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2 Simplification of 3-way Networks

In the present paper, the case of a tripartite network is considered as an example
to show how the proposed network data simplification method works. In particular,
we consider the real case study of student mobility paths in Italian universities. The
MOBYSU.IT dataset1 enables reconstruction of network data structures considering
student mobility flows among territorial units and universities.

More formally, given V% ≡ {?1, . . . , ?8 , . . . , ?� }, the set of � provinces of
residence; V* ≡ {D1, . . . , D 9 , . . . , D� }, the set of � Italian universities, and
V� ≡ {41, . . . , 4: , . . . , 4 }, the set of  educational programmes, a weighted tri-
partite 3-uniform hyper-graph T can be defined, consisting of a triple (V,L,W),
withV = {V% ,V* ,V� } the collection of three sets of vertices, one for each mode,
and being L = {L%*� }, L%*� ⊆ V% × V* × V� , the collection of hyper-edges,
with generic term (?8 , D 9 , 4: ), which is the link joining the 8-th province, the 9-th
university, and the :-th educational programme. Finally,W is the set of weights,
obtained by the function | : L%*� → N, and |(?8 , D 9 , 4: ) = |8 9: is the number
of students moving from a province ?8 towards a university D 9 in an educational
programme 4: . Such a network structure can be described as a three-way array
A = (08 9: ), with 08 9: ≡ |8 9: , and it has been called a 3-way network [3].

To deal with such a complex network structure and aiming at obtaining commu-
nities in which three modes are mixed, we wish to simplify the tripartite nature of
the graph, without losing any significant information. In statistical terms, the array
A can be interpreted as a 3-way contingency table, and then the statistical techniques
to evaluate the association among variables (i.e. the modes) can be exploited [1].
Because a 3-way contingency table is a cross-classification of observations by the
levels of three categorical variables, we are defining a network structure where the
sets of nodes are the levels of the categorical variables. Specifically, we assume that
if two modes are jointly associated –as are, for their own nature, universities and
educational programmes– the tripartite network can be logically simplified into a
bipartite one. In the student mobility network, we join the pair of nodes in V* and
in V� , and then we deal with the relationships between these dyads and the nodes
inV% .

Following this assumption, the sets of nodes V* and V� are put together into a
set of joint nodes, namely V*� . The tripartite network T can now be represented
as a bipartite network B given by the triple {V∗,L∗,W∗}, withV∗ = {V% ,V*� }.
The set of hyper-edges L is thus simplified into a set of edges L∗ = {L%,*� },
L%,*� ⊆ V% × V*� . The new edges (?8 , (D 9 ; 4: )) connect a province ?8 with an
educational programme 4: running in a given university D 9 . The weightsW∗ are
the same as in the hyper-graph T , i.e., |∗

8 9 ,:
= |8 9: . Note that the weights contained

in the 3-way array A are preserved, but are now organized in a rectangular matrix A
of � rows and (� ×  ) columns.

1 Database MOBYSU.IT [Mobilità degli Studi Universitari in Italia], research protocol MUR -
Universities of Cagliari, Palermo, Siena, Torino, Sassari, Firenze, Cattolica and Napoli Federico II,
Scientific Coordinator Massimo Attanasio (UNIPA), Data Source ANS-MUR/CINECA.

149



V. G. Genova et al.

Taking advantage of this method, we aim to analyse weighted bipartite graphs
adopting clustering methods. Among others, we use the Infomap community de-
tection algorithm [9, 4] to study the flows’ patterns in network structures instead
of modularity optimization proposed in topological approaches [18, 5]. Indeed, the
rationale of this algorithm –map equation– takes advantage of the duality between
finding communities and minimizing the length –codelength– of a random walker’s
movement on a network. The partition with the shortest path length is the one that
best captures the community structure in the bipartite data. Formally, the algorithm
defines a module partition M of n vertices into m modules such that each vertex is
assigned to one and only one module. The Infomap algorithm looks for the best M
partition that minimizes the expected codelength, ! ("), of a random walker, given
by the following map equation:

! (") = @y� (Q) +
<∑
8=1

?8�� (P 8) (1)

In equation (1), @y� (Q) represents the entropy of the movement between mod-
ules weighed for the probability that the random walker switches modules on any
given step (@y), and

∑<
8=1 ?

8
�� (P 8) is the entropy of movements within modules

weighed for the fraction of within-module movements that occur in module 8, plus
the probability of exiting module 8 (?8�), such that

∑<
8=1 ?

8
� = 1 + @y [9].

In our case, the Infomap algorithm is adopted to discover communities of students
characterized by similar mobility patterns. Indeed, to analyse mobility data, where
links represent patterns of student movement among territorial units and universities,
flow-based approaches are likely to identify the most important features. Finally, in
our student mobility network, to focus only on relevant student flows, a filtering
procedure is adopted by considering the Empirical Cumulative Density Function
(ECDF) of links’ weights distribution.

2.1 Main Findings

Students’ cohorts enrolled in Italian universities in four academic years (a.y.) 2008–
09, 2011–12, 2014–15, and 2017–18 are analysed. The number of nodes for the sets
V% (107 provinces),V* (79-80 universities), andV� (45 educational programmes),
and the number of students involved in the four cohorts are quite stable over time
(Table 1). Furthermore, the percentage of movers (i.e., students enrolled in a univer-
sity outside of their region of residence) increased, from 16.4% in the a.y. 2008–09
to 20.6% in the a.y. 2017–18, and it is higher for males than females.
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Table 1 Percentage of students according to their mobility status by cohort and gender.

Cohort Gender
Mover status

Stayers% Movers%

2008–09
F 136,381 84.2 15.8
M 106,950 82.8 17.2

Total 243,331 83.6 16.4

2011–12
F 126,606 81.7 18.3
M 102,479 80.9 19.1

Total 229,085 81.0 19.0

2014–15
F 121,121 80.5 19.5
M 102,358 80.4 19.6

Total 223,479 80.5 19.5

2017–18
F 134,315 79.1 20.9
M 113,496 79.8 20.2

Total 247,811 79.4 20.6

Following the network simplification approach, the tripartite networks –one for
each cohort– are simplified into bipartite networks, and the four ECDFs of links’
weights are considered to filter relevant flows. The distributions suggest that more
than 50% of links between pairs of nodes have weights equal to 1 (i.e., flows of only
one student), and about 95% of flows are characterized by flows not greater than a
digit. Thus, networks holding links with a value greater or equal to 10 are further
analysed.

To reveal groups of universities and educational programmes attracting students,
the Infomap community detection algorithm is applied. Looking at Table 2, we
notice a reduction of the number of communities from the first to the last student
cohort, suggesting a sort of stabilization in the trajectories of movers towards brand
universities of the center-north with also an increase in the north-north mobility [20],
and a relevant dichotomybetween scientific and humanistic educational programmes.
Network visualizations by groups (Figures 1 and 2) confirm that the more attractive
universities are located in the north of Italy, especially for educational programmes
in economics and engineering (the Bocconi University, the Polytechnic of Turin and
the Cattolica University).

Table 2 Number of communities, codelength, and relative saving codelength per cohort.

Cohort Communities Codelength
Relative saving
codelength

2008–09 14 0.96 83%
2011–12 17 1.72 70%
2014–15 3 5.23 12%
2017–18 3 1.00 83%
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Fig. 1 Network visualization by groups, student cohort a.y. 2008–09.

Fig. 2 Network visualization by groups, student cohort a.y. 2017–18.
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3 Concluding Remarks

The proposed simplification network strategy on tripartite graphs defined for student
mobility data provides interesting insights for the phenomenon under analysis. The
main attractive destinations still remain the northern universities for educational
programmes, such as engineering and business. Besides the well-known south-to-
north route, other interregional routes in the northern area appear. In addition, the
reduction in the number of communities suggests a sort of stabilization in terms of
mobility roots of movers towards brand universities, highlighting student university
destination choices close to the labor market demand.

Hyper-graphs and multipartite networks still remain very active areas for research
and challenging tasks for scholars interested in discovering the complexities underly-
ing these kinds of data. Specific tools for such complex network structures should be
designed combining network analysis and other statistical techniques. As future lines
of research, the comparison of community detection algorithms that better represent
the structural constraints of the phenomena under analysis and the assessment of
other backbone approaches to filter the significant links will be developed.

Acknowledgements The contribution has been supported from ItalianMinisterial grant PRIN2017
“From high school to job placement: micro-data life course analysis of university student mobility
and its impact on the Italian North-South divide", n. 2017 HBTK5P - CUP B78D19000180001.
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Clustering Brain Connectomes Through a
Density-peak Approach

Riccardo Giubilei

Abstract The density-peak (DP) algorithm is a mode-based clustering method that
identifies cluster centers as data points being surrounded by neighbors with lower
density and far away from points with higher density. Since its introduction in 2014,
DP has reaped considerable success for its favorable properties. A striking advantage
is that it does not require data to be embedded in vector spaces, potentially enabling
applications to arbitrary data types. In this work, we propose improvements to
overcome two main limitations of the original DP approach, i.e., the unstable density
estimation and the absence of an automatic procedure for selecting cluster centers.
Then, we apply the resulting method to the increasingly important task of graph
clustering, here intended as gathering together similar graphs. Potential implications
include grouping similar brain networks for ability assessment or disease prevention,
as well as clustering different snapshots of the same network evolving over time to
identify similar patterns or abrupt changes. We test our method in an empirical
analysis whose goal is clustering brain connectomes to distinguish between patients
affected by schizophrenia and healthy controls. Results show that, in the specific
analysis, our method outperforms many existing competitors for graph clustering.

Keywords: nonparametric statistics, mode-based clustering, networks, graph clus-
tering, kernel density estimation

1 Introduction

Clustering is the task of grouping elements from a set in such a way that elements
in the same group, also defined as cluster, are in some sense similar to each other,
and dissimilar to those from other groups. Mode-based clustering is a nonparametric
approach that works by first estimating the density, and then identifying in some
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way its modes and the corresponding clusters. An effective method to find modes
and clusters is through the density-peak (DP) algorithm [12], which has drawn
considerable attention since its introduction in 2014. One of the striking advantages
of DP is that it does not require data to be embedded in vector spaces, implying that
it can be applied to arbitrary data types, provided that a proper distance is defined.
In this work, we focus on its application to clustering graph-structured data objects.

The expression graph clustering can refer either to within-graph clustering or
to between-graph clustering. In the first case, the elements to be grouped are the
vertices of a single graph; in the second, the objects are distinct graphs. Here, graph
clustering is intended as between-graph clustering. Between-graph clustering is an
emerging but increasingly important task due to the growing need of analyzing and
comparing multiple graphs [10, 4]. Potential applications include clustering: brain
networks of different people for ability assessment, disease prevention, or disease
evaluation; online social ego networks of different users to find people with similar
social structures; different snapshots of the same network evolving over time to
identify similar patterns, cycles, or abrupt changes.

Heretofore, the task of between-graph clustering has not been exhaustively in-
vestigated in the literature, implying a substantial lack of well-established methods.
The goal of this work is to improve and adapt the density-peak algorithm to define a
fairly general method for between-graph clustering. For validation and comparison
purposes, the resulting procedure and its main competitors are applied to grouping
brain connectomes of different people to distinguish between patients affected by
schizophrenia and healthy controls.

2 Related Work

Existing techniques for between-graph clustering can be divided into two main
categories: 1) transforming graph-structured data objects into Euclidean feature
vectors in order to apply standard clustering algorithms; 2) using the distances
between the original graphs in distance-based clustering methods.

The most common technique within the first category is the use of classical
clustering techniques on the vectorized adjacency matrices [10]. Nonetheless, more
advanced numerical summaries have been proposed to better capture the structural
properties of the graphs and to decrease feature dimensionality. Examples include:
shell distribution [1], traces of powers of the adjacency matrix [10], and graph
embeddings such as graph2vec [11]; see [4] for a longer list. Techniques from the
first category share an important drawback: the transformation into feature vectors
necessarily implies loss of information. Additionally, methods for extracting features
may be domain-specific.

The second category features Partitioning Around Medoids (PAM) [7], or k-
medoids, which finds representative observations by iteratively minimizing a cost
function based on the distances between data objects, and assigns other observations
to the closest medoid. PAM’s main limitations are that it requires the number of
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clusters in advance and can only identify convex-shaped groups. Density-based
spatial clustering of applications with noise [3], or DBSCAN, overcomes these two
constraints by computing the density of data points starting from their distances,
and defining clusters as samples of high density that are close to each other (and
surrounded by areas of lower density). A similar approach is the DP, which is
described in greater detail in Section 3.1. Alternatively, hierarchical clustering can
be applied to distances between graphs, as in [13], where a spectral Laplacian-based
distance is proposed and used. Finally, :-groups [8] is a clustering technique within
the Energy Statistics framework [14] where the goal is minimizing the total within-
cluster Energy distance, which is computed starting from the distances between
original observations.

3 Methods

In this section, we first describe the original DP approach; then, we introduce the
DP-KDE method, which is partly named after Kernel Density Estimation; finally,
we discuss how to employ it for graph clustering.

3.1 Original DP

The density-peak algorithm [12] is based on a simple idea: since cluster centers are
identified as the distribution’s modes, they must be 1) surrounded by neighbors with
lower density, and 2) at a relatively large distance from points with higher density.
Consequently, two quantities are computed for each observation G8: the local density
d8 , and the minimum distance X8 from other data points with higher density. The
local density d8 of G8 is defined as:

d8 =
∑
9

� (38 9−32) , (1)

where � ( ·) is the indicator function, 38 9 = 3 (G8 , G 9 ) is the distance between G8 and
G 9 , and 32 is a cutoff distance. In simple terms, d8 is the number of points that are
closer than 32 to G8 . The DP algorithm is robust with respect to 32 , at least with large
datasets [12]. Once the density is computed, the definition of the minimum distance
X8 between point G8 and any other point G 9 with higher density is straightforward:

X8 = min
9:d 9>d8

(38 9 ). (2)

By convention, the point with highest density has X8 = <0G 9 (38 9 ). The interpretation
of X8 reflects the algorithm’s core idea: data points that are not local or global maxima
have their X8 constrained by other points within the same cluster, hence cluster centers
have large values of X8 . However, this is not sufficient: they also need to have a large d8
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because otherwise the point could be merely distant from any other. After identifying
cluster centers, other observations are assigned to the same cluster as their nearest
neighbor of higher density.

The density-peak algorithm has many favorable properties: it manages to detect
nonspherical clusters, it does not require the number of clusters in advance or data to
be embedded in vector spaces, it is computationally fast because it does not maximize
explicitly each data point’s density field and it performs cluster assignment in a single
step, it estimates a clear population quantity, and it has only one tuning parameter
(the cutoff distance 32).

3.2 DP-KDE

The density-peak approach also has drawbacks. Over the last few years, many articles
have proposed improvements to overcome two main critical points: the unstable
density estimation and the absence of an automatic procedure for selecting cluster
centers. In this work, we explicitly tackle these two aspects.

The unstable density estimation induced by Equation (1) has been widely shown
[9, 16, 15]. Although many solutions have been proposed, we espouse the research
line suggesting the use of Kernel Density Estimation (KDE) to compute d8 [9, 15]:

d8 =
1
=ℎ

=∑
9=1
 

( G8 − G 9
ℎ

)
. (3)

In Equation (3), ℎ is the bandwidth, which is a smoothing parameter, and  (·) is
the kernel, which is a non-negative function weighting the contribution of each data
point to the density of the 8-th observation. We use the Epanechnikov kernel, which
is normalized, symmetric, and optimal in the Mean Square Error sense [2]:

 (D) =
{

3/4(1 − D2), |D | ≤ 1
0, |D | > 1

. (4)

Equation (4) implies a null contribution of observation 9 to the 8-th density whenever
| (G8−G 9 )/ℎ| ≥ 1, while, in the opposite case, it results in a positive weight depending
quadratically on (G8 − G 9 )/ℎ. Consequently, ℎ may be regarded as the cutoff distance
for the DP-KDE method.

The automatic selection of cluster centers involves many aspects: the cutoff dis-
tance, the number of clusters, and which data points to select. In the following, we
use a cutoff distance ℎ such that the average number of neighbors is between 1 and
2% of the sample size, as suggested by [12]. The number of clusters : is here con-
sidered as a given parameter, leaving the search for its optimal value for future work.
Finally, the method for selecting data points as cluster centers is obtained refining
an intuition contained in [12], where candidates are observations with sufficiently
large values of W8 = X8d8 . However, this quantity has two major drawbacks: first, if
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X8 and d8 are not defined over the same scale, results could be misleading; second, it
implicitly assumes that X8 and d8 shall be given the same weight in the decision. We
overcome these two limitations by first normalizing both X8 and d8 between 0 and
1, and then giving them different weights that are based on their informativeness.
We measure the latter using the Gini coefficient of the two (normalized) quantities,
under the assumption that the least concentrated distribution between the two is the
most informative. Specifically, each observation is given a measure of importance
that is defined as:

W�8 = X
� (X01)
01,8 d

� (d01)
01,8 , (5)

where X01 and d01 are the normalized versions of X and d respectively, X01,8 and d01,8
are the corresponding 8-th values, and � (G) denotes the Gini coefficient of G. Then,
the selected cluster centers are the top : observations in terms of W�

8
. Assigning

observations to the same cluster as their nearest neighbor of higher density is what
concludes the DP-KDE method.

3.3 Graph Clustering

A graph is a mathematical object composed of a collection of vertices linked by
edges between them. Formally, a graph is denoted with G = (+, �), where + is
the set of vertices and � is the set of edges. If 4 ∈ � joins vertices D, { ∈ + , i.e.,
4 = {D, {}, then D and { are adjacent or neighbors. The number of edges incident with
any vertex { is the degree of {. Each edge 4 ∈ � is represented through a numerical
value |4 called edge weight: if weights are equal to 1 for all and only the existent
edges, and 0 for the others, G is unweighted; when existent edges have real-valued
weights, G is weighted. If |{D,{ } = |{{,D } for all D, { ∈ + , the graph G is undirected;
otherwise, it is directed. The entire information about G’s connectivity is stored in
a |+ | × |+ | adjacency matrix A whose generic entry in the D-th row and {-th column
is |4, where 4 = {D, {} and D, { ∈ + .

TheDP-KDEmethod can be used for graph clustering if a proper distance between
graphs is defined. In this work, we employ the Edge Difference Distance [6], which is
defined as the Frobenius norm of the difference between the two graphs’ adjacency
matrices. The choice is motivated by many factors: a flexible definition that can
be directly applied also to directed and weighted graphs, the reasonable results it
yields when node correspondence is a concern, and its limited computational time
complexity. Formally, the Edge Difference Distance between two graphs G8 and G 9
is defined as:

3�� (G8 , G 9 ) = | |A8 − A 9 | |� B
√∑

?

∑
@

|�8?@ − � 9?@ |2 , (6)

where A8 and A 9 are the adjacency matrices of G8 and G 9 respectively, and | | · | |�
denotes the Frobenius norm.
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Consequently, the two fundamental quantities of the DP-KDE method are com-
puted in the following as:

d8 =

=∑
9=1
 

(
3�� (G8 , G 9 )

ℎ

)
, (7)

where  (·) is the Epanechnikov kernel defined in Equation (4) and the normalizing
constant is omitted because we are simply interested in the ranking between the
densities, and:

X8 = min
9:d 9>d8

(3�� (G8 , G 9 )). (8)

Finally, cluster centers are selected as the observations with the largest values
of W�

8
, as defined in Equation (5), and other observations are assigned to the same

cluster as their nearest neighbor in terms of X8 .

4 Empirical Analysis

The DP-KDE method for graph clustering is employed in an unsupervised empirical
analysis where the ground truth is known, and its performance is compared in terms
of accuracy both with natural competitors and with a method treating the problem
as supervised. The ultimate goal is clustering brain connectomes, one for each
individual, correctly distinguishing between patients affected by schizophrenia (SZ)
and healthy controls.

We use publicly available1 data from a recent study [5] whose aim is finding
relevant links between Regions of Interest (ROIs) for predicting schizophrenia from
multimodal brain connectivity data. The cohort is composed of 27 schizophrenic
patients and 27 age-matched healthy participants acting as control subjects. In the
current work, we focus only on this cohort’s functionalMagnetic Resonance Imaging
(fMRI) connectomes. Functional connectivity matrices have been computed starting
from fMRI scans, treating them as time series, and computing Pearson’s correlation
coefficient between time series for distinct ROIs. The resultingmatrices areweighted,
undirected, and made of 83 nodes.

The aforementioned study [5] treats every functional connectivity matrix as a
single multivariate realization of (83 · 82)/2 = 3403 numeric variables, each repre-
senting a connection between two of the 83 ROIs. They reduce feature dimensional-
ity by performing Recursive Feature Elimination based on Support Vector Machines
(SVM-RFE), and tackle the classification problem as supervised using 20 repetitions
of nested 5-fold cross-validation. When using only functional connectivity data, they
achieve an average accuracy of 68.28%2 over the resulting 100 test sets.

1 https://doi.org/10.5281/zenodo.3758534.

2 This exact figure is not included in the article, but the analysis is fully reproducible since the authors
made their source code available at https://github.com/leoguti85/BiomarkersSCHZ.
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The approach we adopt in this work is rather different. First, graphs are analyzed
in their original form, without any simplification to numeric variables, resulting in
only one graph-structured variable. Observations are 54, each one representing the
functional connectome of a different individual. We tackle the problem with an un-
supervised classification approach seeking to cluster connectomes into two groups:
schizophrenic and healthy. To this end, we use the DP-KDEmethod for graph cluster-
ing described in Section 3.3. Starting from the 54 connectomes, each observation’s
local density d8 and minimum distance X8 are computed using Equations (7) and
(8), respectively. The centers of the two clusters are those whose W�

8
is largest.

Then, other observations are assigned to the same cluster as their nearest neighbor
of higher density. Finally, the clustering performance is evaluated by comparing
the algorithm’s assignment to the ground truth. The DP-KDE method achieves an
accuracy of 70.37%, which is more than 2% higher than the one obtained in [5].

Table 1 includes the performance in terms of accuracy of both the DP-KDE
and the SVM-RFE methods, as well as that of other graph clustering competitors.
Specifically, we consider: the classical DP algorithm on the original data objects,
with the same cutoff distance as in DP-KDE and manually selected cluster centers;
k-means clustering on the 3403 numeric variables obtained from vectorizing the
adjacencymatrices; DBSCAN on the original data objects, with parameters Y = 20.2
and 15 as the minimum number of points required to form a dense region; PAM and
:-groups on the original data objects. In all these cases, the number of clusters has
been kept fixed to : = 2. The method that yields the best accuracy in the specific
problem is the DP-KDE.

Table 1 Accuracy for DP-KDE and some of its possible competitors.

Method DP-KDE SVM-RFE DP k-means DBSCAN PAM :-groups

Accuracy 70.37 68.28 62.96 62.96 61.11 62.96 62.96

5 Concluding Remarks

After explaining the importance of graph clustering and briefly reviewing some
existing methods to perform this task, we have considered the possibility of adopting
a density-peak approach. We have improved the original DP algorithm by using
a more robust definition of the density d8 , and by automatically selecting cluster
centers based on the quantity W�

8
we have introduced. We have also selected a proper

distance between graphs, namely, the Edge Difference Distance. Finally, we have
used the resulting method in an empirical analysis with the goal of clustering brain
connectomes to distinguish between schizophrenic patients and healthy controls.
Our method outperforms another one treating the specific task as supervised, and it
is by far the best one with respect to many graph clustering competitors.
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An initial idea for future work is the search for the optimal number of clusters.
This may be achieved either by fixing a threshold for W�

8
or by selecting all the data

points after the largest increase in terms of W�
8
. Also the cutoff distance could be

tuned, possibly maximizing in some way the dispersion of points in the bivariate
distribution of d and X. Then, the DP-KDE method needs to be extended beyond the
univariate case. Finally, other distances between graphs could be considered to better
reflect alternative application-specific needs, e.g., when graphs are not defined over
the same set of nodes.
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Similarity Forest for Time Series Classification

Tomasz Górecki, Maciej Łuczak, and Paweł Piasecki

Abstract The idea of similarity forest comes from Sathe and Aggarwal [19] and is
derived from random forest. Random forests, during already 20 years of existence,
proved to be one of the most excellent methods, showing top performance across a
vast array of domains, preserving simplicity, time efficiency, still being interpretable
at the same time. However, its usage is limited to multidimensional data. Similarity
forest does not require such representation – it is only needed to compute similarities
between observations. Thus, it may be applied to data, for which multidimensional
representation is not available. In this paper, we propose the implementation of
similarity forest for time series classification. We investigate 2 distance measures:
Euclidean and dynamic time warping (DTW) as the underlying measure for the
algorithm. We compare the performance of similarity forest with 1-nearest neighbor
and random forest on the UCR (University of California, Riverside) benchmark
database. We show that similarity forest with DTW, taking into account mean ranks,
outperforms other classifiers. The comparison is enriched with statistical analysis.
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1 Introduction

Time series classification is a well-developing research field, that gained much
attention from researchers and business during the last two decades apparently by
the fact that more and more data around us seems to be located in the time domain –
and thus fulfilling the definition of time series. Predictive maintenance [18], quality
monitoring [22], stock market analysis [20] or sales forecasting [17] are just a few
exemplar nowadays problems where time series are indeed present. The reason why
we usually apply to time series different methods from regular (non-time series) data
is the fact, that time series are ordered in time (or some other space with ordering)
and it is beneficial to use the information conveyed by the ordering.

In recent years, one could observe many advances on the field of time series
classification. In 2017, Bagnall et al. presented a comprehensive comparison of time
series classification algorithms [2], showing that despite there are dozens of far
more complex methods, 1-Nearest Neighbour (1NN) [6, 11] coupled with DTW [3]
distance constitutes a good baseline. In fact, it has been outperformed by several
classifiers, with Collective of Transformation Ensembles (COTE) [1] as the most
efficient one. Furthermore, COTE was extended with Hierarchical Vote system, first
to HIVE-COTE [13] and then finally to HIVE-COTE 2.0 [15] – a current state of
the art classifier for time series. In general, the success of COTE-family classifiers
is based on the observation, that in the case of time series it is highly beneficial
to use different data representations. For example, HIVE-COTE 1.0 utilizes five
ensembles based on different data transformation domains. However, a common
criticism of such an approach is its time complexity. In the case of HIVE-COTE,
it equals $ (=2;4), where = is a number of observations and ; is a length of series.
Another drawback, especially significant for practitioners is the complex structure
of the model ensembles that makes it hard to use HIVE-COTE without spending a
decent amount of time studying its components beforehand.

As an alternative to such complex models may be trying to achieve possibly
slightly worse performance in favour of model simplicity and reduced computation
time. A group of classifiers that seems to hold a great potential are those inspired
by Random Forest (RF) [4]. This already 20-years old algorithm remains in the
classifiers’ forefront, showing extremely good performance and robustness across
multiple domains. Fernandez-Delgado et al. [10] performed a comparison of 179
classifiers on 121 non-time series data sets originated from UCI Machine Learning
Repository [9], concluding RF to be the most accurate one. Unfortunately, the usage
of RF is essentially limited to multidimensional data, as they sample features from
original space while creating each node of decision trees.

In this paper, we propose a method for extending RF to work with time series
using similarity forests (SF). We significantly extend the applicability of the RF
method to time series data. Furthermore, the approach even outperforms traditional
classifiers for time series. The main goal of this paper is to enrich the pool of time
series classifiers by Similarity Forest for time series classification. SF was initially
proposed bySathe andAggarwal in 2017 [19], as amethod extendingRandomForests
to deal with arbitrary data sets, provided that we are able to compute similarities
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between observations.Wewould like to implement and tune themethod to time series
data. We investigate the performance of the model using two distance measures (the
algorithm’s hyper-parameter): Euclidean and DTW. Also, a comparison with other
selected time series classifiers is provided. We compare its performance against
1NN-ED, 1NN-DTW and RF.

The rest of the paper is structured as follows. In Section 2, we provide details
of similarity forest and we give more details about random forests. Additionally, we
discuss how similarity forest is related to random forest. Section 3 describes data
sets that we used and the comparison methodology. The corresponding results are
presented in Section 4. Finally, in Section 5 we give a brief summary of our research.

2 Classification Methods Used in Comparison

In the paper, we compare the standard random forest and the similarity forest with
the distance measure: ED (Euclidian distance) and DTW (dynamic time warping
distance). As benchmark methods, we also use the nearest neighbor method (1NN)
with distance measure ED and DTW. 1NN-ED and 1NN-DTW are very common
classificationmethods for time series classification [2]. For a review of thesemethods
refer to [14].

2.1 General Method of Random Forest Construction

Random forest consists of random decision trees. For the construction of a random
forest we usually take decision trees as simple as possible — without special criteria
for stopping, pruning, etc.

When building a decision tree, we start at a node # , which contains the entire
data set (bootstrap sample). Then, according to an established criterion, we split the
node # into two subnodes #1 and #2. In each subnode there are data subsets of
the data set from node # . We make this split in a way that is optimal for a given
split method. In each node, we write down how the split occurred. Then, proceeding
recursively, we split next nodes into subnodes until the stop criterion occurs. In our
case we take the simplest such criterion, namely we stop the split of a given node
when only elements of the same class are included in a node. We call such a node a
leaf and assign it a label which elements of the node (leaf) have.

Having built a tree, we can now use it (in the testing phase) to classify a new
observation. We pass this observation through the trained tree — starting from the
node # selecting each time one of the subnodes, according to the condition stored
in the node. We do this until we reach one of the leaves, and then we assign the test
observation to the class of the leaf.

Now, constructing the random forest, we collect a certain number of decision
trees, train them independently according to the above method and, in the test phase,
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use each of the trees to test new observation. Thus, each tree assigns a label to the
test observation. The final label (for the entire forest) we construct by voting, we
choose the most frequently appearing label among the decision trees.

2.2 Classical Random Forest

To create a (classical) random tree and a random forest [4], we proceed as described
above using the following node split method:

To obtain split conditions for a single tree, we select randomly a certain number
of features (

√
: for classification, : — number of features), and for each feature

we create a feature vector (column, variable) made of all elements of the data set
(bootstrap sample). For a given feature vector (variable), we determine a threshold
vector. First, we sort values of the feature vector (uniquely — without repeating
values). Let us name this sorted feature vector as+++ = (+1, +2, . . . ). Then we take the
values of the split as means of successive values of the vector+++ :

{8 =
+8 ++8+1

2
8 = 1, 2, . . . . (1)

Each splitting value divides the data set in node # into two subsets — the one (left)
in which we have elements with feature values smaller than {8 and the second (right)
with other elements. Then we check the quality of such a split.

The splitting point is chosen such that it minimizes the Gini index of the children
nodes. If ?1, ?2 . . . ?2 are the fractions of data points belonging to the 2 different
classes in node # , then the Gini index of that node is given by: � (#) = 1−∑2

8=1 ?
2
8
.

Then, if the node # is split into two children nodes #1 and #2, with =1 and =2
points, respectively, the Gini quality of the children nodes is given by:

�&(#1, #2) =
=1� (#1) + =2� (#2)

=1 + =2
.

Quality of the split is given by: �&(#) = � (#) − �&(#1, #2).

2.3 Similarity Forest

The similarity forest [19] differs from the ordinary (classical) random forest only in
the way we split nodes of trees. Instead of selecting a certain number of features,
we select randomly a pair of elements 41, 42 with different classes. Then, for each
element 4 of the subset of elements in a given node, we calculate the difference of
the squared distances to the elements 41 and 42:

|(4) = 3 (4, 41)2 − 3 (4, 42)2,
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where 3 is any fixed distance measure of the elements of the data set. We sort the
vector ||| uniquely (without duplicates) creating the vector+++ and continue as for the
classical decision tree. We calculate values of the split {8 (1), calculate the quality
of the node split using the Gini index (2.2) and choose the best split. In the learning
phase, we remember in each node how the optimal split occurred (elements 41,
42, |(4)). In the learning phase, in each node we write down the optimal split —
elements 41, 42, and value |(4)).

2.4 Random Forest vs Similarity Forest

The difference between a classical random tree and a similarity tree is that instead of
selecting

√
: of the features, we select only one pair of elements 41, 42. Generally,

we have much fewer possible node splits, which has a very good effect on the
computation time.

The second important difference is that in the similarity tree we use any distance
measure between elements of the data set. Therefore, we can use distance measures
specific to a data set. For example, for time series we can use the DTW distance,
much better suited for calculating the distance between time series, instead of the
Euclidean distance.

3 Experimental Setup

We investigated the performance of similarity forest on UCR time series repository
[7] (128 data sets). The latest update of the UCR database introduced several data
sets with missing observations and uneven sample lengths. However, the repository
includes a standardized version of the database without these impediments, and that
is the version we used.

All data sets are split into a training and testing subset, and all parameter opti-
mization is conducted on the training set only. We combined both parts and in the
next step, we used 100 random train/test splits.

4 Results

The error rates for each classifier can be found on the accompanying website1. In
the Table 1 we show a short summary of results, including a number of wins (draw
is not counted as a win) and mean ranks. Taking into account mean ranks, SF-DTW
is the best classifier, sightly ahead of RF (mean ranks correspondingly equal 2.64

1 https://github.com/ppias/similarity_forest_for_tsc
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Table 1 Number of wins (clearly wins) and mean ranks for examined methods.

Method 1NN-ED 1NN-DTW RF SF-ED SF-DTW

Wins 12 28 38 10 31
Mean rank 3.59 2.89 2.69 3.19 2.64

and 2.89). Figure 1 demonstrates comparison of error rates and ranks for classifiers.
These results lead to a conclusion that even though there is no clear winner, the top
efficient distances are dominated by RF and SF-based classifiers. Figure 2 shows
scatter plots of errors for pairs of classifiers.

1NN-DTW

1NN-ED

RF

SF-DTW

SF-ED
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Fig. 1 Comparison of error rates and ranks.
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Fig. 2 Comparison of error rates.

To identify differences between the classifiers, we present a detailed statistical
comparison. In the beginning, we test the null hypothesis that all classifiers perform
the same and the observed differences are merely random. The Friedman test with
Iman & Davenport extension is probably the most popular omnibus test, and it is
usually a good choice when comparing different classifiers [12]. The ?-value from
this test is equal to 0. The obtained ?-value indicates that we can safely reject the
null hypothesis that all the algorithms perform the same. We can therefore proceed
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with the post-hoc tests in order to detect significant pairwise differences among all
of the classifiers.

Demšar [8] proposes the use of the Nemenyi’s test [16] that compares all the
algorithms pair-wise. For a significance level U the test determines the critical
difference (CD). If the difference between the average ranking of two algorithms is
greater than CD the null hypothesis that the algorithms have the same performance
is rejected. Additionally, Demšar [8] creates a plot to visually check the differences,
the CD plot. In the plot, those algorithms that are not joined by a line can be regarded
as different.

In our case, with a significance of U = 0.05 any two algorithms with a difference
in the mean rank above 0.54 will be regarded as non equal (Figure 3). We can see
that we have three groups of methods. In the first group we have SF-DTW, RF and
1NN-DTW, in the second we have RF, 1NN-DTW and SF-ED and in the last group
we have SF-ED and 1NN-ED. Unfortunately, groups are not disjoint. The first group
is the group with the highest accuracy of classification. Hence, SF-DTW does not
statistically outperform RF. However, we can recommend it over RF because of
statistically the same quality and much better computational properties.

2 3 4

CD

SF-DTW

RF

1NN-DTW

SF-ED

1NN-ED

Fig. 3 Critical difference plot.

5 Conclusions

Our contribution is to implement similarity forest for time series classification using
two distance measures: Euclidean and DTW. Comparison based on the recently
updated UCR data repository (128 data sets) was presented. We showed that SF-
DTWoutperforms other classifiers, including 1NN-DTWwhich has been considered
as a strong baseline hard to beat for years. The statistical comparison showed, that RF
and SF-DTW are statistically insignificantly different, however taking into account
mean ranks the latter one is the best one.

There are many improvements that could be applied to the implementation that
we propose. For example, we could test other distance measures such as LCSS [21]
or ERP [5] that were successfully used in time series tasks. Another idea could be
to investigate the usage of boosting algorithm.
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Detection of the Biliary Atresia Using Deep
Convolutional Neural Networks Based on
Statistical Learning Weights via Optimal
Similarity and Resampling Methods

Kuniyoshi Hayashi, Eri Hoshino, Mitsuyoshi Suzuki, Erika Nakanishi,
Kotomi Sakai, and Masayuki Obatake

AbstractRecently, artificial intelligence methods have been applied in several fields,
and their usefulness is attracting attention. These methods are techniques that corre-
spond to models using batch and online processes. Because of advances in compu-
tational power, as represented by parallel computing, online techniques with several
tuning parameters are widely accepted and demonstrate good results. Neural net-
works are representative online models for prediction and discrimination. Many
online methods require large training data to attain sufficient convergence. Thus,
online models may not converge effectively for low and noisy training datasets. For
such cases, to realize effective learning convergence in online models, we introduce
statistical insights into an existing method to set the initial weights of deep convo-
lutional neural networks. Using an optimal similarity and resampling method, we
proposed an initial weight configuration approach for neural networks. For a practice
example, identification of biliary atresia (a rare disease), we verified the usefulness
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of the proposed method by comparing existing methods that also set initial weights
of neural networks.

Keywords: AUC, bootstrap method, leave-one-out cross-validation, projection ma-
trix, rare disease, sensitivity and specificity

1 Introduction

The core technique in deep learning corresponds to neural networks, including the
convolutional process. Since 2012, deep learning architectures have been frequently
used for image classification [1, 2]. More so, deep convolution neural networks
(DCNN) are representative nonlinear classification methods for pattern recognition.
The DCNN technique is used as a powerful framework for the entirety of image
processing [3]. The clinical medicine field presents many opportunities to perform
diagnoses using imaging data from patients. Therefore, DCNN techniques are ap-
plied to enhance diagnostic quality, e.g., applying a DCNN to a chest X-ray dataset
to classify pneumonia [2] and detecting breast cancer [4]. However, DCNN architec-
tures involve many parameters to be learned using training data. Therefore, effective
and efficient model development must realize effective learning convergence for
such parameters. Notably, it is important to set the initial parameter values to achieve
better learning convergence. Furthermore, several methods have been proposed to
set initial parameter values in the artificial intelligence (AI) field [5, 6]. However,
there are no clear guidelines for determining which existing methods should be used
in different situations. Thus, we propose an efficient initial weight approach using
existing methods from the viewpoints of optimal similarity and resampling methods.
Using a real-world clinical biliary atresia (BA) dataset, we evaluate the performance
of the proposed method compared with existing DCNNs. Additionally, we show the
usefulness of the proposed method in terms of learning convergence and prediction
accuracy.

2 Background

BA is a rare disease that occurs in children and is fatal unless treated early. Previous
studies have investigated models to identify BA by applying neural networks to pa-
tient data [7] and using an ensemble deep learning model to detect BA [8]. However,
these models were essentially for use in medical institutions, e.g., hospitals. Gener-
ally, certain stool colors in infants and children are highly correlated with BA [9]. In
Japan, the maternal and child health handbook includes a stool color card so parents
can compare their child’s stool color to the information on the card. Such fecal color
cards are widely used to detect BA because of their easy accessibility outside the
clinical environments. However, this stool color card screening approach for BA is
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subjective; thus, accurate and objective diagnoses are not always possible. Previ-
ously, we developed a mobile application to classify BA and non-BA stools using
baby stool images captured using an iPhone [10]. Here, a batch type classification
method was used, i.e., the subspace method, originating from the pattern recognition
field. Since BA is a rare disease, the number of events in the case group is generally
less. Thus, whenwe set the explanatory variables of the target observation as the pixel
values of a target image, the number of explanatory variables is much higher than the
number of observations, especially the disease group. With the subspace method, we
can efficiently discriminate such high-dimensional small-sample data. For example,
our previous study using the subspace method to classify BA and non-BA stools
showed that BA could be discriminated with reasonable accuracy by applying the
proposed method to image pixel data of the stool image data captured by a mobile
phone [10]. This application was an automated version of the stool color card from
the maternal and child health handbook. Unlike previous studies by [7, 8], the appli-
cation is widely available outside hospital environments. As described previously,
DCNNs are useful for image classification, including the automatic classification of
stool images for early BA detection.

3 Proposed Method

Dimension reduction and discrimination processing can be realized using the sub-
space method and DCNN techniques. In DCNN, layers based on padding, convo-
lution, and pooling correspond to the dimension reduction functions, and the affine
layer performs the discrimination. The primary motivation of this study is to propose
a method that properly sets the initial weights of the parameters in a DCNN using
statistical approaches. Our secondary motivation is to apply the proposed method to
real-world, high-dimensional, and small-sample clinical data.

3.1 Description of Related Procedures of the Convolution

For image discrimination in pattern recognition andmachine learning fields, the pixel
values of the image data are set as the explanatory variables for the target outcome.
Here, the data to be classified correspond to a high-dimensional observation. To
improve efficiency and demonstrate the feasibility of discriminant processing, the
dimensionality must be reduced to a manageable size before classification. The most
representative dimensionality reductionmethod is convolution in pattern recognition
and machine learning, which involves padding, convolution, and pooling operations.
After converting the input image to a pixel data matrix, the pixel data matrix is
surrounded with a numeric value of 0. Using a convolution filter, we reconstruct the
pixel data matrix while considering pixel adjacency information. Generally, the size
and convolution filter type are parameters that need optimization to realize sufficient
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prediction accuracy. However, some representative convolution filters that exhibit
good performance are known in the AI field, and we can essentially fix the size and
type of the convolution filter. Finally, pooling is performed to reduce the size of the
pixel data matrix after convolution. Here, we refer to the sequence of processing
from padding to pooling as the layer for feature selection.

3.2 Setting Conditions Assumed in This Study

We denote the input pattern matrices comprising numerical pixel values in hue (H),
saturation (S), and value (V) as X� (∈ R?×@), X( (∈ R?×@), and X+ (∈ R?×@),
respectively. First, we performed padding for the input pattern matrices in H, S, and
V, respectively, and then, performed a convolution in each signal patternmatrix using
a convolution filter. Next, we then applied max pooling to each pattern matrix after
convolution. Here, we denote the pattern matrices after the padding, convolution,
and max pooling as X̃� (∈ R?′×@′), X̃( (∈ R?′×@′), and X̃+ (∈ R?′×@′), respectively,
where ?′ and @′ are less than ? and @. Therefore, we combine the component values of
each pattern matrix after padding, convolution, and max pooling into a single pattern
matrix by simply adding them together. The combined pattern matrix after applying
the feature selection layer is expressed as X̃(∈ R?′×@′). Next, we applied convolution
and max pooling to the combined pattern matrix : times. Additionally, the input
vector after performing the convolution and max pooling : times is denoted by
x(∈ Rℓ×1), and the output of the DCNN and the label vectors are denoted y(∈ R1×1)
and t(∈ R1×1), respectively. In this study, we evaluated the difference between y
and t according to the mean square error function, i.e., ! (y, t) = 1

ℓ
‖ t − y ‖22 .

Here, we consider a simple neural network with three layers. Concretely, between
the first and second layers, we perform a linear transformation using W1 (∈ R2×ℓ)
and b1 (∈ R2×1). Then, a linear transformation is performed using W2 (∈ R1×2) and
b2 (∈ R1×1) between the second and third layers. Next, we defined 51 (x) and 52 (x)
as W1x + b1 and W2 51 (x) + b2, respectively. Note that we assume [2 is a nonlinear
transformation between the second and third layers, and we calculated the output
y as [2 ( 52 ◦ 51 (x)). Generally, y is calculated as a continuous value. For example,
with classification and regression tree methods, we can determine the optimal cutoff
point of yB from a prediction perspective.

3.3 General Approach to Update Parameters in CNNs

Here, we denote 51 (x) and 52 ◦ 51 (x) in the previous subsection as u1 and u2,
respectively. By performing the partial derivative of ! (y, t) with respect to W2, we
obtain m!

mW)
2
= m!

my
my
mu2

mu2
mW)

2
where m!

my = −
2
ℓ
(t − y), my

mu2
=
m[2 (u2)
mu2

, and mu2
mW)

2
= u1.

Additionally, we calculate [2 (u2) as 1/(1 + exp(−u2)) using the representative
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sigmoid function. Then, my
mu2

is calculated as [2 (u2) (1 − [2 (u2)). Therefore, we
obtain m!

mW)
2
= − 2

ℓ
(t−y)[2 (u2) (1−[2 (u2))u1. With the learning coefficient of W2, we

updateW)
2 toW)

2 −W2
m!

mW)
2
. Then, when performing the partial derivative of ! (y, t)

with respect to W1, we can obtain m!
mW1

= m!
my

my
mu2

mu2
mu1

mu1
mW1

where m!
my = −

2
ℓ
(t − y),

my
mu2

= [2 (u2) (1 − [2 (u2)), mu2
mu1

= W)
2 , and

mu1
mW1

= 2x) . Thus, we then obtain
m!
mW1

= − 4
ℓ
(t − y)[2 (u2) (1 − [2 (u2))W)

2 x
) . With the learning coefficient of W1, we

update W1 toW1 − W1
m!
mW1

.

3.4 Setting the Initial Weight Matrix in the Affine Layer

To ensure proper learning convergence in situations with limited training datasets, we
proposed amethod using optimal similarity and bootstrapmethods. Here, the number
of training data and the training dataset are denoted = and ((3 x 9 ), respectively,where
x 9 is the 9-th training observation ( 9 takes values 1 to =). Additionally, we normalized
each observation vector, such that its norm is one. By considering the discrimination
problem of two groups whose outcomes are 0 and 1, respectively, we divided {x 9 }
into {x 9 |y 9 = 0} and {x 9 |y 9 = 1}. Next, we defined {x 9 |y 9 = 0} and {x 9 |y 9 = 1}
as (0 and (1, respectively. First, we calculated the autocorrelation matrix with the
observations belonging to (0. Then, using the eigenvalues (_̂B0 ) and eigenvectors
(ûB0 ) for the autocorrelation matrix, we calculated the following projection matrix:

%̂0 :=
ℓ′0∑
B0=1

ûB0 û
)
B0
, (1)

where ℓ′0 takes values 1 to ℓ in Equation (1). Similarly, we calculated the autocor-
relation matrix with the observations belonging to (1. Then, with eigenvalues (_̂B1 )
and eigenvectors (ûB1 ) for the autocorrelation matrix, we calculate the following
projection matrix:

%̂1 :=
ℓ′1∑
B1=1

ûB1 û
)
B1
, (2)

where ℓ′1 takes values 1 to ℓ in Equation (2). Here, if the value of x
) (%̂1 − %̂0)x > 0,

we classify x into (1; otherwise, we classify x into (0.
From a prediction perspective, using the leave-one-out cross-validation [11],

we determined the optimal ℓ̂′0 and ℓ̂′1, which are minimum values satisfying g <
(∑ℓ′0

B0=1 _̂B0 )/(
∑ℓ
B0=1 _̂B0 ) and g < (

∑ℓ′1
B1=1 _̂B1 )/(

∑ℓ
B1=1 _̂B1 ), respectively. Here, g is

a tuning parameter to be optimized using the leave-one-out cross-validation. In the
second step, based on %̂1, we estimated ŷ 9 as x)9 %̂1x 9 . In the third step, using existing
approaches [5, 6], we generated , we generated normal random numbers and set an
initial matrix, vector, and scalar as Ŵ2, b̂1, and b̂2, respectively. Next, we extracted
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< observations randomly using the bootstrap method [12]. Using Ŵ2, b̂1, b̂2, and a
bootstrap sample of size <, we estimatedW2W1 as follows:

Ŵ2Ŵ1 =
1
<

<∑
8=1
([−1

2 (ŷ8) − (Ŵ2b̂1 + b̂2))x)8 (x8x)8 )−1, (3)

where we estimate the inverse of x8x)8 in Equation (3) using the naive approach from
the diagonal elements in x8x)8 . Additionally, using the generalized inverse approach,
we obtained Ŵ1 in the basis of Ŵ2 and Ŵ2Ŵ1. Finally, b̂1, b̂2, Ŵ1, and Ŵ2 were
used as initial vectors and matrices to update the parameters of the convolutional
neural network.

4 Analysis Results on Real-world Data

In this paper, all analyses were performed using R version 4.1.2 (R Foundation for
Statistical Computing). We applied the proposed method to a real BA dataset. Here,
stool image data with objects, such as diapers partially photographed on the image
were used. In this numeric experiment, we randomly divided 35 data into 15 training
and 20 test data, respectively. Next, we compared the proposed and existing methods
relative to the learning convergence and prediction accuracy on the training and test
data, respectively. Here, we set the values of the learning coefficients W1 and W2 to
0.1, respectively. Also, we prepared a single feature selection layer and performed the
convolution and max pooling process seven times. Each time an initial value was set
randomly, learning was performed 1000 times using the 15 training data, and it was
judged that learning converged when the value obtained by dividing the sum of the
absolute values of the difference between ŷ 9 and t 9 by 1000 became less than 0.01.
We repeated to randomly divide 35 data into 15 training and 20 test data five times.
As a result, we created five datasets. For each dataset, the sensitivity, specificity, and
AUC values of the training and test data were calculated using the parameters (b̂1, b̂2,
Ŵ1, and Ŵ2) at the time the learning first converged in the existing and our proposed
methods. Figure 1 shows the average of the five absolute values of the difference
between the correct label and the predicted value at each step when learning was
first converged for each method. We can observe that the error decreased steadily as
the proposed method progressed compared to the existing methods. When the model
was constructed using the weights at the learning convergence point and applied to
15 training data every time, the average values of sensitivity and specificity were
100.0%, and that of the AUC value was 1.000 for all methods. However, a difference
was observed among the compared methods on the test data. For the method by [5],
the average values of sensitivity, specificity, and AUC in the test data were 83.3%,
42.5%, and 0.629, respectively. Also, for that of [6], the average values of sensitivity,
specificity, and AUC in the test data were 85.0%, 40.0%, and 0.625, respectively.
With the proposed method, the average values of sensitivity, specificity, and AUC
obtained on the test data were 85.0%, 67.5%, and 0.763, respectively.
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Fig. 1 Transition of learning in each method.

5 Conclusion and Limitations

In this paper, we considered a discrimination problem using a DCNN for high-
dimensional small sample data and proposed a method by setting the initial weight
matrix in the affine layer. In situations of limited learning data, although transfer
learning can be used, we proposed an efficient learning method using the DCNN
method. In terms of learning convergence and results obtained from the test data,
we confirm that the proposed method is good. However, the results presented in this
paper are limited and the proposed method needs to be examined in more detail.
Therefore, in the future, through large-scale simulation studies and other real-world
data applications, we plan to investigate the differences between the proposedmethod
and existing methods by changing the number of feature selection layers and using
different convolution filters. We also plan to investigate the proposed method by
considering robustness and setting outliers on the simulation data.
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Some Issues in Robust Clustering

Christian Hennig

Abstract Some key issues in robust clustering are discussed with focus on the
Gaussian mixture model based clustering, namely the formal definition of outliers,
ambiguity between groups of outliers and clusters, the interaction between robust
clustering and the estimation of the number of clusters, the essential dependence
of (not only) robust clustering on tuning decisions, and shortcomings of existing
measurements of cluster stability when it comes to outliers.

Keywords: Gaussian mixture model, trimming, noise component, number of clus-
ters, user tuning, cluster stability

1 Introduction

Cluster analysis is about finding groups in data. Robust statistics is about methods
that are not affected strongly by deviations from the statistical model assumptions or
moderate changes in a data set. Particular attention has been paid in the robustness
literature to the effect of outliers. Outliers and other model deviations can have a
strong effect on cluster analysis methods as well. There is now much work on robust
cluster analysis, see [1, 19, 9] for overviews.

There are standard techniques of assessing robustness such as the influence func-
tion and the breakdown point [15] as well as simulations involving outliers, and these
have been applied to robust clustering as well [19, 9].

Here I will argue that due to the nature of the cluster analysis problem, there are
issues with the standard reasoning regarding robustness and outliers.

The starting point will be clustering based on the Gaussian mixture model, for
details see [3]. For this approach, = observations are assumed i.i.d. with density
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5[ (G) =
 ∑
:=1

c:i`: ,Σ: (G),

G ∈ R? , with  mixture components with proportions c: , i`: ,Σ: being the Gaussian
densitywithmean vectors `: , covariancematricesΣ: , : = 1, . . . ,  , [ being a vector
of all parameters. For given  , [ can be estimated by maximum likelihood (ML)
using the EM-algorithm, as implemented for example in the R-package “mclust”.
A standard approach to estimate  is the optimisation of the Bayesian Information
Criterion (BIC). Normally, mixture components are interpreted as clusters, and
observations G8 , 8 = 1, . . . , =, can be assigned to clusters using the estimated posterior
probability that G8 was generated by mixture component : . A problem with ML
estimation is that the likelihood degenerates if all observations assigned to a mixture
component lie on a lower dimensional hyperplane, i.e, a Σ: has an eigenvalue of
zero. This can be avoided by placing constraints on the eigenvalues of the covariance
matrices [8]. Alternatively, a non-degenerate local optimum of the likelihood can
be used, and if this cannot be found, constrained covariance matrix models (such as
Σ1 = . . . = Σ ) can be fitted instead, as is the default of mclust. Several issues with
robustness that occur here are also relevant for other clustering approaches.

2 Outliers vs Clusters

It is well known that the sample mean and sample covariance matrix as estimators
of the parameters of a single Gaussian distribution can be driven to breakdown by
a single outlier [15]. Under a Gaussian mixture model with fixed  , an outlier must
be assigned to a mixture component : and will break down the estimators of `: , Σ:
(which are weighted sample means and covariance matrices) for that component in
the same manner; the same holds for a cluster mean in :-means clustering.

Addressing this issue, and dealing with more outliers in order to achieve a high
breakdown point, is a starting point for robust clustering. Central ideas are trimming
a proportion of observations [7], adding a “noise component” with constant density
to catch the outliers [4, 3], mixtures with more robust component-wise estimators
such as mixtures of heavy-tailed distributions (Sec. 7 of [18]).

But cluster analysis is essentially different from estimating a homogeneous popu-
lation. Given a data set with  clear Gaussian clusters and standard ML-clustering,
consider adding a single outlier that is far enough away from the clusters. Assuming
a lower bound on covariance matrix eigenvalues, the outlier will form a one-point
cluster, the mean of which will diverge with the added outlier, and the original
clusters will be merged to form  − 1 clusters [10].

The same will happen with a group of several outliers being close together,
once more added far enough away from the Gaussian clusters. “Breakdown” of an
estimator it is usually understood as the estimator becoming useless. It is questionable
that this is the case here. In fact, the “group of outliers” can well be interpreted as
a cluster in its own right, and putting all these points together in a cluster could be

184



Some Issues in Robust Clustering

seen as desirable behaviour of the ML estimator, at least if two of the original  
clusters are close enough to each other that merging them will produce a cluster that
is fairly well fitted by a single Gaussian distribution; note that the Gaussian mixture
model does not assume strong separation between components, and a mixture of
two Gaussians may be unimodal and in fact very similar to a single Gaussian. A
breakdown point larger than a given U, 0 < U < 1

2 may not be seen as desirable in
cluster analysis if there can be clusters containing a proportion of less than U of the
data, as a larger breakdown point will stop a method from taking such clusters (when
added in large distance from the rest of the data) appropriately into account.

The core problem is that it is not clear what distinguishes a group of outliers
from a legitimate cluster. I am not aware of any formal definition of outliers and
clusters in the literature that allows this distinction. Even a one-point cluster is not
necessarily invalid. Here are some possible and potentially conflicting aspects of
such a distinction.

• A certain minimum size may be required for a cluster; smaller groups of points
may be called outliers.

• Groups of points in low density areas of the data may be called outliers. Note that
this particularly means that very widely spread Gaussian mixture components
would also be defined as outliers, deviating from the standard interpretation of
Gaussian mixture components as clusters.

• Members of non-Gaussian mixture components may be called outliers. This does
not seem to be a good idea, because Gaussianity cannot be assessed for too small
groups of observations, and furthermore in practice model assumptions are never
perfectly fulfilled, and it may be desirable to interpret homogeneous or unimodal
non-Gaussian parts of the data as “cluster” and fit them by a Gaussian component.

• The term “outlier” suggests that outliers lie far away from most other observa-
tions, so it may be required that outliers are farther away from the clusters than
the clusters are from each other. But this would be in conflict with the intuition
that strong separation is usually seen as a desirable feature for well interpretable
clusters. It may only be reasonable in applications in which there is prior informa-
tion that there is limited variation even between clusters, as is implied by certain
Bayesian approaches to clustering [17].

• The term “cluster” may be seen as flexible enough that a definition of an outlier
is not required. Clustering should accommodate whatever is “outlying” by fitting
it by one or more further clusters, if necessary of size one (single linkage clus-
tering can be useful for outlier detection, even though it is inappropriate for most
clustering problems).

Most of these items require specific decisions that cannot be made in any objective
and general manner, but only taking into account subject matter information, such
as the minimum size of valid clusters or the density level below which observations
are seen as outliers (potentially compared to density peaks in the distribution). This
implies that an appropriate treatment of outliers in cluster analysis cannot be expected
to be possible without user tuning.
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3 Robustness and the Number of Clusters

The last item suggests that there is an interplay between outlier identification and the
number of clusters, and that adding clusters might be a way of dealing with outliers;
as long as clusters are assumed to be Gaussian, a single additional component may
not be enough. More generally, concentrating robustness research on the case of
fixed  may be seen as unrealistic, because  is rarely known, although estimating
 is a notoriously difficult problem even without worrying about outliers [13].

The classical robustness concepts, breakdown point and influence function, as-
sume parameters from R@ with fixed @. If  is not fixed, the number of parameters
is not fixed either, and the classical concepts do not apply.

As an alternative to the breakdown point, [11] defined a “dissolution point”.
Dissolution is measured in terms of cluster memberships of points rather than in
terms of parameters, and is therefore also applicable to nonparametric clustering
methods. Furthermore, dissolution applies to individual clusters in a clustering;
certain clusters may dissolve, i.e., there may be no sufficiently similar cluster in a
new clustering computed after, e.g., adding an outlier; and others may not dissolve.
This does not require  to be fixed; the definition is chosen so that if a clustering
changes from  to ! <  clusters, at least  − ! clusters dissolve.

Hennig [10, 11] showed that when estimating  using the BIC and standard ML
estimation, reasonably well separated clusters do not dissolve when adding possibly
even a large percentage of outliers (this does not hold for every method to estimate
the number of clusters, see [11]). Furthermore, [11] showed that no method with
fixed  can be robust for data in which  is misspecified - already [7] had found
that robustness features in clustering generally depend on the data.

An implication of these results is that even in the fixed  problem, the standard
ML method can be a valid competitor regarding robustness if it comes with a rule
that allows to add one or possibly more clusters that can then be used to fit the
outliers (this is rarely explored in the literature, but [18], Sec. 7.7, show an example
in which adding a single component does not work very well).

An issuewith adding clusters to accommodate outliers is that inmany applications
it is appropriate to distinguish between meaningful clusters, and observations that
cannot be assigned to such clusters (often referred to as “noise”). Even though adding
clusters of outliers can formally prevent the dissolution of existing clusters, it may
be misleading to interpret the resulting clusters as meaningful, and a classification
as outliers or noise can be more useful. This is provided by the trimming and noise
component approaches to robust clustering. Also some other clusteringmethods such
as the density-based DBSCAN [5] provide such a distinction. On the other hand,
modelling clusters by heavy-tailed distributions such as in mixtures of t-distributions
will implicitly assign outlying observations to clusters that potentially are quite far
away. For this reason, [18], Sec. 7.7, provide an additional outlier identification
rule on top of the mixture fit. [6] even distinguish between “mild” outliers that are
modelled as having a larger variance around the same mean, and “gross” outliers to
be trimmed. The variety of approaches can be connected to the different meanings
that outliers can have in applications. They can be erroneous, they can be irrelevant
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noise, but they can also be caused by unobserved but relevant special conditions (and
would as such qualify as meaningful clusters), or they could be valid observations
legitimately belonging to a meaningful cluster that regularly produces observations
further away from the centre than modelled by a Gaussian distribution.

Even though currently there is no formal robustness property that requires both the
estimation of  and an identification or downweighting of outliers, there is demand
for a method that can do both.

Estimating  comes with an additional difficulty that is relevant in connection
with robustness. As mentioned before, in clustering based on the Gaussian mixture
model normally every mixture component will be interpreted as a cluster. In reality,
however, meaningful clusters are not perfectly Gaussian. Gaussian mixtures are very
flexible for approximating non-Gaussian distributions. Using a consistent method
for estimating  means that for large enough = a non-Gaussian cluster will be
approximated by several Gaussian mixture components. The estimated  will be
fine for producing a Gaussian mixture density that fits the data well, but it will
overestimate the number of interpretable clusters. The estimation of  , if interpreted
as the number of clusters, relies on precise Gaussianity of the clusters, and is as such
itself riddled with a robustness problem; in fact slightly non-Gaussian clusters may
even drive the estimated  →∞ if =→∞ [12, 14].

This is connected with the more fundamental problem that there is no unique
definition of a cluster either. The cluster analysis user needs to specify the cluster
concept of interest even before robustness considerations, and arguably different
clustering methods imply different cluster concepts [13]. A Gaussian mixture model
defines clusters by the Gaussian distributional shape (unless mixture components
are merged to form clusters [12]). Although this can be motivated in some real situ-
ations, robustness considerations require that distributional shapes fairly close to the
Gaussian should be accepted as clusters as well, but this requires another specifica-
tion, namely how far from a Gaussian a cluster is allowed to be, or alternatively how
separated Gaussian components have to be in order to count as separated clusters. A
similar problem can also occur in nonparametric clustering; if clusters are associated
with density modes or level sets, the cluster concept depends on how weak a mode
or gap between high level density sets is allowed to be to be treated as meaningful.

Hennig and Coretto [14] propose a parametric bootstrap approach to simultane-
ously estimate  and assign outliers to a noise component. This requires two basic
tuning decisions. The first one regards the minimum percentage of observations so
that a researcher is willing to add another cluster if the noise component can be re-
duced by this amount. The second one specifies a tolerance that allows a data subset
to count as a cluster even though it deviates to some extent from what is expected
under a perfectly Gaussian distribution. There is a third tuning parameter that is in
effect for fixed  and tunes how much of the tails of a non-Gaussian cluster can be
assigned to the noise in order to improve the Gaussian appearance of the cluster. One
could even see the required constraints on covariance matrix eigenvalues as a further
tuning decision. Default values can be provided, but situations in which matters can
be improved deviating from default values are easy to construct.
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4 More on User Tuning

User tuning is not popular, as it is often difficult tomake appropriate tuning decisions.
Many scientists believe that subjective user decisions threaten scientific objectivity,
and also background knowledge dependent choices cannot be made when investigat-
ing a method’s performance by theory and simulations. The reason why user tuning
is indispensable in robust cluster analysis is that it is required in order to make the
problem well defined. The distinction between clusters and outliers is an interpre-
tative one that no automatic method can make based on the data alone. Regarding
the number of clusters, imagine two well separated clusters (according to whatever
cluster concept of interest), and then imagine them to be moved closer and closer
together. Below what distance are they to be considered a single cluster? This is
essentially a tuning decision that the data cannot make on their own.

There are methods that do not require user tuning. Consider the mclust imple-
mentation of Gaussian mixture model based clustering. The number of clusters is by
default estimated by the BIC. As seen above, this is not really appropriate for large
data sets, but its derivation is essentially asymptotic, so that there is no theoretical
justification for it for small data sets either. Empirically it often but not always works
well, and there is little investigation of whether it tends to make the “right” decision
in ambiguous situations where it is not clear without user tuning what it even means
to be “right”. Covariance matrix constraints in mclust are not governed by a tuning of
eigenvalues or their ratios to be specified by the user. Rather the BIC decides between
different covariance matrix models, but this can be erratic and unstable, as it depends
on whether the EM-algorithm gets caught in a degenerate likelihood maximum or
not, and in situations where two or more covariance matrix models have similar BIC
values (which happens quite often), a tiny change in the data can result in a different
covariance matrix model being selected, and substantial changes in the clustering. A
tunable eigenvalue condition can result in much smoother behaviour. When it comes
to outlier identification, mclust offers the addition of a uniform “noise” mixture
component governed by the range of the data, again supposedly without user tuning.
This starts from an initial noise estimation that requires tuning (Sec. 3.1.2 of [3]) and
is less robust in terms of breakdown and dissolution than trimming and the improper
noise component, both of which require tuning [10, 11]. The ICL, an alternative to
the BIC (Sec. 2.6 of [3]), on the other hand, is known to merge different Gaussian
mixture components already at a distance at which they intuitively still seem to
be separated clusters. Similar comments apply to the mixture of t-distributions; it
requires user tuning for identifying outliers, scatter matrix constraints, and it has the
same issues with BIC and ICL as the Gaussian mixture.

Summarising, both the identification of and robustness against outliers and the
estimation of the number of clusters require tuning in order to be well defined
problems; user tuning can only be avoided by taking tuning decisions out of the
user’s hands and making them internally, which will work in some situations and
fail in others, and the impression of automatic data driven decision making that a
user may have is rather an illusion. This, however, does not free method designers
from the necessity to provide default tunings for experimentation and cases in which
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the users do not feel able to make the decisions themselves, and tuning guidance for
situations in which more information is available. A decision regarding the smallest
valid size of a cluster is rather well interpretable; a decision regarding admissible
covariance matrix eigenvalues is rather difficult and abstract.

5 Stability Measurement

Robustness is closely connected to stability. Both experimental and theoretical inves-
tigation of the stability of clusterings require formal stability measurements, usually
comparing two clusterings on the same data (potentially modified by replacing or
adding observations). Not assuming any parametric model, proximity measures such
as the Adjusted Rand Index (ARI; [16]), the Hamming distance (HD; [2]), or the
Jaccard distance between individual clusters [11] can be used. Note that [2], standard
reference on cluster stability in the machine learning community, state that stability
and instability are caused in the first place by ambiguities in the cluster structure
of the data, rather than by a method’s robustness or lack of it. Although the outlier
problem is ignored in that paper, it is true that cluster analysis can have other stability
issues that are as serious as or worse than gross outliers.

To my knowledge, none of the measures currently in use allow for a special
treatment of a set of outliers or noise; either these have to be ignored, or treated just
as any other cluster. Both ARI and HD, comparing clusterings C1 and C2, consider
pairs of observations G8 , G 9 and check whether those that are in the same cluster
in C1 are also in the same cluster in C2. An appropriate treatment of noise sets
#1 ∈ C1, #2 ∈ C2 would require that G8 , G 9 ∈ #1 are not just in the same cluster in
C2 but rather in #2, i.e., whereas the numberings of the regular clusters do not have
to be matched (which is appropriate because cluster numbering is meaningless), #1
has to be matched to #2. Corresponding re-definitions of these proximities will be
useful to robustness studies.

6 Conclusion

Key practical implications of the above discussions are:

• Outliers can be treated as forming their own clusters, or be collected in out-
lier/noise or trimmed sets, or be integrated in clusters of non-outliers. Which of
these is appropriate depends on the nature of outliers in a given application.

• Methods that do not identify outliers but add clusters in order to accommodate
them are valid competitors of robust clustering methods, as are nonparametric
density-based methods.

• Cluster analysis involving estimating the number of clusters and robustness require
tuning in order to define the problem they are meant to solve well. Method
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developers need to provide sensible defaults, but also to guide the users regarding
a meaningful interpretation of the tuning decisions.
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Robustness Aspects of Optimized Centroids

Jan Kalina and Patrik Janáček

Abstract Centroids are often used for object localization tasks, supervised seg-
mentation in medical image analysis, or classification in other specific tasks. This
paper starts by contributing to the theory of centroids by evaluating the effect of
modified illumination on the weighted correlation coefficient. Further, robustness
of various centroid-based tools is investigated in experiments related to mouth lo-
calization in non-standardized facial images or classification of high-dimensional
data in a matched pairs design. The most robust results are obtained if the sparse
centroid-basedmethod for supervised learning is accompanied with an intrinsic vari-
able selection. Robustness, sparsity, and energy-efficient computation turn out not to
contradict the requirement on the optimal performance of the centroids.

Keywords: image processing, optimized centroids, robustness, sparsity, low-energy
replacements

1 Introduction

Methods based on centroids (templates, prototypes) are simple yet widely used for
object localization or supervised segmentation in image analysis tasks and alsowithin
other supervised or unsupervised methods of machine learning. This is true e.g. in
various biomedical imaging tasks [1], where researchers typically cannot afford a too
large number of available images [3]. Biomedical applications also benefit from the
interpretability (comprehensibility) of centroids [11].

This paper is focused on the question how are centroid-based methods influenced
by data contamination. Section 2 recalls the main approaches to centroid-based
object localization in images, as well as a recently proposed method of [6] for op-
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timizing centroids and their weights. The performance of these methods to data
contamination (non-standard conditions) has not been however sufficiently investi-
gated. Particularly, we are interested in the performance of low-energy replacements
of the optimal centroids and in the effect of posterior variable selection (pixel selec-
tion). Section 2.1 presents novel expressions for images with a changed illumination.
Numerical experiments are presented in Section 3. These are devoted to mouth lo-
calization over raw facial images as well as over artificially modified images; other
experiments are devoted to high-dimensional data in a matched pairs design. The
optimized centroids of [6] and especially their modification proposed here turn out
to have remarkable robustness properties. Section 4 brings conclusions.

2 Centroid-based Classification (Object Localization)

Commonly used centroid-based approaches to object localization (template match-
ing) in images construct the centroid simply as the average of the positive examples
and typically use Pearson product-moment correlation coefficient A as the most com-
mon measure of similarity between a centroid c and a candidate part of the image
(say x). While the centroid and candidate areas are matrices of size (say) � × � pixels,
they are used in computations after being transformed to vectors of length 3 := ��.
This allows us to use the notation c = (21, . . . , 23)) and x = (G1, . . . , G3)) .

Assumptions A: We assume the whole image to have size #' × #� pixels. We
assume the centroid c = (2)8, 9 with 8 = 1, . . . , � and 9 = 1, . . . , � to be a matrix of
size � × � pixels. A candidate area x and nonnegative weights w with

∑
8

∑
9 |8 9 = 1

are assumed to be matrices of the same size as c.
For a given image, E will denote the set of its rectangular candidate areas of size

� × �. The candidate area fulfilling

arg max
x∈E

A (x, c) (1)

or (less frequently)
arg min

x∈E
| |x − c| |2 (2)

are classified to correspond to the object (e.g. mouth).
Let us consider here replacing A by the weighted correlation coefficient A|

arg max
x∈E

A| (x, c; w) (3)

with given non-negative weights w = (|1, . . . , |3)) ∈ R ? with
∑=
8=1 |8 = 1,

where R denotes the set of all real numbers. Let us further use the notation Ḡ| =∑3
9=1 | 9G 9 = w) x and 2̄| = w) c. We may recall A| between x and c to be defined

as

A, (x, c; w) =
∑3
8=1 |8 (G8 − Ḡ|) (28 − 2̄|)√∑3

8=1 [|8 (G8 − Ḡ|)2]
∑3
8=1 [|8 (28 − 2̄|)2]

. (4)
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Fig. 1 The workflow of the optimization procedure of [6].

A detailed study of [2] investigated theoretical foundations of centroid-based classi-
fication, however for the rare situation when (1) is replaced by

The sophisticated centroid optimization method of [6], outlined in Figure 1,
requires tominimize a nonlinear loss function corresponding to a regularizedmargin-
like distance (exploiting A|) evaluated for the worst pair from the worst image over
the training database (i.e. the worst with respect to the loss function). Subsequently,
optimization of the weights may be also performed, ensuring many pixels to obtain
zero weights (i.e. yielding a sparse solution). The optimal centroid may be used
as such, even without any weights at all; still, optimization of the weights leads
to a further improvement of the classification performance. In the current paper,
we always consider a linear (i.e. approximate) approach to centroid optimization,
although a nonlinear optimization is also successful as revealed in the comparisons
in [6].

2.1 Centroid-Based Object Localization: Asymmetric Modification
of the Candidate Area

In the context of object localization as described above, our aim is to express
A| (x∗, c; w) under modified candidate areas (say x∗) of the image x; we stress that
the considered modification of the image does not allow to modify the centroid c and
weights w. These considerations are useful for centroid-based object localization,
when asymmetric illumination is present in the whole image or its part. The weighted
variance (2

| (x; w) of xwith weightsw and the weighted covariance (| (x, c) between
x and c are denoted as

(2
| (x) =

∑
8, 9

|8 9 (G8 9 − Ḡ|)2, (| (x, c) =
∑
8, 9

|8 9 (G8 9 − Ḡ|) (28 9 − 2̄|). (5)

Further, the notation x + 0 with x = (G8 9 )8, 9 is used to denote the matrix (G8 9 + 0)8, 9
for a given 0 ∈ R. We also use the following notation. The image x is divided to two
parts x = (x1, x2)) ∈ R3 , where

∑
� or

∑
� � denote the sum over the pixels of the

first or second part, respectively.

Theorem 1 Under Assumptions A, the following statements hold.

1. For x∗ = x + Y, it holds A| (x∗, c) = A| (x, c) for Y > 0.
2. For x∗ = :x with : > 0, it holds A| (x∗, c) = A| (x, c).
3. For x = (x1, x2)) and x∗ = (x1, x2 + Y)) , it holds A| (x∗, c) =
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=
(| (x, c) + Y

∑
� � |8 928 9 − Y{22̄|

(| (c)
√
(2
| (x) + {2 (1 − {2)Y2 + 2Y(2{2 − 1) (∑� � |8 9G8 9 − {2Ḡ|)

, (6)

where {2 =
∑
� � |8 9 and Y ∈ R.

4. For x = (x1, x2)) and x∗ = (x1, :x2)) with : > 0, it holds

A| (x∗, c) = A| (x, c)
(| (x)
(∗| (x)

+
(: − 1)∑� � |8 9G8 9 (28 9 − 2̄|)

(| (c)(∗| (x)
, (7)

where

(
(∗| (x)

)2
= (2

| (x) + (:2 − 1)
∑
� �

|8 9G
2
8 9 −

:2 − 1
=

(∑
� �

|8 9G8 9

)2

−

−2
=
(: − 1)

(∑
�

|8 9G8 9

) (∑
� �

|8 9G8 9

)
. (8)

The proofs of the formulas are technical but straightforward exploiting known
properties of A| . The theorem reveals A| to be vulnerable to the modified illumina-
tion, i.e. all the methods based on centroids of Section 2 may be too influenced by
the data modification.

3 Experiments

3.1 Data

Three datasets are considered in the experiments. In the first dataset, the task is to
localize themouth in the database containing 212 grey-scale 2D facial images of faces
of healthy individuals of size 192 × 256 pixels. The database previously analyzed
in [6] was acquired at the Institute of Human Genetics, University of Duisburg-
Essen, within research of genetic syndrome diagnostics based on facial images [1]
under the projects BO 1955/2-1 and WU 314/2-1 of the German Research Council
(DFG). We consider the training dataset to consist of the first 124 images, while the
remaining 88 images represent an independent test set acquired later but still under
the same standardized conditions fulfilling assumptions of unbiased evaluation. The
centroid described below is used with � = 26 and � = 56.

Using always raw training images, the methods are applied not only to the raw test
set, but also to the test set after being artificially modified using models inspired by
Section 2.1. On the whole, five different versions of the test database are considered;
the modifications required that we first manually localized the mouths in the test
images:

1. Raw images.

196



Robustness Aspects of Optimized Centroids

2. Illumination. If we consider a pixel [8, 9] with intensity G8 9 in an image (say) 5 ,
then the grey-scale intensity 58 9 will be

5 ∗8 9 = 58 9 + _ | 9 − 90 |, 8 = 1, . . . , �, 9 = 1, . . . , �, (9)

where [80, 90] are the coordinates of the mouth and _ = 0.002.
3. A more severe version of the modification (ii) with _ = 0.004.
4. Asymmetry. In every test image, each true mouth x of size 26 × 56 pixels with

intensities G8 9 is replaced by

G∗8 9 =


G8 9 + 0.2, 8 = 1, . . . , 26, 9 = 1, . . . , 15,
G8 9 , 8 = 1, . . . , 26, 9 = 16, . . . , 41,
G8 9 + 0.1, 8 = 1, . . . , 26, 9 = 42, . . . , 56.

(10)

5. Rotation. Such candidate area is classified as the mouth in the given image,
which maximizes the loss (1) or (3) over the three versions of the image, namely
after rotations by +5, 0, and −5 degrees.

6. Image denoising (for raw images). The LWS-filter [5], replacing each grey
value by the least weighted squares estimate [7] computed from a circular
neighborhood with radius 4 pixels, was applied to each test image.

The optimized centroids were explained in [6] to be applicable also to classifi-
cation tasks for other data than images, if they follow a matched pairs design. We
use two datasets from [6] in the experiments and their classification accuracies are
reported in a 10-fold cross validation.

• AMI. The gene expressions of 4000 genes over 92 individuals in two versions (raw
or contaminated by outliers). The aim is to learn a classification rule allowing to
assign a new individual to one of the two given groups (controls or patients with
acute myocardial infarction (AMI)).

• Simulated data. The design mimicks a 1:1 matched case-control study with 2500
variables over 60 individuals in two versions (raw or contaminated by outliers)
and the aim is again to classify between two given groups (patients and controls).

Fig. 2 The average centroid used as the initial choice for the centroid optimization.

197



J. Kalina and P. Janáček

3.2 Methods

The following methods are compared in the experiments; standard methods are
computed using R software and we use our own C++ implementation of centroid-
based methods. The average centroid is obtained as the average of all mouths of the
training set, or the average across all patients. The centroid optimization starts with
the average centroid as the initial one, and the optimization of weights starts with
equal weights as the initial ones:

A. Centroid-based method (2).
B. Centroid-based method (1) with average centroid (Figure 2) and equal weights.
C. Centroid-based method (1) with average centroid, replacing A| by cosine sim-

ilarity defined for x ∈ R3 and y ∈ R3 as

cos \ =
x) y

| |x| |2 | |y| |2
=

∑3
8=1 G8H8(∑3

8=1 G
2
8

)1/2
(∑3

9=1 H
2
9
)1/2

. (11)

D. Centroid-based method (1) with optimal centroid and equal weights [6].
E. Centroid-based method (1) with optimal centroid and optimal weights as in

[6] (optimizing the centroid and only after that the weights), i.e. with posterior
variable selection (pixel selection).

F. Centroid-based method (1) as in [6], where however the weights are optimized
first, and then the centroid is optimized.

G. Centroid-based method (1) as in [6], where however each step of centroid
optimization is immediately followed by optimization of the weights; this method
performs (in contrary to [6]) intrinsic variable selection.

H. Centroid-based method (1) as in [6], where however each optimization step
proceeds over 10 worst images (instead of the very worst image).

I. Centroid-based method (1) with average centroid, where A| is used as ALWS [7]
with weight function

k1 (C) = exp
{
− C2

2g2

}
1
[
C <

3
4

]
, C ∈ [0, 1], (12)

corresponding to a (trimmed) density of the Gaussian N(0, 1) distribution; 1 de-
notes an indicator function. To explain, the computation of ALWS (G, H) starts by
fitting the LWS estimator in the linear regression of H as the response of G, and
A| is used with the weights determined by the LWS estimator.

J. The method (I) with the weight function k2 (C) = 1
[
C < 3

4
]
for C ∈ [0, 1].

K. The approach of [12] that is meaningful however only for themouth localization
dataset.

198



Robustness Aspects of Optimized Centroids

Table 1 Classification accuracy for three datasets. For the mouth localization data, modifications of
the test images are described in Section 3: (i) None (raw images); (ii) Illumination; (iii) Asymmetry;
(iv) Rotation; (v) Image denoising. A detailed description of the methods is given in Section 3.2.

Dataset
Mouth localization AMI Simul.

Method (i) (ii) (iii) (iv) (v) (vi) Raw Cont. Raw Cont.
A 0.90 0.86 0.81 0.88 0.81 0.93 0.73 0.66 0.71 0.67
B 0.93 0.90 0.86 0.92 0.86 0.95 0.76 0.70 0.77 0.70
C 0.89 0.84 0.74 0.89 0.84 0.93 0.72 0.61 0.70 0.64
D 1.00 0.98 0.95 0.99 0.93 0.98 0.85 0.83 0.80 0.77
E 1.00 1.00 0.98 1.00 0.95 0.98 0.87 0.85 0.83 0.80
F 1.00 0.98 0.96 1.00 0.89 0.97 0.86 0.82 0.79 0.73
G 1.00 0.96 0.95 1.00 0.93 0.99 0.88 0.85 0.86 0.82
H 1.00 1.00 0.98 1.00 0.92 0.96 0.86 0.83 0.84 0.79
I 0.96 0.96 0.93 0.99 0.94 0.96 0.77 0.72 0.75 0.71
J 0.94 0.93 0.89 0.95 0.89 0.93 0.74 0.69 0.72 0.66
K 1.00 1.00 0.97 0.95 0.97 0.96 Not meaningful

3.3 Results

The results as ratios of correctly classified cases are presented in Table 1. For the
mouth localization, the optimized centroids of methods D, F, and H turn out to out-
perform simple centroids (A, B, and C); the novel modifications E and G performing
intrinsic variable selection yield the best results. Simple standard centroids (A, B,
and C) are non-robust to data contamination; this follows from Section 2.1 and from
analogous considerations for other types of contaminating the images. On the other
hand, the robustness of optimized centroids is achieved by their optimization (but
not by using A| as such). Methods E and G are even able to overcome methods I
and J based on ALWS. We recall that A!,( is globally robust in terms of the break-
down point [4]), is computationally very demanding, and does not seem to allow
any feasible optimization. Other results reported previously in [6] revealed that also
numerous standard machine learning methods are too vulnerable (non-robust) with
respect to data contamination, if measuring the similarity by A or A| .

For the AMI dataset, methods E and G with variable selection perform the best
results for raw as well as contaminated datasets. For the simulated data, the method G
yields the best results and the method E stays only slightly behind as the second best
method.

4 Conclusions

Understanding the robustness of centroids represents a crucial question in image
processing with applications for convolutional neural networks (CNNs), because
centroids are very versatile tools that may be based on deep features learned by deep
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learning. We focus on small datasets, for which CNNs cannot be used [10]. This
paper is interested in performance of centroid-based object localization over small
databases with non-standardized images, which commonly appear e.g. in medical
image analysis.

The requirements on robustness with respect to modifications of the images turn
out not to contradict the requirements on optimality of the centroids. The method G
applying an intrinsic variable selection on the optimal centroid and weights [6]
can be interpreted within a broader framework of robust dimensionality reduction
(see [8] for an overview) or low-energy approximate computation. Additional results
not presented here reveal the method based on optimized centroids to be robust also
to small shift. Neither the theoretical part of this paper nor the experiments exploit
any specific properties of faces. The presented robust method has potential also for
various other applications, e.g. for deep fake detection by centroids, robust template
matching by CNNs [9], or applying filters in convolutional layers of CNNs.
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Data Clustering and Representation Learning
Based on Networked Data

Lazhar Labiod and Mohamed Nadif

Abstract To deal simultaneously with both, the attributed network embedding and
clustering, we propose a new model exploiting both content and structure infor-
mation. The proposed model relies on the approximation of the relaxed continuous
embedding solution by the true discrete clustering. Thereby, we show that incorporat-
ing an embedding representation provides simpler and easier interpretable solutions.
Experiment results demonstrate that the proposed algorithm performs better, in terms
of clustering, than the state-of-art algorithms, including deep learning methods de-
voted to similar tasks.

Keywords: networked data, clustering, representation learning, spectral rotation

1 Introduction

In recent years, Networks [4] and Attributed Networks (AN) [8] have been used to
model a large variety of real-world networks, such as academic and health care
networks where both node links and attributes/features are available for analysis.
Unlike plain networks in which only node links and dependencies are observed,
with AN, each node is associated with a valuable set of features. In other words, we
have X and W obtained/available independently of X. More recently, the learning
representation has received a significant amount of attention as an important aim
in many applications including social networks, academic citation networks and
protein-protein interaction networks. Hence, Attributed network Embedding (ANE)
[2] aims to seek a continuous low-dimensional matrix representation for nodes
in a network, such that original network topological structure and node attribute
proximity can be preserved in the new low-dimensional embedding.

Although, many approaches have emerged with Network Embedding (NE), the
research on ANE (Attributed Network Embedding) still remains to be explored
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[3]. Unlike NE that learns from plain networks, ANE aims to capitalize both the
proximity information of the network and the affinity of node attributes. Note that,
due to the heterogeneity of the two information sources, it is difficult for the existing
NE algorithms to be directly applied to ANE. To sum up, the learned representation
has been shown to be helpful in many learning tasks such as network clustering [13],
Therefore ANE is a challenging research problem due to the high-dimensionality,
sparsity and non-linearity of the graph data.

The paper is organized as follows. In Section 2we formulate the objective function
to be optimized, describe the different matrices used, and present a Simultaneous
Attributed Network Embedding and Clustering (SANEC) framework for embedding
and clustering. Section 3 is devoted to numerical experiments. Finally, the conclusion
summarizes the advantages of our contribution.

2 Proposed Method

In this section, we describe the SANEC method. We will present the formulation of
an objective function and an effective algorithm for data embedding and clustering.
But first, we show how to construct two matrices S and M integrating both types of
information –content and structure information– to reach our goal.

2.1 Content and Structure Information

An attributed network G = (V, E,X) consists of V the set of nodes, � ⊆ V ×V
the set of links, and X = [x1, x2, . . . , x=] where = = |V| and x8 ∈ R3 is the
feature/attribute vector of the node {8 . Formally, the graph can be represented by two
types of information, the content informationX ∈ R=×3 and the structure information
A ∈ R=×=, where A is an adjacency matrix of � and 08 9 = 1 if 48 9 ∈ � otherwise 0;
we consider that each node is a neighbor of itself, then we set 088 = 1 for all nodes.
Thereby, we model the nodes proximity by an (= × =) transition matrix W given by
W = D−1A, where D is the degree matrix of A defined by 388 =

∑=
8′=1 08′8 .

In order to exploit additional information about nodes similarity from X, we
preprocessed the above dataset X to produce similarity graph input WX of size
(= × =); we construct a K-Nearest-Neighbor (KNN) graph. To this end, we use the
heat kernel and !2 distance, KNN neighborhood mode with  = 15 and we set the
width of the neighborhood f = 1. Note that any appropriate distance or dissimilarity
measure can be used. Finally we combine in an (= × =) matrix S, nodes proximity
from both content information X and structure information W. In this way, we intend
to perturb the similarity W by adding the similarity from WX; we choose to take S
defined by S = W +WX (Figure 1).

As we aim to perform clustering, we propose to integrate it in the formulation of
a new data representation by assuming that nodes with the same label tend to have
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Fig. 1 Model and objective function of SANEC.

similar social relations and similar node attributes. This idea is inspired by the fact
that, the labels are strongly influenced by both content and structure information
and inherently correlated to both these information sources. Thereby the new data
representation referred to as M = (<8 9 ) of size (= × 3) can be considered as a
multiplicative integration of both W and X by replacing each node by the centroid
of their neighborhood (barycenter): i.e, m8 9 =

∑=
:=1 w8:x: 9 ,∀8, 9 or M = WX. In

this way, given a graph �, a graph clustering aims to partition the nodes in � into
: disjoint clusters {�1, �2, . . . , �: }, so that: (1) nodes within the same cluster are
close to each other while nodes in different clusters are distant in terms of graph
structure; and (2) the nodes within the same cluster are more likely to have similar
attribute values.

2.2 Model, Optimization and Algorithm

Let : be the number of clusters and the number of components into which the data
is embedded. With M and S, the SANEC method that we propose aims to obtain
the maximally informative embedding according to the clustering structure in the
attributed network data. Therefore, we propose to optimize

min
B,Z,Q,G

M − BQ>
2 + _

S −GZB>
2 B>B = I,Z>Z = I,G ∈ {0, 1}=×: (1)

where G = (68 9 ) of size (= × :) is a cluster membership matrix, B = (18 9 ) of size
(= × :) is the embedding matrix and Z = (I8 9 ) of size (: × :) is an orthonormal
rotation matrix which most closely maps B to G ∈ {0, 1}=×: . Q ∈ R3×: is the
features embedding matrix. Finally, The parameter _ is a non-negative value and
can be viewed as a regularization parameter. The intuition behind the factorization
of M and S is to encourage the nodes with similar proximity, those with higher
similarity in both matrices, to have closer representations in the latent space given
by B. In doing so, the optimisation of (1) leads to a clustering of the nodes into :
clusters given by G. Note that, both tasks –embedding and clustering– are performed
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simultaneously and supported by Z; it is the key to attaining good embedding while
taking into account the clustering structure. To infer the latent factor matrices Z, B,
Q and G, we shall derive an alternating optimization algorithm. To this end, we rely
on the following proposition.

Proposition 1. Let be S ∈ R=×=, G ∈ {0, 1}=×: , Z ∈ R:×: , B ∈ R=×: , we haveS −GZB>
2
=

S − BB>S
2 + ‖SB −GZ‖2 (2)

proof.We first expand the matrix norm of the left term of (2)S −GZB)
2
= ‖S‖2 +

GZB>
2 − 2)A (SGZB>) (3)

In a similar way, we obtain from the two terms of the right term of (2)S − SBB)
2
= | |S| |2 − ||SB| |2 due to B>B = I (4)

and ‖SB −GZ‖2 = ‖SB‖2 + ‖GZ‖2 − 2)A (SBZG>).

Due also to B>B = I, we have

‖SB −GZ‖2 = | |SB| |2 + ||GZB> | |2 − 2)A (SGZB>) (5)

Summing the two terms of (4) and (5) leads to the left term of (2).

‖S‖2 + ‖GZ‖2 − 2)A (SGZB>) =
S −GZB)

2 due to ‖GZ‖2 =
GZB>

2

Compute Z. Fixing G and B the problem which arises in (1) is equivalent to
minZ ‖S −GZB>‖2. From Proposition 1, we deduce that

min
Z

S −GZB>
2 ⇔ min

Z

S − BB>S
2 + ‖SB −GZ‖2 (6)

which can be reduced to maxZ )A (G>SBZ) s.t. Z>Z = I. As proved in page 29
of [1], let UΣV> be the SVD for G>SB, then Z = UV>.

Compute Q. Given G, Z and B, the opimization problem (1) is equivalent to
minQ ‖M − BQ>‖2, and we get

Q = M>B. (7)

Thereby Q is somewhere an embedding of attributes.
Compute B. Given G, Q and Z, the problem (1) is equivalent to

max
B

)A ((M>Q + _SGZ)B>) s.t. B>B = I.
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In the same manner for the computation of Z, let ÛΣ̂V̂> be the SVD for (M>Q +
_SGZ), we get

B = ÛV̂>. (8)

It is important to emphasize that, at each step, B exploits the information from the
matrices Q, G, and Z. This highlights one of the aspects of the simultaneity of
embedding and clustering.

Compute G: Finally, given B, Q and Z, the problem (1) is equivalent to
minG ‖SB −GZ‖2. As G is a cluster membership matrix, its computation is done as
follows: We fix Q, Z, B. Let B̃ = SB and calculate

68: = 1if : = argmin
:′
| |b̃8 − z:′ | |2 and 0 otherwise . (9)

In summary, the steps of the SANEC algorithm relying on S referred to as SANECS
can be deduced in Algorithm 1. The convergence of SANECS is guaranteed and
depends on the initialization to reach only a local optima. Hence, we start the
algorithm several times and select the best result which minimizes the objective
function (1).

Algorithm 1 : SANECS algorithm
Input: M and S from structure matrix W and content matrix X;
Initialize: B, Q and Z with arbitrary orthonormal matrix;
repeat

(a) - Compute G using (9)
(b) - Compute B using (8)
(c) - Compute Q using (7)
(d) - Compute Z using (6)

until convergence
Output: G: clustering matrix, Z: rotation matrix, B: nodes embedding and Q: attributes embed-
ding

3 Numerical Experiments

In the following, we compare SANECwith some competitive methods described later.
The performances of all clustering methods are evaluated using challenging real-
world datasets commonly testedwithANEwhere the clusters are known. Specifically,
we consider three public citation network data sets, Citeseer, Cora and Wiki, which
contain sparse bag-of-words feature vector for each document and a list of citation
links between documents. Each document has a class label. We treat documents as
nodes and the citation links as the edges. The characteristics of the used datasets are
summarized in Table 1. The balance coefficient is defined as the ratio of the number
of documents in the smallest class to the number of documents in the largest class
while nz denotes the percentage of sparsity.
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Table 1 Description of datasets (#: the cardinality).

datasets # Nodes # Attributes # Edges #Classes =I(%) Balance
Cora 2708 1433 5294 7 98.73 0.22
Citeseer 3312 3703 4732 6 99.14 0.35
Wiki 2405 4973 17981 17 86.46 0.02

In our comparison we include standard methods and also recent deep learning
methods; these differ in the way they use available information. Some of them (such
as K-means) use only X as the baseline, while others use more recent algorithms
based on X and W. All the compared methods are: TADW [14], DeepWalk [7] and
Spectral Clustering [11]. Using X and W we evaluated GAE and VGAE [5],
ARVGA [6], AGC [15] and DAEGC [12].

With the SANEC model, the parameter _ controls the role of the second term
| |S−GZB> | |2 in (1). Tomeasure its impact on the clustering performance of SANECS,
we vary _ in {0, 10−6, 10−3, 10−1, 100, 101, 103}. Through, many experiments, as
illustrated in Figure 2 we choose to take _ = 10−3. The choice of _ warrants in-depth
evaluation.
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Fig. 2 Sensitivity analysis of _ using ACC, NMI and ARI.

Compared to the true available clusters, in our experiments the clustering per-
formance is assessed by accuracy (ACC), normalized mutual information (NMI)
and adjusted rand index (ARI). We repeat the experiments 50 times, with differ-
ent random initialization and the averages (mean) are reported in Table 2; the best
performance for each dataset is highlighted in bold.

First, we observe the high performances of methods integrating information from
W. For instance, RTM and RMSC are better than classical methods using only either X
or W. On the other hand, all methods including deep learning algorithms relying on
X and W are better yet. However, regarding SANEC with both versions relying on W,
referred to as SANECW or S referred to as SANECS, we note high performances for all
the datasets andwith SANECS, we remark the impact ofWX; it learns low-dimensional
representations while suits the clustering structure.

To go further in our investigation and given the sparsity of X we proceeded to
standardization tf-idf followed by !2, as it is often used to process document-term
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matrices; see e.g, [9, 10], while in the construction of WX we used the cosine metric.
In Figure 3 are reported the results where we observe a slight improvement.

Table 2 Clustering performances (ACC % , NMI % and ARI %).

Datasets
Methods Input Cora Citeseer Wiki

ACC NMI ARI ACC NMI ARI ACC NMI ARI
K-means X 49.22 32.10 22.96 54.01 30.54 27.86 41.72 44.02 15.07
Spectral W 36.72 12.67 03.11 23.89 05.57 01.00 22.04 18.17 01.46
DeepWalk W 48.40 32.70 24.27 33.65 08.78 09.22 38.46 32.38 17.03
RTM X,W 43.96 23.01 16.91 45.09 23.93 20.26 43.64 44.95 13.84
RMSC X,W 40.66 25.51 08.95 29.50 13.87 04.88 39.76 41.50 11.16
TAWD X,W 56.03 44.11 33.20 45.48 29.14 22.81 30.96 27.13 04.54
VGAE X,W 50.20 32.92 25.47 46.70 26.05 20.56 45.09 46.76 26.34
ARGE X,W 64.0 44.9 35.2 57.3 35.0 34.1 47.34 47.02 28.16
ARVGE X,W 63.8 45.0 37.74 54.4 26.1 24.5 46.45 47.8 29.65
SANECW X,W 64.47 43.30 36.19 64.71 38.61 39.20 46.21 42.83 28.30
SANECS X, S 67.38 47.14 39.88 66.77 40.60 41.78 52.80 50.02 35.57
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Fig. 3 Evaluation of SANECS using tf-idf normalization of X and cosine metric for WX.

4 Conclusion

In this paper, we proposed a novel matrix decomposition framework for simultane-
ous attributed network data embedding and clustering. Unlike known methods that
combine the objective function of AN embedding and the objective function of clus-
tering separately, we proposed a new single framework to perform SANECS for AN
embedding and nodes clustering. We showed that the optimized objective function
can be decomposed into three terms, the first is the objective function of a kind of
PCA applied to X, the second is the graph embedding criterion in a low-dimensional
space, and the third is the clustering criterion. We also integrated a discrete rotation
functionality, which allows a smooth transformation from the relaxed continuous
embedding to a discrete solution, and guarantees a tractable optimization problem
with a discrete solution. Thereby, we developed an effective algorithm capitalizing
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on learning representation and clustering. The obtained results show the advantages
of combining both tasks over other approaches. SANECS outperforms all recent meth-
ods devoted to the same tasks including deep learning methods which require deep
models pretraining. However, there are other points that warrant in-depth evaluation,
such as the choice of _ and the complexity of the algorithm in terms of network size.
The proposed framework offers several perspectives and investigations. We have
noted that the construction of M and S is important, it highlights the introduction of
W. As for theWX we have observed that it is fundamental as it makes possible to link
the information from X to the network; this has been verified by many experiments.
First, we would like to be able to measure the impact of each matrix W and WX in
the construction of S by considering two different weights for W and WX as follows:
S = UW + VWX. Finally, as we have stressed that Q is an embedding of attributes,
this suggests to consider also a simultaneously ANE and co-clustering.
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Towards a Bi-stochastic Matrix Approximation
of k-means and Some Variants

Lazhar Labiod and Mohamed Nadif

Abstract The :-means algorithm and some :-means variants have been shown to
be useful and effective to tackle the clustering problem. In this paper we embed
:-means variants in a bi-stochastic matrix approximation (BMA) framework. Then
we derive from the :-means objective function a new formulation of the criterion. In
particular, we show that some :-means variants are equivalent to algebraic problem
of bi-stochastic matrix approximation under some suitable constraints. For optimiz-
ing the derived objective function, we develop two algorithms; the first one consists
in learning a bi-stochastic similarity matrix while the second seeks for the opti-
mal partition which is the equilibrium state of a Markov chain process. Numerical
experiments on real data-sets demonstrate the interest of our approach.

Keywords: :-means, reduced :-means, factorial :-means, bi-stochastic matrix

1 Introduction

These last decades unsupervised learning and specifically clustering, have received
a significant amount of attention as an important problem with many application in
data science. Let � = (08 9 ) be a = ×< continuous data matrix where the set of rows
(objects, individuals) is denoted by � and the set of columns (attributes, features) by
�. Many clustering methods such as hierarchical or not aim to construct an optimal
partition of � or, sometimes of �.

In this paper we show how some :-means variants can be presented as a bi-
stochastic matrix approximation problem under some suitable constraints generated
by the properties of the reached solution. To reach this goal, we first demonstrate that
some variants of :-means are equivalent to learning a bi-stochastic similarity matrix
having a diagonal block structure. Based on this formulation, referred to as BMA,
we derive two iterative algorithms, the first algorithm learns a bi-stochastic = × =
similarity matrix while the second directly seeks an optimal clustering solution.

Ourmain contribution is to establish the theoretical connection of the conventional
:-means and some of its variants to BMA framework. The implications of the
reformulation of :-means as a BMA problem are multi-folds:
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• It makes connections with recent clustering methods like spectral clustering and
subspace clustering.

• It learns a well normalized (bi-stochastic normalization) similarity matrix, bene-
ficial for spectral clustering [12].

• Unlike existing spectral and subspace methods which combine in a sequential
way, the steps of similarity learning and clustering derivation, our proposed
method jointly learns a block diagonal bi-stochastic affinitymatrixwhich naturally
expresses a clustering structure.

The rest of paper is organized as follows. Section 2 introduces some variants of
:-means. Section 3 provides Matrix Factorization (MF) and BMA formulations of
:-means variants. Section 4 discusses the BMA clustering algorithm and section 5
is devoted to numerical experiments. Finally, the conclusion summarizes the interest
of our contribution.

2 Variants of k-Means

Given a data matrix � = (08 9 ) ∈ '=×<, the aim of clustering is to cluster the rows
or the columns of �, so as to optimize the difference between � = (08 9 ) and the
clustered matrix revealing significant block structure. More formally, we seek to
partition the set of rows � = {1, . . . , =} into : clusters � = {�1, . . . , �; , . . . , �: }.
The partitioning naturally induce clustering index matrix ' = (A8;) ∈ R=×: , defined
as binary classification matrix such as we have A8; = 1, if the row 08 ∈ �; , and
0 otherwise. On the other hand, we note ( ∈ R<×: a reduced matrix specifying
the cluster representation. The detection of homogeneous clusters of objects can be
reached by looking for the twomatrices ' and (minimizing the total squared residue
measure

J " (', () = | |� − '(> | |2 (1)

The term '(> characterizes the information of � that can be described by the clusters
structure. The clustering problem can be formulated as a matrix approximation
problem where the clustering aims to minimize the approximation error between the
original data � and the reconstructed matrix based on the cluster structures.

Factorial :-means analysis (FKM) [9] and Reduced :-means analysis (RKM)
[1] are clustering methods that aim at simultaneously achieving a clustering of the
objects and a dimension reduction of the features. The advantage of these methods
is that both clustering of objects and low-dimensional subspace capturing the cluster
structure are simultaneously obtained. To achieve this objective, RKM is defined by
the minimizing problem of the following criterion

J' " (', (, &) = | |� − '(>&> | |2 (2)

and FKM is defined by the minimizing problem of the following criterion

J� " (', (, &) = | |�& − '(> | |2 (3)
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where ( ∈ R?×: with RKM and FKM, and& is an< by ? column-wise orthonormal
loading matrix.

3 Bi-stochastic Matrix Approximation of k-Means Variants

3.1 Low-rank Matrix Factorization (MF)

By considering :-means as a lower rank matrix factorization with constraints, rather
than a clusteringmethod, we can formulate constraints to impose onMF formulation.
Let �−1

A ∈ R:×: be diagonal matrix defined as follow �−1
A = �806(A−1

1 , . . . , A−1
:
).

Using the matrices �A , � and ', the matrix summary ( can be expressed as () =
�−1
A '

>�. Plugging ( into the objective function in equation, (1) leads to optimize
| |� − '(�−1

A '
>�) | |2 equal to

J"�− " (R) = | |� − RR>�| |2, where R = '�−0.5
A . (4)

On the other hand, it is easy to verify that the approximation RR>� of � is formed
by the same value in each block �;, (;=1,...,:) . Specifically, the matrix R>�, equal to
() , plays the role of a summary of � and absorbs the different scales of � and R.
Finally RR>� gives the row clusters mean vectors. Note that it is easy to show that
R verifies the following properties

R ≥ 0,R>R = �: ,RR>1 = 1, )A024(RR>) = :, (RR>)2 = RR> (5)

Next, in similar way, we can derive a MF formulation of FKM,

J"�−� " (R) = | |�& − RR>�& | |2, (6)

and of RKM, J"�−' " (R) = | |� − RR>�&&> | |2. (7)

3.2 BMA Formulation

Let � = RR> be a bi-stochastic similarity matrix, before giving the BMA formula-
tion of :-means variants, we need first to spell out the good properties of�. Indeed,
by construction from R, � has at least the following properties reported below that
can be easily proven.

� ≥ 0,�> = �,�1 = 1, )A024(�) = :,��> = �, '0=: (�) = : (8)

Given a datamatrix � and : row clusters, we can hope to discover the cluster structure
of � from�. Notice that from (8)� is nonnegative, symmetric, bi-stochastic (doubly
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stochastic) and idempotent. By setting the :means in the BMA framework, the
problem of clustering is reformulated as the learning of a structured bi-stochastic
similarity matrix � by minimizing the following :-means variants objective,

J�"�−:" (�) = | |� −��| |2, (9)

J�"�−� " (�) = | |�& −��& | |2, (10)

J�"�−' " (�) = | |� −��&&> | |2, (11)

with respect to the following constraints on �

� ≥ 0,� = �>,�1 = 1, )A (�) = :,��> = � (12)

and &>& = � for equations (10) and (11).

In the rest of the paper, we will consider only non-negativity, symmetry and bi-
stochastic constraints.

3.3 The Equivalence Between BMA and k-Means

The theorem below demonstrates that the optimization of the :-means objective and
the BMA objective under some suitable constraints are equivalent. The equation
(13) establishes the equivalence between :-means and the BMA formulation. Then,
solving the BMA objective function (9) is equivalent to finding a global solution of
the :-means criterion (1).

Theorem 1

arg min
',(
| |� − '(> | |2 ⇔ arg min

{�≥0,�=�> ,�1=1,) A (�)=:,��>=�}
| |� −��| |2 (13)

The proof of this equivalence is given in the appendix. Note that this new formulation
gives some interesting highlights on :-means and its variants:

• First, this shows that :-means is equivalent to learning a structured bi-stochastic
similarity matrix which is normalized bi-stochastic matrix with block diagonal
structure.

• Secondly, it establishes very interesting connections of :-means to many state-of-
the-art subspace clustering methods [10, 5]. Moreover, this formulation combines
the traditional two-step process used by subspace clustering methods, which con-
sist in first constructing an affinity matrix between data points and then applying
spectral clustering to this affinity. This allows joint learning of a similarity matrix
that better reflects the clustering structure by its block diagonal shape.

• Finally, it allows to apply the spirit of :-means for graph or similarity data.
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4 BMA Clustering Algorithm

First, we establish the relationship between our objective function and that used in
[12, 11]. From | |� −��| |2 = )A024(��>) + )A024(���>�) − 2)A024(��>�)

and by using the idempotent property, ��> = � , we can show that

arg min
�
| |� −��| |2 ⇔ arg min

�
| |��> −�| |2 ⇔ arg max

Π
)A024(��>�).

The algorithm for learning similarity matrix is summarized in Algorithm 1 as in
[12, 11]. Once the bi-stochastic similarity matrix � is obtained, the basic idea of
BMA is based on the following steps:

Algorithm 1 : Learning similarity matrix
Input: data �
Output: similarity matrix �
Initialize: C = 0 and �(0) = ��>
repeat

Π (C+1) ← [�(C ) + 1
=
(� −�(C ) + 11

>�(C )
=
)11> − 1

=
11
>�(C ) ]

until Satisfied convergence condition

1. Estimating iteratively � by applying at each time the matrix � on the current
� using the following update �̂(C+1) = ��(C) . This process converges to an
equilibrium (steady) state. Let : be the multiplicity of the eigenvalue of matrix
� equal to 1, �̂ is composed of : << = quasi-similar rows, where each row is
represented by its prototype.

2. Extracting the first left singular vectors c of �̂ using the Power method [4];
it is a well-known technique used for computing the largest left eigenvector of
data matrix. The numerical computation of the leading left singular vector of �̂,
consists in starting with an arbitrary vector c (0) , repeatedly performing updates
of c until stabilization of c as follow: c (C+1) = �̂�̂>c (C)and c (C) ← c (C )

| |c (C ) | | .We
stop the Power method if, |W (C+1) − W (C) | ' n where W (C+1) ← ||c (C+1) − c (C) | |.

Why does this work? At first glance, this process might seem uninteresting since it
eventually leads to a vector with all rows and columns coincide for any starting vector.
However our practical experience shows that, first the vectors c very quickly collapse
into rows blocks and these blocks move towards each other relatively slowly. If we
stop the Power method iteration at this point, the algorithm would have a potential
application for data visualization and clustering. The structure of c during short-run
stabilization makes the discovery of rows data ordering straightforward. The key is
to look for values of c that are approximately equal and reordering rows and columns
data accordingly. The BMA algorithm involves a reorganization of the rows of data
matrix �̂ according to sorted c. It also allows to locate the points corresponding to
an abrupt change in the curve of the first left singular vector c, and then assess the
number of clusters and the rows belonging to each cluster.
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5 Experiments Analysis

In this subsection we first ran our algorithm on two real world data set, the 16 town-
ships data which consists of the characteristics (rows) of 16 townships (columns),
each cell indicates the presence 1 or absence 0 of a characteristic on a township . This
example has been used by Niermann [7] for data ordering task and the author aims to
reveal a block diagonal form. The second data calledMero data, comes from archaeo-
logical data on Merovingian buckles found in north eastern France. This data matrix
consists of 59 buckles characterized by 26 attributes of description (see Marco-
torchino for more details [6]). Figure 1 shows in order, �, �̂, (' = ��) reorganized
according to the sorted c and the sorted c plot for both data sets. We also evaluated

Fig. 1 left: 16 Townships data - right: Mero data.

the performances of BMA on some real challenging datasets described in Table1.
We compared the performance of BMA with the spectral co-clustering (SpecCo)
[2], Non-negative Matrix Factorization (NMF) and Orthgogonal Non-negative Matrix
Tri-Factorization (NMTF) [3] by using two evaluation metrics: accuracy (ACC) cor-
responding to the percentage of well-classified elements and the normalized mutual
information (NMI) [8]. In Table 1, we observe that BMA outperforms all compared
algorithms for all tested datasets.

Table 1 Clustering Accuracy and Normalized Mutual Information (%) .
datasets # samples # features # classes per :-means NMF ONMTF SpecCO BMA

Classic3 3891 4303 3 ACC 88.6 73.33 70.10 97.89 98.30
NMI 74.9 51.46 51.46 91.17 91.91

CSTR 476 1000 4 ACC 76.3 75.30 77.41 80.21 90.73
NMI 65.4 66.40 67.30 66.36 77.86

Webkb4 4199 1000 4 ACC 60.10 66. 30 67.10 61.68 68.8
NMI 45.7 42.70 45.36 48.64 49

Leukemia 38 5000 3 ACC 72.2 89.21 90.32 94.73 97.36
NMI 19.4 75.42 80.50 82 90.69
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6 Conclusion

In this paper we have presented a new reformulation of some variants of :-means
as a unified BMA framework and established the equivalence between :-means and
BMA under suitable constraints. By doing so, :-means leads to learning a structured
bi-stochastic matrix which is beneficial for clustering task. The proposed approach,
not only learns a similarity matrix from data matrix, but uses this matrix in an iter-
ative process that converges to a matrix �̂ in which each row is represented by its
prototype. The clustering solution is given by the first left eigenvector of �̂ while
overcoming the knowledge of the number of clusters. We expect for future work to
integrate the idempotent and trace constraints on � to make the approximate simi-
larity matrix fits the best the case of a block diagonal structure.

Appendix
From the BMA’s formulation, we know that one can easily construct a feasible solu-
tion for :-means from a feasible solution of BMA’s formulation. Therefore, it remains
to show that from a global solution of BMA’s formulation, we can obtain a feasible
solution of :-means. In order to show the equivalence between the optimization of :-
means formulation and the BMA formulation, we first consider the following lemma.

Lemma If Π is a symmetric and positive semi-definite matrix, then we have
(0)c88′ ≤

√
c88c8′8′ (geometric mean) ∀8, 8′

(1)c88′ ≤ 1
2 (c88 + c8′8′) (arithmetic mean) ∀8, 8′

(2)max88′ c88′ = max8 c88
(3)c88 = 0⇒ c88′ = c8′8 = 0 ∀8, 8′

Proposition. Any positive semi-definite matrix Π satisfying the constraints:
c88′ = c8′8 ∀8, 8′ (symmetry)
c88′ =

∑
8′′ c88′′c8′8′′ ∀8, 8′ (idempotence)∑

8′ c88′ = 1 ∀8∑
8 c88 = :

is a matrix partitioned into : blocks Π = 3806(Π1, . . . ,Π; , . . . ,Π: ) with
Π; = 1

=;
1;1

C
;
, CA024(Π;) = 1 ∀; and ∑:

;=1 =; = =; 1; denotes the vector of ap-
propriate dimension with all its values are 1.

Proof. SinceΠ is idempotent (Π2 = Π), we have:∀8; c88 =
∑
8′ c

2
88′ From the Lemma

above, we know that there exist; 80 ∈ {1, 2, . . . , =} such as max88′ c8′8 = c8080 > 0.
Consider the set �80 defined by �80 = {8 |c808 > 0}, we can rewrite; ∀8 ∈ �80 ; c88 =∑
8′∈�

80
c2
8′8

∀8 ∈ �80 ;
∑
8′∈�

80

c8′8 =
∑
8′∈�

c8′8 = 1 (14)

219



L. Labiod and M. Nadif

and, ∑
8′∈�

80

∑
8∈�

80

c8′8 =
∑
8∈�

80

c8. =
∑
8∈�

80

1 = |�80 | (15)

∀8 c88 =
∑
8′
c2
88′ ⇒ ∀8 ∈ �80 ;

∑
8′∈�

80

c2
88′

c88
=

∑
8′∈�

80

( c88
′

c88
)c88′ = 1. (16)

From (14) and (16), we deduce that ∀8 ∈ �80 ;
∑
8′∈�

80
c8′8 =

∑
8′∈�

80
( c88′
c88
)c88′ ,

implying that: c88′ = c88 , ∀8, 8′ ∈ �80 . Substituting in (15) c88′ by c88 for all
8, 8′ ∈ �80 leads to

∑
8′∈�

80
c88′ =

∑
8′∈�

80
c88 = |�80 |c88 = 1, ∀8 ∈ �80 . From this we

can deduce that c88 = c88′ = 1
|�
80 |
, ∀8, 8′ ∈ �80 . We can therefore rewrite the matrix

Π in the form of a block diagonal matrix Π =
(
Π0 0
0 Π̄0

)
where Π0 is a block matrix

whose general term is defined by Π0
88′ =

1
|�
80 |
, ∀8, 8′ ∈ �80 and CA024(Π0) = 1.

The matrix Π̄0 is a positive semi-definite matrix which also verified the constraints
(Π̄0)C = Π̄0, Π̄01 = 1, (Π̄0)2 = Π̄0 and CA024(Π̄0) = : − 1.
By repeating the same process : − 1 times, we get the block diagonal form of Π.
Π = 3806(Π0,Π1, . . . ,Π; , . . . ,Π:−1) with, Π; = 1

=;
1;1

C
;
, CA024(Π;) = 1∀; and∑:−1

;=0 =; = =.
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Clustering Adolescent Female Physical Activity
Levels with an Infinite Mixture Model on
Random Effects

Amy LaLonde, Tanzy Love, Deborah R. Young, and Tongtong Wu

Abstract Physical activity trajectories from the Trial of Activity in Adolescent Girls
(TAAG) capture the various exercise habits over female adolescence. Previous analy-
ses of this longitudinal data from the University of Maryland field site, examined the
effect of various individual-, social-, and environmental-level factors impacting the
change in physical activity levels over 14 to 23 years of age. We aimed to understand
the differences in physical activity levels after controlling for these factors. Using a
Bayesian linear mixed model incorporating a model-based clustering procedure for
random deviations that does not specify the number of groups a priori, we find that
physical activity levels are starkly different for about 5% of the study sample. These
young girls are exercising on average 23 more minutes per day.

Keywords: Bayesian methodology, Markov chain Monte Carlo, mixture model,
reversible jump, split-merge procedures

1 Introduction

Physical activity and diet are arguably the two main controllable factors having the
greatest impact on our health. Whereas we have little to no control over factors like
our genetic predisposition to disease or exposure to environmental toxins, we have
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much greater control over our diet and activity levels. Despite our ability to choose to
engage in healthy behaviors such as exercising and eating a healthy diet, these choices
are plagued with the complexity of human psychology and the modern demands and
distractions that pervade our lives today. Several factors influence levels of physical
activity; we explore the factors impacting female adolescents using longitudinal data.

The University of Maryland, one of the six initial university field centers of the
Trial of Activity in Adolescent Girls (TAAG), selected to follow its 2006 8Cℎ grade
cohort for two additional time points over adolescence: 11Cℎ grade and 23 years of
age. The females were therefore measured roughly at ages 14, 17, and 23. In these
waves, there was no intervention as this observational longitudinal study aimed at
exploring the patterns of physical activity levels and associated factors over time.

The model presented in Wu et al. [1] motivates the current work. We fit a similar
linear mixed model controlling for the same variables. Rather than cluster the raw
physical activity trajectories to identify groups, we cluster the females within the
model-fitting procedure based on the values of the subject-specific deviations from
the adjusted physical activity levels. Fitting a Bayesian linear mixed model, we
simultaneously explore the subject groups through the use of reversible jumpMarkov
chain Monte Carlo (MCMC) applied to the random effects. Bayesian model-based
clustering methods have been applied within linear mixed models to identify groups
by clustering the fitted values of the dependent variable. For example, [2] fits cluster-
specific linear mixed models to the gene expression outcome using an EM algorithm
and [3] clusters gene expression in a similar fashion, except using Bayesian methods.
In contrast, we perform the clustering on the random effects, which allows us to
investigate the variability that is unexplained by the covariates of interest. This
methodology is advantageous because of its ability to jointly estimate all effects,
while also exploring the infinite space of group arrangements.

2 Bayesian Mixture Models for Heterogeneity of Random Effects

Let y8 = (H8,1, . . . , H8,) ) be the 8Cℎ subject’s average daily moderate-to-vigorous
physical activity (MVPA) at each of the ) = 3 time points. The MVPAwas collected
from ActiGraph accelerometers (Manufacturing Technologies Inc. Health Systems,
Model 7164, Shalimar, FL) worn for seven consecutive days. Accelerometers offered
a great alternative to self-report for tracking physical activity levels, and measuring
over seven days helped to account for differences in activity patterns duringweekdays
and weekends. Wu et al. [1] analyzed this cohort using mixed models that accounted
for the subject-specific variability. We let X8 represent the 8Cℎ subject’s values for
covariates.

Furthermore, let r = (A1, . . . , A=) represent the subject-specific random effects for
the = subjects. The simple linear mixed model is written in terms of each subject as

y8 = X8# + A81) + & 8 (1)
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where # represents the coefficients for the covariate effects and & 8 = (n8,1, . . . , n8,) )
are the residuals. We assume independence and normality in the residuals and the
random effects; hence, A8 ∼ # (0, f2

A ) and & 8 ∼ # (0, f2
n I) ) for 8 = 1, . . . , =.

Fitting the mixed model demonstrates substantial heterogeneity in the residuals,
the variability increases as the fitted values increase. A traditional approach to fixing
this violation would re-fit the model to the log-transformed MVPA values. Plots
of residuals versus fitted values in this model approach also exhibited evidence of
heterogeneity in the model; thus, still violating a core assumption of the regression
framework.Given the changes adolescents experience as they grow into young adults,
we expect to see heterogeneity in the physical activity patterns across this duration of
follow-up time. However, the inability of themodel to capture such changes over time
at these higher levels of physical activity suggests the need for model improvements.
The purpose of this analysis is to present our adjustments to previous analyses in
order to investigate underlying characteristics across different groups of females
formed based on deviations from adjusted physical activity levels.

Fig. 1 The plot on the left depicts the residuals versus fitted values for the linear mixed model
in Eq. (1); they demonstrate severe heteroscedasticity. The variance increases as the fitted values
increase. The plot on the right depicts the distribution of the random effects.

We fit the mixed model in Eq. (1) to the sample of female adolescents. The
heteroscedasticity depicted in Figure 1 reveals an increase in variance with predicted
minutes of moderate-to-vigorous physical activity, which we would expect. The plot
on the right in Figure 1 demonstrates that the distribution of the random effects do
not appear to follow our assumption of normally distributed and centered around
zero. The random effects do appear to follow a normal distribution over the lower
range of deviations with a subset of the subjects having larger positive deviations
from the estimated adjusted physical activity levels.

To capture the heterogeneity and allow the random effects to follow a non-normal
distribution, we assign the random effects a Gaussian mixture distribution. Before
introducing the model for heterogeneity, we note the likelihood distribution for the
observed outcomes, Y = (y1, . . . , y) ) ′. The moderate-to-vigorous physical activity
distribution is
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?(Y|#, r, f2
n ) =

=∏
8=1

)∏
C=1

(
2cf2

n

)− 1
2 exp

{
− 1

2f2
n

(H8,C − -8,C # − A8)2
}
. (2)

Then to account for the heterogeneity across subjects, the probability density for
the subject-specific deviations in physical activity is expressed as a mixture of one-
dimensional normal densities,

?(A8 |-, 22
r ) =

�∑
6=1

c6

(
2cf2

A ,6

)− 1
2 exp

{
− 1

2f2
A ,6

(A8 − `6)2
}
. (3)

Here, - = (`1, . . . , `�) ′ defines the group-specific mean deviations, 22
A =

(f2
A ,1, . . . , f

2
A ,�
) ′ characterizes the variances of the group-specific deviations, and

c = (c1, . . . , c�) ′ is the probability of membership in each group 6.
The model in Eqs. (2) and (3) can be fit using either an EM or Bayesian MCMC

procedures. Both require specification of a fixed number of �-groups. While we
may hypothesize that there are only two groups–one that is normally distributed and
centered at zero and another that is normally distributed and centered at a larger
mean–the assumption hinges on what we have seen from plots like those in Figure
1. The random effects in the aforementioned histogram, however, are being shrunk
towards zero by assumption; while a mixture model will allow the data to more
accurately depict the deviations observed in the girl’s physical activity levels. The
assumption of � groups can strongly influence the results of our model fitting. To
circumvent the issues associated with selecting � in either an EM algorithm or a
Bayesian finite mixture model framework, we implement a Bayesian mixture model
that incorporates � as an additional unknown parameter.

2.1 Bayesian Mixed Models With Clustering

Richardson and Green [4] adapts the reversible jump methodology to univariate nor-
mal mixture models. In addition to being able to characterize the distribution of �,
this Bayesian framework has the ability to simultaneously explore the posterior dis-
tribution for the covariate effects of interest. Furthermore, we will have the posterior
distributions of the group-defining parameters rather than just point estimates. Since
we are interested in the physical activity differences in subjects when controlling for
these covariates, we use Eq. (1) as the basis of our model.

The foundation of our clustering model is a finite mixture model on the random
effects, A8 , as shown in Eq. (3). For all 8 = 1, . . . , = and 6 = 1, . . . , �, A8 |28 , - ∼
�A (`28 , f2

A ,28
), (28 = 6) |0, � ∼ Categorical(c1, . . . , c�), `6 |g ∼ # (`0, g),

f2
A ,6 |2, X ∼ �� (2, X), 0 |� ∼ Dirichlet(U, . . . , U), � ∼ Uniform[1, �<0G], where 28

is the latent grouping variable tracking the assignment of A8 into any one of the� clus-
ters. The likelihood function for these subject-specific deviations, given the group as-

signment, 28 , is simply ?(A8 |28 = 6, `6, f2
A ,6) =

(
2cf2

A ,6

)− 1
2 exp

{
− 1

2f2
A,6
(A8 − `6)2

}
.
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This replaces the typical independent and identically distributed assumption of
A8 ∼ # (0, f2

A ) for all 8 with a normal distribution that is now conditional on group
assignment. The remainder of the model formulation follows closely to the frame-
work constructed in [4], except we have an additional layer of unknown parameters
defining the linear mixed model in Eq. (1).

We select conjugate priors so that the the posterior distributions of the unknown
parameters are analytically tractable. The prior on the mixing probabilities, 0, is a
symmetric Dirichlet distribution, reflecting the prior belief that belonging to any one
cluster is equally likely. To use the sampling methods of [4], we select a discrete
uniform prior on� that reflects our uncertainty on the number of groups, and impose
an a priori ordering of the `6, such that for any given value �, `1 < `2 < · · · < `� ,
to remove label switching. Thus, in the prior for the clustering parameters,

?(-) = �!
�∏
6=1

√
(2cg)− 1

2 exp
{
− 1

2g
(`6 − `0)2

}
?(f2

A ,6) =
X2

Γ(2) (f
2
A ,6)−2−1 exp

{
− X

f2
A ,6

}
?(�) = 1

�<0G
1{� ∈ [1, �<0G]},

where �<0G is set to be reasonably large and 1{� ∈ [1, �<0G]} is a discrete
indicator function, equal to 1 on the interval [1, �<0G] and 0 elsewhere.

The capacity of our sampler to move between dimensions is essential to our
ability to explore the grouping of the observations while simultaneously exploring
the parameters describing the relationships between the covariates and the outcome.
This means that we can allow the number of components of our mixture model on the
randomeffects to increase or decrease at each state of ourMCMCchain. Such changes
impact the dimension of the parameters of the mixture model, ) = (-, 22

A , �, 0, c).
Let ) denote the current state of the parameters (-, 22

A , �, 0, c) when propos-
ing move < where < ∈ {(, ", �, �} corresponds to a split, merge, birth and
death, respectively. Given the current state, ) , and move <, we propose a new
state, )<, under move <. The acceptance probability is written as 022< ()<, )) =
min

[
1, ? ()

< |r)@ ()< |<−1)
? () |r)@ () |<) |� |

]
where ?(·) and @(·) denote the target and proposal dis-

tribution, respectively. In our case, the target distribution is the posterior distribution
of our group-specific parameters, (-, 22

A , 0, c), given the data, r, which are the ran-
dom effects. Each proposed move changes the dimension of the parameters in ) by 1,
adding or deleting group-specific parameters. The ratio @()< |<−1)/@() |<) ensures
"dimension balancing", as explained in [4]. For moves increasing in dimension, the
Jacobian, |� |, is computed as |X)</X() , u) | because moving from ) to )< will re-
quire additional parameters, u to appropriately match dimensions. The opposite is
true for moves decreasing in dimension. This is what we refer to as the reversible
jump mechanism; each time a split is proposed, we must also design the reversible
move that would result in the currently merged component, and vice versa.
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Split and merge moves are implemented for our model. These moves update c,
`, and f for two adjacent groups or create two adjacent groups using three Beta-
distributed additional parameters, D, for dimension balancing in a similar way to
[4]. Within our context of random effects, births and deaths are not appropriate.
A singleton causes issues of identifiability because the A8 is no longer defined as
random. We do not allow for birth and death moves in our reversible jump methods.

3 Trial of Activity in Adolescent Girls (TAAG) and Model Results

Our analysis focuses only on these girls from the University of Maryland site of the
TAAG study who were measured at all three follow-up time points, beginning in
2006. After excluding girls with missing outcomes, the final sample consisted of 428
girls measured in 2006, 2009, and 2014. Missing covariate values were imputed for
four subjects using the values from the nearest time point.

We determine the group assignments using an MCMC sampler having 10,000 it-
erations, with a burn-in of 500 draws. The posterior distribution for� was extremely
peaked at � = 2. Summarization of the posterior distribution of the group assign-
ments via the least squares clustering method delivers the final arrangement, ĉ!( , of
girls into two groups describing their physical activity levels [5]. Since our sampler
explores several models for which group assignments and � can vary, we sample
additional draws from the posterior distribution of the remaining parameters of in-
terest using an MCMC sampler with the model specification of Eq. (1) with groups
fixed at our posterior assignment, ĉ!( , for the subject-specific random effects. This
additional chain was run for 10,000 iterations with a burn-in 500 draws, yielding the
results summarized below. Convergence diagnostics indicated that 10,000 iterations
sufficiently met the effective sample size threshold for estimating the coefficients for
the covariate effects, #, and the group-specific means, -, describing the deviations
of the girls’ physical activity levels [6].

After controlling for covariates believed to best describe the variation in the
physical activity levels of females, our method finds that there is a small subset of the
females who are much more active than the remainder of the sample. Every subject
in the more active group has fitted trajectories above the recommended 30 minutes
of exercise. Most of the population does not get the recommended allowance of daily
physical activity and this is well-supported in our analysis. All but two subjects in the
less active group have fitted trajectories that never pass the recommended 30minutes
of exercise. The random effects from this model better fit a normal distribution (not
centered at 0) for each of the two groups and do not show as much heteroscedasticity
over time as the one group model depicted in Figure 1.

Given these differences are observed even after controlling for the aforementioned
variables, we would like to further examine the characteristics that may set these
highly active females apart from the rest of the girls in our sample. To do this, we
look at a number of other covariates that were either excluded during the variable
selection process or were not measured at all time points. We use simple Wilcoxon
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tests on the available time points of the additional variables and on all time points
for covariates we adjusted for in the initial model.

We first note that the median BMI of the subset of highly active girls is sig-
nificantly lower than that of the remaining girls consistently at each TAAG wave.
Similarly, mother’s education level is also consistently significant at each time point.
These values are measured at each time point to reflect changes as the mother pursues
additional education, or as the girls become more aware of their mother’s education.
The majority of the highly active girls have mother’s who have completed college
or higher (75% or higher at each time point); whereas, the remainder of the sample
has mother’s with a range of education levels (less than high school through college
or more). The number of parks within a one-mile radius of the home is significantly
different among the high and low groups in the middle school and high school years,
when the girls are likely to be living at home. This variable may be an indicator of so-
cioeconomic status as families with more moneymay live in neighborhoods nearer to
parks. Finally, in the high school and college-aged years, the self-management strate-
gies among the highly active girls are significantly higher rated than the remainder
of the population.

In high school, the subset of highly active girls tend to have better self-described
health, participate in more sports teams, have access to more physical education
classes, and have been older at the time of their first menstrual period. At the college
age, these girls still have higher self-described health; however, the higher levels
of the global physical activity score and self-esteem scores are now significantly
improved in the subset of highly active females.

4 Discussion

We extended the mixed models of [1] with the application still focused on the same
428 girls from the TAAG, TAAG 2, and TAAG 3 studies. Within the Bayesian
linear mixed model, we implemented a clustering procedure aimed at clustering
girls into groups based on deviations from the adjusted physical activity levels.
These groups reflected the tendency for small subsets of females to be highly active.
Not surprisingly, only 24 girls (5% of our sample) were classified as highly active.

This group of highly active girls differs in several ways. These girls are more
active, and thus we expect that the age at first menstrual period will be higher. We
may also expect that the highly active girls are involved in more sports teams and
that they will have higher global physical activity scores. Some other interesting
characteristics of these girls, however, is their increased self-management strategies,
self-esteem scores, and self-described health. This may suggest that interventions
focusing on timemanagement and emphasizing self-efficacy could impact adolescent
female physical activity levels. In doing so, we could aim to increase self-esteem and
self-described health.

The ability to account for heterogeneity in the subject-specific deviations from
an adjusted model allows us to keep the outcome on the original scale while still
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improving model assumptions. Our model estimates model parameters while identi-
fying groups of observations with differing activity levels. In contrast, a frequentist
approach could be taken using EM algorithm; however, we would lose the ability
for the data to give statistical inference on the appropriate number of groups and to
incorporate posterior samples with different numbers of groups into the estimated
class label.

The current analysis looks only at identifying groups based on deviations from
the overall adjusted minutes of MVPA for the females. A natural extension would
be to look at clustering on the slope for time to begin to understand the various
patterns we observe among adolescent females over time. Furthermore, we may
want to incorporate a variable selection procedure into the fixed portion of the
model. The groups we find by either clustering on subject-specific intercepts and/or
slopes would be sensitive to the covariates selected, depending on the variability
captured by this fixed portion of the model. Physical activity, like most human
behavior, varies widely for a multitude of reasons, many of which we may not think
to or are unable to measure. Identifying groups when a traditional mixed model
constructed using standard variable selection methods suggests lack of fit can be a
useful step towards better understanding differences through post-hoc analyses of
the groups’ characteristics.
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Unsupervised Classification of Categorical Time
Series Through Innovative Distances

Ángel López-Oriona, José A. Vilar, and Pierpaolo D’Urso

Abstract In this paper, two novel distances for nominal time series are introduced.
Both of them are based on features describing the serial dependence patterns between
each pair of categories. The first dissimilarity employs the so-called association
measures, whereas the second computes correlation quantities between indicator
processes whose uniqueness is guaranteed from standard stationary conditions. The
metrics are used to construct crisp algorithms for clustering categorical series. The
approaches are able to group series generated from similar underlying stochastic
processes, achieve accurate results with series coming from a broad range of mod-
els and are computationally efficient. An extensive simulation study shows that the
devised clustering algorithms outperform several alternative procedures proposed in
the literature. Specifically, they achieve better results than approaches based on max-
imum likelihood estimation, which take advantage of knowing the real underlying
procedures. Both innovative dissimilarities could be useful for practitioners in the
field of time series clustering.

Keywords: categorical time series, clustering, association measures, indicator pro-
cesses

1 Introduction

Clustering of time series concerns the challenge of splitting a set of unlabeled time
series into homogeneous groups, which is a pivotal problem in many knowledge
discovery tasks [1]. Categorical time series (CTS) are a particular class of time
series exhibiting a qualitative range which consists of a finite number of categories.
Most of the classical statistical tools used for real-valued time series (e.g., the
autocorrelation function) are not useful in the categorical case, so different types
of measures than the standard ones are needed for a proper analysis of CTS. CTS
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arise in an extensive assortment of fields [2, 3, 7, 8, 9]. Since only a few works have
addressed the problem of CTS clustering [4, 5], the main goal of this paper is to
introduce novel clustering algorithms for CTS.

2 Two Novel Feature-based Approaches for Categorical Time
Series Clustering

Consider a set of B categorical time series S = {- (1)C , . . . , -
(B)
C }, where the 9-th

element - ( 9)C is a)9 -length partial realization from any categorical stochastic process
(-C )C ∈Z taking values on a number A of unordered qualitative categories, which are
coded from 1 to A so that the range of the process can be seen as V = {1, . . . , A}.
We suppose that the process (-C )C ∈Z is bivariate stationary, i.e., the pairwise joint
distribution of (-C−: , -C ) is invariant in C. Our goal is to perform clustering on the
elements of S in such a way that the series assumed to be generated from identical
stochastic processes are placed together. To that aim,we propose two distancemetrics
which are based on feature extraction.

2.1 Descriptive Features for Categorical Processes

Let {-C , C ∈ Z} be a bivariate stationary categorical stochastic process with range
V = {1, . . . , A}. Denote by 0 = (c1, . . . , cA ) the marginal distribution of -C , which
is, %(-C = 9) = c 9 > 0, 9 = 1, . . . , A . Fixed ; ∈ N, we use the notation ?8 9 (;) =
%(-C = 8, -C−; = 9), with 8, 9 ∈ V, for the lagged bivariate probability and the
notation ?8 | 9 (;) = %(-C = 8 |-C−; = 9) = ?8 9 (;)/c 9 for the conditional bivariate
probability.

To extract suitable features characterizing the serial dependence of a given CTS,
we start by defining the concepts of perfect serial independence and dependence
for a categorical process. We have perfect serial independence at lag ; ∈ N if and
only if ?8 9 (;) = c8c 9 for any 8, 9 ∈ V. On the other hand, we have perfect serial
dependence at lag ; ∈ N if and only if the conditional distribution ? · | 9 (;) is a
one-point distribution for any 9 ∈ V. There are several association measures which
describe the serial dependence structure of a categorical process at lag ;. One of
such measures is the so-called Cramer's {, which is defined as

{(;) =

√√√
1

A − 1

A∑
8, 9=1

(?8 9 (;) − c8c 9 )2
c8c 9

. (1)

Cramer's { summarizes the serial dependence patterns of a categorical process for
every pair (8, 9) and ; ∈ N. However, this quantity is not appropriate for characterizing
a given stochastic process, since two different processes can have the same value
of {(;). A better way to characterize the process -C is by considering the matrix
\ (;) =

(
+8 9 (;)

)
1≤8, 9≤A , where +8 9 (;) =

(?8 9 (;)−c8 c 9 )2
c8 c 9

. The elements of the matrix
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\ (;) give information about the so-called unsigned dependence of the process.
However, it is often useful to know whether a process tends to stay in the state it has
reached or, on the contrary, the repetition of the same state after ; steps is infrequent.
This motivates the concept of signed dependence, which arises as an analogy of the
autocorrelation function of a numerical process, since such quantity can take either
positive or negative values. Provided that perfect serial dependence holds, we have
perfect positive (negative) serial dependence if ?8 |8 (;) = 1 (?8 |8 (;) = 0) for all 8 ∈ V.

Since \ (;) does not shed light on the signed dependence structure, it would
be valuable to complement the information contained in \ (;) by adding features
describing signed dependence. In this regard, a common measure of signed serial
dependence at lag ; is the Cohen's ^, which takes the form

^(;) =
∑A
9=1 (? 9 9 (;) − c2

9
)

1 −∑A
9=1 c

2
9

. (2)

Proceeding as with {(;), the quantity ^(;) can be decomposed in order to obtain
a complete representation of the signed dependence pattern of the process. In this
way, we consider the vector K (;) = (K1 (;), . . . ,KA (;)), where each K8 is defined
as

K8 (;) =
?88 (;) − c2

8

1 −∑A
9=1 c

2
9

, (3)

8 = 1, . . . , A .
In practice, thematrix\ (;) and the vectorK (;)must be estimated from a)-length

realization of the process, {-1, . . . -) }. To this aim, we consider estimators of c8
and ?8 9 (;), ĉ8 and ?̂8 9 (;), respectively, defined as ĉ8 = #8

)
and ?̂8 9 (;) =

#8 9 (;)
) −; ,

where #8 is the number of variables -C equal to 8 in the realization {-1, . . . -) },
and #8 9 (;) is the number of pairs (-C , -C−;) = (8, 9) in the realization {-1, . . . -) }.
Hence, estimates of \ (;) and K (;), \̂ (;) and K̂ (;), respectively, can be obtained
by plugging in the estimates ĉ8 and ?̂8 9 (;) in (2) and (3), respectively. This leads
directly to estimates of {(;) and ^(;), denoted by {̂(;) and ̂̂(;).

An alternative way of describing the dependence structure of the process
{-C , C ∈ Z} is to take into consideration its equivalent representation as a multi-
variate binary process. The so-called binarization of {-C , C ∈ Z} is constructed as
follows. Let e1, . . . , eA ∈ {0, 1}A be unit vectors such that e: has all its entries
equal to zero except for a one in the :-th position, : = 1, . . . , A . Then, the binary
representation of {-C , C ∈ Z} is given by the process {_ C = (.C ,1, . . . , .C ,A )>, C ∈ Z}
such that _ C = e 9 if -C = 9 . Fixed ; ∈ N and 8, 9 ∈ V, consider the correlation
q8 9 (;) = �>AA (.C ,8 , .C−;, 9 ), which measures linear dependence between the 8-th and
9-th categories with respect to the lag ;. The following proposition provides some
properties of the quantity q8 9 (;).
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Proposition 1

Let {-C , C ∈ Z} be a bivariate stationary categorical process with range V =

{1, . . . , A}. Then the following properties hold:

1. For every 8, 9 ∈ V, the function q8 9 : N → [−1, 1] given by ; → q8 9 (;) =
�>AA (.C ,8 , .C−;, 9 ) is well-defined.

2. q8 9 (;) = 0⇔ ?8 9 (;) = c8c 9 .
3. q8 9 (;) = ±1⇔ ?8 9 (;) = ±

√
c8 (1 − c8)c 9 (1 − c 9 ) + c8c 9 .

4. q8 9 (;) =
√
c 9 (1−c8)
c8 (1−c 9 ) ⇔ ?8 | 9 (;) = 1.

The proof of Proposition 1 is quite straightforward and it is not shown in the
manuscript for the sake of brevity. According to Proposition 1, the quantity q8 9 (;)
can be used to explain both types of dependence, signed and unsigned, within the
underlying process. In fact, in the case of perfect unsigned independence at lag ;,
we have that ?8 9 (;) = c8c 9 for all 8, 9 ∈ V so that q8 9 (;) = 0 for all 8, 9 ∈ V in
accordance with Property 2 of Proposition 1. Under perfect positive dependence at
lag ;, ?8 |8 (;) = 1 for all 8 ∈ V. Then q88 (;) = 1 for all 8 ∈ V by following Property 4 of
Proposition 1. The same property allows to conclude that q88 (;) = −c8/(1−c8) for all
8 ∈ V in the case of perfect negative dependence. In sum, q8 9 (;) evaluates unsigned
dependence when 8 ≠ 9 and signed dependence when 8 = 9 . The previous quantities
can be encapsulated in a matrix �(;) = (q8 9 (;))1≤8, 9≤A , which can be directly
estimated by means of �̂(;) = (q̂8 9 (;))1≤8, 9≤A , where each q̂8 9 (;) is computed as
q̂8 9 (;) =

?̂8 9 (;)− ĉ8 ĉ 9√
ĉ8 (1− ĉ8) ĉ 9 (1− ĉ 9 )

(this is derived from the proof of Proposition 1).

2.2 Two Innovative Dissimilarities Between CTS

In this section we introduce two distance measures between categorical series based
on the features described above. Suppose we have a pair of CTS - (1)C and - (2)C , and
consider a set of ! lags, L = {;1, . . . , ;!}. A dissimilarity based on Cramer’s { and
Cohen’s ^, so-called 3�� , is defined as

3�� (- (1)C , -
(2)
C ) =

!∑
:=1

[ {42 (\̂ (;: ) (1) − \̂ (;: ) (2) )2

+
K̂ (;: ) (1) − K̂ (;: ) (2)2 ]

+
0̂ (1) − 0̂ (2)

2
,

where the superscripts (1) and (2) are used to indicate that the corresponding
estimations are obtained with respect to the realizations - (1)C and - (2)C , respectively.

An alternative distance measure relying on the binarization of the processes,
so-called 3�, is defined as
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3� (- (1)C , -
(2)
C ) =

!∑
:=1

{42 (�̂(;: ) (1) − �̂(;: ) (2) )2
+

0̂ (1) − 0̂ (2)
2
.

For a given set of categorical series, the distances 3�� and 3� can be used
as input for traditional clustering algorithms. In this manuscript we consider the
Partition Around Medoids (PAM) algorithm.

3 Partitioning Around Medoids Clustering of CTS

In this section we examine the performance of both metrics 3�� and 3� in the
context of hard clustering (i.e., each series is assigned to exactly one cluster) of CTS
through a simulation study.

3.1 Experimental Design

The simulated scenarios encompass a broad variety of generating processes. In par-
ticular, three setups were considered, namely clustering of (i) Markov Chains (MC),
(ii) HiddenMarkovModels (HMM) and (iii) NewDiscrete ARMA (NDARMA) pro-
cesses. The generatingmodelswith respect to each class of processes are given below.

Scenario 1. Clustering of MC. Consider four three-state MC, so-called MC1, MC2,
MC3 and MC4, with respective transition matrices V1

1, V
1
2, V

1
3 and V1

4 given by

V1
1 = "0C

3 (0.1, 0.8, 0.1, 0.5, 0.4, 0.1, 0.6, 0.2, 0.2),
V1

2 = "0C
3 (0.1, 0.8, 0.1, 0.6, 0.3, 0.1, 0.6, 0.2, 0.2),

V1
3 = "0C

3 (0.05, 0.90, 0.05, 0.05, 0.05, 0.90, 0.90, 0.05, 0.05),
V1

4 = "0C
3 (1/3, 1/3, 1/3, 1/3, 1/3, 1/3, 1/3, 1/3, 1/3),

where the operator "0C: , : ∈ N transforms a vector into a square matrix of order :
by sequentially placing the corresponding numbers by rows.
Scenario 2. Clustering of HMM. Consider the bivariate process (-C , &C )C ∈Z, where
&C stands for the hidden states and -C for the observable random variables. Process
(&C )C ∈Z constitutes an homogeneous MC. Both (-C )C ∈Z and (&C )C ∈Z are assumed
to be count processes with range {1, . . . , A}. Process (-C , &C )C ∈Z is assumed to
verify the three classical assumptions of a HMM. Based on previous considerations,
let HMM1, HMM2, HMM3 and HMM4 be four three-state HMM with respective
transition matrices V2

1, V
2
2, V

2
3 and V2

4 and emission matrices K2
1, K

2
2, K

2
3 and K2

4
given by
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V2
1 = "0C

3 (0.05, 0.90, 0.05, 0.05, 0.05, 0.90, 0.90, 0.05, 0.05), V2
2 = V2

1,

V2
3 = "0C

3 (0.1, 0.7, 0.2, 0.4, 0.4, 0.2, 0.4, 0.3, 0.3),
V2

4 = "0C
3 (1/3, 1/3, 1/3, 1/3, 1/3, 1/3, 1/3, 1/3, 1/3), K2

1 = V2
1,

K2
2 = "0C

3 (0.1, 0.8, 0.1, 0.5, 0.4, 0.1, 0.6, 0.2, 0.2), K2
3 = K2

2,

K2
4 = "0C

3 (1/3, 1/3, 1/3, 1/3, 1/3, 1/3, 1/3, 1/3, 1/3).

Scenario 3. Clustering of NDARMA processes. Let (-C )C ∈Z and (nC )C ∈Z, be two
count processes with range {1, . . . , A} following the equation

-C = UC ,1-C−1 + . . . + UC , ?-C−? + VC ,0nC + . . . + VC ,@nC−@ ,

where (nC )C ∈Z is i.i.d with %(nC = 8) = c8 , independent of (-B)B<C , and the i.i.d
multinomial random vectors

(UC ,1, . . . , UC , ? , VC ,0, . . . , VC ,@) ∼ MULT(1; q1, . . . , q? , i0, . . . , i@),

are independent of (nC )C ∈Z and (-B)B<C . The considered models are three three-state
NDARMA(2,0) processes and one three-state NDARMA(1,0) process with marginal
distribution 03 = (2/3, 1/6, 1/6), and corresponding probabilities in themultinomial
distribution given by

(q1, q2, i0)31 = (0.7, 0.2, 0.1), (q1, q2, i0)32 = (0.1, 0.45, 0.45),
(q1, q2, i0)33 = (0.5, 0.25, 0.25), (q1, i0)34 = (0.2, 0.8).

The simulation study was carried out as follows. For each scenario, 5 CTS of
length ) ∈ {200, 600} were generated from each process in order to execute the
clustering algorithms twice, thus allowing to analyze the impact of the series length.
The resulting clustering solution produced by each considered algorithm was stored.
The simulation procedure was repeated 500 times for each scenario and value of
) . The computation of 3�� and 3� was carried out by considering L = {1} in
Scenarios 1 and 2, and L = {1, 2} in Scenario 3. This way, we adapted the distances
to the maximum number of significant lags existing in each setting.

3.2 Alternative Metrics and Assessment Criteria

To better analyze the performance of both metrics 3�� and 3�, we also obtained
partitions by using alternative techniques for clustering of categorical series. The
considered procedures are described below.
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• Model-based approach using maximum likelihood estimation (MLE). The dis-
tance between two CTS is defined as the squared Euclidean distance between the
corresponding vectors of fitted coefficients via MLE (3"!� ).

• Model-based approach using mixtures. [4] propose to group a set of CTS by using
a mixture of first order Markov models via the EM algorithm (3�/ ).

• An hybrid framework for clustering CTS. [6] presents a dissimilarity between
categorical series which evaluates both closeness between raw categorical values
and proximity between dynamic patterns (3"+ ).

Note that the approach based on the distance 3"!� can be seen as a strict
benchmark in the evaluation task. The effectiveness of the clustering approaches
was assessed by comparing the clustering solution produced by the algorithms with
the true clustering partition, so-called ground truth. The latter consisted of � = 4
clusters in all scenarios, each group including the five CTS generated from the same
process. The value � = 4 was provided as input parameter to the PAM algorithm
in the case of 3�� , 3�, 3"!� and 3"+ . As for the approach 3�/ , a number of 4
components were considered for themixturemodel. Experimental and true partitions
were compared by using three well-known external clustering quality indexes, the
Adjusted Rand Index (ARI), the Jaccard Index (JI) and the Fowlkes-Mallows index
(FMI).

3.3 Results and Discussion

Average values of the quality indexes by taking into account the 500 simulation trials
are given in Tables 1, 2 and 3 for Scenarios 1, 2 and 3, respectively.

Table 1 Average results for Scenario 1.

) = 200 ) = 600
Method ARI JI FMI ARI JI FMI
3�� 0.774 0.710 0.830 0.916 0.886 0.935
3� 0.729 0.661 0.792 0.861 0.878 0.893

3"!� 0.704 0.633 0.772 0.841 0.792 0.876
3�/ 0.712 0.648 0.786 0.915 0.886 0.934
3"+ 0.406 0.363 0.665 0.379 0.363 0.650

The results in Table 1 indicate that the dissimilarity 3�� is the best performing one
when dealing with MC, outperforming the MLE-based metric 3"!� . The distance
3� is also superior to 3"!� . The measure 3�/ attains in Scenario 1 similar results
than 3�� , specially for ) = 600. The good performance of 3�/ was expected,
since the assumption of first order Markov models considered by this metric is
fulfilled in Scenario 1. Table 2 shows a completely different picture, indicating that
the metrics 3�� and 3� exhibit a significantly better effectiveness than the rest
of the dissimilarities. Finally, the quantities in Table 3 reveal that the model-based
distance 3"!� attains the best results when ) = 200, but is defeated by 3� when
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Table 2 Average results for Scenario 2.

) = 200 ) = 600
Method ARI JI FMI ARI JI FMI
3�� 0.707 0.639 0.777 0.856 0.810 0.888
3� 0.760 0.701 0.812 0.963 0.949 0.971

3"!� 0.354 0.342 0.512 0.299 0.310 0.478
3�/ 0.645 0.577 0.739 0.703 0.638 0.779
3"+ 0.089 0.175 0.323 0.062 0.175 0.301

Table 3 Average results for Scenario 3.

) = 200 ) = 600
Method ARI JI FMI ARI JI FMI
3�� 0.627 0.563 0.715 0.875 0.837 0.903
3� 0.680 0.612 0.754 0.925 0.901 0.941

3"!� 0.727 0.656 0.788 0.872 0.828 0.900
3�/ 0.586 0.562 0.693 0.647 0.577 0.738
3"+ 0.035 0.167 0.292 -0.028 0.138 0.251

) = 600. The metric 3�/ suffers again from model misspecification. In summary,
the numerical experiments carried out throughout this section show the excellent
ability of both measures 3�� and 3� to discriminate between a broad variety of
categorical processes. Specifically, these metrics either outperform or show similar
behavior than distances based on estimated model coefficients, which take advantage
of knowing the true underlying models.

It is worth highlighting that the methods proposed in this paper could have
promising applications in some fields as the clustering of genetic data sequences.
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Fuzzy Clustering by Hyperbolic Smoothing

David Masís, Esteban Segura, Javier Trejos, and Adilson Xavier

Abstract We propose a novel method for building fuzzy clusters of large data sets,
using a smoothing numerical approach. The usual sum-of-squares criterion is relaxed
so the search for good fuzzy partitions is made on a continuous space, rather than a
combinatorial space as in classical methods [8]. The smoothing allows a conversion
from a strongly non-differentiable problem into differentiable subproblems of op-
timization without constraints of low dimension, by using a differentiable function
of infinite class. For the implementation of the algorithm, we used the statistical
software ' and the results obtained were compared to the traditional fuzzy�–means
method, proposed by Bezdek [1].

Keywords: clustering, fuzzy sets, numerical smoothing

1 Introduction

Methods for making groups from data sets are usually based on the idea of disjoint
sets, such as the classical crisp clustering. The most well known are hierarchical
and :-means [8], whose resulting clusters are sets with no intersection. However,
this restriction may not be natural for some applications, where the condition for
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some objects may be to belong to two or more clusters, rather than only one. Several
methods for constructing overlapping clusters have been proposed in the literature
[4, 5, 8]. Since Zadeh introduced the concept of fuzzy sets [17], the principle of
belonging to several clusters has been used in the sense of a degree of membership
to such clusters. In this direction, Bezdek [1] introduced a fuzzy clustering method
that became very popular since it solved the problem of representation of clusters
with centroids and the assignment of objects to clusters, by the minimization of
a well-stated numerical criterion. Several methods for fuzzy clustering have been
proposed in the literature; a survey of these methods can be found in [16].

In this paper we propose a new fuzzy clustering method based on the numerical
principle of hyperbolic smoothing [15]. Fuzzy �-Means method is presented in
Section 2 and our proposed Hyperbolic Smoothing Fuzzy Clustering method in
Section 3. Comparative results between these two methods are presented in Section
4. Finally, Section 5 is devoted to the concluding remarks.

2 Fuzzy Clustering

The most well known method for fuzzy clustering is the original Bezdek’s �-means
method [1] and it is based on the same principles of :-means or dynamical clusters
[2], that is, iterations on two main steps: i) class representations by the optimization
of a numerical criterion, and ii) assignment to the closest class representative in
order to construct clusters; these iterations are made until a convergence is reached
to a local minimum of the overall quality criterion.

Let us introduce the notation that will be used and the numerical criterion for
optimization. Let X be an = × ? data matrix containing ? numerical observations
over = objects. We look for a  × ? matrix G that represents centroids of  clusters
of the = objects and an = ×  membership matrix with elements `8: ∈ [0, 1], such
that the following criterion is minimized:

, (X,U, �) =
=∑
8=1

 ∑
:=1
(`8: )< ‖x8 − g: ‖2

subject to
∑ 
:=1 `8: = 1, for all 8 ∈ {1, 2, . . . , =}

0 <
∑=
8=1 `8: < =, for all : ∈ {1, 2, . . . ,  },

(1)

where x8 is the 8-th row of X and g: is the :-th row of G, representing in R? the
centroid of the :-th cluster.

The parameter < ≠ 1 in (1) controls the fuzzyness of the clusters. According to
the literature [16], it is usual to take < = 2, since greater values of < tend to give
very low values of `8: , tending to the usual crisp partitions such as in :-means. We
also assume that the number of clusters,  , is fixed.

Minimization of (1) represents a non linear optimization problemwith constraints,
which can be solved using Lagrange multipliers as presented in [1]. The solution,
for each row of the centroids matrix, given a matrix U, is:
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g: =
=∑
8=1
(`8: )<x8

/
=∑
8=1
(`8: )< . (2)

The solution for the membership matrix, given a matrix centroids G, is [1]:

`8: =


 ∑
9=1

(
| |x8 − g: | |2

| |x8 − g 9 | |2

)1/(<−1)
−1

. (3)

The following pseudo-code shows the mains steps of Bezdek’s Fuzzy �-Means
method [1].

Bezdek’s Fuzzy c-Means (FCM) Algorithm

1. Initialize fuzzy membership matrix U = [`8: ]=× 
2. Compute centroids for fuzzy clusters according to (2)
3. Update membership matrix U according to (3)
4. If improvement in the criterion is less than a threshold, then stop; otherwise go

to Step 2.

Fuzzy �-Means method starts from an initial partition that is improved in each
iteration, according to (1), applying Steps 2 and 3 of the algorithm. It is clear that
this procedure may lead to local optima of (1) since iterative improvement in (2) and
(3) is made by a local search strategy.

3 Algorithm for Hyperbolic Smoothing Fuzzy Clustering

For the clustering problem of the = rows of data matrix X in  clusters, we can seek
for the minimum distance between every x8 and its class center g: :

I2
8 = min

g: ∈G
‖x8 − g: ‖22

where ‖ · ‖2 is the Euclidean norm. The minimization can be stated as a sum-of-
squares:

min
=∑
8=1

min
g: ∈G
‖x8 − g: ‖22 = min

=∑
8=1

I2
8

leading to the following constrained problem:

min
=∑
8=1

I2
8 subject to I8 = min

g: ∈G
‖x8 − g: ‖2, with 8 = 1, . . . , =.
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This is equivalent to the following minimization problem:

min
=∑
8=1

I2
8 subject to I8 − ‖x8 − g: ‖2 ≤ 0, with 8 = 1, . . . , = and : = 1, . . . ,  .

Considering the function: i(H) = max(0, H), we obtain the problem:

min
=∑
8=1

I2
8 subject to

 ∑
:=1

i(I8 − ‖x8 − g: ‖2) = 0 for 8 = 1, . . . , =.

That problem can be re-stated as the following one:

min
=∑
8=1

I2
8 subject to

 ∑
:=1

i(I8 − ‖x8 − g: ‖2) > 0, for 8 = 1, . . . , =.

Given a perturbation n > 0 it leads to the problem:

min
=∑
8=1

I2
8 subject to

 ∑
:=1

i(I8 − ‖x8 − g: ‖2) ≥ n for 8 = 1, . . . , =.

It should be noted that function i is not differentiable. Therefore, we will make
a smoothing procedure in order to formulate a differentiable function and pro-
ceed with a minimization by a numerical method. For that, consider the func-

tion: k(H, g) = H+
√
H2+g2

2 , for all H ∈ R, g > 0, and the function: \ (x8 , g: , W) =√∑?

9=1 (G8 9 − 6: 9 )2 + W2, for W > 0. Hence, the minimization problem is trans-
formed into:

min
=∑
8=1

I2
8 subject to

 ∑
:=1

k(I8 − \ (x8 , g: , W), g) ≥ n, for 8 = 1, . . . , =.

Finally, according to the Karush–Kuhn–Tucker conditions [10, 11], all the con-
straints are active and the final formulation of the problem is:

min
=∑
8=1

I2
8

subject to ℎ8 (I8 ,G) =
 ∑
:=1

k(I8 − \ (x8 , g: , W), g) − n = 0, for 8 = 1, . . . , =,

n , g, W > 0.

(4)

Considering (4), in [15] it was stated the Hyperbolic Smoothing Clustering Method
presented in the following algorithm.
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Hyperbolic Smoothing Clustering Method (HSCM) Algorithm
1. Initialize cluster membership matrix U = [`8: ]=× 
2. Choose initial values: G0, W1, g1, n1

3. Choose values: 0 < d1 < 1, 0 < d2 < 1, 0 < d3 < 1
4. Let ; = 1
5. Repeat steps 6 and 7 until a stop condition is reached:

6. Solve problem (P): min 5 (G) =
=∑
8=1

I2
8 with W = W; , g = g; and n = n ; , G

;−1

being the initial value and G; the obtained solution
7. Let W;+1 = d1W

; , g;+1 = d2g
; , n ;+1 = d3n

; and ; = ; + 1.

The most relevant task in the hyperbolic smoothing clustering method is finding
the zeroes of the function ℎ8 (I8 ,G) =

∑ 
:=1 k(I8 − \ (x8 , g: , W), g) − n = 0 for

for 8 = 1, . . . , =. In this paper, we used the Newton-Raphson method for finding
these zeroes [3], particularly the BFGS procedure [12]. Convergence of the Newton-
Raphson method was successful, mainly, thank to a good choice of initial solutions.
In our implementation, these initial approximationswere generated by calculating the
minimum distance between the 8-th object and the :-th centroid for a given partition.
Once the zeroes I8 of the functions ℎ8 are obtained, it is implemented the hyperbolic
smoothing. The final solution for this method consists on solving a finite number
of optimization subproblems corresponding to problem (P) in Step 6 of the HSCM
algorithm. Each one of these subproblems was solved with the R routine optim [13],
a useful tool for solving optimization problems in non linear programming. As far
as we know there is no closed solution for solving this step. For the future, we can
consider writing a program by our means, but for this paper we are using this R
routine.

Since we have that:
∑ 
:=1 k(I8 − \ (x8 , g: , W), g) = n , then each entry `8: of the

membership matrix is given by: `8: = k (I8−3: ,g)
n

. It is worth to note that fuzzyness
is controlled by parameter n .

The following algorithm contains the main steps of the Hyperbolic Smoothing
Fuzzy Clustering (HSFC) method.

Hyperbolic Smoothing Fuzzy Clustering (HSFC) Algorithm
1. Set n > 0
2. Choose initial values for:G0 (centroidsmatrix), W1, g1 and # (maximumnumber

of iterations)
3. Choose values: 0 < d1 < 1, 0 < d2 < 1
4. Set ; = 1
5. While ; ≤ #:
6. Solve the problem (P): Minimize 5 (G) = ∑=

8=1 I
2
8
with W = W (;) and g = g (;) ,

with an initial point G(;−1) and G(;) being the obtained solution
7. Set W (;+1) = d1W

(;) ,g (;+1) = d2g
(;) , y ; = ; + 1

8. Set `8: = k(I8 − \ (x8 , g: , W), g)/n for 8 = 1, . . . , = and : = 1, . . . ,  .
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4 Comparative Results

Performance of the HSFC method was studied on a data table well known from the
literature, the Fisher’s iris [7] and 16 simulated data tables built from a semi-Monte
Carlo procedure [14].

For comparing FCM and HSFC, we used the implementation of FCM in R
package fclust [6]. This comparison was made upon the within class sum-of-squares:
, (%) = ∑ 

:=1
∑=
8=1 `8: ‖x8 − g: ‖2. Both methods were applied 50 times and the

best value of , is reported. For simplicity here, for HSFC we used the following
parameters: d1 = d2 = d3 = 0.25, n = 0.01 and W = g = 0.001 as initial values. In
Table 1 the results for Fisher’s iris are shown, in which case HSFC performs slightly
better. It contains the Adjusted Rand Index (ARI) [9] between HSFC and the best
FCM result among 100 runs; ARI compares fuzzy membership matrices crisped into
hard partitions.

Table 1 Minimum sum-of-squares (SS) reported for the Fisher’s iris data table with HSFC and
FCM,  being the number of clusters, ARI comparing both methods. In bold best method.

Table  SS for HSFC SS for FCM ARI

2 152.348 152.3615 1
Fisher’s iris 3 78.85567 78.86733 0.994

4 57.26934 57.26934 0.980

Simulated data tables were generated in a controlled experiment as in [14], with
random numbers following a Gaussian distribution. Factors of the experiment were:
• The number of objects (with 2 levels, = = 105 and = = 525).
• The number of clusters (with levels  = 3 and  = 7).
• Cardinality (card) of clusters, with levels i) all with the same number of objects

(coded as card(=)), and ii) one large cluster with 50% of objects and the rest with
the same number (coded as card(≠)).

• Standard deviation of clusters, with levels i) all Gaussian random variables with
standard deviation (SD) equal to one (coded as SD(=)), and ii) one cluster with
SD=3 and the rest with SD=1 (coded as SD(≠)).

Table 2 contains codes for simulated data tables according to the codes we used.
Table 3 contains the minimum values of the sum-of-squares obtained for our

HSFC and Bezdek’s FCM methods; the best solution of 100 random applications
for FCM in presented and one run of HSFC. It also contains the ARI values for
comparing HSFC solution with that best solution of FCM. It can be seen that,
generally, HSFC method tends to obtain better results than FCM, with only few
exceptions. In 23 cases HSFC obtains better results, FCM is better in 5 cases, and
results are in same in 17 cases. However, ARI shows that partitions tend to be very
similar with both methods.
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Table 2 Codes and characteristics of simulated data tables; =: number of objects,  : number of
clusters, card: cardinality, DS: standard deviation.

Table Characteristcs Table Characteristcs

T1 = = 525,  = 3, card(=), SD(=) T9 = = 525,  = 3, card(≠), DS(=)
T2 = = 525,  = 7, card(=), SD(=) T10 = = 525,  = 7, card(≠), DS(=)
T3 = = 105,  = 3, card(=), SD(=) T11 = = 105,  = 3, card(≠), DS(=)
T4 = = 105,  = 7, card(=), SD(=) T12 = = 105,  = 7, card(≠), DS(=)
T5 = = 525,  = 3, card(=), SD(≠) T13 = = 525,  = 3, card(≠), DS(≠)
T6 = = 525,  = 7, card(=), SD(≠) T14 = = 525,  = 7, card(≠), DS(≠)
T7 = = 105,  = 3, card(=), SD(≠) T15 = = 105,  = 3, card(≠), DS(≠)
T8 = = 105,  = 7, card(=), SD(≠) T16 = = 105,  = 7, card(≠), DS(≠)

Table 3 Minimum sum-of-squares (SS) reported for HSFC and FCM methods on the simulated
data tables. Best method in bold.

Table  SS for SS for ARI Table  SS for SS for ARI
HSFC FCM HSFC FCM

2 7073.402 7073.814 0.780 2 12524.31 12524.31 0.900
T1 3 3146.119 3146.119 1 T9 3 9269.361 9269.611 1

4 2983.651 2983.651 1 4 6298.47 6298.368 1
2 16987.19 16987.71 0.764 2 5466.893 5466.912 0.890

T2 3 11653.22 11653.22 1 T10 3 2977.58 2977.58 1
4 7776.855 7777.396 1 4 2745.721 2746.671 1
2 3923.051 3923.062 0.763 2 2969.247 2969.32 0.860

T3 3 2917.13 2917.13 0.754 T11 3 1912.323 1912.323 1
4 2287.523 2256.298 0.993 4 1401.394 1401.394 1
2 1720.365 1720.374 0.992 2 1816.056 1816.056 1

T4 3 569.3112 569.3112 1 T12 3 525.7118 525.7118 1
4 535.5491 535.3541 1 4 477.0593 477.2696 1
2 15595.67 15595.67 0.910 2 12804.03 12805.05 0.920

T5 3 11724.93 11725.28 1 T13 3 8816.805 8817.702 1
4 8409.738 8409.738 0.984 4 6293.774 6293.951 1
2 11877.96 11877.96 0.970 2 16228.07 16228.98 0.920

T6 3 8299.779 8300.718 1 T14 3 7255.113 7255.423 1
4 7212.611 7213.725 1 4 6427.313 6427.313 1
2 4336.261 4336.507 0.955 2 2616.286 2616.943 1

T7 3 3041.076 3041.076 1 T15 3 1978.017 1978.233 1
4 2395.683 2421.333 1 4 1526.895 1526.953 1
2 1767.43 1767.43 1 2 2226.923 2226.212 0.962

T8 3 1380.766 1381.019 1 T16 3 1232.074 1232.124 1
4 1215.302 1211.235 1 4 982.7074 982.9721 1

249



D. Masís et al.

5 Concluding Remarks

In hyperbolic smoothing, parameters g, W and n tend to zero, so the constraints in
the subproblems make that problem (P) tends to solve (1). Parameter n controls the
fuzzyness degree in clustering; the higher it is, the solution becomes more and more
fuzzy; the less it is, the clustering is more and more crisp. In order to compare results
and efficiency of the HSFC method, zeroes of functions ℎ8 can be obtained with any
method for solving equations in one variable or a predefined routine. According to
the results we obtained so far and the implementation of the hyperbolic smoothing
for fuzzy clustering, we can conclude that, generally, the HSFCmethod has a slightly
better performance than original Bezdek’s FCM on small real and simulated data
tables. Further research is required for testing performance of HSFC method on very
large data sets, with measures of efficiency, quality of solutions and running time.
We are also considering to study further comparisons between HSFC and FCMwith
different indices, and writing the program for solving Step 6 in HSFC algorithm, that
is the minimization of 5 (�), by our means, instead of using the optim routine in R.
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Stochastic Collapsed Variational Inference for
Structured Gaussian Process Regression
Networks

Rui Meng, Herbert K. H. Lee, and Kristofer Bouchard

Abstract This paper presents an efficient variational inference framework for a
family of structured Gaussian process regression network (SGPRN) models. We
incorporate auxiliary inducing variables in latent functions and jointly treat both
the distributions of the inducing variables and hyper-parameters as variational pa-
rameters. Then we take advantage of the collapsed representation of the model and
propose structured variational distributions, which enables the decomposability of a
tractable variational lower bound and leads to stochastic optimization. Our inference
approach is able to model data in which outputs do not share a common input set, and
with a computational complexity independent of the size of the inputs and outputs
to easily handle datasets with missing values. Finally, we illustrate our approach on
both synthetic and real data.

Keywords: stochastic optimization, Gaussian process, variational inference, multi-
variate time series, time-varying correlation

1 Introduction

Multi-output regression problems arise in various fields. Often, the processes that
generate such datasets are nonstationary. Modern instrumentation has resulted in
increasing numbers of observations, as well as the occurrence of missing values.
This motivates the development of scalable methods for forecasting in such datasets.

Multi-ouput Gaussian process models or multivariate Gaussian process models
(MGP) generalise the powerful Gaussian process predictive model to vector-valued
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randomfields [1]. Thosemodels demonstrate improved prediction performance com-
pared with independent univariate Gaussian processes (GP) because MGPs express
correlations between outputs. Since the correlation information of data is encoded in
the covariance function, modeling the flexible and computationally efficient cross-
covariance function is of interest. In the literature of multivariate processes, many
approaches are proposed to build valid cross-covariance functions including the
linear model of coregionalization (LMC) [2], kernel convolution techniques [3], B-
spline based coherence functions [4]. However, most of these models are designed
for modelling low-dimensional stationary processes, and require Monte Carlo sim-
ulations, making inference in large datasets computationally intractable.

Modelling the complicated temporal dependencies across variables is addressed in
[5, 6] by several adaptions of stochastic LMC. Such models can handle input-varying
correlation across multivariate outputs. Especially for multivariate time series, [6]
propose a SGPRN that captures time-varying scale, correlation, and smoothness.
However, the inference in [6] is difficult to handle in applications where either the
number of observations and dimension size are large or where missing data exist.

Here, we propose an efficient variational inference approach for the SGPRN by
employing the inducing variable framework on all latent processes [7], taking ad-
vantage of its collapsed representation where nuisance parameters are marginalized
out [8] and proposing a tractable variational bound amenable to doubly stochastic
variational inference. We call our approach variational SGPRN (VSGPRN). This
variational framework allows the model to handle missing data without increasing
the computational complexity of inference. We numerically provide evidence of the
benefits of simultaneously modeling time-varying correlation, scale and smoothness
in both a synthetic experiment and a real-world problem.

The main contributions of this work are threefold:

• Learning structured Gaussian process regression networks using inducing vari-
ables on both mixing coefficients and latent functions.

• Employing doubly stochastic variational inference for structured Gaussian pro-
cess regression networks by taking advantage of its collapsed representation and
constructing a tractable lower bound of the loglikelihood, making it suitable for
mini-batching learning.

• Demonstrating that our proposed algorithm succeeds in handling time-varying
correlation on missing data under different scenarios in both synthetic data and
real data.

2 Model

Assume y(x) ∈ R� is a vector-valued function of x ∈ R% , where � is the di-
mension size of the outputs and % is the dimension size of the inputs. SGPRN
assumes that noisy observations y(x) are the linear combination of latent variables
g(x) ∈ R� , corrupted by Gaussian noise n (x). The coefficients L(x) ∈ R�×�
of the latent functions are assumed to be a stochastic lower triangular matrix with
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Fig. 1 Graphical model of VSGPRN. Left: Illustration of the generative model. Right: Illustration
of the variational structure. The dashed (red) block means that we marginalize out those latent
variables in the variational inference framework.

positive values on the diagonal for model identification [9, 6]. Thus, SGPRN is
defined in the generative model of Figure 1 and it is y(x) = f (x) + n (x), f (x) =
L(x)g(x) with independent white noise n (x) 883∼ N(0, f2

4AA �). We note that
each latent function 63 in g is independently sampled from a GP with a non-
stationary kernel  6 and the stochastic coefficients are modeled via a struc-
tured GP based prior as proposed in [9] with a stationary kernel  ; such that

63
883∼ GP(0,  6) , 3 = 1, . . . , � , and ;8 9 ∼

{
GP(0,  ;) , 8 > 9 ,

logGP(0,  ;) , 8 = 9 ,
where logGP

denotes the log Gaussian process [10].  6 is modelled as a Gibbs correlation func-
tion  6 (x,x′) =

√
2ℓ (x)ℓ′ (x)
ℓ (x)2+ℓ (x′)2 exp

(
− ‖x−x′ ‖2
ℓ (x)2+ℓ (x′)2

)
, ℓ ∼ logGP(0,  ℓ) , where ℓ

determines the input-dependent length scale of the shared correlations in  6 for all
latent functions 63 . The varying length-scale process ℓ plays an important role in
modelling nonstationary time series as illustrated in [11, 6].

Let X = {x8}#8=1 be the set of observed inputs and Y = {y8}#8=1 be the set
of observed outputs. Denote [ as the concatenation of all coefficients and all log
length-scale parameters, i.e., [ = (l, ℓ̃) evaluated at training inputs X. Here, l is a
vector including the entries below the main diagonal and the entries on the diagonal
in the log scale and ℓ̃ = log ℓ is the length-scale parameters in log scale. Also,
denote \ = (\; , \ℓ , f2

4AA ) as all hyper-parameters, where \; and \ℓ are the hyper-
parameters in kernel  ; and  ℓ . We note that directly inferring the posterior of the
latent variables ?([ |Y, \) ∝ ?(Y |[, f2

4AA )?([ |\; , \ℓ) is computationally intractable
in general because the computational complexity of ?([ |Y, \) is O(#3�3). To
overcome this issue, we propose an efficient variational inference to significantly
reduce the computational burden in the next section.
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3 Inference

We introduce a shared set of inducing inputs Z = {z<}"<=1 that lie in the same space
as the inputs X and a set of shared inducing variables w3 for each latent function
63 evaluated at the inducing inputs Z. Likewise, we consider inducing variables u88
for the function log !88 when 8 = 9 , u8 9 for function !8 9 when 8 > 9 , and inducing
variables v for function log ℓ(x) evaluated at inducing inputs Z. We denote those
collective variables as l = {l8 9 }8≥ 9 , u = {u8 9 }8≥ 9 , g = {g3}�3=1, w = {w3}�3=1, ℓ
and v. Then we redefine the model parameters [ = (l,u,g,w, ℓ,v), and the prior
of those model parameters is ?([) = ?(l|w)?(w)?(g|u, ℓ,v)?(u)?(ℓ |v)?(v).

The core assumption of inducing point-based sparse inference is that the inducing
variables are sufficient statistics for the training and testing data in the sense that the
training and testing data are conditionally independent given the inducing variables.
In the context of our model, this means that the posterior processes of !, 6 and ℓ are
sufficiently determined by the posterior distribution of u, w and v. We propose a
structured variational distribution and its corresponding variational lower bound.Due
to the nonconjugacy of this model, instead of doing expectation in the evidence lower
bound (ELBO), as is normally done in the literature, we perform the marginalization
on inducing variables u, w and g, and then use the reparameterization trick to
apply end-to-end training with stochastic gradient descent. We will also discuss a
procedure for missing data inference and prediction.

To capture the posterior dependency between the latent functions, we propose a
structured variational distribution of the model parameters [ used to approximate its
posterior distribution as @([) = ?(l|u)?(g|w, ℓ,v)?(ℓ |v)@(u,w,v) . This varia-
tional structure is illustrated in Figure 1. The variational distribution of the inducing
variables @(u,w,v) fully characterizes the distribution of q([). Thus, the inference
of @(u,w,v) is of interest. We assume the parameters u, w, and v are Gaussian
and mutually independent.

Given the definition of Gaussian process priors for the SGPRN, the conditional
distributions ?(l|u), ?(g|w, ℓ̃,v), and ?(ℓ |v) have closed-form expressions and all
are Gaussian, except for ?(ℓ |v), which is log Gaussian. The ELBO of the log like-
lihood of observations under our structured variational distribution @([) is derived
using Jensen’s inequality as:

log ?(Y) ≥ �@ ([)
[
log

(
?(Y |g, l)?(u)?(w)?(v)

@(u,w,v)

)]
= ' + � , (1)

where ' =
∑#
==1

∑�
3=1 �@ (g= ,l=) log(?(H=3 |g=, l=)) is the reconstruction term and

� = KL(@(u) | |?(u)) + KL(@(w) | |?(w)) + KL(@(v) | |?(v)) is the regularization
term. g= = {63= = (g3)=}�3=1 and l= = {;8 9= = (l8 9 )=}8≥ 9 are latent variables.

The structured decomposition trick for @([) has also been used by [12] to derive
variational inference for the multivariate output case. The benefit of this structure
is that all conditional distributions in @([) can be cancelled in the derivation of the
lower bound in (1), which alleviates the computational burden of inference. Because
of the conditional independence of the reconstruction term in (1) given g and l, the
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lower bound decomposes across both inputs and outputs and this enables the use
of stochastic optimization methods. Moreover, due to the Gaussian assumption in
the prior and variational distributions of the inducing variables, all KL divergence
terms in the regularization term � are analytically tractable. Next, instead of directly
computing expectation, we leverage stochastic inference [13].

Stochastic inference requires sampling of l and g from the joint variational
posterior @([). Directly sampling them would introduce much uncertainty from
intermediate variables and thus make inference inefficient. To tackle this is-
sue, we marginalize unnecessary intermediate variables u and w and obtain the
marginal distributions @(l) = ∏

8= 9 logN(l88 | ˜̀;88 , Σ̃;88)
∏
8> 9 N(l8 9 | ˜̀;8 9 , Σ̃;8 9 ) and

@(g|ℓ,v) = ∏�
3=1N(g3 | ˜̀

6

3
, Σ̃
6

3
) with a joint distribution @(ℓ,v) = ?(ℓ |v)@(v),

where the conditional mean and covariance matrix are easily derived. The corre-
sponding marginal distributions @(l=) and @(g= |ℓ,v) at each = are also easy to
derive. Moreover, we conduct collapsed inference by marginalizing the latent vari-
ables g=, so then the individual expectation is

E@ (g= ,l=) log(?(H=3 |g=, l=)) =
∫
(!=3)@(ℓ=,v)@(l3 ·=)3 (l3 ·=, ℓ=,v)), (2)

where !=3 = logN(H=3 |
∑�
9=1 ;3 9= ˜̀6

9=
, f2
4AA ) − 1

2f2
4AA

∑�
9=1 ;

2
3 9=

f̃
62
9=

measure the
reconstruction performance for observations y=3 .

Directly evaluating the ELBO is still challenging due to the non-linearities in-
troduced by our structured prior. Recent progress in black box variational inference
[13] avoids this difficulty by computing noisy unbiased estimates of the gradient of
ELBO, via approximating the expectations with unbiasedMonte Carlo estimates and
relying on either score function estimators [14] or reparameterization gradients [13]
to differentiate through a sampling process. Here we leverage the reparameterization
gradients for stochastic optimization for model parameters. We note that evaluating
ELBO (1) involves two sources of stochasticity from Monte Carlo sampling in (2)
and from data sub-sampling stochasticity [15]. The prediction procedure is based on
Bayes’ rule and replaces the posterior distribution by the inferred variational distribu-
tion. In the case of missing data, the only modification in (1) is in the reconstruction
term, where we sum up the likelihoods of observed data instead of complete data.

4 Experiments

This section illustrates the performance of our model on multivariate time series. We
first show that our approach can model the time-varying correlation and smoothness
of outputs on 2D synthetic datasets in three scenarioswith respect to different types of
frequencies but the samemissing data mechanism. Then, we compare the imputation
performance on missing data with other inducing-variable based sparse multivariate
Gaussian process models on a real dataset.
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We conduct experiments on three synthetic time series with low frequency
(LF), high frequency (HF) and varying frequency (VF) respectively. They are
generated from the system of equations H1 (C) = 5 cos(2c|CB) + n1 (C) , H2 (C) =
5(1− C) cos(2c|CB) − 5C cos(2c|CB) + n2 (C), where {n8 (C)}28=1 are independent stan-
dard white noise processes. The value of | refers to the frequency and the value of
B characterizes the smoothness. The LF and HF datasets use the same B = 1, imply-
ing the smoothness is invariant across time. But they employ different frequencies,
| = 2 for LF and | = 5 for HF (i.e., two periods and five periods in a unit time
interval respectively). The VF dataset takes B = 2 and | = 5, so that the frequency
of the function is gradually increasing as time increases. For all three datasets, the
system shows that as time C increases from 0 to 1, the correlation between H1 (C) and
H2 (C) gradually varies from positive to negative. Within each dataset, we randomly
select 200 training data points, in which 100 time stamps are sampled on the interval
(0, 0.8) for the first dimension and the other 100 time stamps sampled on the interval
(0.2, 1) for the second dimension. For the test inputs, we randomly select 100 time
stamps on the interval (0, 1) for each dimension.

Table 1 Prediction measurements on three synthetic datasets and different models. LF, HF and VF
refer to low-frequency, high-frequency, and time-varying datasets. Three prediction measures are
root mean square error (RMSE), average length of confidence interval (ALCI), and coverage rate
(CR). All three measurements are summarized by the mean and standard deviation across 10 runs
with different random initializations.

Data Model RMSE ALCI CR

LF

IGPR [16] 2.25(1.33e-13) 2.18(1.88e-13) 0.835(0)
ICM [17] 2.26(2.54e-5) 2.18(1.22e-5) 0.835(0)

CMOGP [12] 1.43(6.12e-2) 1.36(1.98e-1) 0.651(3.00e-2)
VGPRN [18] 1.01(0.31) - -
VSGPRN 1.00(1.43e-1) 2.21(6.56e-2) 0.892(1.63e-2)

HF

IGPR [16] 1.51(6.01e-14) 3.17(1.30e-13) 0.915(2.22e-16)
ICM [17] 1.52(1.01e-5) 3.17(1.19e-5) 0.910(0)

CMOGP [12] 1.29(3.04e-2) 2.34(3.31e-1) 0.729(3.07e-2)
VGPRN [18] 1.11(0.25) - -
VSGPRN 1.10(1.98e-1) 2.74(7.94e-2) 0.930(1.14e-2)

VF

IGPR [16] 1.64(8.17e-14) 3.19(3.02e-13) 0.875(0)
ICM [17] 1.66(2.37e-3) 3.16(1.49e-3) 0.880(1.50e-3)

CMOGP [12] 2.24(3.08e-1) 2.56(9.29e-1) 0.697(1.56e-1)
VGPRN [18] 1.04(0.67) - -
VSGPRN 1.24(1.33e-1) 2.92(1.21e-1) 0.887(9.80e-3)

We quantify the model performance in terms of root mean square error (RMSE),
average length of confidence interval (ALCI), and coverage rate (CR) on the test set.
A smaller RMSE corresponds to better predictive performance of the model, and
a smaller ALCI implies a smaller predictive uncertainty. As for CR, the better the
model prediction performance is, the closer CR is to the percentile of the credible
band. Those results are reported by the mean and standard deviation with 10 differ-
ent random initializations of model parameters. Quantitative comparisons relating
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to all three datasets are in Table 1. We compare with independent Gaussian process
regression (IGPR) [16], the intrinsic coregionalization model (ICM) [17], Collab-
orative Multi-Output Gaussian Processes (CMOGP) [12] and variational inference
of Gaussian process regression networks [18] on three synthetic datasets. In both
CMOGP and VSGPRN approaches, we use 20 inducing variables. We further exam-
ined model predictive performance on a real-world dataset, the PM2.5 dataset from
the UCI Machine Learning Repository [19]. This dataset tracks the concentration of
fine inhalable particles hourly in five cities in China, along with meteorological data,
from Jan 1st, 2010 to Dec 31st, 2015. We compare our model with two sparse Gaus-
sian process models, i.e., independent sparse Gaussian process regression (ISGPR)
[20] and the sparse linear model of corregionalization (SLMC) [17]. In the dataset,
we consider six important attributes and use 20% of the first 5000 standardized mul-
tivaritate for training and use the others for testing. The RMSEs on the testing data
are shown in Table 2, illustrating that VSGPRN had better prediction performance
compared with ISGPR and SLMC, even when using fewer inducing points.

Table 2 Empirical results for PM2.5 dataset. Each model’s performance is summarized by its
RMSE on the testing data. The number of equi-spaced inducing points is given in parentheses.

Data ISGPR (100) [20] SLMC (100) [17] VSGPRN (50) VSGPRN (100) VSGPRN (200)
PM2.5 0.994 0.948 0.840 0.708 0.625

5 Conclusions

We propose a novel variational inference approach for structured Gaussian process
regression networks named the variational structured Gaussian process regression
network, VSGPRN.We introduce inducing variables and propose a structured varia-
tional distribution to reduce the computational burden. Moreover, we take advantage
of the collapsed representation of our model and construct a tractable lower bound of
the log likelihood to make it suitable for doubly stochastic inference and easy to han-
dle missing data. In our method, the computation complexity is independent of the
size of the inputs and the outputs. We illustrate the superior predictive performance
for both synthetic and real data.

Our inference approach, VSGPRN can be widely used for high dimensional time
series to model complicated time-varying dependence across multivariate outputs.
Moreover, due to its scalability and flexibility, it can be widely applied for irregu-
larly sampled incomplete large datatsets that widely exist in various research fields
including healthcare, environmental science and geoscience.
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An Online Minorization-Maximization
Algorithm

Hien Duy Nguyen, Florence Forbes, Gersende Fort, and Olivier Cappé

Abstract Modern statistical and machine learning settings often involve high data
volume and data streaming, which require the development of online estimation
algorithms. The online Expectation–Maximization (EM) algorithm extends the pop-
ular EM algorithm to this setting, via a stochastic approximation approach. We show
that an online version of theMinorization–Maximization (MM) algorithm, which in-
cludes the online EM algorithm as a special case, can also be constructed in a similar
manner. We demonstrate our approach via an application to the logistic regression
problem and compare it to existing methods.

Keywords: expectation-maximization, minorization-maximization, parameter esti-
mation, online algorithms, stochastic approximation

1 Introduction

Expectation–Maximization (EM) [6, 17] and Minorization–Maximization (MM)
algorithms [15] are important classes of optimization procedures that allow for
the construction of estimation routines for many data analytic models, including
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many finite mixture models. The benefit of such algorithms comes from the use of
computationally simple surrogates in place of difficult optimization objectives.

Driven by high volume of data and streamed nature of data acquisition, there
has been a rapid development of online and mini-batch algorithms that can be used
to estimate models without requiring data to be accessed all at once. Online and
mini-batch versions of EM algorithms can be constructed via the classic Stochastic
Approximation framework (see, e.g., [2, 13]) and examples of such algorithms
include those of [3, 7, 8, 10, 11, 12, 19]. Via numerical assessments, many of the
algorithms above have been demonstrated to be effective inmixturemodel estimation
problems. Online and mini-batch versions of MM algorithms on the other hand
have largely been constructed following convex optimizations methods (see, e.g.,
[9, 14, 23]) and examples of such algorithms include those of [4, 16, 18, 22].

In this work, we provide a stochastic approximation construction of an online
MM algorithm using the framework of [3]. The main advantage of our approach is
that we do not make convexity assumptions and instead replace them with oracle
assumptions regarding the surrogates. Compared to the online EM algorithm of [3]
that this work is based upon, the Online MM algorithm extends the approach to allow
for surrogate functions that do not require latent variable stochastic representations,
which is especially useful for constructing estimation algorithms for mixture of
experts (MoE) models (see, e.g. [20]). We demonstrate the Online MM algorithm
via an application to the MoE-related logistic regression problem and compare it to
competing methods.

Notation. By convention, vectors are column vectors. For a matrix �, �> denotes
its transpose. The Euclidean scalar product is denoted by 〈0, 1〉. For a continuously
differentiable function \ ↦→ ℎ(\) (resp. twice continuously differentiable), ∇\ℎ (or
simply ∇ when there is no confusion) is its gradient (resp. ∇2

\ \
is its Hessian). We

denote the vectorization operator that converts matrices to column vectors by vec.

2 The Online MM Algorithm

Consider the optimization problem

arg max
\ ∈T

E [ 5 (\; -)] , (1)

where T is a measurable open subset of R? , X is a topological space endowed
with its Borel sigma-field, 5 : T × X → R is a measurable function and - is a
X-valued random variable on the probability space (Ω, F , P). In this paper, we are
interested in the setting when the expectation E [ 5 (\; -)] has no closed form, and
the optimization problem is solved by an MM-based algorithm.

Following the terminology of [15],we say that 6 : T×X×T, (\, G, g) ↦→ 6 (\, G; g),
is a minorizer of 5 , if for any g ∈ T and for any (\, G) ∈ T × X, it holds that

5 (\; G) − 5 (g; G) ≥ 6(\, G; g) − 6(g, G; g). (2)
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In our work, we consider the case when the minorizer function 6 has the following
structure:

A1 The minorizer surrogate 6 is of the form:

6 (\, G; g) = −k (\) +
〈
(̄(g; G), q(\)

〉
, (3)

where k : T → R, q : T → R3 and (̄ : T × X → R3 are measurable functions.
In addition, q and k are continuously differentiable on T.

We also make the following assumptions:

A2 There exists a measurable open and convex set S ⊆ R3 such that for any B ∈ S,
W ∈ [0, 1) and any (g, G) ∈ T × X:

B + W
{
(̄(g; G) − B

}
∈ S.

A3 The expectation E[(̄(\; -)] exists, is in S, and is finite whatever \ ∈ T but it
may have no closed form. Online independent oracles {-=, = ≥ 0}, with the same
distribution as - , are available.

A4 For any B ∈ S, there exists a unique root to \ ↦→ −∇k(\) + ∇q(\)>B, which
is the unique maximum on T of the function \ ↦→ −k(\) + 〈B, q(\)〉. This root is
denoted by \̄ (B).

Seen as a function of \, 6(·, G; g) is the sum of two functions: −k and a linear
combination of the components of q = (q1, . . . , q3). Assumption A1 implies that
the minorizer surrogate is in a functional space spanned by these (3 + 1) functions.
By (2) and A1–A3, it follows that

E [ 5 (\; -)] − E [ 5 (g; -)] ≥ k(g) − k(\) +
〈
E

[
(̄(g; -)

]
, q(\) − q(g)

〉
, (4)

thus providing a minorizer function for the objective function \ ↦→ E [ 5 (\; -)].
By A4, the usual MM algorithm would define iteratively the sequence \=+1 =

\̄
(
E

[
(̄(\=; -)

] )
. Since the expectationmay not have closed form but infinite datasets

are available (see A3), we propose a novel Online MM algorithm. It defines the
sequence {B=, = ≥ 0} as follows: given positive step sizes {W=+1, = ≥ 1} in (0, 1) and
an initial value B0 ∈ S, set for = ≥ 0:

B=+1 = B= + W=+1
{
(̄

(
\̄ (B=); -=+1

)
− B=

}
. (5)

The update mechanism (5) is a Stochastic Approximation iteration, which defines
an S-valued sequence (see A2). It consists of the construction of a sequence of
minorizer functions through the definition of their parameter B= in the functional
space spanned by −k, q1, . . . , q3 .

If our algorithm (5) converges, any limiting point B★ satisfies E
[
(̄(\̄ (B★); -)

]
=

B★. Hence, our algorithm is designed to approximate the intractable expectation,
evaluated at \̄ (B★), where B★ satisfies a fixed point equation. The following lemma
establishes the relation between the limiting points of (5) and the optimization prob-
lem (1) at hand. Namely, it implies that any limiting value B★ provides a stationary
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point \★ := \̄ (B★) of the objective function E [ 5 (\; -)] (i.e., \★ is a root of the
derivative of the objective function). The proof follows the technique of [3]. Set

h(B) := E
[
(̄

(
\̄ (B) ; -

) ]
− B, Γ := {B ∈ S : h(B) = 0}.

Lemma 1 Assume that \ ↦→ E [ 5 (\; -)] is continuously differentiable on T and
denote by L the set of its stationary points. If B★ ∈ Γ, then \̄ (B★) ∈ L. Conversely,
if \★ ∈ L, then B★ := E

[
(̄ (\★; -)

]
∈ Γ.

Proof A4 implies that

−∇k(\̄ (B)) + ∇q(\̄ (B))>B = 0, B ∈ S. (6)

Use (2) and A1, and apply the expectation w.r.t. - (under A3). This yields (4),
which is available for any \, g ∈ T. This inequality provides a minorizer function for
\ ↦→ E [ 5 (\; -)]: the difference is nonnegative and minimal (i.e. equal to zero) at
\ = g. Under the assumptions and A1, this yields

∇E [ 5 (·; -)] |\=g + ∇k(g) − ∇q(g)>E
[
(̄(g; -)

]
= 0. (7)

Let B★ ∈ Γ and apply (7) with g ← \̄ (B★). It then follows that

∇E [ 5 (·; -)] |\= \̄ (B★) + ∇k(\̄ (B★)) − ∇q(\̄ (B★))
>B★ = 0,

which implies \̄ (B★) ∈ L by (6). Conversely, if \★ ∈ L, then by (7), we have

∇k(\★) − ∇q(\★)>E
[
(̄(\★; -)

]
= 0,

which, by A3 and A4, implies that \★ = \̄
(
E

[
(̄(\★; -)

] )
= \̄ (B★). By definition of

B★, this yields B★ = E
[
(̄

(
\̄ (B★); -

) ]
; i.e. B★ ∈ Γ. �

By applying the results of [5] regarding the asymptotic convergence of Stochastic
Approximation algorithms, additional regularity assumptions on q, k, \̄ imply that
the algorithm (5) possesses a continuously differentiable Lyapunov function + de-
fined on S and given by + : B ↦→ E

[
5 (\̄ (B); -)

]
, satisfying 〈∇+ (B), h(B)〉 ≤ 0,

where the inequality is strict outside the set Γ (see [3, Prop. 2]). In addition to
Lemma 1, assumptions on the distribution of - and on the stability of the sequence
{B=, = ≥ 0} are provided in [5, Thm. 2 and Lem. 1], which, combined with the usual
conditions on the step sizes:

∑
= W= = +∞ and

∑
= W

2
= < ∞, yields the almost-sure

convergence of the sequence {B=, = ≥ 0} to the set Γ, and the almost-sure conver-
gence of the sequence {\̄ (B=), = ≥ 0} to the set L of the stationary points of the
objective function \ ↦→ E [ 5 (\; -)]. Due to the limited space, the exact statement
of these convergence results for our Online MM framework is omitted.
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3 Example Application

As an example, we consider the logistic regression problem, where we solve (1) with

5 (\; G) := H|>\ − log
{
1 + exp

(
|>\

)}
, G := (H, |),

where H ∈ {0, 1}, | ∈ R? , and \ ∈ T := R? . Here, we assume that - = (.,,) is a
random variable such that E [ 5 (\; -)] exists for each \.

Denote by_ the standard logistic function_ (·) := exp {·} /(1+exp {·}). Following
[1], (2) and A1 are verified by taking

k (\) := 0, q (\) :=
[

\

vec (\\>)

]
, (̄ (g; G) =

[
B̄1 (g; G)

vec
(
(̄2 (g; G)

) ]
where

B̄1 (g; G) :=
{
H − _

(
g>|

)}
| + 1

4
||>g, (̄2 (g; G) = −1

8
||>.

With S := {(B1, vec ((2)) : B1 ∈ R? and (2 ∈ R?×? is symmetric positive definite} ,
it follows that \̄ (B) := −(2(2)−1B1.

Online MM. Let B= =
(
B1,=, (2,=

)
∈ S. The corresponding Online MM recursion

is then

B1,=+1 = B1,= + W=+1
(
.=+1 − _

(
\̄ (B=)>,=+1

)
,=+1 +

1
4
,=+1,

>
=+1\̄ (B=) − B1,=

)
(8)

(2,=+1 = (2,= + W=+1
(
−1

8
,=+1,

>
=+1 − (2,=

)
, (9)

where {(.=+1,,=+1), = ≥ 0} are i.i.d. pairs with the same distribution as - = (.,,).
Parameter estimates can then be deduced by setting \=+1 := \̄ (B=+1).

For comparison, we also consider two Stochastic Approximation schemes directly
on \ in the parameter-space: a stochastic gradient (SG) algorithm and a Stochastic
Newton Raphson (SNR) algorithm.

Stochastic gradient. SG requires the gradient of 5 (\; G) with respect to \:
∇ 5 (\; G) = {H − _(\>|)} |, which leads to the recursion

\̂=+1 = \̂= + W=+1
{
.=+1 − _(\̂>=,=+1)

}
,=+1. (10)

Stochastic Newton-Raphson. In addition SNR requires the Hessian with respect
to \, given by ∇2

\ \
5 (\; G) = −_(\>|) {1 − _(\>|)} ||>. The SNR recursion is then

�̂=+1 = �̂= + W=+1
{
∇2
\ \ 5 (\̂=; -=+1) − �̂=

}
(11)

�=+1 = −�̂−1
=+1 (12)

\̂=+1 = \̂= + W=+1�=+1
{
.=+1 − _(\̂>=,=+1)

}
,=+1 . (13)
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Equation (12) assumes that �̂=+1 is invertible. In this logistic example, we can
guarantee this by choosing �̂0 to be invertible. Otherwise �̂= is invertible after
some = sufficiently large, with probability one. Again in the logistic case, observe
that, from the structure of ∇2

\ \
5 and from the Woodbury matrix identity, Equations

(11–12) can be replaced by

�=+1 =
�=

1 − W=+1
− W=+1

1 − W=+1
0=+1�=,=+1,>=+1�={

(1 − W=+1) + W=+10=+1,>=+1�=,=+1
} .

where 0=+1 := _(\̂>=,=+1)
{
1 − _(\̂>=,=+1)

}
,

It appears that the Online MM recursion in the B-space defined by (8) and (9) is
equivalent to the SNR recursion above (i.e., (11)–(13)) when the Hessian ∇2

\ \
5 (\; G)

is replaced by the lower bound − 1
4||

>. This observation holds whenever 6 is
quadratic in (\ − g).

Polyak averaging. In practice, for Online MM, SG, and SNR recursions, it is
common to consider Polyak averaging [21], starting from some iteration =0, chosen
such as to avoid the initial highly volatile estimates. Set \̂�=0

:= 0, and for = ≥ =0,

\̂�=+1 = \̂
�
= + U=−=0+1 (\̂= − \̂�= ), (14)

where U= is usually set to U= := =−1.
Numerical illustration. We now demonstrate the performance of the Online

MM algorithm for logistic regression – defined by (5) and the derivations above. To
do so, a sequence {-8 = (.8 ,,8) , 8 ∈ {1, . . . , =max}} of =max = 105 i.i.d. replicates
of - = (.,,) is simulated: , = (1,*), where * ∼ N (0, 1) and [. |, = |] ∼
Ber

(
_

(
\>0 |

) )
, where \0 = (3,−3). Online MM is run using the learning rate W= =

=−0.6, as suggested in [3]. The algorithm is initialized with \̂0 = (0, 0) and B0 =∑2
8=1 (̄

(
\̂0; -8

)
/2.

For comparison, we also show, on Figure 1, the SG, SNR estimates and their
Polyak averaged values in \-space. As is usually recommended with Stochastic Ap-
proximation, the first few volatile estimations are discarded. Similarly, for Polyak
averaging, we set =0 = 103. As expected, we observe that the Online MM and the
SNR recursions are very close but with the SNR showing more variability. Their com-
parison after Polyak averaging shows very close trajectories while the SG trajectory
is clearly different and shows more bias. Final estimates [Polyak averaged estimates]
of \0 from the SG, SNR, and Online MM algorithms are respectively: (2.67,−2.66)
[(2.51,−2.48)], (3.03,−3.03) [(2.99,−3.03)], and (3.01,−3.03) [(2.98,−3.02)],
which we can compare to the batch maximum likelihood estimate (3.00,−3.05)
(obtained via the glm function in R). Notice the remarkable closeness between the
online MM and batch estimates.
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Fig. 1 Logistic regression example: the first row shows Online MM (black), SG (blue), and SNR
(red) recursions. The second row shows the respective Polyak averaging recursions. The estimates
of the first \ (first column) and the second (second column) components of \ are plotted started
from = = 103 for readability.

4 Final Remarks

Remark 1 For a parametric statistical model indexed by \, let 5 (\; G) be the
log-density of a random variable - with stochastic representation 5 (\; G) =
log

∫
Y
?\ (G, H) `(dH), where ?\ (G, H) is the joint density of (-,. ) with respect

to the positive measure ` for some latent variable . ∈ Y. Then, via [15, Sec. 4.2],
we recover the Online EM algorithm by using the minorizer function 6:

6 (\, G; g) :=
∫
Y

log ?\ (G, H) ?g (G, H) exp(− 5 (g; G)) `(dH).

Remark 2 Via theminorization approach of [1] (as used in Section 3) and themixture
representation from [19],we can construct anOnline MM algorithm forMoEmodels,
analogous to the MM algorithm of [20]. We shall provide exposition on such an
algorithm in future work.
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Detecting Differences in Italian Regional Health
Services During Two Covid-19 Waves

Lucio Palazzo and Riccardo Ievoli

Abstract During the first twowaves ofCovid-19 pandemic, territorial healthcare sys-
tems have been severely stressed inmany countries. The availability (and complexity)
of data requires proper comparisons for understanding differences in performance
of health services. We apply a three-steps approach to compare the performance of
Italian healthcare system at territorial level (NUTS 2 regions), considering daily time
series regarding both intensive care units and ordinary hospitalizations of Covid-19
patients. Changes between the two waves at a regional level emerge from the main
results, allowing to map the pressure on territorial health services.

Keywords: regional healthcare, time series, multidimensional scaling, cluster anal-
ysis, trimmed :-means

1 Introduction

During theCovid-19 pandemic, the evaluation of similarities and differences between
territorial health services [23] is relevant for decision makers and should guide the
governance of countries [15] through the so-called “waves”. This type of analysis
becomes even more crucial in countries where the National healthcare system is
regionally-based, which is the case of Italy (or Spain) among others. Italy is one of
the countries in Europe which has been mostly affected by the pandemic, and the
pressure on Regional Health Services (RHS) has been producing dramatic effects
also in the economic [2] and the social [3] spheres. Regional Covid-19-related health
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indicators are extremely relevant for monitoring the pandemic territorial widespread
[21], and to impose (or relax) restrictions in accordance with the level of health risk.

The aimof thiswork is to exploit the potential ofMultidimensional Scaling (MDS)
to detect the main imbalances occurred in the RHS, observing the hospital admission
dynamics of patients with Covid-19 disease. Both daily time series regarding patients
treated in Intensive Care (IC) units and individuals hospitalized in other hospital
wards are used to evaluate and compare the reaction to healthcare pressure in 21
geographical areas (NUTS 2 Italian regions), considering the first two waves [4] of
pandemic. Indeed, territorial imbalances in terms of RHS’ performance [24] should
be firstly driven by the geographical propagation flows of the virus (first wave). Then,
different reactions to pandemic shock may be provided by RHSs, and changes of
imbalances can be observed in the second wave.

Our proposal consists of three subsequent steps. Firstly, a matrix of distances
between regional time series through a dissimilarity metric [29] is obtained. There-
fore, we apply a (weighted) MDS [19, 22] to map similarity patterns in a reduced
space, adding also a weighting scheme considering the number of neighbouring
regions. Finally, we perform a cluster analysis to identify groups according to RHS
performance in the two waves.

The paper is organized as follows: Section 2 describes the methodological ap-
proach used to compare and cluster time series, while Section 3 introduces data and
descriptive analysis. Results regarding RHSs are depicted and discussed in Section
4, while Section 5 concludes with some remarks and possible advances.

2 Time Series Clustering

Given a matrix ) × =, where ) represents the days and = the number of regions, our
methodological approach consists of three subsequently steps:

Step 1. Compute a dissimilarity matrix � based on a given measure;
Step 2. Apply a weighted multidimensional scaling (wMDS) procedure, storing

the coordinates of the first two components;
Step 3. Perform cluster analysis on the MDS reduced space to identify groups

between the = regions.

In the first step, a dissimilarity measure is computed for each pair of regional time
series. The objective is to obtain a dissimilarity matrix � (with elements 38, 9 ) for
estimating synthetic measures of the differences between regions. There are different
alternatives to compare time series, some comprehensive overviews are in [29, 13].

A reasonable choice is the the Fourier dissimilarity 3� (x, y), which applies the
=-point Discrete Fourier Transform [1] on two time series, allowing to compare the
similarity between two time sequences after converting them into a combination of
structural elements, such as trend and/or cycle.
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In the second step, we implement a multidimensional scaling [31]. Due to its
flexibility, MDS has been introduced also in time series analysis [25] and recently
applied to different topics [30, 9, 16].

Since our aim is to take into account the degree of proximity between regions, we
also employ a weighted multidimensional scaling technique (wMDS) [17, 14]. The
L2 norm is multiplied by a set of weights 8 = (l1, . . . , l=) such that high weights
have a stronger influence on the result than low weights.

The reduced space generated byMDS can be used as starting point for subsequent
analyses. Then, a cluster algorithm can be performed on the coordinates (of the
reduced space) of MDS [18]. Different procedures should be suitable to perform a
cluster analysis on thewMDS coordinatesmap. For an overview ofmodern clustering
techniques in time series, see e.g. [26].

In our case, both the geographical spread of the pandemic and population density
can determine remarkable differences in terms of hospitalization rates [12]. To
mitigate the risk of regional outliers in the data, generating potential spurious clusters,
we employ the trimmed :-means algorithm [8, 11].A relevant topic in cluster analysis
is related to the choice of the : number of groups. Our strategy is purely data-driven
and it is based on the minimization of the within-cluster variance.

3 Data and Descriptive Statistics

Daily regional time series reporting a) the number of patients treated in IC units
and b) the number of patients admitted in the other hospital wards are retrieved
through the official website of Italian Civil Protection1. All patients were positive
for the Covid-19 test (nasal and oropharyngeal swab). To take into account the
different sizes in terms of inhabitants, both a) and b) are normalized according to the
population of each territorial unit (estimated at 2020/01/01). The rates of patients
treated in IC units and hospitalized (HO) patients in other hospital wards, are then
multiplied by 100,000.

The whole dataset contains two identified waves2 of Covid-19, as follows:

Wave 1 (W1): ) = 109 days from February 24 to June 11, 2020
Wave 2 (W2): ) = 109 days from September 14 to December 31, 2020

The date/trend may also depend on external factors, such as the implementation of
restrictive measures introduced by the Italian Government [27, 6], which influenced
the observed differences betweenW1 andW2. We have to remark that a full national
lockdown was held between March 9th and May 18th 2020.

Figure 1 shows the time series for HO and IC (rows), according to the two waves
of Covid-19 (columns). The anomaly of the small Italian region (Valle D’Aosta)
emerges both in the first (in particular concerning IC) and second waves (also for

1 Source: www.dati-covid.italia.it
2 Refer to [7] for further details.
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Fig. 1 Time series distributions of Italian regions.

HO), while Lombardia, which is the largest and most populous region, dominates
other territories especially when considering HO of W1. The upper panel of Figure
1 helps to understand differences between the two waves in terms of admission to
intensive cares: while regions with high, medium and low IC rate can be directly
identified through the eyeball of the series during W1, in W2 more homogeneity
is observed. Furthermore, with the exception of Valle D’Aosta, the IC rate remains
always less than 10 for all considered observations.

For what concerns HO rate, (lower panels of Figure 1), Lombardia reaches values
greater than 100 in W1 (especially in April), while during W2 this threshold had
exceeding by Valle D’Aosta and Piemonte (both in November). Again, if W1 opposes
regions with high and (moderately) low HO rates, in W2 the following situation
arises: a) Valle D’Aosta and Piemonte reach values over 100, b) four regions (Liguria,
Lazio, P.A. Trento and P.A. Bolzano) present values over 75, and c) the majority of
territories share similar trends with peaks always lower than 75.

4 Grouping Regions by Clustering and Discussion

In order to confirm and deepen the descriptive results of Section 3, we perform a
cluster analysis following the scheme proposed in Section 2. We compute wMDS

276



Detecting Differences in Italian RHS During Covid-19 Waves

equipped with the Fourier distance3, using a set of weights 8 proportional to the
number of neighbourhoods for each region, ensuring a spatial feature into the model.

Figure 2 displays the main results of wMDS, distinguishing between four levels
of critical issues experienced by the RHS. Outlying performances are coloured in
Violet. A first cluster (in Red) includes “critical” regions while a group depicted in
Orange contains territories with high pressure in their RHS. Regions involved in the
Green cluster experimented a moderate pressure on RHS, while colour Blue indi-
cates territories suffering from a low pressure. These clusters may also be interpreted
as a ranking of the health service risk.

As regards the HO duringW1, leaving apart the two outliers (Lombardia and P.A.
Bolzano) the “red” cluster is composed by three Northern regions (Piemonte, Valle
d’Aosta and Emilia-Romagna). The group of high pressure is composed by Liguria,
Marche and P.A. Trento, while the green cluster involves Lazio, Abruzzo and Toscana
(from the centre of Italy) andVeneto. The last group includes nine regions, 7 of which
are located in the southern Italy. In W2 the clustering procedure Piemonte and Valle
d’Aosta are identified as outliers, while the high-pressure group is composed by two
autonomous provinces (Trendo and Bolzano), Lombardia and Liguria. The “orange”
group is constituted by regions located in the North-East (Friuli-Venezia Giulia,
Emilia-Romagna and Veneto), along with Abruzzo and Lazio. Southern regions
are allocated in the “green” coloured group (together with Umbria, Toscana and
Marche), while Molise, Calabria and Basilicata remain in the low-pressure cluster.

Regarding IC rates, during W1 Lombardia and Valle d’Aosta are considered
as outliers while the “red” cluster is composed by four northern Italian regions
(Emilia-Romagna, P.A. of Trento, Piemonte and Liguria), and Marche (located in
the centre). The “orange” cluster contains Toscana, Veneto and P.A. Bolzano, while
themoderate-pressure cluster involves three areas of centre Italy (Lazio andUmbria),
among with the Friuli-Venezia Giulia (from the north-east) and Abruzzo. The last
cluster includes only regions from the south. According to the bottom right panel of
Figure 2, apart from Valle D’Aosta, the procedure identifies Calabria as an outlier.
The “red” group acquires two observations from the Centre of Italy such as Toscana
and Umbria, while the majority of regions are classified in the moderately pressured
group. Only three Southern Italian areas are allocated in the last group (in green).

If the geography of the disease appears fundamental in W1, especially regarding
adjoining territories of Lombardia, in W2 this effect is less evident. Thus, regions
improving (e.g. Emilia-Romagna) or worsening (such as Lazio and Abruzzo) their
clustering “ranking” can be easily observed. As mentioned, the differences of re-
strictive measures imposed by the Government in the two periods may have a role
on these results.

3 We remark that other distance measures have been applied. Moreover, a) the Fourier one shows
better performance in terms of goodness of fit; b) the results are not sensitive with respect to the
choice of distance.
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278



Detecting Differences in Italian RHS During Covid-19 Waves

5 Concluding Remarks

The Covid-19 pandemic has put a strain on the Italian healthcare system. The reac-
tions of RHS play a relevant role to mitigate the health crisis at territorial level and
to guarantee an equitable access to healthcare.

This work helps to understand similarities and divergences between the Italian re-
gions in relation to the health pressure of the first two waves of the virus. Considering
crucial measures such as HO and IC rates, the comparison between two waves allows
to understand differences in the reactions to pandemic shocks of RHS. Although the
northern Italy represented the epicentre of the Covid-19 spread in the first wave,
some regions (e.g. Veneto and Friuli-Venezia Giulia) seem to have succeeded in
avoiding hospitals overcrowding, while Southern regions (and Islands) definitively
suffered from less pressure. Furthermore, in the second wave, the difference appears
slightly smoothed and the cluster sizes seem more homogeneous. Moreover, there
are some exceptions, such as the Emilia-Romagna, which seems to have been less
affected by the second wave, compared to the other regions. The detection of clusters
represents a starting point for the improvement of health governance and can be used
to monitor potential imbalances in future unfortunate waves.

Further analysis may employ other dedicated indicators coming, for instance,
from the Italian National Institute of Statistics4, or using different proposals for com-
bining wMDS with dissimilarity measures and clustering [28]. Following a different
methodological approach, the recent method proposed in [10] should be applied on
those data to include more complex spatial relationships between territories.
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Political and Religion Attitudes in Greece:
Behavioral Discourses

Georgia Panagiotidou and Theodore Chadjipadelis

AbstractThe research presented in this paper attempts to explore the relationship be-
tween religious and political attitudes.More specifically we investigate how religious
behavior, in terms of belief intensity and practice frequency, is related to specific
patterns of political behavior such as ideology, understanding democracy and his set
of moral values. The analysis is based on the use of multivariable methods and more
specifically Hierarchical Cluster Analysis and Multiple Correspondence Analysis in
two steps. The findings are based on a survey implemented in 2019 on a sample of
506 respondents in the wider area of Thessaloniki, Greece. The aim of the research is
to highlight the role of people’s religious practice intensity in shaping their political
views by displaying the profiles resulting from the analysis and linking individual
religious and political characteristics as measured with various variables. The final
output of the analysis is a map where all variable categories are visualized, bringing
forward models of political behavior as associated together with other factors such
as religion, moral values and democratic attitudes.

Keywords: political behavior, religion, democracy, multivariatemethods, data anal-
ysis

1 Introduction

In this research we present the analysis results of a survey, which was implemented
in April 2019 to 506 respondents in Thessaloniki, focusing on their religious profile
as well as their political attitudes, their moral profile and the way they comprehend
democracy. The aim of the analysis is to investigate and highlight the role of religious
practice in shaping political behavior. In the political behavior analysis field, religion
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andmore specifically church practice has emerged as one of themain pillars that form
the political attitudes of voters. Religious habits seem to have a decisive influence
on electoral choices, as derives from Lazarsfeld’s research at Columbia University
in 1944 [3], followed by the work of Butler and Stokes in 1969 [1] and the research
of Michelat and Simon in France [6]. More specifically in the comparative study
of Rose in 1974 [9], it turns out that the more religious voters appear to be more
conservative by choosing to place themselves on the right side of the ideological
“left-right” axis, while the non-religious voters opt for the left political parties.
The research and analysis of Michelat and Simon [6] brings to the surface two
opposing cultural models: on the one hand we have the deeply religious voters, who
belong to the middle and upper classes, residing in the cities or in the countryside,
while on the other hand we have the non-religious left voters with working class
characteristics. The first framework is articulated around religion and those who
belong to it identifying themselves as religious people, is inspired by a conservative
value system, put before the value of the individual, the family, the ancestral heritage
and tradition. The second cultural context is articulated around class rivalries and
socio-economic realities; those who belong to this context identify themselves as
“us workers towards others”. They believe in the values of collective action, vote
for left-wing parties, participate actively in unions and defend the interests of the
working class. To measure the influence of religious practice on political behavior,
applied research uses measurement scales about the intensity of religious beliefs and
the frequency of church service practice as an indicator of the level of one’s religious
integration.

To measure religious intensity level, variables are used such as how often they go
to the service, how much do they believe in the existence of God, of afterlife, in the
dogmas of the church and so on. Since the 90’s there is a rapid decline in the frequency
withwhich the population attends church service or self-identifies strongly in terms of
religiousness. Nevertheless, the strong correlation between electoral preference and
religious practice remains strong [5]. The most significant change for non-religious
people is that the left is losing its universal influence as many of these voters expand
also to the center. Strongly religious people continue to support the right more and, in
some cases, strengthen the far right. In this paper, apart from attempting to explore
and verify the existing literature over the effect of religion on political behavior,
focusing on the Greek case, the approach exploits methods used to achieve the
visualization of all existing relationships between different sets of variables. To link
together numerous variables and their categories to construct amodel of religious and
political behavior, multiple applications of Hierarchical Cluster analysis (HCA) are
being made followed byMultiple Correspondence Analysis (MCA) for the emerging
clusters. In this way, a semantic map is constructed [7], which visualizes discourses
of political and religious behavior and the inner antagonisms between the behavioral
profiles.
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2 Methodology

For the implementation of the research a poll was conducted on a random sample
of 506 people in the greater area of Thessaloniki in Greece, during April 2019.
A questionnaire was used as a research tool which was distributed with an on-site
approach of the random respondents. The questionnaire consisted of three sections:
a) the first section included seven questions for demographic data of the respondent
such as gender, age, educational level, marital status, household income, occupation
and social class to which the respondent considers belonging; b) the second part
contained seven questions, ordinal variables, related to the religious practice and
beliefs of the respondent: i) how often does one go to church? ii) how often does one
pray? iii) how close does one feel to God, Virgin Mary (or to another seven religious
concepts) during church service? iv) how strongly does one have seven different
feelings during church service? v) does one believe or not in the saints, miracles,
prophecies (and another six religious concepts)? Two more questions investigating
their profile in terms of what is taught in the Christian dogma were included vi)
one asking if one can progress only by being an ethical person and vii) another one
asking if they agree on the pain/righteousness scheme, that is if one suffers in this
life will be rewarded later or in the afterlife; c) questions concerning the political
profile of the respondent are developed in the third part of the questionnaire: i)
one’s self-positioning on the ideological left-right axis, ii) a set of nine ordinal
variables requiring one’s agreement or disagreement level on sentences that reflect
the dimensions of liberalism-authoritarianism and left-right iii) this last section
also includes two different sets of pictures, used as symbolic representation for the
“democratic self” and the “moral self” [4]. The first set of twelve pictures represent
various conceptualizations of democracy, and one is asked to select three pictures
that represent democracy. The second set of pictures represent moral values in
life, and one is asked to choose three pictures that represent one’s set of personal
values. Variables are ordinal, using a five-point Likert scale, apart from the question
regarding whether one believes or not in prophecies magic etc. and the two last
questions with the pictures, where we are using a binary scale of yes-no or zero-one
where zero is for a non selected picture and one is for a selected picture.

Data analysis was implemented with the use of M.A.D software (Méthodes
d’Analyse des Données), developed by Professor Dimitris Karapistolis (more about
M.A.D software at www.pylimad.gr). Firstly, Hierarchical Cluster Analysis (HCA)
using chi-quare distance and Ward’s linkage, assigns subjects into distinct groups
based on their response patterns. This first step produces a cluster membership vari-
able, assigning each subject into a group. In addition to this, the behavior typology of
each group is examined, seeing the connection of each variable level to each cluster
using two proportion I test (significance level set at 0.05) between respondents be-
longing to cluster 8 and those who do not belong in cluster 8 for a variable level. The
number of clusters is determined by using the empirical criterion of the change in the
ratio of between-cluster inertia to total inertia, when moving from a partition with A
clusters to a partition with A − 1 clusters [8]. In the second step of the analysis, the
cluster membership variable is analyzed together with the existing variables using
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MCA on the Burt table [2]. All associations among the variable categories are given
on a set of orthogonal axes, with the least possible loss of the original information
of the original Burt table. Next, we apply HCA for the coordinates of variable cat-
egories on the total number of dimensions of the reduced space resulting from the
MCA. In this way we cluster the variable, as previously we clustered the subjects.
By clustering the variable response categories, we detect the various discourses of
behavior, where each cluster of categories stands as a behavioral profile linked with
a set of responses and characteristics. To produce the final output, the semantic map,
we created a table including the output variables of the questionnaire, including de-
mographics and variables for political behavior. Using the same two-step procedure
usingHCA andMCA for this final table, the semanticmap is constructed, positioning
the variable categories on a bi plot created by the two first dimensions of MCA.

3 Results

In the first step of the analysis, we apply HCA for each set of variables in each
question. In the question: “How close do you feel during the service 1-To God, 2-To
the Virgin, 3-To Christ, 4-To some Saint, Angel, 5-To the other churchgoers, 6-To
Paradise, 7-To Hell, 8-To the divine service, 9-To his preaching priest”, we get four
clusters (Figure 1).

Fig. 1 Four clusters on how close the respondents feel during church service.

For the question: “How strongly you feel after the end of the service 1-The Grace
of God in me, 2-Power of the soul, 3-Forgiveness for those who have hurt me, 4-
Forgiveness for my sins, 5-Peace, 6-Relief it is over”, we get six clusters (Figure
2).

Fig. 2 Six clusters on how the respondents feel at the end of church service.
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Five clusters (Figure 3) for the question: “Do you believe in 1-Bad (magic influ-
ence) 2-Magic? 3- Destiny? 4-Miracles? 5-Prophecies of the Saints? 6- Do you have
pictures of holy figures in your house? 7-in your workplace? 8-Do you have a family
Saint?”.

Fig. 3 Five clusters on the beliefs of the respondents on various aspects of the Christian faith.

Six clusters are detected (Figure 4) for the question: “How do you feel when you
come face to face with a religious image 1-Peace, 2-Awe, 3-The presence of God,
4-Emotion, 5-The need to pray, 6-Contact with the person in the picture”.

Fig. 4 Six clusters on how the respondents feel when facing a religious image.

We proceed with the clustering of the replies on political views and we get seven
clusters of political profiles (Figure 5).

Fig. 5 Seven clusters according to the political views- profile of the respondents.
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For the symbolic representation of the democratic self, when choosing three
pictures that represent democracy for the respondent, we find eight clusters (Fig-
ure 6), and eight clusters for the symbolic representation of the moral self for the
respondents, as show in Figure 7.

Fig. 6 Eight clusters on how the respondents understand democracy.

Fig. 7 Eight clusters on the different sets of moral values of the respondents.

In the second step of the analysis, we jointly process the cluster membership
variables. MCA produces the coefficients of each variable category which are now
positioned in a two-dimensional map as seen in Figure 9. HCA is then applied again
to the coefficients of the items, which bring forward three main clusters, modeling
political and religious behavior. In Figure 8, Cluster 77 is connected to centre and
moderate religious behaviour, cluster 78 reflects the voters of the right, with strong
religious habits and beliefs, individualistic attitudes and more authoritarian and
nationalistic political views, whereas cluster 79 represents the leftists, non-religious
voters, closer to revolutionary political views and collective goods. Examining the
antagonisms on the behavioralmap (Figure 9), the first horizontal axiswhich explains
22.8% of the total inertia, is created by the antithesis between right political ideology
- strong religious behavior and left political ideology-no religious behavior (cluster
78 opposite to cluster 79). The second axis (vertical) accounts for 7% of the inertia,
and is explained as the opposition between the center (moderate religious behavior)
against the left and right (cluster 77 opposite to both clusters 78 and 79).
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Fig. 8 Three main behavioral discourses linking all variable categories together.

Fig. 9 The semantic map visualizing the behavioral profiles of voters, and the inner antagonisms.
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4 Discussion

The analysis uncovers the strong existing relationship between religious habits and
political views, for theGreek case. The semanticmap indicates twomain antagonistic
cultural discourses, including both religious, political and moral characteristics: The
first discourse (cluster 77) is described as moderately religious practice and beliefs,
connected to the ideological center. These voters have political attitudes that belong
to the space between the center-left and the center-right. They understand democracy
as a connection to money, direct democracy and electronic democracy. Their moral
set of values is naturalistic and individualistic. The next behavioral discourse (cluster
78) describes the voters of right ideology, with strong religious beliefs andfrequent
religious practice. They appear as very ethical and believe in the concept of pain
and righteousness. Regarding their political attitudes these more religious voters
are against violence, have more authoritarian and nationalistic positions. They view
democracy as parliamentary, representative, ancient Greece but also as church, while
their moral set of values appear clearly naturalistic, Christian and nationalistic.

Cluster 79 reflects the exact opposite discourse compared to 78. These voters
belong to the left ideology and are non-religious. They do not adopt the ideas of
the ethical person, or the scheme of pain and righteousness as mentioned in the
Christian dogma. In terms of political attitudes, they are pro-welfare state. These
non-religious and left voters understand democracy as direct with the need for
revolution, protest and riot and support collective goods. Interpreting further the
antagonisms as visualized on the semantic map, the main competition exists between
the “right political ideology - strong religious behavior individualism” discourse
and the “left political ideology-no religious behavior collectivism” discourse. A
secondary opposition is found between the “center ideology- moderate religious
behavior” discourse against the left and right extreme positions.
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