage capabilities. In this

model, there is still a central authority that coordinates the overall processing



CHAPTER 1. INTRODUCTION 3

results. A node that exhibits unpredictably faulty or malicious behaviour

is classified as Byzantine and it can damage unexpectedly or intentionally

network operations. Designing a performing and fault tolerant distributed

system can turn out to be quite compelling, hence many efforts have been

put into the solutions of these issues since the early stages of the research

activities on the the field. The CAP theorem, originally formulated as an

intuition [3] and later proved [4], states that a distributed system cannot

have the three fundamental properties, i.e., Consistency, Availability and

Partition, simultaneously. These properties ensure data consistency among

all the copies shared by the nodes, no downtime in system accessibility, and

fault tolerance to byzantine nodes.

Unlike canonical distributed systems, a decentralized system adopts a

paradigm that does not provide for a central administrative authority; con-

versely, control is distributed among many nodes.

In DLT systems varying levels of decentralization can be accomplished

depending on the design of the entire application ecosystem, the topmost

being total disintermediation, that is, absence of any central or intermediate

authority when it comes to transaction validation, execution and storing.

Disintermediation in the monetary and financial sectors, regardless of the

growing dissemination, is exposed to practical obstacles, due to heavy reg-

ulatory and compliance requirements. On the other hand, this model can

be successfully applied to various industries beyond the economic scope and

accepted at regulatory level with fewer restrictions.

As far as consensus is concerned, a high degree of decentralization is

achieved when a group of peer nodes compete with each other to be selected

for the provision of protocol activities. This competing approach ensures that

a single intermediary will never exclusively supply the required service. This

mechanism is reflected by a leader-based consensus mechanisms, whereby

competing nodes need to win a lottery for the election of a leader that is

appointed to propose and store the final value of any data to be shared and

stored in the distributed ledger.



CHAPTER 1. INTRODUCTION 4

1.1.2 Decentralization in the blockchain

Blockchains are inherently distributed systems, more specifically they are

decentralized distributed systems [5]. In fact, blockchains adopt replication

of computing, communication and storage resources as a method to achieve

fault tolerance, while decentralized consensus algorithms are used to ensure

consistency. The combination of these two mechanisms is known as state

machine replication. The Blockchain technology in fact encompasses the

idea of designing a platform that can implement a replication of the virtual

state machine in all nodes.

As for the consensus process, reaching an agreement about the final state

of new incoming data among competing nodes is a particularly difficult task

in distributed systems and involves executing sophisticated agreed-upon pro-

tocol procedures.

Early precursors in the arena of consensus mechanisms are the works of:

(i) Paul Baran, who introduced the idea of cryptographic signatures and de-

centralized networks in 1964 [6]; (ii) Lamport, who developed the conceptual

problem - and some solutions to it - of the weak Byzantine generals in 1982

and later published it in 1983 [7]; (iii) Castro and Liskov who presented the

Practical Byzantine Fault Tolerance (PBFT) algorithm in 1999 [8]. The lat-

ter describes a new replication algorithm which is able to tolerate Byzantine

faults in asynchronous environments, such as the Internet, and incorporates

several important optimizations that improve the response time of previous

algorithms. After years of academic research, consensus mechanisms have

eventually found their practical employment with the advent of Bitcoin in

2009 [2], in which the Proof of Work (PoW) algorithm was deployed as the se-

lected mechanism to achieve the distributed consensus among the P2P nodes

making up the Bitcoin network.

In the wide context of blockchain technologies, several consensus mecha-

nisms have been proposed later on [9, 10]. For each of them, the designated

protocol will elect the leader among the competing nodes at each occurrence

based on specific criteria (e.g., computational work, reputation, randomness,

quality of service). More detailed explanations of some of the most used con-



CHAPTER 1. INTRODUCTION 5

sensus algorithms in blockchain are given throughout the present document.

Although the blockchain, with its consensus algorithms equally carried

out by peer P2P nodes, radically shifts the control paradigm towards the

decentralization side, it must be noted that its underlying technologies are

made up of conventional systems, mostly centralized. These elements in-

clude communication networks, computation and storage architectures. A

full decentralization would instead require that the ecosystem around the

blockchain be also decentralized in its underlying components, as shown in

Figure 1.1.

Figure 1.1: Decentralized ecosystem [5].

Unfortunately, the communication layer serving the blockchain nodes is

inherently centralized in most cases, therefore an appropriate theoretical

alternative could be represented by a more tightly meshed network topol-

ogy. However, deploying these layouts at a planetary scale is very costly,

so that this next step toward decentralizing communication networks in the

blockchain ecosystem could be very impractical.

Needless to say that, as a distributed ledger technology, the blockchain

can store data directly in its own repositories, and this may suffice to achieve

full storage decentralization. Unfortunately, for cost and performance rea-

sons, a blockchain is not designed to store large amounts of data, in contrast

to traditional databases. Resorting to distributed hash tables (DHTs)1, as

originally used in P2P file sharing solutions2, looks like a good complemen-

1https://en.wikipedia.org/wiki/Distributed_hash_table
2https://en.wikipedia.org/wiki/Peer-to-peer_file_sharing

https://en.wikipedia.org/wiki/Distributed_hash_table
https://en.wikipedia.org/wiki/Peer-to-peer_file_sharing


CHAPTER 1. INTRODUCTION 6

tary choice for storage, provided that “high availability” requirements be

fulfilled. Being “high availability” compliant in its design, Inter Planetary

File System (IPFS)3 is one of the most used storage technology along with

the blockchain.

Finally, decentralization in computation is inherently achieved in the

blockchain thanks to the replication of the protocol business logic at any

P2P node, in which the virtual machines run the consensus algorithm as well

as additional blockchain-related software of varying degrees of complexity,

from simple scripts to sophisticated smart contracts.

1.2 Blockchain and cryptocurrency

The ultimate impulse to the practical development of blockchain platforms

was undoubtedly provided by the deployment of Bitcoin in 2009 [2]. In terms

of market capitalization, Bitcoin remains the most visible implementation

of the blockchain technology for the time being. As for the decentralized

consensus, the common parameter of interest is the balance of user accounts.

With the advent of electronic-cash (e-cash) in the Internet, the double

spending issue, that is, the concrete chance to make a ’carbon-copy’ money

transaction to different parties at nearly the same time, has strongly required

the intervention of central banking platforms to play the role of custodians

of truth with regard to detecting invalid (i.e., replicated) transactions and

inconsistency of account balances.

Conversely, Bitcoin establishes the decentralized consensus on account

balances by settling the double spending problem without resorting to a cen-

tral authority. The implemented mechanism does not store account balances

in the Bitcoin blockchain, but computes them on-the-fly on each transac-

tion execution, by reading the results of each and every previous transaction,

which is immutably stored in Bitcon’s DLT forever.

The digital money transacted by Bitcoin lies within the broader concept

of cryptocurrency, which, in turn, has developed around the research work on

3https://ipfs.tech/

https://ipfs.tech/


CHAPTER 1. INTRODUCTION 7

the e-cash topic over the last four decades. Already in 1983 David Chaum [11]

addressed the two critical points in e-cash schemes, such as accountability

and anonymity, by introducing two fundamental cryptographic operations,

namely blind signatures and secret sharing. The former allows signing a

document without actually seeing it, whereas the latter tackles the double-

spending problem. More work on cryptographic operations was produced

following Chaum’s original findings, such as the “hashcash”, introduced by

Adam Back in 1997, and described more formally in 2002 [12], as a Proof-

of-Work (PoW) system to control e-mail spam. PoW requires spending a

significant quantity of computational power to find an hash for each mail to

be sent. This idea inhibits spammers since it makes inconsiderate for them to

spend such an expensive amount of processing resources. Though computing

the hash takes much effort, verifying it is an easy and quick operation from

the receiving side.

Before Bitcoin, other schemes to create cryptocurrency by making use of

“hashcash” can be found in Wei Dai “b-money” proposal [13]. Further ideas

were later introduced by Nick Szabo [14] and Hal Finney [15], all of them fac-

ing issues that could not make the implementation of such schemes applicable

in practical ways or, at least, could not be classified as fully decentralized.

The concept of “hashcash” gained final visibility since it was selected to

implement the decentralized mechanism regulating the leader election in the

Bitcoin consensus protocol. At each round, the competing node (i.e., miner)

that manages to solve the computation puzzle first is elected to create (i.e

to mine) a new block of data to be added permanently to the chain. It is

noticeable that Bitcoin was the perfect combination of previous ideas and

concepts from e-cash schemes and distributed systems, which gave birth to

the transformational notion of blockchain.

1.3 New frontiers in blockchain applications

Not only decentralized consensus has fostered the advent of cryptocurrency

blockchains, such as Bitcoin, but it has also initiated a new era of distributed

applications, which are extending the scope of use of the blockchain far be-



CHAPTER 1. INTRODUCTION 8

yond its original intent. The computing and communication arena has in fact

experienced the overwhelming entry of the disruptive blockchain paradigm,

which is changing the point of view of the scientific community on distributed

applications, in cases where transparency, fault tolerance, and freedom from

net censorship are of paramount importance. Due to these concerns, the

new paradigm of decentralized applications (DApps) began to emerge for the

building of novel and exciting Internet-based apps since the introduction of

smart contracts in the blockchain ecosystem.

1.3.1 Smart contracts

The concept of smart contract, originally theorized in 1997 by Nick Szabo [14]

to refer to ”a set of promises, specified in digital form, including protocols

within which the parties perform on these promises”, has played a central role

in the development of DApps, within the new paradigm of Web34, which is

intended as a more secure, fair and transparent web, based on the idea of

multiplying profit centers by dividing value, in an open network. This more

democratic vision has fostered research work since the early days of the mil-

lennium, but only with the growing availability of advanced technologies,

such of AI, IoT, decentralized systems, and advanced cryptography, the pop-

ularity of Web3 has spread steadily over the last years. The term Web3 was

in fact introduced in 2014 by Gavin Wood, the co-founder of Ethereum [16],

a technology environment whereby smart contracts can be thoroughly spec-

ified, developed and deployed in a decentralized environment.

Notwithstanding the fact that there is no standardized definition of smart

contracts, an articulate way of describing them should include both technical

and enforcement aspects. The latter deal with the idea that smart contracts

should execute the business logic of legal agreements deterministically if con-

tractualized conditions are met, without any intermediation. Whether or not

the agreement terms enforced by smart contracts can be legally enforceable

will be a matter of heated debate between differing school of thoughts in the

coming years. A considerable amount of focused research is in fact being

4https://en.wikipedia.org/wiki/Web3

https://en.wikipedia.org/wiki/Web3


CHAPTER 1. INTRODUCTION 9

carried out in the formal design of smart contracts in order to make their

implementation legally viable and technically effective.

If we only stick to technical aspects related to blockchain applications, an

essential yet satisfactory definition of smart contracts can be that of programs

of arbitrary length and complexity, whose executable code is saved in the

blockchain storage [17].

1.3.2 Drivers of enterprise blockchain development

Similarly to e-mail for the conventional Web, Bitcoin in 2009 was the “killer

application” that established a new mindset in the way digital technologies

can be modeled to provide a new application paradigm, though the first

accountable blockchain application dates as back as 1990 with the aforemen-

tioned work of Haber and Stornetta [1] on a digital time-stamping service

deployed on a distributed ledger.

Blockchain is nowadays capable of providing solutions to various prob-

lems in such a radical way to reshape the corporate agenda on distributed

applications, as highlighted by Dr. W.Scott Stornetta: “...what began thirty

years ago as an effort to fix digital records has blossomed into an entire in-

dustry that aspires to disrupt not just all the world’s recordkeeping, but all

the industries and social structures that depend on recordkeeping...” [18].

Corporate investments in blockchain are in fact changing the idea of de-

livering services to the community and, in commercial sectors, creating a

promising outlook of revenues even in the near term. These encouraging

breakthrough is a consequence of eventually leaving behind the notion that

enterprise or cross-organization (consortium) blockchains do not unlock the

entire potential of democratic disintermediation as public blockchains (see

Subsection 2.1 for detailed definitions of blockchain types).

A fundamental driver of the blockchain revolution is the shared source of

trust coming from decentralized consensus, which is at its highest expression

in public blockchains, but still retains a heavy attractive weight in enterprise

or consortium blockchains, which explains the remarkable amount of research

and investments being spent on them. In addition, optimal system perfor-



CHAPTER 1. INTRODUCTION 10

mance and extended privacy are better achieved in enterprise blockchains,

which, in some implementations, don’t even use criptocurrency to incentivize

the consensus process from the validating nodes [19].

Decentralized applications can find space as a replacement of traditional

client-server ones whenever a free fall of mutual trust among parties should

be alleviated by the adoption of a technological paradigm that places trans-

parency, immutability, integrity, and shared consensus at its forefront.

As a matter of fact, in the last five years there has been increasing ex-

citement around the enterprise blockchain potentials from many innovative

companies, industry giants and visionary government agencies. The increas-

ing number of proposed proof of concepts (POCs) are steadily raising the

interest for blockchain technologies and proving capable of real transforma-

tion in many industrial, commercial and administrative scenarios.

1.3.3 Use cases

One of the first applications beyond the e-cash handling, which harnessed

the unlimited potentialities unleashed by the introduction of Ethereum, has

been the creation of Decentralized Autonomous Organizations (DAOs) that

rely on organizational rules enforced by the automated execution of smart

contracts. The initial attempt in 2016 was explicitly called the DAO[20], a

crowdfunded initiative aimed at financing a project to provide a platform

for investment, which unfortunately suffered from a hard-coded software bug

that allowed skillful attackers to drain a considerable amount of money off the

DAO and forced the Ethereum designers to change the system software [20].

It is acknowledged that the development of advanced DAO projects, in which,

for instance, the application can fully replicate the behavior of a company

board, should require the adoption of more sophisticated technologies, such

as artificial intelligence, to make them look like the real thing [21].

Blockchain technology is also used in the medical sector to store patient

data. The ability to maintain an incorruptible, decentralized and transparent

registry of patient data, i.e., the Electronic Health Registers (EHRs), makes

blockchain technology an ideal tool to fulfil the standard requirements in



CHAPTER 1. INTRODUCTION 11

this application area. Decentralization makes it easier for patients, doctors

and health professionals to share information quickly and safely. Estonia, for

instance, which is a forerunner in this field, began to harness the power of

distributed ledger technology in healthcare and other fields as far as 2012 [22].

Informed consent about personal data collection is a recent concept, hav-

ing a high impact on data management and treatment transparency. It is

essential that every interested party has a dynamic control over consent, by

being capable of expanding it, decreasing it or revoking it completely. A

blockchain-based solution, as in [23], allows the history of informed consent

given by patients in genomic research experiments to be traced in an im-

mutable and non-repudiable fashion.

Another pervasive theme which occurs throughout many blockchain ap-

plications is “digital identity’, such as in Know Your Customer (KYC) pro-

cesses whereby the sharing of proof of customer identities among banks can

be secured via a distributed ledger. For more complex applications some

enterprise platforms, such as the ones promoted by the Hyperledger project5

and the Energy Web project6, make their own built-in, complementary ser-

vices available to provide support to the implementation of digital identity

mechanisms, such as the enrollment and registration of identities during net-

work operations, and the management of changes like credential additions,

drops, and revocations.

The green energy exchange is becoming one of the leading application

fields where digital identities can play a distinctive role. Production through

renewable energy sources (RES) is, in fact, becoming increasingly decentral-

ized and lands quite naturally in the blockchain territory as far as energy

trading, information storage, and increased transparency of energy flows are

concerned. The change in the electricity market is characterized by the

growth of so-called “smart grid” and by the emerging possibilities for de-

centralized energy generation. In the said scenario a large number of actors

will be involved in the production and consumption of green energy. Such

actors are generally small and without a well-established and trusted model

5https://www.hyperledger.org/
6https://www.energyweb.org/

https://www.hyperledger.org/
https://www.energyweb.org/


CHAPTER 1. INTRODUCTION 12

to participate in the smart grid. Adoption of the blockchain can then play a

fundamental role in many aspects of the green energy marketplace in the pres-

ence of parties that are unknown to each other. Furthermore, the distributed

ledger technology can be used to certify the source of energy production from

producers to consumers, for the sake of guaranteeing its green origin.

Other fertile sectors for enterprise blockchain applications are: (i) supply

chain management (SCM) in the fields of food tracking [24] and counterfeit

pharmaceuticals [25]; (ii) logistics, where the distributed ledger technology

can be used to track assets by using their digital identities [26]; (iii) docu-

mentation management, in which the issuance of documents certifying the

completion of procedural steps in complex cross-organization processes can

be securely tracked and timestamped [27].

1.4 Personal contributions

This thesis focuses on the research and experimental activities carried out

during my doctorate placement, which are related to the design of viable

and effective blockchain-based solutions in a few selected, non-financial, ap-

plication scenarios, such as (i) healthcare and (ii) renewable energy. In both

scenarios, specialized simulations or prototypes have been designed, devel-

oped, and deployed on field and/or on suitable testbeds in order to validate

the novel contributions behind their design.

The presented solutions aim to establish that even enterprise-level require-

ments can be met by decentralized applications deployed on top of standard

public blockchain protocols that admittedly suffer from scalability and high

computation costs, such as Ethereum7. To accomplish these goals, the de-

centralized applications have been designed to be endowed with a balanced

combination of ad-hoc features, which contribute to enhance the scalability

and security properties of the proposed solutions, as well as to provide a

reassuring level of accuracy and efficiency, thus making their employment

suitable and effective for their reference scenarios.

7https://ethereum.org/en/

https://ethereum.org/en/


CHAPTER 1. INTRODUCTION 13

The described experiments and their findings are the result of work which

has been published in conference proceedings and journals. As for the epi-

demiological surveillance sector, three papers have been published as the

corresponding author:

– Marotta G, Billeci F, Criscione G, Merola F, Pappalardo G, and Tra-
montana E. ”NausicaApp: a hybrid decentralized approach to managing
Covid-19 pandemic at campus premises”, in 2020 Asia Conference on
Computers and Communications (ACCC), 2020 Sep 18 (pp. 124-129).
IEEE.

– Marotta G, Fornaia A, Moschitta A, Pappalardo G, and Tramontana
E. ”NausiChain: a Mobile Decentralized App Ensuring Service Conti-
nuity to University Life in Covid-19 Emergency Times”, in 2021 the
4th International Conference on Software Engineering and Information
Management (ICSIM), 2021 Jan 16 (pp. 74-81).

– Fornaia A, Marotta G, Pappalardo G, and Tramontana E. ”A De-
centralized Solution for Epidemiological Surveillance in Campus Sce-
narios”, in IEEE Access, vol. 10, pp. 103806-103818, 2022, doi:
10.1109/ACCESS.2022.3208167.

On the renewable energy sector the published paper is:

– Calvagna A, Casablanca E, Marotta G, Pappalardo G, and Tramon-
tana E. ”Providing Trust in a Dynamic Distributed Energy Production
Scenario by means of a Blockchain”, 2022 Workshop on Blockchain for
Renewables Integration (BLORIN), Palermo, Italy, 2022, pp. 13-18,
doi: 0.1109/BLORIN54731.2022.10028019.

At the time of writing, the paper describing the latest experimental out-

comes in the renewable energy sector, as presented in the thesis, is being

submitted to a specialized journal (namely, IEEE Transactions on Smart

Grids). The paper’s title and authors are reported below:

– Calvagna A, Marotta G, Pappalardo G, and Tramontana E. ”A Blockchain-
Based Solution for Modulating the Energy Flows in a Smart-Grid”.

The remaining published paper is a survey on typical issues of blockchain-
based applications in the Electronic Health Records (EHRs) sector. The



CHAPTER 1. INTRODUCTION 14

main contribution provided is a classification of typical issues, such as users’
anonymity, data access and security, identity management, that similarly
traverse many corporate applications:

– Mandarino V, Marotta G, Pappalardo G, and Tramontana E. ”Issues
Related to EHR Blockchain Applications”, in 2021 2nd Asia Conference
on Computers and Communications (ACCC), 2021 Sep 24 (pp. 132-
137). IEEE.

The remaining of this document is structured as follows. Chapter 2 pro-

vides a comprehensive insight into the blockchain technology, with special

focus on the Ethereum platform and the design principles of decentralized

applications. A final section gives an overview of the Self-Sovereign Iden-

tity (SSI) approach. Chapter 3 collects the prominent work related to the

discussed topics. Chapter 4 describes and discusses the main findings of the

solution designed over the blockchain for the epidemiological surveillance sec-

tor. Chapter 5 deals with the solutions designed for the digitalization of the

green energy market, whose main objective is the creation of a management

system for decentralized energy resources. Chapter 6 draws the conclusions

of the dissertation focusing on experimental and innovative aspects spread

throughout this document.



Chapter 2

Background

This chapter provides the technical references that are essential to handle the

background technologies employed throughout the dissertation. Sections 2.1

and 2.2 pinpoint the fundamentals of blockchain and smart contracts tech-

nologies, as well as their known limitations. Section 2.3 provides an overview

of the decentralized application model. Finally, Section 2.4 gives some hints

on the self-sovereign identity topic.

2.1 Blockchain fundamentals

A blockchain is a peer-to-peer distributed ledger that registers cryptograph-

ically signed transactions in a sequence of linked blocks, namely the chain,

in an append-only fashion.

The main components of a typical blockchain can be listed as follows:

(i) a P2P network that connects the blockchain nodes; (ii) a chain of cryp-

tographically secured blocks that acts as a decentralized ledger; (iii) a set

of consensus rules that validate and create the blocks; (iv) messages, in the

form of transactions, that trigger state transitions; (v) a state machine that

processes transactions according to a built-in script language.

It’s a fact that the diverse existing blockchains differ from each other by

the components included in their implementation and for other aspects that

make them exhibit different behaviour in terms of openness, accessibility,

15



CHAPTER 2. BACKGROUND 16

performance, programmability and security. These components are provided

by the P2P nodes’ software, also known as client. In Bitcoin the client imple-

mentation project is developed by the Bitcoin Core open source initiative1,

whereas in Ethereum, rather than a reference implementation, there exists a

mathematical description of the client in the Yellow Paper [16], which allows

a number of different developers to implement Ethereum clients according to

the reference specification.

Typically, each of the chained blocks stores data, such as a timestamp,

a nonce, a set of transactions and a cryptographic reference (hash) to the

previous block. Since every hash is unique, every block is linked to a unique

parent all the way up to the “genesis block”, which is the first one in the

chain. Once a valid block is created, each node connects it to the previous

blocks and updates its own private copy of the blockchain, thus ensuring

consistency with the other peer nodes’ copies. The properties provided by

the hash function render the blockchain immutable because if an adversary

modifies even a single bit in a block, the block’s new hash will be different and

the hash pointer stored in the subsequent block will be incorrect. As a result,

this technology makes the origin of data, their integrity, and their authentic-

ity certain. Blockchain immutability ensures resilience against modification

or removal of the transaction data stored in the blocks, thus making the

blockchain tamper-proof and tamper-evident.

2.1.1 Consensus algorithms

Blockchain technology combines different well-known concepts such as digi-

tal signatures, cryptographic hashing functions, and decentralized consensus

algorithms, which validate all the registered transactions without requiring

a central authority. The addition of new data to the chain is in fact a de-

centralized activity carried out by all peer nodes running the agreed-upon

consensus algorithm, whose global convergence ensures the reliability of the

blockchain and the correctness of the data saved in the chained blocks.

The two most popular (up to know) blockchain platforms, namely Bit-

1https://bitcoin.org/en/bitcoin-core/

https://bitcoin.org/en/bitcoin-core/


CHAPTER 2. BACKGROUND 17

coin [2, 28] and Ethereum [16, 17], have been designed on the basis of the

Proof of Work (PoW) consensus algorithm [29], which goes back to the “hash-

cash” mechanism introduced by Adam Black [12] (see Section 1.2). PoW is

a computationally intensive mechanism, based upon finding a nonce value,

such that, when hashed together with the candidate block’s data, the re-

sulting hash value is smaller than a current target value set by the protocol.

Generating this proof of work is known as mining. Conversely, every other

node can easily verify the solution of the puzzle. If the verification process

succeeds, then the node which found the nonce is rewarded and every other

node adds the newly created block to their copy of the chain.

Due the decentralized nature of the PoW consensus, there is usually a

short-term disagreement in time between nodes as to what the current state

of the blockchain is. For this reason it is recommended to wait for a few

more blocks before a confirmed transaction in a block can be regarded as

permanently included in the blockchain. A new block is in fact added to the

longest chain of blocks, which makes less likely that the newly added block

will be “detached” from the longest chain. Mining is then a necessary cost to

extend the chain and prevent malicious double-spend attempts from adding

fake blocks to the chain.

The high energy consumption of PoW, while discouraging dishonest nodes

from transmitting malicious blocks to the network, represents a major draw-

back that has led to the adoption of alternative consensus algorithms, such

as Proof of Stake (PoS) and Delegated Proof of Stake (DPoS) [30], Proof

of Authority (PoA) [31], and so on [9, 10]. Proof of Stake (PoS) is proba-

bly the consensus algorithm that is receiving the utmost attention from the

blockchain community, as far as the right blend of transaction costs, peer re-

liability and protocol fairness is concerned. With PoS, in order to be elected

as a candidate creator of the next block, the requirement for the nodes is

to stake a certain amount of coins as a guarantee of upright participation to

the mechanism. The higher the stake, the higher chances a user stands of

being chosen. If elected nodes follow the protocol, they are rewarded, while

if they behave in a dishonest way they would be penalized by the protocol

by “burning” the coins at stake. The adoption of PoS favours scalability and



CHAPTER 2. BACKGROUND 18

security features of the consensus mechanism implemented in the blockchain,

but to the detriment of decentralization, in accordance with the “blockchain

trilemma”.

This assertion, initially formulated by Vitalik Buterin, the co-founder of

the Ethereum blockchain, is a condition that concerns security, scalability and

decentralization. It states that any improvement in one of these three aspects

will negatively impact on at least one of the other two [32]. This means that

a fine tuning among these factors has to be performed when designing a

blockchain system solution, for it is quite difficult to have a scalable, secure

and decentralized blockchain at the same time. A trade-off must be reached

and accepted in favour of at least two of these aspects [33]. Oddly enough,

the blockchain trilemma has never received a formal definition in scientific

literature, but is often cited in research works and surveys on blockchain

features, especially on scalability issues [32, 34].

Unlike PoW, which performs well in decentralization and security, the

PoA consensus algorithm is located closer to the scalability and security

vertices of the “trilemma”, since it requires much less computation than

PoW by removing the “crypto-puzzle” contest among competing nodes. The

task of block creation is executed by predetermined authorized nodes, namely

sealers or validators in PoA acceptation [19].

Proof of Elapsed Time (PoET) [35] is instead a consensus algorithm that

sacrifices security in favour of scalability and decentralization. At each cycle,

validating nodes wait for a given random time. The first node for which

the waiting time has elapsed is selected to validate a block. The election

mechanism requires dedicated hardware and high trust among the validating

nodes, since they can cheat to each other on the random generation of time

intervals.

2.1.2 Blockchain types

A varied number of blockchain designs have emerged over the past years

that can be classified according to two similar dimensions. The first one is

about governance, that is to say the set of nodes allowed to participate to



CHAPTER 2. BACKGROUND 19

the consensus mechanism, and it distinguishes between permissionless and

permissioned blockchains. The former type allows every node joining the P2P

network to become a block maker, whereas the latter restrict this chance only

to a set of authenticated users. The second dimension, public versus private

blockchains, determines whether or not to enable any node or client to access

the information stored in the blockchain [36].

In a less granular classification “permissionless” often encompasses the

“public” meaning, since it is quite unlikely that a permissionless blockchain

might restrict public access to nodes. In this acceptation, in a public (per-

missionless) blockchain anyone can write the transactions, read data, or run a

validator node. We will use the term “public” to mean also “permissionless”,

unless differently specified. For instance, an administrative office may want

to use a permissioned public blockchain, which can restrict the registration of

transactions to a few selected nodes, while making the stored data accessible

to all clients, so as to provide transparency and auditability.

Private blockchains typically require permissions to access, and are usu-

ally managed by few nodes, often belonging to the company that created

the blockchain network, which, in this case, can be also classifiable as enter-

prise blockchains. These may designed to be more scalable and secure, at

the expense of decentralization. A private blockchain that, at the consensus

level, is managed by equally-powerful validators, which could be owned by

multiple organizations operating in the same industry, is called a consortium

blockchain. In this permissioned typology, only parties that undergo a well

defined Know Your Customer (KYC) process, as in normal business opera-

tions, can be authorized to operate a consortium node. While defective in

transparency and disintermediation, enterprise and consortium blockchains

better fulfill some crucial requirements of many corporate applications, such

as data privacy, access control, transaction scalability, system performance

and protocol updating2.

Paradoxically, the launch of a public blockchain such as Ethereum has

unveiled the potentials of DLTs in enterprise businesses and fuelled the devel-

2Since consortium and enterprise blockchains share similar administrative and applica-
tion requirements, we will refer to one of the two types also meaning the other.



CHAPTER 2. BACKGROUND 20

opment of a multitude of private consortium blockchain projects, i.e., Corda3

and Quorum4, which are suited to large financial sectors. For the time be-

ing, the Hyperledger project5, launched in 2016 and hosted by the Linux

Foundation, represents the most relevant effort to provide a comprehensive

framework for the development of enterprise blockchains.

2.1.3 Transactions

A transaction is a fundamental component of a blockchain, since it represents

the communication mechanism through which a value or an information is

transferred between two blockchain parties, such as users and/or smart con-

tracts. Each transaction that propagates through the blockchain nodes is

verified on the basis of a predetermined set of rules, and only valid transac-

tions can be selected for inclusion in a new block.

Blockchain users need to be identified so as to distinguish senders from

recipients when a transaction is sent over the decentralized network. Such

unique identifiers are known as addresses, which are usually public keys or

derived from public keys. This mechanism should ensure users’ pseudo-

anonymity, even if they reuse the same address for multiple transactions.

Unfortunately, some research in de-anonymizing blockchain users has shown

that pseudo-anonymous users can be successfully identified by means of

sophisticated linkability techniques applied to the addresses of dispatched

transactions [37]. So, a single user would be better off generating a new

address for each transaction, although this practice is mostly unpractical.

In first generation blockchains, such as Bitcoin, transmitted transactions

are processed by interpreting special opcodes contained in the transaction

scripts. The opcodes are a predefined sets of commands that nodes execute

to transfer values from one address to another, as well as to perform other

simple hard-coded operations. More general-purpose blockchains, such as

Ethereum, provide for Turing-complete languages that overcome the limits of

transaction scripts. However, the security of such languages in the immutable

3https://www.r3.com/products/corda/
4https://consensys.net/quorum/
5https://www.hyperledger.org/

https://www.r3.com/products/corda/
https://consensys.net/quorum/
https://www.hyperledger.org/


CHAPTER 2. BACKGROUND 21

context of the blockchain may raise severe security issues, which are the

object of outstanding ongoing research. Replicated virtual machines are used

to run the Turing-complete code generated by the “smart languages”.

Regardless of the complexity of the native language, each blockchain can

be regarded as a state machine whose overall state is modified from its initial

configuration to a final one, as a result of the execution of a transaction

performed by all the decentralized nodes.

2.1.4 Tokens

In common parlance the term ”token” usually refers to coin-like items of poor

intrinsic value, which are often restricted to usage within specific organiza-

tions and represent a single ”physical” item. For these reasons they are not

practically exchangeable. Conversely, ”tokens” distributed on blockchains

have given new meaning to the term, namely a blockchain-based abstraction

that can be owned [17].

The most obvious use of “blockchain tokens” is as digital private curren-

cies. In fact, blockchains enable the transfer of value between its users via

tokens, as in the first blockchain currency, bitcoin (BTC), which is a token

itself. Tokens are also used to reward the miners contributing to implement

the PoW decentralized consensus, in which they are generated according to a

standard cryptographic algorithm, which gives evidence to contributors (i.e.,

miners) of their dedication to the decentralized effort.

However, generating and transferring cryptocurrency is not the only pos-

sible use. Tokens can be programmed to serve many different functions, often

overlapping. For example, a token can equivalently convey a voting right, an

access right, an identity, an equity, a collectible, a resource ownership, and

so on.

Tokens whose provenance cannot be tracked can be categorized as fungible

if any single unit of the token can be exchanged for another without any

difference in its value or function. Non-fungible tokens (NFTs) are instead

tokens that represent a uniquely identified item, either tangible or intangible,

and therefore they are not interchangeable (e.g., NFT collectibles). Tokens



CHAPTER 2. BACKGROUND 22

representing digital items intrinsic to the blockchain, such as digital currency,

are governed by consensus rules, thus not carrying additional risks coming

from third-party intermediation. Alternatively, tokens can be also used to

represent items external to the blockchain ecosystem, such as real estate,

corporate voting shares, trademarks, and gold bars. The ownership of these

items is governed by law, custom, and policy, so that token issuers and

owners may ultimately depend on “real-world contracts” outside the “smart

contract” jurisdiction.

One of the most important features of blockchain-based tokens is the

ability to convert external assets into intrinsic assets and thereby remove the

third-party intermediation risk. As an example, consider how a corporation

equity could be transformed into a voting token in a DAO.

2.2 The Ethereum platform

Ethereum is a blockchain that shares many structural components with its

forerunners, i.e., a logical P2P infrastructure to connect the network nodes,

a consensus algorithm for the synchronization of state changes among all

nodes6, a set of cryptographic primitives to enforce security, and a cryp-

tocurrency. However, this is rather intended as a utility currency for the

usage of computing and storage resources of the distributed platform.

In fact, Ethereum has not been designed to be just another e-cash blockchain

for digital currency transactions. Its co-founder Vitalik Buterin conceived

it in late 2013, at a time when the criptocurrency fanatics were trying to

build novel applications upon Bitcoin having to cope with the intentional

constraints of the network and trying to find workarounds. For this reason,

Ethereum has become the first blockchain that introduced a Turing-complete

language and the concept of a virtual machine, which gives limitless possibil-

ities for the development of smart contracts and decentralized applications.

These new possibilities are provided within the fundamental properties of

a public blockchain, namely immutability, transparency, auditability, and

6As of Q2 2022 Ethereum has transitioned from PoW to PoS - see https://ethereum.
org/en/developers/docs/consensus-mechanisms/pos/.

https://ethereum.org/en/developers/docs/consensus-mechanisms/pos/
https://ethereum.org/en/developers/docs/consensus-mechanisms/pos/


CHAPTER 2. BACKGROUND 23

neutrality.

Although devised for public contexts, Ethereum has turned out to be

also well suited to the development of corporate solutions for the reasons

discussed hereafter and throughout the dissertation. First of all, it is (like

Bitcoin) open-source, so that any company can run its own private Ethereum-

based implementation, in which the consensus mechanism can be adapted to

the development requirements, suitable to both public or private environ-

ments (e.g., PoW can be, and indeed, as of today, has been, replaced by

PoA). Moreover, Ethereum is coming up with native solutions to make the

platform more enterprise-friendly and interoperable with the main consor-

tium blockchains, such as Hyperledger. Finally, the Ethereum organization

makes a few testnets publicly available and compliant to a large variety of

experimentation needs.

For the above reasons and, as well, its mature programming and tooling

technology, Ethereum has been chosen as the testbed technology over which

the experiments, carried out in the solutions described in this document, are

implemented, deployed and tested.

2.2.1 Ethereum clients

A node is a device or a program that communicates with the Ethereum net-

work. In the acceptation of a program containing all the blockchain software

components, nodes are also known as clients. Software that can act as an

Ethereum node includes Go Ethereum7 (Geth) and OpenEthereum8 (previ-

ously Parity).

In general, we can divide node software into two types: full nodes (see fig.

2.1) and light(weight) nodes. Full nodes execute the decentralized consensus

protocol, mine and verify blocks that are broadcast onto the network. That

is, they ensure that the transactions contained in the blocks (and the blocks

themselves) follow the rules defined in the Ethereum specifications by running

all the instructions to make sure that they arrive at the correct, agreed-upon

7https://geth.ethereum.org/
8https://openethereum.github.io/

https://geth.ethereum.org/
https://openethereum.github.io/


CHAPTER 2. BACKGROUND 24

next state of the blockchain. Full nodes that preserve the entire history of

transactions are known as full archiving nodes. These must exist on the

network for it to be healthy.

Figure 2.1: Simplified full-node client.

Full node clients can also provide wallet functionalities via specialized

software allowing users to perform transactions on the blockchain (see Sub-

section 2.2.5). Furthermore, a node’s specific software component, namely

Web3 Provider, allows other programs, outside the blockchain ecosystem, to

interact with the blockchain, as in a proxy. A full node also encompasses

its own copy of the Ethereum Virtual Machine (EVM), which is so seen as

a global, single-instance computer, with all its replicated instances reaching

the same state.

Light nodes, in contrast, have a narrower scope than full nodes. In fact,

they can validate only block headers and can prove the inclusion of transac-

tions in the blockchain, thus determining their effects in the global state. On

the other hand, they may not have a copy of the current blockchain state.

They rely on full nodes to provide them with missing details. The advantage

of light nodes is that they can get themselves up and running much more

quickly in computational/memory constrained devices.

An even lighter alternative is to resort to a remote client, which does not

store a local copy of the blockchain or validate blocks and transactions. These

clients can handle users’ accounts (EOAs), as well as create and broadcast

transactions. They can be flexibly used to connect an external entity to full

nodes of public or private blockchains.



CHAPTER 2. BACKGROUND 25

For development and testing purposes only, a full node can be replaced

by a testnet node, which provides access to a smaller public (or private) test

blockchain.

2.2.2 Account-based model

As introduced in Section 1.2, Bitcoin never stores account balances in its

blockchain, since it evaluates them according to the Unspent Transaction

Output (UTXO) model, which is an on-the-fly computation of all the avail-

able digital money received from transactions sent to the account’s owner

and not yet spent. Conversely, Ethereum enforces its decentralized consen-

sus around the concept of account state, which is referenced by its unique

cryptographic address and maintains its balance and other related data in

specific storage structures, as more extensively detailed in Subsection 2.2.7.

Ethereum opted for this more intuitive model for the benefit of developers

of complex smart contracts, especially those that require state information or

involve multiple parties. UTXO’s stateless model would force transactions to

include state information, thus unnecessarily complicating the design of the

smart contracts. In addition to simplicity, the account-based model is more

efficient, as each transaction only needs to validate that the sending account

has enough balance to pay for the transaction. The potential drawback

for this approach is the exposure to double spending attacks which can be

counteracted by means of the “nonce” mechanism. In Ethereum, in fact,

every account has a public viewable nonce and every time a transaction is

made, this is increased by one. This mechanism can then prevent the same

transaction being submitted more than once.

There are two types of accounts in Ethereum: (i) externally owned ac-

counts (EOA), each of which is associated with a private key; and (ii) contract

accounts, to which no private key is associated.

The former usually belongs to a user or a software agent, is handled by

a digital wallet (see Subsection 2.2.5) and can generate transactions. The

latter is controlled by the logic of the smart contract that is registered on the

blockchain at the time the account is created. Since it is not associated to



CHAPTER 2. BACKGROUND 26

any private key, it cannot generate any primary transaction. Both account

types have associated addresses and balances and can send and receive ethers

(ETH), Ethereum’s native digital coins.

Global state transitions are always initiated by transactions generated by

EOA accounts, which may trigger other chained transactions, and involve

direct transfers of monetary values and/or information between accounts.

2.2.3 Transaction-driven state machine

As mentioned in Subsection 2.2.3, transactions play a pivotal role in the

overall blockchain functioning. Due to the more complex transitions of the

Ethereum state machine, transactions assume more extended functionalities

than the ones executable on less smart platforms, such as Bitcoin. From the

state machine perspective, a transaction is the only element that can trigger a

change of state, from sending money to another account to causing a contract

to execute in the Ethereum Virtual Machine (see 2.2.6). Architecture-wise,

the EVM is a single-threaded, completely virtual machine with no system

interface and scheduling features. It is also structured as a stack-machine,

as opposed to a register-machine.

Upon the reception of a valid transaction, each node’s replicated EVM

is instantiated with all the information required to start the processing. At

successful completion a new state of the global machine is reached. This

behaviour justifies the definition of Ethereum as a transaction-driven state

machine. If the execution does not succeed, the global state is reverted to

the situation prior to the execution start. This is possible since the EVM

runs in a sandboxed instance, which can be discarded in case or failure.

A key notion in EVM is the processing cost paid by the sender for the

execution of transactions to the block creator, thus preventing infinite loops

at run-time and hindering malicious attackers in their double-spending at-

tempts. To quantify this cost, Ethereum has introduced a unit, called gas,

through which the amount of computational effort required to execute each

instruction on its virtual machine (gas cost) is measured. The overall cost of

a transaction, called gas fee, amounts to the costs of the EVM instructions



CHAPTER 2. BACKGROUND 27

making up the transaction. Gas costs of instructions are predetermined by

the network and only alterable through a protocol upgrade. When users send

a transaction, they must also set the gas price, i.e., the price they are willing

to pay in gwei9 for each gas unit of their transaction.

In addition to gas price, users set a maximum amount of gas units planned

for execution, called gas limit. If an execution requires more gas than the gas

limit specified by the user, a special out-of-gas (OOG) exception is thrown

and the virtual machine’s state is reverted to the one prior to the execution.

In this case, the user will still have to pay the gas to the validating node as a

countermeasure against potential Denial of Service attacks [38]. Note that a

block gas limit is also enforced by the Ethereum’s blockchain protocol, which

provides an upper bound to the possible amount of data and processing that

any transaction can incur during a smart contract execution.

To summarize, a transaction can be defined as a digitally signed message

originated by an EOA, disseminated over the Ethereum network, validated

and executed by the client nodes and eventually recorded on the Ethereum

blockchain.

From a technical standpoint, a transaction is a serialized binary message,

packed according to the proprietary Recursive Length Prefix (RLP) encoding

scheme, which exhibits the following structure [17]:

– Nonce: a sequence number, issued by the EOA originating the transac-
tion, which is taken from the EOA’s account state and used to prevent
double-spending;

– Gas price: the price of gas (in gwei) the originator is willing to pay for
each gas unit;

– Gas limit: the maximum amount of gas units the originator is willing
to spend for this transaction;

– Recipient: the 20-byte destination Ethereum address;

– Value: the amount of ethers to send to the recipient (it could be null);

– Data: the variable-length binary data payload that carries information
related to a smart contract call (it could be empty);

9A gwei (gigawei) is worth 10−9 ETH



CHAPTER 2. BACKGROUND 28

– Signatures: v, r, s, namely, the three components of an ECDSA dig-
ital signature [39] of the originating EOA, which, properly combined,
provide the sender’s public key and its associated address.

Transactions can carry value and data in the following three sensible

combinations. A transaction with only value behaves as a traditional cryp-

tocurrency transfer, that is a payment between two accounts. A transaction

with only data is addressed to a contract account and is called a smart con-

tract invocation. A transaction with both value and data is both a payment

and an invocation and is addressed to a contract account. The meaning of

an invocation’s data payload will be explained in Subsection 2.2.6.

As for the propagation of transactions over the communication network,

Ethereum uses a flood routing protocol within the logical P2P meshed in-

frastructure. Assume that an Ethereum node creates or receives a signed

transaction. The transaction is then validated and broadcast to all the other

Ethereum nodes that are directly connected (logically) to the originating

node, called neighbors. Each neighbor node validates the transaction as

soon as they receive it, store a copy and broadcast it to all its neighbors. As

a result, within just a few seconds, an Ethereum transaction propagates to

all the Ethereum nodes around the globe. Valid transactions will eventually

be included in a block by miners and therefore recorded in the Ethereum

blockchain along with changes to the global state ensuing the transaction

execution.

2.2.4 Token standards

Although blockchain tokens existed before Ethereum, a multitude of new

tokens has followed the introduction of the first standard for their creation

from the Ethereum organization. Tokens are different from ethers because

the former are outside the Ethereum protocol, though they can be associated

to ethers. Sending or owning tokens, as well as handling token balances, are

specifically dealt with at smart contract level.

The introduction of well-written new tokens in smart contracts are cur-

rently based on the “ERC20 standard”, which was the first standard, intro-



CHAPTER 2. BACKGROUND 29

duced in November 2015 by Fabian Vogelsteller, as an Ethereum Request for

Comments (ERC)10. ERC20 is a standard for fungible tokens11, meaning that

different units of an ERC20 token are interchangeable and have no unique

properties12. This standard defines a common interface for contracts imple-

menting a fungible token, thus allowing any compatible token to be accessed

and used in the same way. The interface consists of a number of functions

that must be present in every implementation of the standard, as well as

some optional functions and attributes that may be added by developers.

The ERC20 token standard does not (explicitly) track the provenance of any

token.

Conversely, the ERC721 proposal13 is a standard for non-fungible tokens

(NFTs), also known as deeds, which reflect the concept of “ownership of prop-

erty”. Currently, NFTs are not recognized as ”legal documents”, although

things are moving towards a radical change whereby legal ownership, based

on blockchain digital signatures, will be recognized. The ERC721 standard

places no limitation on the nature of the “thing” whose ownership is tracked

by a deed, provided that it can be uniquely identified by means of a 256-bit

label.

Token standards represent the lowest common denominator for a token

implementation. Thus, all wallets, user interfaces, and other software com-

ponents can interface in a predictable manner with any contract that follows

the specification. Another major goal is to favor interoperability between

contracts. From a development point of view, these standards are meant to

be descriptive, rather than prescriptive, thus making the implementation of

the contract creating the token not relevant.

10https://eips.ethereum.org/erc
11http://bit.ly/2CUf7WG
12The ERC20 eventually became Ethereum Improvement Proposal 20 (EIP-20), but the

two denominations are interchangeable.
13http://bit.ly/2Ogs7Im

https://eips.ethereum.org/erc
http://bit.ly/2CUf7WG
http://bit.ly/2Ogs7Im


CHAPTER 2. BACKGROUND 30

2.2.5 Digital wallets

A digital wallet is a client software used to store private or public keys and

network addresses. It also performs various operations, such as receiving and

sending cryptocurrency. The notion of digital wallet dates back to Bitcoin

and it has been taken up by most ensuing blockchains with similar features.

There are different types of wallets that can be used to manage private

keys and carry out transactions on the network. Deterministic wallets derive

keys out of a seed value via hash functions. The seed is generated randomly

and is commonly represented by human-readable mnemonic code words, as

defined in BIP3914 15. Hierarchical deterministic wallets, defined in BIP3216

and BIP4417, generates the master key from a seed, which in turn generates

relative keys. The complete hierarchy of private keys in such a wallet type is

easily recoverable from the master private key.

Wallets also differ for the device or the software chain in which they are

used. Hardware wallets, for instance, are tamper-resistant devices used to

store keys. The device can be custom-built or can also be a secure element in

NFC phones18. Online stored wallets, on the other hand, provide the users

with a web interface to manage their accounts and perform the typical wallets

operations. Finally, mobile device wallets can provide various methods to

make payments, most notably the ability to use smart phone cameras to

scan QR codes.

In Ethereum, a “wallet” can be conveniently defined as a generic program

that stores private keys and manages their associated accounts. Similarly

to Bitcoin wallets, which do not hold cryptocurrency, Ethereum ones do

not contain ethers or tokens either. According to the account-based model

(described in Subsection 2.2.2), the ethers or other tokens are in fact recorded

on the Ethereum blockchain in the State Trie (see Subsection 2.2.7, so that

14Bitcoin Inprovment Proposals (BIPS) suggest guidelines for how Bitcoin can and
should evolve.

15https://github.com/bitcoin/bips/tree/master/bip-0039
16https://github.com/bitcoin/bips/tree/master/bip-0032
17https://github.com/bitcoin/bips/tree/master/bip-0044
18Near-field communication (NFC) protocols enable communication between two elec-

tronic devices over a distance of 4cm or less.

https://github.com/bitcoin/bips/tree/master/bip-0039
https://github.com/bitcoin/bips/tree/master/bip-0032
https://github.com/bitcoin/bips/tree/master/bip-0044


CHAPTER 2. BACKGROUND 31

the wallet software can only retrieve the information about any account’s

balance by querying the blockchain.

In a nutshell, an Ethereum wallet is a specialized software application to

manage EOAs. It serves as the primary user interface to manage keys and

addresses, track the balance, create and sign transactions to be transmitted

over the P2P network. In addition, some Ethereum wallets can also interact

with contracts, such as ERC20 tokens.

2.2.6 Ethereum’s smart contracts

As repeatedly mentioned, Ethereum is the first distributed ledger technology

that has introduced the possibility to run smart contacts on its peer nodes.

Each smart contract is identified by a unique address that references an

account to which digital coins and storage space are linked. At low level, any

smart contract is a bytecode that is sequentially executed by the replicated

virtual machine once it has been invoked by a transaction sent to its address.

The language complexity of smart contracts and the virtual machine ar-

chitecture make up a Turing-complete system that could potentially run in

infinite loops and never terminate, potentially freezing the entire network.

To prevent this, Ethereum has introduced the notion of gas, which has pre-

viously been discussed in Subsection 2.2.6.

Smart contracts are typically written in a high-level language, such as

Solidity19. Once compiled, they are deployed on the Ethereum platform by

using a special transaction, deliberately coded for contract creation, which

has some peculiar features. First of all, contract creation transactions are

sent to a special destination address called the zero address, that is, the

recipient field, in the transaction structure, carries the address 0x0. The

contract creation transaction hauls, in its data field, the smart contract’s

bytecode that has to be registered in the designated blockchain’s structure

referable to the storage account (see Subsection 2.2.7). It is also possible

to include an amount in ethers, in the value field, in order to feed the new

contract with an initial balance.

19https://docs.soliditylang.org/en/latest/

https://docs.soliditylang.org/en/latest/


CHAPTER 2. BACKGROUND 32

If standard transactions deliver data to a contract address, the EVM will

interpret this occurrence as a smart contract invocation, more specifically as

a single invocation of a public function contained in it. In this case, the data

payload is a serialized hexadecimal encoding of: (i) a 4-byte function selector

obtained by hashing the function’s prototype20; (ii) the function arguments

which are passed to the invoked functions according to its prototype.

Chained calls of smart contracts can programmatically occur. However,

the first contract of the chain execution has to be triggered by a transaction

generated by an EOA. In fact, smart contract can never run on their own.

It is essential to pinpoint that a contract’s code is immutable and can

never be patched. However, it is possible to delete a contract’s code from

its address along with the related account state. Deleting a contract will

cause a gas refund to the caller, thus fostering the release of node resources.

It must also be noted that this operation does not delete the contract’s

transaction history, which is immutably stored in the non-ephemeral section

of the blockchain storage, as better explained in Subsection 2.2.7.

Upon transaction completion, a transaction receipt is produced, which

also contains log entries providing information about the actions performed

by the contract’s execution. In particular, a series of up to four topics corre-

spond to special high-level objects, named events, generated by the Solidity

code. These log entries can be regarded as a cheaper form of storage than the

contracts’ one. Moreover, these event-created logs, which are permanently

recorded in the blockchain (regardless of the possible deletion of the origi-

nating contract), can be be watched and retrieved by external applications

that interface with them via specific programmatic mechanisms. The design

of this series of four topics provides for research indexes, which facilitate the

browsing and the retrieval of information generated by the associated con-

tracts. Further details of the event watching mechanism will be provided in

Section 2.3.

Both functions’ invocation and events’ retrieval leverage the specifica-

tions contained in the contract’s Application Binary Interface (ABI), which

20The function’s prototype id defined as the string containing the name of the function,
followed by the data types of each of its arguments.



CHAPTER 2. BACKGROUND 33

provides a JSON-like interface that makes the communication among het-

erogeneous software components possible. A typical example is when the

front-end of a decentralized application wants to interact with a smart con-

tract permanently stored in the Web3 ecosystem. Further details on the ABI

structure are given in Subsection 2.3.1.

2.2.7 Ethereum’s blockchain

The layout of the Ethereum’s blockchain is much more complex than Bit-

coin’s since, alongside the expected blocks, it contains particular data struc-

tures, called tries21 that collectively maintain the Ethereum global state [40].

Ethereum implements a particular trie version, known as the Patricia Merkle

trie22, because of its compactness and simplicity.

Figure 2.2: Ethereum’s blockchain

Each trie manages different portions of the Etherum’s storage, namely the

Transaction Trie, the State Trie, and the Receipt Trie, which also differ based

on the volatility of the data they handle. In fact, Ethereum’s blockchain

21The trie is a data structure which is used for storing and retrieving sequences of
characters.

22https://ethereum.org/en/developers/docs/data-structures-and-encoding/

patricia-merkle-trie/

https://ethereum.org/en/developers/docs/data-structures-and-encoding/patricia-merkle-trie/
https://ethereum.org/en/developers/docs/data-structures-and-encoding/patricia-merkle-trie/


CHAPTER 2. BACKGROUND 34

deals with two different types of data: permanent and ephemeral. An ex-

ample of permanent data, which is what typically expected in an immutable

blockchain, would be a transaction that is recorded in the Transaction Trie.

This trie is never altered. Conversely, an example of ephemeral data would

be the balance of an account, which is stored in the State Trie and is altered

whenever a transaction deposits to or withdraws money from that particular

account. The State Trie is the only portion of the Ethereum’s blockchain

that can be altered.

Figure 2.2 shows that a huge part of the information is not directly stored

in the blocks of the Ethereum’s blockchain, since the tries are outside it. Only

the root nodes’ hashes of the different tries, which act as a reference to them,

are stored inside the blocks. In turn, the root node’s hash of the Storage Trie

(where all of the smart contract data is kept) points to the State Trie.

Each Ethereum block has its own separate Transaction Trie (see Fig. 2.3),

which contains all the transactions included in the block. The order of the

transactions in a block is decided by the miner that assembles the block and

it determines how the EVM schedules the execution of the transactions once

a block is mined.

Figure 2.3: The Transaction Trie: one per each block

The transaction receipts emitted upon execution of each transaction of

the block, as explained in 2.2.6, are stored in the permanent Receipt Trie

associated to the block.

The root node’s hash of the ephemeral State Trie, which is the hash of

the entire trie at a given point in time, is cryptographically dependent on all

internal State Trie data, and it is so used as unique reference to the trie at

the time the block was created and all the transactions were executed.

The State Trie (see Fig. 2.4) contains a key-value pair for every account



CHAPTER 2. BACKGROUND 35

which exists in the Ethereum network. The key is a single 20-byte identifier,

namely the address of an Ethereum account, whereas the value is created by

RLP-encoding the following account details of an Ethereum account: nonce;

balance; storageRoot; codeHash.

Figure 2.4: The State Trie: one per blockchain.

As previously stated, the nonce keeps the next value of the nonce field

that a transaction, created by the associated account, can use to prevent

the double-spend issue. The balance contains the current amount of digital

currency (if any) held by the account. The next two fields are meaningful

only in case of a smart contract account. In fact, storageRoot contains the

root node’s hash of the account’s Storage Trie (see Fig. 2.5) where the data

handled by the contract are stored in a key-value RLP encoding. Finally,

codeHash stores the code’s hash of the associated smart contract code.

2.2.8 Open issues

Ethereum’s blockchain technology, in its constantly evolving stages, tries to

address several issues.

A major one, especially in public blockchains such as the PoW Ethereum,

is represented by transaction costs. These can drastically rise during network

congestion, when the average price of gas tends to increase, because users

will incentivize the mining nodes by offering above-average gas prices. Min-

ers, in turn, in order to maximize rewards, will prioritize transactions that

offer higher gas prices, leading to an increase in fees. Transaction fees can



CHAPTER 2. BACKGROUND 36

Figure 2.5: The Storage Trie: one for each contract’s account.

range from less than one dollar to hundreds of dollars and have exhibited an

uptrend until transition to PoS23. The transaction costs depend on a few fac-

tors, some controlled by the blockchain protocol, namely the gas units related

to transaction execution, while others are affected by fluctuations of internal

and/or external markets. For instance, in Ethereum, the gas price per unit is

a matter of supply/demand among miners and users. It could be dependant

on the kind of consensus algorithm implemented in the blockchain, since less-

energy intensive protocols, such as PoS or PoA, could lead to a lower reward

request from the validating nodes. Other factors, such as the fluctuation

of the cryptocurrency exchange rate, on the monetary market, involve eco-

nomic aspects that go far beyond the sole issue of internal supply/demand

of computing power.

In the domain of “smart” blockchains, program bugs trigger some pe-

culiar software development challenges. Due to the immutability feature of

blockchains, once a smart contract has been deployed on the blockchain, it

cannot be modified (although it can be deleted). Consequently, patching a

deployed contract is impossible, and for this reason, a significant number of

smart contracts are considered to be vulnerable. In 2016, a symbolic execu-

tion analysis tool, specifically developed to identify potential vulnerabilities

in the entirety of the smart contracts deployed on the Ethereum blockchain

23https://blockchair.com/ethereum/charts/average-transaction-fee-usd/

https://blockchair.com/ethereum/charts/average-transaction-fee-usd/


CHAPTER 2. BACKGROUND 37

up to that point in time, showed that 45% of 19,366 smart contracts were

vulnerable with at least one security issue [41]. A few years ago, Ethereum

suffered a supposedly involuntary hack, which caused an inexperienced devel-

oper to freeze multiple accounts with an estimated amount of ethers around

513,774 (equivalent to $162M at that time) managed by the Parity Wallet

application. In July 2017, a hacker exploited the “Parity Wallet hack” and

managed to hack a multi-signature24 wallet taking full control of it. The

Parity Wallet hack is a paradigmatic example of the issues, associated with

the lack of properly standardized best practices, that may occur in smart

contract development.

With the adoption of the ERC20 token standard, thousands of tokens

have been launched especially to raise funds in various Initial Coin Offers

(ICOs)25. Tokens are meant to function just like ethers, but they come with

certain differences that compromise their secure handling. While ethers are

transferred via a transaction that has a recipient address as its destination,

token transfers occur within the specific token contract state and have the

token contract as their destination, not the recipient’s address. Furthermore,

the token contract tracks balances and emits events to the transaction logs.

Even ERC20-enabled wallets do not become aware of a token balance unless

a specific token contract to watch is added by wallets’ users. Another issue

with ERC20 is the need to pay in ethers to send tokens, since it is not

possible to pay for a transaction’s gas with a token. This may change at

some point in the future, but in the meantime this can cause conceptual

and practical anomalies in the way users deal with tokens. Some of the

previous issues are specific to ERC20 tokens, but others are more general and

relate intrinsically to the Ethereum protocol. Fixing them requires changes

to fundamental structures within Ethereum, such as the distinction between

EOAs and contracts, and between transactions and messages.

Further issues, in terms of scalability and security, can be ameliorated

if a more appropriate consensus algorithm is chosen, such as PoA in pri-

vate Ethereum implementations [42]. However, according to the “blockchain

24“Multi-signature” refers to requiring multiple keys to authorize a transaction.
25https://www.investopedia.com/terms/i/initial-coin-offering-ico.asp

https://www.investopedia.com/terms/i/initial-coin-offering-ico.asp


CHAPTER 2. BACKGROUND 38

trilemma”, such a choice will lower the value of the decentralization dimen-

sion. Many decentralized applications, however, in the vast arena of industry

and administration, can cope with a downsized level of decentralization more

easily, without prejudice to the other features that make Ethereum a suitable

platform for enterprise solutions.

2.3 Decentralized Applications

A decentralized application (DApp) is typically an Internet application in

which (part of) the back-end runs on a blockchain. A decentralized consen-

sus algorithm is in fact vital to detect and prevent peers from making invalid

changes to the application data and sharing wrong information with others.

TheWeb3 paradigm, introduced by Ethereum’s co-founder Gavin Wood [16],

is purposely meant to address the need for a new ecosystem for DApps de-

velopment. Smart contracts are just a way to decentralize the application

logic, whereas Web3 DApps are about decentralizing all other aspects, such

as storage, messaging, naming, and so on.

While the vision of totally decentralized applications may take longer to

establish, a minimal DApp can be as complex as a stand-alone JavaScript

application that relies on the blockchain for its data and logic functionali-

ties. However, the ultimate purpose of a DApp is to provide a rich client

application that can save data locally and use multiple back-end services

to achieve decentralization, included smart contracts and other blockchain

functionalities.

A typical architecture of a complete DApp is depicted in Fig. 2.6.

The client’s front-end usually runs in the user device as a JavaScript, or

other similar languages, application. It interacts with the blockchain (both

smart contracts and other data structures) for core data and back-end’s busi-

ness logic [43]. It could also rely on local or public storage services to manage

large amounts of off-chain data, which can optionally be replicated in a de-

centralized manner. The DApp’s client can be stored in any web server, thus

eschewing single points of failure for the front-end as well.

To effectively deploy a DApp on the Web, further architectural compo-



CHAPTER 2. BACKGROUND 39

DAPP 
CLIENT

WALLET

BLOCKCHAIN

SERVER 
DATA

SMART CONTRACTS

Local 
Storage

Figure 2.6: DApp architecture

nents are needed, such as a Web3 Provider and a digital wallet. The detailed

analysis on the back-end’s blockchain technologies, such as smart contracts,

blockchain data structures, node access mechanisms, will be carried out with

reference to the Ethereum technology. Fig. 2.7 shows a viable configuration

of a DApp ecosystem in Ethereum, whose elements will be discussed in more

details in the remainder of the chapter.

DECENTRALIZED APP COMPONENTS

 an Ethereum-based network:

mainnets, testnets, personal nets

 one or more smart contracts

 a Web3 Provider for blockchain and smart contracts access (via specialized JSON-RPC API):

 Ethereum clients (e.g. Geth or OpenEthereum)  both mainnets and testnets

 remote clients (e.g. Metamask)

 cloud-based clients (e.g. Infura) 

 A wallet to manage EOA accounts 

 A front-end application importing

high-level libraries which wrap the 

JSON-RPC API:

 Web App

 Mobile app

 Server-side App

GIOVANNI MAROTTA - UNIVERSITY OF CATANIA, DMI - AA 2021/22
2Figure 2.7: DApps’ Ethereum ecosystem

2.3.1 Solidity contracts

As already discussed in Subsection 2.2.6, a smart contract is typically writ-

ten in a high-level language and then compiled into the native EVM byte-

code. The contract is then deployed on the blockchain by means of an EOA-

generated contract creation transaction. The EOA that creates a contract

never gets ownership on it, although this right can be explicitly coded in the

contract.



CHAPTER 2. BACKGROUND 40

Solidity is an object-oriented, high-level language that was initially pro-

posed by Ethereum’s co-founder Gavin Wood to write smart contracts with

features to directly support execution in the decentralized environment of

the Ethereum world computer. It is also used for coding smart contracts on

several other blockchain platforms, such as Hyperledger Fabric. Solidity is a

curly-bracket language, mainly influenced by JavaScript, C++, and Python,

It is statically typed, supports inheritance, libraries and complex user-defined

types, including arbitrarily hierarchical mappings and structs.

The Solidity compiler, namely solc, converts programs written in the So-

lidity language to EVM bytecode and also provides the Application Binary

Interface (ABI) of Ethereum smart contracts. The ABI is essential to provide

front-end languages with a JSON-coded interface that exposes access to data

structures and machine code functions. Solidity follows a versioning model

called semantic versioning26, which specifies version numbers structured as

three numbers separated by dots: major.minor.patch. The latest version, at

the time of writing, is v0.8.17. Solidity programs contain a pragma direc-

tive that specifies the minimum and maximum versions of Solidity that it is

compatible with the contract to be compiled.

Let’s have a look at the Solidity language by means of a simple example

that sets and changes ownership to a deployed smart contract27. This toy

contract does not take into account programming flaws that can make it

vulnerable to security threats.

// Version of Solidity compiler this program was written for

pragma solidity >=0.4.22 <0.7.0;

// set and change contract ’s owner

contract Owner {

// allocate contract ’s state variable

address private owner;

// event for EVM logging

event OwnerSet(address indexed oldOwner , address indexed newOwner);

// modifier to check if caller is owner

modifier isOwner () {

require(msg.sender == owner , "Caller is not owner");

_;

}

// set contract deployer as owner

26https://semver.org/
27For the complete Solidity syntax refers to the official documentation site at: https:

//docs.soliditylang.org/en/latest/index.html

https://semver.org/
https://docs.soliditylang.org/en/latest/index.html
https://docs.soliditylang.org/en/latest/index.html


CHAPTER 2. BACKGROUND 41

constructor () public {

// ’msg.sender ’ is sender of current call , contract deployer for a

constructor

owner = msg.sender;

emit OwnerSet(address (0), owner);

}

// change owner

function changeOwner(address newOwner) public isOwner {

emit OwnerSet(owner , newOwner);

owner = newOwner;

}

// return owner ’s address

function getOwner () external view returns (address) {

return owner;

}

}

Listing 2.1: A very simple smart contract to change contract’s ownership.

A quick code analysis reveals that many elements of Solidity are similar

to existing programming languages, such as JavaScript, Java, or C++. After

the pragma declaration, the first keyword declares a contract object, quite

similar to a class declaration in other object-oriented languages. In the ex-

ample, in fact, there exists a constructor() that assigns, at creation time,

the contract’s ownership to the sender (msg.sender) of the contract cre-

ation transaction, which is actually a message in Ethereum terminology. As

anticipated in Subsection 2.2.6, no ownership right is in fact automatically

assigned to the contract’s creator by the Ethereum protocol. The contract’s

owner is kept in the private variable owner, which represents the contract’s

state at each execution. This variable is written in the Storage Trie associ-

ated with the contract’s account (see Subsection 2.2.7) and it is ephemeral

by nature.

The other two functions serve to allow an external program to dynami-

cally change the contract’s owner (changeOwner()), and to return the cur-

rent contract’s owner to any function caller (getOwner()). In functions’

declaration the attributes public and external create automatic handler

for external programs to directly interact with them.

Also notice the reserved word event and its associated data structure.

The information in the event structure, created by the contract via the com-

mand emit, will be permanently stored in the transaction’s logs of the as-

sociated Receipt Trie (see Subsection 2.2.7). Besides being permanent, even

upon later deletion of the generating contract, these logs are a cheaper form



CHAPTER 2. BACKGROUND 42

of storage and can be effectively browsed, by means of search filters, by front-

end programs, external to the blockchain, at any time in the future. These

is why smart contracts should ever publish (emit) their outcomes as events.

As already explained, the Solidity compiler creates, as an artifact, the

ABI associated to the contract, which is specified as a JSON array of function

descriptions and events. Therefore, the purpose of an ABI is to define the

way each function will accept arguments upon invocation and how it will

return its result.

For the contract in Listing 2.1, the corresponding ABI JSON-array is the

following.

[

{ "inputs": [],

"stateMutability": "nonpayable",

"type": "constructor" },
{ "anonymous": false,

"inputs": [

{ "indexed": true,

"internalType": "address",

"name": "oldOwner",

"type": "address" },
{ "indexed": true,

"internalType": "address",

"name": "newOwner",

"type": "address" } ],

"name": "OwnerSet",

"type": "event" },
{ "inputs": [

{ "internalType": "address",

"name": "newOwner",

"type": "address" } ],

"name": "changeOwner",

"outputs": [],

"stateMutability": "nonpayable",

"type": "function" },
{ "inputs": [],

"name": "getOwner",

"outputs": [

{ "internalType": "address",

"name": "",

"type": "address" } ],

"stateMutability": "view",

"type": "function" }
]

In the decentralized applications paradigm, the ABI is a data structure

that any front-end program must include to exchange data with the smart

contracts’ function and the blockchain’s logs.

In addition, Solidity exposes the set of global objects that a contract may



CHAPTER 2. BACKGROUND 43

need to access during its execution in the EVM. These include the block,

msg, and tx objects. In the shown contract code, msg.sender represents

the EOA’s address that initiated this contract call by signing the contract

creation transaction. Finally, Solidity includes a number of EVM opcodes

as predefined functions, such as selfdestruct(recipient address), which

deletes the current contract from the blockchain.

2.3.2 Web3 Providers

Among the Ethereum node’s client functionalities, the provision of a specific

software component allows other programs, outside the blockchain ecosys-

tem, to interface with smart contracts and other blockchain structures. An

Ethereum client also acts as a Web3 Provider, that is, a gateway between

the Web’s front-end and the Web3’s back-end. A Web3 Provider offers in

fact an Application Programmable Interface (API), provided via a set of Re-

mote Procedure Call (RPC) commands, which allows the DApp’s front-end

to interact with the Ethereum blockchain (see Fig. 2.8).

Front-end App

web3.js
P2P network

Ethereum
node

RPC APIcommand/ 
response 

Figure 2.8: Programmable Web3 interface.

The RPC commands are encoded in JavaScript Object Notation (JSON);

the API is then referred to as the JSON-RPC API. Usually, the RPC interface

is offered as an HTTP service on localhost port 8545, but it can be done

though other communication protocols (IPC, WebSocket). Native access to

the JSON-RPC API can be made by means of a generic command-line HTTP

client (e.g., Curl) by sending the request message to the Ethereum client and

receiving the response message from it.

In the following example a request is addressed to the available Web3

Provider to know the client version the external application is talking to on

port 8545.



CHAPTER 2. BACKGROUND 44

// Request

curl -X POST -H "Content -Type":"application/json" --data ’{"jsonrpc":"2.0","
method":"web3_clientVersion","params":[],"id":1}’ http:// localhost:8545

// Response

{"id":1, "jsonrpc":"2.0", "result":"Mist/v0.9.3/darwin/go1.4.1"}

Interfacing with the blockchain at such a native level can be a chore

for application developers. Therefore, high-level libraries for JavaScript and

other front-languages are available to hide the cumbersome mechanism of

JSON-RPC API, as more extensively detailed in the next subsection.

The Web3 Provider service can be provided not only by full Ethereum

clients, such as Geth or OpenEthereum, but also by remote clients (see Sub-

section 2.2.1), such as Metamask28, or cloud-based clients, such as Infura29.

MetaMask is in fact a plug-in browser extension which, in addition to

wallet functionalities (see Subsection 2.2.5), provides web-based tools and

apps with Web3 access to different Ethereum networks (e.g., live, testnet,

custom).

2.3.3 Front-end operations

Fig. 2.9 shows a Dapp’s front-end that connects to any Ethereum client

(full, remote, cloud-based) by means of Web3 high-level libraries. It needs

to interact or include a wallet software to get transactions signed and EOA

accounts managed.

Figure 2.9: Front-end / back-end interaction in DApps.

28https://metamask.io/
29https://infura.io/

https://metamask.io/
https://infura.io/


CHAPTER 2. BACKGROUND 45

A front-end application is typically either a traditional web app written in

HTML/CSS/JS or a Node.js30 application. Even if less common, standalone

front-end applications can be developed in other programming languages,

such as Java or Kotlin for mobile applications. For each selected language a

specific Web3 high-level library must be imported in the source code (e.g.,

web3.js, ethers.js, web3j).

web3.js is the most common convenience JavaScript library providing a

Web3 object that can be used to interact with an Ethereum client. It works

by exposing high-level methods and objects that have been enabled over

RPC, thus allowing the developer to avoid using the underlying JSON-RPC

API encoding.

2.4 Digital identity

The treatment of digital identities is at the foundations of the Know Your

Customer (KYC) principles in digital financial services, which entail strict

requirements when it comes to user authentication in any multi-party rela-

tionship. The ensuing procedures are employed for the purpose of ensuring

that the actors involved in a digital interaction are actually who they claim

to be. The topic of proving digital identity on the global network is being

addressed, with varying levels of decentralization and security requisites, by

several internet-based systems (e.g., OpenID Connect31, KYC-chain32).

In a fully decentralized approach, Identity Access Management (IAM)

policies should be resistant to censorship, meaning that it doesn’t exist any

privileged party in the system that has the power to selectively limit the

information that others have access to. A blockchain, by its very nature,

meets these requirements [44]. In fact, some platforms have been specifically

designed or complemented with features to support the implementation of

decentralized identity policies, e.g., Namecoin33, Hyperledger Indy34, Energy

30https://nodejs.org/
31https://openid.net/connect/
32https://kyc-chain.com/
33https://www.namecoin.org/
34https://www.hyperledger.org/use/hyperledger-indy

https://nodejs.org/
https://openid.net/connect/
https://kyc-chain.com/
https://www.namecoin.org/
https://www.hyperledger.org/use/hyperledger-indy


CHAPTER 2. BACKGROUND 46

Web Decentralized Operating System35, the latter being used in the original

DApps presented in this work at Chapter 5.

2.4.1 Self-Sovereign Identity

Self-sovereign identity (SSI)36 identifies the digital movement that promotes

the idea about individuals owning and controlling their identities, as opposed

to a typical administrative paradigm where most of our official identifiers

(driver’s license, birth certificate, usernames, etc.) are issued and maintained

by a central authority, and where individuals’ data can be shared without

their knowledge or consent. The SSI paradigm envisages identity systems

where individuals can maintain their own digital identities, and where data

verification and sharing can occur via a secured digital consent [45].

Therefore, SSI platforms tend to be designed under a decentralized para-

digm, since digital credentials are better handled using typical distributed

ledger technologies, such as digital wallets, trustless consensus mechanisms,

and immutable storage and business logic [46]. In this respect, the Sovrin

Foundation37 is an independent organization established to ensure that the

self-sovereign identity is transparently public and pervasively accessible. It

governs the Sovrin Networks, a public service utility providing the realization

of the SSI principles on the Internet.

2.4.2 Decentralized Identifiers and Credentials

Decentralized Identifiers (DIDs)38 and Verifiable Credentials (VCs)39 are two

of the most important components of SSI, so much that their core architec-

tures, data models, and representations are being standardized as technical

recommendations by the W3C organization, which establishes guidelines and

best practices for an open, inclusive and trustworthy web.

35https://www.energyweb.org/
36https://en.wikipedia.org/wiki/Self-sovereign_identity
37https://sovrin.org/
38https://www.w3.org/TR/did-core/
39https://www.w3.org/TR/vc-data-model/#core-data-model

https://www.energyweb.org/
https://en.wikipedia.org/wiki/Self-sovereign_identity
https://sovrin.org/
https://www.w3.org/TR/did-core/
https://www.w3.org/TR/vc-data-model/#core-data-model


CHAPTER 2. BACKGROUND 47

A DID is a digital, verifiable identity that is user-generated and not cou-

pled to any centralized institution, which is entirely controlled by individuals

or organizations without an external authority. It can be used to identify any

subject, such as a non-tangible asset, a customer, or an organization.

Unfortunately, very little is known about the subject through a digital

identity alone. This is why VCs need to come into play. They are secure and

machine-verifiable digital credentials, that is, something we can prove about

a subject or individual (e.g., a certificate, a property, an expiration date,

etc.), which are standardized as statements or claims to be be associated to

DIDs. VCs are secured through cryptographic protocols (e.g., a digital sig-

nature) and validated through a digital trust mechanism (e.g., a blockchain’s

consensus algorithm). Once a VC is successfully verified, it can then be used

as an official record linkable to the subject’s digital identity, thus enriching

its set of associated claims.



Chapter 3

Related Work

In this chapter, multiple contributions that have been consulted and com-

pared with the topics discussed in the thesis are presented and commented.

Comparisons with the original solutions being devised during the doctorate’s

placement will be detailed in the relevant chapters.

The first two sections of the chapter collect the related work lying within

the contract tracing and renewable energy application fields, respectively.

Moreover, an additional section classifies the related work according to the

technical issues the use of blockchain intends to mitigate or, when applicable,

to the specific design patterns developed or used in the described solutions.

3.1 Contact tracing solutions

Since the outbreak of the Covid-19 pandemic, one of the main issues to be

faced in digital solutions has been that of maximising the tracing of contacts

among potentially Covid-19 positive individuals, while, at the same time,

preserving their privacy. Many countries and public institutions have de-

veloped and deployed contact tracing solutions that differ especially due to

the balance between an effective response to the pandemic emergency and

the upholding of individual rights and liberties. Design choices, in the dis-

cussed solutions, mainly concern the degree of decentralization and the user

communication channels. While the overall system performance, and the

48



CHAPTER 3. RELATED WORK 49

effectiveness of the solutions are undoubtedly relevant parameters to mea-

sure, the goal of paramount importance is nevertheless the degree of privacy

preserving that can be guaranteed to users’ data and identities.

Contact tracing solutions basically consist of two components: (a) mo-

bile apps to be installed on user personal devices, and (b) an administration

server. The computational and communication functionalities, as well as the

storage capabilities of both components, depend on the adopted solution,

as discussed below, and may vary according to cultural and political back-

grounds. Centralized solutions, for instance, which are often based on the

absolute location of their users, rely on the trustworthiness of central servers

and authorities, but commonly elicit privacy concerns [47]. They are mainly

targeted at maximising efficiency in the contact tracing follow-up of Covid-19

positive people (e.g., mobility patterns, contagion risks, location monitoring).

In contrast, decentralized solutions, which most of the times depend on the

users’ relative location, cannot provide a global view of contact tracing but

guarantee a deeper safeguard of individual privacy [48].

The degree of decentralization of such solutions also depends on the inte-

gration of specific blockchain components into the overall system design, so

that we can divide the analyzed solutions into two subcategories: blockchain-

unequipped and blockchain-equipped.

3.1.1 Blockchain-unequipped

EPIC is a solution for indoor environments designed and prototyped by Al-

tuwaiyan et al. [49]. It uses hybrid short-range wireless technologies, namely

WiFi and Bluetooth, with the aim to provide fine-grained response to direct-

only contact tracing goals. EPIC is mostly centralized in that, even though

localization data are collected and stored at client side, they are processed

at server side to assess if contacts with infected users have occurred, and if

these have to be regarded as critical. Because of this architectural choice,

much emphasis is placed on cryptographics techniques.

WifiTrace is a network-centric solution for contact tracing that relies on

passive WiFi sensing with no client-side involvement [50]. It has been de-



CHAPTER 3. RELATED WORK 50

signed and prototyped for campus environments, and is mainly used for post-

processing device trajectories and reconstructing on-campus people flows. It

strongly relies on passively collected WiFi enterprise network logs. This ap-

proach assumes central and third-party authorities to be fully trusted. Sim-

ilarly, vContact [51], which uses WiFi to recognize smartphones, provides

for a mobile app to store location data and check whether a location later

marked as infected had previously been visited by app’s users.

Singapore’s TraceTogether1 counts on centralized server capabilities for

the purposes of contact tracing and contagion risk advertisements to individ-

uals who have come close to reported infected people. Even though relative

localization data are collected at user side and cryptographically exchanged

with the server, once users are reported positive, both they and their contacts

will be de-anonymized by the server, owned by the Ministry of Health. This

highly beneficial choice for the contact tracers does not guarantee the right

to anonymity at all, and yet is considered absolutely legal in Singapore [52],

whereas the adoption of a similar solution in Australia (i.e., COVIDsafe2)

has had to undertake some steps to address a few legitimate privacy concerns.

The South Korean Corona-100m, or Co100 for short, is by far the most

centralized and the least privacy preserving one among the solutions analysed

so far. Absolute localization data are collected from GPS or cellular networks

by user devices and sent to the central authority with the aim to provide a

publicly available website3, which can help people to find out where infected

(anonymized) people have been in the previous days. Also, de-anonymized

data belonging to confirmed Covid-19 patients can be immediately provided

to health investigators [53].

Decentralized Privacy-Preserving Proximity Tracing (DP3T) is a seminal

proposal [54] for the majority of decentralized solutions which have followed,

since it states the principle that storing and processing of direct contacts are

under mobile apps’ responsibility, thus leaving the ownership of the collected

data with the end-user apps. In this proposal the central server only plays

1https://www.tracetogether.gov.sg
2https://www.health.gov.au/resources/apps-and-tools/covidsafe-app
3https://coronamap.site

https://www.tracetogether.gov.sg
https://www.health.gov.au/resources/apps-and-tools/covidsafe-app
https://coronamap.site


CHAPTER 3. RELATED WORK 51

the role of a relay system whenever a user self-declares as Covid-19 positive.

DP3T employs a dedicated Bluetooth app-to-app communication channel for

direct exchange of proximity data, which are retained by each app in its

local storage for later processing, upon notification from the central server,

of contact matching. Many country solutions, such as Italy’s Immuni4, share

a similar design, with the apps exchanging and storing anonymized IDs and

other location data, reporting infected cases and tracing suspicious contacts.

The decentralized solutions under the DP3T umbrella exhibit some very

interesting features, but also a few drawbacks mainly arising from resorting

to Bluetooth, according to security issues raised by Vaudenay [55], which

will be extensively detailed and debated against the security features of the

decentralized prototyped solution presented in Section 4.1.

3.1.2 Blockchain-equipped

BeepTrace [56] is a very articulated distributed solution, which aims to

position itself as a reference blockchain framework for any initiative in the

contact tracing arena, since it claims to be able ”to become a piece of open

interface information tracing hub for all privacy-preserving contact tracing

providers globally”, regardless of the consensus mechanism, the positioning

system and the methods to share data among them. Such an intent looks

quite attractive but still very demanding in its making. From an architec-

tural point of view, BeepTrace makes use of two different chains. The tracing

blockchain is where all users store their positioning data which have previ-

ously been encrypted and anonymized by means of sophisticated algorithms

involving PKI Central Authorities. When a user is tested positive, its5 posi-

tioning data must be endorsed by a diagnostician, who decouple them from

the user pseudonym and put them in the second blockchain (i.e., notification

blockchain) to the benefit of so-called geodata solvers. The latter determine

the contagion risk level that the notification blockchain makes available to

the involved users.

4https://www.immuni.italia.it
5The neutral singular gender is purposely used in similar cases hereinafter.

https://www.immuni.italia.it


CHAPTER 3. RELATED WORK 52

A proposal by Song et al. [57] pursues contact tracing objectives that

include both location-based and individual-based information, which is stored

in a blockchain database as a trustless repository for both direct and indirect

contact tracing. The solution also features risk contagion algorithm which

operates on the collected data.

On the same track, a proposal by Arifeen et al. [58], based on a Blue-

tooth app-to-app, traces user encounters and exports all the contact infor-

mation, collected by each single user in the latest 14 days, to the public

blockchain, thus mitigating the typical privacy preserving issues of DP3T-

based solutions [55].

PRONTO-C2 [59] is an interesting proximity-based contact tracing pro-

posal, which combines a mechanism that allows users to autonomously and

confidentially call each other to alert the presence of a detected infection by

means of the Diffie-Hellman protocol6, along with a bulletin-board imple-

mented through a blockchain. The basic idea of the contact tracing proposal

is to replace the generation of users’ pseudonyms with that of unique en-

counter identifiers generated by the DH protocol. Other cryptographic mea-

sures make the solution quite robust, whereas a few problems are encountered

in the way the DH protocol should fit in the Bluetooth payload.

A significant contribution to the use of the blockchain in epidemiological

surveillance is provided by a remarkable technical report by Micali [60]. The

author observes that DP3T-based solutions do not enable a global view of

the pandemic evolution for epidemiological follow-ups, since all the relevant

information about encounters is stored on the users’ mobile phones, making

it unfeasible to obtain aggregate information. Hence, the report’s suggestion

is to introduce a public blockchain in the system design, whereby it is pos-

sible to upload synthetic information about suspicious encounters. An up

and running web-app, iReport-Covid7, has been deployed on the Algorand

blockchain [61] under the report’s recommendations.

The blockchain can be also employed to counteract the location forging

issue in absolute localization algorithms by providing time-based Proof-of-

6https://www.hypr.com/security-encyclopedia/diffie-hellman-algorithm
7https://ireport.algorand.org/en

https://www.hypr.com/security-encyclopedia/diffie-hellman-algorithm
https://ireport.algorand.org/en


CHAPTER 3. RELATED WORK 53

Location (PoL) protocols, as originally proposed by Amoretti et al. [62],

for generic location-based services. More recently, PoL has been proposed

for contact tracing in Bychain, a permissionless blokchain for location-based

tracing. The protocol witnesses, that is, devices sending location information

(e.g., WiFi Access Points, BLE-equipped nodes, LTE base stations), are all

equipped with GPS and identified by a {public key-private key} pair.

Finally, a proposal by Marbouh et al. [63] implements a blockchain-

based system that makes use of Ethereum smart contracts and oracles8 to

assess the reliability and trustworthiness of the information received by the

public and government agencies. The main goal of the solution is therefore to

enable dashboards and mobile decentralized apps to retrieve aggregate data

coming from registered external sources that have incrementally obtained

a high degree of reputation, according to a specific logic developed on an

appointed smart contract.

3.2 Renewable Energy Sources solutions

The potential applications of blockchain in the energy sector have always

been regarded as crucial in terms of new opportunities to manage the “smart

grid” complexity and foster new business models and marketplaces, such as

engaging new small actors in the renewable energy sources (RES) market [64].

The blockchain can therefore act as an enabler for the creation of novel energy

communities marketplaces, in which the transparency features, introduced by

the decentralized technology, can guarantee accountability while preserving

privacy requirements. In fact, the World Energy Council9 claims that the

use of the blockchain in the energy sector can become the ultimate facilitator

for its decarbonization by allowing the integration of decentralized energy

sources into the power grid. In particular, two very promising application

fields deserving a deeper investigation are: (i) the handling of grid flexibility

demand/response mechanism, and (ii) the provision of platforms for more

efficient billing processes. the blockchain technology may also be used for

8https://en.wikipedia.org/wiki/Blockchain_oracle
9https://www.worldenergy.org/

https://en.wikipedia.org/wiki/Blockchain_oracle
https://www.worldenergy.org/


CHAPTER 3. RELATED WORK 54

issuing certificates of origin, particularly for green energy production and

renewable energy sources.

In addition to the many surveys on the application of the blockchain to

the energy sector [64, 65, 66, 67], conceptual work has been delivered on

RES specific topics, which are related to those investigated in the the orig-

inal DApps presented in Chapter 5. Within this large body of literature,

Decusatis and Lotay [68], have tackled security issues for an Ethereum

blockchain that hosts a decentralized energy management application, pre-

senting an approach to digital identity management that would require smart

meters to authenticate with the blockchain ledger and mitigate identity spoof-

ing attacks.

Yang et al. [69] have explored the potentiality of the virtual power plant

(VPP) as a promising paradigm for managed RES to participate in the power

system. The authors have developed a blockchain-based VPP energy man-

agement platform to facilitate transactive energy activities among residential

users in such a way that users can trade energy for mutual benefits and pro-

vide network services, such as feed-in energy, reserve, and demand/response,

through the VPP. The conceptual work has been validated by a prototype

blockchain network whereby the VPP energy management scheme has been

successfully tested with respect to users’ energy trading and other network

services.

EFLEX [70] is a pilot service being carried out in Bulgaria and Roma-

nia whose main objective is to demonstrate that trading of services, amongst

Transmission Service Operators (TSO), Distribution Service Operators (DSO)

and small producers/consumers (prosumers), can be carried out in a trans-

parent, secure, and cost-effective manner by using a blockchain-based flexi-

bility marketplace. The aim is to look for ways to help both DSOs and TSOs

to be more directly engaged in managing energy flows on the network by

using the same decentralized platform with the aid of specifically designed

smart contracts.

Pop et al. [71] have written a work on the blockchain-aided grid flexi-

bility in which they investigate the use of decentralized mechanisms for de-

livering transparent, secure, reliable, and timely energy flexibility, under the



CHAPTER 3. RELATED WORK 55

form of energy demand profiles of Distributed Energy Prosumers, to all the

stakeholders involved in the flexibility markets (DSOs, retailers, aggregators,

etc.). In their approach, a blockchain-based ledger stores the energy ex-

change information collected from smart metering devices in a tamper-proof

manner, while self-enforcing smart contracts programmatically define the ex-

pected energy flexibility at the level of each prosumer, the associated rewards

or penalties, and the rules for balancing the demand/supply operations at

grid level. The devised mechanisms have been validated using a prototype

implemented in an Ethereum platform.

Umar et al. [72] have studied the integration of distributed battery stor-

age equipped with smart meters by means of a digital platform, in order to

improve the overall performance of the microgrid system. The decentraliza-

tion paradigm is employed to establish a self-sustained community trading

energy in the microgrid system. The case study showcases the merits of

blockchain technology in providing a secure and effective trading platform

for mass users. The DLT-based market help end-users benefit from energy

savings and self-sufficiency thanks to the combination of automated decen-

tralized trade and storage flexibility.

Finally, BloRin10 is an academic and industrial initiative that aims to

create a blockchain-based technology platform to favor the creation of so-

lar smart communities and to encourage trustworthy interactions between

prosumers. The use of the blockchain platform, based on Hyperledger Fab-

ric, manages the accounting of energy flows and the automation of economic

transactions [73].

3.3 Blockchain design topics

The design of smart contracts can turn out to be quite challenging, relatively

to well-known features, such as immutability, execution costs, sequential ex-

ecution, and so on [74]. Especially on public blockchains, the overall design

of smart contracts has a large impact both on its deployment and execution

10https://www.blorin.energy/

https://www.blorin.energy/


CHAPTER 3. RELATED WORK 56

costs. The deployment cost is proportional to the contract size, whereas the

execution cost depends on time, space, and message complexity. In consor-

tium blockchains the monetary cost of storing and executing smart contracts

is typically not an issue. However, complexity of any kind in smart con-

tract design may become an issue, in that it could affect many aspects of the

application throughput as well.

In this section, the surveyed work has been mapped against high-level top-

ics that logically group them. A topic represents a blockchain-related feature

that poses specific challenges to application designers in order to mitigate

related issues. The related work describes design solutions to these issues,

from specific smart contract design patterns to more extensive scalability

and security design approaches. Topics, issues and related solutions have

been primarily selected in relation to the original decentralized applications

presented in this document.

3.3.1 Smart contract immutability

Restricting Pattern11 is the most common pattern dealing with the own-

ership of deployed smart contracts in a context of code immutability. It

consists in storing the address of the contract’s deployer as its owner. The

address can be read from the msg.sender global object and set inside an

address variable by the constructor method upon contract deployment (see

Subsection 2.2.6). In this way, it is easy to let some operations be only

performed by the contract’s owner.

Authorization Pattern [75] can be considered as an evolution of the

Restricting Pattern towards the notion of Access Control List. To perform

specific actions, a collection of addresses is stored inside an address mapping

table. In this way different users, who might have different privilege levels,

can make critical changes in the contract state, or perform operations that

other users are not allowed to do.

Because of its immutability, whenever a smart contract needs to be up-

11https://docs.soliditylang.org/en/v0.8.17/common-patterns.html#

restricting-access

https://docs.soliditylang.org/en/v0.8.17/common-patterns.html#restricting-access
https://docs.soliditylang.org/en/v0.8.17/common-patterns.html#restricting-access


CHAPTER 3. RELATED WORK 57

graded to fix bugs or add new functionalities, a new smart contract must

be deployed with a new address. Hence, it cannot manipulate data embed-

ded in the previous version of the contract, so that importing data from the

old contract could be very resource consuming. In these cases, the Data

Contract12 design pattern can help by keeping business logic and data sep-

arated in two distinct contracts. The former accesses the required data by

exposing read/write functions which call the corresponding operations pro-

vided by the data contract. This design pattern allows the replacement of

the logic contract, while keeping the data contract alive. A similar pattern,

the Treasure Manager [74], has been devised to cope with the separation

of the contract’s data from the contract’s business logic in payable services

that need to transfer the accrued financial reserve to more recent versions,

without incurring in the data transfer cost.

Among the blockchain solutions adopting the Data Contract design pat-

tern,Chronobank13 provides employment opportunities and ensures prompt

and fair payments. It tokenizes labor and provides a market for professionals

that are available to stake their time in a smart contract and receive regular

rewards. In its implementation, Chronobank uses a smart contract with a

generic data structure that can used by all the other smart contracts im-

plementing the business logic. Colony14 is a platform for running DAOs

from scratch in Ethereum. Similarly to Chronobank, it makes use of a Data

Contract pattern with a generic data structure for each new organization.

Data Contract (or similar patterns, such as Treasure Manager) needs

to be used along with the Contract Registry15 pattern, which is able

to conveniently manage the upgrade of smart contracts, since they will be

assigned a new address in case of replacement with a newer version. This

pattern maintains a registry that provides the updated version of the (name,

address) pair. Before invoking a smart contract, a user can look up the

12https://research.csiro.au/blockchainpatterns/general-patterns/

contract-structural-patterns/data-contract/
13https://chrono.tech/
14https://colony.io/
15https://research.csiro.au/blockchainpatterns/general-patterns/

contract-structural-patterns/contract-registry/

https://research.csiro.au/blockchainpatterns/general-patterns/contract-structural-patterns/data-contract/
https://research.csiro.au/blockchainpatterns/general-patterns/contract-structural-patterns/data-contract/
https://chrono.tech/
https://colony.io/
https://research.csiro.au/blockchainpatterns/general-patterns/contract-structural-patterns/contract-registry/
https://research.csiro.au/blockchainpatterns/general-patterns/contract-structural-patterns/contract-registry/


CHAPTER 3. RELATED WORK 58

registry to find its address. Similar outcomes are provided by the Proxy [76]

and Migration [77] patterns.

Needless to say that the Ethereum Name Service (ENS)16 is the first

application that comes to mind in the Contract Registry realm, that is a

name service on the Ethereum blockchain implemented as an extensible reg-

istry accessible to everyone. It has two principal components: the registry

and the resolvers. The ENS registry consists of a single smart contract that

maintains a list of all domains and subdomains, along with their owners and

their resolvers. The latter are contracts responsible for the actual process

of translating names into addresses and they can be replaced when needed.

Many other name services are available on different blockchains, as for in-

stance the Energy Web Name Service (EWNS)17, which shares the same

pattern as ENS.

3.3.2 Smart contract computational cost

The monetary cost of smart contracts execution opens an issue which goes

beyond the computational cost that developers have to tackle in traditional

programming languages. Therefore, a poor design can lead to expensive and

unnecessary execution fees.

Among the several proposals in the arena of execution cost reduction,

many of them deal with the optimized usage of variables in Ethereum, which

are organized in 256-bit words, in terms of storage occupation and content

modification. These two operations have well specified execution costs in the

EVM, whose containment is the goal of patterns such as the ones cited by

Marchesi et al. [76]: Packing Variables, Packing Booleans, Uint* vs Uint256,

Mapping vs Array, Fixed Size, Default Value, Short Constant Strings, Write

Values, and the Boolean Box [74], to name a few.

Moreover, automated tools have been developed to detect anti-patterns

that the Solidity compiler, in the case of EVM smart contracts, fail to reveal

and optimize [78, 79].

16https://ens.domains/
17https://ens.energyweb.org/

https://ens.domains/
https://ens.energyweb.org/


CHAPTER 3. RELATED WORK 59

3.3.3 Smart contract storage

Blockchains require full data replication across all participants. Storing large

volumes of data within a transaction may be impossible due to the limited

size of blocks, such as in Ethereum, where a protocol-defined additional gas

limit restricts the computational complexity and data size of the transactions

included in them. Therefore, in order to preserve the integrity of those bulk

data that cannot be stored on-chain, a few patterns have been envisaged.

Among these, Blockchain anchor 18 uses the blockchain storage to en-

sure the integrity of an arbitrarily large off-chain dataset. For dynamic data

preservation, the pattern can be used to track the integrity of a collection of

data by storing the hash of a Merkle trie root, at a particular point in time,

in the blockchain.

For instance, Chainy19 is a smart contract running on the public Ether-

eum blockchain, which stores on-chain the short link to an off-chain file

whose immutability is thus guaranteed. POEX.IO20 is instead a service

that demonstrates the ownership, the integrity and the proof-of-existence of

timestamped documents. This is achieved by letting the document’s owner

deposit the document cryptographic hash into the Bitcoin blockchain. On

top of Bitcoin, Chainpoint21 is an open standard for creating a timestamped

proof of any data, file, or process that is used by other blockchain initiatives.

Chainpoint links a hash of off-chain data to a proprietary blockchain which

returns a timestamped proof. A blockchain node receives hashes which are

aggregated together using a Merkle Trie. The root of this trie is then pub-

lished in a Bitcoin transaction.

A very interesting initiative, the Dwarna [23] web portal, connects the

different stakeholders of the Malta Biobank in a dynamic “informed consent”

logic, which gives individuals control to determine the rules by which their

biospecimens and data should be used. The solution covers remarkable as-

18https://research.csiro.au/blockchainpatterns/general-patterns/

self-sovereign-identity-patterns/anchoring-to-blockchain/
19https://chainy.info/
20https://poex.io/
21https://chainpoint.org/

https://research.csiro.au/blockchainpatterns/general-patterns/self-sovereign-identity-patterns/anchoring-to-blockchain/
https://research.csiro.au/blockchainpatterns/general-patterns/self-sovereign-identity-patterns/anchoring-to-blockchain/
https://chainy.info/
https://poex.io/
https://chainpoint.org/


CHAPTER 3. RELATED WORK 60

pects regarding the privacy preservation of users’ data in the biobank arena,

but it is also interesting in some architectural aspects of its implementation.

In particular, for security reasons, the back-end storage is split into two com-

ponents, an off-chain relational database storing the majority of data about

users and studies, and a Hyperledger Fabric blockchain that records the “re-

lational table” made up of: anonymized user-ID (the owner of the specimen);

study ID; informed consent given to the study-ID by the user-ID. This mixed

database design makes it more difficult to access users’ sensitive information

and prevent pseudonym linkability risks.

3.3.4 Security and scalability design

In the wake of the “blockchain trilemma”, security and scalability issues

are of paramount importance when it comes to making appropriate design

choices for the decentralized applications that developers want to build. Se-

curity and scalability enhancements involve fine design of smart contracts and

blockchain storage, as well as extra features that some (public) blockchain

can hardly provide by design. Security and scalability requirements that

exceed the scope of blockchains features, and sometimes clash with them,

mostly concern access control policies to on-chain, but primarily, off-chain

data, according to patterns that have to deal with computational and storage

costs, as extensively discussed in the preceding subsections.

Far from deeply discussing the many blockchain-based solutions that deal

with the above-mentioned issues, the table in Figure 3.1 lists the design

choices, in terms of blockchain type and storage policies, data accessibility

features, and extra security add-ons that a few selected decentralized solu-

tions, in the Electronic Health Records (EHR) territory, exhibit [80].

Most systems of the surveyed solutions advocate the use of consortium

networks [42, 81, 82, 83, 84, 85, 86] for scalability issues and better protection

of medical data from unwanted access. Only two solutions [87, 88] do not

limit the blockchain type to either public or consortium, provided that smart

contracts are supported, whereas the public type is the choice of only one

solution [89]. ‘’Data accessibility” has to do with data ownership and can



CHAPTER 3. RELATED WORK 61

EHR Solution Blockchain type Accessibility Privacy support 
On-chain 

storage 

Off-chain 

storage 

ACTION-

EHR 

Consortium 

(Hyperledger Fabric) 
Patients have full control 3rd party CA 

management data EHR clustered 

DB 

UniRec 
Consortium (IPFS + 

Ethereum) 
Patients have full control 

ACL policy + PGP EHR 

encryption 
hashed data 

IPFS-based 

EHRs 

Tith et al. 
Consortium 

(Hyperledger Fabric) 
Patients have full control 

Membership auth + 

proxy re-encryption  
management data EHR DBs 

MedRec Consortium (Ethereum) Patients have full control 
AAA server + PKI 

authentication 
hashed data 

EHR centralized 

DBs 

Wang et al. Consortium (Ethereum) Patients have full control 
Proxy re-encryption + 

EHR encryption 
keywords 

EHR encrypted 

cloud DBs 

FHIRChain 
Any blockchain 

executing contracts 

Not addressed for patients, 

only for authorized providers 

PKI DIDs + smart 

tokens + ciphered EHR 

ciphered 

metadata 
EHR DBs 

Medshare 
Any blockchain 

executing contracts 

Not addressed for patients, 

only for authorized providers 

Data provenance + 

auditing + ACL 
management data EHR cloud DBs 

MedBlock 
Consortium 

(Hyperledger Fabric) 
Patients have partial control 

CA + ACL protocol + 

PKI EHR encryption 
EHR summaries   EHR DBs 

BlocHIE  Public (PoW-based) 
Patients have full control  

IoT devices can write data 

Digital signatures + 

hash functions 
EHR verification EHR DBs 

Ancile  Consortium (Ethereum) Patients have full control 
ACL smart contracts + 

proxy re-encryption  
management data EHR DBs 

 

Figure 3.1: Comparison of key features in selected EHR solutions.

be seen as a derivative property of the adopted “Privacy support”, which,

in turn, specifies extra access control policies and data encryption measures

that are not in the technical provision of blockchains. Most solutions give

full ownership and control of medical data to the patients by adding con-

ventional technologies to the solution’s back-end, such as Access Control

List (ACL), Authentication Authorization Accounting (AAA), and/or cryp-

tographic primitives and protocols, such as digital signatures, hashes, Public

Key Infrastructure (PKI), Pretty Good Privacy (PGP). Only one solution

resorts to ACLs implemented in on-chain smart contracts [86]. Finally, the

on-chain/off-chain design choices follow similar Blockchain Anchor patterns,

with a limited amount of information stored on-chain, either in plain or ci-

phered format (e.g., metadata, summaries, management data, keywords, and

so on), whereas the bulk data are stored in external off-chain DBs of different

kinds (e.g., centralized, cloud-based, decentralized [82]).



Chapter 4

Contact Tracing solution

The Nausica@DApp solution was conceived at the time the outbreak of

Covid-19 was just beginning to show its disrupting effects in social and work-

ing interactions, as, for instance, in teaching and collaborative environments.

Its ancestor NausicaApp was part of the wider NAUSICAA (New Approach

for a UniverSIty Covid-resilient and Active Again) project at the University

of Catania, aimed at addressing Covid-19 related concerns with a multidis-

ciplinary approach, spanning the fields of medicine, law and public space

management. The comprehensive solution proposed in this chapter aims

at supporting management of critical working conditions in campus envi-

ronments, thus guaranteeing the continuity of university-level research and

teaching in a context of shared social security, in compliance with hygiene and

health requirements. It eases compatibility of the in-presence activities of a

campus-based organization with the constraints posed by the virus during

the pandemic, or at a later endemic stage. This is accomplished through-

out several intervention areas, such as personnel contact tracing, overcrowd

surveillance, and epidemiological monitoring.

The initiative behind the realization of Nausica@DApp falls in a con-

verging understanding, shared by the healthcare, industrial and academic

communities, which pinpoints the development of ad-hoc mobile apps in per-

sonal user devices as a means to provide an efficient and reliable response to

contact tracing and epidemiological surveillance. Nowadays, although sev-

62



CHAPTER 4. CONTACT TRACING SOLUTION 63

eral vaccines have entered the scene, epidemiological models say that the

viral phenomenon has two possible pathways: a) recurrences or epidemic

waves, b) alternate levels of endemic circulation, until the herd immunity

will be achieved, if ever. In the meantime, it is essential to maintain well-

established practices, such as compliance to social distancing rules, avoidance

of overcrowding, preventive swab campaign, forward and bidirectional con-

tact tracing [90]. Digital tools and services, among these best practices, play

a central role in the overall game.

However, it is notorious that the level of user acceptance of the national

contact-tracing apps has achieved mixed results, especially in the early adop-

tion phase. Centralized solutions cause alarm to users due to the availability

of sensitive information to central authorities, for both contract tracing pur-

poses and contagion risk follow-ups [37, 91, 92]. In addition, most of them do

not encourage users to trust the veracity of the publicly available aggregate

data, particularly about the effects of the pandemic spread (and nowadays

of the vaccine campaign) on the number of infected people and deaths. It

is however surprising that most decentralized solutions, also if following the

DP3T paradigm in which no user information is collected at central level,

still make users suspicious about the privacy preserving concerns that such

solutions may instill, for reasons more extensively detailed in Section 3.1.

Consequently, in the context of epidemiological surveillance, mobile appli-

cations need to implement transparency measures to guarantee and demon-

strate beyond doubt that all user data, including aggregate data, are handled

with no threat to their privacy, and are collected and used without counter-

feiting them [93, 94].

Therefore, the purpose of the proposed solution consists in maximizing

trust from users in the privacy preserving and data integrity aspects,

in spite of a restricted number of centralized design choices (which, by the

way, play an essential role in the absolute localization of mobile devices). The

designated purpose is accomplished by a decentralized contact tracing

scheme carried out by apps running on the users’ mobile devices, in which

contact data are anonymized by design and immutably authenticated by a

blockchain .



CHAPTER 4. CONTACT TRACING SOLUTION 64

In addition, the solution tackles other challenging issues, such as the

overall performance of the prototyped system, especially in terms of

computing and storage costs of the integrated blockchain, which, if not

conveniently faced, can undermine the actual effectiveness of the initiative.

The remainder of the chapter highlights both the rationale behind each

phase of the project and the specific technical elements that make up the

system architecture, with a particular focus on the innovative contributions

fed by the research activities carried out over time.

4.1 Hybrid decentralized version

In this section, the early version of the developed contact tracing solution,

namely NausicaApp, is described [95]. This version is a complete app that

does not feature any decentralized element in the back-end design, that is, no

blockchain is integrated into it. Still a considerable amount of decentraliza-

tion is provided in the system architecture. This has been, in fact, developed

according to a hybrid decentralized design, loosely based on the DP3T pro-

posal (see Subsection 3.1.1), with which it shares the principle that storing

and processing of direct contacts are the responsibility of the mobile apps.

The system architecture is based on a mixed approach, in which the client-

to client dialogue among apps is achieved through the central server mainly

acting as a relay and alert system agent, whereas ad-hoc client software is in

charge of data collection, storage and computing.

Regardless of the adoption of an administration server in the communi-

cation infrastructure, NausicaApp is anyway capable of ensuring advanced

features in many areas of users’ privacy preserving, thus showing enhance-

ments with respect to existing solutions (see Subsection 3.1.1), as explained

hereinafter in Subsection 4.1.6.2. The original choices, which provide for

these advanced features, will be presented in this section, since they are also

maintained in the architecture of the final version, for which only the added

features, coming from the adoption of a blockchain in the back-end design,

will be thoroughly explained in Section 4.2. NausicaApp is altogether able to

respond to multiple requirements: (1) the management of people flows and



CHAPTER 4. CONTACT TRACING SOLUTION 65

space occupation rates on campus; (2) the booking, with fair rotation, of

lectures in attendance; (3) the tracing of direct and indirect contacts for epi-

demiological surveillance; (4) the aggregation of collected anonymized data,

aimed at driving informed campus management decisions, to be shared with

local and national health authorities under strict privacy-preserving policies.

These operational requirements, in particular indirect contact tracing and

overcrowd monitoring, call for the adoption of an absolute device local-

ization paradigm, which has been devised on top of the campus WiFi in-

frastructure, proving to be encouragingly accurate in most cases. Absolute

localization, on the other hand, entails a certain amount of server-based

centralized operations, as ascertained by other solutions that pursue similar

goals (see Subsection 3.1.1), which might affect the preservation of user data

privacy. However, NausicaApp features some original choices, in the way lo-

calization information is built and potential proximity contacts are detected,

that convincingly lessen the unwanted effects of centralized operations, as

discussed in what follows.

4.1.1 System overview

As briefly introduced, in NausicaApp no data matching processing is per-

formed outside the personal devices, with an administration server respon-

sible for anonymizing and relaying centrally verified information, each time

an infected user has authorized the distribution of its presence information

to the rest of involved devices. The central server can also use the collected

anonymized presence data to detect overcrowd conditions in various spots,

emit alarms and send alerts, as well as monitor people flows and occupation

rates on the premises, so as to facilitate the smart management of potentially

critical situations in a daily prevention routine.

NausicaApp system architecture, depicted in Figure 4.1, shows the in-

formation flows between system components, which belong to three domi-

nant areas of communication and processing: (i) device location, (ii) positive

detection and notification, and (iii) overcrowd detection and notification.

Detailed explanations of these information flows will be given in the next



CHAPTER 4. CONTACT TRACING SOLUTION 66

subsections.

overcrowd and positive alert

Notification  
Service COVID-19

Positive
Handling

WiFi  
fingerprint 

WiFi Access Points

WiFi Scan

overcrowd  
detection 

System
DB

mDAppMobile App 

Administration Back-end

Location Data Aggregator

Location
Resolver

positive 
presence data 

positive  
notification 

aggregate
data storage

Figure 4.1: NausicaApp system components.

The administration back-end employs a Notification Service, which pro-

vides a scalable solution to send push notifications to the mobile NausicaApp-

enabled devices. This functionality is provided by the Firebase Cloud Mes-

saging (FCM)1 component of the Firebase platform2, which is able to broad-

cast notifications to the registered apps and to receive messages from them.

The solution’s back-end may also interface with a System DB (whether

centralized or decentralized), in which pandemic-related, aggregate data may

be stored at the disposal of authorized parties.

Finally, it communicates with the NausicaApp-enabled devices by means

of an underlying Messaging Service, whose architectural components are

shown in Figure 4.2:

– a trusted server environment that supports the Firebase Admin SDK3,

which has the task to configure user authentication and addressing

logic, as well as build the notifications that will be used by the FCM

back-end. In our prototype system, the Spring Boot4 framework, de-

1https://firebase.google.com/docs/cloud-messaging
2https://firebase.google.com
3https://firebase.google.com/docs/admin/setup
4https://spring.io

https://firebase.google.com/docs/cloud-messaging
https://firebase.google.com
https://firebase.google.com/docs/admin/setup
https://spring.io


CHAPTER 4. CONTACT TRACING SOLUTION 67

Figure 4.2: Main components of the messaging service.

ployed on the Heroku Cloud Application Platform5 is the chosen envi-

ronment hosting the Firebase Admin SDK;

– the FCM messaging service, which adds transmission functionalities

to the Firebase Admin SDK; it is used to distribute notifications and

messages to the devices subscribed to the server platform and, con-

versely, to relay messages from the apps to the administration server.

The notification mechanism is based on the enrollment of devices to

specific “topics”, each of which identifies a distinct Access Point in our

application;

– the Android Transport Layer, which supports FCM;

– FCM-enabled Android apps that receive notifications from the FCM

messaging service via the above-said transport service; they can also

send messages back to the server through the reverse route.

App-to-server communication simply assumes that user devices have ac-

cess to the Internet (possibly, but not necessarily, leveraging the pre-existent,

campus-managed enterprise WiFi infrastructure), in fact making no use of

any app-to-app direct channel (e.g., Bluetooth).

4.1.2 Device Localization

As already seen, the proposed solution displays, among other features, indi-

rect contact tracing and real-time monitoring of premises occupation,

which inherently require absolute localization of devices, that is, position-

ing them in space within precise time intervals. WiFi sensing has proven

5https://www.heroku.com

https://www.heroku.com


CHAPTER 4. CONTACT TRACING SOLUTION 68

to be an appropriate choice to fulfil such a requirement, both when it lever-

ages the WiFi enterprise campus infrastructure already in place and also

when it relies on external service providers.

Even though scientific literature warns that WiFi indoor localization may

be a complex task to accomplish [96], our basic idea is that an Access Point

(AP) deployed in a closed environment (e.g., a laboratory) will emerge - most

of the times - as the one radiating the most powerful signal strength, to such

an extent that the device absolute position can be comfortably determined

by the system software. Subsection 4.1.5 will make it experimentally evident

that such a choice is compatible with most indoor areas within the campus

premises (in the unlucky case of garbled WiFi locations or outdoor spots,

NausicaApp is equipped with a feature that lets the localization algorithm

reach an external WiFi localization provider6 through standard RESTful

APIs).

The mobile app side features a GPS-driven mechanism which triggers the

WiFi fingerprinting mechanism as soon as the device enters the monitored

premises (this could be required for compliance with privacy and/or campus

admission rules).

The device localization process covers the first two phases of the scheme

outlined in Tang’s paper [37] on the most outstanding solutions in the Covid-

19 contact tracing arena, namely the Initialization phase and the Sensing

phase. The remaining two phases, i.e., Reporting phase and Tracing phase

will be discussed in Subsection 4.1.3.

Initialization phase

Each active instance of the app, in the initialization phase, does not need to

explicitly register with the administration server; instead, it will be trans-

parently associated to a token generated by the FCM component, thus gen-

erating an implicit user-ID that uniquely yet anonymously refers to it. The

temporal validity of the token should not last longer than 24 hours; it will

then be regenerated at the expiration of the established period, in order to

6https://en.wikipedia.org/wiki/Wi-Fi_positioning_system

https://en.wikipedia.org/wiki/Wi-Fi_positioning_system


CHAPTER 4. CONTACT TRACING SOLUTION 69

contrast “linkability risks” [37] of anonymized identifiers.

Sensing phase

Figure 4.3 focuses on the device localization process by isolating the system

components and the information flows that are related to the sensing phase.

4. location
counter or
overcrowd 
detection

1. WiFi Scan

2. WiFi 
fingerprint

5. counter notification  
or overcrowd alert 

Notification 
Service

3c. location 
counter update 

Location Resolver

 3a. location 
resolution 

mDAppmobile 
App 

Presence 
History

T0: Room 2 
T1: Room 2 
T2: Room 3

3b. presence 
data update 

Location Data
Aggregator

Location data 

WiFi Access Points

Room 2 (20/25)
Room 1  (5/10)

Room 3 (22/20)

Figure 4.3: Absolute device localization process in normal or overcrowd conditions (red
text): information flows among system components.

The mobile app initiates the device localization operations by scanning

the surrounding WiFi signals from APs and measuring signal intensity or

RSSI7 (step 1). Then, the app sends the Location Resolver service the col-

lected WiFi fingerprint inside the current location (step 2).

The Location Resolver then performs the following logical steps:

i. determines the Access Point’s MAC/BSSID with the strongest RSSI

among four scans;

ii. checks whether the anonymous user-ID has already been associated

with the same Access Point, a different one, or none. Since, in the

FCM logic, each Access Point’s MAC/BSSID is coupled to a distinct

“topic”, the association or disassociation of an anonymous user-ID im-

plies incrementing or decrementing a topic counter;

7Received Signal Strenght Indicator



CHAPTER 4. CONTACT TRACING SOLUTION 70

iii. looks up a pre-loaded table in which indoor locations (e.g., hall, corri-

dor, etc.) correspond to the registered Access Points;

iv. sends the selected location name, along with the corresponding domi-

nant Access Point’s MAC/BSSID, to the originating device (step 3a),

which, in turn, updates its local presence history records (step 3b).

Following the absolute localization of a device, two more actions occur.

At the server side, a dedicated service, the Location Data Aggregator,

updates the counters related to the involved Access Points for overcrowd

monitoring (step 3c) according to the FCM topics’ logic. For each moni-

tored location, if the counter exceeds a configurable threshold (i.e., Room

3’s counter) all the active devices will be notified with an overcrowd alert or,

conversely, the devices will only be notified with the updated counter (steps

4 and 5).

Mobile app-wise, the selected dominant AP’s MAC/BSSID will be used

to build and temporarily store an internal object, named Presence Data,

which can be represented, in a loose JSON notation, as:

{AP-BSSID, Timestamp, Time-To-Live}

to be used in the contact tracing matching phase, as explained in Subsec-

tion 4.1.3. The collection of these records makes up the Presence History,

defined as the temporally ordered sequence of presences stored on a device

and not yet expired.

4.1.3 Contact tracing

Figure 4.4 shows the contact tracing process, made up of the steps discussed

below:

Reporting phase

If a positive-tested user wishes to adhere to the containment program, it

should send its Presence History to the central server provided that the



CHAPTER 4. CONTACT TRACING SOLUTION 71

2. presence history event

3. positive 
notification 
broadcast

T0: Room 1 
T1: Room 3 
T2: Room 3

Presence 
History

4. presence
history match

mobile App  
(a generic user)

1. presence
history tx

Covid-19 Positive
Handling

Presence 
History

T0: Room 2 
T1: Room 3 
T2: Room 2

mobile App 
(a positive user)

Notification 
Service 

Figure 4.4: Contact tracing with positive matching.

Mobile App has been authorized beforehand by means of a code released by

an administrator (step 1).

Tracing phase

The Covid-19 Positive Handler will then trigger the Notification Service to

broadcast a notification, with this Presence History as its payload8, to the

rest of the anonymized and uniquely identified active devices (steps 2 and

3). Any such individual (non-aggregate) information at the server side will

expire within a predetermined time interval, and will be permanently erased.

Then, each Mobile App correlates, according to a given heuristics, places

and times of the Presence Data, contained in the pulled Presence History

of the positive user, with its locally stored own, in order to detect direct and

indirect contacts (step 4).

8https://firebase.google.com/docs/cloud-messaging/concept-options#

notification-messages-with-optional-data-payload

https://firebase.google.com/docs/cloud-messaging/concept-options#notification-messages-with-optional-data-payload
https://firebase.google.com/docs/cloud-messaging/concept-options#notification-messages-with-optional-data-payload


CHAPTER 4. CONTACT TRACING SOLUTION 72

4.1.4 User interface

NausicaApp is a complete solution with back-end and front-end implemen-

tation. The mobile front-end has been installed on Android phones to suc-

cessfully test all the described phases of the contact tracing and overcrowd

processes. Figure 4.5 shows a UI screenshot displaying real-time notification

of the occupation rate of the lecture hall in which a user has been localized.

Figure 4.5: NausicaApp screenshot on a mobile Android device.

4.1.5 Absolute localization tests

The strategic decision to adopt an absolute localization paradigm, relying

on the WiFi campus infrastructure, has been validated by the tests carried

out on the NausicaApp system prototype. The most relevant experimental

results are described in this subsection.

The adopted localization methodology is based on the idea that, inside

any campus indoor location (e.g., classroom or laboratory), the internal WiFi

AP will be the one radiating the dominant signal strength or RSSI. Thus,

WiFi fingerprints that mobile devices periodically send to the Location Re-

solver service (see Figure 4.3) easily enable it to precisely locate devices

using a simple maximum-signal logic. Location information is used by the

Location Data Aggregator service for both occupation rate monitoring



CHAPTER 4. CONTACT TRACING SOLUTION 73

and Covid-19 positive handling , in order to support direct and indirect

contact tracing operations.

The testbed setting involved six people, equipped with NausicaApp-enabled

Android devices, wandering within and among lecture halls. Each device cre-

ates a WiFi fingerprint by performing four consecutive WiFi scan requests

and collecting their outcomes in the following JSON scan quadruple:

Anonymous -User -ID: {

Scan -Time -1: "[AP1 -RSSI ,..,APn -RSSI]",

Scan -Time -2: "[AP1 -RSSI ,..,APn -RSSI]",

Scan -Time -3: "[AP1 -RSSI ,..,APn -RSSI]",

Scan -Time -4: "[AP1 -RSSI ,..,APn -RSSI]"

}

which is sent to the Location Resolver service in charge of the absolute

localization process. This process is repeated about every two minutes.

The experimental setup on a testing client machine consists of a variety

of (python, awk, sed, bash) scripts. At the client side, WiFi scan data are

first collected, as the server stores them, by a per-user Firebase listener, then

suitably processed by a set of filters, and finally fed to gnuplot for real-time

visualization.

Figure 4.6 plots the results of a trial pattern in which a single device

moves from lecture hall LH3 to LH4 then to LH2, while being monitored by

the listening service.

The plotted RSSI strengths (in dBm) of signals from the Access Points,

collected over a suitable time interval, show how the user device, as long

as it is within a lecture hall, always receives the internal AP’s signal as the

strongest one, whereas the crossing points between different RSSI plots reveal

that the user is moving to a new hall.

The shown figure reports just one of the replicated measurement tests

carried out independently by all six devices in various locations within the

campus premises. These tests all showed the same reassuring results. Other

tests involved positioning the six devices in different spots of the same lecture

hall, to verify that at all spots the dominant signal would be that of the hall’s

internal AP.



CHAPTER 4. CONTACT TRACING SOLUTION 74

-90

-80

-70

-60

-50

-40

11:10 11:20 11:30 11:40 11:50 12:00 12:10 12:20

-90

-80

-70

-60

-50

-40

d
B

m

Time	(hh:mm)

LH3

LH4

LH2

LH1

LH24

Scans	in	Lecture	Halls	LH3,	LH4,	LH2	-	User:	PappalardoText TextText Text

Text

AP-LH3 AP-LH2AP-LH4 AP-LH1 AP-LH24
AP-LH4 AP-LH1 AP-LH24AP-LH2 AP-LH3

Figure 4.6: Access Point signals (in dBm) detected by a user device wandering across
three different lecture halls in a suitable time interval.

These converging experimental results confirmed that it is sensible to im-

plement a maximum-signal logic, within NausicaApp, to identify the “local”

AP’s MAC to be included in the Presence Data.

4.1.6 Comparative analysis

Since the outbreak of the Covid-19 pandemic, governments, health author-

ities and researchers have had to face the sensitiveness of user data, with

respect to de-anonymization, detection of private encounters and tracking

of individual movements, as they were trying to deliver effective contact

tracing solutions. Special operating environments may even pose additional

challenges.

In the next two subsections, a comparative overview of the investigated so-

lutions, divided into centralized and decentralized ones, is given with respect

to NausicaApp, whose focus is on universities, where protecting the rights

of individuals must coexist with a steadfast effort to prevent and counteract

the havoc the pandemic wreaks on the academic life.



CHAPTER 4. CONTACT TRACING SOLUTION 75

4.1.6.1 Comparison with centralized solutions

In centralized solutions, the approach is strongly dependant on users fully

trusting central and third-party authorities; additionally, none of the work

referred in Subsection 3.1.1 integrates blockchain components. Both cor-

porate indoor (i.e., EPIC, WiFiTrace) and state outdoor systems, such as

the controversial, privacy-wise, South Korea’s Corona-100m and Singapore’s

TraceTogether, have to face trust concerns about fully reliable central entities.

These centralized solutions share the notion that, for optimal surveil-

lance follow-ups, anonymized information collected at a central site, can

be de-anonymized as needed. This approach, in terms of privacy choices,

is extremely far from NausicaApp’s, whose primary design requirement is

to provide anonymity and authenticity to user data with its decentralized

app-to-app approach, even though tracing of indirect contacts is obtained

centrally in terms of absolute localization data. In fact, the configuration in-

formation of the WiFi infrastructure is used to localize the anonymized users

within the campus premises, but by no means to track users. Hence, al-

though a decentralized solution, indirect contact tracing can be additionally

achieved without affecting the preservation of users’ privacy.

4.1.6.2 Comparison with decentralized solutions

NausicaApp, in its hybrid decentralized design, does not make use of the

Bluetooth channel for proximity detection of direct contacts, thus bypassing

the privacy and security issues typical of those decentralized solutions which,

conversely, rely on such a technology [97], as more extensively detailed in the

following, where the most common vulnerabilities and attacks, such as the

ones pinpointed by Vaudenay’s work on DP3T proposal [55], are discussed

within the NausicaApp’s scope.

Channel vulnerabilities and countermeasures

The scientific community seems to have taken for granted that, to ensure

privacy preservation in contact tracing initiatives based on apps running on

personal devices, it suffices to pursue data origination, storing and processing



CHAPTER 4. CONTACT TRACING SOLUTION 76

following a decentralized paradigm. Quite to the contrary, many vulnerabil-

ities in decentralized systems fail to be sufficiently addressed because of this

orthodoxy [37]. Conversely, the approach adopted in our solution, if viewed

from the app-to-app channel perspective, is inherently centralized, in that

it leverages combined app-to-server and server-to-app channels supported by

the campus WiFi infrastructure, and lacks a direct app-to-app channel, which

is typically based on Bluetooth in most solutions.

To start with, the absence of a direct Bluetooth channel implies that

an adversary cannot passively obtain pieces of personal information from

monitoring (extended) Bluetooth beacon broadcasts, such as MAC addresses

(when transmitted), explicit user IDs or ephemeral IDs that can jeopardize

anonymity. In our system, crucial attention is paid to ensure the deepest

protection in the WiFi channel carrying comparable information from apps

to apps. Since our solution can rely on either the University’s enterprise

WiFi infrastructure or the mobile network, such confidentiality targets can

be achieved at the minimal cost of leveraging the well-managed message

encryption algorithms protecting the WiFi and the mobile network trans-

mission9.

In particular, in order to prevent malicious sending of critical information

by an attacker, such as false infected people’s presence data, an additional

authorization scheme is needed to upload such data to the authority side.

The current solution adopts an external authorization mechanism, built in

the app, whereby injecting sensitive information to the system is allowed

only by a central authority that releases a unique code following the check

of forwarded medical documentation from the user.

As observed in DP3T’s documentation [54], data encryption is not strictly

necessary, since users’ data privacy depends on the very nature of the trans-

mitted data. In our solution, for instance, NausicaApp’s data anonymization

scheme, achieved by means of the FCM tokens, contributes to preserve users’

data privacy. An encryption scheme can be optionally added to the software

components of the solution that generate and read sensitive users’ data.

9However, these security mechanisms require trustworthy servers.



CHAPTER 4. CONTACT TRACING SOLUTION 77

Active and passive attacks

When it comes to a large variety of active and passive attacks that can be

brought to a typical DP3T-like solution, it has to be said that NausicaApp’s

architecture itself, by its lack of a direct Bluetooth app-to-app channel, is

capable of preventing many of them. For instance, those falling into the cate-

gory of “False Alert Injection Attacks” [55], such as Backend Impersonation,

False Report, Reply and Relay attacks, have few chances to succeed, since

they are based on the exploitation of the Bluetooth proximity communica-

tion at a certain point in time of the attack strategy.

However, threats posed by “collected data linkability risks” [37], cannot

be avoided just by stopping injection attacks, because correlations can be

inferred in specific circumstances even with limited data sets (e.g., only two

users are present in the same spot at a coincident time). The control logic

coded in the app counteracts this risk by making decisions on how and when

to show the complete set of information relayed by the server to the app

users.

4.1.7 Solution discussion

This section has presented NausicaApp, a prototyped mobile app for tracing

contacts among users within a university campus (or comparable communi-

ties, e.g., schools, hospitals, corporate sites, etc.). It improves on existing

approaches, as it goes beyond tracing basic person-to-person direct contacts,

by also revealing indirect contacts, i.e., that users happened to be in the same

spot within a chosen time interval. Moreover, NausicaApp adopts stricter

privacy and security measures. User privacy is ensured by avoiding to store

at server side tokens identifying apps running on personal mobile devices.

A further advantage of NausicaApp is the adoption of a localization ser-

vice of mobile devices based on the WiFi campus infrastructure. Absolute

localization is obtained by having the devices sense the signal strengths ra-

diating from WiFi Access Points. Scan-based WiFi positioning has indeed

proven to be effective, simple to implement and convenient, in the presence

of campus sites served by a dominant AP. This approach only requires the



CHAPTER 4. CONTACT TRACING SOLUTION 78

mobile devices’ WiFi interface be on, so that users are neither forced to adopt

new habits, nor grant additional access permissions to contact tracing apps

(potentially undermining their own privacy). Given the relatively low cost

of adding some APs to a WiFi campus infrastructure, administrators might

even consider to provide every significant site with a dominant AP, so that

this may act as a “beacon” for the benefit of enabled devices.

NausicaApp exhibits some features that can be further pushed towards a

better system performance and a more emphasized decentralized behaviour.

For instance, the localization service could implement more sophisticated

algorithms, including AI-based ones, relying on the data collected by the

mobile apps in the sensing phase. Moreover, the localization strategies could

be easily moved from the centralized administration server to the mobile

apps for execution, in order to give the whole solution a higher level of

decentralization.

Along the decentralization path, some improvements have been added

to the next versions of the contact tracing solution, which concern smooth

integration of blockchain features into the current system [98, 99], with a

view to distributing anonymized and/or aggregate data to interested parties.

This will enable contact tracing, overcrowd monitoring and epidemiological

surveillance to be carried out in such a way that decentralization, trustwor-

thiness and transparency are strongly enhanced [60, 93].

4.2 Highly decentralized version

The promotion of a shared understanding of how collected data are handled

can undoubtedly help, as previously discussed in this chapter, to boost user

confidence in the contact tracing solutions based on mobile apps.

The blockchain technology [5], leaning on mutually shared trustworthi-

ness, can open new frontiers in this territory [36]. The World Health Orga-

nization, for instance, has been involved with major technology companies

and governments in the design and deployment of MiPasa [100], a worldwide

control and communication platform fuelled by the blockchain technology,

which has been employed to enable individuals, state authorities and health



CHAPTER 4. CONTACT TRACING SOLUTION 79

institutions to gather, share and correlate data to determine early detection

of Covid-19 carriers and infection hot-spots.

In fact, a significant number of blockchain-based contact tracing appli-

cations have been proposed as an alternative to centralized solutions, as

described in more detail in Subsection 3.1.2. This alternative and viable

approach helps solution designers heighten the trust level that users would

acknowledge to the application they are supposed to download and activate

in their personal devices [101]. In such a way, a higher degree of adoption

rate of contact tracing apps should be consequently achieved, thus allowing

the solution to be fully effective.

The topics discussed in the remainder of this section represent a design

enhancement to the NausicaApp architecture, which is not only capable of

providing the same functionalities but can also effectively help overcome the

trust issues by means of new features in a context of trustworthy openness

among the various players (e.g., final users, health and governance authori-

ties). With the integration of a blockchain platform into the system design,

the new solution, coded under the name of Nausica@DApp, can be classi-

fied as a full-fledged decentralized application (DApp).

The DApp enhancements have been introduced in two different steps,

with the final version (named DApp v2 ) drastically overcoming some very

annoying performance and cost issues experienced in the first version (named

DApp v1 ) due to a less performing smart contract design. The DApp’s final

version has eventually shown that its adoption is viable and effective.

The modular approach of Nausica@DApp has allowed to replace the smart

contract design from the first to the second version without affecting the

overall design of the back-end’s core, which remains essentially the same in

the two versions. The two incremental versions are presented in two distinct

subsections in the remainder of the section.

4.2.1 DApp v1

As previously introduced, Nausica@DApp is a contract tracing DApp that

complements the NausicaApp design with the the addition of blockchain com-



CHAPTER 4. CONTACT TRACING SOLUTION 80

ponents, thus extending the back-end design with smart contract business

logic and storage. It also shifts the client software towards a decentralized

paradigm with built-in blockchain front-end functionalities.

4.2.1.1 Back-end decentralization

A simplified view of the modified system architecture of Nausica@DApp is

depicted in Figure 4.7, which highlights the main differences from the Nau-

sicaApp one.

overcrowd and positive alert

Notification  
Service COVID-19

Positive
Handling

WiFi  
fingerprint 

WiFi Access Points

WiFi Scan

pandemic data's
hash-pointer storage

pandemic data download

overcrowd  
detection 

mDAppmobile 
DApp 

Administration Back-end

Blockchain

Location Data Aggregator

Location
Resolver

positive 
presence data 

positive  
notification 

push
pull

Figure 4.7: Nausica@DApp system components.

The administration back-end now interfaces with ad-hoc blockchain com-

ponents, incorporated into the system architecture, which enable the back-

end server to expose, in a decentralized and unforgeable storage, the anony-

mized proximity data needed by the mobile DApps to perform the internal

matching operations for contact tracing. Furthermore, the blockchain com-

ponents will allow other involved stakeholders, such as the academic commu-

nity and the health authorities, to retrieve aggregate data about pandemic

trends in a transparent and shared consensus-driven environment.

The administration back-end has been implemented in accordance with

a microservice architecture, which is shown in Figure 4.8. The depicted mi-

croservices are loosely coupled with the administration server’s logical pro-

cesses shown in Figure 4.7 and thoroughly used in previous subsections for

simplicity’s sake. From now on the analysis of internal and external back-end



CHAPTER 4. CONTACT TRACING SOLUTION 81

interactions will be carried out according to the microservice server layout.

mDApp

API 
Gateway

microservice 
manager

microservice 
notification

microservice 
blockchain

periodical crowd  
gathering measure

crowd and positive alert

location  
resolver

positive 
notification

async blockchain 
transaction request

presence history 
notification

pandemic data retrieval

blockchain  
transaction

mobile 
DApp 

Blockchain 

presence
history tx

Notification 
Service 

Microservice Back-end

push
pull

Figure 4.8: Back-end architecture with blockchain integration (blue items).

As previously stated, the well known Spring Java Framework has been

used for the development of the administration server, thus providing the

microservice portion of the back-end with a reference architecture made up

of small and process-independent services.

Three microservices have been implemented:

i. a microservice-manager responsible for managing notifications from

infected users;

ii. a microservice-notification interacting with the Notification Service for

the issuance of alerts towards the mobile DApp clients;

iii. a microservice-blockchain, which adds a back-end component to the

decentralized app architecture and is responsible for:

(a) the sending of pandemic data to the blockchain storage;

(b) the creation of the blockchain transactions upon asynchronous

requests issued by the microservice-manager ;

(c) the interaction with the microservice-notification to start the alert

process towards the mobile Dapp clients.



CHAPTER 4. CONTACT TRACING SOLUTION 82

Since these transactions can take a while to be completed, they are requested

asynchronously by the manager using a message queue (by means of the

RabbitMQ middleware10).

4.2.1.2 Blockchain components

The features and functionalities of such blockchain components are depicted

in Figure 4.9 and specified in what follows, whereas proper workflow diagrams

among software modules are detailed in Subsection 4.2.1.3.

Notification 
Service 

EOA 
Wallet 

Microservice 
Back-end 

Overcrowd
Manager 

Smart Contract

Infection
Manager  

Smart Contract Infection 
Smart Contracts

Occupation 
Smart Contractspresence  

contract  
address

one per 
positive

one per 
day

create

create
Health  

Authorities

T0: Room 2 
T1: Room 3 
T2: Room 2

Presence 
History

Room 1: max 10 
Room 2: max 15 
Room 3: max 22 

Outdoor 1: max 25

Aggregate 
Location Data

periodically

on positive  
reporting

mDAppmobile DApp 

Figure 4.9: Added blockchain components.

1. Mobile DApp client (from now on mobile DApp or mDApp). Extra

front-end capabilities are added to the original mobile app design in

order to make them download all the information about potential in-

fectious contacts from the blockchain storage. Processing of contact

matching is yet again performed locally, namely, in the user devices,

once the data are received, exactly as in NausicaApp.

2. Infection Manager Smart Contract. This is an Ethereum smart con-

tract deployed by a blockchain account, externally owned by the rel-

evant back-end microservice (see Subsection 4.2.1.3). The Infection

Manager Smart Contract behaves as follows:

10https://www.rabbitmq.com

https://www.rabbitmq.com


CHAPTER 4. CONTACT TRACING SOLUTION 83

i. each time the server receives the Presence History data struc-

ture (see Subsection 4.1.3) from the device belonging to the in-

fected individual, the Infection Manager Smart Contract ’s EOA

creates and deploys a new Infection Smart Contract and stores

the Presence History in the latter’s storage area; then it passes

the address of the newly created Infection Smart Contract to the

Notification Service. This address is then forwarded to all the

mDApps ;

ii. as data published in the storage of the Infection Smart Contracts

lose time relevance, it triggers their deletion since they are no

longer needed.

3. Infection Smart Contracts. Each of them corresponds to one infected

user; they are created (and eventually deleted) by the Infection Man-

ager Smart Contract following the above-described actions ensuing the

reception of an infected user’s Presence History from the server.

As noted, each such new contract makes this information temporar-

ily available to mDApps for contact matching.

4. Overcrowd Manager Smart Contract. This smart contract creates the

below Occupation Smart Contracts on a daily basis and periodically

sends them contagion-related aggregate data, such as exceeding of over-

crowd thresholds, making them publicly available to a variety of block-

chain users (health authorities, students, press, etc.) which can use

them through multiple front-end decentralized apps (e.g. mobile apps,

dashboards).

5. Occupation Smart Contracts. These are contracts with a limited lifes-

pan, and they are capable of storing and managing the aggregate

data objects received periodically (e.g. once/day) by the Overcrowd

Manager Smart Contract. A typical data object is made up of a

location-ID and aggregation field values such as maximum or average

number of attendees.



CHAPTER 4. CONTACT TRACING SOLUTION 84

4.2.1.3 Operational workflow

In this section, the workflow of the scenario whereby a user self-reports pos-

itive to the system is sketched and discussed with an appropriate level of

logical details and system component interactions.

In Figure 4.10, the relevant workflow starts with a positive user’s mDApp

sending the collected Presence History to the specialized microservice-

manager of the back-end server. An internal write request message, along

with the user data, is then sent to the microservice-blockchain interfacing

with the blockchain, which is the one linked to the back-end’s EOA by means

of a digital wallet facility, as explained in Subsection 4.2.1.

A create call will be consequently transmitted to the Infection Manager

Smart Contract deployed on the blockchain back-end, which is in charge

of creating and deploying the Infection Smart Contract associated with the

infected user. Upon deployment of the newly created smart contract on

the blockchain, its address will be given back to the microservice-blockchain,

which forwards it to the microservice-notification. Finally, this microservice

triggers the Notification Service in order to make it broadcast an infected user

alert, along with the smart contract’s address containing the corresponding

Presence History, to the rest of the anonymized and uniquely identified

active devices.

Time correlations in collected information will make the user devices dis-

tinguish between direct and indirect contact tracing events.

4.2.1.4 Blockchain-related software

In the first place, Ethereum has been chosen as the target blockchain platform

due to its flexibility, its virtual machine and articulated storage design, as

well as the large availability of testnets running diverse consensus algorithms,

thus proving to be suitable to enterprise DApps as well. Moreover, Ethereum

provides a set of mature tooling for smart contract programming. The smart

contract code produced11 and shown in this subsection has been developed,

11https://github.com/giongion19/thesis-nausicaadapp

https://github.com/giongion19/thesis-nausicaadapp


CHAPTER 4. CONTACT TRACING SOLUTION 85

Blockchain

microservice-
manager

microservice-
blockchain

microservice-
notification

mDAPP

Notification
Service

positive user's 
presence history write request 

message create call

notification request with contract
address of presence history

Infection
Manager

Smart
Contract

contract address
notification request 

mobile DApp  
(a generic user)

mobile DApp 
(a positive user)

return 
contract  
address 

Infection
Smart

Contract

create 

Figure 4.10: Positive user reporting workflow.

tested and deployed with the aid of integrated tools such as Remix12, Meta-

mask13, and Truffle14. Ropsten15, historically based on the PoW consensus

mechanism and now discontinued, was initially selected as the testnet envi-

ronment to deploy the developed smart contracts for system testing on public

blockchains. More recently, a subset of the same tests have been replicated

on Goerli16, the Ethereum testnet currently based on PoS.

In this smart contract’s scenario, a positive user’s Presence History is

sent to the Infection Manager Smart Contract from the backend’s microser-

vice-blockchain as a serialized JSON payload (see Listing 4.1). The received

string is permanently written in a newly created Infection Smart Contract ’s

storage with no extra manipulation (see Listing 4.2). The Infection Smart

Contract ’s address is returned to the calling microservice-blockchain, accord-

ing to the workflow sketched in Figure 4.10.

pragma solidity ^0.7.2;

import "Infection.sol";

contract InfectionManager {

address payable private owner; //state variable owner contains owner’s

address

// initialize contract

constructor () {

12https://remix.ethereum.org/
13https://metamask.io/
14https://www.trufflesuite.com/
15https://ropsten.etherscan.io/
16https://goerli.etherscan.io/

https://remix.ethereum.org/
https://metamask.io/
https://www.trufflesuite.com/
https://ropsten.etherscan.io/
https://goerli.etherscan.io/


CHAPTER 4. CONTACT TRACING SOLUTION 86

owner = msg.sender; // store contract owner <-- microservice

}

// create a new infection smart contract and return its address to caller

function newInfection(string memory _payload) external returns (address) {

Infection infection = new Infection(_payload);

address added = address(infection);

return added;

}

// destroy an expired smart contract whose address is given by the caller

<-- microservice

function removeInfection(address delendus) external {

Infection history;

history = Infection(delendus); // this address can be given from caller

history.destroy ();

}

}

Listing 4.1: Infection Manager Smart Contract.

pragma solidity ^0.7.2;

contract Infection {

string private payload; //state variable payload contains json -serialized

data infection

address payable private owner; //state variable owner contains owner’s

address

// initialize contract

constructor(string memory _payload) {

owner = msg.sender; // assign ownership to the contract ’s creator <--

microservice

payload = _payload; //write serialized json -serialized string into

contract ’s storage

}

// PresenceHistory getter

function getPresenceHistory () public view returns(string memory){

return presence_history;

}

// destroy contract with expired information

function destroy () external {

require(msg.sender == owner); // only the microservice can destroy

the contract

selfdestruct(owner);

}

}

Listing 4.2: Infection Smart Contract.

The implemented contract pattern, referred to as Data Eraser keeps

things simple and flexible, when it comes to deleting smart contracts’ in-

formation no longer valid. It belongs to a design pattern family generally

applicable where business logic and data must be kept separated. Differently

from the Registry Contract pattern, it provides a cost-effective mechanism

to create and destroy data contract when no longer needed, as in the case of

the presence histories of users no longer positive.

The client software functionalities do not differ at all from the Nausi-



CHAPTER 4. CONTACT TRACING SOLUTION 87

caApp’s, save for the way a positive user’s Presence History is downloaded

by an mDApp to feed the contract tracing routines and perform data match-

ing. In fact, the mDApps are only allowed to interact with the blockchain

to download the Presence History from a smart contract whose address is

notified to them by the server’s Notification Service (see Listing 4.3).

The mDApp code has been developed in Java by means of Android Studio
17 platform into which the Web3j library18 has been imported. By doing so,

the mDApps are allowed to interface with the JSON-RPC APIs, exposed by

the Ethereum nodes, at a higher programming level (i.e., Java) than a native

HTTP POST request with JSON-encoded data containing the transaction

to be sent (see Subsection 2.3.2).

The Web3j.build(httpService) method is used to establish a connec-

tion between the client software and an HTTP end-point which, in turn,

acts as a Web3 access point to the blockchain network. The endpoint is

provided by the Infura infrastructure19 which can be loosely regarded as a

proxy Ethereum node (see 2.3.2).

Another example of how the injected Web3j properties are used is shown

in Listing 4.3, where the method blockchainRead() is capable of getting the

positive user’s Presence History by invoking the getter function getPay-

load() from the referenced Infection Smart Contract. This action returns the

Presence History of the infected user, which is compared by the mDApps

software with the locally stored presence data by means of a heuristics that

is able to assess if places and times of the compared data can be considered

coincidental within established limits.

public class Utils {

Web3ClientVersion web3ClientVersion = null;

static HttpService httpService = new HttpService(AppConfig.

BLOCKCHAIN_ENDPOINT_URL);

static Web3j web3 = Web3j.build(httpService);

static Credentials cr = Credentials.create(AppConfig.

BLOCKCHAIN_MAIN_ACCOUNT_SECRET_KEY);

static BigInteger gasLimit = BigInteger.valueOf (20 _000_000_000L);

static BigInteger gasPrice = BigInteger.valueOf (4300000);

private static Infection inf = null;

17https://developer.android.com/studio
18https://github.com/web3j/web3j
19https://infura.io/

https://developer.android.com/studio
https://github.com/web3j/web3j
https://infura.io/


CHAPTER 4. CONTACT TRACING SOLUTION 88

public static Infection instance(String contractAddress) {

if (inf == null) inf = Infection.load(contractAddress , web3 , cr,

gasLimit , gasPrice);

return inf;

}

public static String blockchainRead(String contractAddress) {

if (android.os.Build.VERSION.SDK_INT < android.os.Build.

VERSION_CODES.N) return null;

Future <String > payload = instance(contractAddress).getPayload ().

sendAsync ();

String returned;

try { returned = payload.get();

} catch (Exception e) {

e.printStackTrace ();

return null;

}

return returned;

}

}

Listing 4.3: mDApp code: retrieving information from an Infection Smart Contract.

Server-wise, a portion of the microservice-blockchain code is shown in

Listing 4.4, in which the same Web3j.build(httpService) method is used

to establish a connection between the microservice software and an HTTP

end-point providing access to the blockchain. The InfectionManagerBlock-

chainService() method is in charge of creating the Infection Manager

Smart Contract by invoking the InfectionManager.load() method. As

explained in Subsection 4.2.1, an Externally Owned Account (EOA), man-

aged by a digital wallet facility, needs to be linked to the microservice in order

to let it create the Manager Smart Contract. The EOA is created, in our

testbed, by means of the MetaMask browser extension, which manages the

EOA balance and digitally signs the transaction generated by the blockchain

microservice.

public class InfectionManagerBlockchainService {

private InfectionManager infectionManager;

public InfectionManagerBlockchainService () {

HttpService httpService = new HttpService(AppConfig.

BLOCKCHAIN_ENDPOINT_URL);

Web3j web3j = Web3j.build(httpService);

Credentials cred = Credentials.create(AppConfig.

BLOCKCHAIN_MAIN_ACCOUNT_SECRET_KEY);

infectionManager = InfectionManager.load(AppConfig.

INFECTION_CONTRACT_ADDRESS , web3j , cred , Constants.GAS_LIMIT ,

Constants.GAS_PRICE);

}

}

Listing 4.4: microservice-blockchain: creating the Infection Manager Smart Contract.



CHAPTER 4. CONTACT TRACING SOLUTION 89

A similar approach is used for the overcrowd reporting scenario, in that

the Overcrowd Manager Smart Contract performs the calls to create the

Occupation Smart Contracts’ storage on behalf of the back-end server. As

before, for performance and straightforwardness motivations, a unique JSON

serialized string, containing all the periodic report data, is transferred and

stored in the Occupation Smart Contracts. The same Data Eraser pattern

can be applied whenever aggregate data, no longer needed, are to be deleted

from the contracts’ Storage Trie.

4.2.1.5 Gas consumption tests

Although a quite refined storage management has been implemented in the

first version of the DApp, in that unneeded user or aggregate data can be

easily removed from the blockchain by destroying its associated contract (see

Subsection 4.2.1.4, the gas used for a typical transaction execution would end

up exceeding the block gas limit quite soon, because of the size of stored data.

This behaviour is due to a well-known gas-related issue with the Ethereum

Virtual Machine, when it comes to storing bulk data in its data structures.

Experimental tests

The gas consumption tests have been carried out by creating a test trans-

action in Remix that simulates the microservice-blockchain in the act of

calling the Infection Manager Smart Contract (InfectionMng.sol) to store

the Presence History of an infected user in a new contract’s storage. In

fact, the transaction triggers a contract call cascade in which the the In-

fection Manager Smart Contract creates a new Infection Smart Contract

(Infection.sol) by providing a string of variable byte-length at each test (i.e.,

6B, 200B, 10000B, 20000B, 40000B, 100000B), which simulates the JSON-

encoded data sent by the microservice-blockchain to the Infection Manager

Smart Contract.

According to the gas fee schedule contained in Ethereum’s yellow pa-

per [16], writing data to the smart contract’s storage is by far more expen-

sive than using, for the same purpose, the transaction logs, stored in the



CHAPTER 4. CONTACT TRACING SOLUTION 90

blockchain’s Receipt Trie. Therefore, in a later refinement of the smart con-

tracts’ code, bulk data have been stored in transaction logs by replacing the

contract’s state variables with the emission of events, as reported in List-

ing 4.5 that shows the modified Infection Contract (InfectionLog.sol). Notice

that the generated events contain the address of each newly created contract,

which can be therefore used as a research index for later enquiries from the

DApps’ front-end.

pragma solidity ^0.7.2;

contract Infection {

address payable private owner;

// presenceHistory contains the infected user’s presence data in json

format

event presenceLog(address indexed presenceContract , string

presenceHistory);

// initialize contract and create event

constructor(string memory _payload) {

owner = msg.sender;

emit presenceLog(address(this), _payload);

}

function destroy () external {

require(msg.sender == owner);

selfdestruct(owner);

}

}

Listing 4.5: Infection Smart Contract storing infection data in the transaction logs.

In either software versions the gas usage would still easily ramp up be-

yond any sensible limit, as confirmed by the experimental results presented

in Figure 4.11 on the dichotomy between the (smart) contract storage vs.

transaction logs solutions. Gas consumption, for both the said storage solu-

tions, are plotted against the amount of data transferred from the server-side

by the simulated microservice-blockchain in the test environment20.

Note that the “contract storage” solution runs out of gas as soon as data

size exceeds 10,000 Bytes (hence the missing blue bars in the graph), caus-

ing the transaction not to be completed by the Ethereum Virtual Machine.

The graph shows that storing in “transaction logs” performs better, but data

larger than 100,000 Bytes (the graph’s upper bound) still prevent transac-

tions from completing.

20The smart contracts, used for the said tests, can be retrieved at addresses:
0x158541aFd73F32Ee7b2FfEaF2c51cA7d62BF0be6 (InfectionMng.sol) and
0xa1cf4Ce1ed23F84349828C1eac2D4F897Ed82ce1 (InfectionMngLog.sol) in Ropsten.



CHAPTER 4. CONTACT TRACING SOLUTION 91

0

1.000.000

2.000.000

3.000.000

4.000.000

5.000.000

6.000.000

7.000.000

8.000.000

6 200 10000 20000 40000 100000

Contract Storage 212.087 356.220 6.682.982 0 0 0

Receipt Logs 204.383 212.534 630.701 1.063.845 1.953.790 4.797.588

G
as

 U
n

it
s

Data (Bytes)

Figure 4.11: Comparison of gas consumption for storage of transaction data: smart
contracts vs. transaction logs.

Transaction costs

In real terms, considering the gas price and the ether market value (the test

were first performed at a time the Ethereum was still running on PoW), a

transaction storing 10,000 Bytes on-chain would cost (in US $), for each of

the two above-mentioned solutions:

Contract Storage:

6, 682, 982[gas unit ]∗163[gwei/gas unit ]∗3.496·10−6[$/gwei ] = 3, 808.28[$]

Transaction Logs:

630, 701[gas unit ] ∗ 163[gwei/gas unit ] ∗ 3.496 · 10−6[$/gwei ] = 359.40[$]

With these very high gas price and ether value, the two solutions, al-

though satisfactory designed to meet the project requirements, pay the price

of being run in a virtual machine that relies on high transaction costs to

secure its operations, especially on PoW networks, which claim high rewards

for its miners.



CHAPTER 4. CONTACT TRACING SOLUTION 92

Further tests

In a recent recalculation of the same transaction costs, at a time when the

Ethereum had already transitioned to PoS, the gas price was much lower than

prior to transition, according to a trend that may be associated to the drop-

ping of PoW21. Unfortunately these considerations on gas price and ether

value fluctuations over time cannot be thoroughly supported with data ac-

crued in such a short period. These updated calculations are reported below.

Contract Storage:

6, 682, 982[gas unit ] ∗ 8[gwei/gas unit ] ∗ 1.43 · 10−6[$/gwei ] = 76.45[$]

Transaction Logs:

630, 701[gas unit ] ∗ 8[gwei/gas unit ] ∗ 1.43 · 10−6[$/gwei ] = 7.22[$]

However, with these new parameters, even the second solution is still

quite expensive to legitimate storing bulk data in the blockchain transaction

logs. The definitive response to the transaction costs would be in a different

design of the smart contract pattern, as described in Subsection 4.2.2. Fur-

thermore, the second solution exhibits an annoying drawback, that is leaving

the pandemic data lastingly on-chain even when they are no longer needed,

since the transaction logs pertain to the permanent storage of the Ethereum

storage, unlike the ephemeral contract storage. A useless and insecure bur-

den abandoned in the network that, in addition to the high transaction costs,

calls for further investigation.

As an appendix to the transaction cost tests, a series of trials confirm

that transition to PoS has not varied the rules in calculating the gas fee for

each EVM operation, Figure 4.12 contains a table in which repetead runs

of the InfectionMngLog.sol contract, under different input payloads, have

been compared in two different execution environment, namely Ropsten and

21https://ycharts.com/indicators/ethereum_average_gas_price

https://ycharts.com/indicators/ethereum_average_gas_price


CHAPTER 4. CONTACT TRACING SOLUTION 93

Goerli22, which now is the preferred Ethereum testnet based on PoS23

NausiChain

Function Paylod (B) Goërli Ropsten

newInfection(string calldata payload) 6 132.997 130.316

newInfection(string calldata payload) 200 138.679 135.958

newInfection(string calldata payload) 10000 429.302 424.463

newInfection(string calldata payload) 20000 729.173 722.246

newInfection(string calldata payload) 40000 1.341.678 1.330.276

newInfection(string calldata payload) 100000 3.273.004 3.245.930

Nausica@Dapp

29.184PresenceHistoryManager.sol

PresenceHistoryManagerLog.sol

Figure 4.12: Comparison of gas consumption in different consensus-driven testnets.

In addition to Ropsten, gas consumption tests have also carried out in Q1

2022 on the Kovan testnet24, which was based, at the time of testing, on PoA

consensus mechanism, to appreciate execution costs in a typical enterprise

environment. The results reported in Figure 4.13 compare the transaction

costs, detected in the two testnets, to invoke the same function belonging

to the “overcrowd management” scenario, which is capable of adding a new

report to the relevant contract’s storage, whose code is listed below.

function addReport(string memory _authToken , string memory department ,string

memory hour , string memory _payload) public {

require(keccak256(abi.encodePacked(authToken))== keccak256(abi.

encodePacked(_authToken)), "Invalid token"); departments[department

][hour] =_payload; }

Listing 4.6: Function to store an overcrowd report to the blockchain.

The test results, unfortunately, did not provide a clear indication that

the same transaction, run on Kovan, could have changed the gas costs, if

compared to a similar execution on Ropsten. At the time of testing the two

networks exhibited a different gas limit per block, so that the transaction

run on Kovan, in any case, would fail much earlier, thus not enabling a com-

parison for payload larger than 14,592B (see Figure 4.13). From the few

comparable tests, however, running transactions on PoA networks does not

affect their execution costs in terms of gas units, as expected. Nowadays, re-

peating the tests is impossible due to the dismission of any Ethereum testnet

22https://goerli.etherscan.io/
23The smart contract deployed on Goerli is retrievable at address:

0x45019008192ccb171f8ec1eb9dde3967b2caccdb.
24https://kovan.etherscan.io/

https://goerli.etherscan.io/
https://kovan.etherscan.io/


CHAPTER 4. CONTACT TRACING SOLUTION 94

based on PoW25 and PoA26. In fact, after a few years of experimentation,

the Ethereum foundation is quite exclusively focusing on the development

of their PoS-based consensus mechanism, namely Gasper27, “because it is

more secure, less energy-intensive, and better for implementing new scaling

solutions compared to the previous proof-of-work architecture”.

 

1 

 

Payload size (bytes) Gas units Ether (ETH) 

16 33.821 0,005 

304 238.372 0,0087 

2.432 1.409.587 0,0137 

4.864 1.702.901 0,0511 

14.592 6.502.832 0,195 

22.464 5.731.263 0,172 

31.168 6.608.905 0,1983 

40.128 7.152.380 0,2146 

50.688 8.572.256 0,2572 

74.416 12.499.988 0,375 

 

 

 

(a) Gas consumption in Ropsten

 

1 

 

 

 

Payload size (bytes) Gas units Ether (ETH) 

16 30.699 0,0026 

304 239.450 0,0103 

2.432 1.410.665 0,0607 

4.864 1.703.980 0,0733 

14.592 2.000.000 0,086 

 

(b) Gas consumption in Kovan

Figure 4.13: Gas consumption comparison

4.2.2 DApp v2

As for transaction costs, notice that both software versions tested in DApp v1

are purely on-chain, storage-wise. The gas consumption tests carried out on

DApp v1 clearly demonstrate that the on-chain approach is nearly impracti-

cable due to the transaction costs in a Ethereum-based blockchain, regardless

of the adopted consensus mechanism. Therefore, the final version of Nau-

sica@DApp (DApp v2) incorporates a design pattern that provides for an

on-chain/off-chain approach, which combines the storage of only essential in-

formation in the blockchain and the upload of pandemic-related bulk data in

25As of Q3 2022 Ropsten has been dismissed, currently in read-only state.
26As of Q3 2022 Kovan has also been dismissed, currently in read-only state.
27https://ethereum.org/en/developers/docs/consensus-mechanisms/pos/

gasper/

 https://ethereum.org/en/developers/docs/consensus-mechanisms/pos/gasper/
 https://ethereum.org/en/developers/docs/consensus-mechanisms/pos/gasper/


CHAPTER 4. CONTACT TRACING SOLUTION 95

a system DB (the specific pattern is discussed in Subsection 4.2.2.5). In ad-

dition to performance improvements, this new approach adds extra security

features to the whole project, in that the information stored in the blockchain

guarantees the integrity of the pandemic data stored in the system DB, which,

in turn, may implement either native or external user authentication and data

confidentiality features.

The administration back-end now interfaces with a System DB (see Fig-

ure 4.14), the adopted database (whether centralized or decentralized) in

which pandemic-related data are stored at the disposal of authorized parties.

These data are hashed and hashes are used as keys to refer to them in on/off-

chain correlated operations. For this reason they will be termed hash-pointers

hereafter. The ad-hoc blockchain components incorporated into the system

architecture, in fact, enable the back-end server to expose, in a decentral-

ized and unforgeable storage, the hash-pointers to the anonymized proximity

data, which are needed by the mobile DApps to perform the internal match-

ing operations for contact tracing. Furthermore, the blockchain components

will allow other involved stakeholders, such as the academic community and

the health authorities, to retrieve aggregate data about pandemic trends in

a transparent and decentralized consensus-driven environment.

overcrowd and positive alert

Notification  
Service COVID-19

Positive
Handling

WiFi  
fingerprint 

WiFi Access Points

WiFi Scan

pandemic data's
hash-pointer storage

pandemic data's hash-pointers download

overcrowd  
detection 

pandemic data download 

System
DB

mDAppmobile 
DApp 

Administration Back-end

Blockchain

Location Data Aggregator

Location
Resolver

positive 
presence data 

positive  
notification pandemic

data storage

push
pull

Figure 4.14: Nausica@DApp system components.

The back-end’s microservice architecture changes according to the ad-



CHAPTER 4. CONTACT TRACING SOLUTION 96

dition of the system DB, as shown in Figure 4.15. Therefore, pandemic

data need be stored and retrieved in two separate steps, involving both the

blockchain and the system DB storage (see next Subsection).

mDApp

API 
Gateway

microservice 
manager

microservice 
notification

microservice 
blockchain

periodical crowd  
gathering measure

crowd and positive alert

location  
resolver

positive 
notification

async blockchain 
transaction request

presence history 
notification

hash-pointer to pandemic data retrieval

blockchain  
transaction

System
DB

pandemic data retrieval

pandemic 
data storage

mobile 
DApp 

Blockchain 

presence
history tx

Notification 
Service 

Microservice Back-end

push
pull

Figure 4.15: Back-end architecture with blockchain integration (blue items).

4.2.2.1 Contact tracing in DApp v2

In accordance with the new design of the decentralized application, the con-

tact tracing process, shown in Figure 4.16, is modified as discussed below:

i. a positive-tested user sends its Presence History to the central server

as usual;

ii. the server writes the Presence History of the positive user to a newly

created DB item (2a) and stores a hash-pointer to the item in a blockchain

dedicated data structure (2b);

iii. the indexed references to the stored blockchain information are then

transmitted by the server to the Notification Service (3);

iv. the Notification Service pushes a contagion risk notification to the user

apps along with the indexed references to the blockchain data structure,



CHAPTER 4. CONTACT TRACING SOLUTION 97

3. presence history event

4. positive 
notification 
broadcast

T0: Room 1 
T1: Room 3 
T2: Room 3

Presence 
History

6. presence
history match

mobile DApp  
(a generic user)

5b. presence 
history download

1. presence
history tx

Covid-19 Positive
Handling

Presence 
History

T0: Room 2 
T1: Room 3 
T2: Room 2

2b. presence  
history's hash
upload 

5a. presence history's   
hash download

System
DB

mobile DApp 
(a positive user)Blockchain 

Notification 
Service 

2a. presence 
history upload

push
pull

Figure 4.16: Contact tracing process, involving smart contracts (blue text and arrows),
with positive matching (red entries in presence histories).

which, in turn, contains the hash-pointer to the Presence History of

the positive user (4);

v. each notified app pulls the Presence History of the new positive user

from the relevant DB location (5b), through the hash-pointer previously

retrieved from the blockchain (5a);

vi. each app correlates, according to a given heuristics, places and times in

the Presence Data contained in the pulled Presence History of the

positive user with its locally stored own, in order to detect direct and

indirect contacts (6).

4.2.2.2 Modified blockchain components

In the modified on-chain/off-chain approach, pandemic data can now be col-

lected in either a centralized or distributed storage and made reachable to

the involved parties in a transparent, authenticated and unforgeable manner.

Below, the features of the new smart contracts that have been integrated

in our solution, and their mutual interactions, are described. An architectural

representation is given in Figure 4.17.



CHAPTER 4. CONTACT TRACING SOLUTION 98

 Notification 
Service 

EOA 
Wallet 

Microservice 
Back-end 

OvercrowdReport 
Manager  

Smart Contract

PresenceHistory
Manager  

Smart Contract

on positive  
detection 

logs

logs

periodical 
feeding 

on positive  
detection 

department hash 
report hash
timestamp 

Health Authorities

positive notification blockchain logs 

report notification 

pseudonym hash 
presence data hash 

timestamp

blockchain logs 

mDApp

new report

push
pull

Figure 4.17: Interactions of smart contracts with system components in two scenarios:
positive detection (red) and overcrowd reporting (black).

The new design envisages two smart contracts, one for each working sce-

nario, namely “contact tracing” and “overcrowd monitoring”.

In the contact tracing scenario a PresenceHistoryManager contract is

used. It is a single-instance smart contract deployed and interacted with

through the relevant blockchain back-end microservice, which, in turn, is

associated with an Ethereum’s EOA. A simplified workflow of the contact

tracing scenario is depicted in Figure 4.18, with regard to how the distributed

system services and components interact in the new system design, according

to the following operations:

i. each time the server receives a notification from a positive-tested user’s

device it securely stores the relevant Presence History (see Subsec-

tion 4.1.3) in a DB item, whose related hash-pointer is now computed;

ii. the server’s microservice-blockchain sends the hash-pointer and the

SHA3 hash of the anonymized user ID to the PresenceHistoryManager,

by triggering a proper transaction containing the associated function

call;



CHAPTER 4. CONTACT TRACING SOLUTION 99

microservice-
manager

microservice-
blockchain

microservice-
notification

mDAPP

Notification
Service

positive user's 
presence history write request 

message positive user's 
presence history

Blockchain

hash-pointer to  
presence history 

positive notification request with  
hash-pointer to presence history

System
DB

Presence
History

Manager
Contract

hash-pointer to  
presence history forward 

Figure 4.18: Positive user reporting workflow through system components.

iii. as soon as the block containing the above transaction is validated, the

PresenceHistoryManager creates an event containing the two received

hashes and the block timestamp that are included in the blockchain

transaction logs for external applications to retrieve them;

iv. upon confirmation of the execution of the triggered transaction, the

microservice-blockchain sends the Notification Service the hash-pointer

to the stored Presence History; this will be notified to all the enabled

mobile devices, so that they can download the Presence History from

the DB through the received hash-pointer;

v. finally, the mobile devices can perform contact tracing matching with

their own locally stored data.

Similar operational processes can be applied to the overcrowd monitoring

scenario.

4.2.2.3 Blockchain-related software

This section gives more detailed specifications about the blockchain-related

code in DApp v228.

28https://github.com/giongion19/thesis-nausicaadapp

https://github.com/giongion19/thesis-nausicaadapp


CHAPTER 4. CONTACT TRACING SOLUTION 100

In the context of the new simplified design of employed smart contracts,

there is no change in the microservice-blockchain Java code that deploys the

two manager smart contracts (see Subsection 4.2.1.4).

Conversely, the smart contracts employed in this new version differ from

their predecessors because of a simplified design in which only the two man-

ager smart contracts are, in fact, deployed, namely PresenceHistoryManager

and OvercrowdReportManager, thus avoiding multiple instantiations of new

smart contracts every time a new infection or a new report has to be stored

in the blockchain storage. Only limited, hashed information is recorded in

the contract storage area, as explained in Subsection 4.2.2.

The code in Listing 4.7 refers to the contact tracing scenario in which,

as an outcome of the execution of the newInfection() function, the Pres-

enceHistoryManager emits the event newHistoryInserted(), thus storing

in the transaction logs, inside the Receipt Trie of the Ethereum blockchain,

the following parameters:

– pseudonymHash, the infected user’s hashed pseudonym, for indexed re-

search of associated events;

– presenceHistoryHash, the hash-pointer to the JSON Presence His-

tory DB object;

– timestamp, the block’s time registration in the chain.

Once the transaction has been successfully completed, the microservice-

blockchain can start the Presence History notification process, previously

discussed in Subsection 4.2.1.2 and depicted in Figure 4.15. This will even-

tually supply the mobile apps with all the references to the blockchain trans-

action logs, which contain hash-pointers to DB items storing the anonymized

infected user’s Presence History.

contract PresenceHistoryManager {

address payable public owner;

//event reporting the infected user’s presence history hash and its

timestamp

event newHistoryInserted(bytes32 indexed pseudonymHash ,bytes32

presenceHistoryHash ,uint timestamp);

constructor () {



CHAPTER 4. CONTACT TRACING SOLUTION 101

owner = msg.sender;

}

// function to create a new infection ’s log entry

function newInfection(bytes32 pseudoHash , bytes32 presenceHash) external {

emit newHistoryInserted(pseudoHash , presenceHash , block.timestamp);

}

function destroy () external {

require(msg.sender == owner);

selfdestruct(owner);

}

}

Listing 4.7: Presence History smart contract.

Listing 4.8 shows a fragment of JavaScript test code mimicking the micro-

service-blockchain interaction with the above PresenceHistoryManager con-

tract.

const contractAddress = ’0x820813999ad2b1c28415a4daead0d998268b1a48 ’;

// import contract metadata

const metadata = JSON.parse(await remix.call(’fileManager ’,’getFile ’,’

PresenceHistoryManager.json’));

// create a contract instance

let contract = new web3.eth.Contract(metadata.abi , contractAddress);

//send the transaction to the contract - uid and prs (presence) are test

data

const uid =’0

xbb27bef7fede14d52825920b5c55650dc753047c9a9f900f9b83a12686b870f8 ’;

const prs =’0

xd7fbc8b6b0b40750006bcc870088df9c40988fec7a8798545073991a3a2d891d ’;

const receipt = await contract.methods.newInfection(uid , prs).send({

from: contract.defaultAccount });

Listing 4.8: Test code sending data to a smart contract.

In the script, the transaction call to the contract’s newInfection() func-

tion is fed with test data (uid, prs), which, in turn, will be stored in the

transaction logs through the event specifically emitted by the called function,

to be thereafter made available to client apps for contact matching29.

The client software workflow follows a pattern that starts, server-side,

from the Notification Service, which prompts the client apps to pull, from

the blockchain transaction logs, the hash-pointer to either the contact tracing

data or the overcrowd report data, as discussed in Subsection 4.2.2.1, and

depicted in Figures 4.16. Client apps will thus be able to de-reference the data

structures stored in the system DB, possibly after honoring additional DB

access rules, and perform data authentication of any DB item by comparison

29The script makes use of web3.js (https://web3js.readthedocs.io) library methods.

https://web3js.readthedocs.io


CHAPTER 4. CONTACT TRACING SOLUTION 102

with its unforgeable hash-pointer stored in the blockchain.

The JavaScript test code fragment in Listing 4.9 simulates the essential

behavior of a web app pulling previously logged data from the blockchain, by

calling the web3.js getPastEvents() method. The example code extracts

from the blockchain a hash-pointer to the associated Presence History

items stored in the system DB.

const contractAddress = ’0x820813999ad2b1c28415a4daead0d998268b1a48 ’;

// import contract metadata

const metadata = JSON.parse(await remix.call(’fileManager ’,’getFile ’,’

PresenceHistoryManager.json’));

// create a contract instance

let contract = new web3.eth.Contract(metadata.abi , contractAddress);

const uid =’0

xbb27bef7fede14d52825920b5c55650dc753047c9a9f900f9b83a12686b870f8 ’;

// retrieve from the blockchain logs the hash -pointers related to a user -ID

const events = await contract.getPastEvents(’newHistoryInserted ’, {

filter: { from: contractAddress , pseudonymHash: uid }, fromBlock: 0 })

//print the retrieved information

events.forEach(element => {

console.log(element.returnValues[’presenceHistoryHash ’])

console.log(element.returnValues[’timestamp ’]) })

Listing 4.9: Test code to pull transaction logs generated by a smart contract.

4.2.2.4 Gas consumption tests

The storage capabilities of the two Nausica@DApp smart contracts, in the

final version DApp v2, have been limited to the writing of hash-pointers

to off-chain bulk data on transaction logs, as a consequence of well-known

gas-related issues previously discussed in Subsection 4.2.1.5.

The mixed on-chain/off-chain storage pattern, which stores essential hashed

data in the transaction logs, turns out to yield, for a typical transaction, a

fixed gas usage of 28,357 gas units30, whose current price in US dollars is

quite reasonable.

Mixed on-chain/off-chain:

28, 357[gas unit ] ∗ 8[gwei/gas unit ] ∗ 1.43 · 10−6[$/gwei ] = 0.32[$]

30Transaction hash in Ropsten:
0x9df28e24396aed2fb2930afcabc2c0613f6e62bd576a58190c6d17e0a95ad177



CHAPTER 4. CONTACT TRACING SOLUTION 103

The above is an appropriate cost per transaction for the Ethereum PoW

ecosystem, dramatically lower than the computed costs of DApp v1. This

reduced cost comes as a result of the combined effect of strictly limiting

the amount of data stored in the blockchain and employing the transaction

logs as a storage repository. The same transaction, executed on the PoS-

based Goerli testbed, has led to similar results (29,184 gas unit)31, once

more confirming the transparency of gas fees with respect to the consensus

protocol used by the Ethereum platform.

Finally, the mixed on-chain/off-chain pattern does not burden excessively

the blockchain storage even when references to the data, which are deleted

from the on-chain storage, are left dangling in the transaction logs, due to

the limited amount of space occupied by them.

4.2.2.5 Decentralizing the system DB

The mixed on-chain/off-chain design pattern, implemented in DApp v2, falls

in the Blockchain Anchor family, a simple and robust pattern that uses

hashes to ensure the integrity of an arbitrarily large dataset that may not fit

directly on the blockchain.

The off-chain bulk data, at the disposal of authorized parties, can be

kept according to a few alternative back-end options, namely by: (i) using

a centralized database, (ii) integrating a decentralized file system, or (iii)

deploying a complementary blockchain.

In this further study, two of the above implementations have been in-

tegrated into the DApp v232. In one case, a centralized solution has been

implemented, using the key-value cloud-based MongoDB Atlas database33,

according to the MERN stack reference model34. In the second case, a decen-

tralized solution has been created by using the InterPlanetary File System

(IPFS)35 as the peer-to-peer hypermedia protocol for storing and sharing

31Transaction hash in Goerli:
0x659d80e4a25f308817e1cc7aaee14027f1cb6d331134878ee2c95f7dbf3397dd

32https://github.com/giongion19/ethToIPFS-MongoDB-PHManagerMongoDB
33https://www.mongodb.com/atlas/database
34https://www.mongodb.com/mern-stack
35https://ipfs.tech/

https://github.com/giongion19/ethToIPFS-MongoDB-PHManagerMongoDB
https://www.mongodb.com/atlas/database
https://www.mongodb.com/mern-stack
https://ipfs.tech/


CHAPTER 4. CONTACT TRACING SOLUTION 104

data in a distributed file system. The integration into the system’s back-

end of alternative blockchains, such as MultiChain36 and FileCoin37, both

based on IPFS, or BigchainDB38, a distributed database with the character-

istics of a blockchain, was not experimented in the first place since a native

decentralized solution, such as IPFS, was given a higher priority.

Although the implementation includes the interaction with both central-

ized and decentralized file systems, in the remainder of the subsection only

the IPFS-based portion will be discussed, since it contributes to increase the

decentralization level of the overall solution, according to the project goals.

IPFS aims to become the new Internet solution, in place of the conventional

client-server ones, as far as openness, resilience, and efficiency are concerned

in storage operations. It is a decentralized, content-addressable global file

system based on the DHT technology, to which a file can be added by hash-

ing its content, thus providing a unique fingerprint called a content identifier

(CID), which acts as an address and a proof-of-existence of the recorded file.

The look-up protocol allows the IPFS peer nodes to retrieve the node which

is actually storing the content referenced by the file’s CID.

In our solution, a JavaScript front-end part was created, which allows the

administrator to perform two different operations:

– uploading the pandemic data through the PresenceHistoryManager,

according to the smart contract pattern explained in Subsection 4.2.2.3,

whose storing workflow is now depicted in Figure 4.19;

– retrieving the infection information by first querying the Ethereum’s

transactions logs to download the hash-pointer (i.e., the IPFS’ CID

obtained in the upload phase) to the correlated data content stored in

the IPFS nodes.

Thanks to the ipfs-api library it is possible to implement the IPFS pro-

tocol within JavaScript, making communication with a remote IPFS node

36https://www.multichain.com/
37https://www.filechain.com/
38https://www.bigchaindb.com/

https://www.multichain.com/
https://www.filechain.com/
https://www.bigchaindb.com/


CHAPTER 4. CONTACT TRACING SOLUTION 105

microservice-
manager

microservice-
blockchain

microservice-
notification

mDAPP

Notification
Service

send user's 
presence history write request 

message store user's 
presence history

Blockchain

write presence
history's CID 

send notification request with  
presence history's CID

Presence
History

Manager
Contract

forward presence   
history's CID 

mobile DApp  
(a generic user)

mobile DApp 
(a positive user)

IPFS

get presence  
history's CID

Figure 4.19: Adding a positive user’s presence history to IPFS.

possible. In order to correctly save the files on IPFS there are two alterna-

tives: (i) become part of the peer-to-peer network by making your device a

full node of the IPFS network; or (ii) use the IPFS remote nodes exposed

by the Infura service provider, similarly to what already done to access the

Ethereum network by means of a cloud-based remote client. For a simpler

deployment of the experimental testbed, the Infura-based solution has been

put in place. Listing 4.10 includes the JavaScript module in which the ap-

plication connects to IPFS through Infura.

//using the infura.io node

const IPFS = require(’ipfs -api’);

const ipfs = new IPFS({ host: ’ipfs.infura.io’, port: 5001, protocol: ’https

’ });

//the ipfs const is exported to including modules

export default ipfs;

Listing 4.10: Connecting to IPFS through the Infura service provider.

Data uploading onto IPFS is performed through the onSubmitData()

function in Listing 4.11, which, first, takes care of storing the data content

in IPFS and then returns the file’s CID at the disposal of the smart contract

(see the ipfs.add() function). Then, the newInfection() function, con-

tained in the PresenceHistoryManager smart contract, is invoked with the

user’s pseudonym and the file’s CID as input parameters, for logging in the

transaction receipt.



CHAPTER 4. CONTACT TRACING SOLUTION 106

import web3 from ’./web3’;

import ipfs from ’./ipfs’;

import contractPresenceHistoryManager from ’./ contract ’;

onSubmitData = async (event) => {

event.preventDefault ();

//bring in user’s metamask account address

const accounts = await web3.eth.getAccounts ();

// obtain contract address from contractPresenceHistoryManager.js

const ethAddress = await contractPresenceHistoryManager.options.address;

this.setState ({ ethAddress });

//save document to IPFS ,return its hash#, and set hash# to state

await ipfs.add(this.state.buffer , (err , ipfsHash) => {

console.log(err , ipfsHash);

// setState by setting ipfsHash to ipfsHash [0]. hash

this.setState ({ ipfsHash: ipfsHash [0]. hash });

// call Ethereum contract method "newInfection" and .send IPFS hash to

etheruem contract

// return the transaction hash from the ethereum contract

contractPresenceHistoryManager.methods.newInfection(web3.utils.

asciiToHex(this.state.usrPseud),

this.state.ipfsHash).send({from: accounts [0]}, (error , transactionHash

) => {

this.setState ({ transactionHash });

});

})

};

Listing 4.11: JavaScript module to store data to IPFS and to the blockchain.

Downloading a user’s Presence History from IPFS is achieved via the

onCheckEvents() function, which is responsible for retrieving the history’s

CID by looking up the newHistoryInserted() events from the transac-

tion logs. The CID contained in the logs is retrieved by means of the

getPastEvents() web3.js function (see Listing 4.12), which takes the user

pseudonym as the event research index and applies properly tailored filters.

import React , { Component } from ’react’;

import web3 from ’./web3’;

import ipfs from ’./ipfs’;

onCheckEvents = async () => {

this.setState ({ usrPseud: document.getElementById(’insPseudonymHash ’).

value })

var contractAddress = await contractPresenceHistoryManager.options.address

;

var eventName = "newHistoryInserted";

const pseudonymHash = web3.utils.asciiToHex(this.state.usrPseud);

const events = await contractPresenceHistoryManager.getPastEvents(

eventName , {

filter: {

from: contractAddress ,

pseudonymHash

},

fromBlock: 0,

toBlock: ’latest ’

})

if (events.length === 0) {



CHAPTER 4. CONTACT TRACING SOLUTION 107

this.setState ({ latestPresenceHash: "Cannot find presence with the

pseudonym indicated" });

this.setState ({ latestPresenceTimestamp: "----" });

}

events.forEach(element => {

var latestPresenceHash = element.returnValues[’presenceHistoryHash ’];

var latestPresenceTimestamp = element.returnValues[’timestamp ’];

var finalURL = "https :// gateway.ipfs.io/ipfs/" + element.returnValues[’

presenceHistoryHash ’];

this.setState ({ latestPresenceHash });

this.setState ({ latestPresenceTimestamp });

this.setState ({ finalURL });

})

};

Listing 4.12: JavaScript module to retrieve data from IPFS by first retrieving the data’s
CID from the blockchain logs.

4.2.3 Comparative analysis

In this final subsection, only the enhancements provided by the integration

of blockchain components into the decentralized application’s system archi-

tecture will be discussed against comparable solutions already presented in

Subsection 3.1.2. Comprehensive considerations about the entire DApp so-

lution will be made in the final section of the chapter.

As seen, BeepTrace [56] is a solution that takes into account many secu-

rity issues and adopt quite complex mechanisms to address them. However,

the drawbacks can be found in the centralized processing of contagion risks

and the complexity of the proposed solution in a corporate-wide scenario.

In BeepTrace, in fact, the involvement of the blockchain is broadly pervasive

from the very beginning, that is, data storage of healthy people, performance

and scalability issues may occur, so much that a lightweight consensus pro-

tocol, such as Direct Acyclic Graph, is advised.

Song et al.,’s solution [57] also suffers from performance and scalability

issues due to the heavy data burden on the blockchain. The proposal tends to

undermine the performance and the scalability of the whole system, since it

stores all location-based and user-based data in the chain for further central

processing, thus incurring an issue similar to DApp v1’s. Similar concerns are

found in Arifeen et al.,’s proposal [58], since recording all the users’ contact

lists on the blockchain can heavily stress the system.



CHAPTER 4. CONTACT TRACING SOLUTION 108

With respect to these three decentralized solutions, Nausica@DApp, in

its final version, makes a more confined use of the blockchain functionalities;

it is in fact designed with the idea in mind that their adoption must be traded

off against the overall system performance. Storing of only reference data in

the blockchain is a choice that converge towards this target.

PRONTO-C2 tackles the linkability risks of pseudonyms, emitted by the

users’ devices in an app-to-app paradigm, by means of a mechanism based

on DH protocol. Although an important issue in fully DP3T-like DApps on

public blockchains, the linkability risk could be mitigated, in our solution, by

further encryption or masquerading techniques provided by the FCM service

providing the user-ID tokens. On the other hand, the PRONTO-C2 solution

does not provide any localization-based service to the enabled users, as it es-

chews any centralized intervention from the system, thus also depriving the

solution of the possibility to aggregate data for epidemiological surveillance.

The lack of this property in DP3T-like applications has instead pushed for-

ward the concepts highlighted in Micali ’s proposal based on the Algorand

blockchain. Such concepts are fully adopted in the Nausica@DApp’s ratio-

nale, which offers a composite mix of pandemic data both related to users’

contacts and to locations’ monitoring, the latter not contemplated by Micali’s

analysis, which does not provide for a localization system.

In this respect, the Proof-of-Location protocol proposed by Amoretti et

al., and implemented in ByChain could be an interesting add-on to the cam-

pus WiFi infrastructure to secure against the injection of forged locations.

However, in Nausica@DApp possible forged locations can be easily identified

by the Location Service, which makes use of an internal table of enabled

WiFi’APs, thus pre-empting the issue.

Finally, the Marbouh et al.’s proposal, although exhibiting a smart con-

tract architecture, does not deal at all with contact tracing and crowd gath-

ering monitoring, However, it shows an interesting use of oracles39 that can

be taken into consideration for further development if input of external data

from trusted sources should be required.

39https://docs.ethhub.io/built-on-ethereum/oracles/what-are-oracles/



CHAPTER 4. CONTACT TRACING SOLUTION 109

4.3 Complete solution wrap-up

Nausica@DApp, the complete solution equipped with blockchain components

and additional decentralized storage, has added new elements to the decen-

tralization paradigm of the original solution, namely NausicaApp, by specif-

ically leveraging the key features for which the blockchain usage is widely

recognized, such as data integrity assurance in a public, consensus-driven

environment.

The development of the blockchain-related features has undergone two

phases. In the first one, a refined design pattern has been devised to allow

the smart contracts to flexibly manage the on-chain pandemic data, without

resorting to additional system databases. Unfortunately, it had to face high

transaction costs for the heavy payload to record in the contract’s storage,

which led to theoretical and experimental unpractical results. Consequently,

the design of the second version has chosen not to overuse the Ethereum

storage capabilities, by selectively employing them as a secured, transpar-

ent, immutable shared repository of limited and specific data, which act as

integrity and existence proofs for the bulk data, elsewhere stored. In addi-

tion, performance and scalability improvements of the second version did not

have a dramatic downsizing impact on the decentralization property of the

final solution, especially if the tamper-proof InterPlanetary File System is

integrated as the decentralized system DB.

Overall, Nausica@Dapp, in its final configuration, leaps forward other

existing contact tracing solutions since no extra and costly operations are

required on its part, according to a design which favors not only the de-

centralization approach in most aspects, from the contact tracing matching

to the handling of anonymized user information, but also the system per-

formance and scalability, thus avoiding inflated expectations poured out on

the pervasive use of the blockchain technology. No purely technology-driven

choice has been made. Only effectiveness and efficiency in the target utiliza-

tion environment, be it a university or a similar context, have been regarded

as the sole drivers of the research and prototyping efforts.

The key features exhibited by Nausica@DApp, which make it an advanced



CHAPTER 4. CONTACT TRACING SOLUTION 110

corporate solution, are below recapped:

i. the absolute localization mechanism implemented on top of the cam-

pus WiFi infrastructure, which caters for indirect contract tracing and

overcrowd monitoring in selected indoor spots;

ii. the decentralized app-to-app paradigm not based on the Bluetooth

channel, which enhances the privacy preserving degree with respect

to other contact tracing solutions;

iii. the microservice back-end, which is capable of integrating advanced

blockchain components into the system within an efficient and modular

architecture;

iv. the blockchain’s smart contracts and objects, which provide additional

decentralized and security features to the application with a design that

does not undermine computational costs;

v. the decentralized storage solution, which smoothly fits into the overall

architecture and reduces the performance and scalability issues that an

uncritical use of the blockchain would instead introduce.

From the decentralization side, the balanced combination of related ele-

ments in the devised solution has distanced the consequences of the “block-

chain trilemma”, in that security, scalability and decentralization can be now

pursued with nearly equalled achievements. Additionally, feasibility, perfor-

mance and accuracy levels have tested to be very reassuring in all the other

solution aspects, such as the absolute localization system.

Although user authentication mechanisms and data encryption algorithms

for extra network security may be added in the next future, as in similar cor-

porate applications, the successful deployment of the Nausica@DApp, with

its ability to transparently exhibit tamper-evident and immutable statistics,

should be able to boost the user’s level of trust towards the adoption of the

novel decentralized application.

Finally, it is worth saying that the Ethereum’s Proof of Work consensus

mechanism can be excessively energy-intensive for enterprise needs, while



CHAPTER 4. CONTACT TRACING SOLUTION 111

the process-limiting gas mechanism, to be paid in ethers, can be regarded

as an unwanted feature. Even with the newly implemented PoS consensus

algorithm [102], the transaction gas fees remain unchanged from the protocol

point of view (required gas units), whereas gas price and ether value may

fluctuate according to supply/demand market logic.

In order to overcome such limitations, ad-hoc implementation of the

Ethereum protocol based on less demanding consensus protocols could serve

the enterprise requirements more conveniently. The adoption of PoA, for in-

stance, which could do without using a native asset such as ether, may dras-

tically lower the transaction costs. In addition, PoA may as well reduce the

time for the creation of a new block, due to the limited number of validating

nodes, which, on the other hand, may negatively affect the decentralization

dimension of the trilemma [19]. This drawback can be conveniently tolerated

by enterprise applications, especially if complementary mechanisms are built

aside or on top of the Ethereum platform to provide extra decentralized fea-

tures (e.g., the integration of IPFS). To support the validity of such approach

for enterprise scenarios, the following chapter presents and discusses a few

decentralized applications built on top of a PoA-based Ethereum blockchain.



Chapter 5

DER management solutions

Distributed Energy Resources (DER) are small power generation units that

supply electricity at customer premises, such as solar panels, home batter-

ies, and electric vehicles. Decentralized production of green energy through

DERs1 is deeply affecting the electricity market, which, along with the avail-

ability of smart meters capable of measuring and, more productively, regu-

lating energy provision and usage, help new actors and organizations, such

as energy producers/consumers (“prosumers”) and energy communities,

to actively enter the “smart grid” market, according to the crowd energy

concept [103]. In the said scenario, the blockchain advent can provide a

cutting-edge solution in the fluctuating demand/response market of green

energy production, whose participants may be prone to distrust each other

and would then benefit from a technology that handles the monetary trans-

actions in a transparent way by design [104].

The actual participation of DERs in smart grid markets depends on, so far

limited, operator capabilities to communicate with these small-scale assets

and their digital controllers. In fact, there is no standard and pervasive

digital infrastructure to favor such interconnection process, although many

initiatives have taken place in recent years to fill this gap.

For instance, Equigy Crowd Balancing Platform2, is a consortium owned

by a few European transmission system operators (TSOs), which aims to

1Typically the term DER also implies “renewability”, as in RES
2https://equigy.com/

112

https://equigy.com/


CHAPTER 5. DER MANAGEMENT SOLUTIONS 113

set cross-industry standards to support a reliable and cost-effective power

system that is dependent on renewable energy sources. The driving idea is

to provide crowd energy players, such as prosumers, with a trusted data ex-

change platform to effectively participate in the grid flexibility. One of the

underlying ideas is the introduction of a European standard for a new role in

the flexibility market, namely the aggregator , a distributed operator facili-

tating the sale of excess electricity and optimising the pool of flexible energy

resources [105]. Unfortunately, Equigy is not an open-source initiative, being

headed by leading European TSOs, and very little is known about specific

objectives and actual achievements outside the project enclosure.

Conversely, Energy Web3 is an open community that shares the technical

and application findings with no access restrictions, in such a way to create

a global, common understanding of the direction that the green transition

should take in the renewables market. Energy Web is structured as an inter-

national non-profit organization accelerating a low-carbon electricity system

through the provision of utilities and services, which can help grid operators

and solution developers manage the DERs involved in prosumer activities.

According to the above concepts, the drivers of our initiative share the

principles of open smart communities where many scattered actors can

take part in the upcoming radical market transition with the utmost level of

awareness and transparency of the contractualized energy exchanges [106].

The objective of the study is to evaluate the benefits of introducing the

blockchain technology in support of the aggregator ’s activities, by replacing in

a convenient and extensive way the components of a traditional architecture

(databases, application servers, etc.), to produce improvement, automation,

useful innovation and reduction of operating costs. Therefore, the devised

decentralized applications lean on two founding keystones for the provision of

an effective, transparent and secured solution: (i) the notion of aggregator ;

(ii) the adoption of a blockchain in the overall design [107].

The chapter is structured in three sections. Section 5.1 introduces the

dedicated blockchain environment selected to develop the devised decentral-

ized applications. Section 5.2 describes the implemented blockchain-based

3https://www.energyweb.org/

https://www.energyweb.org/


CHAPTER 5. DER MANAGEMENT SOLUTIONS 114

solutions in the smart grid scenario. Section 5.3 draws the final conclusions

on the developed work.

5.1 Blockchain environment

Before digging into the design specifications and implementation details of

the devised DApp, the current section provides an overview of the applica-

tion environment in which it has been developed. It is based on a native

permissionless blockchain (i.e., Ethereum), which, however, has been specif-

ically tailored for consortium decentralized applications, in that it adopts

a consensus algorithm which shifts the access paradigm towards a permis-

sioned one, with selected partners providing the validator nodes. Once again,

the adoption of the Ethereum technology from the Energy Web organization

demonstrates the flexibility of such a platform with respect to diverse appli-

cation contexts.

5.1.1 Energy Web Decentralized Operating System

The Energy Web Decentralized Operating System (EW-DOS) is an open-

source, three-layer digital infrastructure (see Figure 5.1), aimed at helping

the development of decentralized applications for a pervasive and compet-

itive decarbonized energy system. EW-DOS is based on the adoption, at

the foundational level, of a Proof-of-Authority (PoA) Ethereum blockchain4,

named Energy Web Chain (EWC), which is carried out by a set of designated

validator nodes that process transactions and seal new blocks to the EWC in

a round-robin fashion. A specific utility native token, the Energy Web Token

(EWT), is used to reward validators for creating new blocks and charge users

for the operations performed on utility services.

The EWC mainnet and its complementary Volta testnet are publicly ac-

cessible through the MetaMask browser’s extension with very minimal effort5.

4https://openethereum.github.io/Aura
5The transactions are visible, respectively, at https://explorer.energyweb.org/ and

https://volta-explorer.energyweb.org/

https://openethereum.github.io/Aura
https://explorer.energyweb.org/
https://volta-explorer.energyweb.org/


CHAPTER 5. DER MANAGEMENT SOLUTIONS 115

DER  
Management

IAM Cache
Server

ENERGY WEB CHAIN

Energy Web Token (EWT)

LAYER 3
(APPLICATIONS) 

LAYER 1 
(TRUST)

LAYER 2 
(UTILITIES)

Validators

Decentralized
Service Bus

IAM Client
Library

Energy Web
Name ServiceDID Library

Switchboard

E-Mobility Traceability

Figure 5.1: The Energy Web Decentralized Operating System layered architecture.

EWC integrates, in its core, a dedicated smart contract mechanism to

manage the decentralized identities (DIDs) and the verifiable credentials

(VCs) of the entities involved in the applications, according to the W3C

recommendation on decentralized identifiers (DID)6.

Furthermore, the EW-DOS community has implemented and deployed, at

the intermediate layer of the EW-DOS stack, a collection of utility packages

that enable application developers to share a common protocol for identity

handling and information exchange. Such in-built solutions facilitate the

integration of clean energy assets, customers and marketplaces within the

Energy Web environment.

Energy assets play a pivotal role in the EW-DOS ecosystem. They rep-

resent physical or virtual devices with a digital representation (i.e., a DID)

whose digital owners manage their participation in decentralized market-

place activities properly designed by EW-DOS developers. An asset can be

transferred from an owner to another, with the entire chain of custody being

anchored to the blockchain. Current and formerly owned user assets can

be retrieved by using ad-hoc utilities of the EW-DOS’s intermediate layer,

which refer to identity smart contracts permanently deployed in the bottom

layer of the EW-DOS stack.

In addition, the EW-DOS’s intermediate layer provides a management

utility (i.e., the Switchboard) to support Distributed Energy Resources (DER)

coordination through identity and access management (IAM) built-in mech-

6https://www.w3.org/TR/did-core/

https://www.w3.org/TR/did-core/


CHAPTER 5. DER MANAGEMENT SOLUTIONS 116

anisms, which specifically support decentralized application developers to

design and deploy solutions with reduced coding. The purpose of the Switch-

board is to allow the developers to easily define what users can do within an

organization or an application.

Finally, the Applications layer, in addition to several complete solutions

provided by the EW-DOS technical partners and partly discussed in Sub-

section 5.1.2, contains, in the Traceability box, software development kits

(SDK) and toolkits facilitating the exchange of “green” certificates and the

tracking of assets in decentralized marketplaces.

The goal of the EW-DOS traceability utilities is to increase transparency

and interoperability in the green energy procurement process by means of

a decentralized technology. For instance, 24/7 is a software development

toolkit for tracking and matching renewable electricity provision and con-

sumption at customizable intervals.

Another toolkit, Origin, deals with the Energy Attribute Certifications

(EACs). These are documents that account for the “greenness” of purchased

electricity and allow the green units of energy to be traded between parties,

unfortunately under similar, but loosely compatible, international standards,

which, in addition, are managed by central authorities. Conversely, Origin

offers customizable modules to create automated cross-standard issuance pro-

cesses of digital EACs in a decentralized fashion [108].

5.1.2 Energy Web applications

Recently, many solutions have been added by affiliated technical partners

of the Energy Web community to the upper layer of EW-DOS in the DER

Management and e-Mobility sectors.

Some of the DER management applications will be briefly presented be-

low, as they fall in the “grid flexibility” territory, as much as our proposed

original DApps, presented in the dedicated Section 5.2 of this chapter, do.

EDGE7 is an Australian initiative in which grid distribution and trans-

mission operators and aggregators can dynamically balance grid services

7https://www.energyweb.org/aemo/

https://www.energyweb.org/aemo/


CHAPTER 5. DER MANAGEMENT SOLUTIONS 117

making use of solar electricity stored in household batteries, which are man-

aged by means of the IAM facilities of the EW-DOS. The Energy Web plat-

form, in turn, integrates with external technology systems, such as market

intelligence software and cloud computing resources, to complete the digital

infrastructure that makes the remote ’prosumer’ systems communicate with

the institutional partners.

The EW-DOS technology has recently entered the Flex Alert program8,

promoted by a Californian independent Transmission Service Operator (TSO),

to maintain grid balance in peak demand hours. The original Flex Alert

system was unidirectional: the operator would send an alert to the final re-

cipients to save energy in specific hours. Unfortunately, the operator could

not have any confirmation about who would adhere the energy conservation

alerts and where the participating consumers resided, thus strongly hinder-

ing the effectiveness of the program. Besides making the communication

bi-directional, the operator has also integrated the digital identification of

participants, based on Energy Web’s DIDs, in the enhanced system. The

enrolled customers can also choose to respond to the flexibility demand by

providing their zip code, thus giving the operator more awareness of the

amount of preserved energy, as well as the areas where the flexibility supply

is coming from.

EasyBat9 is a Belgian initiative, headed by a grid operator and battery

waste company, built on the EW-DOS technology which focuses on the en-

tire battery lifecycle. All the actors involved in the process, from OEMs

to installers can certificate every relevant asset transaction by means of a

shared, decentralized ecosystem where IoT and blockchain technologies meet

to provide reliable answers to issues related to the battery waste process.

5.2 Smart Aggregator DApps

In the evolving electricity market also a large number of smaller actors will

contribute to the generation of green energy by using their small-sized plants.

8https://flexalert.org/
9https://www.energyweb.org/easybat/

https://flexalert.org/
https://www.energyweb.org/easybat/


CHAPTER 5. DER MANAGEMENT SOLUTIONS 118

However, such power plants are subject to well-known production fluctua-

tions due to weather conditions and other factors, such as malfunctioning, or

the need to consume part of the produced energy inside the plant. Hence, a

single producer cannot give guarantees for the actual amount of energy that

will flow out of the plant and to the distribution power grid. The fluctuations

of energy production levels have to be properly handled and compensated

upon entering the distribution network to make the energy production rate

more reliable.

Balancing the power fluctuations introduced by so many DERs is one

of the reasons why the introduction of an aggregator , which assumes the

role of an operational and administrative interface among grid operators

(TSOs and DSOs) and the prosumers in the renewables scenario, is highly

advisable [105].

An aggregator can perform various tasks, as described in the following.

– DER administration: negotiation and contractualization of “prosum-

ing” conditions with private energy sources, dealing with flexibility

baselines of produced and/or consumed energy, as well as economic

management of payments and remuneration.

– Energy profiling : diversification of energy sources by nature, produced

power, time availability and power flexibility.

– Measure collection: secured storage of power production and consump-

tion measures coming from the controlled DERs’ smart meters.

– Real-time monitoring : continuous monitoring of the controlled energy

sources’ performances in order to promptly react to any unexpected

changes in the contractualized power provision.

– Grid flexibility : implementation of commands to timely adjust the

amount of the “prosumed” energy that should enter the distribution

network at a given time, thus producing an active contribution to bal-

ancing operations of energy flows required by national TSOs and/or

local DSOs.



CHAPTER 5. DER MANAGEMENT SOLUTIONS 119

– Prosumer marketplace: provision of a shared digital environment to

allow prosumers to place energy demands and offers and aggregators

to match them up.

However, since the aggregator is not a central authority trusted by all,

we need to have an immutable and counterfeit-resistant record of data that

characterizes the implementation of the tasks listed above. For instance, for

the Measure collection task to be effective and reliable, each small energy

producer needs a guarantee that the provided energy, as recorded by smart

meters, will be paid without risk of dispute. As in many other areas, the

blockchain technology, given its ability to store data and ensure that they

are immutable, is a proper foundation to provide the required chain of trust

to a a distributed community, embracing a large amount of actors, that does

not rely on a central authority [64, 65, 66]. Through the adoption of the

blockchain, the authenticity of data stored on-chain and off-chain can be

easily checked by the involved parties.

In this emerging application context, which is related to introduction of

aggregators in the prosumers scenario, the envisaged decentralized

application pursues the provision of a distributed solution that caters for

some of the above-mentioned tasks.

The release of the final solution has passed through a couple of preliminary

experiments in which discrete features have been implemented in separate

decentralized applications, designed for:

– the creation of a flexible demand/supply marketplace of DERs, or-

chestrated by the aggregators, able to match producers’ offers with

consumers’ requests;

– the recording of counterfeit-resistant data, from accredited aggregators,

which characterize energy produced and consumed by prosumers, in

such a way that balancing of monetary accounts can be transparently

achieved.

In a later work, the study has been redesigned to allow the aggregator

to perform more complex and articulated energy management tasks in the



CHAPTER 5. DER MANAGEMENT SOLUTIONS 120

power fluctuation arena, according to its primary role. The realization of

these tasks are enriched with decentralized automated features that are pe-

culiar to the adoption of a blockchain platform specifically designed for the

management of DERs, such as EW-DOS. The details of this study are dis-

cussed in Subsection 5.2.3.

The remainder of the section is as follows. Subsection 5.2.1 gives an

overview of the DApp envisaged to deliver a web-based platform for the

prosumers marketplace orchestrated by the aggregator. Subsection 5.2.2

describes the DApp initially designed to handle a secure and trustworthy

mechanism in which the aggregator collects the actual production/consump-

tion data from prosumers to credit/debit them accordingly. Subsection 5.2.3

provides a thorough description of the DApp that delivers a comprehensive

solution to the power fluctuation of green energy sources in a smart grid.

5.2.1 DER marketplace DApp

The first experimentation carried out on top of the EW-DOS utilities has

been about building a set of functionalities that enable prosumers to create

energy demands and offers and aggregators to match them up.

5.2.1.1 Application description

The developed DApp demo exhibits a front-end that drives the operations

to create a distributed energy marketplace, which, in turn, is a customized

replication of the Flex Alert platform included in the Energy Web’s open-

source technology stack (see Subsection 5.1.2). It includes interfaces for the

three key roles identified in the system:

– the producer interface, i.e., the owner of many DERs, who produces

and sells energy (Owner tab);

– the consumer interface, i.e., the consumer interested in purchasing the

energy they need (Buyer tab);



CHAPTER 5. DER MANAGEMENT SOLUTIONS 121

– the aggregator interface, where multiple available supplies can be se-

lected to cumulatively match a given price-compatible demand (Aggre-

gator tab).

The procedure to create a match between producers’ supply offers and

consumers’ demands consists of the following steps:

i. a selling user posts one or more selling offers, which specify the available

volume of energy and the required price for the DERs it owns; the offer

can be modified over time or withdrawn, if not yet accepted;

ii. the buying user posts one or more requests specifying the amount of

energy (kW) needed and the maximum price (ct/KWh) it is willing to

pay; such requests can be modified or withdrawn later on;

iii. the aggregator collects and matches offers and demands to select those

that form a valid combination, which is locked by registering it as a

proposed deal (from this moment on, supply and demand can no longer

be changed until the proposed deal is either accepted or rejected);

iv. once accepted, the combination takes effect and a closed deal is perma-

nently registered in the blockchain ledger; otherwise, at any time, both

the buyer and the seller can remove the pending combination from the

marketplace.

5.2.1.2 Demand/offer matching

Figure 5.2 shows a screenshot of the DApp web interface for the owner role.

In the shown example, a producer has logged in and claimed ownership

of two digital assets, corresponding to two different DERs that it owns and

manages. By means of this interface, the producer issues an energy selling

offer for each of its DERs, separately specifying the quantity of available

energy and the minimum accepted price per energy unit. The DApp also

includes an interface to access many components of the Energy Web platform

architecture, that is, the Energy Web Naming Service, Digital ID and the



CHAPTER 5. DER MANAGEMENT SOLUTIONS 122

Figure 5.2: Producer interface tab of the implemented demo DApp.

Identity and Access Management libraries, made publicly available by the

EW-DOS framework.

Figure 5.3 shows a screenshot of the aggregator interface, listing a set

of energy offers and energy demands, available to be manually selected to

create a proposed match, as described in Subsection 5.2.1.1.

The DApp implementing the marketplace employs two smart contracts

deployed on the Volta testnet at the following addresses:

– Identity Manager smart contract:

(0x84d0c7284A869213CB047595d34d6044d9a7E14A),



CHAPTER 5. DER MANAGEMENT SOLUTIONS 123

Figure 5.3: In the aggregator tab, offerings and demands can be selected and combined
in order to create a new deal proposal.

– Marketplace smart contract:

(0x37dfeF9b9c56A81927Dfa73994E2fb23c3dd4b37)

Code and documentation of the complete DApp are publicly available in

the GitHub repository at https://github.com/TendTo/EW-showcase.

5.2.2 Smart metering DApp

This subsection describes the DApp originally developed to help the aggrega-

tor handle payments and charges following the collection of real data coming

from the managed DERs.

https://github.com/TendTo/EW-showcase


CHAPTER 5. DER MANAGEMENT SOLUTIONS 124

The scenario sketched in Figure 5.4 represents a smart energy distribution

system, in which there are two distinguishable flows: on one hand, the flow

of energy that is handled by a power distribution grid; on the other hand,

the flow of data that is handled by the ubiquitous internet.

For the first flow, each producer and consumer is attached
to an electrical power distribution bus. To control the flow
of electricity, switches will have to be remotely configured,
i.e. each producer controls a switch to determine whether
electricity can flow out of its power plant, and each consumer
controls the switch to let the electricity flow in. Other switches
are spread over the power distribution grid to isolate portions,
to avoid energy fluctuations, etc.

An aggregator (host) local to producers and consumers
handles the data related to the measured power coming from
producers, or, similarly, going to consumers. A producer can
behave as a consumer from time to time, hence the term
prosumer is used to refer to an actor having both roles.

Figure 1 shows the main parts of the physical system that
we are considering.

B. Handling Fluctuations of Energy Production

A producer having a very small power plant is subject to
well-known production fluctuations due to weather conditions
and other factors, such as malfunctioning, or the need to
consume part of the energy produced inside the plant. Hence,
a single producer cannot give guarantees on the actual amount
of energy that will flow out of the plant and to the distribution
power grid.

To make the energy production rate more reliable, fluctu-
ations due to one producer could be compensated by others.
Therefore, an aggregator acts as a hub for data and makes some
adjustments to the flow of produced energy for producers.

C. Flow of Data

An energy producer will be equipped with a smart meter
that measures the outgoing flow of electrical power leaving
the plant and going to the power distribution bus. Such a
smart meter is connected to the internet to periodically send the
measures taken on the power line. Typically, power measures
(in watt) are performed every minute and then sent to the
aggregator. Similarly, an energy consumer will be equipped
with a smart meter to measure the incoming flow of electri-
cal power. The consumed power is recorded by sending its
measured values to the aggregator.

An aggregator is a host that receives flows of data about
measured power produced or consumed. Each measure is
labelled with the identifier of the smart meter, hence it is
possible to distinguish the various originating producers and
consumers. The aggregator will handle the incoming data and
store them in the local database first, then will transfer them,
every hour, to cloud storage for permanent storage. Moreover,
the aggregator computes a signature of the data coming from
producers and consumers. The signature consists of producing
the hash code for all the gathered measures originating from
the same producer (and consumer) in the past one hour. Then,
this hash will be stored by means of a smart contract to the
blockchain storage.

At this stage, in order to check that the measured data stored
have been neither corrupted nor tampered with the following
steps can be followed. Firstly, a set of data have to be gathered,

producer 

photovoltaic 


plant

smart 

meter

cloud 

storage

aggregator

blockchain

smart 

meter

consumer

electrical power

distribution bus

switch

switch

Fig. 1. Main components of the proposed system gathering data from
producers, consumers, and storing data in a cloud storage and the blockchain.

which is accomplished by querying the database in the cloud
to extract the data pertaining to a given producer for a certain
time slot. Secondly, for the same producer and the same time
slot, the blockchain smart contract will be executed to read the
hash. Finally, the hash computed on the data is matched against
the hash retrieved from the blockchain. The match ensures that
data have not been tampered with.

III. PROPOSED PLATFORM

A. Energy Web Decentralized Operating System

The Energy Web Decentralized Operating System (EW-
DOS) has been selected as our experimental setup for the
investigation. EW-DOS is an open-source, three-layer digital
infrastructure (see Figure 2), aimed at helping the development
of decentralized applications for a pervasive and competitive
decarbonized energy system [6].

EW-DOS is based on the adoption, at the foundational level,
of a Proof-of-Authority (PoA) Ethereum blockchain, named
Energy Web Chain (EWC), which allows on-chain verification
and transaction validation between parties as well as execution
of smart contracts that are used by EW-DOS’s upper layers
utilities and custom-built decentralized applications. The PoA
consensus mechanism is carried out by a set of designated
validator nodes, which process transactions and seal new
blocks to the EWC in a round-robin fashion. A specific utility
native token, the Energy Web Token (EWT), is used to reward
validators for creating new blocks and charge users for the
operations performed on utility services.

DER
Management

IAM Cache
Server

ENERGY WEB CHAIN

Energy Web Token (EWT)

APPLICATIONS 
TOOLKITS

TRUST

UTILITY AND 
IDENTITY SOLUTIONS

Validators

Decentralized
Service Bus

IAM Client
Library

Energy Web
Name ServiceDID Library

Switchboard

E-Mobility Traceability

Fig. 2. The Energy Web Decentralized Operating System layered architecture.

EWC holds a dedicated smart contract mechanism to man-
age the decentralized identities and the verifiable credentials

Figure 5.4: Main components of the proposed “smart” system.

As for the energy flow, each producer/consumer is attached to an elec-

trical power distribution bus. To control the flow of electricity, switches are

to be remotely configured, i.e., each producer controls a switch to determine

whether electricity can flow out of its power plant, and each consumer con-

trols the switch to let the electricity flow in. Other switches are spread over

the power distribution grid to isolate portions or avoid energy fluctuations.

The decentralized applications presented in this chapter do not deal di-

rectly with the energy flow, since the interactions between the solution com-

ponents only concern the data network portion of the smart grid. The way

the outcomes of the logic developed in the applications are reflected into the

command chain of the energy switches is beyond the scope of this work.

5.2.2.1 Application overview

In the proposed systems several agents interact with various roles: an arbi-

trary number of DERs under the responsibility of one of several prosumers,

which in turn refer to an aggregator. From this point of view, DERs can be

identified as rather simple IoT devices connected to the global network and

using the http protocol to provide a continuous stream of metering data.



CHAPTER 5. DER MANAGEMENT SOLUTIONS 125

Any DER is equipped with a smart meter that measures both the outgo-

ing flow of electrical power leaving the plant towards the power distribution

bus and the incoming flow of the electrical power from the distributor. Such

a smart meter is connected to the Internet to periodically send the measures

taken on the power line (see Figure 5.4). Each measure is labelled with the

digital identifier (DID) of the smart meter, hence it is possible to distinguish

the various originating prosumers.

Figure 5.5 shows the components of the proposed system architecture and

their respective dependencies.

of the involved entities in the applications. A decentralized
identifier (DID)1 is a digital, verifiable identity that is user-
generated and not coupled to any centralized institution, thus
conforming to the Self-Sovereign Identity (SSI), a digital
paradigm that promotes individuals’ control over their own
identity and data [7]. SSI platforms tend to be designed
under a decentralized paradigm, since digital credentials are
better handled using typical distributed ledger technologies,
such as digital wallets, trustless consensus mechanisms, and
immutable storage and business logic [8].

Furthermore, the EW-DOS open-source community has
implemented and deployed, at the intermediate layer of the
EW-DOS stack, a collection of utility packages that enable
application developers to share a common protocol for identity
handling, EW-DOS ecosystem communication, and informa-
tion exchange. Such in-built solutions facilitate the integration
of clean energy assets, customers and marketplaces within the
Energy Web environment.

Energy assets play a special role in the EW-DOS ecosystem.
They represent physical or virtual devices with a digital
representation, i.e. a DID, whose digital owners manage their
participation in decentralized marketplace activities properly
designed by EW-DOS developers. An asset can be transferred
from an owner to another, with the entire chain of custody
being anchored on the blockchain. A user’s current and for-
merly owned assets can be retrieved by using ad-hoc utilities
of the EW-DOS’s intermediate layer, which refer to identity
smart contracts permanently deployed on the bottom layer of
the EW-DOS ecosystem.

In addition, the EW-DOS’s intermediate layer provides a
management utility (i.e. the Switchboard) to support Dis-
tributed Energy Resources (DER) coordination through iden-
tity and access management (IAM) built-in mechanisms,
which especially supports decentralized application developers
to design and deploy solutions with reduced coding. The
purpose of the Switchboard is to allow the developers to easily
define what users can do within an organization or application.

Finally, the Applications and Toolkits layer, originally
contained Software Developer Kits (SDKs) and applications
addressing two main use cases: DER Management, regarding
flexible access to the grid, and Traceability, which concerns
the negotiation of clean energy certificates.

B. System overview
In the proposed systems several agents interact with various

roles: an arbitrary number of DERs under the responsibility of
one of several prosumers, which in turn refer to an aggregator.
Figure 3 shows the components of the proposed system
architecture and their respective dependencies.

From this point of view, DERs can be identified as rather
simple IoT devices connected to the local network and using
the http protocol to provide a continuous stream of metering
data. The prosumer is responsible for the creation of the pre-
cise proofs which guarantee the integrity and non-repudiation
of blocks of data from its own DERs.

1https://www.w3.org/TR/did-core/

Fig. 3. Overall representation of the system architecture.

The prosumer will sign the precise-proofs with his private
key: this provides the aggregator with a guaranteed origin
and at the same time protects the precise-proof, and its entire
underlying payload, from malicious or accidental alterations.
The payload contains a list of all the readings from the DERs
and the calculated value of the precise-proof. Moreover, it
stores a list of salt values (used in the creation of the tree and
the digital signature applied to the precise-proof) and some
convenient info such as the first and last reading timestamps.

The aggregator will be responsible for verifying the ac-
curacy and validity of the prosumer data, using validation
schemes and specific services offered by EW-DOS.

The advantage of using a precise-proof schema based on
Merkle-trees is that, if a proof is required that a specific
reading has been really carried out and stored, only the single
contested data will be required to show off in clear, together
with a bunch of hashes required to correctly rebuild the tree.
This significantly reduces the amount of potentially sensitive
data to be shared. If a data block has been correctly validated,
a specific method is executed on a smart contract purposely
designed and deployed in the blockchain, whose aim is to issue
a new transaction in the blockchain permanent log, binding the
DID of the aggregator with the precise-proof associated with
its last validated group of reads.

After a payload has been processed, by interfacing directly
with the energy web chain it is possible to retrieve the
log, produced by the reference smart contract, holding the
precise proof of that payload. Once the log is stored into the
blockchain, i.e., the entire flow has been successful processed,
it is guaranteed that the processed data remain permanently
recorded, undisputed and available.

C. Aggregator Smart Contract

The aggregator collects the data it receives from the pro-
sumers, verifies that it is valid and that the sender has the
required authorisations, i.e., it owns the DER whose data
it is reporting and the sender is previously accounted with
the aggregator. This is done by first verifying the digital
signature of the precise-proof. Subsequently, the Merkle tree is
reconstructed starting from the readings and the salts, so that it
is verified that the precise-proof corresponds. Then, the EWC
is read to check that the sender is also the owner of all the
DERs that appear in the data. If all these checks are successful,

Figure 5.5: Components of the decentralized solution.

In the devised solution, the aggregator handles the incoming data (typ-

ically every minute) and performs authentication checks before transferring

them to cloud storage at a selected time intervals (e.g., every hour) for tem-

porary or permanent recordkeeping, according to needs. Finally it stores

specific hashed information to the blockchain, needed to ensure provenance

and integrity of the received data, by invoking a specific function of an ad-hoc

smart contract.

5.2.2.2 Data collection and storage workflow

The off-chain/on-chain storage scheme provides that data characterising pro-

duction and consumption be recorded in a cloud storage, while their signa-

tures (or hashes) are to be written in the blockchain storage, according to

the following dataflow, which is also depicted in Figure 5.6.



CHAPTER 5. DER MANAGEMENT SOLUTIONS 126

Figure 5.6: Dataflow to create and store list of readings.

For the generation of the list of meter readings, each prosumer is respon-

sible for a certain number of actions:

i. the creation of the precise proof, which is the root hash of the Merkle

trie created on the smart meter readings over an established period of

time (e.g., every minute);

ii. the computation of the digital signature on the precise-proof with its

private key: this provides the aggregator with a guaranteed origin and

at the same time protects the precise-proof, and its entire underlying

payload, from malicious or accidental alterations.



CHAPTER 5. DER MANAGEMENT SOLUTIONS 127

iii. the packing of the message payload containing a list of all the readings

from the DERs and the calculated value of the precise-proof; a list

of salt values (used both in the creation of the trie and the digital

signature applied to the precise-proof) and some convenient info, such

as the first and last reading timestamps.

With a precise-proof schema based on a Merkle trie, if a proof is required

that a specific reading has been really carried out and stored, only the sin-

gle contested data will be needed in clear, together with a bunch of hashes

required to correctly rebuild the trie. This significantly reduces the amount

of potentially sensitive data to be shared. Incidentally, the data reduction

of the on-chain portion prevents from incurring unmanageable expenses in

the execution of the smart contract that performswrite operations to the

blockchain storage [78, 99], as thoroughly discussed in the Contact Tracing

solution.

Once the data have been received, the aggregator performs the following

flow of actions on the data storage side:

i. collects the data it receives from the authorized prosumer and verifies

that they are valid; this is done by first verifying the digital signature

of the precise-proof;

ii. reconstructs the Merkle trie starting from the readings and the salts,

so that it is verified that the precise-proof corresponds;

iii. checks if the sending prosumer is authorized to participate in this ap-

plication, and that it is also the owner of all the DERs, associated to

the incoming data, by means of specific EW-DOS utilities, such as the

ready-to-use IAM functionalities;

iv. saves the information in a database capable of storing time series of

data (e.g. InfluxDB 10);

v. invokes the store() method of the deployed smart contract purposely

designed and deployed on the blockchain, whose aim is to issue a new

10https://www.influxdata.com/

https://www.influxdata.com/


CHAPTER 5. DER MANAGEMENT SOLUTIONS 128

transaction, which, in turn, stores, in the blockchain permanent logs,

the DID of the aggregator with the precise-proof associated with its

last validated group of reads (see Listing 5.1)11.

Once the log is stored into the blockchain, i.e., the entire writing flow

has been successful completed, it is guaranteed that the processed data will

remain permanently recorded, undisputed and available.

// SPDX -License -Identifier: MIT

pragma solidity 0.8.4;

contract ReadingsNotary{

/** A new metered reading has been emitted */

event NewMeterReading (address indexed operator , bytes indexed proof);

/** Store a new reading @param _proof Merkle root of the

* tree of merkle proofs of the aggregated readings */

function store(bytes calldata _proof) external{

emit NewMeterReading (msg.sender , _proof);

}

}

Listing 5.1: Smart contract ReadingsNotary.

At a later stage, in order to check that the measured data stored have

been neither corrupted nor tampered with, the prosumer follows the steps

shown in Figure 5.7:

i. meets a cryptographic challenge launched by the aggregator ;

ii. gathers a set of data by querying the cloud database to extract the

data pertaining to its own associated DIDs for a certain time slot;

iii. accesses the blockchain logs to download the precise-proof related to

the list of readings;

iv. computes the precise-proof on the data and matches against the hash

retrieved from the blockchain to ensure that data have not been tam-

pered with.

The prosumer is enabled to access the stored data though an API REST

interface provided by the aggregator. In fact, a prosumer has access to data

11The contract is running on Volta at https://volta-explorer.energyweb.org/

address/0xe574fDD8C3148f2E883612A9C6CDA7b-9C12d1566/transactions.

https://volta-explorer.energyweb.org/address/0xe574fDD8C3148f2E883612A9C6CDA7b-9C12d1566/transactions
https://volta-explorer.energyweb.org/address/0xe574fDD8C3148f2E883612A9C6CDA7b-9C12d1566/transactions


CHAPTER 5. DER MANAGEMENT SOLUTIONS 129

Figure 5.7: Dataflow to retrieve a list of readings for checking.

relating only to the DID it owns, while the aggregator can access all data

stored in the database.

Code and documentation of the complete DApp are publicly available in

the GitHub repository at https://github.com/TendTo/EW-DER-API.

5.2.3 Grid flexibility DApp

The envisaged decentralized application, presented in this subsection, pro-

vides a blockchain-based energy management strategy that enables the ag-

gregator to handle several energy sources as a single virtual entity in order

to counteract fluctuations of the power grid.

In this regard, the project has been designed in order to include support

for complex energy management strategies, such as:

i. negotiation and writing of adjustable contracts with energy sources
diversified by power and flexibility profiles;

ii. handling of payments and penalties according to the fulfilment of flex-
ibility agreements;

https://github.com/TendTo/EW-DER-API


CHAPTER 5. DER MANAGEMENT SOLUTIONS 130

iii. real-time monitoring (and characterization) of the contractualized re-
sources;

iv. implementation of commands for the controlled DERs to modulate
their energy production.

By acting on prosumer flows within the limits of contractualized varia-

tions, the aggregator is able to respond to a change request, received from

the transport operator to cope with a temporary fluctuation of load in the

national network, by offering the resulting aggregate power from flexible re-

sources. Therefore, the aggregator assumes the role of a virtual power plant

(VPP) with the function of a balancing service provider. The complete sce-

nario envisages the presence of various aggregators located throughout the

territory managed by the transport operator.

To implement the blockchain paradigm, the prosumers’ DERs need to

perform an additional task in the devised system, that is the capacity of join-

ing the blockchain peer-to-peer network to enforce its related mechanisms,

from the block creation process to the execution of deployed smart contracts

implementing the system business logic. The blockchain is used not only as

a ledger to seal the energy provision agreements and payments among the

parties but also as an asynchronous communication infrastructure to receive

balancing commands from the grid flexibility operator. The complexity of

the required equipment performing such tasks are tailored both to the DERs’

size and the blockchain-based system’s overall performance, as discussed in

more detail in Subsection 5.2.3.5.

DER administration

In the smart grid flexibility scenario, a propaedeutic management task, car-

ried out by the aggregator, is the implementation of smart contracts for the

automatic updating of the working parameters of the controlled prosumers,

within negotiated boundaries. This task is particularly useful in case of

unpredictable events, not only due to external conditions (e.g. unexpected

climatic changes heavily impacting the expected energy production) but also



CHAPTER 5. DER MANAGEMENT SOLUTIONS 131

to random internal issues of the prosumer plant (e.g., temporary unavailabil-

ity for maintenance or faults, higher internal requirements of the produced

power, etc.).

In real terms, these renegotiable parameters consist of:

– baseline, that is the maximum reference power, if consumed, or the

minimum reference power, if produced;

– flexibility percentage, that is the fraction of the baseline the prosumer

is willing to modulate;

– time base, that is the set of available time intervals to provide flexibility.

In this administrative scenario, the use of the blockchain can bring a few

benefits:

i. reduction of the technical complexity of the aggregator’s centralized

back-end, since the operations for the contractual renegotiation can be

decentralized as smart contracts in the blockchain. This approach has

undoubtedly a positive impact on the scalability issues of the overall

system, since the number of managed energy resources can scale up

in the decentralized environment without a significant increase in the

availability requirements of the aggregator’s back-end;

ii. transparency of actual renegotiation conditions for the prosumer, which

does not have to trust either the fairness of the central operator or the

aggregator’s ability to detect errors or abuses in the applied contractual

clauses;

iii. internal rewarding and accounting mechanisms by means of the virtual

blockchain currency, which makes it a particularly interesting tech-

nological solution to support immediate and guaranteed payments of

debit and credit fees associated with the actions performed by DERs,

without margins of dispute.

The extra technological costs charged to the prosumers, which have to

be equipped with adequate hardware and software to act as validators in the



CHAPTER 5. DER MANAGEMENT SOLUTIONS 132

blockchain ecosystem, thus contributing to its overall solidity, could be com-

pensated by protocol rewards, directly paid through the blockchain utility

token as billing discounts. Alternatively, the IoT devices that cannot or do

not want to participate as validator nodes, must be equipped with minimal

hardware and software to interface with an external blockchain access node

through an HTTP or Web Socket channel, without affecting the interaction

semantic with the aggregator.

Real-time monitoring

Continuous monitoring from the aggregator of the actual energy produc-

tion/consumption data provided by the DERs is an ancillary task for the

proposed solution, which consists of an uninterrupted and frequent flow of

tiny payloads per transmitted DER packet, made up of its global identifica-

tion parameter (e.g., a DID) and the instantaneous power value measured by

the associated smart IoT device. Such live data are particularly useful to de-

termine the actual power supply of each DER, bearing in mind the difficulty

that arises in the case of inconstant or unpredictable energy sources, whose

contributions cannot be analytically predetermined but only estimated in the

contractualization phase. Prosumers can then take advantage of the chance

to renegotiate the terms of power and flexibility of their contracts with the

aggregator, according to changing climatic conditions and specific internal

circumstances.

For this task, the centralization of these data flows from DERs to the

aggregator is the only sensible choice to be implemented (although quite

demanding on the hardware scalability requirements), since significant draw-

backs emerge from a deep analysis of the alternative approach, based on the

collection of real-time data through blockchain-based mechanisms. Even in

an ideal situation, in which each DER implements a blockchain peer client

(node) to increase the scalability factor for such a consisting number of trans-

actions per time unit, there is no guarantee of ensuring a correct temporal

sequence to the transaction writings in the blockchain logs, due to the inner

features of the decentralized protocol for validating transactions. Therefore,



CHAPTER 5. DER MANAGEMENT SOLUTIONS 133

since sorting of real-time data from independent sources is essential in a such

a task, their centralized collection is not only a mere technical choice, but

also the most consistent one to implement.

In the chosen centralized approach, the aggregator may process the real-

time data from each DER in the following ways:

– stores all received data in an off-chain system database, optimized for

storing time series, for a time interval useful to take immediate or

near-future decisions on modulation interventions based on the profiled

energy sources;

– compresses them as lossless data in blocks that are better suited to

permanent archiving, if deemed necessary for future disputes.

The potential use of blockchain storage of hashed data to cope with fu-

ture disputes has been dealt with in the Smart Metering DApp (see Sub-

section 5.2.2). However, these functionalities may be redundant, since the

blockchain already logs significant system operation events that concern the

interactions among DERs and aggregator, which are agreed-upon, trans-

parent and no longer disputable by design, as better explained in the next

subsection. Therefore, there is no reason to keep the collected data if not

provisionally until all transactions, settling a potential dispute, are confirmed

by the blockchain protocol.

Balancing actions

A fundamental task assigned to the aggregator relates to supporting the

transport and distribution operators in balancing actions of the overall grid

load, in response to unforeseen unbalancing events or planned changes. These

occurrences force the aggregator to react to a load change requirement by

disseminating flexibility request commands to the associated DERs, in order

to obtain the aggregate load change corresponding to the balancing needs.

The requests from the operator (e.g., a TSO) to set the flexibility param-

eters (e.g., extent of the power modulation, date and time of the planned

intervention) must be conveyed through a communication interface between



CHAPTER 5. DER MANAGEMENT SOLUTIONS 134

a TSO agent and the aggregator, which is beyond the scope of the present

study. Conversely, the technical arrangements supporting the implementa-

tion of the flexibility commands, from the aggregator to its affiliated DERs, is

a matter of investigation, in that blockchain-based mechanisms are compared

with traditional client-server ones.

In general terms, the modulation commands can be diversified, for each

DER, according not only to their contractualized flexibility profiles, but also

to their dynamic “prosuming” conditions detected by real-time monitoring

activities from the aggregator. In order to achieve optimal results in the

implementation of the load change request, the aggregator needs to associate

further parameters to each DER’s digital identity, such as the reliability of the

source in previous actions, and the real availability of modulation power of the

source with respect to the time interval of the flexibility request, which can

be constantly renegotiated and estimated on the basis of the DER profiling

carried out over time. Based on this information, the aggregator should

process an intervention profile on how to spread a portion of the aggregate

requested variation on each DER. If implemented via a centralized approach,

these requirements can be quite resource demanding.

Conversely, the implementation of a grid balancing mechanism relying

on the blockchain makes the involvement of DERs more scalable and reli-

able, and it ensures that working and flexibility conditions, aggregator re-

quests and DER actions cannot be disputed or counterfeited. The use of the

blockchain decentralizes the response logic towards the blockchain-enabled

DERs through an automated and transparent policy, immutably written in

specialized smart contracts, thus unburdening the aggregator from heavily

demanding computations at each load change request coming from the grid

operator. In this case, the aggregator has only the task to invoke these smart

contracts with a cycle of transactions, which contain the same information:

the entity and the time window of the aggregate intervention requested. This

policy is based on the assumption that the modulation action is always exe-

cuted by the involved DERs proportionally to their respective contractualized

baselines, with the only possibility to select in/out the managed DERs case

by case. The selection is based on the compatibility of DERs’ time availabil-



CHAPTER 5. DER MANAGEMENT SOLUTIONS 135

ity and power flexibility profiles, either contractualized or estimated, with

duration and extent of aggregate modulations required by central operators.

An alternative approach provides that the aggregator can have a greater

control on implemented commands by means of pre-emptive algorithms,

which can sort all DERs by reliability and amplitude of the maximum possible

contribution, thus reaching the requested aggregate contribution by leaving

out more volatile or simply smaller partners, according to a “staking” policy.

On the other hand, relying on fewer large subjects may amplify the effects

of unexpected defection events and compromise the correct execution of the

aggregate order. Therefore, a broader distribution of modulation commands

towards small entities can represent an equally valid alternative strategy,

provided that the involved DERs are included in a mechanism that prevents

fraudulent or malicious behaviours.

Notice that catching the responses of the DERs to the aggregator com-

mands is an integral part of the real-time monitoring of DER activities,

which determines compliance with conditions in force at the time of issued

commands for billing, payments and profiling.

5.2.3.1 DApp overview

To experimentally evaluate the feasibility and scalability limits of the de-

scribed solution, a prototype has been created on which experiments have

been carried out to measure and analyze the blockchain subsystem perfor-

mance under different stress conditions, so as to draw appropriate conclu-

sions on the adequacy of blockchain technology to support the application

scenario envisaged and described in this solution. The prototype consists of

a real blockchain and of a simulator that models other system devices (i.e.

DERs) in such a way to realistically mimic their functionalities.

The application has been created using the Electron framework12, thus

making it possible to create a multi-OS application.

The structure of the project has two distinct parts:

i. a web-based front-end for the configuration of system parameters (e.g.,

12https://www.electronjs.org/

https://www.electronjs.org/


CHAPTER 5. DER MANAGEMENT SOLUTIONS 136

number and type of involved DERs, blockchain endpoints, time infor-

mation), and the simulated interaction with system components (e.g.,

aggregator and DERs);

ii. a back-end which is a set of TypeScript classes and smart contracts

created to interact with the blockchain.

A large portion of the front-end page is reserved to the simulation dash-

board, with graphs and results of current and past tests. Figure 5.8 shows a

screenshot of the page during the system initialization phase.

 

Figura 1 Attivazione dei DER e registrazione automatica dei loro contratti (scala temporale da ridurre di un fattore 10) 

 

 

Figura 2 Attivazione dei DER in risposta al comando di modulazione di potenza (scala temporale da ridurre di un fattore 10) 

Figure 5.8: Front-end page of the DApp simulator in the set-up phase.

DER simulation

Two types of renewable energy sources are modeled, i.e., solar and wind.

For the former, an oscillating data model with a double periodicity func-

tion is used, which represents the daily solar cycle and the seasonal variation

of inclination of the sun. It is also taken into account that these systems are

equipped with accumulators so that the daily fluctuations can turn out to

be as flattened as possible, to comply with the 5% tolerance in the contrac-

tualized reference baseline. The wind source is instead characterized by a



CHAPTER 5. DER MANAGEMENT SOLUTIONS 137

rather impulsive and unpredictable trend with lower stabilizing effects from

the accumulators. These random situations of ”off-grid” and lower produc-

tion are also present in the model of solar energy production, but in such

a case due to adverse weather conditions or unpredictable failure situations.

In both cases, the simulator models these random events with a probability

distribution of Poisson whose characteristic parameter is adjustable in the

user interface prior to simulation sessions. However, in the reported test ses-

sions, the occurrence probability of these adverse events has been set to zero,

in order not to interfere with the evaluation of the uncompleted response

percentage due to performance reasons in the blockchain, which is the real

focus of the study.

DERs are implemented in the simulator as software components that in-

teract with the aggregator exclusively through the blockchain. Each DER

is in fact identified by a dedicated account in the Energy Web Chain, thus

interacting with it through the EW-DOS APIs. It also interacts with the

simulator interface through RPCs over the HTTP protocol. At the same

time, a corresponding module, named “IoT”, is instantiated for each DER,

which generates real-time data (see Subsection 5.2.3 and sends them to the

aggregator via the internet, but outside the blockchain communication chan-

nel, for real-time monitoring of the source production. These IoT modules

generate data with an algorithm corresponding to one of the two types of

sources described above, and with a reading frequency which can be adjusted

in a parametric way from the simulator interface. DERs are also shaped in

such a way that the flexibility they offer may also be negative, referring to

household consumer DERs. In general, the contractual flexibility of the pro-

sumer is modelled with the following parameters: percentage change (+/-)

of the baseline, maximum duration supported, time of implementation of the

variations.

DERs are instantiated on the Energy Web Chain in the simulation set-

up phase, by generating their accounts through a pseudo-random algorithm

of the “Hierarchical Key Generation” type, which is based on a seed and

a deterministic mechanism for pseudo-casual generation, thus allowing the

simulator to reuse, with the same seed, always the same accounts of previous



CHAPTER 5. DER MANAGEMENT SOLUTIONS 138

simulations, in this way providing historical transaction logs to the same

DERs’ accounts for simulation comparisons.

Aggregator

The modelled aggregator component represents the administration reference

point for prosumers’ DERs; the aggregator’s tasks consist of:

– off-chain activities to monitor the readings from the associated DERs’

IoT devices in real-time;

– on-chain activities to immutably and transparently record administra-

tive and operational events (see Subsection 5.2.3).

The readings from the IoT devices allows the aggregator to have a real-

time overview of the power grid’s state under its control, for example making

supply forecasts based on the source used for energy production. IoT read-

ings can be collected and stored in an off-chain database for a limited, con-

figurable time frame in case of possible disputes on the actual readings prior

to payments. When a modulation command has been completed according

to the conditions written in DER smart contracts, the agreed transfers of

funds are then recorded on the blockchain logs, which are cumulatively used

to store the followings events:

– contract registration of a new DER;

– temporary modification of the contractual parameters of a DER;

– modulation request of the supplied power from the aggregator to the
DERs

– accounting of the contribution of individual DERs to the modification
request.

The accounting of credits and debits to prosumers is managed automatically,

transparently and securely by the smart contract that has predefined features

to assign ERC20-like tokens to prosumers according to the parameters ne-

gotiated in the stipulated contracts. These tokens can then be redeemed



CHAPTER 5. DER MANAGEMENT SOLUTIONS 139

for appropriate compensations. The mechanism of calculation of token re-

muneration is set within the smart contract that regulates the functioning

of the system, which is defined, owned and deployed by the aggregator (see

Subsection 5.2.3.2). To operate on the blockchain, all DERs must have a

minimum token credit to pay the (negligible) operational cost of executing

transactions. For this, a special transaction is launched in the simulation

set-up phase, which distributes a basic quantity of funds to DERs’ accounts.

The said procedure is obviously not at all necessary in real systems.

5.2.3.2 Blockchain implementation

As mentioned before, the Energy Web Decentralized Operating System (EW-

DOS) has been selected as the experimental blockchain testbed for the scal-

ability investigations carried out in the study. In the deployed setting, the

aggregator is equipped with a Energy Web Chain light node (EWC client),

implemented on the public code of the Nethermind client13, through which it

broadcasts transactions to prosumers in order to implement aggregate modu-

lation actions. The aggregator’s EWC client can also act as a Web3 Provider.

However, a second EWC client is introduced into the system in order

to act as the common access point for DERs’ IoT devices. This choice is

a lightweight solution in place of installing an EWC client in each DER,

which would require around 200GB space and demanding computational

resources (that is, a dedicated platform for each DER). However, this solution

is perfectly suited for the simulated DERs in the demo environment, which

can thus remotely access the EWC through the dedicated client.

The introduction of a separate node to provide Web3 access to DERs

prevent the transaction process from bypassing the EWC network. In fact,

a single node, both for the aggregator and the DERs, would represent a

direct channel for their communication, in which transactions issued by a part

would be written in a data block that could be read by the other part without

waiting a realistic propagation delay in the EWC. Such a circumstance would

have interfered with a consistent and reliable assessment of the response times

13https://nethermind.io/

https://nethermind.io/


CHAPTER 5. DER MANAGEMENT SOLUTIONS 140

and the scalability boundaries of the implemented prototype.

Smart contract design

The aggregator node, in its set-up phase, takes care of deploying the smart

contract, named AggegatorContract(), on the EWC network, through which

it regulates the interaction with DERs. The aggregator is, in fact, the ac-

count’s owner of this smart contract, which exhibits the following function-

alities:

i. registration and updating of the contractual conditions of each DER;

ii. transmission of modulation commands to DERs;

iii. accounting of the implemented modulations on each DER’s account.

The contractual agreements take into account the energy source type,

the amount and price of the produced energy, and the flexibility that the

prosumer is able to provide. A modulation request from the aggregator is

characterized by the following values:

– flexibility: modulation that the network must produce with respect to

the baseline;

– start: deadline by which all DERs must reach the required flexibility

value;

– end: indication of the moment from which the DERs have fifteen min-

utes to return at the baseline.

As for on-chain data, the smart contract uses both its associated storage,

for storing the ephemeral variables representing the contract’s state, and the

transaction logs, for a persistent and much cheaper recordkeeping of public

information related to the occurrence of triggered events.

The smart contract storage, which is only used for the state variables

it needs to carry out the function executions, contains the following data

structures:



CHAPTER 5. DER MANAGEMENT SOLUTIONS 141

address public immutable aggregator; // aggregator ’s account

int256 public energyBalance; // instant aggregate power

mapping(address=>Prosumer) public prosumers; // prosumers ’ states

mapping(address=>Agreement) public agreements; // prosumers ’ contracts

address [] public prosumerList; // prosumers ’ accounts

FlexibilityRequest public flexibilityRequest; // requested aggregate

modulation

mapping(address=>int256) public flexibilityResults; // prosumers ’ modulation

outcomes

The events emittable by the smart contract’s functions, whose content is
stored in the transaction logs, are below listed:

event RegisterAgreement (...);

event ReviseAgreement (...);

event CancelAgreement (...);

event RequestFlexibility (...);

event EndRequestFlexibility (...);

event FlexibilityProvisioningSuccess (...);

event FlexibilityProvisioningError (...);

event RewardProduction (...);

The event mechanism is used by the aggregator to notify listening prosumers

about flexibility requests.

The way the smart contract’s functions interact with state variables in

the contract administration operations is concisely described in the follow-

ing. Three different functions, registerAgreement(), reviseAgreement(),

and cancelAgreement() are invoked to create an agreement, to later al-

ter its terms or to delete it. Specifically, after checking that the invoked

operation is legal, the data structure agreements, containing the registered

contracts, is updated. Following the execution of registerAgreement() and

cancelAgreement() a prosumer is added or removed from the prosumerList

and prosumers data structures.

The actions performed by AggegatorContract(), in response to the in-

vocation of its functions concerning the modulation request to DERs, can be

summarized as follows:

i. upon receipt of an aggregate modulation request, characterized by

the flexibility amount and two timestamps, corresponding to the be-

ginning and end of its duration, the aggregator first saves it in the

flexibilityRequestdata data structure and then transfers such a re-

quest to the selected DERs by invoking the requestFlexibility()

function;



CHAPTER 5. DER MANAGEMENT SOLUTIONS 142

ii. upon response to the request, the aggregator emits the corresponding

RequestFlexibility() event through a dedicated transaction, which

causes its publication on the EWC logs for the DERs’ IoT devices to

intercept it through a specific event watcher14 implemented in the smart

contract;

iii. upon event notification, each DER calls the appropriate smart con-

tract’s ProvideFlexibility() function, through which they register

their modulation activities, which, potentially, could turn out to be

either compliant or non-compliant with the contractual terms;

iv. the aggregator, by monitoring the real-time data from the IoTs, un-

derstands whether the action of each DER is successful or not and,

fifteen minutes after the end of the flexibility request, it invokes the

endFlexibilityRequest() function, with the list of registered results;

v. after validating the flexibility event, the smart contract saves the re-

ceived results in the flexibilityResults data structure and emits

the EndFlexibilityRequest() event to notify the recorded results to

each DER;

vi. on event notification, the DERs invoke the provideFlexibilityFair()

function to claim their reward in a non-repudiable way, if they agree

with the aggregator on the registered outcomes of the modulation. This

reward is added to the prosumers data structure, which also con-

tains their financial statements, as long as the claimed value is con-

sistent with the calculation of the corresponding compensation from

the aggregator, which, in fact, emits either the FlexibilityProvi-

sioningSuccess() event upon successful check, or the Flexibility-

ProvisioningError() event otherwise.

14An event watcher is a specific Web3 functionality that allows a requester to be notified
when a filtered event occurs in a blockchain’s smart contract.



CHAPTER 5. DER MANAGEMENT SOLUTIONS 143

Smart contract deployment

The development of the smart contract has been carried out using the Hard-

hat framework15, a development environment for smart contracts that enables

operations such as debugging, compilation, and testing. Furthermore, Hard-

hat includes the functionalities to deploy the smart contract on EWC through

a simple script, by providing a private key associated with an account with

sufficient credit and an RPC-API node to connect to.

import { ethers } from "hardhat";

async function main() {

const contractFactory = await ethers.getContractFactory("

AggregatorContract");

const contract = await contractFactory.deploy ({ maxPriorityFeePerGas: 7 })

;

await contract.deployed ();

}

main().catch(( error) => {

console.error(error);

process.exitCode = 1;

});

Listing 5.2: Script to deploy the aggregator’s smart contract on EWC.

Smart contract testing

The Hardhat framework also provides a series of libraries for quick and easy

testing of smart contracts internally to a simulated blockchain environment,

so as to validate the expected behaviour of the contract’s functionalities.

Tests include checking the return value of the invoked function, verifying the

correct alteration of the status of the contract, ensuring that a due excep-

tion is produced in case of invalid inputs. Putting all these tests together,

considerable coverage of the smart code was achieved16.

The following listing provides an example of a test snippet simulating the

invocation of the smart contract’s requestFlexibility() function:

describe("requestFlexibility", function () {

it("create a new flexibility request", async function () {

await contract.requestFlexibility(start , end , gridFlexibility);

15https://hardhat.org/
16Test coverage results can be found at https://app.codecov.io/gh/TendTo/

EW-DER-Simulator

https://hardhat.org/
https://app.codecov.io/gh/TendTo/EW-DER-Simulator
https://app.codecov.io/gh/TendTo/EW-DER-Simulator


CHAPTER 5. DER MANAGEMENT SOLUTIONS 144

const request = await contract.flexibilityRequest ();

expect(request.start.toNumber ()).to.equal(start);

expect(request.end.toNumber ()).to.equal(end);

expect(request.gridFlexibility.toNumber ()).to.equal(gridFlexibility);

});

it("revert on unauthorized use with ’UnauthorizedAggregatorError(msg.

sender)’", async function () {

await expect(iot1Contract.requestFlexibility(start , end , gridFlexibility

))

.to.be.revertedWithCustomError(contract , ContractError.

UnauthorizedAggregatorError)

.withArgs(iot1Addr);

});

});

Listing 5.3: Test snippet to simulate a smart contract’s function call.

5.2.3.3 Back-end architecture

The decentralized application’s back-end is responsible for simulating the

DERs’ behaviour, performing the aggregator’s actions and managing the in-

teractions among the parties (see the diagram of the classes in Figure 5.9). As

previously stated, some interactions go through the blockchain, according to

an asynchronous paradigm that consists of function calls and corresponding

event emissions.

The simulated time passing is beaten by the Clock class, which is tick-

configurable. On simulation start, the aggregator and the Clock are initial-

ized with user-specified parameters. The aggregator initializes the correct

number of IoTs of each type and provides them with their own blockchain

identities, characterized by an account with their own (private-key, public-

key) pairs. Each IoT will be assigned the same identity at each simulation

run for comparison purposes.

The simulation set-up phase also involves interacting with the blockchain.

After a few preliminary actions, the aggregator resets the smart contract and

sends the funds to each created DER. Upon successful set-up completion,

the graph starts showing the aggregate data coming from the DERs (see

Figure 5.8), which, at the same time, begin to register their agreements with

the smart contract. When the aggregator receives the registration event,

the corresponding IoT production is added to the aggregate one. The DER

recording period has a variable delay proportional to the number of DERs



CHAPTER 5. DER MANAGEMENT SOLUTIONS 145

 
 

 

La fase di setup (vedi diagramma di sequenza sotto) prevede di interagire anche con la 
blockchain. Dopo aver raccolto alcuni dati, l’aggregator resetterà lo smart contract e invierà i 
fondi a ciascun DER, se tale opzione era stata selezionata. 

IIoT

«get» production: number
«get» expectedFlexibility: number
«get» value: number
«get» address: string
«get» agreement: Agreement

startProducing()
stopProducing(sendLog: boolean): void;
agreementStatus(registered: boolean): void;

IoT

wallet: Wallet
«readonly» agreement: Agreement
«get» minValue: number
«get» maxValue: number
«get» minCost: number
«get» maxCost: number

registerAgreement()
listenToEvents()
shouldApplyFlexibility(number)
provideFlexibility(BigNumber, BigNumber, BigNumber, RequestFlexibilityEvent)
confirmProvidedFlexibility(BigNumber, BigNumber, BigNumber, EndRequestFlexibilityEvent)
rollForEvents(number)
produce(number): number
skipTick(): boolean
createAgreement(): Agreement
applyFlexibilityEvent(number, number): number
applyEvents(number, number): number
setAgreementStatus(boolean)
startProducing()
stopProducing(?boolean)

SolarIoTWindIoT

Aggregator

iots: List<IIoT>
wallet: Wallet
«readonly» clock: Clock
«readonly» tracker: FairFlexibilityTracker
«get» iotLength: number
«get» baseline: number
«get» timestamp: number
«get» gridFlexibility: number

getNetworkInfo()
resetContract()
listenContractLogs()
distributeFounds(List<IIoT>)
onRegisterAgreement(string, Agreement, RegisterAgreementEvent)
onReviseAgreement(string, Agreement, Agreement, RegisterAgreementEvent)
onCancelAgreement(string, Agreement, RegisterAgreementEvent)
checkStopTracker(number)
updateBaseline()
setupSimulation()
requestFlexibility(FlexibilityOptions)
startSimulation()
stopSimulation()
onIoTReading(IIoT, number)
variateIoTs(DerVariationOptions)

Clock

«get» timestamp: number
«get» season: Season
«get» month: number
«get» day: number
«get» hour: number
«get» minute: number
«get» second: number
«get» timestampString: number
«get» tickIntervalsInOneHour: number

start()
stop()
pauseResumeSimulation()
addFunction(callback: TickCallback)
removeFunction(callback: TickCallback)
reset()
tick()

ITickable

onTick(Clock, number)

    FORMATI DEI PARAMETRI DI SIMULAZIONE DEFINIBILI DALL’UTENTE 

    # chiave privata dell’aggregatore 
    SK: string  
    # indirizzo del contratto 
    CONTRACT_ADDRESS: 0x384e79D871eA213768F4e91970032a04A7C55993  
    # indirizzo del nodo rpc dei der 
    DER_RPC_URL: http://<ip>:<port>  
    # indirizzo del nodo rpc dell'aggregatore 
    AGG_RPC_URL: http://<ip>:<port> 
    # numero di DER solari 
    N_SOLAR: 1 
    # numero di DER eolici 
    N_WIND: 1 
    # incremento di tempo per ogni tic nella simulazione (sec) 
    TICK_INCREMENT: 1 
    # intervallo di tempo tra un tic e l'altro (sec) 
    TICK_INTERVAL: 1 

Figure 5.9: Back-end’s class diagram.

used in the simulation.

The simulation allows the user (e.g., a TSO operator) to send a flexibil-

ity request command specifying the baseline percentage to be altered. The

system reaction to such a command has been thoroughly explained in Subsec-

tion 5.2.3.2 and it is shown in the sequence diagram sketched in Figure 5.10,

as far as the flexibility request to the IoT devices is concerned.

5.2.3.4 Experimental assumptions

In a plausible future scenario, the aggregator will stipulate contracts with pro-

sumers of renewables sources of variable size, from large industrial sites pro-



CHAPTER 5. DER MANAGEMENT SOLUTIONS 146

Tracker AggregatorIPC Handler Smart
Contract

Event
Handler

Flexibility  
request

onFlexibilityRequest()

Get request
parameters from user

flexibilityRequest()
startOnLoading()

flexibilityRequest()

activate()

onStopLoading()

requestFlexibility()

Front-end Back-end Blockchain

Figure 5.10: Sequence diagram upon flexibility request command.

ducing power for the grid exceeding the MW threshold, to private medium-

sized producers, able to provide power in the range of tenths of KW. Fur-

thermore, a comprehensive case study needs to include a large number of

domestic prosumers equipped with either small solar systems, wind turbines

or commercial batteries capable of delivering electric power in the range of a

few KW. The presence of flexible passive users, with a chance to temporarily

reduce the maximum consumed power, should also be taken into account in

the overall scenario.

The purpose of the tests carried out in the simulation is to determine a

few experimental outcomes, namely:

i. the number of DERs per aggregator that is possible to manage without

introducing unacceptable delays in the system;

ii. technological constraints of the implementation blockchain that can

affect the scalability of the entire system;



CHAPTER 5. DER MANAGEMENT SOLUTIONS 147

iii. response times of the DERs to modulation change commands.

In order to carry out verifiable and comparable tests, some assumptions

on the modelled system have to be made beforehand, as explained in the

following subsections.

DER modelling

In order to come up with a cost-effective strategy, the aggregator needs to

classify the managed industrial or residential sources in terms of a few pa-

rameters such as: (i) the produced power size; (2) the type of source (e.g.,

wind, solar, batteries, etc.), which can affect its overall reliability and avail-

ability; (3) the level of flexibility offered as a percentage of the contractual

base power; (4) the reference time profile, that is, the daily time slot(s) in

which the power variation can occur.

In the investigated case study, we envisage an evolving scenario where

the number of managed DERs can grow from a few units to hundreds, for

a total aggregate power of hundreds of megawatts, statistically distributed

by contractualized energy baseline according to a Poisson curve, for which

we have few large-sized DERs and many decreasing small-sized DERs to

make the flow of monitored data as realistic as possible. It is also assumed

the presence of DERs of different types based on the energy source type.

Presently, only solar and wind sources are modelled in the case study, as

the complexity increase determined by the modelling of other source types

would not bring any specific contribution to the experiment, which is instead

centred on the effectiveness of the blockchain adoption in the management

system.

The total number of managed DERs, optionally differentiated according

to their nature, will be the main configurable parameter for the evaluation

of the prototyped solution’s scalability. For instance, two reference scenarios

could be configured as follows:

i. basic scenario, in which the aggregator manages a total of 690 KW,

divided into three solar industrial plants of 30 KW and ten of 10 KW,

plus one hundred prosumers of 5 KW;



CHAPTER 5. DER MANAGEMENT SOLUTIONS 148

ii. evolved scenario, in which the aggregator manages a total of 1.75 MW,

divided into five 30 KW solar industrial plants and ten of 10 KW, one

hundred prosumers with solar systems of 5 KW, one hundred prosumers

with 3 KW batteries and two hundred passive users with a 3 KW

contract.

In real terms, the simulating scenario follows the incremental management of

ten DERs at a time, with an upper boundary determined by the detection of

technical limits in the prototype implementing the case study, with particular

regard to blockchain scalability performances.

DER readings

As for real-time aspects, the reading flows frequency from DERs must be

properly tuned to provide significant evidences of the DERs’ instant state

and, on the other side, to allow the aggregator to react promptly to any

unexpected change. A specific reference range is between one reading per

second and one reading every sixty seconds, which represents a sensible choice

to balance performance and accuracy. The frequency parameter must be also

combined with the varying number of DERs to achieve acceptable scalability

responses from the experimentation.

Balancing scenario

In the prototyped DApp, a simplified version of the decentralized approach,

described in Subsection 5.2.3, has been specified for the execution of the

devised feasibility and performance tests. This working hypothesis assumes

that the modulation action be spread in a fair manner on each DER, that is

with the same proportionality with respect to the aggregate request, possibly

selecting the envolved DERs on the basis of matching flexibility criteria of

the pursued action.

In a blockchain-based implementation, where the transactions cannot be

run in parallel with the same node, the commands can be conveniently ex-

ecuted in a sequential order, so that the negative outcome of a transaction

can be immediately managed by redefining the amount of modulation on the



CHAPTER 5. DER MANAGEMENT SOLUTIONS 149

remaining DERs, or by cycling it on the previously involved DERs a second

time around. In more general terms, it is assumed that the aggregate varia-

tion command is applied to all DERs in the same time window , so no new

similar commands can be received in time windows that even just overlap.

The time window consists of {start:datetime} of the requested modu-

lation and {end:datetime} for completion. Acceptable intervals can range

from a minimum value of fifteen minutes up to a few hours, with steps of fif-

teen minutes. Note that the intervention can be immediate or future-oriented

(e.g., within the next twelve or twenty-four hours).

In the feasibility tests described in the next section, a few thresholds

have been set to define in which conditions the aggregate modulation can be

considered satisfactory fulfilled. In particular, this conditions are detected

when the aggregator verifies that 95% of the DERs hit the following targets:

– within the initial transient the DER baseline is modified with a maxi-
mum error of 5%;

– within the final transient the DER baseline is restored with a maximum
error of 5%;

– between the two instants above, the average value measured for the
DER corresponds to that modulated with a maximum error of 5%.

5.2.3.5 Experimental results

As repeatedly said, the prototyped system has been specifically developed

to experimentally evaluate the advantages and drawbacks in the use of the

blockchain in such a specific industrial case, namely an energy balancing op-

erator. In this respect, numerous operating tests have been performed to

profile the behavior of the blockchain network and to identify the scalability

limits of the current implementation and the strategies to overcome them.

The number of DERs involved in the performed functional tests ranges from

ten to three hundred, with varying results depending on the prototype ver-

sion. Beyond the upper limit, the network performance are unsatisfactorily

and/or unreliable, for the reasons examined throughout this subsection.



CHAPTER 5. DER MANAGEMENT SOLUTIONS 150

The experiments deal with the two following scenarios: (i) DER adminis-

tration, and (ii) grid balancing, which are served by the same smart contract

by design. Hence, the upper scalability limit is a figure determined by the

worst detected performance in both scenarios17.

Transaction confirmation time

For the understanding of some experimental outcomes, it is useful to high-

light some inner blockchain mechanisms that affect them. First, any per-

forming blockchain should guarantee, under conditions of “healthy state”

of the nodes18, a response time to transaction validation not higher than

five or six seconds. The transaction validation is performed locally at the

blockchain’s entry node and it must be clearly distinguished from transac-

tion confirmation, which indicates the inclusion of a validated transaction in

a newly created block.

The confirmation time is variable over time, since it relies on the gas fee

mechanism, inherent in the transaction confirmation process of Ethereum-like

platforms [16]. Each transaction can in fact freely offer to pay an established

gas price to obtain confirmation, thus incentivizing the mining nodes to pro-

cess the transactions as quickly as possible. High offered gas prices (e.g., 30

GWei in the Volta testnet19) can therefore make the network become very

selective with transactions willing to pay a fairer and lower price. Further-

more, this mechanism has also to combine with the momentary load of the

blockchain network, since more congested networks require higher gas fee to

complete the transaction confirmation and vice versa. As a result of these

two factors, it is generally possible that a transaction is confirmed after a

few seconds, a few minutes or a few months.

In our prototype, we then set the gas price to be always competitive,

even in congestion situations, thus making it unlikely that validated trans-

17Note that the solutions gradually identified during the study have been correspond-
ingly integrated into the prototype up to the final version, in which it works correctly in
all its phases and interacts reliably with the testnet blockchain (i.e., Volta).

18Healthy state is a condition in which each node is in sync with the general state of
the blockchain, having adequate computing and network resources.

19Wei is a measure of the utility currency.



CHAPTER 5. DER MANAGEMENT SOLUTIONS 151

actions can excessively be long pending before confirmation (in the order of

minutes in worst cases). In its current version, the blockchain integrated in

the prototype responds to all modulation commands well within the limits of

fifteen minutes, which has been set as the maximum accepted transient of the

transition intervals between state changes (e.g., network set-up, modulation

requests).

In particular, in the largest possible scenario, i.e. with 290 DERs (see

Subsection 5.2.3.5 for the determination of this limit), the initial activation

of all IoTs in the set-up phase typically takes about three to five minutes

to complete (see Figure 5.8 in Subsection 5.2.3.1). The time-span of such

activity is configured at the application level to avoid the generation of too an

intense burst of transactions (see Subsection 5.2.3.5). On the other hand, the

reaction times to the modulation commands exhibited by the DERs range

from a few seconds to about a minute or two for each DER; these times

obviously vary in proportion to the managed DERs.

Figure 5.11 shows the system behavior at maximum DER load in the exe-

cution of a modulation command, exhibited at the final stage of a testing pe-

riod of about two months, during which several experimental configurations

have been tuned up20. Modulations are carried out following an approach

that requires an equal contribution from all contracted DERs.

In the following, we briefly summarize the main issues related to the use

of the blockchain that have been tackled.

Gas limit

Some transactions may occasionally fail by exhibiting a “gas limit exceeded”

error code and then rejected, if their processing cost exceeds a threshold set,

i.e., the gas limit (8M gas units for Volta), which is a prescriptive feature

of Ethereum-like blockchains, introduced in the decentralized protocol for

security reasons [17].

The transaction cost, in terms of gas units, is not always predictable, but

it can only be estimated because it is connected not only to the complexity

20Tests can be performed by downloading the DApp software available at https://

github.com/TendTo/EW-DER-Simulator.

https://github.com/TendTo/EW-DER-Simulator
https://github.com/TendTo/EW-DER-Simulator


CHAPTER 5. DER MANAGEMENT SOLUTIONS 152

 

Figura 1 Attivazione dei DER e registrazione automatica dei loro contratti (scala temporale da ridurre di un fattore 10) 

 

 

Figura 2 Attivazione dei DER in risposta al comando di modulazione di potenza (scala temporale da ridurre di un fattore 10) Figure 5.11: DER responses to a modulation request command.

of the transaction itself, but also to the actual number and size of the input

parameters, which, in turn, can heavily affect the storage operations. In our

case study, for instance, the number of DERs concurrently managed in a

single transaction can cause this faulty situation.

The gas limit exception represents a sturdy obstacle to overcome when

the number of manageable DERs scales beyond an upper threshold, which

is, on the other hand, difficult to determine in all working conditions of the

newtork. This limit is also directly attributable to the current implementa-

tion of the smart contract, where there are some transactions that suffer from

this problem. For instance, if the transaction that simulates the uploading of

funds of IoTs’ accounts is launched for a number of devices higher than 290,

it experiences an execution fail and consequently the system cannot activate

the IOTs. However, this will not be a problem at all in a field implementa-

tion where IOTs are real, and where owning prosumers will be in charge of

refunding their accounts, thus making the transaction unnecessary and the

problem immaterial.

In broad terms, the gas limit exception requires a fine design of the smart

contract patterns, which favors as few state variables as possible in the smart



CHAPTER 5. DER MANAGEMENT SOLUTIONS 153

contract’s account storage, since the transactional cost to create, update

and delete them are far more expensive than using the transaction logs.

Furthermore, no smart contract should have functions that handle a large

numbers of data structures of any kind at a time. Since the functions and

the data structures of the DER administration scenario can be ideally kept

separate from the ones of the balancing scenario, a split of the aggregator’s

smart contract in at least two pieces would also contribute to a more refined

and cost-effective design of the software project.

Alternatively, one of the most interesting utilities of the EW-DOS stack,

namely the “Decentralized System Bus”21, designed to provide a messaging

system to make a more functional and reliable use of transactions among the

actors of the system, could be experimented to unburden the communication

paradigm between the aggregator and the prosumers.

Pending an updated design of the smart contract pattern, the scalability

limit of 290 DERs has been currently kept as the test boundary not only for

further functionalities of the DER administration scenario, but also for the

grid balancing trials, as already seen in Subsection 5.2.3.5.

Network congestion

Congestion conditions in the blockchain network have proven to change

rapidly and unpredictably, thus affecting the performance of our application

in a significant way. As previously mentioned, the transaction confirmation

times are highly susceptible to network overloads not only for obvious delays

in the network components, but also for a demand/supply mechanism that

makes the gas price rise, thus causing the overall gas cost of transactions to

follow suit. This circumstance has two major consequences: on one hand,

the transactions emitted with a lower gas price than the current average one,

determined by the congestion conditions, risk not to be confirmed by the

block-creation protocol within acceptable time frames; on the other hand, a

higher transaction cost can undermine the balance of blockchain accounts or

even prevent them from transacting, in case of insufficient funds.

21https://www.energyweb.org/tech/

https://www.energyweb.org/tech/


CHAPTER 5. DER MANAGEMENT SOLUTIONS 154

A massive reduction in gas price volatility and transaction costs may

be introduced by permissioned blockchain technologies, where the network

access can be regulated by selected nodes, so as to prevent intolerable conges-

tion situations. Better scalability and security performances in permissioned

blockchains are obviously obtained at the detriment of the decentralization

dimension, as stated by the “blockchain trilemma”, a circumstance that, in

enterprise environments, is not regarded as critical as in public blockchains.

Up to now the network congestion issues have been treated as if the

blockchain network were a real, meshed peer-to-peer network. Unfortunately,

this is mostly untrue, since it relies on the internet structure which has a more

hierarchical infrastructure architecture. For instance, in public networks, the

inevitable crossing of a certain number of routers causes packet scrambling,

which, in turn, increases the likelihood that the transactions will then be

delivered in a very different order from the sending sequence. In spite of

the application logic expecting a rapid and sequential transaction process-

ing, the system may experience a disordered and discontinuous response,

based on congestion conditions of the validator nodes and in particular, in

our prototype, of the RPC interface node. In worst cases, crossing public

networks may determine the occurrence of situations in which some transi-

tions, already in the transaction pool for confirmation in a definitive block,

may randomly remain “pending” for an indefinitely long time without any

feedback to the sender. To limit the above problem, it can be convenient to

connect the aggregator, which generates transaction bursts by design, to the

blockchain network with more reliable mechanisms, such as an internal inter-

process communication (IPC) channel, a private connection or an IP tunnel

(i.e., a VPN). This relieves the problem, as the packets can be received by

the blockchain network sequentially.

Overloaded RPC node

When the computing resources of the RPC node are overloaded by the incom-

ing call flow, this starts dropping the excess calls, thus discarding the packets

containing the transactions. A too intense burst of packets can cause a very



CHAPTER 5. DER MANAGEMENT SOLUTIONS 155

significant loss of part of them, thus compromising the functioning of the

system. The problem is technically a consequence of the lack of a synchro-

nization mechanism in the flow of calls between the source (application) and

destination (RPC node), which is a single logical sequence at the application

level, but it is managed by the network as a sequence of independent TCP

connections. Although the RPC node can be configured to increase the limit

of the maximum number of concurrent TCP connections, there is an insur-

mountable constraint given by the actual number of independent CPU and,

consequently, of effectively parallel threads, that the node is able to run si-

multaneously to open and process data on these connections. This situation

is reported to the application as a request timeout or network error.

A plausible solution could be the artificial reduction of the intensity of

transaction bursts, for example by introducing micro-delays in the applica-

tion logic at safety levels with respect to the processing resources of the RPC

node, thus bringing the system back to sustainable operational conditions.

A further issue with a congested node is the inability to keep up with the

continuous updating of the status of the blockchain, thus losing synchronism

and not being able to respond correctly to remote calls. When the issue

occurs, it is detected as an anomalous error, which indicates that a received

transaction request has been marked with the same identification number

as a previous one. Having jammed the synchronization mechanism with

the global state of the blockchain, the node stops processing blocks and no

longer has a consistent internal state. A consequence of this situation is that

the ordinal count of the transactions also hangs, so that the same value of

“nonce” is used for all the transactions, which, by definition, should instead

be a unique guaranteed sequential identifier22.

Unfortunately, if a node goes out-of-sync, the only practical chance to

recover from this adverse situation is to reinstall it in a better performing

hardware platform.

22As known, the “nonce” is the order of acceptance of the transactions originating from
the same account.



CHAPTER 5. DER MANAGEMENT SOLUTIONS 156

5.3 Solution discussion

The solutions developed in this chapter have examined the feasibility and

the performance of a blockchain-based management system in a smart grid

scenario, where a virtual operator, the aggregator, administers an amount of

distributed energy resources on behalf of transmission or distribution opera-

tors. The implemented DApps have been tested against increasingly complex

management scenarios, from a simple marketplace of energy demands and

offers to a sophisticated platform at the disposal of a virtual power plant,

capable of dynamically adapting to ever changing energy needs.

The capabilities provided by smart contracts allow the automated han-

dling, in a trustworthy and efficient way, of the whole innovative process, in-

cluding power generation and distribution, contract handling, instant billing,

rewarding and payments.

The investigation has demonstrated the feasibility of the devised services

built on top of a blockchain and pointed out its technological benefits in sup-

port of the aggregator’s despite some experienced issues, which, overall, do

not undermine the accrued competitive edge with respect a traditional client-

server architecture, based on application servers and internal databases. The

use of the blockchain has in fact introduced significant simplifications in

the back-end system requirements, since the decentralized infrastructure can

now take over the management of the contractual and historical data of the

DERs and the automated implementation of the business logic in the form

of specialized smart contracts.

In addition to a reduction of operating costs in the examined cases, the

beneficial innovation also relies on the property that the blockchain, by defini-

tion, ensures about the total correctness and transparency of the interactions

between the involved parties, which do not have to trust a centralized service

provider. Finally, the massive test production has assured that the scalabil-

ity levels and the response times of the services, as provided in the different

solutions, are adequate to the application needs within practical working

conditions.

In some operations the blockchain network has also been used as an asyn-



CHAPTER 5. DER MANAGEMENT SOLUTIONS 157

chronous communication infrastructure to a command/response mechanism

among the parties to seal the energy provision agreements and payments.

Furthermore, the native token mechanism allows to resort to an automated

implementation of the remuneration process of the prosumers based on smart

contracts, thus providing, in such a delicate aspect, more transparent assur-

ances on the operations performed by the aggregator. The complexity of the

required equipment to perform such tasks are tailored both to the DERs’ size

and the blockchain-based system’s overall performance.

Finally, scalability and performance issues exhibited by the decentralized

applications in certain overload conditions, along with high transaction costs,

may suggest to release the service on a permissioned blockchain, with the im-

plementation costs shared among aggregator and prosumers. The latter can

compensate these extra costs for securing the blockchain by earning tokens

associated to the block validation process. At the same time, in a further

development of the project, the above issues can be efficiently tackled with

the design of more cost-effective patterns for the developed smart contracts.

Notice that the blockchain technology is subject to a fast and continuous

evolution, so that it would be unwise to assume that the investigation carried

out in the various experiments has managed to make an exhaustive list of

all the benefits and issues associated with its use. It is also expected a

step forward in the underlying communication protocols that can provide

the logically meshed peer-to-peer model, on which the blockchain is based,

with a more reliable mapping of the related communication mechanisms in

the public network.



Chapter 6

Conclusions

Beyond the cryptocurrency universe, the decentralized blockchain paradigm

aims at establishing the backbone for a new type of public internet, in which

every participant can transact directly with any other participant without

the intermediation of a third-party to validate and secure transactions. In

fact, since the advent of Ethereum, many blockchains have allowed for the

deployment of “smart contracts”, which are programmed to automatically

run when specified conditions are met, without the intervention of a central

application server and/or database.

The blockchain technology has been originally released to serve a typical

permissionless network, meaning that the governance is totally decentral-

ized, since anyone can participate in the process of block verification and

creation, typically through a highly energy demanding mechanism. It offers

great transparency and decentralization, but unfortunately faces scalability

and computational cost challenges, which can undermine its large adoption

for enterprise applications besides the monetary/financial ones. However,

regardless of their open technological issues, blockchains, due to their de-

centralized consensus mechanisms and cryptographic secured nature, offer

unmissable features to a new audience of stakeholders that are looking for

new means of securing networks and increasing transparency in distributed

applications, such as checking the authenticity of on-chain data in a totally

disintermediated fashion.

158



CHAPTER 6. CONCLUSIONS 159

The primary objective of this thesis is to demonstrate that the Ethereum

protocol can be flexibly and adaptively used to build enterprise decentral-

ized applications in fundamental sectors, such as healthcare and green en-

ergy, since it still represents the most widespread, robust and interopera-

ble blockchain technology in the smart platform scenario, ranging from to-

tally public and permissionless implementations (i.e., the native PoW-based

Ethereum) to more enterprise-focused ones with permissioned characteristics

(e.g., Energy Web Chain).

The presented solutions have been devised by introducing appropriate

system designs that balance, case by base, the decentralization aspects of

the blockchain technology with overall system performance and scalability.

The design choices, supported by numerous experimental results, have pri-

marily taken into account not to undermine the effectiveness and efficiency

of the solutions in the selected applications fields, as compared to tradi-

tional centralized approaches, thus preventing an uncritical utilization of the

blockchain technology. Actually, in many situations the adoption of an ex-

tensive decentralized paradigm, inclusive of off-chain decentralized storage

systems, have proven to generate more sustainable distributed systems.

Furthermore, many peripheral actors can be enabled to contribute to

the implementation of the decentralized infrastructure, being rewarded via

mechanisms that are intrinsic to the blockchain protocol. For instance, in

the energy market sector, a new value chain can be unlocked in which also

household prosumers may run their own nodes to secure the peer-to-peer

infrastructure, while earning rewards for their effort.

In each of the presented solutions, specific technological aspects have

been looked after to fulfil the enterprise application requirements, so as to

provide extra features of security, performance, cost and decentralization. For

instance, the content tracing solution has managed to enhance its scalability

level by enriching the decentralized app-to-app contact matching mechanism

with customized back-end and blockchain design choices, such as finely tuned

smart contract patterns, essential on-chain storage, decentralized off-chain

file systems (i.e. IPFS), thus making the adoption of the novel decentralized

application both secure and performing.



CHAPTER 6. CONCLUSIONS 160

On the other hand, the energy management solution has deeply investi-

gated and experimentally tested some blockchain specific performance issues

under heavy transaction loads, showing reassuring outcomes even in presence

of a non-optimal design of the developed smart contract, which can be ap-

propriately improved in a further refinement of the solution, as already done

for the contact tracing one.

Moreover, an extensive use of the decentralized identity management of

digital assets has been experimented in the energy management solution, by

directly or indirectly interfacing the developed DApps with the dedicated

EWC’s smart contract, as far as the enrollment, updating and revocation of

digital identities and verifiable credentials are concerned.

Overall, the applied research carried out during the doctorate placement

has successfully shown that the Ethereum technology can represent a sat-

isfactory platform to fulfil typical enterprise requirements, especially if an

appropriate combinations of tailored features are adopted, case by case, to

ensure balanced achievements in security, scalability and decentralization.

The investigation carried out meets the global vision of the Ethereum or-

ganization, which aims at making its platform the most pervasive blockchain

technology, even for enterprise applications, by enhancing the scalability and

security levels, yet not undermining the degree of decentralization, which

remains, in the blockchain context, the custodian of “neutrality, censorship

resistance, openness, data ownership and near-unbreakable security”1.

From its launch in 2015, the Ethereum community has grown high ex-

pectations on some upgrades that would unlock Ethereum’s full potential,

by mitigating the constraints of the blockchain trilemma and some inherent

drawbacks, such as the high transaction fees, the demanding computation

and storing requirements to run an Ethereum node, the predictable network

congestion, and the big environmental impact of the PoW consensus algo-

rithm.

With the Paris hard fork (aka The Merge) deployed at block 15537393

on 15th September 2022, the transition from PoW to PoS consensus layer

(aka ’Eth2’) has been completed. According to the Ethereum foundation,

1https://ethereum.org/en/enterprise/

https://ethereum.org/en/enterprise/


CHAPTER 6. CONCLUSIONS 161

PoS introduces a ”more secure, more decentralized, less energy consuming

consensus mechanism (-99.95% as compared to PoW), which is also more

suitable for implementing new scalability solutions”. Scalability-wise, an-

other ongoing development, the so-called Ethereum’s Layer 22, is addressing

specific challenges that have driven enterprise developers to choose private

chains in the past. This comprehensive terminology includes all the off-

chain solutions designed to help scale the developed applications, such as,

for instance, the off-chain storage mechanism implemented via IPFS in Nau-

sica@DApp, yet leveraging the robust decentralized and secure model of the

mainnet (Layer 1). The Layer 2 initiative, in the long run, should promote

the adoption of Ethereum as the reference platform for enterprise applica-

tions, a vision that our experimental outcomes encouragingly support.

2https://ethereum.org/en/layer-2/

https://ethereum.org/en/layer-2/


Bibliography

[1] S. Haber and W. S. Stornetta, “How to time-stamp a digital docu-
ment,” in Conference on the Theory and Application of Cryptography.
Springer, 1990, pp. 437–455.

[2] S. Nakamoto, “Bitcoin: A peer-to-peer electronic cash system,” Decen-
tralized Business Review, p. 21260, 2008.

[3] E. A. Brewer, “Towards robust distributed systems,” in PODC, vol. 7,
no. 10.1145. Portland, OR, 2000, pp. 343 477–343 502.

[4] S. Gilbert and N. Lynch, “Brewer’s conjecture and the feasibility of con-
sistent, available, partition-tolerant web services,” Acm Sigact News,
vol. 33, no. 2, pp. 51–59, 2002.

[5] I. Bashir, Mastering Blockchain: Distributed ledger technology, decen-
tralization, and smart contracts explained. Packt Publishing Ltd, 2018.

[6] P. Baran, “On distributed communications networks,” IEEE transac-
tions on Communications Systems, vol. 12, no. 1, pp. 1–9, 1964.

[7] L. Lamport, “The weak byzantine generals problem,” Journal of the
ACM (JACM), vol. 30, no. 3, pp. 668–676, 1983.

[8] M. Castro, B. Liskov et al., “Practical byzantine fault tolerance,” in
OsDI, vol. 99, no. 1999, 1999, pp. 173–186.

[9] P. Akunne, “A guide to blockchain consensus proto-
cols,” 2021. [Online]. Available: https://blog.logrocket.com/
guide-blockchain-consensus-protocols/

[10] R. Awati, “Consensus Algorithm,” 2022. [Online]. Available:
https://www.techtarget.com/whatis/definition/consensus-algorithm

[11] D. Chaum, “Blind signatures for untraceable payments,” in Advances
in cryptology. Springer, 1983, pp. 199–203.

162

https://blog.logrocket.com/guide-blockchain-consensus-protocols/
https://blog.logrocket.com/guide-blockchain-consensus-protocols/
https://www.techtarget.com/whatis/definition/consensus-algorithm


BIBLIOGRAPHY 163

[12] A. Back et al., “Hashcash-a denial of service counter-measure,” 2002.

[13] W. Dai, “b-money, 1998,” 1998. [Online]. Available: http:
//www.weidai.com/bmoney.txt

[14] N. Szabo, “The idea of smart contracts,” Nick Szabo’s papers and con-
cise tutorials, vol. 6, no. 1, p. 199, 1997.

[15] H. Finney, “Reusable proofs of work (rpow),” 2004. [Online]. Available:
https://nakamotoinstitute.org/finney/rpow/index.html

[16] G. Wood, “Ethereum: A secure decentralised generalised transaction
ledger,” Ethereum project yellow paper, vol. 151, no. 2014, pp. 1–32,
2014.

[17] A. M. Antonopoulos and G. Wood, Mastering Ethereum: building
smart contracts and dapps. O’Reilly Media, 2018.

[18] J. Woods and J. Iyengar, Enterprise Blockchain Has Arrived: Real
Deployments. Real Value. Jorden Woods & Radhika Iyengar, 2019.

[19] Coinhouse, “What is Proof of Authority?” [Online]. Available:
https://www.coinhouse.com/what-is-proof-of-authority/

[20] S. Falkon, “The story of the DAO-its history and consequences,”
Medium, 2017. [Online]. Available: https://medium.com/swlh/
the-story-of-the-dao-its-historyand-consequences-71e6a8a551ee

[21] S. Wang, W. Ding, J. Li, Y. Yuan, L. Ouyang, and F.-Y. Wang, “De-
centralized autonomous organizations: Concept, model, and applica-
tions,” IEEE Transactions on Computational Social Systems, vol. 6,
no. 5, pp. 870–878, 2019.

[22] “KSI Blockchain - e-Estonia.” [Online]. Available: https://e-estonia.
com/solutions/cyber-security/ksi-blockchain/

[23] N. Mamo, G. M. Martin, M. Desira, B. Ellul, and J.-P. Ebejer,
“Dwarna: a blockchain solution for dynamic consent in biobanking,”
European Journal of Human Genetics, vol. 28, no. 5, pp. 609–626, 2020.

[24] F. Yiannas, “A new era of food transparency powered by blockchain,”
Innovations: Technology, Governance, Globalization, vol. 12, no. 1-2,
pp. 46–56, 2018.

http://www.weidai.com/bmoney.txt
http://www.weidai.com/bmoney.txt
https://nakamotoinstitute.org/finney/rpow/index.html
https://www.coinhouse.com/what-is-proof-of-authority/
https://medium. com/swlh/the-story-of-the-dao-its-historyand-consequences-71e6a8a551ee
https://medium. com/swlh/the-story-of-the-dao-its-historyand-consequences-71e6a8a551ee
https://e-estonia.com/solutions/cyber-security/ksi-blockchain/
https://e-estonia.com/solutions/cyber-security/ksi-blockchain/


BIBLIOGRAPHY 164

[25] J.-H. Tseng, Y.-C. Liao, B. Chong, and S.-w. Liao, “Governance on
the drug supply chain via gcoin blockchain,” International journal of
environmental research and public health, vol. 15, no. 6, p. 1055, 2018.

[26] E. Tijan, S. Aksentijević, K. Ivanić, and M. Jardas, “Blockchain tech-
nology implementation in logistics,” Sustainability, vol. 11, no. 4, p.
1185, 2019.

[27] M. Das, X. Tao, Y. Liu, and J. C. Cheng, “A blockchain-based in-
tegrated document management framework for construction applica-
tions,” Automation in Construction, vol. 133, p. 104001, 2022.

[28] A. M. Antonopoulos, Mastering Bitcoin: unlocking digital cryptocur-
rencies. O’Reilly Media, 2014.

[29] D. Mingxiao, M. Xiaofeng, Z. Zhe, W. Xiangwei, and C. Qijun, “A
review on consensus algorithm of blockchain,” in IEEE International
Conference on Systems, Man, and Cybernetics (SMC), 2017, pp. 2567–
2572.

[30] S. M. S. Saad and R. Z. R. M. Radzi, “Comparative review of the
blockchain consensus algorithm between proof of stake (pos) and dele-
gated proof of stake (dpos),” International Journal of Innovative Com-
puting, vol. 10, no. 2, 2020.

[31] I. Barinov, V. Baranov, and P. Khahulin, “POA network white
paper,” 2018. [Online]. Available: https://github.com/poanetwork/
wiki/wiki/POA-Network-Whitepaper

[32] Q. Zhou, H. Huang, Z. Zheng, and J. Bian, “Solutions to scalability of
blockchain: A survey,” IEEE Access, vol. 8, pp. 16 440–16 455, 2020.

[33] Coinhouse, “The blockchain trilemma: Fast, secure, and scalable
networks.” [Online]. Available: https://www.gemini.com/cryptopedia/
blockchain-trilemma-decentralization-scalability-definition

[34] J. Xie, F. R. Yu, T. Huang, R. Xie, J. Liu, and Y. Liu, “A survey on
the scalability of blockchain systems,” IEEE Network, vol. 33, no. 5,
pp. 166–173, 2019.

[35] M. Bowman, D. Das, A. Mandal, and H. Montgomery, “On elapsed
time consensus protocols,” in Progress in Cryptology – INDOCRYPT
2021, A. Adhikari, R. Küsters, and B. Preneel, Eds. Cham: Springer
International Publishing, 2021, pp. 559–583.

https://github. com/poanetwork/wiki/wiki/POA-Network-Whitepaper
https://github. com/poanetwork/wiki/wiki/POA-Network-Whitepaper
https://www.gemini.com/cryptopedia/blockchain-trilemma-decentralization-scalability-definition
https://www.gemini.com/cryptopedia/blockchain-trilemma-decentralization-scalability-definition


BIBLIOGRAPHY 165

[36] L. Ricci, D. D. F. Maesa, A. Favenza, and E. Ferro, “Blockchains for
Covid-19 contact tracing and vaccine support: A systematic review,”
IEEE Access, vol. 9, pp. 37 936–37 950, 2021.

[37] Q. Tang, “Privacy-preserving contact tracing: current solutions and
open questions,” arXiv preprint arXiv:2004.06818, 2020.

[38] L. Luu, J. Teutsch, R. Kulkarni, and P. Saxena, “Demystifying incen-
tives in the consensus computer,” in Proc. of ACM SIGSAC Conference
on Computer and Communications Security, 2015, pp. 706–719.

[39] Zuidhoorn, Maarten, “The magic of digital signatures on
Ethereum,” 2020. [Online]. Available: https://medium.com/
mycrypto/the-magic-of-digital-signatures-on-ethereum-98fe184dc9c7

[40] McCallum, Timothy, “Diving into Ethereum’s world state,”
2018. [Online]. Available: https://medium.com/cybermiles/
diving-into-ethereums-world-state-c893102030ed

[41] L. Luu, D.-H. Chu, H. Olickel, P. Saxena, and A. Hobor, “Making smart
contracts smarter,” in Proc. of ACM SIGSAC conference on computer
and communications security, 2016, pp. 254–269.

[42] Y. Wang, A. Zhang, P. Zhang, and H. Wang, “Cloud-assisted ehr shar-
ing with security and privacy preservation via consortium blockchain,”
Ieee Access, vol. 7, pp. 136 704–136 719, 2019.

[43] N. Prusty, Building blockchain projects. Packt Publishing Ltd, 2017.

[44] P. Windley, “How blockchain makes self-sovereign identities possible,”
Computerworld, vol. 10, 2018.

[45] A. Tobin and D. Reed, “The inevitable rise of self-sovereign identity,”
2016. [Online]. Available: https://sovrin.org/

[46] M. S. Ferdous, F. Chowdhury, and M. O. Alassafi, “In search of
self-sovereign identity leveraging blockchain technology,” IEEE Access,
vol. 7, pp. 103 059–103 079, 2019.

[47] M. Zastrow, “South Korea is reporting intimate details of COVID-19
cases: has it helped?” Nature, 2020.

[48] H. Cho, D. Ippolito, and Y. W. Yu, “Contact tracing mobile apps
for COVID-19: Privacy considerations and related trade-offs,” arXiv
preprint arXiv:2003.11511, 2020.

https://medium.com/mycrypto/the-magic-of-digital-signatures-on-ethereum-98fe184dc9c7
https://medium.com/mycrypto/the-magic-of-digital-signatures-on-ethereum-98fe184dc9c7
https://medium.com/cybermiles/diving-into-ethereums-world-state-c893102030ed
https://medium.com/cybermiles/diving-into-ethereums-world-state-c893102030ed
https://sovrin.org/


BIBLIOGRAPHY 166

[49] T. Altuwaiyan, M. Hadian, and X. Liang, “EPIC: efficient privacy-
preserving contact tracing for infection detection,” in Proc. of IEEE
International Conference on Communications (ICC), 2018, pp. 1–6.

[50] A. Trivedi, C. Zakaria, R. Balan, and P. Shenoy, “WiFiTrace: Network-
based contact tracing for infectious diseases using passive WiFi sens-
ing,” arXiv preprint arXiv:2005.12045, 2020.

[51] G. Li, S. Hu, S. Zhong, W. L. Tsui, and S.-H. G. Chan, “vContact:
Private WiFi-based IoT contact tracing with virus lifespan,” IEEE
Internet of Things Journal, vol. 9, no. 5, pp. 3465–3480, 2021.

[52] J. Bay, J. Kek, A. Tan, C. S. Hau, L. Yongquan, J. Tan, and T. A.
Quy, “BlueTrace: A privacy-preserving protocol for community-driven
contact tracing across borders,” Government Technology Agency-
Singapore, Tech. Rep, 2020.

[53] Yonap, “S. Korea to run system to better detect virus patients’
routes,” The Korea Herald, 2020. [Online]. Available: http:
//www.koreaherald.com/view.php?ud=20200311000132

[54] C. Troncoso, M. Payer et al., “Decentralized privacy-preserving prox-
imity tracing,” arXiv preprint arXiv:2005.12273, 2020.

[55] S. Vaudenay, “Analysis of DP3T,” IACR Cryptol. ePrint Arch., vol.
2020, p. 399, 2020.

[56] H. Xu, L. Zhang, O. Onireti, Y. Fang, W. J. Buchanan, and M. A. Im-
ran, “BeepTrace: blockchain-enabled privacy-preserving contact trac-
ing for COVID-19 pandemic and beyond,” IEEE Internet of Things
Journal, 2020.

[57] J. Song, T. Gu, X. Feng, Y. Ge, and P. Mohapatra, “Blockchain meets
COVID-19: A framework for contact information sharing and risk no-
tification system,” arXiv preprint arXiv:2007.10529, 2020.

[58] M. M. Arifeen, A. Al Mamun, M. S. Kaiser, and M. Mahmud,
“Blockchain-enable contact tracing for preserving user privacy during
COVID-19 outbreak,” 2020.

[59] G. Avitabile, V. Botta, V. Iovino, and I. Visconti, “Towards defeating
mass surveillance and Sars-Cov-2: The PRONTO-C2 fully decentral-
ized automatic contact tracing system,” Cryptology ePrint Archive,
2020.

http://www.koreaherald.com/view.php?ud=20200311000132
http://www.koreaherald.com/view.php?ud=20200311000132


BIBLIOGRAPHY 167

[60] S. Micali, “Algorand’s approach to covid-19 tracing,”
2020. [Online]. Available: https://www.algorand.com/resources/
algorand-announcements/silvio-micali-approach-to-covid-19

[61] J. Chen and S. Micali, “Algorand,” arXiv preprint arXiv:1607.01341,
2016.

[62] M. Amoretti, G. Brambilla, F. Medioli, and F. Zanichelli, “Blockchain-
based proof of location,” in 2018 IEEE International Conference
on Software Quality, Reliability and Security Companion (QRS-C).
IEEE, 2018, pp. 146–153.

[63] D. Marbouh, T. Abbasi, F. Maasmi, I. A. Omar, M. S. Debe, K. Salah,
R. Jayaraman, and S. Ellahham, “Blockchain for COVID-19: Review,
opportunities, and a trusted tracking system,” Arabian Journal for
Science and Engineering, pp. 1–17, 2020.

[64] F. Casino, T. K. Dasaklis, and C. Patsakis, “A systematic literature
review of blockchain-based applications: Current status, classification
and open issues,” Telematics and informatics, vol. 36, pp. 55–81, 2019.

[65] M. Andoni, V. Robu, D. Flynn, S. Abram, D. Geach, D. Jenkins, P. Mc-
Callum, and A. Peacock, “Blockchain technology in the energy sector:
A systematic review of challenges and opportunities,” Renewable and
sustainable energy reviews, vol. 100, pp. 143–174, 2019.

[66] M. B. Mollah, J. Zhao, D. Niyato, K.-Y. Lam, X. Zhang, A. M. Ghias,
L. H. Koh, and L. Yang, “Blockchain for future smart grid: A com-
prehensive survey,” IEEE Internet of Things Journal, vol. 8, no. 1, pp.
18–43, 2020.

[67] D. Kirli, B. Couraud, V. Robu, M. Salgado-Bravo, S. Norbu, M. An-
doni, I. Antonopoulos, M. Negrete-Pincetic, D. Flynn, and A. Kiprakis,
“Smart contracts in energy systems: A systematic review of funda-
mental approaches and implementations,” Renewable and Sustainable
Energy Reviews, vol. 158, p. 112013, 2022.

[68] C. DeCusatis and K. Lotay, “Secure, decentralized energy resource
management using the ethereum blockchain,” in 2018 17th IEEE In-
ternational Conference On Trust, Security And Privacy In Comput-
ing And Communications/12th IEEE International Conference On Big
Data Science And Engineering (TrustCom/BigDataSE). IEEE, 2018,
pp. 1907–1913.

https://www.algorand.com/resources/algorand-announcements/silvio-micali-approach-to-covid-19
https://www.algorand.com/resources/algorand-announcements/silvio-micali-approach-to-covid-19


BIBLIOGRAPHY 168

[69] Q. Yang, H. Wang, T. Wang, S. Zhang, X. Wu, and H. Wang,
“Blockchain-based decentralized energy management platform for res-
idential distributed energy resources in a virtual power plant,” Applied
Energy, vol. 294, p. 117026, 2021.

[70] V. Mladenov, V. Chobanov, G. C. Seritan, R. F. Porumb, B.-A.
Enache, V. Vita, M. Stănculescu, T. Vu Van, and D. Bargiotas,
“A flexibility market platform for electricity system operators using
blockchain technology,” Energies, vol. 15, no. 2, 2022. [Online].
Available: https://www.mdpi.com/1996-1073/15/2/539

[71] C. Pop, T. Cioara, M. Antal, I. Anghel, I. Salomie, and M. Bertoncini,
“Blockchain based decentralized management of demand response pro-
grams in smart energy grids,” Sensors, vol. 18, no. 1, p. 162, 2018.

[72] A. Umar, D. Kumar, and T. Ghose, “Blockchain-based decentralized
energy intra-trading with battery storage flexibility in a community
microgrid system,” Applied Energy, vol. 322, p. 119544, 2022.

[73] G. Sciumè, E. Riva Sanseverino, P. Gallo, A. Augello, G. Sciabica, and
M. Tornatore, Blorin Blockchain Platform. Springer International
Publishing, 2022, pp. 139–170. [Online]. Available: https://doi.org/
10.1007/978-3-030-96607-2 6

[74] V. Mandarino, G. Pappalardo, and E. Tramontana, “Some blockchain
design patterns for overcoming immutability, chain-boundedness, and
gas fees,” in The 3rd Asia Conference on Computers and Communica-
tions, Shangai, China. ACCC, 2022.

[75] M. Bartoletti and L. Pompianu, “An empirical analysis of smart con-
tracts: platforms, applications, and design patterns,” in International
conference on financial cryptography and data security. Springer, 2017,
pp. 494–509.

[76] L. Marchesi, M. Marchesi, G. Destefanis, G. Barabino, and D. Tigano,
“Design patterns for gas optimization in ethereum,” in 2020 IEEE
International Workshop on Blockchain Oriented Software Engineering
(IWBOSE). IEEE, 2020, pp. 9–15.

[77] C. R. Worley and A. Skjellum, “Opportunities, challenges, and future
extensions for smart-contract design patterns,” in International Con-
ference on Business Information Systems. Springer, 2018, pp. 264–276.

https://www.mdpi.com/1996-1073/15/2/539
https://doi.org/10.1007/978-3-030-96607-2_6
https://doi.org/10.1007/978-3-030-96607-2_6


BIBLIOGRAPHY 169

[78] T. Chen, X. Li, X. Luo, and X. Zhang, “Under-optimized smart con-
tracts devour your money,” in 2017 IEEE 24th international conference
on software analysis, evolution and reengineering (SANER). IEEE,
2017, pp. 442–446.

[79] T. Chen, Y. Feng, Z. Li, H. Zhou, X. Luo, X. Li, X. Xiao, J. Chen, and
X. Zhang, “Gaschecker: Scalable analysis for discovering gas-inefficient
smart contracts,” IEEE Transactions on Emerging Topics in Comput-
ing, vol. 9, no. 3, pp. 1433–1448, 2020.

[80] V. Mandarino, G. Marotta, G. Pappalardo, and E. Tramontana, “Issues
related to ehr blockchain applications,” in 2021 2nd Asia Conference on
Computers and Communications (ACCC). IEEE, 2021, pp. 132–137.

[81] A. Dubovitskaya, F. Baig, Z. Xu, R. Shukla, P. S. Zambani, A. Swami-
nathan, M. M. Jahangir, K. Chowdhry, R. Lachhani, N. Idnani
et al., “ACTION-EHR: patient-centric blockchain-based electronic
health record data management for cancer care,” Journal of medical
Internet research, vol. 22, no. 8, p. e13598, 2020.

[82] T. Quaini, A. Roehrs, C. A. da Costa, and R. da Rosa Righi, “A model
for blockchain-based distributed electronic health records.” IADIS In-
ternational Journal on WWW/Internet, vol. 16, no. 2, 2018.

[83] D. Tith, J.-S. Lee, H. Suzuki, W. Wijesundara, N. Taira, T. Obi, and
N. Ohyama, “Application of blockchain to maintaining patient records
in electronic health record for enhanced privacy, scalability, and avail-
ability,” Healthcare informatics research, vol. 26, no. 1, pp. 3–12, 2020.

[84] A. Ekblaw, A. Azaria, J. D. Halamka, and A. Lippman, “A case study
for blockchain in healthcare:“MedRec” prototype for electronic health
records and medical research data,” in Proceedings of IEEE open & big
data conference, vol. 13, 2016, p. 13.

[85] K. Fan, S. Wang, Y. Ren, H. Li, and Y. Yang, “Medblock: Efficient
and secure medical data sharing via blockchain,” Journal of medical
systems, vol. 42, no. 8, pp. 1–11, 2018.

[86] G. G. Dagher, J. Mohler, M. Milojkovic, and P. B. Marella, “Ancile:
Privacy-preserving framework for access control and interoperability
of electronic health records using blockchain technology,” Sustainable
cities and society, vol. 39, pp. 283–297, 2018.



BIBLIOGRAPHY 170

[87] P. Zhang, J. White, D. C. Schmidt, G. Lenz, and S. T. Rosenbloom,
“FHIRChain: applying blockchain to securely and scalably share clini-
cal data,” Computational and structural biotechnology journal, vol. 16,
pp. 267–278, 2018.

[88] Q. Xia, E. B. Sifah, K. O. Asamoah, J. Gao, X. Du, and M. Guizani,
“MeDShare: Trust-less medical data sharing among cloud service
providers via blockchain,” IEEE access, vol. 5, pp. 14 757–14 767, 2017.

[89] S. Jiang, J. Cao, H. Wu, Y. Yang, M. Ma, and J. He, “Blochie: a
blockchain-based platform for healthcare information exchange,” in
2018 ieee international conference on smart computing (smartcomp).
IEEE, 2018, pp. 49–56.

[90] W. J. Bradshaw, E. C. Alley, J. H. Huggins, A. L. Lloyd, and
K. M. Esvelt, “Bidirectional contact tracing could dramatically im-
prove COVID-19 control,” Nature communications, vol. 12, no. 1, pp.
1–9, 2021.

[91] Q. Feng, D. He, S. Zeadally, M. K. Khan, and N. Kumar, “A survey
on privacy protection in blockchain system,” Journal of Network and
Computer Applications, vol. 126, pp. 45–58, 2019.

[92] L. Garg, E. Chukwu, N. Nasser, C. Chakraborty, and G. Garg,
“Anonymity preserving IoT-based COVID-19 and other infectious dis-
ease contact tracing model,” IEEE Access, vol. 8, pp. 159 402–159 414,
2020.

[93] A. Khurshid, “Applying blockchain technology to address the crisis
of trust during the COVID-19 pandemic,” JMIR Medical Informatics,
vol. 8, no. 9, p. e20477, 2020.

[94] T. McGhin, K.-K. R. Choo, C. Z. Liu, and D. He, “Blockchain in
healthcare applications: Research challenges and opportunities,” Jour-
nal of Network and Computer Applications, vol. 135, pp. 62–75, 2019.

[95] G. Marotta, F. Billeci, G. Criscione, F. Merola, G. Pappalardo, and
E. Tramontana, “Nausicaapp: A hybrid decentralized approach to
managing Covid-19 pandemic at campus premises,” in Proc. of Asia
Conference on Computers and Communications (ACCC). IEEE, 2020,
pp. 124–129.

[96] D. Jaisinghani, R. K. Balan, V. Naik, A. Mirsa, and Y. Lee, “Ex-
periences & challenges with server-side wifi indoor localization using



BIBLIOGRAPHY 171

existing infrastructure,” in Proc. of EAI Intern. Conf. on Mobile and
Ubiquitous Systems: Computing, Networking and Services, 2018, pp.
226–235.

[97] G. Kwon, J. Kim, J. Noh, and S. Cho, “Bluetooth low energy security
vulnerability and improvement method,” in Proc. of IEEE Interna-
tional Conference on Consumer Electronics-Asia (ICCE-Asia), 2016,
pp. 1–4.

[98] G. Marotta, A. Fornaia, A. Moschitta, G. Pappalardo, and E. Tra-
montana, “Nausichain: a mobile decentralized app ensuring service
continuity to university life in Covid-19 emergency times,” in Proc.
of International Conference on Software Engineering and Information
Management, 2021, pp. 74–81.

[99] A. Fornaia, G. Marotta, G. Pappalardo, and E. Tramontana, “A decen-
tralized solution for epidemiological surveillance in campus scenarios,”
IEEE Access, vol. 10, pp. 103 806–103 818, 2022.

[100] G. Singh and J. Levi, “MiPasa project and IBM Blockchain team on
open data platform to support Covid-19 response,” IBM, Armonk, NY,
Mar, vol. 27, 2020.

[101] A. Chawla and S. Ro, “Coronavirus (COVID-19)–is blockchain a true
savior in this pandemic crisis,” Available at SSRN 3655337, 2020.

[102] V. Sagar and P. Kaushik, “Ethereum 2.0 blockchain in healthcare and
healthcare based internet-of-things devices,” in Proceedings of the In-
ternational Conference on Paradigms of Computing, Communication
and Data Sciences. Springer, 2021, pp. 225–233.

[103] S. Teufel and B. Teufel, “The crowd energy concept,” Journal of elec-
tronic science and technology, vol. 12, no. 3, pp. 263–269, 2014.

[104] B. Teufel, A. Sentic, and M. Barmet, “Blockchain energy: Blockchain in
future energy systems,” Journal of Electronic Science and Technology,
vol. 17, no. 4, p. 100011, 2019.

[105] IRENA, “Aggregators; Innovation Landscape Brief,” 2019. [Online].
Available: https://www.irena.org/-/media/Files/IRENA/Agency/
Publication/2019/Feb/IRENA Innovation Aggregators 2019.PDF

[106] O. Juszczyk and K. Shahzad, “Blockchain technology for renewable en-
ergy: Principles, applications and prospects,” Energies, vol. 15, no. 13,
p. 4603, 2022.

https://www.irena.org/-/media/Files/IRENA/Agency/Publication/2019/Feb/IRENA_Innovation_Aggregators_2019.PDF
https://www.irena.org/-/media/Files/IRENA/Agency/Publication/2019/Feb/IRENA_Innovation_Aggregators_2019.PDF


BIBLIOGRAPHY 172

[107] IRENA, “Blockchain; innovation landscape brief,” 2019. [Online].
Available: https://www.irena.org/publications/2019/Sep/Blockchain

[108] D. Miller, “PJM-EIS UPDATE: Modernizing a legacy U.S. REC
tracking system with blockchain-based technology,” July 2021.
[Online]. Available: https://medium.com/energy-web-insights/
pjm-eis-update-modernizing-a-legacy-u-s-rec-tracking-system-with\
-blockchain-based-technology-db0ad5a4f924

https://www.irena.org/publications/2019/Sep/Blockchain
https://medium.com/energy-web-insights/pjm-eis-update-modernizing-a-legacy-u-s-rec-tracking-system-with\-blockchain-based-technology-db0ad5a4f924
https://medium.com/energy-web-insights/pjm-eis-update-modernizing-a-legacy-u-s-rec-tracking-system-with\-blockchain-based-technology-db0ad5a4f924
https://medium.com/energy-web-insights/pjm-eis-update-modernizing-a-legacy-u-s-rec-tracking-system-with\-blockchain-based-technology-db0ad5a4f924

	Abstract
	Introduction
	The decentralization paradigm
	Distributed and decentralized systems
	Decentralization in the blockchain

	Blockchain and cryptocurrency
	New frontiers in blockchain applications
	Smart contracts
	Drivers of enterprise blockchain development
	Use cases

	Personal contributions

	Background
	Blockchain fundamentals
	Consensus algorithms
	Blockchain types
	Transactions
	Tokens

	The Ethereum platform
	Ethereum clients
	Account-based model
	Transaction-driven state machine
	Token standards
	Digital wallets
	Ethereum's smart contracts
	Ethereum's blockchain
	Open issues

	Decentralized Applications
	Solidity contracts
	Web3 Providers
	Front-end operations

	Digital identity
	Self-Sovereign Identity
	Decentralized Identifiers and Credentials


	Related Work
	Contact tracing solutions
	Blockchain-unequipped
	Blockchain-equipped

	Renewable Energy Sources solutions
	Blockchain design topics
	Smart contract immutability
	Smart contract computational cost
	Smart contract storage
	Security and scalability design


	Contact Tracing solution
	Hybrid decentralized version
	System overview
	Device Localization
	Contact tracing
	User interface
	Absolute localization tests
	Comparative analysis
	Comparison with centralized solutions
	Comparison with decentralized solutions

	Solution discussion

	Highly decentralized version
	DApp_v1
	Back-end decentralization
	Blockchain components
	Operational workflow
	Blockchain-related software
	Gas consumption tests

	DApp_v2
	Contact tracing in DApp_v2
	Modified blockchain components
	Blockchain-related software
	Gas consumption tests
	Decentralizing the system DB

	Comparative analysis

	Complete solution wrap-up

	DER management solutions
	Blockchain environment
	Energy Web Decentralized Operating System
	Energy Web applications

	Smart Aggregator DApps
	DER marketplace DApp
	Application description
	Demand/offer matching

	Smart metering DApp
	Application overview
	Data collection and storage workflow

	Grid flexibility DApp
	DApp overview
	Blockchain implementation
	Back-end architecture
	Experimental assumptions
	Experimental results


	Solution discussion

	Conclusions
	Bibliography

