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Chapter 1

Outline of the PhD research and
publication list

My PhD research focused on the study of the Quantum Chromodynamics
(QCD) phase transition, both from a phenomenological and a theoretical
point of view.

Three main research lines have been considered (the number in paren-
theses refers to the list of publication 1.1):

• in papers [1], [2] and [3] the study of some phenomenological topics
of the phase transition has been carried out. In particular, I studied
universality in light and heavy particles collisions at high energy, by
looking at some experimental observables: the strangeness suppres-
sion factor γs and the yields of multi-strange hadrons, the average
transverse momentum, and the elliptic flow scaled by the participant
eccentricity, in pp, pPb and AA collisions in Ref.s [1, 2], while in
Ref. [3] the universality behaviour is analyzed in e+e− annihilation.
These aspects are discussed in Sec. 2.6;

• in Ref. [4] I analyzed the effect of the crossover from quarks and gluons
to hadrons in the early universe on the cosmological scalars and on
the gravitational wave spectrum;

• the main line of my research regards the study of the phase transition
in field theory, and in QCD in particular, in the framework of thermo-
dynamic geometry: the thermodynamic theory of fluctuations allows

1



CHAPTER 1. OUTLINE OF THE PHD RESEARCH AND
PUBLICATION LIST

to define a manifold spanned by intensive thermodynamic variables,
{θk} with k = 1, 2, . . . , N , and to equip this with the notion of a
distance, dℓ2 = gµν(θ1, θ2, · · · θN) dθµ dθν , where gµν is the metric
tensor. The metric tensor is defined as gµν = ∂2 logZ/∂θµ ∂θν , Z be-
ing the partition function, and measures the probability of fluctuation
between two equilibrium states. I applied this method to LATTICE
QCD and HRG models in Ref.s [5, 6], to Nambu-Jona Lasinio model
in Ref. [7], and to study the effect of fluctuations in Quark-Meson
model in Ref. [8]. Ref.s [5–8] are the first application of thermody-
namic geometry to field theory at finite temperature and density.

The plan of the thesis is as follows: in Chapter 2 I introduce the the-
ory of strongly interacting matter and the main topics regarding its phase
diagram. In Chapter 3 I study same methods and models describing QCD
at finite temperature and density. I study QCD phase transition in the
early Universe in Chapter 4. In Chapter 5 I briefly review the theory of
thermodynamic geometry, and apply it to the methods and models studied
in Chap. 3. Finally, in Chapter 6, I draw some comments and conclusions.

1.1 List of publications regarding the Thesis
[1] Paolo Castorina, Alfredo Iorio, Daniele Lanteri, Martin Spousta, and

Helmut Satz. Universality in Hadronic and Nuclear Collisions at
High Energy. Phys. Rev. C, 101(5):054902, 2020, DOI: 10.1103/Phys-
RevC.101.054902.

[2] Paolo Castorina, Alfredo Iorio, Lanteri Daniele, Helmut Satz, and Mar-
tin Spousta. Universality in High Energy Collisions of small and large
systems. Proceedings: 40th International Conference on High Energy
Physics (ICHEP) 2020

[3] P. Castorina, D. Lanteri, and H. Satz. Strangeness enhancement and
flow-like effects in e+e− annihilation at high parton density. Under
review, arXiv:2011.06966.

[4] P. Castorina, D. Lanteri, and S. Mancani. Deconfinement transition
effects on cosmological parameters and primordial gravitational waves
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spectrum. Phys. Rev. D, 98(2):023007, 2018, DOI: 10.1103/Phys-
RevD.98.023007.

[5] Paolo Castorina, Mauro Imbrosciano, and Daniele Lanteri. Thermody-
namic Geometry and Deconfinement Temperature. Eur. Phys. J. Plus,
134(4):164, 2019, DOI: 10.1140/epjp/i2019-12617-y.

[6] P. Castorina, M. Imbrosciano, and D. Lanteri. Thermodynamic Geom-
etry of Strongly Interacting Matter. Phys. Rev. D, 98(9):096006, 2018,
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Chapter 2

QCD phase diagram

This chapter provides a short introduction to the theory of strongly inter-
acting matter: starting from the theoretical point of view, and phenomeno-
logical topics of light and heavy particle collisions, I will go over the main
topics of the phase diagram of QCD at finite temperature and baryon chem-
ical potential, giving a schematic overview of the possible signature of the
transition from the quark-gluon plasma (QGP) to the hadronic phase. In
recent years a new form of matter, the quark-gluon plasma (QGP), was
discovered at RHIC and LHC [1–4]. Consequently, the diagram of strongly
interacting matter has become the focus of theoretical and experimental
attention. Indeed, Quantum Chromodynamics (QCD), the theory of strong
interaction, predicts two different phase transitions, which are associated
with two opposite quark mass limits: a) for vanishing quark masses (the
chiral limit) QCD has an exact global U (Nf )L × U (Nf )R symmetry (Nf

being the number of quark flavours), to which the so-called chiral transi-
tion, responsible for the mass of bound quarks, is associated. b) In the
“quenched” limit, i.e. for infinitely heavy quark masses, QCD reduces to
a pure SU(Nc) (Nc is the number of colours) gauge theory, which is in-
variant under a global Z(Nc) center symmetry. The center symmetry is
spontaneously broken at high temperatures and densities, i.e. in the QGP
phase, and is associated with the confinement/deconfinement phase transi-
tion. Both phase transitions are broken explicitly when dynamical quarks
are present and are conceptually distinct phenomena of QCD [5].
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CHAPTER 2. QCD PHASE DIAGRAM

2.1 On QCD Lagrangian

Matter, in its most basic description, is essentially made of quarks, leptons,
vector bosons and Higgs, which interact through four fundamental forces:
strong, electromagnetic, weak and gravitation. The strong force is currently
described by Quantum Chromodynamics (QCD). The seminal ideas of this
theory date back to 1963/64, when the concept of quarks was introduced for
the first time by Gell-Mann [6] and Zweig [7]. These new objects, allowed to
understood mesons and baryons as bound states of quarks-antiquarks and
three quarks, opened the way to define a more fundamental theory: matter
is made of blocks of different species or “flavours” (u, d, s, . . .), with dif-
ferent quantum numbers, but the same strong interaction. Quarks bring a
new internal degree of freedom, named “colour” (the introduction of which
is necessary to prevent violation of the Pauli principle), and must be spin-
1/2 fermions with a fractional electric charge. Interactions between them
are mediated by colourfull massless spin-1 bosons [8], named gluons. Thus,
there is an SU(3) symmetry in the interaction among the different colours
of quarks. Moreover, this theory reproduces the non-interacting behaviour
of quarks at short distances [9–12], i.e. the “asymptotic freedom”, and it is a
solid generalization of the “parton model”, introduced by Feynman [13], i.e.
the ideas that hadrons contain point-like constituents with simple proper-
ties, that interact each other. Although some of these constituents can be
identified with quarks and the parton model has been strikingly successful
in describing deep inelastic scattering initial data, it is only a phenomeno-
logical description, and the complete theory has been developed over the
years starting from symmetries and group properties [11, 12, 14–21], e.g.
the fact that only a non-abelian gauge theory has the property of asymp-
totic freedom. The theory that arises, called Quantum Chromodynamics
(QCD), is a renormalized non-abelian gauge theory.

In particular, symmetries are connected with conservation law and are
called gauge symmetry if associated with the conservation of a charge.
Named Nc the number of colours, and ψ(x) an Nc-component vector, the
gauge symmetry acts as a phase when applied to the field ψ [22]:

ψ′(x) = Ω ψ(x) , (2.1)
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where Ω is a unitary operator. For Nc = 3 colours, the space SU(3) of
unitary transformations in colour space is generated by eight infinitesimal
transformations, λa, introduced by Gell-Mann:

Ω = exp

{︃
i g

λa

2
θa

}︃
. (2.2)

Global symmetry is “promoted” to a local one by postulating that Ω depends
on the space-time position, x. Is then added a connection to construct a
coherent theory, since derivatives transform inhomogeneously,

∂µψ
′(x) = Ω(x)

[︁
∂µψ(x) + Ω−1(x)∂µΩ(x) ψ(x)

]︁
, (2.3)

and one has to include a correction term so that D′ψ′ and ψ′ have the same
homogeneous transformation law. This means that derivative is replaced
by the covariant one, D, that transforms as

D′µψ
′(x) = Ω(x) Dµψ(x) , (2.4)

with
Dµ = ∂µ + i g Bµ(x) (2.5)

and
B′µ(x) = Ω(x) Bµ(x) Ω

−1(x) +
1

i g
[∂µΩ(x)] Ω

−1(x) . (2.6)

Bµ(x) is a vector field of 3 × 3, traceless, Hermitian matrices, whose trace
is an overall phase transformation of ψ. Thus, the invariant kinetic energy
term for the matter field ψ is given by

Lψ = ψ
↔
Dµγµψ , (2.7)

where
↔
Dµ =

1

2

(︂ →
Dµ −

←
Dµ

)︂
, (2.8)

and γµ are the Dirac gamma matrices.
The kinetic energy term for Bµ,

LBµ = −1

4
TrGµνG

µν , (2.9)
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it is easily constructed similar to what is done in QED, by defining a tensor,
Gµν , that transforms as

G′µν(x) = Ω(x) Gµν(x) Ω
−1(x) . (2.10)

Since
[Dµ, Dν ]ψ = i g[Bµ, Bν ] , (2.11)

one finds
Gµν = ∂µBν − ∂νBµ + i g [Bµ, Bν ] . (2.12)

Finally, the Lagrangian assumes the canonical form

LQCD = −1

4
Tr (GµνG

µν) +

Nf∑︂
f=1

ψf

(︂
i
↔
Dµ γµ −mf 1c

)︂
ψf , (2.13)

where the sum run over the number of flavour, Nf , and 1c is the Nc × Nc

matrix identity.

Because of the non-abelian character of the gauge group (see the com-
mutator in EQ. (2.12)), QCD and abelian gauge theories, like QED, have
several crucial differences [23]:

• there are vector bosons self-couplings (three-and four-gluon vertices),
and thus gluons carry colour;

• the “asymptotic freedom”: the coupling αs becomes weak at short
distances or large energy, since (at one-loop):

αs(Q
2) =

4π(︁
11− 2

3
Nf

)︁
ln Q2

Λ2
QCD

, (2.14)

where ΛQCD is the QCD scale parameter (ΛQCD ≃ 200 MeV for
five flavours). Therefore, QCD is studied perturbatively in the high-
momentum regime, where there is no Landau pole;

• conversely, at low momentum perturbative QCD is not applicable
(the coupling becomes strong and perturbative QCD fails to describe
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hadrons with masses below 2 GeV) and the so-called confinement oc-
curs.

2.2 Symmetries of QCD

Critical behaviours are generally related to the spontaneous breaking of
a global symmetry [24]. Indeed, according to the Noether theorem, each
symmetry corresponds to a conservation law and a conserved charge. For
example, energy and momentum conservation are due to Lorentz invariance.
Not only symmetries, but their lack, or rather their breaking, are also of
fundamental importance: e.g. masses in quantum theory (as well as many
phase transitions - classical or not), are due to (spontaneous)-symmetry
breaking. An “order parameter” describes each symmetry: it is a quantity
that vanishes when the system shares the same symmetry of the Lagrangian,
while it is different for zero when the symmetry is (spontaneously)-broken.
It thus establishes the state of the system.

By construction, QCD is a gauge theory with gauge group SU(3)c and
its main symmetries are:

2.2.1 Poincarè and CPT

The Poincarè group describes the full symmetry of special relativity, and
all elementary particles fall in representations of this group. CPT (Charge
conjugation, parity and time-reversal) is the only exacts discrete symmetry
of a physical theory and is tightly connected to the Lorentz one. It also
requires that the vacuum is Lorentz invariant and the energy bounded from
below.

2.2.2 Flavour simmetry

Another important symmetry is the flavour one, that is broken due to the
non zero value of the physical mass. Indeed, the kinetic term for the mass
field can be written in terms of the chiral components,

qfL =
1− γ5

2
qf , qfR =

1 + γ5
2

qf , (2.15)
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as

Lkin = i

Nf∑︂
f=1

(︁
qfL D/ qfL + qfR D/ qfR

)︁
. (2.16)

Since left and right terms are additive, each of them can be rotated sep-
arately implying the maximal global flavour symmetry U(Nf ) × U(Nf ).
Nevertheless, mass terms break this symmetry, because they couple the left
and the right component of the quark field:

Lm = i

Nf∑︂
f=1

mf

(︁
qfR qfL + qfL qfR

)︁
(2.17)

Generally, since the masses are non zero, the only flavour symmetry of LQCD
is obtained by rotating the left and the right component of the quark field
by the same phase, θf , qfL,R → e−i θf qfL,R, and the symmetry group reduce
to U(1)×U(1)× · · · ×U(1) = U(1)Nf , with conserved charges given by the
flavour quantum numbers, Nu, Nd, Ns, Nc, Nb and Nt. Besides, all these
symmetries are broken by the weak interactions, and the only conserved
charge is the sum (baryon number):

B = (Nu +Nd +Ns +Nc +Nb +Nt) /3 (2.18)

Other approximate symmetries can be recognized: since mu, md, and ms

are smaller than the others, in some cases, one can approximate mu = md

(Isospin symmetry - group SU(2)f ) or mu = md = ms (SU(3)f symmetry).

2.2.3 Approximate chiral symmetry

Chiral symmetry is realized when mf = 0. In some situations, like high-
energy and high-momentum regimes, one can approximate mu = md = 0
and also ms = 0. This position makes LQCD invariant under the transfor-
mation of the group SU(nF )L × SU(nF )R, with nF = 2 or 3, and qfL and
qfR can again be rotated separately.

Chiral symmetry appears to be more hidden than, for example, the
isospin one. While the second is responsible for the (almost) same mass
of protons and neutrons, the first would result in hadrons with a partner
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of opposite parity and approximately the same mass, that is obviously not
the case. Thus, not only chiral symmetry is broken (also Isospin symmetry
is broken due to the small difference between mu and md, and hence the
difference in the masses of the nucleons), but it is with more significant
consequences than the Isospin symmetry breaking.

The spontaneous breaking is related to the dynamical generation of mas-
sive constituent quarks. Thus the chiral transition describes the transition
from a state in which the effective quark masses are spontaneously generated
to one with massless quarks. The order parameter is the chiral condensate,
that is the trace of the quark propagator, S, or, equivalently, at finite tem-
perature, the derivative of the thermodynamic potential, Ω, with respect to
the bare quark masses, m:

< ψ̄ψ >= −T
V

TrS =
∂Ω

∂m
. (2.19)

For zero bare masses, i.e. when the chiral symmetry is exact, < ψ̄ψ > is
zero in the symmetric phase (high energy), and it becomes finite at low
energies when chiral symmetry is broken spontaneously. For finite masses,
the < ψ̄ψ > is never zero, since the current quark masses break the sym-
metry explicitly. Nevertheless, it decreases suddenly at the (pseudo)-phase
transition. Typical value in the vacuum for the lightest condensates are
< ūu >≃< d̄d >≃ (−230MeV )3.

2.2.4 ZN symmetry

For pure Yang-Mills theory at finite temperature and densities, a new sym-
metry, called ZN , is important to study deconfining, although it is not a
symmetry of the full QCD Lagrangian. It is a topologically non-trivial gauge
transformations [25, 26],⎧⎨⎩ψf ↦→ U ψf

Bµ ↦→ U BµU
−1 +

1

i g
(∂µU)U

−1 , (2.20)
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with periodic boundary conditions

ψf (x, β) = −z ψf (x, 0) , (2.21)

and with U an element of SU(N), i.e.

U = exp {i αa ta} , (2.22)

satisfying the boundary condition

U(x, β) = z U(x, 0) . (2.23)

Once the fermion fields are transformed as

ψf ↦→ exp {−i θf T τ} ψf , (2.24)

the resulting Lagrangian remains the same if one changes the covariant
derivative, D, in eq, (2.5) with

Dµ = ∂µ + i g
(︂
Bµ + ˆ︁θ δν,0 T)︂ , (2.25)

where T is the temperature and ˆ︁θ is a matrix in flavour space.
The order parameter to study the phase of the system with respect

this symmetry is the Polyakov loop, which is the generalization at finite
temperature of Wilson line. The Wilson line along some path in space-time
describes a way to connect operators at different space-time points (from
some initial, xa, to some final, xb, point) in a gauge-invariant way. It is
defined as the path-ordering (P )

Wa b = P exp

{︃
i

∫︂ xb, tb

xa, ta

Bµ dxµ

}︃
. (2.26)

The Polyakov loop is essentially the generalization at finite temperature of
the trace of EQ. (2.26), when the initial and finial points differ only in the
time component, i.e. the path is a straight line connecting t to t+ β:

L =
1

Nc

Tr

[︃
T exp

{︃
i

∫︂ β

0

B0 dx0

}︃]︃
. (2.27)
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It is called a loop due to the periodicity. Moreover, it is gauge invariant,
but it is not invariant under center transformations, i.e.

L ↦→ z L . (2.28)

So center transformations have physical content since gauge-invariant ob-
jects change under it. Its physical meaning is related to the free energy of
adding colour sources at infinite distance,

L(T ) ∼ lim
r→∞

exp

{︃
−V (r)

T

}︃
, (2.29)

where V (r) is the potential between a static quark-antiquark pair separated
by a distance r. For Yang-Mills theory without quarks, or for the quenched
theory with quarks with infinite mass, QCD reduces to pure SU(3) gauge
theory, which is invariant under a global Z3 symmetry, with a potential
V (r) ∝ r. Thus L = 0 at large distance, r → ∞, while at finite r one has
L ̸= 0, and the Polyakov loop provides an order parameter of the state of the
system under this symmetry: L vanishes for symmetric states, and becomes
finite when the symmetry is spontaneously broken. This picture changes
for a system with physical quarks since now, due to colour screening, V (r)
remains finite at large r: indeed, turning away two colour charges (quarks,
antiquarks or gluons), when the energy equals the lowest hadron mass, it
is more convenient produce a hadron and thus the “string” between these
charges breaks. Consequently, L does not vanish in the confined phase, but
its value is about

L(T ) ∼ exp

{︃
−Mh

T

}︃
∼ 10−2 . (2.30)

However, it continues to be significantly lower than in the deconfined phase,
and it can be used to describe deconfinement: the Polyakov loop must (al-
most) vanish for unbroken center symmetry (when the action in pure Yang-
Milles theory is invariant under center transformations and the Polyakov
loop is not - unless it is L = 0), and it is finite in the broken phase.
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2.3 QCD at finite temperature and density

In the real world, a physical system is made of many interacting bodies,
and it is a typical example of Gran Canonical ensemble, where particles
can be created and destroyed: in this sense, i.e. in a thermodynamically
one, one introduces a temperature and a chemical potential to study strong
interactions. It is a fundamental step to apply QCD to the study of collisions
between light/heavy particles (which requires a theory at finite temperature,
or finite density, or both), of neutron stars (where the density is much
higher than the nuclear one) or at early eras of cosmological evolution (with
temperature comparable to nucleon rest energies). For those systems, one
has to know the phase of hadronic matter, since, as in many thermodynamic
systems, phase transitions occur by varying temperature and/or density. In
other terms, one has to know the properties of the entire phase diagram of
the strongly interacting matter.

One of the first hints of a phase transition in QCD can be found in the
works of Hagedorn [27, 28] on the statistical bootstrap model: since the den-
sity of hadronic states increases exponentially as a function of the resonance
mass m, ρ(m) ∼ exp{b m}, a limiting temperature, above which hadrons
fade away, must exist. In 1975 was shown by Cabbibo and Parisi [29] that
the limiting temperature of hadronic matter can be seen as a “transition”
temperature to a phase of free quarks, named “quark-gluon plasma” (QGP).
If indeed hadrons are bound states of more fundamental objects, then the
exponential increase of the density might indicate a phase transition to a
state composed of free constituents. In this phase, quarks can be consid-
ered as free due to the so-called “asymptotic freedom“ of QCD: when the
energy density of the system increases, and this happens for example at
high temperature or density, strong interaction decreases. Therefore, at
large density or temperature, where the equation of state (EoS) can be per-
turbatively calculated, one finds that the EoS approaches that of an ideal
gas of free particles. As the temperature is lowered, unfortunately, per-
turbation theory can no longer be used. However, we know that, at some
temperature and density (or baryon chemical potential), quarks condensate
in confined objects named hadrons, although it is now clear that it is not a
real phase transition, but rather a crossover at large temperature and small
chemical potential.
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At finite temperature and density, systems are described by the grand
canonical Gibbs ensemble, by adding a “Lagrangian multiplier” term for
each conserved number (notably nonzero net baryon number and zero net
strangeness and charm). Thus, several additional terms, exp(−µi/T ), where
µi are the chemical potentials associated with the conserved and mutually
commuting number operators Ni, modifies the partition function. Let be H
the Hamiltonian of the system. Ni must also commute with H and must be
extensive. The equilibrium state of the system is described by the statistical
density matrix [30–32]

ρ = exp

{︄
−β

(︄
H −

∑︂
i

µi Ni

)︄}︄
, (2.31)

that is the starting point to define the ensemble thermal average of any
observable, A,

< A >β=
Tr Aρ
Trρ

, (2.32)

and to define all the thermodynamic potential of the systems, through the
grand canonical partition function

Z = Trρ . (2.33)

For example, the pressure, the particle number, the energy and the entropy
densities, and the trace anomaly are given by

P = T

(︃
∂ lnZ
∂V

)︃
T, µ

, (2.34)

ni =
T

V

(︃
∂ lnZ
∂µi

)︃
T, V

, (2.35)

ε =
T 2

V

(︃
∂ lnZ
∂T

)︃
V, µ

, (2.36)

s T = P + ε−
∑︂
i

µi ni , (2.37)
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and
Θµµ

T 4
=
ε− 3 P

T 4
= T

∂(P/T 4)

∂T
. (2.38)

Equilibrium thermodynamic requires stationarity. Thus, one can introduce
a temperature in the QCD Lagrangian through the imaginary time path-
integral formulation. For example, the grand canonical partition function
reads [8]

Z =

∫︂
[dB] [dψ] [dψ̄] exp

{︃
−
∫︂
V

d3x

∫︂ β

0

dτ L(B,ψ, ψ̄)
}︃
, (2.39)

where the time component is rotated, and the integration over τ goes from
0 to the inverse temperature β = 1/T . Although the dynamic has been
frozen, there is the advantage of simple prescriptions for the integration in
dτ . Indeed, all fields over which we integrate have to be periodic (boson)
or antiperiodic (fermion) in the imaginary time direction, due to the trace
operation. Consequently, fields can be expanded in eigenmodes in the time
direction and the corresponding “Matsubara” frequencies are quantized. For
boson fields one has

ϕ(x, t) =
∑︂

ωn=2 n π T

ei ωn t ϕn(t) , (2.40)

while the fermions anti-periodic conditions lead to the expansion

ψ(x, t) =
∑︂

ωn=(2 n+1) π T

ei ωn t ψn(t) , (2.41)

where the sum runs over the Matsubara frequencies, with n even (odd)
for bosons (fermions). This means that, in order to evaluate integrals, one
expands fields in momentum space, and replace∫︂

d4k

(2 π)4
→ 1

β

∑︂
n

∫︂
d3k

(2π)3
. (2.42)

Of course EQ. (2.39) is not solvable exactly in the strong coupling regime.
However, in some simple cases like for systems of non-interacting fermions
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or bosons at zero chemical potential, EQ. (2.39) can be solved analytically,
and one finds

lnZB = −1

2
ln det

D−10

T 2
, (2.43)

and

lnZF = ln det
S−10

T
, (2.44)

respectively. In eqs. (2.43) and (2.44) D0 and S0 are the free bosonic and
the free fermionic propagators. By integration and for infinite volume, one
finds that the pressure is

PB =
T

V
lnZB = −

∫︂
d3k

(2π)3
[︁
εk + 2 T ln

(︁
1− e−εk/T

)︁]︁
, (2.45)

for bosons, and

PF =
T

V
lnZF = 2

∫︂
d3k

(2π)3
[︁
εk + 2 T ln

(︁
1 + e−ϵk/T

)︁]︁
, (2.46)

for fermions, with ϵk =
√
k2 +M2, M being the mass.

For interacting systems, one needs models, as for example the Nambu-
Jona Lasinio (see Sec. 3.3) and the Quark-Meson models (see Sec. 3.4),
or computational methods, as Lattice QCD (see Sec. 3.1). Effective QCD
models allow to study the whole phase diagram of QCD, whereas Lattice
QCD cannot describe systems at finite density, because reliable first princi-
ple calculations are forbidden by the sign problem.

2.4 The phase diagram of QCD

In this section, the main topics of the phase of the strongly interacting mat-
ter are summarized. We have seen that there exist at least two phases of
the strongly interacting matter. At low temperature and density the rel-
evant d.o.f. are hadrons, the quark-gluon plasma (QGP) phase is at high
temperature and/or densities. These two asymptotic regions are separated
by some (pseudo) transition line, at which one can define a (pseudo) tran-
sition temperature, Tc, that depends, in principle, from the density, or the
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chemical potential. Connecting these two phases is not a simple task, and
the phase diagram which comes out is very rich, as schematically shown in
Figure 2.1.

Although there are no exact solutions at finite temperature and baryon
chemical potential, one can conceive the phase diagram structure starting
from the two limiting cases recalled (free QGP and Hadron Gas) and by
looking at existing properties or symmetries in different part of the dia-
gram. For example, the transition line can be seen as a deconfinement
one, since beyond Tc the hadrons are colourless bound states of quarks and
gluons, while at high temperatures and/or densities hadronic matter turns
into a QGP. Moreover, considering the symmetries of the QCD Lagrangian
discussed in Sec. 2.2, if the masses disappear, the Lagrangian becomes chi-
ral symmetric, and thus the deconfinement transition could be related to
the restoration of this symmetry, whit order parameter given by the quark-
antiquark condensate in EQ. (2.19). Indeed, in the vacuum and at zero
temperature, quarks dress themselves with gluons to form the “constituent”
quarks that makeup hadrons. As a result, the bare quark mass mq ∼ 0
is replaced by a constituent quark mass Mq ∼ 300 MeV and the chiral
symmetry is broken spontaneously. Another type of transition can be seen
in the high density and low-temperature region: in the deconfined phase,
the attractive interaction between quarks could lead to the formation of
colored bosonic diquark pairs, like the Cooper’s pair in superconductors,
which could condense at low temperature to form different colour supercon-
ductor/superfluid phases [33, 34]. A review of our current understanding of
the phase structure of QCD can be found in [35], and the phase diagram is
depicted in Fig. 2.1.

The first part of the transition line, Tc(µ), i.e. the dashed one at low
chemical potential in Fig. 2.1, does not describe a real phase transition, but
instead a crossover: Lattice calculations show that there is no singularity in
the thermodynamic potentials. Hence, in a strict sense, there is no phase
transition between the two phases. At some chemical potential, µ⋆, (the
red “X” at the end of the crossover line) the transition changes becoming
a II order one, and then, for µ > µ⋆, one finds a I order phase transition
(black line). The colour superconductor phases are plotted in the bottom-
right side of the figure. The regions probed by some relativistic heavy-ion
collision experiments (LHC, RHIC, SPS, AGS, GSI) are also marked in the
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Figure 2.1: The phase diagram of Quantum Chromodynamics. Figure
from [36]
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figure, together with the two other possible “laboratories” to probing QGP
like the early stage of the universe and the core of neutron stars.

It is still not clear if the change from QGP to hadronic matter coin-
cides with the deconfinement or with the chiral phase transition. Indeed,
the connection between these two different phases is theoretically not fully
understood, and it is an open issue whether both, the chiral and deconfine-
ment transition, take place at the same temperatures and densities. For
example, McLerran and Pisarksi [37] suggested that, at large densities, at
least in the large Nc limit, could exist a new confined and chiral symmetric
phase of matter, named “quarkyonic”, between these two lines.

2.5 Probing the Quark–Gluon Plasma

As discussed, the properties of QCD at finite temperature and density show
that could exist a new form of matter named QGP. The question is, where
and how one can find this new state of matter? There are at least three
possible answers to the first question: the early universe, the core of neutron
stars, and particles accelerators.

In fact, in the standard cosmological model, our universe has evolved
through several eras, and its history can be described as a thermal one.
From a thermodynamic point of view, in fact, one can introduce a temper-
ature and describes the evolution of the universe as an adiabatic isentropic
expansion with a temperature running from a very high value (at least of
the order of 1015 GeV of the GUT era) to the current value of the Cosmic
Microwave Background (CMB) radiation (T ∼ 2.73 KeV). It is therefore
natural to expect that, at some time, the temperature of the universe was
that one of the QCD phase transition. According to the very small value of
the photon to baryon density ratio [38], this transition happens for a zero
value of the chemical potential.

The other “cosmological laboratory” to find QGP is the core of neutron
star, where, although at small temperatures, the density is larger than those
of ordinary nuclear matter. Thus nucleons can overlap and produce a gas
of almost free quarks and gluons.

Finally, the most useful and straightforward way to probe QGP is through
accelerator experiments (for some recent review see [39–44] and references
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Figure 2.2: A schematic picture of particles collisions in the laboratory
frame. Figure from [39]

therein). The study of ion collisions have been carried out since 1970 and
since the international symposium “Statistical Mechanics of Quarks and
Hadrons” [45], which, from the point of view of theory, was the starting
point of the “Quark Matter” conferences, and the “Workshop on future rel-
ativistic heavy ion experiments” of 1980 [46] and “Quark Matter Formation
and Heavy Ion Collisions” of 1982 [47], which started the series from the
point of heavy ion experimentation [48].

Different experiments at various collision energies and nuclear targets
allowed to cover a large part of the phase diagram in Fig. 2.1. More recent
results have been obtained from experiments at the CERN Super-Proton-
Synchrotron (SPS) accelerator [43, 49] at the Relativistic Heavy Ion Collider
(RHIC) at Brookhaven National Laboratory (BNL) [3, 50], at the Alternat-
ing Gradient Synchrotron (AGS) [51], and subsequently at the CERN Large
Hadron Collider (LHC) [41, 52, 53]. Regarding the colder and denser region
of the QCD phase diagram, there are, among others, experiments at the GSI
Helmholtz Center for Heavy Ion Research, e.g. the Facility for Anti-proton
and Ion Research (FAIR), or at the Nuclotron-based Ion Collider Facility
(NICA) at Joint Institute for Nuclear Research (JINR) [54, 55], and many
others.

The second question concerns how can one say that the new kind of
matter has been observed, especially if this new state appears without a
phase transition, as happens at low chemical potential. In other words, what
are the signatures of QGP formation? Before answering, I shall illustrate
what happens in a nuclear collision, as schematically pictured in Figure 2.2
(see also ref. [56]).

Let consider two ultra-relativistic nuclei that collide. In the “laboratory
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frame”, each incident nucleus is a Lorentz contracted disc, with a diameter,
d, of few fm (e.g. for large nuclei such Pb or Au d is about 14 fm), and
low thickness (it is about d/γ), due to the considerable value of the rela-
tivistic Lorentz γ factor (γ is approximately 100 for RHIC and γ ∼ 2500
for LHC energies). When the two disks overlap or collide, most of the
incident partons (quarks, antiquarks and gluons) loss energy mainly due
to “soft” interactions, i.e. those that involve small transverse momentum
transfer. These interactions imply a colour exchange between the discs, so
that new longitudinal colour fields fill the space between them, forming the
so-called fireball (see Fig. 2.2). Then, these fields gradually decay into q̄q
pairs and gluons and a droplet of quark-gluon plasma very far from equi-
librium emerges. At this energy, the matter is better understood in terms
of a soup of quarks and gluons, with almost no hadrons or other quasi-
particles moving inside, and with a characteristic shear viscosity, η. Then
gluons quickly thermalize (after a time of order 1 fm/c in its rest frame -
τ0 in Fig. 2.3), while the energetic partons traverse this plasma and end
in a shower of particles. The fireball has an execs of energy density with
respect that of a hadron gas (of about 500 MeV/fm3) and also the entropy
density is enormous (e.g. the final state after the collision can contain as
many as 30,000 particles, while the initial one has an almost zero entropy
density). In this medium, quarks and gluons are so close that they form
a collective medium, that can be described as a relativistic hydrodynamic
fluid with remarkably low viscosity to entropy density ratio, η/s ∼ 1/(4π)
(it is precisely 1/4π in infinitely strongly coupled gauge theories). Curi-
ously, although separately both η and s are enormously larger than those
of any quotidian fluid, its specific viscosity η/s is smaller than that of any
other known fluid. The QGP expands and cools as the disks cross each
other, losing energy. Simplifying, when locally the energy density drops
below that within an individual hadron, the fluid hadronizes (time τh in
Fig. 2.3) and forms a fog of particles that, after a possible scattering pe-
riod, then stream away freely (at the freeze-out time). Remnants of the
original nuclei progress in the forward and backward directions. For non-
central collisions, the final produced particles momentum distribution shows
an azimuthal anisotropy since the droplet of QGP is formed with an initial
approximately almond shape in the transverse plane. Occasionally, some
high-energy partons are produced by large-angle scattering. They born at
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very early times and appears in the final state as a “jet”, i.e. a cone-shaped
spray, of hadrons and/or high-energy photons, leptons or heavy qq̄ pairs.
Since they are produced early, they contain a wealth of information about
the produced medium.

x

τh

0τ

incident projectiles

hadrons

ct

thermal medium

equilibration

Figure 2.3: Different stages of the hadronization process. Figure from [57]

Summarizing (see Fig. 2.3):

• when two (highly Lorentz-contracted) nuclei collide, a bulk of QGP is
formed in the very early stage, which is dominated by gluonic inter-
actions. That is the “pre-equilibrium stage”;

• this matter quickly thermalizes (after about τ0 ≃ 1 fm/c and with a
temperature that, for example at top SPS and top RHIC energies, is
about 200− 300 MeV [58], for the LHC at the energy of

√
s ∼ 5 TeV

T is about 400− 600 MeV) and expands hydrodynamically;

• at the time τh ∼ 8÷ 10 fm/c, the fireball hadronizes forming a fog of
interacting particle. That is the hadronization time, and it happens
at a temperature Th that could be related to that of deconfinement
and/or chiral phase transition;

• it is not known whether the hadrons are produced in chemical equilib-
rium or chemically equilibrate quickly, after the phase transition. All
this is the so-called chemical freeze-out [56], that defines the freeze-
out time, τf , and, consequently, a freeze-out temperature, Tf , of the
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system. Tf can be studied, for example, statistically [27, 28, 59–64].
Chemical freeze-out fixes the abundance ratios of the hadronic species
that, in nucleus-nucleus (AA) collisions, show a dramatic strangeness
enhancement effect, characteristic of an extended QCD medium. Af-
ter a period of possible subsequent scattering, the hadrons freeze-out
kinetically and then, the non-interacting hadrons continue their path
and are detected as final states. The freeze-out curves are less well-
defined theoretically as well as experimentally [65]: at low chemical
potential, since the hadrons interactions are dominated by resonance
formation and decay, the system can be treated as an ideal gas of
all possible resonances[27, 66] (e.g. through Hadron Resonance Gas
(HRG) models), and this means that freeze-out effectively occurs at
the point of confinement. Conversely, at large baryon density, the in-
teraction (dominated by Fermi statistics and baryon repulsion) does
not lead to resonance formation, and HRG models do not describe the
system anymore.

Let us now discuss how we can probe the properties of this state.
There are different methods [58]:

1. ELECTROWEAK RADIATION: the medium emits photons and
e+e− or µ+µ− pairs [67, 68]. Since these particles do not interact
strongly, they leave the medium without any modifications. Thus
their spectra provide information about the place or the time they
were formed, probing the entire volume of the plasma. The problem
is that they can be formed anywhere and at any time, even at the
hadronization surface or by the emitted hadrons until they freeze-out.

2. SOFT PROBES: HADRON RADIATION. Since the bulk tem-
perature is higher than that of the environment, it radiates hadrons
consisting of light (u, d, s) quarks. These hadrons are formed at the
transition surface, like water drops that condensate on the glass of a
container filled by a vapour in a cold outside environment [58]. As
a result, soft hadrons provide information on the hadronization sur-
face and almost nothing about the QGP interior. That also means
the properties of soft hadrons, like their abundances, is the same in
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all high energy collisions, from e+e− annihilation to heavy-ion inter-
actions, and correspond to that of a HRG with a temperature of
T ≃ 150/160 MeV (at zero chemical potential) [27, 28, 59–64, 69].
In a non-static more realistic picture, if the early medium has a very
high energy density and expands freely, a “radial flow” depending on
the initial energy density emerges (i.e. an additional overall boost in
momentum to the produced hadrons). Moreover, for peripheral col-
lisions, if the initial conditions were not spherically symmetric, this
flow becomes “elliptic”. Since both flows are created by partonic pres-
sure gradients, that reflect the initial collisional impact geometry, they
bring information about the earlier, pre-hadronic stages: indeed, for
weakly interacting gas of particles, the initial spatial anisotropy is de-
stroyed by random motion, and the azimuthal distribution of particles
in the final state ends up isotropic. Conversely, in a strongly coupled
QGP, the expansion proceeds faster in the direction of larger pressure
gradients, and this results in momentum anisotropy. Indeed, the mat-
ter is subjected to enormous pressure driven by the density differential
to the vacuum outside the medium [41, 70, 71]. The anisotropy are
measured by performing a Fourier analysis of charged hadrons angular
distribution in the final state:

dN̄

dϕ
=
N̄

2π

(︄
1 + 2

∞∑︂
n=1

v̄n cos
(︁
n
(︁
ϕ− Ψ̄n

)︁)︁)︄
, (2.47)

where ϕ is the angle in the transverse plane, Ψ̄n are the event plane
angles, and N̄ is the average number of particles of interest per event.
The first order coefficient, v1, is sensitive to details of the expansion
in the early stages [72]. The second one, v2, is usually said as “elliptic
flow”. It describes the helicity of the polar distribution 1+v2 cos(2ϕ),
which major and minor axis are 1 + v2 and 1− v2, respectively: v2 =
0 is for an isotropic distribution (circle), v2 ̸= 0 for an anisotropic
one (ellipse). This elliptic flow is due to collective behaviour since
it emerges as a consequence o subsequent re-scattering in the plasma
phase, and, near midrapidity and for semi central collisions, is the
dominant Fourier coefficient.

Particle correlations, C(∆η,∆ϕ), are proportional to v2n cos(n∆ϕ) [73],
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Figure 2.4: Two-particle correlations as a function of relative angles ∆ψ
and ∆η as measured in (a) PbPb, (b) pPb, and (c) pp collisions at the
LHC. In PbPb collisions there is a large cos(2∆ϕ) correlation with peaks
at ∆φ = 0, π that extend long-range in pseudorapidity ∆η. A similar
feature is observed in pPb and pp collisions, thought it does not dominate
the overall correlations to the same degree. Figure from [73].

∆ϕ and ∆η being the particles relative azimuthal angle in the trans-
verse plane and the relative longitudinal pseudorapidity respectively.
They contain crucial information regarding collectivity. For example,
Figure 2.4 from [73] shows two-particle correlations as a function of
relative angles ∆ϕ and ∆η as measured in (a) lead-lead (PbPb), (b)
proton-Lead (pPb), and (c) proton-proton (pp) collisions at the LHC:
in PbPb and pPb cases there is a cos(2∆ϕ) correlation with peaks at
∆ϕ = 0 and π (magenta curve) that extend long-range in pseudorapid-
ity ∆η (known as the ridge), and they mean that pairs of particles are
preferentially emitted with small relative azimuthal angles (∆ϕ = 0)
or back to back (∆ϕ = π) [36]. Surprisingly, this preference per-
sists even when the particles are separated by large pseudorapidity.
Moreover, there is a localized peak near ∆ϕ ≃ ∆η ≃ 0 in all three
cases [73]. For PbPb the long-range correlations dominate. Signifi-
cantly, high-multiplicity pp collisions at the LHC (Fig. 2.4.c) exhibit
a long-range near-side ridge in azimuthal correlations, very similar
to that observed in AA collisions. These features represent the first
evidence of flow-like collective behaviour in a small system.
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3. HARD PROBES:

• QUARKONIUM SUPPRESSION: bound state of heavy (c
or b) quarks, which are stable with respect to strong decay, are
known as “quarkonia”. Examples are the J/ψ and Υ, the light-
est quarkonium of quarks c and b, respectively. These particles
are much smaller than the typical hadronic radius [74]. For ex-
ample, the radius of the J/ψ(1S) is about 0.2 fm, that of the
χc(1P ) is about 0.3 fm and that of the ψ′(2S) is ∼ 0.4 fm, while
the typical hadron radius is about 1 fm. Different radius means
different colour screening and thus different “melting tempera-
tures” in a quark-gluon plasma, that permits these particles to
survive in the QGP for temperatures above the hadronization
one [74] as confirmed in lattice studies [75]. In fact, we know
that colour charges are screened inside a (Debye)-radius rD, as
it happens in an electromagnetic plasma. We know also that rD
decreases with increasing temperature, as the medium increases
in density, and deconfinement is expected when rD is of the or-
der of the average hadron size, i.e. of 1 fm. When it happens,
a given quark can no longer see its former partner, but it sees
many other particles and can move around freely, without en-
countering any confinement limit. Heavy quarks are produced
through initial hard-scattering processes before the QGP for-
mation (at time scales ∼ 1/(2mc,b) ∼ 0.07 fm for charm and
0.02 fm for beauty) and they survive in the QGP medium since
the annihilation rate of heavy quarks is small. At the transi-
tion temperature, Th, quarkonium radius is less than the hadron
size, and then of the rD. This means that this structure sur-
vives beyond Th and they disappear when the QGP temperature
is such that rD(T ) becomes of the order of their radius. There-
fore, if one observes a suppression in the number of c/b-hadrons,
this is due to the melting of quarkonium in the QGP and thus
it is an unambiguous signature of quark-gluon plasma forma-
tion [74, 76]. In fact thermal hadrons are incapable of causing
collisional dissociation of quarkonium [58]. Finally, at very high
energies there is an enhancement of the number of charmonium
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due to (re)combination of the charm quarks during the collision
history [77] or at hadronization [78, 79]. Both dissociation and
(re)combination implies the existence of a deconfined QGP state.

• HIGH pT HADRONS and HARD JETS: particles with
transverse momentum and/or mass larger than 2 GeV (so an
order above the ΛQCD ∼ 0.2 GeV) originate from partonic scat-
tering with large momentum transfer in the early collisions pe-
riod (about ≤ 0.1 fm/c) and can be studied perturbatively. They
emerge as the result of an elastic (2 → 2) or inelastic (2 → 2+X)
scattering of two partons from each of the colliding hadrons.
These partons thus fragment non-perturbatively into a jet o final
hadrons. The features of this jet, like the collimation angle and
the energy, depend on the plasma properties (temperature, par-
ticle–medium interaction coupling α, thickness, . . .) and where
the jets originate. Indeed, the “jet quenching”, i.e. the atten-
uation or disappearance of the spray of hadrons resulting from
the fragmentation of a parton due to energy loss in the dense
plasma produced in the reaction (see Fig. 2.5), is a clear signal
of the presence of strong interactions and thus of the formation
of QGP [80] (e.g. a high energetic parton propagating inside the
plasma losses up to tens of GeV of its initial transverse momen-
tum while ploughing through the QGP). So, if one look at two
jets that propagate in the opposite direction, i.e. originates due
to the same scattering, if one of the jets is “quenched” it is a
clear signature of QGP. Especially if one of the two jets is fully
absorbed [80].

Jet quenching can also be seen looking for a suppression (com-
pared to pp collisions) of the spectrum (dNAA/dpT ) of high-pT
hadrons [81, 82]. To do this, one defines the nuclear modification
factor, which is the yield of a given observable (such as charged
hadrons, identified particles and/or reconstructed jets) measured
in nucleus-nucleus collisions, properly normalized to the pp mea-

Page 28



CHAPTER 2. QCD PHASE DIAGRAM

Figure 2.5: “Jet quenching” in a head-on nucleus–nucleus collision. Two
quarks suffer a hard scattering: one goes out directly to the vacuum, radi-
ates a few gluons, and hadronises; the other goes through the dense plasma
formed in the collision, suffers energy loss due to medium-induced glu-
onstrahlung, and finally fragments outside into a (quenched) jet. Figure
from [80]
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surement at the same nucleon-nucleon energy [76]:

RAA ≡
dNAA

dpT

< Ncoll >

1
dNpp

dpT

=

dNAA

dpT

< TAA >
dσpp
dpT

, (2.48)

where < TAA > is the nuclear overlap function, NAA (Npp) is
the number of charged particles in AA (pp) collisions, Ncoll is
the number of the inelastic nucleon-nucleon collisions and σpp is
the pp-cross section. Typically, Ncoll (as well as the number of
participantsNpart) cannot be determined directly in AA collisions
from measured cross-sections, but it can be evaluated through
theoretical procedures, like the Glauber Model Calculation.
RAA = 1 means that an AA collision behaves like < Ncoll > pp
ones. Departure of RAA from unity signals a change of physics
in AA collisions. For example is found that RAA ∼ 0.5 in central
PbPb collisions at LHC up to pT ∼ 400GeV/c (ATLAS [83]),
revealing that the medium created in PbPb collisions is so opaque
that it can quench even the most energetic jets.

4. Strangeness enhancement: The number of hadrons with strange
quarks increases in the plasma phase [84, 85] and it is a clear indication
of QGP formation since there is no known explanation of these results
other than QGP [86] (abundant strangeness production is due to gluon
excitation, a characteristic feature of deconfined phase [84]). Indeed,
the hadronic channels, e.g. N+N → N+Λ+K and π+π → K+K−,
are less efficient than the ss̄ production in the QGP (especially with
respect the gluon fusion channel gg → ss̄). In fact, in AA collisions
the strangeness equilibration time in the confined matter is about 10
times longer than the lifetime of the hadronic phase since the mass
of all strange hadrons is much larger than the hadron resonance gas
maximum temperature [39]. This results in an enhancement in the
number of hadrons made entirely from newly created strange quarks
in AA collisions of about 20 times (or more) compared to proton-
nucleus (pA) reference measurement [84, 86–89].

To study enhancement one typically defines a double ratio to compare
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the same yields in AA and pp collisions: e.g. [39]

< K+ >AA / < π+ >AA

< K+ >pp / < π+ >pp

, (2.49)

where < · · · >AA and < · · · >pp denote the event averages of K+

and π+ yields. It’s found that this ratio in SS collisions at 200A GeV
(NA35 [90]) is about two times higher than in nucleon-nucleon interac-
tions at the same energy per nucleon and that enhancement increases
with decreasing collision energy (e.g. at the AGS at 2A−10A GeV [91,
92]), and for multi-strange hyperons (WA97 [93], NA57 [94], ALICE
[95]).

Besides, one of the most striking observations in high energy multi-
hadron production is that both species abundances and transverse mo-
mentum spectra (provided effects of collective flow and gluon radiation
are removed) follow the thermal pattern of an ideal hadron-resonance
gas, with a universal temperature T ≃ 150 ± 10 MeV [69, 96](see
Fig. 2.6). More precisely, the relative yields of the different hadron
species are well accounted for by an ideal gas of all hadrons and
hadronic resonances with one well-known caveat: strangeness produc-
tion is reduced with respect to the predicted Grand Canonical values.
This suppression can, however, be taken into account by one further
parameter, 0 < γs ≤ 1. If the predicted rate for a hadron species
containing ν = 1, 2, 3 strange quarks is suppressed by the factor
γνs [97]. The basic quantity for the resonance gas description is the
grand-canonical partition function for an ideal gas at temperature T
in a spatial volume V

lnZ(T ) = V
∑︂
i

diγ
νi
s

(2π)3
ϕ(mi, T ), (2.50)

with di specifying the degeneracy (spin, isospin) of species i, and mi

its mass; the sum runs over all species. Here

ϕ(mi, T ) =

∫︂
d3p exp

{︄√︁
p2 +m2

i

T

}︄
≃ exp

{︂
−mi

T

}︂
(2.51)
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Figure 2.6: Hadronization temperature in the Statistical Hadronization
model. Figure from REf. [96]

is the Boltzmann factor for species i, so that the ratio of the production
rates Ni and Nj for hadrons of species i and j is given by

Ni

Nj

=
diγ

νi
s ϕ(mi, T )

djγ
νj
s ϕ(mj, T )

, (2.52)

where νi = 0, 1, 2, 3 specifies the number of strange quarks in species
i. We note that in the grand-canonical formulation the volume cancels
out in the form for the relative abundances. The Statistical Hadroniza-
tion model (SHM) is in agreement with the high energy data for large
(nucleus-nucleus) and small (proton-proton and e+e−) initial settings
with the same hadronization temperature as shown in Fig. 2.6 [96].

As mentioned earlier, the QGP formation would enhance strange par-
ticle production in nucleus-nucleus collisions and, indeed, γs ≃ 1 well
describe the high energy AA data, but γs < 1 for proton-proton scat-
tering at energies less than the Large Hadron Collider (LHC) ones.
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Figure 2.7: γs: energy dependence for pp, pA, AA
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Figs. 2.7 and 2.8 show γs as a function of the collision energy in pp,
pA and AA collisions, and in e+e− annihilation [98], respectively.

More recently, ALICE collaboration reported for pp collisions [95] the
enhanced production of multi-strange hadrons, previously observed in
PbPb collisions, in high energy, high multiplicity, proton-proton pp
events.

2.6 Universality in particles collisions

As seen in sec. 2.5, collective effects are signatures for the QGP formation
in nucleus-nucleus collisions. These effects were not expected in pp and
pA collisions. Surprisingly, recently, experimental results in proton-proton
and proton-nucleus collisions at the Large Hadron Collider (LHC) and Rel-
ativistic Heavy Ion Collider (RHIC) showed substantial similarity to those
observed in the nucleus-nucleus ones [99]. E.g. correlations that are long-
range in rapidity have been observed at the LHC (in high-multiplicity pp
collisions [100], and in high multiplicity pPb [101–103] collisions) and at the
RHIC (dAu collisions [104]). This new interesting aspect started in 2010
with the observation of ridge-like structures in pp collisions by the CMS
experiment at the LHC [100] (like that observed in PbPb at ∆ϕ ∼ 0 that
extend to |∆η| of at least four units - see Fig. 2.4), by using the particle cut
1 < pT < 3 GeV/c in conjunction with a high multiplicity cut. Subsequent
experiments [105–112], and especially multi-particle measurements in high
multiplicity pA [101, 103, 113–120] and high multiplicity pp [100, 121–123]
collisions show unambiguously that the observed correlations are collec-
tive [124]. More recently, the e+e− annihilation LEP data have been recon-
sidered [125] to verify if a flow-like behaviour is generated with this initial,
small, non-hadronic, setting. The answer is negative and confirmed at lower
energy by BELLE collaboration [126]. Unlike elliptic flow, the jet quench-
ing phenomenon is typical of AA collisions, and in pA it was found that
the number of jets seen is the same expected from Ncoll pp collisions [127].
Other measurements confirming this “Universality” are instead the rapidity
distribution [128], particle ratios [95, 129], or the relationship between the
total number of charged particles produced and the number of participants,
that was found from the lowest energies measured [130], through RHIC [131]
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to LHC [132] energies, for all AA, pA, πA and KA collisions. Even more
surprisingly, if one takes into account the leading particle effect, i.e. the
energy removed from the genuine hadronization cascade due to the leading
particles, the total number of produced charged particles per participant in
AA collisions is the same as that in pp and e+e− annihilation [133–135].

Although pp collisions are much simpler than pA and AA (that have hun-
dreds of participants), all of these have similar behaviour [95, 108, 123, 136–
141], which suggest the presence of a common origin in the hadronization
process: the formation of a quark gluon plasma in the early stage. On the
other hand, e+e− annihilation data at LEP and lower energies indicate that
there is no strangeness enhancement and no flow-like effect. In Ref. [142],
we show that the parton density in the transverse plane generated in e+e−
annihilation at the available energy is too low and therefore there is no
way to detect the previous signatures. The event-by-event multiplicity and
the corresponding energy where strangeness suppression and the flow-like
phenomenon could show up in e+e− turns out to be quite large.

In Refs. [142–144], we discuss the comparison between small colliding
systems and nucleus-nucleus collisions, for:

• the strangeness suppression factor γs and yields of multi-strange hadrons
(see sec. 2.6.1 of this thesis);

• the average transverse momentum, pt, with particular attention to
the low pt region where soft, non-perturbative effects are essential
(sec. 2.6.2);

• the elliptic flow scaled by the participant eccentricity, ϵpart, defined
for example in [145–148] (sec. 2.6.3).

The universal behaviour in small and nuclear high energy collisions emerges
for all these observables in terms of a specific dynamical variable which
corresponds to the entropy density of the initial system in the collision, s0.
It takes into account the transverse size of the initial configuration and its
fluctuations and indicates that a few dynamical ingredients, common to the
different initial settings, drive the particle production, independently of the
complexity of the non-equilibrium dynamics with annihilation/creation of
many interacting quarks and gluons and hadronization of final partons.
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Let us recall that the initial entropy density s0 is given in the one-
dimensional hydrodynamic formulation [149] by the form

s0 τ0 ≃
1.5

AT

dNx
ch

dy
=

1.5

AT

Nx
part

2

dNx
ch

dy

⃓⃓⃓⃓
y=0

, (2.53)

with x ≃ pp, pA, AA, e+e−. Here AT is the transverse area, (dNx
ch/dy)y=0

denotes the number of produced charged secondaries, normalized to half the
number of participants Nx

part, in reaction x, and τ0 is the formation time.
The initial entropy density is directly related to the number of partons per
unit of transverse area and, due to the large fluctuations in high multiplicity
events, one needs a reliable evaluation of the transverse area for different
collisions.

In studying the strangeness enhancement and the average pt, we use
results from Glauber Monte Carlo (MC) [150] to obtain AT as a function
of multiplicity for AA and pPb collisions. For pp collisions, the effective
transverse area is sensitive to the fluctuations of the gluon field configura-
tions. Therefore, we apply the CGC parameterization of the transverse size
as a function of multiplicity [151–153]. In e+e− annihilation, the transverse
size can be evaluated by looking at the transverse size of a quark-antiquark
string in the hadronization cascade [154, 155] (see app. A.1).

On the other hand, for the scaling behaviour of the elliptic flow, namely
of the ratio v2/ϵpart, the effective transverse area, S, of the initial setting is
the one related to ϵpart. The S is evaluated by Monte Carlo simulations in
Refs. [148, 156] for AA and in Ref. [157] for pp collisions. The definition of
S in e+e− is meaningless since it is related to the event by event fluctuations
of the projectile/target constituents.

2.6.1 Enhanced production of multi-strange hadrons

The ALICE collaboration reported [95] the enhanced production of multi-
strange hadrons, previously observed in PbPb collisions [158], in high energy,
high multiplicity, pp events. The strangeness enhancement was suggested
to be present in high-multiplicity pp collisions on theoretical grounds in
Refs. [159, 160] by considering a specific dynamical variable corresponding
to the initial entropy density of the collisions, which takes into account
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Figure 2.9: The strangeness suppression factor γs as a function of initial
entropy density evaluated for data from Refs. [63, 166–168]. The Phobos
parameterization [131] for the relation between charge multiplicity, energy
and the number of participants is applied for RHIC data.

the transverse size (and its fluctuations) of the initial configuration in high
multiplicity events [57, 161]. Noticeably, the energy loss in AA collisions
was also shown to scale in the same dynamical variable [162].

In Refs. [163, 164] the parameter γs ≤ 1, which describes the strangeness
suppression in the statistical hadronization model (SHM) [69, 98, 165], was
studied as a function of the variable from EQ. (2.53), by using an approx-
imate evaluation of the transverse area for pp, pPb, and AA collisions. On
the other hand, there is no strangeness enhancement in e+e− annihilation
and Figs. 2.7 and 2.8 show the strangeness suppression factor, γs, in the
statistical hadronization model (SHM) as a function of the available energy
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Figure 2.10: The strangeness production quantified in terms of the ratio of
yields of K, Λ, Ξ, and Ω hadrons to pions evaluated as a function of initial
entropy density for data from Refs. [95, 108, 158, 172–176].

(γs ≃ 1 means no suppression, i.e. enhancement). Within the error bars,
there is no sign of an enhancement of the strangeness production in the en-
ergy range 14− 186 GeV for e+e−: a clear difference concerning pp and AA
collisions. Therefore the question of the universality in e+e− annihilation
and the saturation (if any) to γs → 1 arises. The energy range 14−186 GeV
corresponds to rather a narrow interval of s0, 2 fm−2 ≲ s0 ≲ 3 fm−2 and
the γs data in Fig. 2.8 can be plotted on the universal curve as a function
of s0 for comparison with pp and AA.

The resulting scaling behaviour for the strangeness production is re-
ported in Fig. 2.9, where γs for AA at different energies and centralities are
shown along with those for pPb, pp collisions and e+e− annihilation. The
data refers to pp at energy

√
s = 26 GeV−7 TeV [63, 166], to pPb at

√
s =

2.76 TeV [163, 164, 169–171], to PbPb at
√
s = 2.76 TeV [167], to AuAu at√

s = 19.6, 27, 39 and 200 GeV [168], to CuCu at
√
s = 200 GeV [166], and

to e+e− at
√
s = 14− 189 GeV [96]. In proton-proton, proton-nucleus and

heavy-ion collisions at high energies, high multiplicities, the universal trend
shows that γs increases with the parton density in the transverse plane, up
to the fixed point γs = 1, where any suppression disappears. It becomes
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Figure 2.11: Average pt as a function of initial entropy density evaluated in
the interval of 0.15 < pt < 1.15 GeV for the data from Refs. [181–184].

a universal function of s0 τ0 as shown in Fig. 2.9 [142–144]. Notice that
the strangeness saturation, say γs ≳ 0.95, requires s0 ≥ 6. For e+e− anni-
hilation, γs follow the same curve, but the corresponding s0 is too low to
observe an enhancement of strange hadrons.

The universal trend of strangeness production versus entropy density in
PbPb [158, 172–174], pPb [108, 175], pp [95, 176] is shown in Fig. 2.10 for
different particle species.

2.6.2 The average transverse momentum

The similarity of the average transverse momentum (pt) between pp, pA,
and AA collisions was discussed in Refs. [177–179] where the scaling of pt
as a function of the variable Ntrack/AT (Ntrack being the multiplicity and
AT the transverse area of the initial system) was explored in the framework
of Color Glass Condensate (CGC), where also the geometrical scaling of
direct-photon production in hadron collisions at RHIC and LHC energies
has been obtained in terms of the saturation scale, proportional to the
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Figure 2.12: Average pt as a function of initial entropy density evaluated in
the interval of 0.15 < pt < 1.5 GeV for the data from Refs. [181–184].
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Figure 2.13: Average pt as a function of initial entropy density evaluated in
the interval of 0.15 < pt < 2 GeV for the data from Refs. [181–184].
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Figure 2.14: The v2/ϵpart values for pp, PbPb, AuAu, and CuCu evaluated
as a function of entropy density for data from Refs. [120, 123, 156, 186].

transverse entropy density [180]. As recalled, the scaling of the average pt
as a function of the variable Ntrack/AT has been discussed in [151–153].

In Refs. [143, 144] we analyze the average pt in the low transverse mo-
mentum region where the soft, non-perturbative effects in the particle pro-
duction are more important due to running of the strong coupling constant
than in the higher pt range. The behaviour of the average pt is evaluated in
the region 0.15 < pt < 1.15 GeV for different colliding systems as a function
of the dynamical variable from EQ. (2.53).

The results are shown in Fig. 2.11 for the data from Refs. [181–184].
One can see that the average pt for soft particle production follows the
same slowly increasing trend for all the collisional systems. Equally, good
scaling was also obtained for the region 0.15 < pt < 1.5 GeV (Fig. 2.12) and
0.15 < pt < 2 GeV (Fig. 2.13).

2.6.3 Universality in the elliptic flow

In non-central collisions, the beam direction and the impact parameter vec-
tor define a reaction plane for each event. If the nucleon density within the
nuclei is continuous, the initial nuclear overlap region has an “almond-like”
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shape, and the impact parameter determines uniquely the initial geome-
try of the collision. In a more realistic description, where the position of
the individual nucleons that participate in inelastic interactions is consid-
ered, the overlap region has a more irregular shape, and the event-by-event
orientation of the almond fluctuates around the reaction plane [147, 185].
Therefore, in the analysis of the elliptic flow where the fluctuations are
important, the geometrical eccentricity is replaced by the participant ec-
centricity, ϵpart, defined using the actual distribution of participants. The
size of the fluctuation in ϵpart and its correlated transverse area S (differ-
ent from the geometrical one) are evaluated by Glauber MC as previously
described.

We show the scaling behaviour in pp and AA of the ratio between the
elliptic flow, v2, and the participant eccentricity, ϵpart in Ref. [144], extending
the results obtained in Refs. [145, 156, 186]. The plot of v2/ϵpart versus
x = dNch/S, where S is the transverse area associated with ϵpart, is depicted
in Fig. 2.14 for AA [156, 186] and pp [120, 123] and shows a universal trend
starting from x ≥ 2.5, i.e. s0 ≥ 3.8. One can see that the pp trend, at
lower values, is smoothly followed by the data-points from AA collisions.
Moreover, the difference between the geometrical transverse area AT (i.e.
the overlapping almond shape in AA collisions) and S is crucial to obtain
the smooth interpolation among pp and AA data. where

2.6.4 How to check the universal trend

The analyses of γs, average pT , and v2/ϵpart presented above support the
conclusion that at fixed entropy density the “coarse-grain” features of the
quark-gluon system formed in high energy collisions are independent of the
initial configuration. The scaling variable (EQ. (2.53)) is a function of mul-
tiplicity and the transverse area, and one can evaluate at which multiplicity
one can expect the same behaviour in high-multiplicity pp, PbPb collisions,
and e+e− annihilation, by solving the equation (dN/dη)AA/A

AA
T = x/AppT (x)

for x being the multiplicity in pp. The result is shown in TAB. 2.1 for PbPb
collisions at 5.02 TeV which represent the largest available heavy-ion dataset
at the LHC. The values from TAB. 2.1 can be used in subsequent exper-
imental or phenomenological studies aiming to further check the universal
trends in hadronic and nuclear collisions using high-multiplicity pp collisions
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1.5
AT

dNch

dη

(︂
dNch

dη

)︂
e+e−

(︂
dNch

dη

)︂
pp

(︂
dNch

dη

)︂
PbPb

PbPb

Cent.
20.1± 0.8 58± 3 100.± 4. 1943.± 56. 0-5%
17.5± 1.1 49± 4 87.± 5. 1587.± 47. 5-10%
15.4± 0.9 42± 3 76.± 4. 1180.± 31. 10-20%
12.2± 0.6 31± 2 60.6± 3.1 649.± 13. 20-40%
8.3± 0.7 19± 2 41.2± 3.4 251.± 7. 40-60%
5.2± 0.8 10± 2 26.± 4. 70.6± 3.4 60-80%
3.1± 1.1 5± 3 12.4± 3.0 17.5± 1.8 80-90%

Table 2.1: dNch/dη in PbPb at 5.02 TeV, pp and e+e− for different values
of the variable in EQ. (2.53).

at the largest available LHC energies.

2.6.5 Comments and Conclusions

High energy, high multiplicity events produced in small colliding systems
show dynamical behaviour very similar to that present in AA collisions [144],
and it was assumed that the dynamical behaviour is driven mainly by the
initial entropy, a density that is by the parton density in the transverse
plane. A clear quantification of limits on the presence of jet quenching
in small colliding systems (see, e.g. discussions and new measurements
in Refs. [187–189]) or more detailed correlation measurements (see, e.g.
recent work in Refs. [190–192]) may help to improve understanding of this
similarity. This kind of measurements can be done in details at the LHC or
RHIC or at a 100 TeV pp collider which is considered for the future [193] and
which would significantly enhance the reach of pp collisions in multiplicities.

Moreover, the previous analysis [142] clarifies that in e+e− annihilation
at the LEP or lower energies there is no chance of observing the enhancement
of the strangeness production, that is γs ≳ 0.95, because the parton density
in the transverse plane is too small: s0 turns out to be ≤ 3, but a value
larger than 6 is required. The multiplicity one needs in e+e− annihilation
to obtain the same value of s0 determined for pp and PbPb collisions are
reported in Table 2.1, by extrapolating to very high energy the fit of the
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multiplicity in Fig. A.1, i.e. at LEP and lower energies. Analogously, the
value s0|e+e− is too small for observing the flow-like effect, although in this
case, a precise value is difficult to determine, due to the uncertainty in
the estimate of the transverse area associated with the eccentricity. In
conclusions, one can expect in e+e− annihilation some similarity with pp
and AA collisions only at very high energy. There is a hierarchy in energy
and multiplicity to see the “collective” effects starting from low energy in
AA to larger energy and multiplicity in pp collisions and much more large
energies in e+e− annihilation.
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Chapter 3

Quantum Chromodynamics and
effective models

The QCD coupling constant grows as the energy decreases. Therefore, at the
transition temperature, non-perturbative methods are needed to determine
the low energy properties of QCD. In this chapter, I treat some of the main
methods and models to study QCD around the phase transition, where one
can not evaluate the observables of the system perturbatively.

3.1 Lattice QCD

LATTICE QCD (LQCD) is a theoretical framework to evaluate the observ-
ables of QCD at zero chemical potential. The idea is to do the calculations
in a discrete space-time and then, after all, to evaluate the continuum limit.
The method, proposed by K. Wilson in 1974 [194] (for recent reviews see
for example [195–197]), consists of discretizing the partition function, Z,
usually on a hypercubic lattice with lattice spacing a. The Z is written as
the path integral

Z =

∫︂
[dU ] e−Sg [U ]

∏︂
f

det (D[U ] +mf ) , (3.1)

where Sg is the gauge action, U is the gluon field, D[U ] is the covariant
derivative and mf is the fermionic mass. Such partition function depends
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on the inverse temperature β = 1/T (since the time component is rotated).
Thus, the temperature T and the three-volume V are discretized on a hy-
percubic lattice with spacing Nt and Ns such that

T =
1

Nt a
, V = (Ns a)

3 . (3.2)

The quark fields are placed on sites, while the gauge fields are associated
with the links among them. These links, in the continuum, are Wilson lines
connecting different points. The simplest gauge action (the Wilson’s one)
is

Sg =
6

g2

∑︂
x,µ,ν

[︃
1− 1

3
ℜTr

[︁
Uµ(x)Uν(x+ a ˆ︁µ)U †µ(x+ a ˆ︁ν)U †ν(x)]︁]︃

a→0−→ 1

4 g2

∫︂
d4x Tr

[︁
F 2
µν(x)

]︁
.

(3.3)

It corresponds to the product of gauge links around an elementary lattice
cell, and, in the continuum limit, produces the kinetic gluonic term. The
derivative in EQ. (3.1) can be discretized in several ways, and the simplest
one is with a symmetric difference. The naive fermion action that arises suf-
fers from the fermion doubling problem: it describes 2d equivalent fermion
fields for each physical quark flavor (d is the space-time dimension), and
these spurious d.o.f.s survive in the continuum limit. That happens be-
cause chiral theory can not be formulated on a lattice in even dimensions
and with periodic boundary conditions (because the Nielsen–Ninomiya the-
orem [198]).

The lattice spacing plays the role of an ultraviolet regulator, rendering
the quantum field theory finite, and the continuum theory is recovered by
taking the limit of vanishing a. However, it leads to discretization errors,
as for example the breaking of the Euclidean rotational invariance (the Eu-
clidean version of the Lorentz invariance). Statistical errors come up, e.g.,
from the use of Monte-Carlo integration methods. Some of these discretiza-
tion errors are proportional to powers of amq (mq is the mass of the quark).
Consequently, one can study only theories with quarks whose masses are
smaller then the lattice cutoff (typically 1/a = 2− 4 GeV).

Several ways in which the QCD action can be discretized were built:
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Symanzik effective action 1, staggered 2 quarks, by considering only 2 or
2 + 1 flavours, etc..

3.1.1 Equation of state at µ = 0

One method to evaluate the equation of state (EoS) at µ = 0 consists in
defining the trace anomaly on the lattice as

Θµµ = −T
V

d lnZ
d ln a

. (3.4)

This method is used, for example, by the HotQCD collaboration [201–203],
and their results concerns simulations of 2 + 1 flavours QCD in the tem-
perature range 130− 400 MeV, using the highly improved staggered quark
(HISQ) action and the tree-level improved gauge action, with the Goldstone
pion mass tuned to about 160 MeV in the continuum limit and temporal
extent Nt = 6, 8, 10 and 12.

Once the trace anomaly Θµµ is given, one evaluates all other thermody-
namical quantities, i.e. the pressure

p(t)

T 4
=
p0
T 4
0

+

∫︂ T

T0

dT ′
Θµν(T ′)

T ′5
, (3.5)

where p0 is the pressure at a fixed temperature T0, the energy density

ε = 3 p+Θµν , (3.6)

1The discretization errors are reduced by adding higher-dimensional operators (con-
nected to the interactions between quarks and gluons with momenta lower of the lattice
cutoff, 1/a) suppressed by powers of a. E.g. for the gauge action, one adds Wilson loops
involving six gauge links (instead of the four links in EQ. (3.3) [199].

2Staggered fermions are fermions with only a single fermion Dirac component on each
lattice site, with the full Dirac structure built up from neighbouring sites [200]. They
allow to have faster simulations, preserve some chiral symmetry, have discretization errors
of O(a2), and are constructed in order to partially reduce the number of doublers (in
dimension four, the action describes four degenerate fermions in the continuum limit for
each physical quark flavor).
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ct an bn cn dn
3.8706 -8.7704 3.9200 0 0.3419
t0 ad bd cd dd

0.9761 -1.2600 0.8425 0 -0.0475

Table 3.1: Parameters used in Eqs. (3.9) and (3.10) for the pressure of (2+1)-
flavours QCD in the temperature interval T ∈ [130, 400] MeV [202, 203].

the entropy density s
s =

ε+ p

T
, (3.7)

and the speed of sound

c2s =
∂p

∂ε
=

s

CV
=
∂p/∂T

∂ε/∂T
, (3.8)

where CV is the specific heat.
The pressure obtained by lattice simulations, plattice, by the HotQCD

collaboration can be parametrized as follows [202, 203]:

plattice(T ) =
T 4

2
[1 + tanh [ct (t− t0)]] f(T ), (3.9)

where

f(T ) =
pid +

an
t
+ bn

t2
+ cn

t3
+ bn

t4

1 + ad
t
+ bd

t2
+ cd

t3
+ bd

t4

(3.10)

and t = T/Tc, Tc = 154MeV , pid = 95/180π2 is the ideal gas value of
p/T 4 for massless 3-flavours QCD and the value of the other parameters are
summarized in Table 3.1.

3.1.2 Equation of state at µ ̸= 0

LQCD fails at µ ̸= 0 because of the so-called “sign problem”: the deter-
minant in EQ. (3.1) becomes complex, since non zero value for the chemi-
cal potential breaks charge-conjugation symmetry. For small values of the
chemical potential, one way to proceed is to consider Taylor series expansion
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that includes contributions from higher order in the baryon, strangeness and
electric charge chemical potentials.

In Ref. [204], the QCD equation of state in the temperature range T ∈
[135, 330] MeV and for chemical potential up to µ ∼ 2 Tc ∼ 300 MeV has
been studied by the HotQCD collaboration, by Taylor expansion up to sixth
order. Calculations have been performed with the HISQ action, with lattice
space corresponding to Ns/Nt = 4, with Nt = 6− 16, with a strange quark
mass tuned to its physical value and two choices for the strange to light
quark mass ratios, ms/ml = 20 and 27 (which correspond to a pion mass of
about 160 MeV and 140 MeV respectively).

The expansion series for the pressure is

P (β, γ) ≃ P0 +
∞∑︂
n=1

P2n

β4
γ2n , (3.11)

where β = 1/T is the inverse temperature, γ = −µ/T is the parameter of
development, P0 is the pressure at zero chemical potential, and

P2n(β) ≡
χ2n(β)

(2n)!
, (3.12)

with

χ2n(β) =
∂2nP (β, γ) β4

∂γ2n

⃓⃓⃓⃓
⃓
γ=0

(3.13)

the cumulants. For strangeness neutral systems with a fixed ratio of electric
charge to baryon density (see [204] for details), one has

P2(β) =
1

2

[︁
NB

1 (β) + r q1(β)N
B
1 (β)

]︁
(3.14)

P4(β) =
1

4

[︂
NB

3 (β) + r
(︂
q1(β)N

B
3 (β) + 3 q3(β)N

B
1 (β)

)︂]︂
(3.15)

P6(β) =
1

6

[︂
NB

5 (β) + r
(︂
q1(β)N

B
5 (β) + 3 q3(β)N

B
3 (β + 5 q5(β)N

B
1 (β))

)︂]︂
,

(3.16)

being NB
2n−1 the (2n−1)-th coefficient for the power expansion of the baryon
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number density divided by T 3,

nB
T 3

=
∞∑︂
n=1

NB
2n−1 γ

2n−1 , (3.17)

q2n−1 are the expansion coefficients for the electric charge chemical potential,
and

r ≡ nQ
nB

, (3.18)

with nQ and nB the charge and baryon number densities respectively.

3.2 Hadron Resonance Gas models

The confined phase can be described by a statistical approach in terms
of a gas of hadrons and resonances: the hadron resonance gas (HRG)
model. There are several versions of the HRG model which give different
results [205] with some ambiguity and dependence on the specific model.
Some of them are build by using as Hamiltonian the sum of kinetic energies
of relativistic Fermi and Bose particles of mass mi (eventually adding some
terms to reproduce repulsive or attractive interaction). Indeed, this Hamil-
tonian contains all relevant degrees of freedom of the confined, strongly
interacting matter, including (implicitly) the interactions that result in res-
onances formation [206].

The “Ideal” Hadron Resonance Gas (iHRG) model is the minimal version
to study a system of hadrons statistically. It consists of non-interacting
particles, and its partition function is simply the sum over all particles one
include of the single-particle partition function. Although mathematically
it is made as a gas of non-interacting particles (with mass less than some
threshold value, mmax), it includes the interactions that are implicit, i.e. it
includes only that resulting in resonance formation. This minimal version
is surprisingly in good agreement with the experimental data concerning
particle multiplicity (see, e.g., Refs. [60, 207–211]), that are only weakly
affected by the repulsive corrections [212]. However, extensions of the iHRG
are build to include repulsive or attractive interactions and to improve the
match with other observables (especially observables of density type, and
not ratio) or LATTICE predictions on cumulants.
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3.2.1 Basic model: the ideal HRG

In the HRG model with point-like constituents, the partition function is
simply expressed as

Z =
∏︂
i

Z1
i , (3.19)

where the sum is over all hadrons and resonances. The one-particle partition
functions, Z1

i , for particle “i” with mass mi, baryon number Bi, strangeness
Si, electric charge Qi and isospin degeneracy factor gi, is

lnZ1
i = ηi

V di
2π2

∫︂ ∞
0

dk k2 ln
[︂
1 + ηi λi e

−β
√
k2+m2

i

]︂
, (3.20)

with ηi = −1(+1) for bosons (fermions), and

λi = eβ(Bi µB+Si µS+Qi µQ) , (3.21)

where µB, µS and µQ are the chemical potential related to baryon number,
strangeness and electric charge, respectively. Due to the factorization of the
partition function in EQ. (3.19), the number density, the energy density, and
the pressure are also expressed as sums over single-particle contributions,
and, expanding the logarithm and performing the momentum integration,
they can be written as [206, 213]

n

T
=

∑︂
mi≤mmax

di
2π2

∞∑︂
k=1

(−ηi)k+1

k
m2
i λ

k
i K2

(︃
kmi

T

)︃
, (3.22)

ε

T 4
=

∑︂
mi≤mmax

di
2 π2

∞∑︂
k=1

(−ηi)k+1

k
λki

(︂mi

T

)︂3 [︃ 3T

kmi

K2

(︃
kmi

T

)︃
+K1

(︃
kmi

T

)︃]︃
,

(3.23)
and

P

T 4
=

∑︂
mi≤mmax

di
2π2

∞∑︂
k=1

(−ηi)k+1

k
λki

(︂mi

T

)︂3 T

kmi

K2

(︃
kmi

T

)︃
, (3.24)

where K1 and K2 are the modified Bessel function.
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Figure 3.1: The total pressure of a HRG gas PH
0 (β) (black line), the meson

contribution PH
M (β) (dotted line) and the PH

B (β) (dot-dashed line) at µB =
0.

For small µB, and µS = µQ = 0, the baryon sector of an HRG can be de-
scribed by the Boltzmann approximation. The pressure thus becomes [204]

P (β, γ) = P0(β) + PB(β) (cosh γ − 1) , (3.25)

where P0(β) = PM(β)+PB(β) is the total pressure at µB = 0 (EQ. (3.24)).
Here PM(β) and PB(β) are the mesonic and the baryonic contributions to
EQ. (3.24), respectively, and γ = −µB/T . In Figure 3.1 are plotted the
total pressure P0(β) at µB = 0 (black line), the mesonic part (dotted line),
PM(β), and the baryonic part (dot-dashed line), PB(β).

3.2.2 HRG with repulsive and attractive interactions

The ideal HRG includes interaction only implicitly. Recently, however, ex-
tensions including repulsive and attractive interactions are considered in or-
der to consider quantum statistical effects and to apply the EoS to hadronic
and nuclear systems. The repulsive one at short distances are usually de-
scribed as a hard-core description, treated as an excluded volume correction
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(à la Van-der-Waals) [60]. In a thermodynamically consistent way [214, 215],
these corrections can be seen as a shift in the baryon–chemical potential. In-
deed, for particles with hard volume V0, the number density can be written
as [214]

n =
nid

1 + nid V0
, (3.26)

where nid is the number density of point-like particles. Similarly, the energy
and entropy densities are

ε =
εid

1 + nid V0
, (3.27)

and

s =
sid

1 + nid V0
, (3.28)

being εid and sid the point-like values. Since the pressure is

P = −
(︃
∂(E/N)

∂(V/N)

)︃
S/N

= n2

(︃
∂(ε/n)

∂n

)︃
s/n

, (3.29)

one find that
P = P id , (3.30)

i.e. the pressure of an interacting gas, when interaction is taken into account
by hard-core repulsive only, is the same as that of an ideal gas [214].

However, the change of the system configuration from point-like to ex-
tended nucleons also affects the phase structure through the Gibbs free
energy: the Gibbs free energy ϕ per extended particle in our formalism is
not equal to the chemical potential, µ, but [215]

ϕ = 2µ⋆ = µ− V0 P , (3.31)

and
P (T, µ) = P id(T, µ⋆) . (3.32)

Other kinds of repulsive interactions can be included similarly: one starts
by writing the pressure as [216]

Pev = T Z(η)n , (3.33)
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where η = b n/4 = 4 π n r3/3 is the packing fraction, n is the number density,
and Z(η) is a dimensionless “compressibility” factor. Specific models can be
then obtained by defining, for example, an excluded volume repulsion term
by the van der Waals (VdW) equation as

ZV dW (η) =
1

1− 4 η
(3.34)

or by the Carnahan-Starling (CS) term [217]

ZCS(η) =
1 + η + η2 − η3

(1− η)3
. (3.35)

The CS compressibility factor (3.35), introduced to describe a gas of rigid
spheres and to improve the approximation of the virial expansion [217],
indeed reproduces rather accurately the virial expansion terms up to the
eighth order, where the VdW approach fails (recall that higher-order terms
describe the contribution of non-binary interactions).

The previous expression (3.33) can be extended to the Grand Canonical
ensemble and generalized to include an attractive interaction. The “shift”
in the chemical potential in EQ. (3.31) now becomes [216, 218, 219]

µ = µ⋆ − b

4
f ′(η)P id(T, µ⋆) + u(n) + nu′(n) (3.36)

where f(η) gives the permitted volume region, u(n) is the mean total energy
per particle of the attractive interaction and n = n(T, µ) is the particle
number density.

The pressure turns out to be [218, 219]

P (T, µ) = [f(η)− η f ′(η)] P id(T, µ⋆) + n2 u′(n) , (3.37)

and entropy, energy density and number density are related to the corre-
sponding quantities of the ideal HRG by the equations:

s(T, µ) = f(η) sid(T µ⋆) , (3.38)

ε(T, µ) = f(η) εid(T, µ⋆) + n u(n), (3.39)
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and
n(T, µ) = f(η) nid(T, µ⋆) . (3.40)

The quantities (3.34) and (3.35) are now replaced by [216, 218, 219]

fV dW (η) = 1− 4 η (3.41)

and
fCS(η) = exp

{︃
−(4− 3 η) η

(1− η)2

}︃
. (3.42)

The attractive term can have different expressions also: for example, a
VdW approach leads to

uV dW (n) = −a n (3.43)

and the Clausius form is

uCl(n) = − a n

1 + b n
. (3.44)

Finally, the previous models can be easily generalized to a multi-component
gas by defining the ideal pressure as a sum over meson, M , baryon, B and
anti-baryon B contributions [218, 219],

pid(T, µ⋆) =
∑︂
j∈M

pidj (T, µ
⋆
j) +

∑︂
j∈B

pidj (T, µ
⋆
j) +

∑︂
j∈B

pidj (T, µ
⋆
j) , (3.45)

with different packing fraction for each species.

3.3 Nambu - Jona Lasinio model

The Nambu - Jona Lasinio (NJL) model was first introduced in 1961 [220,
221] (even before the introduction of the quarks and the QCD) to describe
interacting nucleons. It answers the request to find a method to explain
the large nucleon mass, despite the existence of a (partially) conserved ax-
ial vector current, i.e., in the QCD language, the chiral symmetry. Indeed,
chiral symmetry requires massless fermions (whether they are nucleons or
quarks). To overcome this problem, the idea is that mass can be generated
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dynamically, analogously to the energy gap of a superconductor in the BCS
theory developed a few years earlier [222]. In the mid 80’s it was reinter-
preted as a quarks model [223, 224], by replacing the nucleon field with a
quark one with at least two flavours and three colour degrees of freedom.
However, this choice is not unique, but one can add many other chirally
symmetric interaction terms. It was used, among other things, to study the
symmetric and the asymmetric matter, phase transition at finite tempera-
ture and chemical potential, colour superconductivity and the structure of
some Astro-objects [212, 225–238].

The main characteristics of the NJL model are the chiral symmetry and
its spontaneous breakdown in the vacuum. On the other hand, the NJL
model does not confine. It is an effective approach that, for fermions with
equal masses, is described by a Lagrangian for a fermion field ψ with a
point-like, chirally symmetric four-fermion interaction [23, 221, 239–242]:

LSU(2) = ψf (i ∂/−m)ψf +G
[︂(︁
ψfψf

)︁2
+
(︁
ψf iγ5

−→τ ψf
)︁2]︂

. (3.46)

Here G is a dimensionful coupling, m is the current fermion mass (m = 0 is
the chiral limit) and −→τ are the Pauli matrices. The Hartree approximation
can be obtained via the substitution [242]

(ψ̄fOψf )
2 ↦−→ 2

⟨︁
ψ̄f Oψf

⟩︁
ψ̄f Oψf −

⟨︁
ψ̄f Oψf

⟩︁2
, (3.47)

in which O is an operator. Thus, in the Nambu–Jona Lasinio (NJL) model
with two flavours (f = u, d), the SU(2) Lagrangian in EQ. (3.46) becomes

LSU(2) = ψf (i ∂/−M)ψf −
(M −m)2

4 G
, . (3.48)

where M = m− 2G
⟨︁
ψ̄f ψf

⟩︁
is the constituent quark mass.

The self-energy is then generated by the local four-fermion interaction,
and it generates dynamically an effective mass M considerably larger than
m, even in the chiral limit. Moreover, the pion emerges as the Goldstone
boson of the spontaneously broken chiral symmetry, with zero mass in the
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chiral limit. Indeed,

M = m+ 2 i G

∫︂
d4p

(2π)4
TrS(p) , (3.49)

where S(p) = (p/ −M + i ε)−1 is the dressed quark propagator. The trace
is to be taken in colour, flavour, and Dirac space. For a sufficiently strong
coupling G, this allows for a non-trivial solution M ̸= m, even in the chiral
limit m = 0, producing a gap of ∆E = 2M in the quark spectrum.

The thermodynamic potential, Ω, at finite temperature and chemical
potential turns out to be the same of a system of non-interacting particles
with mass M [23] (apart for a constant):

Ω(Mf ) =
(Mf −m)2

4G
+Nf Ωf . (3.50)

Here Mf is the dynamically generated mass, and the free Fermi-gas contri-
bution is

Ωf = −T
∑︂
n

∫︂
d3p

(2π)3
Tr ln

(︃
1

T
S−1f (i ωm;

−→p )
)︃
, (3.51)

with the inverse fermion propagator given by S−1f (p) = p/ − µγ0 − Mf .
p0 = i ωn = (2n + 1)π T are fermionic Matsubara frequencies, and the
trace is to be taken in colour, flavour, and Dirac space. Using the relations

Tr ln(Q/−Mf ) = ln det(Q/−Mf ) = 2 Nf Nc ln(Q2 −M2
f ) , (3.52)

and
T
∑︂
n

ln

(︃
ω2
n + λ2k
T 2

)︃
= λk + 2 T ln

(︁
1 + e−λk/T

)︁
, (3.53)

one finally gets

Ωf = −2Nc

∫︂
d3p

(2π)3
Ef − 2NcT

∫︂
d3p

(2π)3
ln

[︃(︃
1 + e−

Ef+µf
T

)︃(︃
1 + e−

Ef−µf
T

)︃]︃
,

(3.54)
where Ef =

√︂
p2 +M2

f , and Nc and Nf are the numbers of colours and
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flavours respectively, µf is the quark f chemical potential, and a cutoff Λ
regulates the integrals. For mu = md, µ = µu = µd, the generated quark
mass is M =Mu =Md .

To evaluate the minimum of Ω by EQ. (4.59), one has to solve the self-
consistent gap equation

∂Ω

∂M
= 0 , (3.55)

i.e.
M = m− 2G

⟨︁
ψψ
⟩︁
, (3.56)

where
⟨︁
ψψ
⟩︁

is the quark-antiquark condensate:

⟨︁
ψψ
⟩︁
= −2NcNf

∫︂
d3p

(2 π)3
M

E
Ψ(T, µ) , (3.57)

with
Ψ(T, µ) = 1− n+(µ)− n−(µ) (3.58)

and
n±(µ) =

1

1 + exp
{︁
E±µ
T

}︁ . (3.59)

For three flavours, the NJL version has been developed in the mid-
80s [243, 244], and there are many terms which are consistent with the
symmetries and which could be added to the Lagrangian.

The isospin symmetric (mu = md = m), with explicitly breaking of
the SU(3)-flavour symmetry (ms ̸= m, and thus Mu = Md ̸= Ms), most
commonly used Lagrangian is [23, 245, 246]

LSU(3) = ψ (i ∂/− ˆ︁m)ψ + L4 + L6 , (3.60)

with
L4 = G

∑︂
a

[︂(︁
ψλa ψ

)︁2
+
(︁
ψiγ5λaψ

)︁2]︂ (3.61)

and

L6 = −K

[︄
detψ (1 + γ5)ψ + detψ (1− γ5)ψ

]︄
, (3.62)
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where ψ = (u, d, s)T , ˆ︁m = diag (m,m,ms), λ0 =
√︁
2/3 13×3, and 13×3 is the

3× 3 identity matrix. The λas (a = 1, . . . , 8) are the Gell-Mann matrices
and K and G are dimensionful coupling constants. L4 is a U(Nf )L×U(Nf )R
symmetric 4-point interaction. The ’t Hooft interaction term, L6, which
represents a maximally flavour-mixing 2Nf -points interaction involving an
incoming and an outgoing quark of each flavour, is phenomenologically es-
sential to get the correct mass splitting of the η and η′ mesons (because it is
SU(Nf )L×SU(Nf )R symmetric, but breaks the UA(1) symmetry). It is also
responsible for the additional two quark loops term in the GAP equations,

Mi = mi − 4G
⟨︁
ψiψi

⟩︁
+ 2K

⟨︁
ψjψj

⟩︁ ⟨︁
ψkψk

⟩︁
(j, k ̸= i) , (3.63)

that contains, in addition to the usual term 4 G
⟨︁
ψ̄iψ

⟩︁
, a new flavour mixing

term proportional to the coupling constant K. Moreover, Eqs. (3.63) are
coupled with the quark condensates

⟨︁
ψiψi

⟩︁
= −2Nc

∫︂
d3p

(2 π)3
Mi

Ei
Ψi , (3.64)

where
Ψi = 1− 1

1 + e
Ei+µi

T

− 1

1 + e
Ei−µi

T

. (3.65)

Finally, the thermodynamic potential Ω turns out to be [23]

Ω =
∑︂

f=u,d,s

Ωf + 2G
∑︂

f=u,d,s

⟨︁
ψfψf

⟩︁2 − 4K ⟨uu⟩
⟨︁
dd
⟩︁
⟨ss⟩ , (3.66)

with Ωf in EQ. (3.54).

Main problems of the model:

• The NJL model is not renormalizable, and typically one uses a 3-
momentum cut-off to regularize integrals, since this method preserves
the analytical structure of the equations of the theory, although it
violates the Lorentz covariance of the model. A 3-momentum cut-off
regularization leaves the two flavours NJL model with three parame-
ters: the bare quark mass m, the coupling constant G, and the cut-off
Λ. The three flavours NJL model contains two other parameters: the
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coupling constants K, and the bare mass ms.

These parameters are usually fixed by fitting some observables: the
pion mass, mπ, the pion decay constant, fπ, and the quark condensate
for the two flavours NJL model; fπ, mπ, and the masses of the mesons
K, η and η′ for the three flavours one.

• NJL model does not confine, and it lacks the corrects degrees of free-
dom. Indeed it is a model with point-like quarks, ma no gluons. Sur-
prisingly, at temperatures above the transition one, it reproduces the
results obtained with BAG model or LQCD quite well (since at high
temperatures confinement becomes less relevant). These issues (con-
finement and gluon degrees of freedom) are also irrelevant for cold
deconfined quark matter, as for superconductivity. Moreover, there
are other situations where chiral symmetry, and not confinement, is
the relevant feature of QCD: for example, to understand the Goldstone
nature of the pion.

Results

Let us first discuss the chiral limit (m = 0) for two flavours, starting from
the breaking of chiral symmetry at T = µ = 0, with the value of the
dynamical mass M0(0, 0) = 300MeV , corresponding to Λ = 650 MeV and
G = 5.01×10−6 MeV −2 [239, 240]. The well-known solution M(T, µ) of the
gap equation (3.56), for different values of the temperature and of the quark
chemical potential, is plotted in Figs. 3.2.a and 3.2.b. The restoration of the
chiral symmetry is a first-order phase transition at large chemical potential
and a second-order one at low µ.

With finite chiral quark masses, at high temperature and low chemical
potential, there is a smooth crossover rather than a second-order phase
transition. Moreover, the first-order phase boundary ends in a second-order
endpoint [23]. The solution of the gap equation (3.56) (with Λ = 650 MeV
and G = 5.01 × 10−6 MeV−2 and m0 = 5.5 MeV) as a function of T and µ
is shown in Figs. 3.3.a and 3.3.b.

Finally, three flavours NJL model is studied with the parameter val-
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Figure 3.2: a) The dynamically generated mass, M , in the NJL model
with two favors in the chiral limit (mu = md = 0 MeV) and again the
temperature. Black line is for µ = 0 MeV; the others are for growing µ, up
to µ = 300 MeV and with step of ∆µ = 20 MeV. b) M as a function of
the chemical potential µ. Black line is for T = 10 MeV; the others are for
growing T , up to T = 170 MeV and with step of ∆T = 20 MeV.
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Figure 3.3: a) The dynamical generated mass, M , in the NJL model with
two favors of identical mass (mu = md = 5.5 MeV) and again the tem-
perature. Black line is for µ = 0 MeV; the others are for growing µ, up
to µ = 340 MeV and with step of ∆µ = 20 MeV. b) M as a function of
the chemical potential µ. Black line is for T = 10 MeV; the others are for
growing T , up to T = 400 MeV and with step of ∆T = 20 MeV.
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Figure 3.4: a) The dynamical generated mass, Mu = Md (black) and Ms

(blue), in the NJL model with three favors and again the temperature.
Black and blue lines are for µ = 0 MeV; the others are for growing µ, up
to µ = 360 MeV and with step of ∆µ = 20 MeV. b) Mu = Md and Ms as
a function of the chemical potential µ. Black and blue lines are for T = 10
MeV; the others are for growing T , up to T = 230 MeV and with step of
∆T = 20 MeV.
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ues [247]

Λ = 631.4 MeV , GΛ2 = 1.835 , K Λ5 = 9.29 ,

m = 5.5 MeV , ms = 135.7 MeV
(3.67)

and only one chemical potential (µ = µd = µu, µs = 0). The dynamically
generated masses Mu = Md and Ms are now solutions of the system of
EQs. (3.63) and (3.64). Their behaviour is similar to those ones depicted
in Fig. 3.3, but with different values for light and strange quarks, as in
Figs. 3.4.a and 3.4.b. Also, in this case, there is a crossover at low chemical
potential and large T and a first-order phase transition at low temperature
and large µ.

3.4 Quark-Meson model

Another effective theory to study low energy regime of QCD is the Quark-
Meson (QM) model (see [248–259] and references therein), in which we
introduce the fluctuations in the simplest way possible, namely using the
Cornwall-Jackiw-Toumbulis (CJT) effective action formalism for composite
operators [260] and limiting ourselves to the largely used Hartree approxi-
mation [258, 259] in which momentum dependent self-energy diagrams are
neglected. Within these approximations, the effect of the interaction of the
fluctuations with the medium is a shift in their mass that can be computed
solving self-consistently the Schwinger-Dyson equations for the propagators
and the mean-field condensate.

In this section, we review the QM model in which fermions (in our
context, quarks) interact with mesons (that are the σ-meson and the pions
in our work). It is based on the Lagrangian density

L = Lm + Lf , (3.68)

with the mesonic and fermionic parts respectively given by

Lm = Tr
[︂
(∂νΦ)

† (∂νΦ)
]︂
−m2 Tr

(︁
Φ†Φ

)︁
− λ

[︁
Tr
(︁
Φ†Φ

)︁]︁2
+ h σ (3.69)
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and
Lf = Ψi γµ∂µΨ− 2 gΨΦΨ . (3.70)

Here Φ is the matrix field

Φ ≡ 1

2
σ τ 0 +

i

2
−→π · −→τ , (3.71)

with τ 0 the unity matrix and −→τ = (τ1, τ2, τ3) the Pauli matrix, π =
(π1, π2, π3) is an isotriplet of pion fields, σ is the isosinglet field and Ψ is a
massless isodoublet quark field. m2 is the bare mass, λ and g are coupling
constants, and the term h σ, that breaks explicitly the chiral symmetry, is
included in order to give the correct low temperature mass to the pion.

The partition function at finite temperature (β = 1/T ) and chemical
potential µ is

Z =

∫︂
[dΦ]

[︁
dΨ
]︁
[dΨ] exp

{︃
−
∫︂ β

0

dτ

∫︂
V

d3x
(︁
Lm + Lf − µΨ†Ψ

)︁}︃
=

=

∫︂
[dσ] [dπi] Zf exp

{︃
−
∫︂ β

0

dτ

∫︂
V

d3x Lm
}︃
,

(3.72)

where, in the last step, an integration over the fermionic degree of freedom
has been done, in order to integrate the fermionic part Zf .

A standard approximation, done in particular in the context of effective
field theories for the quark chiral condensate of QCD, is that of mean-field
in which the meson fields are replaced by their uniform, time-independent
saddle point values, σ = fπ and −→π = 0. We want to go beyond the mean-
field approximation, including the quantum fluctuations of the meson fields
(the functional integral over the fermion fields can be done exactly on top of
the mean-field solution). Within a Gaussian approximation, the partition
function in EQ. (3.72) is given by

Z = Zf Zm , (3.73)

where the subscripts f and m stand for fermions and mesons respectively,
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and

Zf =

∫︂ [︁
dΨ
]︁
[dΨ] exp

{︃
−
∫︂ β

0

dτ

∫︂
V

d3x
(︁
Lf − µΨ†Ψ

)︁}︃
(3.74)

and

Zm =

∫︂
[dσ] [dπi] exp

{︃
−
∫︂ β

0

dτ

∫︂
V

d3x Lm
}︃
. (3.75)

In this model, both quarks and meson fluctuations propagate on the back-
ground of the condensate of the σ field, the value of which is determined
consistently by solving the gap equations (see Eqs. (3.109-3.111 below)).
The thermodynamic Grand potential is

Ω = Ωf + Ωm . (3.76)

3.4.1 Fermionic term

The fermionic partition function (EQ. (3.74)) is usually approximated trough
the so-called “bosonization” method: let’s start by defining the covariant
derivatives

Dν = ∂ν − i µ δν0 (3.77)

and the operator ˆ︁D = i γµDµ − 2 gΦ . (3.78)

Defining Mf = 2 g Φ, and

ˆ︁D = i γµ ∂µ + γ0 µ−Mf = G−1f , (3.79)

that is the free inverse fermion propagator, the fermionic partition function
becomes

Zf =

∫︂ [︁
dΨ
]︁
[dΨ] exp

{︃
−
∫︂ β

0

dτ

∫︂
V

d3x Ψ† ˆ︁DΨ

}︃
. (3.80)
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By standard methods, one has

lnZf =Tr ln ˆ︁D =

=
Nf Nc

2 π2

∫︂ ∞
0

k2 dk
[︁
β ωk + ln

(︁
1 + e−β ωk−γ

)︁
+ ln

(︁
1 + e−β ωk+γ

)︁]︁
,

(3.81)

with ω2
k = k2 +M2

f .
Mf is the effective fermion mass that can be taken as

M2
f = 4 g2 Tr

(︁
ΦΦ†

)︁
= g2

(︁
σ2 +−→π · −→π

)︁
= g2σ2 . (3.82)

Finally, standard renormalization procedure (see for example [261]) gives

Ωf =
g4NcNf

8 π2
σ4 ln

Qf

gσ
− 2NcNfT

∫︂
d3k

(2π)3
ln
(︂
1 + e−β(

√
k2+g2 σ2−µ)

)︂
−

− 2NcNfT

∫︂
d3k

(2π)3
ln
(︂
1 + e−β(

√
k2+g2 σ2+µ)

)︂
.

(3.83)

In EQ. (3.83) we recognize the standard relativistic free gas thermodynamic
potential at finite temperature and chemical potential (the last two terms),
and the zero temperature, zero chemical potential contribution, that is po-
tentially divergent and has been renormalized at the scale Qf .

3.4.2 Mesonic term

The mesonic contribution, Ωm, can be obtained via the Cornwall-Jackiw-
Toumbulis (CJT) effective action formalism for composite operators [260],
in the Hartree approximation [258, 259].

Cornwall-Jackiw-Toumbulis effective action theory

Systems at finite temperature and chemical potential can be studied by
defining a partition function

Z = Tre−β(H−µN) . (3.84)
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That is equivalent to define a new Lagrangian explicitly depending to the
chemical potential, with the requirement to replace∫︂

d4k

(2 π)4
→ 1

β

∑︂
n

∫︂
d3k

(2π)3
, (3.85)

where the sum is over the Matsubara frequencies and with n even (odd) for
bosons (fermions).

In the CJT formalism [260], this partition function is designed as the
J, K → 0 limit of a two sources (J and K) action

Z =

∫︂
dΨexp

{︃
i I + i

∫︂
d4xΨ(x) J(x) +

i

2

∫︂
d4x d4yΨ(x) K(x, y) Ψ(y)

}︃
.

(3.86)
Here the field Ψ may have components, dΨ is functional integration, I is
the classical effective action,

I =

∫︂
d4xL(x) , (3.87)

and L is the effective Lagrangian, containing gauge and ghost terms. Then,
the thermal effective action, Γ, is a double Legendre transformation of W ≡
lnZ. By defining

∂W (J,K)

∂J(x)
= ϕ(x) (3.88)

and
∂W (J,K)

∂K(x, y)
=

1

2
[G+ ϕ(x)ϕ(y)] , (3.89)

it is shown that the physical solution requires J = K = 0 or

δΓ(ϕ,G)

δϕ
=
δΓ(ϕ,G)

δG
= 0 . (3.90)

Now ϕ takes the meaning of the expected value of the quantum field Ψ and
G(x, y) that of TΨ(x)Ψ(y). If the system is also translational invariant, one
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defines an effective potential Veff such that [262]

Γ = −Veff
∫︂
d4x . (3.91)

By defining the auxiliary operator

i D−1ab =
δ2I

δψa δψ∗b
= i D−1ab +

δ2Iint
δψa δψ∗b

, (3.92)

where I(x) is the classical effective lagrangian (EQ. (3.87)),

Iint(ϕ) =

∫︂
d4xLint(x) (3.93)

that for the interaction term, Lint(x), Dab(x− y) is the free propagator and
a and b are indices over the Ψ’s components, the effective action is given by

Γ(ϕ,G) = Icl(ϕ) +
i

2
Tr lnG−1 +

i

2
TrD−1 G+Γ(2)(ϕ,G) + const. , (3.94)

with Γ(2)(ϕ,G) given by all the two-particle irreducible vacuum graphs in a
theory with propagator equal to G(x, y) and vertices of a theory obtained
by shifting the field ϕ and defining the interaction term, Ishiftint , by all the
terms cubic and higher in ϕ one obtains.

Moreover, the physical condition δΓ/δG = 0 gives the GAP equations

G−1ab (x, y) = D−1ab (x, y)− 2 i
δΓ(2)

δGab

, (3.95)

that must be solved together with that obtained from δΓ/δϕ = 0.

The mesonic thermodynamic grand potential, Ωm

We start by writing the mesonic lagrangian as

Lm =
1

2

4∑︂
ℓ=1

(∂νϕℓ) (∂
νϕℓ)−

m2

2

4∑︂
ℓ=1

ϕ2
ℓ −

λ

4

(︄
4∑︂
ℓ=1

ϕ2
ℓ

)︄2

+ h ϕ1 , (3.96)
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where ϕℓ = {σ, π0 π1, π2}.

The operators in EQ. (3.92) become

D−1ab (k) =

[︄
k2 +m2 + λ

(︄
4∑︂
ℓ=1

ϕ2
ℓ

)︄]︄
δab + 2 λϕa ϕb . (3.97)

If one expresses the spontaneous symmetry breaking as

⟨ϕ1⟩ = σ ̸= 0 and ⟨ϕℓ⟩ = 0 ∀ℓ ∈ {2, 3, 4} , (3.98)

and performs the shift
ϕℓ ↦−→ ϕℓ + σ δℓ1 , (3.99)

the propagators D−1ab (k), evaluated at < ϕℓ >, become⎧⎪⎨⎪⎩
D−1σ (k) = k2 +m2 + 3 λσ2

D−1π (k) = k2 +m2 + λσ2

. (3.100)

The interaction term of the shifted theory is given by

Ishiftint = −λ
4

(︄
4∑︂
ℓ=1

ϕ2
ℓ

)︄2

− λ σ ϕ1

(︄
4∑︂
ℓ=1

ϕ2
ℓ

)︄
, (3.101)

and contains a four-point vertex proportional to λ and a three-point vertex
proportional to σ λ:

� �
The 2-loop term, Γ(2), in Hartree-Fock approximation, i.e. with only the

lowest contribution in λ, is (by means Gℓ :=
∫︁
k
Gℓ, etc..):
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Γ
(2)
HF =�

+

+
�

= −λ
4

(︂
3 Gσ Gσ + 6 Gσ Gπ + 15 Gπ Gπ

)︂
, (3.102)

and the effective potential is given by

Ωeff
m = Ωcl

m+
1

2
lnG−1σ +

3

2
lnG−1π +

1

2
D−1σ Gσ +

3

2
D−1π Gπ+

+
λ

4

(︂
3 G2

σ + 6 Gσ Gπ + 15 G2
π

)︂
+ const. .

(3.103)

By deriving the effective potential of EQ. (3.103) with respect its variables
Gσ and Gπ, one finds⎧⎪⎨⎪⎩

G−1σ = D−1σ + 3 λ (Gσ +Gπ)

G−1π = D−1π + λ (Gσ + 5 Gπ)

, (3.104)

and the effective potential becomes

Ωeff
m = Ωcl

m +
1

2
lnG−1σ +

3

2
lnG−1π − 3

λ

4

(︂
G2
σ + 2 Gσ Gπ + 5 G2

π

)︂
. (3.105)

Differently from [258, 259], we do not include the vacuum term of the meson
potential, so the pressure of the pions and σ−meson is zero at T = µ = 0:
the condensation energy takes contributions only from the classical poten-
tial plus the fermion loop, while the mesons appear as the excitation of
the ground state at finite temperature. This choice is also made for the
sake of simplicity because including a further zero temperature, and zero
chemical potential renormalized term of the mesons would introduce an ad-
ditional renormalization scale that would lead to unexpected behaviours of
the thermodynamic quantities [259]. Within these approximations we have
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[258, 259]

Ωm =
m2

2
σ2+

λ σ4

4
−h σ+3 BF

π +BF
σ − 3 λ

4

(︁
2 AFπ A

F
σ + 5 AF 2

π + AF 2
σ

)︁
.

(3.106)
where for ℓ = σ, π we have put

Aℓ =−
∫︂
d3k

(2π)3
1

Eℓ

1

1− eβ Eℓ
, (3.107)

with Eℓ =
√︁
k2 +M2

ℓ , and

Bℓ = 2 T

∫︂
d3k

(2π)3
ln
(︁
1− e−β Eℓ

)︁
. (3.108)

3.4.3 GAP equations

Within this model, for a given temperature and chemical potential, the
unknowns are the value of the condensate, namely the expectation value of
σ, as well as the in-medium meson masses Mσ and Mπ: these are obtained
by solving the gap equations, that are

h =
[︁
m2 + λσ2 + 3 λ (Aσ + Aπ)

]︁
σ − g4 Nc Nf σ

3

8 π2

(︃
1 + 4 ln

g σ

Qf

)︃
−

− 2 Nc Nf

β

∂ΩfT

∂Σ

⃓⃓⃓⃓
⃓Σ=σ
Π=0

,

(3.109)

M2
σ =m2 + 3 λ

(︁
Aπ + Aσ + σ2

)︁
− g4 Nc Nf σ

2

8 π2

(︃
7 + 12 ln

g σ

Qf

)︃
−

− 2 Nc Nf

β

∂2ΩfT

∂Σ2

⃓⃓⃓⃓
⃓Σ=σ
Π=0

,

(3.110)
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M2
π =m2 + λ

(︁
5 Aπ + Aσ + σ2

)︁
− g4 Nc Nf σ

2

8 π2

(︃
1 + 4 ln

g σ

Qf

)︃
−

− 2 Nc Nf

β

∂2ΩfT

∂Π2

⃓⃓⃓⃓
⃓Σ=σ
Π=0

,

(3.111)

with

ΩfT =

∫︂
d3k

(2 π)3
ln
(︂
1 + e−β(

√
k2+g2(Σ2+Π2)−µ)

)︂(︂
1 + e−β(

√
k2+g2(Σ2+Π2)+µ)

)︂
.

(3.112)

The gap equations depend on the renormalization scale, Qf , as well as of
three parameters, m, λ and h. At the tree-level, namely, when no meson
and quark loops are considered, the parameters m, λ and h are fixed to
reproduce the physical values mσ, mπ as well as σ = fπ at T = 0 and µ = 0,
where we use small letters to denote physical masses at T = µ = 0; without
the fermion and meson loops, these give

h ≡ htree = m2
π fπ , (3.113)

m2 ≡ m2
tree = −m

2
σ − 3m2

π

2
− f 2

π g
4 Nc Nf

4 π2
, (3.114)

λ ≡ λtree =
m2
σ −m2

π

2 f 2
π

, (3.115)

where the subscript tree reminds that these are quantities computed using
the tree-level potential. In order to fix the renormalization scale, we have
to adopt one renormalization condition, that is

λ = λtree, (3.116)

where λ results from the gap equations at T = µ = 0, namely

λ =
m2
σ −m2

π

2 f 2
π

+
g4NcNf

8π2

(︃
3 + 4 ln

g fπ
Qf

)︃
. (3.117)
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Figure 3.5: Pressure versus temperature for the models with (solid lines)
and without (dashed lines) meson fluctuations, for µ = 0 (black lines) and
µ = 300 MeV (red lines).

m2 and h from the gap equations at T = µ = 0 are always equal to the tree
value:

m2 = m2
tree , h = htree . (3.118)

Finally, from EQ.s (3.116) and (3.117) we have

Qf = e3/4 fπ g . (3.119)

3.4.4 Results

For the parameters we take fπ = 93 MeV, mσ = 700 MeV, mπ = 138 MeV
and finally g = 3.6: the latter is chosen so that the constituent quark mass
at T = µ = 0 is M = 335 MeV. The resulting value of the renormalization
scale is Qf = 709 MeV.

Figure 3.5 shows the pressure versus the temperature for the models
with and without fluctuations, for µ = 0 (black lines) and µ = 300 MeV
(red lines). At fixed µ and T , the fluctuations increase the pressure as
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Figure 3.6: Condensate, σ, as a function of T and for different values of the
chemical potential. Upper panel corresponds to the case in which meson
fluctuations are neglected, lower panel to the case in which meson fluctua-
tions are included.

Page 75



CHAPTER 3. QUANTUM CHROMODYNAMICS AND EFFECTIVE
MODELS

Mσ

Mπ

0 50 100 150 200 250
0

200

400

600

800

T [MeV]

M
[M

e
V
]

Figure 3.7: In-medium masses Mσ (black) and Mπ (orange) as a function
of T , for several values of the chemical potential: µ = 0 MeV (continuous
line), µ = 100 MeV (dashed), µ = 200 MeV (dot-dashed) and µ = 300 MeV
(dotted). Case with mesonic fluctuations.
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expected; however, we notice that at large values of µ, the contribution of
the fluctuations becomes less important in comparison with the mean-field
pressure.

In Fig. 3.6, we plot the condensate, σ, as a function of T for several val-
ues of the chemical potential: µ = 0 MeV (continuous line), µ = 100 MeV
(dashed), µ = 200 MeV (dot-dashed) and 300 MeV (dotted). The upper
panel corresponds to the case in which meson fluctuations are neglected,
lower panel to the case in which the fluctuations are included. In both
cases, a range of temperature where σ decreases exist, that signals the par-
tial restoration of chiral symmetry (chiral symmetry cannot be restored
exactly due to the explicit soft breaking in the action). Figure 3.7 shows
the in-medium masses of the σ-meson and pions as a function of temper-
ature, for several values of the quark chemical potential. These have been
computed for the model with fluctuations included. We notice that, for
each of the values of µ considered, a range of temperature exists in which
the σ-meson mass decreases. Conversely, the pions mass increases, and the
two-match at high temperature signalling the approximate restoration of
the O(4) symmetry, as well as the decoupling of these particles from the
low energy spectrum of the model. Moreover, the lowering of Mσ to a min-
imum is a sign that the fluctuations of the scalar field are enhanced near
the chiral crossover.

Finally, Figures 3.8 and 3.9 show the derivative of σ, Mσ and Mπ, with
respect to β and γ at µ = 100 MeV (black) and µ = 300 MeV (orange).
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Figure 3.8: Derivative of σ with respect to β (continuous line) and γ (dashed
line) at µ = 100 MeV (black) and µ = 300 MeV (orange), as a function of
T . Upper panel corresponds to the case in which meson fluctuations are
neglected, lower panel to the case in which meson fluctuations are included.

Page 78



CHAPTER 3. QUANTUM CHROMODYNAMICS AND EFFECTIVE
MODELS

Mσ,β

Mσ,γ (X 5 102)

Mπ,β

Mπ,γ (X 5 102)

μ=100 MeV

μ=300 MeV

0 50 100 150 200 250

-400 000

-300 000

-200 000

-100 000

0

100 000

200 000

T [MeV]

Figure 3.9: Derivative of Mσ with respect to β (continuous line) and γ
(dashed), and derivative of Mπ with respect to β (dot-dashed) and γ (dot-
ted), at µ = 100 MeV (black) and µ = 300 MeV (orange). Case with
mesonic fluctuations.
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Chapter 4

Cosmological consequence of the
QCD phase transition

Quantum Chromodynamics deconfinement phase transition has an inter-
esting role at the cosmological level. [263–267]. Indeed, in the modern un-
derstanding, i.e. the Standard Cosmological model (ΛCDM) with cold dark
matter and a cosmological constant, Universe evolution is a thermal history:
the Universe evolves from a very hot period (with a temperature of the order
of 1019 GeV of the total unification, or 1016 GeV of the grand one [268]) to
the current Cosmic Microwave Background Radiation temperature (about
T ∼ 2.725 MeV). As a consequence, the evolution of the Universe can be seen
as a useful laboratory to study fundamental physics across energy scales that
span about 25 orders of magnitude [268]: starting from the very high tem-
perature said, the Universe has expanded and cooled adiabatically and isen-
tropically, and different phases transitions occurred. Figure 4.1 shows the
thermal history of the Universe, and in Fig. 4.2 is plotted the effective num-
ber of degree of freedom predicted by the standard model (SM) of particles
physics. The first conjectured period was that of the total unification (all
the four interactions are unified at the Planck scale) or that of the grand uni-
fication (strong and electroweak interactions are described as a gauge theory
based on a single larger gauge group: e.g. SU(5), SO(10), E8, etc.). When
the temperature was about Tew ∼ 100 GeV, the earliest phase transition
that is predicted by the SM occurred: at a temperature higher than Tew, in
the SM, weak and electromagnetic interactions are unified in the electroweak
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theory based on the gauge group SU(2)⊗U(1)Y , that breaks spontaneously
into the U(1)em abelian symmetry group of the electromagnetic interactions.

Figure 4.1: Universe thermal history.

The breaking happened at a tem-
perature of the order of the vector
bosons (Z0, W±) masses. These
bosons are massless in the sym-
metric phase (T > Tew) and ac-
quire masses through the Higgs
mechanism at T < Tew, while
the photon remains massless. The
Universe was then in a state of
plasma of quarks, leptons and
bosons, and additional cooling,
reached the temperature of about
150 MeV, led to a new phase tran-
sition, with the appearance of the
first hadrons. This phase tran-
sition was the same that occurs
in particle collisions experiments,
with the formation of a quark-
gluon plasma, that subsequently
hadronizes. The QCD deconfine-
ment transition rapidly reduced
the number of the strongly inter-
acting d.o.f., gs. However, lattice

QCD simulations indicate that the transition is not so sharp, and it is
indeed a crossover between a system of quarks and gluons and a hadron
gas [202, 269, 270]. It was the last predicted phase transition by the SM.
After that, other non-SM transitions occurred, like those shown in Fig. 4.1,
that led to the current structure of the Universe.

Therefore, Universe history is a thermal one. To describe it, one needs
several theories:

• the gravitational interaction is described geometrically by the Einstein
theory of General Relativity: the Universe is modeled as a homoge-
neous and isotropic expanding manifold, whose metric is given by the
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Figure 4.2: The effective number of degree of freedom predicted by the
standard model of particles physics. Figure from [264]

Friedmann - Lemaître - Robertson - Walker (FLRW) one,

ds2 = dt2 − a2(t)
(︁
dr2 + r2 dΩ2

)︁
. (4.1)

Here t is the comoving time, i.e. the proper time of a comoving ob-
server, and the scale factor,

a(t) =
ℓphys
ℓcom

, (4.2)

describes the stretched of the physical lengths, ℓphys, with respect the
comoving ones, ℓcom.

In the FLRW universe, also matter distribution is homogeneous and
isotropic, i.e. it is described via an energy-momentum tensor with the
fluid form:

T µν = diag (ε,−p,−p,−p) , (4.3)

where ε is the energy density and p the pressure of the matter fluid.

The connection between the space-time geometry and the matter-
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energy content is given by Einstein’s equations that, for a flat universe
described by the FLRW metric, are given by(︃

1

a(t)

da(t)

dt

)︃2

=
8 π G

3
εT (t) , (4.4)

and
1

a(t)

d2a(t)

dt2
= −4 π G

3
(εT (t) + 3 pT (t)) . (4.5)

Here εT (t) and pT (t) are the total energy density and the pressure,
respectively.

• According to ΛCDM model, the total energy density of the Universe
has as main ingredients: 5% of baryonic matter, 25% of dark matter
and 70% of dark energy (described by a cosmological constant) [195].
The next point is thus to give the matter and energy content of the
Universe:

εT = εs + εew + εdm + εΛ , (4.6)

pT = ps + pew + pdm + pΛ , (4.7)

where
εΛ =

Λ

8π G
, (4.8)

and
pΛ = −εΛ , (4.9)

are the dark energy contributions, and the other terms correspond to
strong (s), electroweak (ew) and dark matter (dm) sectors.

• Finally, one uses the ordinary thermodynamic relationship between
energy density, pressure and entropy density, s, in Eqs. (2.34-2.37),
and supposes that Universe expands isentropically, i.e. the total en-
tropy is constant and thus since the volume of the Universe is propor-
tional to a(t)3, one has

dS ∝ d(a3 s) = 0 . (4.10)

EQs. (2.34-2.37) and EQ. (4.10) provide the link between temporal
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and thermal evolution. Moreover, the Universe evolves at µ ∼ 0 [38],
since

η ≡ nB
nγ

= 6 10−10 . (4.11)

Indeed, η allows determining the value of entropy per baryon ratio,
S/B, in the Universe, which is conserved in adiabatic evolution. Thus

µ

T
∼ nB

s
∼ η

10
∼ 0 . (4.12)

If the temperature is a function of time only, T = T (t), by defining
the function

h(T ) =
1

a(T )

da

dT
, (4.13)

it is easy to show that
dT

dt
=
H

h
, (4.14)

where H ≡ (da/dt)/a is the Hubble parameter. By the FLRW equa-
tions and by the isentropic expansion condition, one obtains

h = − 1

3 c2s T
= − CV

3 (ε+ p)
, (4.15)

where CV is the specific heat and c2s = ∂pT/∂εT is the speed of sound.

4.1 Cosmological parameter

The cosmological evolution can be described by the cosmological parame-
ters, defined as [271, 272]

H ≡ 1

a

da

dt
, (4.16)

q ≡ − 1

a H2

d2a

dt2
, (4.17)

An ≡ 1

a Hn

dna

dtn
(n > 2) . (4.18)

Page 85



CHAPTER 4. COSMOLOGICAL CONSEQUENCE OF THE QCD
PHASE TRANSITION

The first is the Hubble parameter, H, the second is the deceleration, q, then
the jerk j, the snap (s = A4), etc.. They specify the various terms of the
Taylor expansion of the scale factor:

a(t)

a(t⋆)
=1 +H(t⋆) (t− t⋆)− (qH2) (t⋆)

2
(t− t⋆)2 +

(jH3) (t⋆)

2
(t− t⋆)2 + · · · .

(4.19)

The evolution of the cosmological parameter is directly related to the EoS.
Indeed, An can be written as the sum of terms containing the first n − 1
derivatives of the Hubble parameter H, which can be expressed in terms
of the w ≡ pT/εT , of the speed of sound, c2s = ∂pT/∂εT , and its deriva-
tives [267]. Indeed, since

dna

dtn
=
dn−1 (aH)

dtn−1
, (4.20)

it is easy to show that [267]

q = −1− Ḣ

H2
, (4.21)

j = A3 = 1 + 3
Ḣ

H2
+

Ḧ

H3
, (4.22)

s = A4 = 1 + 6
Ḣ

H2
+ 3

(︄
Ḣ

H2

)︄2

+ 4
Ḧ

H3
+

...
H

H4
, (4.23)

A5 =1 + 10
Ḣ

H2
+ 15

(︄
Ḣ

H2

)︄2

+ 10
Ḧ

H3
+ 5

...
H

H4
+ 10

Ḣ

H2

Ḧ

H3
+
H(4)

H5
,

(4.24)
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A6 =1 + 15
Ḣ

H2
+ 45

(︄
Ḣ

H2

)︄2

+ 20
Ḧ

H3
++15

...
H

H4
+ 60

Ḣ

H2

Ḧ

H3
+ 6

H(4)

H5
+

+ 15

(︄
Ḣ

H2

)︄3

+ 15
Ḣ

H2

...
H

H4
+ 10

(︄
Ḧ

H3

)︄2

+
H(5)

H6
,

(4.25)

where the “dot” means derivative with respect t. Recalling that

1

Hn+1

dnH

dtn
= −4 π G

Hn+1

dn−1 (ε+ p)

dtn−1
, (4.26)

each of the previous derivatives can be express as

Ḣ

H2
= −3

2

(︂
1 +

p

ε

)︂
, (4.27)

Ḧ

H3
=

9

2

(︁
1 + c2s

)︁ (︂
1 +

p

ε

)︂
, (4.28)

...
H

H4
=

9

2

(︂
1 +

p

ε

)︂ [︂dc2s/dt
H

− 3
(︁
1 + c2s

)︁2 − 3

2

(︁
1 + c2s

)︁ (︂
1 +

p

ε

)︂ ]︂
, (4.29)

H(4)

H5
=

9

2

(︂
1+

p

ε

)︂[︂
9
(︁
1 + c2s

)︁3
+ 18

(︁
1 + c2s

)︁2 (︂
1 +

p

ε

)︂
−

− 3
(︂
4 +

p

ε
+ 3 c2s

)︂ dc2s/dt

H
+
d2c2s/dt

2

H2

]︂
,

(4.30)

H(5)

H6
=

9

2

(︂
1 +

p

ε

)︂ [︂d3c2s/dt3
H3

− 9

(︃
dc2s/dt

H

)︃2

− 27
(︁
1 + c2s

)︁2 (︂
1 +

p

ε

)︂2
−

− 3

H2

(︃
11

2
+

3 p

2 ε
+ 4 c2s

)︃
d2c2s
dt2

+
9 (1 + c2s)

H

(︂
15 + 9

p

ε
+ 6 c2s

)︂ dc2s
dt

−

− 27
(︁
1 + c2s

)︁4 − 297

2

(︁
1 + c2s

)︁3 (︂
1 +

p

ε

)︂ ]︂
.

(4.31)

Finally, since w(ε) ≡ p/ε, one can show that

c2s = w + ε
dw

dε
(4.32)
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and thus all the cosmological parameters can be express in terms of w, c2s
and its derivatives. For the first three parameters one gets

q =
1

2
(1 + 3 w (ε)) , (4.33)

j =1 + 3 c2s (1 + q) = q (1 + 2 q) + 3 (1 + q) ε
dw

dε
, (4.34)

s =1− 3 (1 + q)− 9 c4s (1 + q)− 3 c2s(1 + q)(3 + q) + 3(1 + q)
dc2s/dt

H
=

=− q (1 + 2 q) (2 + 3 q)− 3(1 + q)(1 + 5 q)ε
dw

dε
−

− 9 (1 + q)

(︃
ε
dw

dε

)︃2

+ 3 (1 + q)
dc2s/dt

H
,

(4.35)

Eqs. (4.21-4.35), together with eqs. (4.14,4.15), permit to write the cosmo-
logical parameters in terms of the temperature of the universe if one specifies
which fluids fill the universe and assigns an equation of state (EoS) for each
of them:

εT = εs + εew + εdm + εΛ , (4.36)

s: The strong sector is build interpolating the high temperature regime
obtained via Lattice QCD, with the low temperature one obtained in
the HRG model. The first is discussed in sec. 3.1, the last in sec. 3.2.

ew: The electroweak sector is included as a relativistic gas of massless
particles, i.e.,

εew = 3 pew =
π2

30
gew T

4 , (4.37)

where gew = 14.45 is the effective number of electroweak d.o.f. [266].

dark: the dark sectors are omitted due to their low contributions in the early
stage.
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4.2 Gravitational waves

In the inflation era, the wavelengths of the quantum fluctuations are stretched
to scales greater than the casually connected region, and fluctuations of the
metric tensor result in a background of stochastic gravitational waves [273].
In the transverse traceless (TT) gauge, tensor perturbations hij of the
FLRW metric satisfy the linearized equation of motion

hij;µ
;µ = 0 , (4.38)

where “;” indicates the covariant derivative, and the corresponding Fourier
modes take the form

hij =

∫︂
d3k

(2π)3/2

∑︂
λ

eλij hk,λ e
ik·x . (4.39)

Here λ = (+, ×) are the two polarization states and eλij is the symmetric
polarization tensor (eii = 0, kieij = 0). In conformal time, η, the equation
of motion for the perturbations reads [265]

h′′k,λ(η) + 2
a′

a
h′k,λ(η) + k2hk,λ(η) = 0 , (4.40)

where d/dη is denoted by prime “ ′”. By defining µkλ = a hkλ, EQ. (4.40)
can be written as

µ′′k,λ(η) +

(︃
k2 − a′′

a

)︃
µk,λ(η) = 0 . (4.41)

Two different regimes are physically relevant and correspond to fluctuations
well inside the Hubble horizon or well outside the horizon. Since a′′/a ∼
(a H)2, when k ≫ a H the wavelength is smaller than the horizon: this
is the subhorizon regime. In this case EQ. (4.41) is that of a harmonic
oscillator, hence, µk(η) ∼ eikη and for the perturbation one obtains

hk ∼ a−1 , (4.42)
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which implies that the amplitude decreases in time. In the superhorizon
regime, i.e. for k ≪ a H, EQ. (4.41) has two independent solutions: a
decaying mode µk ∼ a−2, which we neglect, and µk ∼ a that leads to

hk ∼ const. . (4.43)

The amplitudes are almost frozen, being outside the casually connected
region, and, in the inflation era, are stretched to size larger than the horizon,
where they remain constant.

When inflation ends the comoving Hubble horizon (a H)−1 grows in
time and each mode crosses the horizon and reenters inside the casually
connected region when k = a H (i.e. when the wavelength is comparable
to the horizon size). In this case, a general solution of EQ. (4.41) can be
written introducing a factor depending on mode’s amplitude in superhorizon
regime and a transfer function, Tk(η), as

hk,λ(η) = hprimk,λ Tk(η) , (4.44)

where hprimk,λ is the amplitude when the mode left the horizon in the infla-
tionary period and Tk(η) describes the evolution of the gravitational wave
after it crosses the horizon. For radiation dominated universe, the solution
reads

hk,λ(η) = hprimk,λ j0(kη) , (4.45)

where j0(x) is the spherical Bessel function [273].

Let us define the power spectrum of gravitational waves. The energy
density is given by

εh(η) =
1

32πGa2
< h′ijh

′ij > , (4.46)

and in k space the spatial average reads

< h′k,λh
′
k′,λ′ >= (2π)3δλλ′δ

3(k + k′)|h′k,λ|2 . (4.47)

Moreover, one assumes that the primordial gravitational waves are unpo-
larized, that is |h′k,+(η)|2 = |h′k,×(η)|2.
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Using EQ. (4.44), we can write the energy density as

εh(η) =
1

32πGa2

∫︂
dk

k
∆2
h,prim [T ′k (η)]

2
, (4.48)

where ∆2
k,prim is the primordial amplitude which in de Sitter inflation turns

out to be

∆2
h,prim =

2

π2
k3|hprimk |2 = 16

π

(︃
HdS

MPl

)︃2

, (4.49)

HdS andMPl being the Hubble constant in de Sitter inflation and the Planck
mass, respectively.

The logarithmic energy density is defined as dεh/d ln k and the fractional
energy density is given by

Ω(η, k) =
dεh(η, k)

d ln k

1

εc(η)
=

∆2
h,prim [T ′k (η)]

2

32π Ga2 εc(η)
, (4.50)

where εc is the critical energy density.
From the Friedman equations we finally get

Ω(η, k) =
∆2
h,prim

12H2(η) a2
[T ′k (η)]

2
. (4.51)

A gravitational wave of mode k has frequency f = 2πk/a. Because of
redshift, once a wave crosses the horizon its frequency decreases. From the
definition of fractional energy density follows that Ω decreases as a−4H−2,
since gravitational waves are decoupled from the rest of the Universe and
εc ∼ H2 from Friedman equation. For waves that reentered at a certain
time η, the fractional energy density today is

Ω0 = Ω(η, f)
a4(η)H2(η)

a40H
2
0

, (4.52)

and the frequency today is f0 = 2πk/a0, where a0 and H0 are the scale
factor and the Hubble parameter today.

The evolution of the hk modes and of the crossing condition, k = a H,
are controlled by the scale factor a and the modification of the spectrum
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of gravitational waves from the primordial one depends on the content of
matter in the epoch they reenter the horizon. We will show that the QCD
transition modifies the speed of sound c2s, since the Universe stands no longer
in a pure radiation era and, correspondingly, the primordial gravitational
waves cross the horizon near that transition time at different rates.

It is more useful to write EQ. (4.40) for the transfer function as a function
of the temperature. Let us consider the equation of motion for the transfer
function, Tk, with respect to cosmic time, t,

d2Tk
dt2

+ 3
1

a

da

dt

Tk
dt

+
k2

a2
Tk = 0 . (4.53)

By eqs.(4.14) and (4.15) one has

d2Tk
dT 2

+ f(T )
dTk
dT

+ κ2(T, k)Tk = 0 , (4.54)

where
f(T ) =

1

T

w − 1 + 2c2s
2c2s

+
1

c2s

dc2s
dT

, (4.55)

and
κ(T, k) = −k

a

1

3c2sTH
. (4.56)

In radiation era, the solution of EQ. (4.53) reads

Tk = Aj0

(︃
α
k

T

)︃
, (4.57)

where j0 is a spherical Bessel function of the first kind and A and α are
appropriate constants. In order to integrate numerically EQ. (4.54), we
set boundary conditions at high temperature, such as 104 MeV, where the
modes hk are given by the radiation era solutions (EQ. (4.57)).

4.3 Results

We analyze the EoS of the entire system in the temperature range 70 MeV ≤
T ≤ 400 MeV, by interpolating the lattice data and the HRG results at
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(a) As a function of temperature.
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(b) As a function of time.

Figure 4.3: The speed of sound c2s (continuous curves) and w (dashed lines)
for the different sectors: QCD (blue) and QCD plus electroweak sector (red).
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Figure 4.4: Temperature as a function of the cosmological time in the dif-
ferent sectors (blue for QCD and red for QCD plus EW), compared with
the behavior of the pure radiation era (red dotted line).

Tl = 130 MeV. The lattice pressure is parameterized by the HotQCD [202,
203] collaboration functions of Eqs. (3.9) and (3.10). The HRG one by
EQ. (3.24).

The results for the w = pT/εT and for the speed of sound c2s are summa-
rized in Fig. 4.3a, where the continuous curves indicate the speed of sound
and the dashed lines the value of w. The blue lines give the results for the
strong sector, and the red ones contain the electroweak sector. The arrows
indicate the temperature of the transition, defined as the temperature at the
minimum of the speed of sound, which goes from the Ts = 147 MeV includ-
ing the strong interaction only to Tew = 158 MeV adding the electroweak
sector.

Figure 4.3b shows the behaviour of the speed of sound as a function of
the cosmological time. For the whole system, after about 100µs the values
of w and c2s come back to be those of a radiation dominated era.

The relation between the temperature and the cosmological time is

t = t0 +
1√

24π G

∫︂ T0

T

dT

Tc2s
√
ε
, (4.58)
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Figure 4.5: The scale factor a/a∗ as a function of cosmological time: QCD
only (blue) and QCD plus electroweak sector (red).

which is numerically solved (with T0 = 500 MeV and t0 = 1 µs [266]).
In Figure 4.4, we have shown how the temperature decrease in the differ-
ent cases previously discussed and in the pure radiation era (red dotted
line). The transition time is reduced by adding the electroweak sector:
tst = 36.39 µs, tewt = 18.71 µs.

4.3.1 Evolution of the cosmological parameters

The results in the previous sections are the starting point to study the
behaviour of the cosmological parameters during the deconfinement tran-
sition. Since the cosmological parameters can depend on the higher-order
derivatives of the Hubble parameter, i.e. on the higher-order derivative
of the thermodynamical quantities, it could be possible that some effects
show up near the critical temperature [266]. We have analyzed two differ-
ent cases: the strong sector only (blue curves in the Figures) and the strong
plus the electroweak sector (red curves). In all Figures, the arrows indicate
the transition time.

In Figure 4.5 and Figure 4.6a are respectively depicted the time be-
haviour of the scale factor a(t) (normalized to the value at 400 MeV, a∗)
and of H(t). The final result is essentially independent of the specific set-
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(a) The Hubble parameter H.
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(b) Cosmological deceleration q.

Figure 4.6: Evolution of the cosmological parameters as a function of cos-
mological time: QCD only (blue) and QCD plus electroweak sector (red):
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(a) The jerk, j.
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(b) The snap, s.

Figure 4.7: Evolution of the cosmological parameters as a function of cos-
mological time: QCD only (blue) and QCD plus electroweak sector (red):
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(a) A5.
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Figure 4.8: Evolution of the cosmological parameters as a function of cos-
mological time: QCD only (blue) and QCD plus electroweak sector (red):
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ting.
In Figures 4.6b, 4.7a, 4.7b, 4.8a and 4.8b the time evolution of q, j, s, A5

and A6 is plotted, respectively. As expected, the parameters with high order
derivative show larger deviations from the typical values of the radiation
dominated era. However, once the transition is over, the Universe is again
dominated by radiation. The fluctuations of the cosmological parameters
in the whole system are limited to a short time interval of about 100 µs.

4.3.2 Modification of the primordial spectrum of the
gravitational waves

According to previous results, the fluctuations of the cosmological parame-
ters in the whole system are limited to a short time interval of about 100 µs.
From this point of view, the deconfinement transition turns out to be more
effective in modifying the primordial spectrum of the gravitational waves,
as proposed in [263]. By lattice QCD simulations, by the HRG model and
including the electroweak sector, we now discuss a detailed analysis of this
effect by numerical integration of Eqs. (4.40)-(4.41), improving previous
analysis [263, 265].

In Figure 4.9 the numerical results for different values of k are reported:
waves with higher frequencies cross the horizon earlier and waves that reen-
tered at T ∼ 150 MeV have frequencies of about 10−7 Hz, the typical fre-
quency f∗ of waves from the QCD transition. The effects of the transition
are expected to be impressed in the fractional energy density Ω and, in
particular, one computes [263] the quantity Ω(f)/Ω(f̄ ≪ f∗), that is the
fractional energy density of the gravitational waves with respect to the same
quantity evaluated for waves that do not encounter the transition (f̄ being
a fixed frequency much lower than f∗).

From EQ. (4.52), this quantity evaluated today is

Ω0(f)

Ω0(f̄ ≪ f∗)
=

Ω(f)

Ω(f̄ ≪ f∗)

a4(f)H2(f)

a4(f )̄H2(f̄)
. (4.59)

The redshift factor gives the shape of the step, and the final result is showed
in Fig. 4.10. The size of the step is about 38%, larger than previous re-
sults [263, 265]. In particular, in [263] the step size was ≃ 30%, obtained by
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Figure 4.9: Transfer function Tk against cosmic time at different values
of the wave number k. It describes the evolution of a gravitational wave.
Green is for k = 2.17 × 10−14 µs−1, yellow k = 6.02 × 10−14 µs−1, orange
k = 1.20× 10−13 µs−1. Vertical line indicates the QCD transition.

a numerical computation of a first-order transition between the quark-gluon
plasma phase and the hadronic phase. Figure 4.11 shows a direct compari-
son between the latter result and our evaluation (see also ref. [274]).

In order to verify these results, we need to detect primordial gravitational
waves with frequencies around 10−7 Hz. They could be detected indirectly
by seeking effects on physical observables, such as the Cosmic Microwave
Background (CMB) polarization, or by direct detection with interferome-
ters [273]. However, we can only put upper limits on the energy density
of gravitational waves from current data. In the future, other detectors as
the Kamioka Gravitational Wave Detector (KAGRA) [275], the Einstein
Telescope [276] and LIGO-India [277] will improve our knowledge on the
gravitational waves.

4.4 Comments and conclusions

The fluctuations of conserved charges at the deconfinement transition are
a clear sign of the different behaviour between the quark-gluon plasma and
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Figure 4.10: Fraction of energy density of gravitational waves with respect
to waves that do not encounter the QCD transition in continuous lines, only
the redshift factor to today values in dashed lines. Both against frequency
f . Vertical line represents the transition. The size of the step is about 38%.
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Figure 4.11: Comparison of the fraction of energy density of gravitational
waves with respect to waves that do not encounter the QCD transition
between the evaluation made in [263], in black, and our evaluation, in red.
Vertical line represents the transition.
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the hadron resonance gas model. However, their detection in relativistic
heavy-ion collisions is difficult.

The fluctuations of the cosmological parameters at the QCD transition
have, in principle, the same physical basis, i.e. they originate from the com-
bined effect of the equation of state and of the calculation of higher-order
derivatives of the relevant physical parameters, that is, in early Universe,
the scale factor. We have shown, by a complete treatment of the thermo-
dynamics of the whole system (strong and electroweak contributions), that
after about 100µs the cosmological parameters return to the typical val-
ues of a radiation dominated era, i.e. to their values before the transition.
This result remains valid also for cosmological scalars involving higher-order
derivatives of the scale factor (see Figs. (4.5-4.8b)). We have preliminary
verified by different dark matter models that the dark matter contribu-
tion to the EoS of the whole system, in the temperature range relevant for
the deconfinement transition, turns out to be negligible and, as shown in
ref. [278], the effects of the QCD transition on the density fluctuations are
small. Therefore the possible signature of the deconfinement transition in
early Universe is restricted to the modification of the primordial gravita-
tional wave spectrum.

By using the recent lattice QCD simulation data and the HRG below
Tc to describe the transition, one evaluates the fraction of energy density
of gravitational waves with respect to waves that do not encounter the
QCD transition. A difference of about 10% is observed concerning previous
analyses [263]. However, direct and indirect detection of gravitational waves
from inflation is required to verify these results. While it seems unlikely in
the present, promising experiments are planned for the future.
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Chapter 5

Geometrical description of the
QCD phase transition

The introduction of Riemannian geometry to the analysis of the phase di-
agram of thermal systems is not intuitive, and the concept of distance be-
tween equilibrium configurations requires an in-depth study. Nevertheless,
it turns out to be a useful and predictive tool for analyzing phase transitions.

The first application of differential geometry to statistical systems dates
back to 1945 with a seminal paper by the Indian mathematician C. Rao [279]
who started the entire branch of information theory called “information ge-
ometry” [280], while the first metric structure for thermodynamic systems
is due to F. Weinhold [281, 282]. Weinhold’s main idea has been to repre-
sent differentials of thermodynamic functions as elements of a vector space
and then to define an inner product: the matrix elements of the metric,
gij, were introduced as the second derivatives of the internal energy with
respect to extensive parameters. In this formulation, the minimum energy
principle for an isolated system is the basis of the geometry, implying the
tensor character of gij and its euclidean character. Despite the interesting
aspects of this approach, which permits to derive the fundamental laws of
equilibrium thermodynamics from geometric postulates, it did not produce
any significant result. Some years later, shifting from the energy to the
entropy representation, G. Ruppeiner [283] was able to create a thermody-
namic geometry with a clear physical meaning. He defined the metric tensor
as the Hessian of the entropy density, and he noticed that the resulting line
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element, i.e. the infinitesimal distance between neighbouring equilibrium
states, is in inverse relation with the fluctuation probability defined by the
classical theory: a spontaneous fluctuation between points of the manifold
is less likely when they are far apart.

The previous concept of thermodynamic metric gave rise to some inter-
esting developments in finite-time thermodynamics, where the increase in
entropy due to non-equilibrium aspects can be related with the geodetic dis-
tance between the initial and final states of a real process [284]. Moreover,
it has been shown that Weinhold’s and Ruppeiner’s metrics are confor-
mal [285], and both are limiting cases of Rao’s metric [286].

The main result of thermodynamic geometry within Ruppeiner’s formu-
lation is the “interaction hypothesis” which states that the absolute value
of the scalar curvature R, calculated by the metric, is proportional to the
cube of the correlation length, ξ3, of the underlying thermodynamic system.
This liaison has been initially suggested by the observation that the Rie-
mannian manifold of a classic ideal gas is flat, and |R| calculated for a Van
der Waals gas diverges at the liquid-vapour critical point precisely with the
same exponent of ξ3, predicted by scaling laws.

Finally, another significant property concerns the sign of the curvature
scalar, which seems to carry information on the dominant interaction in the
system, even when its microscopic properties are not known.

5.1 Thermodynamic Geometry

5.1.1 The thermo-metric

Let us consider a system which entropy, S, is a function of some thermo-
dynamic variables, Xµ, that specify the Hamiltonian of the system (for
instance, Xµ = {E, N, V , . . .}, where E is the energy, N the particle
number, V the volume, etc.), and consider the quantity [283, 287–290]

gµν ≡ − ∂2S

∂Xµ∂Xν
. (5.1)

Under a change of coordinates, gµν transforms as a second-rank tensor: in-
deed, if one considers the coordinate transformation Xµ ↦→ X ′µ, the second
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derivative in EQ. (5.1) changes according to [283, 287–290]

∂2S

∂X ′µ′∂X ′ν′
=

∂Xµ

∂X ′µ′
∂Xν

∂X ′ν′
∂2S

∂Xµ∂Xν
+

∂S

∂Xµ

∂2Xµ

∂X ′µ′∂X ′ν′
=

∂2S

∂Xµ′∂Xν′
.

(5.2)
Moreover, if one defines the free entropy or Massieu function as [291, 292]

ϕ = lnZ = S − θµX
µ , (5.3)

where θµ are intensive conjugated variables,

θµ ≡ ∂S

∂Xµ
, (5.4)

it easy to show that the quantity [284, 291–294]

gµν =
∂2ϕ

∂θµ∂θν
(5.5)

is the inverse of gµν in EQ. (5.1), i.e. [291]

gµνgµν =
∂Xµ

∂θν

∂θν
∂Xµ

= δµν . (5.6)

The variables Xµ can be obtained from the intensive ones and the Massieu
function as

Xµ = − ∂ϕ

∂θµ
. (5.7)

For example, the variable conjugated to the energy E is the inverse temper-
ature θ1 = β = 1/T = ∂S/∂E, or that conjugated to the particle number is
related to the chemical potential, µN : θ2 = γ = −µN/T = ∂S/∂N .

The metric, gµν , is symmetric with respect to the exchange µ ↔ ν
(because the symmetry of second derivatives - Schwarz’s theorem), and it
is non-degenerate (indeed one defines the inverse metric gµν by EQ. (5.5)).
Thus, gµν is a metric tensor, which line element is

dℓ2 = gµν dX
µ dXν = gµν dθµ dθν = −dθµ dXµ = −dS2 = d2ϕ . (5.8)

Geometrically, the first law of thermodynamics can be equivalently ex-
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pressed as:
dS = θµ dX

µ , or dϕ = −Xµ dθµ . (5.9)

The metric and its inverse have a clear meaning in terms of the second
moment of thermodynamic fluctuations:

gµν = ⟨∆Xµ ∆Xν⟩ , and gµν = ⟨∆θµ ∆θν⟩ . (5.10)

Once a metric is given, one defines some scalars related to the geometry,
and the most famous is the scalar curvature, R. It is a well-known quantity
defined as the trace of the Ricci tensor and in two dimensions contains all
the information about the geometry. For example, for the two-sphere of
radius r, its value is R = −2/r2 (in the Weinberg sign convention). In our
evaluation of R, we will use the definition of the metric gµν in EQ. (5.5). In
this “frame”, the metric depends on the derivatives of the thermodynamic
potential ϕ = P/T , where P is the total pressure of the system [288].

In two dimensions the expression for R is considerably simplified:

R =
kB
2

⃓⃓⃓⃓
⃓⃓ ϕ,11 ϕ,12 ϕ,22
ϕ,111 ϕ,112 ϕ,122
ϕ,112 ϕ,122 ϕ,222

⃓⃓⃓⃓
⃓⃓ / ⃓⃓⃓⃓ϕ,11 ϕ,12

ϕ,21 ϕ,22

⃓⃓⃓⃓2
, (5.11)

where kB is the Boltzmann’s constant,

g =

⃓⃓⃓⃓
ϕ,11 ϕ,12
ϕ,21 ϕ,22

⃓⃓⃓⃓
(5.12)

is the determinant of the metric and the usual comma notation for deriva-
tives has been used (for example ϕ,12 indicates the derivative of ϕ with
respect to θ1 and θ2).

In the following, we’ll study systems depending on the temperature, T ,
and on the baryon chemical potential, µ. In this case, the thermodynamic
manifold are described in terms of the two intensive variables θ1 = β = 1/T
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and θ2 = γ = −µ/T . Moreover, for constant volume,

ϕ,ββ =
1

V
⟨(U − ⟨U⟩)2⟩, (5.13)

ϕ,βγ =
1

V
⟨(U − ⟨U⟩)(N − ⟨N⟩)⟩, (5.14)

ϕ,γγ =
1

V
⟨(N − ⟨N⟩)2⟩, (5.15)

where U,N denote the internal energy and the particle number respectively.

Note also that −θµ is not the covariant component of the vector Xµ

(i.e. in general −θµ ̸= gµν X
ν), but, only for infinitesimal variations, it

Figure 5.1: The state space manifold (E)
along with the parameter manifold (M).
Each point on the parameter manifold M fixes
an equilibrium point on E about which there
is a distribution of state space fluctuations.
Figure and caption from ref. [291].

holds [288]

− dθµ = gµν dX
ν . (5.16)

According to EQ. (5.8), if
one indicates the equilib-
rium state space as E (see
Fig. 5.1), i.e. the mani-
fold whose points are the co-
ordinates Xµ, and the pa-
rameter space, i.e. that of
the conjugate variables θµ,
as M, the line element be-
tween two nearby equilib-
rium points in E , ∆ℓ2, is
equivalently interpreted as
the distance measure be-
tween two nearby probabil-
ity distributions in the pa-
rameter manifold [291]. For

each equilibrium point, X̄µ, in E , the tangent space TX̄ is spanned by the
spontaneous fluctuation vectors ∆Xµ = X̄

µ − Xµ around the equilibrium
state. The directions of statistically independent fluctuations around an
equilibrium state are fixed by the eigenvectors of the metric gµν . These
eigenvalues, or more precisely the square root, also fix the variance along
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their respective independent direction and could provide a measure of the
statistical distinguishability of two nearby distributions. Furthermore, if
one considers two points in the space M, θ1 and θ2, and defines the geode-
tic from θ1 to θ2 as θ = θ(t) (parametrized in terms of the affine parameter
t, with 0 ≤ t ≤ τ), the length of θ is [284]

Lth
def
=

∫︂ τ

0

√︃
gµν(θ)

dθµ
dt

dθν
dt

dt . (5.17)

Lth is called “Thermodynamic Length”, and it provides a measure of the
number of natural fluctuations along the path: the larger the fluctuations,
the closer points are together [286]. Another related quantity is the “Ther-
modynamics Divergence” of the path defined as [284, 286, 292, 295]

J = τ Λdissipated , (5.18)

where
Λdissipated

def
=

∫︂ τ

0

gµν(θ)
dθµ
dt

dθν
dt

dt , (5.19)

is the availability loss (or, dissipated availability) in a thermodynamic pro-
cess. In Riemannian geometry J /2 τ is called the energy, or action, of the
curve, due to similarity with the kinetic energy integral in classical mechan-
ics. The length and divergence are related by the inequality,

J ≥ L2
th . (5.20)

Both Lth and J are useful quantities to study thermodynamics at finite-time
or non non-equilibrium thermodynamics.

The covariance metric, gµν , relates directly to the information geometry
of equilibrium thermodynamics and is the Fisher-Rao metric on the statis-
tical manifold parameterized by the variables θ. Indeed, recalling that the
configurational probability distribution in the Gibbs ensemble is given by

p(x|θ) def
=

1

Z
e−βH(x,θ) =

1

Z
e−θµ(t)X

µ(x) , (5.21)

where x is the configuration, t is time, Z is the partition function, and
H is the Hamiltonian of the system, which is expressed in terms of the
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collective variables Xµ and of the conjugate generalized forces θµ (the sub-
Hamiltonians Xµ are time-independent functions of the configurations. The
conjugate variables θµ are time-dependent, configuration independent, and
are the experimentally controllable parameters), the thermodynamic met-
ric tensor can be shown to be equal to the Fisher-Rao information metric
tensor [279, 286, 292, 296],

gµν(θ) =

∫︂
p(x|θ) ∂ ln p(x|θ)

∂θµ

∂ ln p(x|θ)
∂θν

dx , (5.22)

which is a more general and fundamental definition, that can be easily
extended to non-equilibrium systems or for Hamiltonians that are not a
linear function of the control parameters [286].

5.1.2 Differential Geometry and Fluctuation Theory

Unlike the Rao’s or the Weinold’s definition of gµν , the Ruppeiner metric
provides a clear interpretation in terms of the fluctuations theory. The
Classical Fluctuation Theory (ClFT) defines a probability distribution for
the equilibrium thermodynamic states, and it is based on the same principle
of statistical mechanics but from a different perspective. Indeed, let us
consider a system and a reservoir (r) in a mutual equilibrium, with additive
total entropy Stot = S + Sr and conserved and additive charges Xtot =
X +Xr. The thermodynamic state is defined by the intensive variables, θr,
that fix the equilibrium point X̄ of the state space E . As long as the system
is at the point X̄, it is in equilibrium with the reservoir. At any other point
X in its state space (hence points of internal equilibrium) it is not in mutual
equilibrium with the reservoir. Thus its intensive variables θ are different
from θr. In the framework of Classical Fluctuation Theory (ClFT), the
probability distribution of a spontaneous fluctuation of the system from the
equilibrium point X̄ to a different point X in its state space is determined
by the entropy of the overall microcanonical system [283, 287–291],

p(x|θ)dnX = C exp {Stot(X; θ)} dnX , (5.23)

where
Stot(X; θ) = S(X) + Sr,θ(Xr) ≤ Stot(X̄; θ) (5.24)
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is the total entropy evaluated at the point X ̸= X̄. By Taylor expanding
the total entropy around its maximum value (dS = 0) at equilibrium, one
gets

Stot(X; θ) = Stot(X̄; θ) +
1

2
dS2 + · · · , (5.25)

where

d2S =
∂2S

∂Xµ∂Xν

(︁
X̄
µ −Xµ

)︁ (︁
X̄
ν −Xν

)︁
= −gµν∆Xµ ∆Xν , (5.26)

and the probability of EQ. (5.23) can be approximated as

p(X̄ +∆X) dnX =

√︁
g(X̄)

(2 π)n/2
exp

{︃
−1

2
gµν ∆X

µ∆Xν

}︃
dnX . (5.27)

Here g(X̄) is the determinant of the metric gµν at X̄. EQ. (5.27) is the classi-
cal gaussian normalized fluctuation probability density where the quadratic
form

(∆ℓ)2 = gµν ∆x
µ ∆xν (5.28)

defines a metric on the space of thermodynamic states, that quantifies the
probability of a spontaneous deviation from the state of equilibrium. For
a stable equilibrium gµν , is positive definite. Thus the expression inside
the exponential becomes invariant under coordinate changes and supplies a
natural definition of an invariant distance between equilibrium points.

Greene and Callen [297] showed that the ClFT is entirely equivalent
to statistical mechanics in its full form. At the same time, in gaussian
approximation, the equivalence holds up to second fluctuation moments,
but not at higher orders.

Unlike the full probability distribution in EQ. (5.23), the Gaussian ap-
proximation above becomes covariant since, besides the line element, the
expression outside the exponential is invariant, too. The central role of the
distribution P (x, x0) for the meaning of thermodynamic distance suggested
to revising the fluctuation theory [288] due to the several shortcomings (first
of all the lack of covariance) of the classical theory, which inhibited a coher-
ent geometric method. To address this problem, one assumes Markovicity:
at some instant in time, the properties of a subsystem are determined solely
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by the thermodynamic state of this subsystem at that instant of time. In-
deed, if one defines two subsystems A and A2 of AU , with A ⊆ A2, and
defines the densities ρU and ρ2 of AU and A2, the probability that A has a
density between ρ and ρ + δρ depends on ρ2 and not on ρU . By including
another subsystem A1 such that A ⊆ A1 ⊆ A2, this probability depends
on ρ1 and not on ρ2 and so on. Thus, by considering a hierarchy of open
concentric subsystems AU ⊇ · · ·An ⊇ · · · ⊇ A1 ⊇ A of decreasing size and
assuming Markovicity at all steps, the conditional probability density for
finding the density of A between ρ and ρ+δρ at some instant of time, given
the density ρU of AU at that instant of time,

P

(︃
ρ ρU
t tU

)︃
, (5.29)

with t = 1/V , is given by a Chapman-Kolmogorov (CK) equation

P

(︃
ρ ρU
t tU

)︃
=

∫︂
P

(︃
ρ ρn
t tn

)︃
P

(︃
ρn ρn−1
tn tn−1

)︃
· · ·P

(︃
ρ1 ρU
t1 tU

)︃
dρn · · · dρ1 .

(5.30)
This principle may be invoked not just when the largest of the systems is
the infinite closed AU , but also when it is another open finite subsystem
whose state is sampled at some instant in time. CK equation (5.30) is
satisfied if one defines the probability P as the solution of a Fokker-Planck
like equation

∂P

∂t
= − ∂

∂xµ
[Kµ(x)P ] +

1

2

∂2

∂xµ∂xν
[gµν(x)P ] , (5.31)

where t ≡ 1/V , Kµ are coefficients (for a complete explanation see [288])
and gµν is the inverse of the metric gµν in order that the new theory reduces
to the classical one in the thermodynamic limit. Notice that the tensor
character of gµν emerges as a direct consequence of the covariance of the
fluctuation equation.

In the new approach, called the Covariant and Consistent Fluctuation
Theory, the absolute value of the scalar curvature of the metric, R, is a
threshold point for the scale length of the system: if V >> |R|, the complete
solutions of the fluctuation equation are well approximated by the classical
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gaussian. On the other hand, one knows that the classical theory is right
in the thermodynamic limit only, i.e. when the typical correlation length
in the system is much smaller than V . This property of R supports the
interaction hypothesis.

5.1.3 Sign of R

Another interesting aspect of the geometrical approach to phase transitions
is that the sign of the scalar curvature brings information on the microscopic
interactions. Calculations show thatR is positive for classical systems whose
interactions are repulsive, and it is negative for attractive interactions [299–
303]. The thermodynamic curvature is known to be identically zero only
for the ideal classical gas.

Figure 5.2: −R for an ideal anyon gas of
particles obeying fractional statistics as a
function of the parameter α that specifies
the particle content: α = 0 (bosons), α =
1 (fermions). The dot-dashed line is for
the classical limit and the continuous one
shows the change inR due to non-classical
behavior. Figure from [298], where their
scalar curvature corresponds to −R with
our definition.

A similar behavior has been
found for quantum gases, but
with a different meaning: R is
positive for fermi statistical in-
teractions and it is negative in
the bosonic case [298, 304–308].

Analogous results apply for
ideal quantum gases obeying
Gentile’s statistics [305] and for
quantum group invariant sys-
tems (see [306] and references
therein).

A interesting analysis con-
cerns an anyon gas [298] with
a parametric statistical distribu-
tion given by

ni =
1

e(ei−µ)/T + 2α− 1
,

(5.32)
where α is the parameter that
specifies the statistical behavior (α = 0 corresponds to bosons, α = 1 to
fermions, and 0 < α < 1 to intermediate statistics). The sign of R changes
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at α = 1/2 in the classical limit (dot-dashed line in Fig. 5.2) and the R = 0
condition is satisfied by slightly lower values of α (continuous line) when
deviations from the classical behavior are included (see ref. [298] for details).

5.1.4 Phase transition in thermodynamic geometry

The main results of the thermodynamic geometry within Ruppeiner’s for-
mulation are the (inverse) relation between the line element and the fluctu-
ation probability between equilibrium states and the, so called, Interaction
hypothesis : the absolute value of the scalar curvature R is proportional
to a power of the correlation length, i.e. R ∼ ξd, where d is the effec-
tive spatial dimension of the underling thermodynamic system (because
both R and ξd are proportional to the specific heat. See, e.g., Ref. [283]).

Figure 5.3: A schematic picture of the mean-
ing of ξ: the intricate line represents the sur-
face of ρ(r) = ρ0, i.e. that separating two
sides with local mean densities ρ > ρ0 and
ρ < ρ0. By tracing any straight line, the in-
tersection points are separated by an average
distance equal to ξ. Figure from [300].

The meaning of the cor-
relation length and of the
scalar curvature can be rep-
resented as in Fig.5.3 (a
schematic picture due to
Widom [309]): the intricate
line represents what the sur-
face of density ρ(r) = ρ0
might look at any instant.
This surface separates two
sides with local mean den-
sities ρ > ρ0 and ρ <
ρ0. By tracing any straight
line, the intersection points
with the surface ρ0 are sepa-
rated by an average distance
equal to ξ: thus, the correla-
tion length is the mean dis-
tance between two points at
the same density. Because
such points are separated by
the same mean distance ξ,

whatever the direction of the line, it is convenient to think that regions
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as volume elements (“droplets”) of dimension R ∼ ξd. Figure 5.4 shows a
schematic summary of different possible configurations.

First confirmations of the interaction hypothesis come from the study
of the classical ideal gas, represented by a flat space (R = 0 [283]), and
of the van der Waals gas [288], for which, near the liquid-vapor critical
point, Tc, the curvature is R ∼ |(T − Tc) /Tc|−2. Other confirmations come
from the study of the Takahashi Gas [288], the Curie-Weiss model [310], the
ferromagnetic monodimensional Ising model [311], mean field theory [287],
real fluids [299, 312, 313], and others (see for example Tab. I in Ref. [314]).

The possibility to estimate the correlation length with no, a priori,
knowledge of the microscopic structure of the system is very appealing.
Indeed, as a consequence of the relationship |R| ∝ ξd, R diverges at a sec-
ond order phase transition, and by means of R it is possible to estimate ξ
by virtue of pure thermodynamic functions. In general, the divergence of
R at a second order phase transition occurs in correspondence of the con-
dition g = 0, therefore looking for phase transitions in the {θµ} space it is
equivalent to look for the zeros of g or for the divergences of R; there are
however other possibilities, like the divergence of one of the metric elements
or of their derivatives (see EQ. (5.11)).

The relation between |R| and ξd is easy to verify for second-order phase
transitions, since R diverges, but the criterion to define a new phase in term
of the curvature R for a first order phase transition or a crossover is less
clear.

The approach called R-Crossing Method (RCM) [299] is often applied
to define first order phase transitions. It is based on the continuity of the
scalar curvature: knowing the thermodynamic quantities in the two phases,
i.e. R, one can build up the transition curve by imposing the continuity of
R. The RCM, coherent with Widom’s microscopic description of the liquid-
gas coexistence region (i.e. with the idea that the correlation lengths of
the two phases must be the same at the transition) has been tested in sys-
tems with different features: vapor-liquid coexistence line for the Lennard-
Jones fluids [301, 302], first order phase transition of mean-field Curie-Weiss
model (ferromagnetic systems), liquid-liquid phase transitions [315], phase
transitions of cosmological interest as the liquid-gas-like first order phase
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Figure 5.4: Schematic pictures of different possible particle arrangements:
(a) cluster of particles with volume |R| pulled together by the attractive part
of the interparticle interaction (R < 0); (b) a repulsive solid-like cluster held
up by hard-core particle repulsion (R > 0); (c-d) a fluid in two phases near
the critical point: the bottom half is a liquid phase containing vapor droplets
with volume |Rl|. The top half is a coexisting vapor phase containing liquid
droplets with volume |Rv|. In (c) |Rv| = |Rl| and the droplets are commen-
surate, in (d) liquid and vapor phases have incommensurate droplets; (e)
liquid phase; (f) solid phase with R > 0. Figure from [300].
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transition in dyonic charged AdS black hole [316]. Another criterion, ap-
plied to the study of first order phase transitions in real fluids [300] and
Lennard-Jones systems [302] is a first kind discontinuity in R.

Finally, two different phases can be linked by a crossover. Also in this
case there is no definitive conclusion on the behavior of R, and the main
results in the following sections regard the study of the crossover in the
QCD deconfinement transition within the thermodynamic geometry.

We have investigated two different criteria:

• the first is the so-called R = 0 criterion. We know that, the sign of
the scalar curvature brings information on the underlying microscopic
interactions in the systems, since R turns out to be positive for fermi
statistical interactions and negative in the bosonic case. Therefore a
change in sign of R is an indication of the balance between effective
interactions, even when no transition occurs. For example, theoretical
curves with R = 0 in pure fluids identify some anomalous behaviors
observed in the experimental data of several substances (in particular,
water) [300, 312]. A transition from R > 0 to R < 0 has been also
shown for the Lennard-Jones system [301, 302] and Anyon gas [298,
307]. For black holes [317], the change in sign of the curvature occurs
at the Hawking-Page transition temperature, therefore associated with
the condition R = 0.

In this picture the transition associated with R = 0 correspond with a
change of the dominant interactions: the transition is from attractive
to repulsive interactions, or vice versa.

• local maximum of |R|. This criterion is constructed by applying the
interaction hypothesis also to a crossover: if R ∼ ξd, and ξ diverge
at a II order phase transition, it is natural to expect that a crossover
will occur at a maximum value of the correlation length, as the Widom
line is characterized as the locus of points with maximum ξ [299, 318]
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5.2 Stability

5.2.1 Extensive thermodynamic

In extensive thermodynamic, stability is defined through the Hessian of
the entropy. Indeed, by considering for simplicity two systems in thermal
contact with entropy S(M,J) (where M is the mass and J is some other
extensive parameter), a transfer of some mass dM from the first to the
second subsystem, would produce a new configuration with total entropy
given by [319, 320]:

S(M + dM, J) + S(M − dM, J) ≤ 2 S(M,J) . (5.33)

The differential form of EQ. (5.33) is

H,MM =
∂2S

∂M2
≤ 0 . (5.34)

Similarly, if one transfers dJ , at fixed mass, from one subsystem to the
other, one gets

H,JJ =
∂2S

∂J2
≤ 0 , (5.35)

and in the case of transfer of dM and dJ

detH =
∂2S

∂J2

∂2S

∂M2
−
(︃

∂2S

∂M ∂J

)︃2

≥ 0 . (5.36)

Only two of eqs. (5.34-5.36) are independent and the entropy extensivity is a
crucial hypothesis to obtain EQ. (5.33). Thus, in ordinary thermodynamic
the stability can be achieved by requiring two of eqs. (5.34-5.36). This is
not the case for non-extensive systems, such as BHs.

Ruppeiner metric is essentially the opposite of the Hessian of the entropy
and a generalization of the condition (5.34-5.36) for systems with more
extensive variables can be easily done. Let us consider a system with entropy
S, in thermal contact and in equilibrium with an environment, of entropy
Se. The total entropy is Stot = S + Se and recall the relationship between
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Ruppeiner metric and the Gaussian fluctuation theory [321]:

dP ∝ exp

{︃
−∆ℓ2

2

}︃
dX1 · · · dXµ , (5.37)

where

∆ℓ2 = gµν ∆X
µ ∆Xν ≃ −2 ∆Stot , (5.38)

is the distance between Xµ and Xµ+∆Xµ in the thermodynamic manifold.
EQ. (5.38) allows to easily generalize the conditions of eqs. (5.33-5.35) to
systems with more variables: after the fluctuations ∆Xµ have taken place,
the new state is less stable of the previous one, if and only if its entropy is
smaller than or equal to the entropy of the initial one, so that ∆Stot ≤ 0.
This implies that gµν must be a positive definite matrix, that can be studied,
e.g., through the Sylvester criteria.

5.2.2 Stability in non extensive thermodynamics

Without requiring extensiveness of the potentials, the system stability can
be studied by the Poincaré method [320, 322] which is constructed in analogy
with ordinary thermodynamics.

Let us consider a system out of equilibrium with entropy ˆ︁S(Y µ, Xµ),
being Xµ = {E, N , · · · } the usual equilibrium variables (with conjugate
variables, θµ, as discussed in the previous section) and Y µ other variables
characterizing the non equilibrium condition. Clearly, equilibrium takes
place when the system depends only on Xµ, i.e., when [320, 323, 324]

Y µ = Y µ(Xν) . (5.39)

These can be regarded as solution of the equilibrium equations

∂ ˆ︁S
∂Y µ

⃓⃓⃓⃓
⃓
eq

= 0 . (5.40)

Let us define now some non-equilibrium functions (in the same way as in
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Figure 5.5: Generic plot of a conjugate variable θµ against Xµ along an
equilibrium sequence. The point P is a turning point. The upper branch
is unstable, while the lower branch can be stable or more stable. The sign
of the slope also changes at the horizontal tangent at Q´, but this has no
relation with a change of stability, even if the slope changes sign there.
Figure from. [320].

EQ. (5.4)) ˆ︁θµ(Y ν , Xν) ≡ ∂ ˆ︁S
∂Xµ

, (5.41)

and such that at the equilibrium

ˆ︁θµ(Y ν , Xν)

⃓⃓⃓⃓
⃓
eq

= θµ(X
ν) . (5.42)

If one assumes that Y µ can be chosen in such a way the Hessian of ˆ︁S
is diagonal, the “Poincarè coefficients of stability” are defined through the
equations

λρ(X
µ) ≡ ∂2ρ

ˆ︁S(Y ν(Xµ), Xµ)

⃓⃓⃓⃓
⃓
eq

. (5.43)

where λρ(Xµ) are the Hessian eigenvalues and an instability appears if some
λρ > 0.
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Without any knowledge about the out of equilibrium function, ˆ︁S, due
to eqs. (5.40,5.41), one can link the equilibrium variables θµ and Xµ, with
the non equilibrium ones by [320]

∂θµ
∂Xµ

=

(︄
∂2 ˆ︁S
∂Y µ2

)︄
eq

−
∑︂
ρ

1

λρ

(︄
∂ˆ︁θµ
∂Y ρ

)︄2

eq

. (5.44)

The left-hand side involves only equilibrium variables, while the right-and
side contains only the non equilibrium ones.

Therefore, by previous equation, one obtains information on the non
equilibrium states if the properties of the system at equilibrium are known.
For example, if the function θµ = θµ(X

µ) has an inflection point (point P in
Fig. 5.5) and ∂θµ/∂Xµ changes sign, also the right-hand side of EQ. (5.44)
changes its sign. This could be due to an eigenvalue turning from negative
to positive value (or vice versa), describing a new phase in the stability
of the system. In fact, when at least one of the eigenvalues λρ changes
sign, the Hessian has a zero, and ∂θµ/∂X

µ diverges. This implies that the
plot of θµ(Xν) along the equilibrium points has a vertical tangent and one
can study a change in stability by inspection of the plot of the equilibrium
functions θµ(Xν). Moreover, one has to verify which branch is stable and
in ref. [320, 325, 326] the following criteria have been suggested:

1. if one can prove the stability of even a single point, then all the other
ones in the same stability sequence are stable, until the first turning
point is reached. After the turning point the system is unstable;

2. if a stable point is unknown, one can never say anything about the
branch with positive slope. Instead, the branch with negative slope,
near the turning point, is always unstable;

3. changes of stability can only occur at turning points or bifurcations.
Indeed, according to EQ. (5.44), there are other stability points be-
sides the turning points, since it is possible that (∂ρˆ︁θν)eq = 0 when
the sign of λρ changes, but ∂µθν does not diverge. It can be shown
that this can only happen at a bifurcation point [320, 325, 326];

4. a vertical asymptote signals the endpoints (boundary) of the (non)
equilibrium sequence and it is not related to stability. Finally, there
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are points where the slope of θµ changes, but ∂θµ/∂Xµ = 0 (see points
Q in Figure 5.5), but they do not correspond to system instability.
These points could indicate a sign variation in the specific heat, as
in the case of the four dimensional Kerr BH in the microcanonical
ensemble [320]. Therefore, they are stable according to the Poincaré
method, but unstable if one considers the sign of the specific heat
only.

5.3 Results at low chemical potential

5.3.1 LATTICE QCD: Thermodynamic Geometry of
QCD

We start the results section with the application of the thermodynamic
geometry to the simulations of LATTICE QCD made by the HotQCD col-
laboration and recalled in Sec. 3.1.2 of this thesis. These results are avail-
able as a series expansion up to the 6th order on the thermodynamic vari-
ables γ2 = (−µ/T )2. Thus, we investigate the thermodynamic geometry of
the deconfinement transition by considering two thermodynamic variables,
β = 1/T and γ = −µ/T , i.e. a 2-dimensional thermodynamic metric, which
scalar curvature is Taylor expanded up to the 4th order in γ (see App. A.3),
and it is simple given by EQ. (A.81-A.84), with

AL =PL
0 β ,

BL =
PL
2

β3
,

CL =
PL
4

β3
,

DL =
PL
6

β3
,

(5.45)

where, for strangeness neutral systems with a fixed ratio of electric charge
to baryon density (see [204] for details), PL

i are in eqs. (3.14-3.16). Three
special cases are considered: the electric neutral systems, r = 0, the isospin
symmetric limit r = 1/2, i.e. qk = 0 ∀k, which gives the same result
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Figure 5.6: The scalar curvature R from EQ. (A.81): the black curves are
for lattice data obtained for the condition nS = nQ = 0 (or equivalent for
the isospin symmetric limit), while the reds are for nS = 0 and nQ/nB =
0.4 [204, 328]. The continuous lines are for µB = 0 MeV, the dashed ones
for µB = 80 MeV and the dotted lines for µB = 135 MeV.

of r = 0, and r = 0.4, usually considered for applications to heavy ion
collisions [204, 327].

Figure 5.6 shows the scalar curvature R evaluated by EQ. (A.81). The
black curves are based on lattice data with the condition nS = nQ = 0 (or
equivalent for the isospin symmetric limit), whereas the red ones are for
nS = 0 and nQ/nB = 0.4. The continuous lines are for µB = 0 MeV, the
dashed ones for µB = 80 MeV and the dotted lines for µB = 135 MeV.

As one can see in Figure 5.6, R is positive (like for repulsive systems) for
temperature well above the transition one, and becomes negative around the
transition. In the language of thermodynamic geometry this means that at
high temperature the system is dominated by fermionic degree of freedom,
like happen in the quark gluon plasma, which effective d.o.f. are [329]

geff = gg + gf , (5.46)

with
gg = 8× 2 = 16 (5.47)
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Figure 5.7: The crossing temperature evaluated by R = 0, both for
nQ = nS = 0 (continuous black line) and for nS = 0 and nQ/nB = 0.4
(black dotted line), compared with lattice data (light-blu-gray band) and
the results of the freeze out temperature from ALICE (purple point [330])
and STAR (orange points [168, 331]) collaborations.

for gluons (8 colors and 2 spin states) and at least

gf =
7

8
× 2× 2× 2× 3 = 21 (5.48)

(3 colors, 2 spins, 2 flavors, q and q̄) for fermions.
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A reduction in temperature leads to a change in the sign of R, and this
can happen for two reasons:

1. on the one hand, R is negative for attractive interaction between the
system components, and it is true at phase transitions, since to form
quark condensates one needs an attractive interaction;

2. on the other hand, R is negative for an ideal gas of bosons, and also
this condition can describe the hadronization process at zero chemical
potential, in which a transition from a fermionic dominated system
(QGP) to one dominated by mesons, and therefore by bosonic d.o.f.,
occurs.

The criterion R = 0 has been applied and the resulting line is reported
in Fig. 5.7 and compared with lattice results on the critical temperature
deduced by chiral susceptibility [204, 328] (green band) and the freeze-out
temperature obtained by ALICE [330] (purple point) and STAR [168, 331]
collaborations (orange points). The continuous black curve is from lattice
data obtained by the condition nS = nQ = 0, while the dotted black one is
for nS = 0 and nQ/nB = 0.4 (nS, nQ, nB being the strangeness, charge and
baryon number densities respectively), following the procedure of Ref. [204,
328] where nQ is considered as a function of µB. The calculation based on
the R = 0 criterion agrees with lattice QCD results within 10%.

5.3.2 Hadron Resonance Gas models

Although HRG models do not foresee phase transitions, a study of the
scalar curvature is still useful to see how R changes by adding interactions
of different nature. In Section 3.2 generalizations of the ideal HRG model
have been dealt, and for comparison with the QCD calculations in Sec. 5.3.1,
one evaluates the series expansion in γ2 of the pressure in the different HRG
models, and the temperature obtained by applying the criterion R = 0 turns
out to be in agreement with the QCD deconfinement temperature.

We have considered three different HRG models:

• the ideal HRG model of point-like constituents is studied by EQ. (3.25)
in the Boltzmann approximation (i.e. all baryon number susceptibili-
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a
(︁
MeV fm3

)︁
b
(︁
fm3
)︁

VdW 329 3.42
Clausius-CS 423 2.80

Table 5.1: The values of the parameter used in Eqs. (3.43) and (3.44) [218,
219].

ties are identical, χH2k = χH2 = 2 PH
B β4) to obtain

PH(β, γ) ≃ PH
0 (β) +

χH2 (β)

β4

∞∑︂
n=1

γ2n

(2n)!
(5.49)

and the coefficients of the thermodynamical potential for the hadronic
(H) sector are given by

AH =PH
0 β ,

BH =
χH2
β3

,

CH =
2 BH

4!
,

DH =
2 BH

6!
.

(5.50)

• attractive and repulsive interactions are included by Eqs. (3.45), (3.36)
and (3.37) and different compressibility factor.

– the Clausius-CS-HRG model, where the repulsive excluded vol-
ume interaction is give by the Carnahan-Starling term (see EQ.
(3.42)) and the attractive one by the Clausius form (See EQ.
(3.44));

– the VdW-HRG model which describes a gas of hadrons and res-
onances where, repulsive and attractive, interactions follow the
standard VdW equation (Eqs. (3.41) and (3.43)).
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Figure 5.8: The scalar curvature R for the ideal HRG model
(Eqs. (5.49, 5.50) and different values of the baryonchemical potential, µ = 0
MeV (continuous lines), µB = 80 MeV (dotted lines) and µB = 135 MeV
(dashed lines), obtained by the expansion of EQ. (A.81) at the 4-th order.

In all previous models: a) only baryon-baryon (anti-baryon - anti-baryon)
interactions have been included, neglecting the other ones; b) mesons are
considered point-like; c) the parameters a and b to describe all (anti)baryons
are assumed to be equal to those of nucleons and are fixed by the nuclear
matter properties [218, 219] (see Tab. 5.1); d) all strange and non-strange
hadrons in the Particle Data Table have been included with the exception
of σ and κ mesons (see [216, 332] for details).

In Fig. 5.8 is plotted the scalar curvature R for the ideal HRG model
(Eqs. (5.49, 5.50 and (A.81-A.84)) and different values of the baryonchemical
potential: µB = 0 MeV (continuous lines), µB = 80 MeV (dotted lines) and
µB = 135 MeV (dashed lines), obtained by the expansion of EQ. (A.81) at
order γ4. Around the pseudo-transition temperature of the QCD crossover,
R si negative as expected for a bosonic gas.

Figure 5.9 shows the scalar curvature R for different HRG models at µ =
0, ideal HRG (black continuous curve), Clausius-CS-HRG model (dashed
curve) and the VdW-HRG model (dotted curve), compared with the LQCD
one (continuous gray curve). The presence of repulsive/attractive interac-
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Figure 5.9: The scalar curvature R for different HRG models at µ = 0, ideal
HRG (black continuous curve), Clausius-CS-HRG model (dashed curve)
and the VdW-HRG model (dotted curve), compared with the LQCD one
(continuous gray curve).

Page 129



CHAPTER 5. GEOMETRICAL DESCRIPTION OF THE QCD PHASE
TRANSITION

■

■

■ ■ ■
▼▼

■ Hot-QCD

∎ STAR

∎ ALICE

I-HRG

Cl-CS-HRG

VdW-HRG

0 50 100 150 200

130

140

150

160

170

180

190

μ (MeV)

T
(M

eV
)

Figure 5.10: The temperature from the R = 0-criterion obtained from the
ideal-HRG model (gray curve), the Clausius-CS-HRG model (red curve) and
the VdW-HRG model (blue curve). The band is for lattice results [204, 328],
orange points are for the freeze-out temperature [168, 330, 331].

tions modify the shape of the scalar, particularly changing the temperature
at which R = 0.

In Figure 5.10 are plotted the temperature from the R = 0-criterion for
the three considered HRG-like models.

5.3.3 Comments and Conclusions

The introduction of a thermodynamic metric and the calculation of the
corresponding scalar curvature, R, is a useful tool to estimate the decon-
finement temperature. Figure 5.11 shows the temperature obtained via the
criterion R = 0 in the CS-Clausius-HRG model (red curve) and in the VdW-
HRG (blue curve), compared with that from lattice QCD (black curves).
The results, obtained by the criterion R = 0 on the quark-gluon plasma
phase, are in good agreement with lattice data and freeze-out calculations
in the low density region. The same criterion applied in the confined phase,
described by different HRG models, give a “critical” line and the result is
completely consistent with Lattice QCD data if the hadron excluded volume
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Figure 5.11: The temperature in the CS-Clausius-HRG model (red curve),
in the VdW-HRG model (blue curve) and from lattice data (black curves),
compared with lattice results on the critical temperature deduced by chiral
susceptibility [204, 328] (light-blu-gray band) and the freeze-out tempera-
ture obtained by ALICE [330] (purple point) and STAR [168, 331] collabo-
rations (orange points).
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and the interaction effects are taken into account. The approch has been
applied for small baryon density since it requires a reliable evaluation of
the thermodynamic potential ϕ. However the geometrical approach is quite
general and the calculations at large baryon density can be analytically done
once ϕ is known.

However, the R = 0 line identifies a transition between a fermionic sys-
tem to one dominated by bosonic d.o.f., and it is not clear if it identify the
deconfining. Different in the two temperatures have a possible interpreta-
tion if one recalls that, since the deconfinement transition is a cross-over,
one can expect remnants of confinement slightly above Tc. Indeed the per-
sistence of string-like objects above Tc has been obtained by many different
methods: lattice simulations [333, 334], quasiparticle approach [335, 336],
NJL correlator [337, 338], Mott transitions [339] and confinement mecha-
nisms [340]. Following this interpretation, while Tc is the deconfinement
temperature, that obtained via R = 0 is the one of the complete melting of
a light meson. However this is model dependent, because we used specific
models of the HRG. The introduction of other dynamical details, like the
excluded volume, changes the HRG evaluation of R, by including some effec-
tive repulsive interaction similar to Fermi statistic effects and then closing,
in part, the gap with the value of R for a fermionic system.

Finally an important aspect of thermodynamic geometry has to be clar-
ified: the evaluation of the scalar curvature R involves derivatives up to
third order with respect to the thermodynamic variables, T and µ, of the
potential ϕ and, therefore, the criterion R = 0 is a constraint on high or-
der derivatives of the thermodynamic quantity P/T . From this point of
view, if the dynamical system has a phase transition or a strong crossover,
one can expect that the results obtained by the thermodynamic geometry
approach merely reproduce the standard statistical thermodynamics ones,
because some derivative diverges or some specific quantity (as the chiral
susceptibility) has a strong peak at the critical temperature, then “driving”
the condition R = 0. However the previous results in the HRG approach
show that this is not the case. Indeed in the HRG models there is no phase
transition and the constraint R = 0 gives clear information on the dy-
namical balance between the effective interactions. In fact, the curve T (µ)
which turns out by the criterion R = 0 depends on the specific model and
lattice data on Tc are reproduced when the various interactions have a spe-
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cific relative weights. In this respect, thermodynamic geometry is a useful
complementary method to the standard thermodynamical approach since it
takes into account the effective dynamics, independently on the presence of
a phase transition.

5.4 Results from models

5.4.1 Nambu - Jona Lasinio model

In this section we apply the thermodynamic geometry to the study of chiral
restoration in Nambu - Jona Lasinio (NJL) model, that was recalled in
Sec. 3.3, where we have described the two and three flavor version of the
model.

The study of the critical line of the symmetry restoration, T (µ), by
thermodynamic geometry requires the, straightforward but laborious, cal-
culation of the scalar curvature R, reported in appendix A.2.1.

Two flavor in the chiral limit

Let us start to discuss the chiral limit (i.e. m = 0) for two flavors: it turns
out that |R| diverges at the critical temperature, i.e. there is a second order
phase transition, for µ < µ⋆ ≃ 290 MeV, as shown in Fig. 5.12 for µ = 0.
For µ > µ⋆ there is, instead, a first order phase transition. The dynami-
cally generated mass, M , now takes the characteristic behavior plotted in
Figure 5.13, where the black curves (both the continuous and the dotted)
are for T = 30 MeV and the two light-gray lines define the spinodal points.
Between the two spinodal (light-gray) lines one can evaluate three different
scalar curvatures: the first one for the higher-mass branch (black curve in
Figure 5.13); the second one for M = 0 MeV and the last one is related
to the M -branch that interpolates between M = 0 and the upper M -curve
(dotted curve in Figure 5.13). At fixed temperature and between the spin-
odal lines (see Fig. 5.13), there is a discontinuity in |R| which identifies the
two dashed curves in Fig. 5.14. The crossing temperature from the I order
phase transition to the II order turns out to be about 58 MeV.

For small µ and near the transition the curvature is negative, i.e. the

Page 133



CHAPTER 5. GEOMETRICAL DESCRIPTION OF THE QCD PHASE
TRANSITION

μ=0 MeV

100 150 200 250
0.0

0.5

1.0

1.5

Temperature T (MeV)

|R
1
3
(f
m
)

Figure 5.12: R from µ = 0 MeV: second order phase transition.

interaction is mostly attractive, suggesting that the chiral symmetry restora-
tion is due to thermal fluctuations. On the other hand, at large chemical
potential R turns out to be positive, indicating a screening of the potential.
The complete critical line obtained by thermodynamic geometry is depicted
in Figure 5.14 where the continuous line shows the II order phase transition
and the dashed lines the spinodal curves of the first order one. The green
band is the region of negative R.

Two flavors with chiral masses

With finite chiral quark masses, at high temperature and low chemical po-
tential, there is a smooth crossover rather than a second-order phase tran-
sition. Moreover, the first-order phase boundary ends in a second-order
endpoint [23]. The solution of the gap equation (3.56) (with Λ = 650 MeV
and G = 5.01 × 10−6 MeV−2 and m0 = 5.5 MeV) as a function of T and µ
is shown in Figs. 3.3.a and 3.3.b.

To clarify the effect of the chiral mass in the calculation of the scalar
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Figure 5.13: The dynamically generated mass M in the 2 flavors NJL chiral
model and temperature T = 30 MeV.

curvature, Fig. 5.15 shows that R diverges in the chiral limit but for m0 ̸= 0,
near the transition temperature, it has a minimum, corresponding to a
maximum of |R|, i.e. to a finite correlation length. Therefore, m0 ̸= 0
changes the behavior of R near the critical temperature: the divergence
of the II order phase transition turns into a minimum in the negative R
region and the transition temperature evaluated by the maximum of |R| is
completely in agreement with that one obtained by chiral susceptibility (see
EQ. (A.29) in appendix A.2.1).

For low temperature and large chemical potential, the scalar curvature
R has the same behavior previously discussed in the chiral limit, i.e. a first
order phase transition. The critical point, (T ⋆, µ⋆) between the crossover
and the first order phase transition depends on m0 and for (the generally
accepted value) m0 = 5.5 MeV one has µ⋆ ≃ 329 MeV and T ⋆ ∼ 32 MeV.

Figure 5.16 shows the critical line for m0 = 5.5 MeV: the continuous line
is obtained by the maximum of |R| and the dashed ones are the spinodal
curves. The black circle is at µ⋆ = 329 MeV and T ⋆ = 32 MeV. The green
band is the region of R < 0.
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Figure 5.14: The transition temperature: continuous line is for II order
phase transition and the dashed ones for the first order one. The transition
point is at µ⋆χ = 290 MeV and T ⋆χ = 58 MeV. The green band is the region
of R < 0
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Figure 5.15: R from µ = 0 MeV and different values of the bare mass
m0: continuous line is from m0 = 0 MeV (the chiral limit) and R shows
a negative divergence. Dashed line is from m0 = 2.5 MeV and the dotted
from m0 = 5.5 MeV; both show a finite region with negative R around the
transition temperature, which corresponds to the local maximum of |R|.
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Figure 5.16: The transition temperature by the R conditions and from
m0 = 5.5 MeV: continuous line is obtained by the local maximum of |R|,
the dashed ones indicate the spinodal lines. The circle is at µ⋆ = 329 MeV
and T ⋆ = 32 MeV. The green band is the region of R < 0.
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Figure 5.17: The ratio χs/χsmax (dashed line), χu/χumax (dotted line) and
|R|/|R|max (continuous line) at µ = 0 MeV.

Three flavors

Three flavor NJL model is studied with only one chemical potential (µ =
µd = µu, µs = 0). Also in this case there is a crossover at low chemical
potential and large T and a first order phase transition at low temperature
and large µ. The behavior of the scalar curvature is essentially the same of
the previous case with two flavors and physical masses.

In Figure 5.17 the ratios χs/χsmax (dashed line), χu/χumax (dotted line)
and |R|/|R|max (continuous line) are depicted to visualize that the maximum
in |R| corresponds to the peak of chiral susceptibilities.

Figure 5.18 shows the transition temperature by the evaluation of R: the
continuous line is again obtained by the maximum of |R| and the dashed
ones are the spinodal curves. The black circle is at µ⋆ ∼ 335 MeV and
T ⋆ ∼ 35 MeV. The green band is the region of negative R.
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Figure 5.18: The transition temperature by the R conditions: continuous
line is obtained by the local maximum of |R|, the dashed ones indicate the
spinodal lines. The circle is at µ⋆ ∼ 335 MeV and T ⋆ ∼ 35 MeV.The green
band is the region of R < 0
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Thermal geometric definition of the phase transitions in NJL
model: summary

It is useful to conclude this section by summarizing the geometrical defini-
tion of the phase transitions:

• a II order phase transition occurs for two flavors in the chiral limit
(m = 0) at low chemical potential. This transition is characterized by
a divergent scalar curvature;

• for chiral masses, there is a crossover, both for two and three flavors,
at low chemical potential and large T . The transition temperature is
defined as the maximum of |R| in the negative-R region and it is in
agreement with the chiral susceptibility analysis χ [261] (eqs. (A.29),
(A.70) and (A.71) in appendix);

• there exists a I order phase transition at low temperature and large µ,
both with two and three flavors and both in the chiral limit or with
chiral masses. This transition is related with a discontinuity in R.

Finally, a comment on the sign of the scalar curvature is in order.
The scalar curvature brings information on the statistical natural of

the particles and on the dynamical interactions. The region with R < 0
in Figs. 5.14, 5.15, 5.16 and 5.18 indicates that the balance between NJL
attractive interactions and statistical effects is dominated by the former.
On the other hand, Fermi statistics is always part of the dynamics and,
at large µ, the statistical effects turn out to be more and more relevant,
suggesting R > 0 as in a Fermi gas in thermodynamic geometry.

Comments and Conclusions

Thermodynamic geometry has been applied to a (although not renormaliz-
able) field theory, with ab-initio calculations. The phase diagram in NJL
model has been evaluated on the basis of the thermodynamic metric and
of the corresponding scalar curvature, R, which contains not only the sec-
ond derivatives but also higher order and mixed derivatives (up to third
order). The “sensitivity” to the phase transition, naturally contained in the
cumulants, does not automatically imply that the quantitative results are

Page 141



CHAPTER 5. GEOMETRICAL DESCRIPTION OF THE QCD PHASE
TRANSITION

reliable: only after carrying out our specific calculations one can state if
the method of thermodynamic geometry could be a useful tool for future
analyses in field theory at finite temperature and density.

Our results show that thermodynamic geometry reliably describes the
phase diagram of NJL model, both in the chiral limit and for finite mass,
and indicates a geometrical interplay between chiral symmetry restora-
tion/breaking and deconfinement/confinement regimes.

5.4.2 Quark-Meson model

Finally, in this section we study the thermodynamic scalar curvature around
the chiral phase transition at finite temperature and chemical potential,
within the quark-meson model augmented with meson fluctuations (see
Sec. 3.4).

The thermodynamic curvature

In Fig. 5.19 we plot the scalar curvature, R, versus temperature for three val-
ues of the quark chemical potential: the upper panel corresponds to the case
without fluctuations, the lower panel to that with fluctuations. We notice
that in both cases, R develops a peak structure around the chiral crossover,
in agreement with the results from NJL model [341] (see Sec. 5.4.1) and
from QM model without meson fluctuations [342]. This is expected thanks
to the relation between R and the correlation volume around a phase tran-
sition: as a matter of fact, at a second order phase transition R diverges
due to the divergence of the correlation volume, while at a crossover the
correlation length increases but remains finite and susceptibilities are en-
hanced so R is expected to grow up in the pseudocritical region. Therefore,
the thermodynamic curvature can bring information about the correlation
volume also near a crossover.

In addition to this, we find that at small µ the peaks of R are more
pronounced when the fluctuations are included. This is an interesting, new
observation about the thermodynamic geometry and is related to the fact
that fluctuations make the chiral broken phase more unstable. This can be
seen from the determinant of the thermodynamic metric, g, see Fig. 5.20:
at small µ in the critical region the determinant with fluctuations is smaller
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Figure 5.19: Scalar curvature, R, as a function of T for µ = 100 MeV
(continuous), µ = 200 MeV (dashed) and µ = 300 MeV (dotted). Upper and
lower panels correspond to the cases without and with mesonic fluctuations.
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Figure 5.20: Determinant of the thermodynamic metric versus µ computed
at the chiral crossover temperature: solid line corresponds to the case with
fluctuations while dashed line to the mean field thermodynamics.

than the one without fluctuations (g = 0 corresponds to thermodynamic
instability and infinite curvature), while increasing µ the determinant in
the critical region is not very affected by the presence of the fluctuations.
This is in line with the results of the pressure in Fig. 3.5 in which we show
that fluctuations do not give a substantial contribution in the critical region
at large µ. When µ is increased, R is enhanced in the critical region both
with and without fluctuations. This is most likely related to the fact that the
critical endpoint with the second order phase transition and the divergent
correlation length already appears within the mean field approximation, so
the main role of the fluctuations is that to change the critical exponents but
not to change the phase structure.

The scalar curvature changes sign around the crossover, both with and
without fluctuations: this is in agreement with the results from NJL model
(Sec. 5.4.1), but also from LATTICE and HRG models (Sec. 5.3), and can
be interpreted as a rearrangement of the collective interactions in the hot
medium around the chiral crossover, from statistically repulsive (due to the
fermionic nature of the bulk) to attractive. This piece of information was
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not accessible to previous model calculations on the QCD phase diagram
and represents a merit of the thermodynamic geometry.

The critical temperature and the endpoint

The crossover nature of the transition to the chiral symmetric phase at high
temperature leaves an ambiguity on the definition of a critical temperature:
in fact, it is possible to adopt several definitions to identify the critical re-
gion, in which the order parameter decreases substantially. We compare the
predictions of the model using four different definitions. Firstly, we define
the pseudocritical temperature, Tc(µ), as the temperature corresponding to
the maximum of ∂σ/∂β (which coincides with the maximum of ∂σ/∂γ). A
second definition is the temperature at which ∂Mσ/∂β is maximum (the
same of ∂Mσ/∂γ). Thirdly, we can define Tc as the one at which Mσ is
minimum (since at this temperature the correlation length of the fluctua-
tions of the order parameter is the largest). Finally, the peculiar structure
of R = R(T ) at a given µ allows for the fourth definition, namely the
temperature at which R presents its local minimum.

In Fig. 5.21 we show Tc versus µ obtained with the four definitions. We
notice that the different definitions give consistent results with each other.
This supports the idea that we can use the peaks of R to identify the chiral
crossover, which in turn suggests that R is sensitive to the crossover from
the broken to the unbroken phase even though this is not a real second order
phase transition.

In the phase diagram shown in Fig. 5.21 the crossover line terminates
at a critical endpoint, CEP, located at (µCEP, TCEP) = (350 MeV, 30 MeV).
Approaching this point along the critical line, the crossover turns into a
second order phase transition with divergent susceptibilities, then the tran-
sition becomes first order with jumps of the condensate across the transition
line.

In Fig. 5.22 we plot R versus temperature for values of µ close to the
critical endpoint: upper and lower panels correspond to the results without
and with fluctuations respectively. As expected, approaching the critical
endpoint the magnitude of the peak value of R becomes larger, as it should
be since the crossover becomes a second order phase transition there and R
should diverge at the CEP.
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Figure 5.21: Crossover temperature versus µ obtained with four definitions:
from the maximum of Mσ,β (orange dotted line), from the maximum of σ,β
(orange dot-dashed line), from the minimum of Mσ (orange dashed line)
and from the peak of R (black line). Case with mesonic fluctuations.
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Figure 5.22: Thermodynamic curvature versus temperature for several val-
ues of µ close to the critical endpoint. Upper and lower panels correspond
to the cases without and with mesonic fluctuations.
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Figure 5.23: Thermodynamic curvature versus µ at the critical line, com-
pared with the inverse of the correlation volume 1/M3

σ . Case with mesonic
fluctuations.

Thermodynamic curvature and correlation volume

It is interesting to compare the thermodynamic curvature around the crit-
ical line, with the correlation volume ξ3, where ξ is the correlation length.
This comparison is interesting since according to hyperscaling arguments,
around a second order phase transition |R| = Kξ3 with K of the order of
unity; restoration of chiral symmetry is a crossover rather than a real phase
transition, at least far from the critical endpoint, therefore we can check
how the hyperscaling relation works around such a smooth crossover and
how it changes approaching the CEP.
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In Fig. 5.23 we compare the thermodynamic curvature, computed along
the critical line, with the correlation volume, the latter being estimated by
taking ξ = 1/Mσ as a measure of the correlation length of the fluctuations
of the order parameter. We find that both the correlation volume and the
thermodynamic curvature behave qualitatively in the same way near the
CEP; moreover, the numerical values of the two quantities is comparable
in the critical region. We conclude that our study supports the idea that
|R| = Kξ3 in proximity of the second order phase transition.

In the small µ regime the relation between the curvature and the corre-
lation volume does not need to be satisfied since in this regime the critical
line is a smooth crossover. In fact, we find that for small values of µ the
agreement between |R| and ξ3 is not as striking as the one in proximity of
the CEP; nevertheless, we still find that the two quantities behave quali-
tatively in the same way, namely they stay approximately constant for a
broad range of µ then grow up as the CEP is reached.

Comments and Conclusions

In this section we have studied the effect of the fluctuations, pions and
σ−meson, on the top of the mean field thermodynamics and how these af-
fect the thermodynamic curvature around the crossover. Fluctuations have
been introduced within the Cornwall-Jackiw-Toumbulis effective potential
formalism [260] in the Hartree approximation; we have neglected the zero
point energy contributions of the meson fields, both for the sake of sim-
plicity and to avoid the unexpected behavior of thermodynamic quantities
when these are included and two renormalization scales are needed [259].

We have found that in the region of small values of µ, the fluctuations
enhance the magnitude of the curvature. We understand this in terms of
the stability of the phase with broken chiral symmetry, that can be analyzed
by the determinant of the metric, g: in fact, the condition of stability reads
g > 0 while g = 0 corresponds to a phase boundary where a phase transition
happens and R diverges, so the smaller the g the closer the system is at a
phase transition and the larger is R. We have found that the determinant
with fluctuations and around the crossover is smaller than g without fluc-
tuations in the same range of T and µ, meaning that fluctuations make the
chiral broken phase less stable. This result is expected, since fluctuations
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of the order parameter represented by the σ−meson tend to wash out the
σ−condensate.

On the other hand, at larger values of µ and in proximity of the critical
endpoint, the fluctuations do not bring significant changes to the mean field
solution around the critical line and R is less sensitive to the fluctuations.
This is also easy to understand, because the mean field thermodynamics
already predicts the existence of the critical endpoint with a divergent cur-
vature [341, 342], so the role of the fluctuations is just that to change the
mean field critical exponents.

We have verified that in the critical region around the critical endpoint
|R| scales with the correlation volume, |R| = Kξ3 with K = O(1), in
agreement with hyperscaling arguments: thus |R| brings information on the
correlation volume. In proximity of the crossover at small µ the correspon-
dence between |R| and the correlation volume is not as good as the one we
have found at large µ, which is not surprising because at small µ the chiral
crossover is quite smooth; nevertheless, we have found that R develops a
characteristic peak structure, suggesting that it is still capable to capture
the pseudocritical behavior of the condensate.
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Comments and Conclusions

This thesis is the cumulative effort of the three years of my PhD. It concerns
three different topics about QCD deconfinement phase transition.

The first (see Sec. 2.6) regards the universality in light and heavy ion
collisions: in fact, it is increasingly noticeable that, high energy, high mul-
tiplicity events produced in small colliding systems show dynamical be-
haviour very similar to that one observed in AA collisions. These experi-
mental results can be understood by drawing different observables, like the
strangeness suppression factor γs and the yields of multi-strange hadrons,
the average transverse momentum, and the elliptic flow scaled by the par-
ticipant eccentricity, in terms of the the initial entropy density, that is the
parton density in the transverse plane. Moreover, the previous analysis
clarifies that in e+e− annihilation at the LEP or lower energies there is no
chance of observing the enhancement of the strangeness production, that is
γs ≳ 0.95, because the parton density in the transverse plane is too small.

The second aspect we studied (see Chapter 4) is the role of the QCD
transition during the evolution of the Universe. Indeed, the fluctuations of
the cosmological parameters at the QCD transition originate from the com-
bined effect of the equation of state and of the calculation of higher-order
derivatives of the relevant physical parameters, that is, in early Universe, of
the scale factor. We have shown, by a complete treatment of the thermo-
dynamics of the whole system (strong and electroweak contributions), that
after about 100 µs the cosmological parameters return to the typical val-
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ues of a radiation dominated era, i.e. to their values before the transition.
Therefore the possible signature of the deconfinement transition in early
Universe is restricted to the modification of the primordial gravitational
wave spectrum.

Finally, the main goal is the study of the phase transition from the
quark-gluon plasma to the hadronic matter within the framework of ther-
modynamic geometry: the thermodynamic theory of fluctuations allows
to define a manifold spanned by intensive thermodynamic variables, {θk}
with k = 1, 2, . . . , N , and to equip this with the notion of a distance,
dℓ2 = gµν(θ1, θ2, · · · θN) dθµ dθν , where gµν is the metric tensor. The metric
tensor is defined as gµν = ∂2 logZ/∂θµ ∂θν , Z being the partition function,
and measures the probability of fluctuation between two equilibrium states.

The phase transition has been studied evaluating the scalar curvature,
R, of the thermo-metric, gµν , obtained from different techniques and models:
LATTICE QCD (Sec. 5.3.1), Nambu-Jona Lasinio model (Sec. 5.4.1), and
quark-meson model augmented with meson fluctuations (Sec. 5.4.2). Within
this models the phase transition at large temperature and small chemical
potential is actually a smooth crossover, which turns to a second order phase
transition at the critical endpoint and then becomes a first order phase
transition at large values of the chemical potential. The scalar curvature
has been studied also for Hadron-Resonance gas models (Sec. 5.3.2).

In all the studied models, R is positive (like for statistical repulsive) for
temperature well above the transition one, and becomes negative around
the transition. The two possible meanings suggest by the previous behavior
are:

• R is negative because an attractive interaction is needed to form quark
condensates;

• R is negative because the system is now dominated by bosonic d.o.f.s,
like for a hadron gas at zero chemical potential.

This suggests that around the chiral crossover, the interaction changes at
mesoscopic level and there is a rearrangement of the collective interactions
in the hot medium, from statistically repulsive (due to the fermionic nature

Page 152



CHAPTER 6. COMMENTS AND CONCLUSIONS

of the bulk 1) to attractive. This piece of information was not accessible to
previous model calculations on the QCD phase diagram and represents a
merit of the thermodynamic geometry.

Moreover, we have investigated two different criteria to study the phase
transition:

• the first is the so-called R = 0 criterion, that describe a “transition”
from a system dominated by attractive interactions to one dominated
by the repulsive, or vice versa.

• local maximum of |R|, i.e. as a local maximum of the correlation
length ξ.

The results, obtained by the criterion R = 0 on the quark-gluon plasma
phase diagram, are in good agreement with lattice data and freeze-out cal-
culations in the low density region. Moreover, as shown in Fig. 6.1, R = 0
exactly corresponds to the maximum of chiral susceptibility from LATTICE
QCD. The same criterion applied in the confined phase, described by differ-
ent HRG models, gives a “critical” line which within 10% is consistent with
the critical temperature evaluated in lattice QCD, if the hadron excluded
volume and the interaction effects are taken into account. Let us recall that
for QCD the thermodynamic approach has been applied for small baryon
density since it requires a reliable evaluation of the thermodynamic poten-
tial ϕ, but has no problem to be used for systems with large barion-chemical
potential.

The previous difference between QCD and HRG temperatures obtained
by the R = 0 line can be understood by recalling that this criterion identi-
fies a transition between systems dominated by fermionic and bosonic d.o.f.s
and a possible difference in the transition temperature with respect to the
deconfinement one has a possible interpretation if one recalls that, since
the deconfinement transition is a crossover, one can expect remnants of
confinement slightly above Tc. Indeed the persistence of string-like objects
above Tc has been obtained by many different methods: lattice simulations
[333, 334], quasiparticle approach [335, 336], NJL correlator [337, 338], Mott

1The number of quark and antiquark d.o.f.s is larger than the gluon ones. For two
flavours, the effective fermionic d.o.f.s are gf = 21, while the bosonic ones are gg = 16.
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transitions [339] and confinement mechanisms [340]. Following this inter-
pretation, while Tc is the deconfinement temperature, that one obtained via
R = 0 is the temperature of the complete melting of a light meson.

As discussed in Sec. 5.1.4, another way to identify the crossover tempera-
ture is by the local maximum of |R|. Indeed, in NJL model the maximum of
chiral susceptibility is obtained for a non zero scalar curvature and this dif-
ferent behavior confirms, in the thermodynamic geometrical description, the
interplay between confinement and chiral symmetry breaking in QCD [343–
346]. To clarify this point, one has to recall that NJL model misses color
confinement and therefore there is no a priori reason to apply the criterion
R = 0. In a recent paper [347], the chiral phase transition temperature T 0

c ,
corresponding to a “true” chiral transition in the limit ms/ml ≫ 1, turns out
to be about 25 MeV less than the pseudo-critical temperature, and Fig. 6.1
suggests that a small variation from ms/ml = 20 to ms/ml = 27 changes
the maximum of chiral susceptibility from R = 0 to a finite value of |R|,
as in NJL model. It could be possible that considering the effective chiral
limit, i.e. ms/ml >> 1 one recovers by thermodynamic geometry a “true”
chiral phase transition at lower temperature, with typical scaling laws.

Our results concerning the NJL model and QM model show that thermo-
dynamic geometry reliably describes the phase diagram. We notice that in
both cases, R develops a peak structure around the chiral crossover. This is
expected due to the relation between R and the correlation volume around
a phase transition: as a matter of fact, at a second order phase transition R
diverges due to the divergence of the correlation volume, while at a crossover
the correlation length increases but remains finite. In this case susceptibili-
ties are enhanced so R is expected to grow up in the pseudocritical region.
Therefore, the thermodynamic curvature can bring information about the
correlation volume also near a crossover.

We have found that in the region of small values of µ, the mesonic
fluctuations enhance the magnitude of the curvature, and we understand
this in terms of the stability of the phase with broken chiral symmetry.
Indeed, fluctuations reduce the value of the determinant of the metric, g,
meaning that fluctuations make the chiral broken phase less stable. This
result is expected, since fluctuations of the order parameter represented by
the σ-meson tend to wash out the σ-condensate. On the other hand, at
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Figure 6.1: The chiral susceptibility χ from LATTICE QCD at µ = 0 MeV
and as a function of the scalar curvature R for physical value of the strange
quark mass, ms, and ms/mℓ = 20 (dotted line) or ms/mℓ = 27 (continuous
line).
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larger values of µ and in proximity of the critical endpoint, the fluctuations
do not bring significant changes to the mean field solution, since it already
predicts the existence of the critical endpoint with a divergent curvature.

In conclusion, thermodynamic geometry is a useful complementary method
to the standard thermodynamical approach since it takes into account the
effective dynamics, independently on the presence of a phase transition.
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Appendices

A.1 Transverse parton density in e+e− annihi-
lation

According to the previous discussion, a universal behaviour emerges if the
parton density in the transverse plane is used as the relevant dynamical
variable to define the initial setting of the collisions and if it is large enough.

Let us now study this quantity in e+e− annihilation at different ener-
gies and multiplicities, starting from some phenomenological indications.
To evaluate the effective parton density in the transverse plane for this
particular, not hadronic, setting one has to know the multiplicity and the
transverse area (which are not independent quantities). Indeed, the prob-
lem is a reliable evaluation of the effective transverse size for e+e−, since,
in the energy range up to ≃ 200 GeV, the multiplicity is similar to the
nucleus-nucleus one (normalized to half the number of participants Npart)
and dN/dy at y = 0, with respect to thrust axis, is plotted in Fig. A.1 versus
the cms energy. Let us recall, in a simplified way, the steps of the hadroniza-
tion cascade of a primary quark or antiquark produced in e+e− annihilation.
The colour field flux tube (string), initially created along the direction of
the separating q and q̄, produces a further pair q1, q̄1 and then provides an
increase of their longitudinal momentum. When q1, q̄1 reaches the critical
distances for the string breaking still another pair q2, q̄2 is created and the
state q2, q̄1 is emitted as a hadron. The string multifragmentation produces
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Figure A.1: dNch/dy in e+e−. Black line is the fit (dNch/dy)
e+e− = 0.3493+

0.6837 (
√
s)0.3.

the final multiplicity in Fig. A.1. Lattice evaluation [154] of the transverse
size, RT , of a quark-antiquark string at centre mass-energy

√
s turns out to

be [154, 155]

R2
T =

2

πσ

N∑︂
k=0

1

2k + 1
(A.1)

where σ is the string tension and N =
√︁
πs/2σ. Moreover

N∑︂
k=0

1

2k + 1
=
γ

2
+ ln(2) +

1

2
[Ψ(N + 3/2)] (A.2)

where γ is the Eulero-Mascheroni constant and Ψ is the di-gamma function
which, for large values of the argument, can be approximated as

Ψ(x) ≃ ln(x) . (A.3)
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Figure A.2: Transverse radius, RT , in e+e− (black) and pp (red).

Finally the transverse size can evaluated by

R2
T =

2

πσ

[︄
γ

2
+ ln[2

(︃
N +

3

2

)︃1/2
]︄

(A.4)

The result is plotted in Fig. A.2 and compared with the transverse size of
a pp collision, evaluated by the Color Glass parameterization, which takes
into account the event-by-event fluctuations of the initial gluon configura-
tion [151–153], and by the phenomenological fit of the multiplicity

dN

dy

⃓⃓⃓⃓
⃓
pp

= ap + bp
√
s
0.22 (A.5)

with ap = 0.04123 and bp = 0.797 [348]. The similarity between the
transverse size in e+e− and pp should not be surprising; in fact, it is
well known that the multiplicity in pp collisions is related with the mul-
tiplicity in e+e− annihilation if one takes into account the leading parti-
cle effect, i.e. the energy removed from the genuine hadronization cas-
cade due to the leading particles [134, 135]. The initial entropy density s0
in e+e− annihilation can now be estimated by data in Fig. A.1, fitted by
(dNch/dy)

e+e− = 0.3493 + 0.6837 (
√
s)0.3, and by RT in Fig. A.2.
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A.2 NJL model

This appendix contains some functions necessary to calculate the curvature
scalar R (see cap. 5) and the susceptibility in the NJL model. To evaluate
R one needs the derivatives of the potential

ϕ(β, γ) =
P

T
= −Ω(β, γ) β , (A.6)

up to third order (P = −Ω being the pressure). These derivatives can
be written in terms of the dynamical generated mass M . Therefore, the
solution of the GAP equation uniquely determines all those functions.

A.2.1 NJL model with two flavours

After a straightforward calculation, one gets (a comma indicates partial
derivative)

M,β =
b1 M

1− f1 − f2 M2
, (A.7)

M,γ =
g1 M

1− f1 − f2 M2
, (A.8)

M,ββ = d

[︄
b3 M + (b2 + f1,β)M,β + (b4 + 2T f2)M

2M,β + f3 MM2
,β

]︄
,

(A.9)

M,γγ = d

[︄
g3 M + (g2 + f1,γ)M,γ + g4M

2M,γ + f3 MM2
,γ

]︄
, (A.10)

M,βγ = d

[︄
g5 M+b2M,γ+f1,γM,β+g4M

2M,β+f2 T M
2M,γ+f3 MM,βM,γ

]︄
,

(A.11)
with

d =
(︁
1− f1 − f2 M

2
)︁−1

, (A.12)

f1 = κM

∫︂ Λ

0

dp
p4 Ψ

E3
, (A.13)
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f2 = κM

∫︂ Λ

0

dp p2
n− (1− n−) + n+ (1− n+)

T E2
, (A.14)

f3 = κM

∫︂ Λ

0

dp p4
n− (1− n−) + n+ (1− n+)

T E4
, (A.15)

b1 = κM

∫︂ Λ

0

dp p2 [n− (1− n−) + n+ (1− n+)] , (A.16)

b2 = κM

∫︂ Λ

0

dp p4
Ψβ

E3
, (A.17)

b3=κM

∫︂ Λ

0

dpp2 [n−,β (1− 2n−) + n+,β (1− 2n+)] , (A.18)

b4=κM

∫︂ Λ

0

dpp2
n−,β (1− 2n−) + n+,β (1− 2n+)

T E2
, (A.19)

g1 = κM

∫︂ Λ

0

dp p2
n− (1− n−)− n+ (1− n+)

E
, (A.20)

g2 = κM

∫︂ Λ

0

dp p4
Ψγ

E3
, (A.21)

g3=κM

∫︂ Λ

0

dpp2
n−,γ (1− 2n−)− n+,γ (1− 2n+)

E
, (A.22)

g4=κM

∫︂ Λ

0

dpp2
n−,γ (1− 2n−) + n+,γ (1− 2n+)

T E2
, (A.23)

g5=κM

∫︂ Λ

0

dpp2 [n−,γ (1− 2n−) + n+,γ (1− 2n+)] , (A.24)

κM = 2 G
NcNf

π2
(A.25)

and n± in EQ. (3.59).
By deriving EQ. (A.6) and EQ. (4.59) and defining

κΩ =
κM
2G

, (A.26)
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one gets

ϕ,β = κΩ

∫︂ Λ

0

dp p2EΨ− (M −m)2

4G
, (A.27)

ϕ,γ = κΩ

∫︂ Λ

0

dp p2 (n+ − n−) . (A.28)

The calculation of second and third order derivatives is straightforward.
Finally, the two flavours chiral susceptibility, χ, is defined as [261]

χ2f =
∂M

∂m
=

1

1− f1 − f2 M2
=

M,β

b1 M
=

M,γ

g1 M
. (A.29)

A.2.2 NJL model with three flavours

In a three flavours system, the derivatives of the dynamically generated
mass Mu =Md and Ms are

Mu,β (δ − buMu ϵ) = au ϵ−Ms,β ζ , (A.30)

Ms,β =
(as θ − au λ) (δ − buMu ϵ)− au ϵ bu λMu

( η − bsMs θ) (δ − buMu ϵ)− bu λMu ζ
, (A.31)

Mu,γ (δ − buMu ϵ) = cu ϵ−Ms,γ ζ , (A.32)

Ms,γ =
(cs θ − cu λ) (δ − buMu ϵ)− cu ϵ bu λMu

( η − bsMs θ) (δ − buMu ϵ)− bu λMu ζ
, (A.33)

Mu,ββ (δ − buMu ϵ) = du ϵ+ Au,β ϵ,β−
− (Mu,βδ,β +Ms,βζ,β + ϵDu,βMuMu,β)−Ms,ββ ζ ,

(A.34)

Page 162



APPENDIX A. APPENDICES

Ms,ββ =
(δ − buMu ϵ)

(η − bsMs θ) (δ − buMu ϵ)− ζ λ buMu

×

×

(︄
ds θ − du λ+ As,β θ,β − Au,β λ,β+

+ λDu,βMuMu,β − θ Ds,βMsMs,β

)︄
−

− λ buMu

(η − bsMs θ) (δ − buMu ϵ)− ζ λ buMu

[︄
du ϵ+ Au,β ϵ,β−

− (Mu,βδ,β +Ms,βζ,β + ϵDu,βMuMu,β)

]︄
,

(A.35)

Mu,γγ (δ − buMu ϵ) =eu ϵ+ Au,γ ϵ,γ −Ms,γγ ζ−
− (Mu,γδ,γ +Ms,γζ,γ + ϵDu,γMuMu,γ)

, (A.36)

Ms,γγ =
(δ − buMu ϵ)

(η − bsMs θ) (δ − buMu ϵ)− ζ λ buMu

×

× (es θ − eu λ+ As,γ θ,γ − Au,γ λ,γ + λDu,γMuMu,γ − θ Ds,γMsMs,γ)−

− λ buMu
[eu ϵ+ Au,γ ϵ,γ − (Mu,γδ,γ +Ms,γζ,γ + ϵDu,γMuMu,γ)]

(η − bsMs θ) (δ − buMu ϵ)− ζ λ buMu

,

(A.37)

Mu,βγ (δ − buMu ϵ) =fu ϵ+ Au,β ϵ,γ −Ms,βγ ζ−
− (Mu,βδ,γ +Ms,βζ,γ + ϵDu,βMuMu,γ)

, (A.38)
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and

Ms,βγ =
(δ − buMu ϵ)

(η − bsMs θ) (δ − buMu ϵ)− ζ λ buMu

×

×

(︄
fs θ − fu λ+ As,β θ,γ − Au,β λ,γ+

+ λDu,βMuMu,γ − θ Ds,βMsMs,γ

)︄
−

− λ buMu
[fu ϵ+ Au,β ϵ,γ − (Mu,βδ,γ +Ms,βζ,γ + ϵDu,βMuMu,γ)]

(η − bsMs θ) (δ − buMu ϵ)− ζ λ buMu

,

(A.39)

where

af =
Nc

π2

∫︂ Λ

0

dp p2 [n−f (1− n−f ) + n+f (1− n+f )] , (A.40)

bf =
Nc

π2

∫︂ Λ

0

dp p2
n−f (1− n−f ) + n+f (1− n+f )

T E2
f

, (A.41)

cf =
Nc

π2

∫︂ Λ

0

dp p2
n−f (1− n−f )− n+f (1− n+f )

Ef
, (A.42)

df =
Nc

π2

∫︂ Λ

0

dp p2

{︄(︃
2MM,β

E2
+ p2

M2
,β

T E4

)︃
[n−f (1− n−f ) + n+f (1− n+f )] +

+

(︃
1 +

MM,β

T E2

)︃
[(1− 2n−f )n−f,β + (1− 2n+f )n+f,β]

}︄
,

(A.43)
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ef =
Nc

π2

∫︂ Λ

0

dp p2

{︄
p2

M2
,γ

T E4
[n−f (1− n−f ) + n+f (1− n+f )] +

+
MM,γ

T E2
[(1− 2n−f )n−f,γ + (1− 2n+f )n+f,γ] +

+
(1− 2n−f )n−f,γ − (1− 2n+f )n+f,γ

E

}︄
,

(A.44)

ff =
Nc

π2

∫︂ Λ

0

dp p2

{︄(︃
MM,γ

E2
+ p2

M,βM,γ

T E4

)︃
[n−f (1− n−f ) + n+f (1− n+f )] +

+

(︃
1 +

MM,β

T E2

)︃
[(1− 2n−f )n−f,γ + (1− 2n+f )n+f,γ]

}︄
,

(A.45)

Af,β = af + bf Mf Mf,β , (A.46)

Af,γ = cf + bf Mf Mf,γ , (A.47)

Cf,ββ = df + bf Mf Mf,ββ , (A.48)

Cf,γγ = ef + bf Mf Mf,γγ , (A.49)

Cf,βγ = ff + bf Mf Mf,βγ , (A.50)

B(Mu,Ms) = 4G− 2
K2

G
u2 − 2K s , (A.51)

δ(Mu,Ms) = (1− F1uB) , (A.52)

ζ(Mu,Ms) = 2K u , (A.53)

ϵ(Mu,Ms) = BMu , (A.54)

η(Mu,Ms) = (1− 4GF1s) (1− F1uB)−
− 8K2u2F1u ,

(A.55)

θ(Mu,Ms) = 4G (1− F1uB)Ms , (A.56)

λ(Mu,Ms) = 4K uMu , (A.57)
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F1f =
Nc

π2

∫︂ Λ

0

dp p4
Ψf

E3
f

, (A.58)

nf± =
1

1 + exp

{︃√
p2+M2

f±µf
T

}︃ (A.59)

and u ≡ ⟨uu⟩, s ≡ ⟨ss⟩.

About the thermodynamic potential ϕ = −Ω β, one has

ϕ,β =
∑︂

f=u,d,s

Nc

π2

∫︂ Λ

0

dp p2EfΨf + 2Gs2 + u (Mu −mu) + s (Ms −ms) =

∑︂
f=u,d,s

Nc

π2

∫︂ Λ

0

dp p2EfΨf +Ku2s+ u (Mu −mu) +
s (Ms −ms)

2
,

(A.60)

ϕ,γ =
∑︂

f=u,d,s

Nc

π2

∫︂ Λ

0

dp p2 (n+f − n−f ) (A.61)

ϕ,ββ=−
∑︂

f=u,d,s

Nc

π2

∫︂ Λ

0

dp p2Ef (n+f,β + n−f,β) (A.62)

ϕ,βγ =
∑︂

f=u,d,s

Nc

π2

∫︂ Λ

0

dp p2 (n+f,β − n−f,β) (A.63)

ϕ,γγ =
∑︂

f=u,d,s

Nc

π2

∫︂ Λ

0

dp p2 (n+f,γ − n−f,γ) (A.64)

ϕ,ββγ =
∑︂

f=u,d,s

Nc

π2

∫︂ Λ

0

dp p2 (n+f,ββ − n−f,ββ) (A.65)

ϕ,βγγ =
∑︂

f=u,d,s

Nc

π2

∫︂ Λ

0

dp p2 (n+f,βγ − n−f,βγ) (A.66)

ϕ,γγγ =
∑︂

f=u,d,s

Nc

π2

∫︂ Λ

0

dp p2 (n+f,γγ − n−f,γγ) (A.67)
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ϕ,βββ=−
∑︂

f=u,d,s

Nc

π2

∫︂ Λ

0

dp p2Ef (n+f,ββ + n−f,ββ)+

+
∑︂

f=u,d,s

(af + bf Mf Mf,β)Mf Mf,β

(A.68)

Finally, by defining
Hf = F1f + bf M

2
f , (A.69)

the chiral susceptibilities are

χu =χd =
∂Mu

∂mu

=

=
1− 4GHs

1− 4G(Hu +Hs) + 4HuHs(4G2 − 2KGs−K2 u2) + 2K sHu

(A.70)

and

χs =
∂Ms

∂ms

=

=
1− (4G− 2K s)Hu

1− 4G(Hu +Hs) + 4HuHs(4G2 − 2KGs− 2K2 u2) + 2K sHu

.

(A.71)
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A.3 Power series expansion of the scalar cur-
vature in 2D

In this section we investigate the thermodynamic scalar curvature of a two
dimensional manifold, which coordinates are the inverse temperature β =
1/T and γ = −µ/T , with µ chemical potential, by considering expansion at
low µ. This expansion will be useful for the study of the phase diagram of
strongly interacting matter by LATTICE QCD since it gives the pressure
only for low values of γ2.

Therefore in the calculation of the potential ϕ = P/T , we consider a
power series expansion in γ2 < 1. By the expression of the pressure P as a
power series around the point µB = 0,

P (β, γ) = P0 + P2 γ
2 + P4 γ

4 + P6 γ
6 + · · · , (A.72)

the thermodynamical potential ϕ = P/T can be express as

ϕ(β, γ) = A(β) +B(β)γ2 + C(β)γ4 +D(β)γ6 + · · · , (A.73)

The coefficients of the thermodynamical potential are given by

A(β) =P0(β) β ,

B(β) =P2(β) β =
χ2(β)

2! β3
,

C(β) =P4(β) β =
χ4(β)

4! β3
,

D(β) =P6(β) β =
χ6(β)

6! β3
,

(A.74)

where χ2n = ∂2n

∂γ2n
(P β4)|γ=0 = (2n)! P2n β

4.
The metric element g11 = ϕ11 and the metric determinant g can be

written by analogous power series, i.e.

g11(β, γ) = A′′ +B′′ γ2 ++C ′′ γ4 ++D′′ γ6 + · · · , (A.75)

g(β, γ) = gO(0) + gO(2) γ
2 + gO(4) γ

4 + gO(6) γ
6 + · · · , (A.76)
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where

gO(0)(β) =2B A′′ , (A.77)

gO(2) =2
(︁
6 C A′′ +BB′′ − 2 B′2

)︁
, (A.78)

gO(4) = 2
(︂
15DA′′ + 6C B′′ − 8B′C ′ +B C ′′

)︂
, (A.79)

gO(6) = 2
(︂
28E A′′ + 15DB′′ − 12B′D′ +BD′′ + 6C C ′′ − 8C ′2

)︂
(A.80)

and the symbol “ ′” indicates the derivative with respect to β. Finally, the
scalar curvature also can be express as:

R(β, γ) =
∑︂
n=0

RO(2n)(β) γ
2n . (A.81)

The coefficients RO(2n) are functions of A, B, . . . in Eqs. (A.73, A.74) and
of their derivatives with respect to β. Particularly, one can see that the
2n-coefficient RO(2n) is a function of the first 2(n + 1) coefficients of the
expansion for the potential ϕ in EQ. (A.73).

In conclusion, if for example one knows the pressure up to γ6, g and
R can be calculated up to γ4. For example, the zero-order term, RO(0),
depends on the first and second coefficients of the ϕ series expansion, and
it is given by

RO(0) =
1

2

B′

A′′B

(︃
A′′′

A′′
− B′

B

)︃
=

1

2 P̈ 0

[︃
3 + T

χ̇2

χ2

]︃ [︃ ...
P 0

P̈ 0

− χ̇2

χ2

]︃
, (A.82)

where “ ′ ” and “ ̇ ” denote, respectively, the derivative with respect to β
and T ; P0(β) is the pressure and χ2(β) = ∂2(P/T 4)/∂γ2, both at µB = 0.

The other terms are:

RO(2)(β) =− B′

2BA′′

(︃
A′′′

A′′
− B′

B

)︃(︃
6C

B
+
B′′

A′′
− 2B′2

BA′′

)︃
−

− B′′2 − 3A′′′C ′

BA′′2
+

6 C A′′B′′

B2A′′2
+

+
B′

2BA′′

(︃
B′′′

A′′
− 6C A′′′

BA′′
− 12C ′

B

)︃
+

B′2B′′

2B2A′′2
,

(A.83)
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RO(4)(β) =
B′

2BA′′

(︃
A′′′

A′′
− B′

B

)︃[︄
3

(︃
6C

B
+
B′′

A′′
− 2B′2

BA′′

)︃2

− 30D

B
−

− 12C B′′

BA′′
+

16B′C ′

BA′′
− 2C ′′

A′′

]︄
+
C ′(6CA′′′ + 3BB′′′ + 2B′B′′)

B2A′′2
−

− 1

BA′′

(︃
6C

B
+
B′′

A′′
− 2B′2

BA′′

)︃[︄
− 2 (B′′2 − 3A′′′C ′)

A′′
+

+
12C B′′

B
+
B′2B′′

BA′′
−B′

(︃
6CA′′′

BA′′
+

12C ′

B
− B′′′

A′′

)︃]︄
+

+
1

2BA′′

[︄
15A′′′D′

A′′
+

60DB′′

B
+

24C C ′′

B
− 36C ′2

B
−

− 45DA′′′B′

BA′′
− 30D′B′

B
− 6B′C B′′′

BA′′
+

+
B′C ′′′

A′′
− 8B′′C ′′

A′′
+

3B′2C ′′

BA′′

]︄
(A.84)
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