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The inference of novel knowledge and new hypotheses from the current literature analysis
is crucial in making new scientific discoveries. In bio-medicine, given the enormous amount
of literature and knowledge bases available, the automatic gain of knowledge concerning
relationships among biological elements, in the form of semantically related terms (or
entities), is rising novel research challenges and corresponding applications. In this regard,
we propose BioTAGME, a system that combines an entity-annotation framework based
on Wikipedia corpus (i.e., TAGME tool) with a network-based inference methodology
(i.e., DT-Hybrid). This integration aims to create an extensive Knowledge Graph modeling
relations among biological terms and phrases extracted from titles and abstracts of papers
available in PubMed. The framework consists of a back-end and a front-end. The back-
end is entirely implemented in Scala and runs on top of a Spark cluster that distributes the
computing effort among several machines. The front-end is released through the Laravel
framework, connected with the Neo4j graph database to store the knowledge graph.
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1 INTRODUCTION

The increasing amount of scientific literature is raising new challenges for scientists. For example,
identifying the proper set of articles dealing with a specific topic could be a not straightforward task.
Thus, the possibility of missing essential references and relevant research is high nowadays. In
particular, in research areas such as Biology or Bio-Medicine, thanks to fast-track publication
journals, the number of published papers increases significantly fast, thus making it very difficult for
scientists to keep track of literature evolution.

Furthermore, network analysis has become a key enabling technology to help the understanding
of life mechanisms, living organisms and, in general, and uncover the underlying fundamental
biological processes. Examples of applications include 1) analyzing disease networks for identifying
disease-causing genes and pathways Barabási et al. (2010); 2) discovering the functional
interdependence among molecular mechanisms through functional network querying (Xiaoke
and Lin (2012)); 3) deriving network-based inferences for drug repurposing (Himmelstein et al.
(2017)).

The large number of publicly available ontologies, which hold entities and their relations
(Lambrix et al. (2007)), and the repositories of open-access articles such as PubMed Central
(Beck (2010)), arXiv, and bioarXiv, are driving the academic community to rely on text mining
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tools and machine learning algorithms for extracting semantic
knowledge from documents such as understanding how proteins
interact each other, which gene mutations are involved in a
disease, etc. In this context, the Biological Expression
Language (BEL) (Hoyt et al. (2018)) or the Resource
Description Framework (RDF) (McBride (2004)) are widely
employed to represent this knowledge as triplets having the
following structure: < subject, predicate, object> . The subject
and the object represent biological elements, whereas the
predicate represents a (logical or physical) relationship.

Since the implementation of biological text mining
methodologies requires skills in natural language processing
(NLP) that usually end-users do not have, several tools have
been made available to scientists: 1) PubAnnotation (Kim et al.
(2019)) is based on the “Agile text mining” concept, and it is a
public resource for sharing annotated biomedical texts; 2)
PubTator (PTC, Wei et al. (2019)) is a web service for viewing
and retrieving bio-concept annotations (for genes/proteins,
genetic variants, diseases, chemicals, species, and cell lines)
from all PubMed abstracts and more than three million
PubMed full-texts. These annotations are downloadable in
multiple formats (XML, JSON, and tab-delimited) via the
online interface, a RESTful web service, and bulk FTP. PTC is
synchronized with PubMed and PubMed Central, adding new
articles daily.

The literature also offers many frameworks for building
functional networks. STRING (Szklarczyk et al. (2016)) is a
database that collects known and predicted functional protein-
protein associations for many organisms. Each protein-protein
association is given a score (between zero and one) which
summarizes the biological reliability of the interaction, its
specificity, and the supporting evidence. Another significant
contribution of these interactions is the so-called “interolog”
transfer, based on the observation that orthologs of interacting
proteins in one organism are often also interacting in another
organism. The STRING resource is available online1. Hetionet
(Himmelstein et al. (2017) is a heterogeneous network of
biomedical knowledge constructed over genes, diseases, and
compounds, extracted from the processing of a collection of
29 publicly available databases and millions of publications. It
was created as part of Project Rephetio to predict new uses for
existing drugs. In the last few years, it has been modified for
working over a wider variety of purposes: such as drug
repurposing and prioritizing disease-associated Genes.
Hetionet is available at2 Reactome (Croft et al. (2010) is a
peer-reviewed knowledge base of biomolecular pathways that
contains a detailed representation of cellular processes
interconnecting terms to form a graph modeling biological
knowledge. Reactome adopts Neo4j as a graph database to
improve the graph traversal performance and knowledge
discovery. Reactome is also available online3. SemRep
(Rindflesch and Fiszman (2003)) is an NLP advanced

information management application, which extracts
relationships from biomedical sentences in PubMed titles and
abstracts by mapping textual content to an ontology representing
its meaning. To establish the binding relation, SemRep relies on
internal rules (called “indicator rules”), which map syntactic
elements, such as verbs, prepositions, and nominalization, to
predicates in the Semantic Network. It is available at4 Kindred
(Lever and Jones (2017)) is a Python package built on top of the
Stanford CoreNLP framework and the scikit-learn library. It
performs relation extraction in biomedical texts, where
relation candidates are created by finding every possible pair
of entities within each sentence. Next, it exploits an SVM classifier
to rank and select the most promising candidates. In NetME
(Muscolino et al. (2022)), authors propose a tool that allows to
query PUBMED and build knowledge networks synthesizing the
concepts described through the selected papers. In the context of
clinical Text Analysis and Knowledge Extraction, cTAKES
(Savova et al. (2010)) is a system for information extraction
from electronic medical record free-text. The pipeline comprises
several modules, such as sentence boundary detector, tokenizer,
normalizer, part-of-speech tagger, Shallow parser, and named
entity recognizer. Other relevant work include CKG (Santos et al.
(2022)). CkG is an open-source knowledge-graph platform,
which includes 20 million nodes and 220 million relationships
that represent relevant experimental data, public databases and
literature. CKG incorporates statistical and machine learning
algorithms to accelerate the analysis and interpretation of
common proteomics workflows.

This paper introduces BioTAGME, a knowledge graph
inferred from more than 33 million titles and abstracts in the
PubMed database (Williamson and Minter (2019)), and
downloadable as XML files via third-party applications.

BioTAGME uses two well-known tools to generate the
Knowledge Graph. First, entities are extracted from each
abstract using the TAGME annotation system (Ferragina and
Scaiella (2010)). TAGME is a tool that analyzes short texts and
extracts entities related to its content. It makes use of Wikipedia
to perform the annotation. All the entities extracted from the
abstracts are treated as nodes of the knowledge graph. Next, the
DT-Hybrid (Alaimo et al. (2013)) recommendation system is
applied to predict possible relationships among entities coming
from different abstracts. These relationships form the edges of the
knowledge graph. Finally, such predicted relationships are
enriched with those from publicly available databases (the
complete list is provided in Section 2) to generate a
comprehensive Knowledge Graph, stored in the Neo4j
database and made available to users via our web app. Such a
knowledge graph consists of more than 161 thousand nodes and
40 million edges. Moreover, there are three different types of
edges: 1) Literature edge: indicates a piece of biological evidence
resulting from laboratory experiments, biological and biophysical
processes; 2) STRING edge: represents STRING predicted
protein-protein associations; finally 3) BioTAGME edge: are
edges predicted by the combination of TAGME relatedness

1http://string-db.org/.
2https://neo4j.het.io/browser.
3https://reactome.org. 4https://lhncbc.nlm.nih.gov/ii/tools/SemRep_SemMedDB_SKR/SemRep.html.
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and BioTAGME one. Both BioTAGME edges and STRING ones
are marked with the corresponding score value to indicate the
interaction’s likelihood. Biotagme is available at: https://
biotagme.eu/5

The paper is organized as follows. In the Section 2, we introduce
the back-end of our tool. Next, we introduce the web app to browse
and query the system. Moreover, we show a BSG-Diseases network
that reports literature evidence and BioTAGMEprediction. Finally,
in section conclusions, we explain future work about our tool.

2 MATERIALS AND METHODS

BioTAGME is a framework backed by two different pipelines
(Figure 1) for building a biological knowledge graph from
PubMed documents’ titles and abstracts. It integrates two
different learning algorithms, DT-Hybrid (Alaimo et al.
(2013)) and TagME (Ferragina and Scaiella (2010)).

The first pipeline is built on top of the Apache SPARK analytic
engine and Hadoop Distributed File System (HDFS). This
implementation guarantees large-scale data processing through
cluster managers (Apache Meson, YARN, Stand Alone, and
Kubernetes). The pipeline collects results into DataFrames
(Apache-Spark (2016)) the data coming from several freely
available online databases as shown in Table 1. In addition, the
complete set of PubMed titles and abstracts in order to build a life

science knowledge graph using the Spark SQL language. DataFrame
and SQL language provide a common way to access various data
files, including Hive, Avro, Parquet, CSV, TSV, and JSON.

The major functionalities provided by the first pipeline are 1)
Download and import, 2) SQL to JSON parser, 3) Integrating
databases, 4) Annotation, 5) Prediction, 6) Network generation,
and 7) Updating.

The second pipeline is built on top of the Laravel framework
and consists of the following components: 1) MySQL for storing
names, aliases, BioTAGME IDs, and Wikipedia pages IDs; 2)
Neo4j for storing the knowledge graph, and allow querying the
network (i.e., compute the shortest path between two user-
specified biological entities (nodes)); 3) the User Interface
(GUI), based on Laravel and React, used for wrapping the
Neo4j queries and making them more accessible and more
intuitive. Queries can be: 1) Search on the graph; 2) Shortest
path. (Detailed information are in Section 2.2).

Data processing is done in PHP and bash to achieve high
performance. In addition, all the GUI modules have been realized
in react-native.

2.1 Pipeline One: Data Loader and Network
Synthesis
This section describes all components and functionalities of the
first pipeline underling BioTAGME.

2.1.1 Download and Import Module
This module allows importing the external databases into
Hadoop Distributed File System (HDFS) through a custom
bash script, which consists of three main sections:

FIGURE 1 | BioTAGME pipelines: The first one pipeline is the core of the project. It transforms the whole set of PubMed abstracts within nodes and edges of the
knowledge graph. It has been implemented in Scala e Spark. The seconds pipeline, allows a user to extract information from the graph. It has been implemented using
Laravel and Reactstrap.

5if the url does not work, more information about a possible new url is reported
within the readme of the repository: https://github.com/Anto188bas/biotagme_
docker.git.
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• PubMed section: it downloads titles and abstracts of
PubMed articles through SemmedDB SENTENCE table
(Kilicoglu et al. (2012)). Such table contains all the
sentences related to the articles’ title and abstract in
PubMed.

• Literature databases section: it downloads the external
databases which are used for i) filtering of noisy
annotation entities caused by disambiguation and high
generality of the Wikipedia corpus; ii) building literature
edges, a biological evidence resulting from laboratory
experiments, biological and biophysical processes. These
edges allow us to evaluate the quality of BioTAGME
prediction. Note that some databases, such as DrugBank
(Wishart et al. (2007)), PharmGKB (Thorn et al. (2013)),
Brenda (Chang et al. (2020)), require free registration or
authorization to be downloaded. Therefore, such a
procedure is left to the user.

• The import section transfers the downloaded databases
from the local file system to the Hadoop FileSystem (HDFS).

2.1.2 SQL to JSON Parser Module
Although SemmedDB guarantees faster downloads than NCBI
Entrez APIs, it has two main issues: the 1) title and abstract of
each PMID (Document identifier in PubMed) are divided into
sentences, and 2) the SENTENCE table is in a SQL format, which
is not natively supported by the Spark engine.

To solve these issues, we implemented a new Spark module,
named SQL2Json parser, that extracts headers, and every data
row from a table by applying Spark SQL Window methodology.
Each row is then aggregated to form the complete title and
abstract through Spark built-in collect_list, concat_ws, and
group-by functions. Finally, the parsed data is converted into
JSON format and stored within the Hadoop FileSystem.

2.1.3 External Databases Integration Module
As previously mentioned, several databases are integrated into
our pipeline. However, there are a few issues to consider: 1)

Different databases often use different words to describe the same
entity (synonyms). For example, DisGenNET uses “Colorectal
cancer, hereditary nonpolyposis, type 1”, while DiseaseOntology
(DO) uses “Lynch syndrome 1” to refer to the same disease. 2)
Equivalent attributes have different names in different databases.
For example, a database might use the attribute name
“mirna_nr”, while another database might use “id”. 3)
Different databases might use different files formats, such as
JSON, XML, TXT, CSV, TAB, OBO, GTF, FASTQ, and SQL, etc.

We implemented an integration module that executes the
following tasks to tackle such issues. First, all databases are loaded
into Spark DataFrames. We use the built-in Spark functions for
CSV (read.csv), Tab-delimited and TXT (read.txt), and JSON
(read.json) files. To import OBO, GFT, SQL, and FASTQ files, we
implemented custom spark modules that convert such formats
into DataFrames. The Databricks Spark-XML (Databricks
(2021)) library is used for XML files. Then, each DataFrame is
processed and subjected to a schema redefinition by using
external databases metadata, synonyms list, and references
(toward other external databases) list to harmonize the
contents of the different data sources. This module is a
fundamental intermediate layer that transforms all external
databases into new ones having the same schema, attributes,
format, and nomenclature.

2.1.4 Annotation Module
This module transforms documents’ titles and abstracts into a list
of annotation entities. Thus, for each document “ti”, a tuple
(TI_AB, TAGME parameters map)i is generated and sent to the
TAGME API through an HTTP POST request. We use TI_AB to
represent the union of Documenti Title and Abstract.

TAGME removes all stop-words and punctuation symbols from
the TI_AB text at first. Then, a list of “annotation entities” is
extracted and returned in response to the request, where each entity
can be one or more words. Each annotation entity contains entity
text,Wikipedia page title,Wikipedia page categories, andWikipedia
page ID. Each entity will be a node of the knowledge graph.

TABLE 1 | Ontologies.

Source name Citation Data type

DisGeNET Piñero et al. (2019) human gene-disease association
DiseaseOntology (DO) Schriml et al. (2018) human disease
DiseaseEnhancer Zhang et al. (2017) human disease-associated enhancer
DrugBank Wishart et al. (2007) drug and drug target
PharmGKB Thorn et al. (2013) human-genetic variation on drug resp
HGNC Daugherty et al. (2012) human gene
ENSEMBL Birney et al. (2004) vertebrates genomic information
LNCipedia Volders et al. (2012) human long non-coding RNAs
miRcode Jeggari et al. (2012) human microRNA-target predictions
miRBase Kozomara et al. (2018) microRNA sequences
miRTarBase Huang et al. (2019) microRNA-target interactions
miRCancer Xie et al. (2013) microRNA expression profile in cancer
Reactome Fabregat et al. (2017) pathway
PathBank Wishart et al. (2019) pathway
UniProt The UniProt Consortium (2016) protein sequence
STRING Szklarczyk et al. (2018) protein–protein interaction
BRENDA Chang et al. (2020) enzyme
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TAGME annotations are not entirely accurate. The authors
provide an estimate F1 measure of 0.78, where F1 is the
harmonic mean between the precision and the recall of the
annotation process. However, this does not considers any
improvement due to 1) more up-to-date Wikipedia dumps
and 2) pages filtering to obtain only Wikipedia pages
relevant to the Biological field. Indeed, we properly pruned
the Wikipedia network using the main biological categories6 to
1) perform annotation only on Biological entities, and 2)
mitigate the disambiguation problem.

Finally, the documents with their annotation entities are sent
to the prediction module to generate the relationships.

2.1.5 Prediction Module
Our methodology aims to predict a potential relationship
between i-th entity and j-th entity based on the BioTAGME
score value (BioTGi,j). This score is defined as the product
between the DT-Hybrid score si,j (Alaimo et al. (2013)) and
the TAGME relatedness one ri,j (Ferragina and Scaiella
(2010)). The higher is the score value, the higher is the
meaningfulness of the predicted relationship.

The domain tuned-hybrid (DT-Hybrid) tool (Alaimo et al.
(2013)) defines a recommendation method based on a bipartite
network projection technique that implements the concept of
resources transfer within the network to predict the robustness of
the relationship between a pair of entities.

The DT-Hybrid score is computed by using a DT-Hybrid
version running on Spark; the TAGME relatedness is computed
through the online TAGME service available at7. The relatedness
value is in the range [0,1] and expresses how much two entities
are semantically related within the Wikipedia corpus. The value
zero means no relationships between them; the value one means
equivalence between two entities.

The output of this step is a set of relations between entities. These
relations are then integrated during the network-construction phase
with others coming from the external databases.

2.1.6 Network Construction
As soon as the documents have been annotated and the
prediction procedure has been completed, the last step of the
pipeline is to build the Knowledge Graph containing logical or
physical relationships among biological elements. Physical

FIGURE 2 | BioTAGME homepage.

6https://en.wikipedia.org/wiki/Portal:Biology. 7https://tagme.d4science.org/tagme/.
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relationships represent the real connection between biological
entities. Instead, the logical one represents the effect that a
biological entity (i.e., Drug) could have on another one
(i.e., Disease or Gene).

For every Entityi–Entityj association obtained during the
prediction procedure, our system creates three different edges types:

• Literature: indicates an interaction derived from a publication,
describing a biological evidence resulting from laboratory
experiments, biological, and biophysical processes, etc.

• STRING: represents the predicted protein-protein
associations stored in the STRING database. We report
this information because our system integrates STRING
Homo sapiens protein-protein interactions.

• BioTAGME: the edges predicted by our tool.

Both BioTAGME edges and STRING edges are marked with
the corresponding score value to indicate the interaction’s
likelihood. More information about the plotting of the
network, motif search, and shortest path computations are
reported in the following Section 2.2.

We publicly release our network on Zenodo. The link is
provided in the Supplementary Data section. Data is fully
compliant with FAIR principles (Wilkinson et al. (2016)).

Supplemental Data
The networks data (nodes, edges, and other files) are available at:
https://doi.org/10.5281/zenodo.6325345360.

FIGURE 3 |Upload Panel: Such a panel allows amanager user of the site to load the graph andmetadata. (A) File upload panel; (B) File upload panel with progress
bar displaing the upload status.

FIGURE 4 | Authentication and Import panel. (A) Authentication panel; (B) Import panel.
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The pipeline one code is available at: https://github.com/
Anto188bas/biotagme pipeline.git361

The pipeline two code is available at: https://github.com/
Anto188bas/biotagme laravel.git362

The docker-compose.yml file is available at: https://github.
com/Anto188bas/biotagme docker.git363

2.1.7 Updating Procedure
BioTAGME pipeline annotates Pubmed documents’ titles
and abstracts to predict the relationships among their
corresponding biological entities. A periodical update is
needed since many new documents are submitted daily to
the Pubmed database.

Our pipeline carries out the following steps to achieve this purpose.
First, it downloads all the PMIDs (Documents’ identifier in PubMed)
within an established data range [mindate, maxdate] through an
NCBI esearch POST request. “Mindate” usually refers to the last
updating date; whereas “maxdate” is usually set to the actual date.

Once the PMIDs list has been obtained, the updating module
downloads the title and abstract of these PMIDs using the NCBI
efetch API. For performance reasons, the PMIDs list is partitioned
into chunks of proper size, and then several chunk-based NCBI
efetch post requests are generated and sent to the Pubmed server to
obtain the required data. NCBI does not impose amaximumon the
number of requests to be submitted, especially when a POST
request is used. However, we suggest keeping this value under
10,000 to reduce the computational burden of our job.

Once the documents’ titles and abstracts have been
downloaded, the annotation, prediction, and network
construction procedures are executed to update the Knowledge
Graph’s edges and nodes.

The update procedure is incremental. It does not require the
entire PubMed abstracts corpus. It runs on a subset of abstracts
within a date range ([start_date, end_date]), and then generate a
knowledge graph only on those abstracts. Therefore, this

procedure could be used to produce a temporal knowledge
graphs over a certain topic of interest.

2.2 Pipeline Two: Network Deployment and
Query Interface
The second pipeline has been implemented for importing the
Knowledge Graph into the Neo4j database and querying the
network to get the neighborhood of a biological element or
compute the shortest path between two nodes. The interface
module for network querying is crucial to exploit such graphs
and infer putative novel biological knowledge. This pipeline
employs the Laravel model-view-controller and the React Native
framework to implement the back-end and web-pages components.
In this section, we will describe such modules (Figure 2).

2.2.1 Network Import Module
A user may access the upload section through the “biological
element search” panel by clicking on the “network files upload”
link. Such section includes three consecutive phases:

• the first one is the “authentication phase” ensuring that only
authorized users may execute the import procedure
(Figure 4A).

• then, the “files selection phase” is enabled (Figure 3).
During this phase, the user selects both “nodes.csv” and
“edges.csv” files containing the network components and
the “Name_Aliases.csv” file about biological elements
aliases. Since the size of the files is large (GB), our
system uses the “Pion” library (Pion (2021)) to split the
file into small chunks (client-side) and re-assemble them as
soon as these are correctly received (server-side).

• As all files are successfully received, the “import phase” is
enabled. It shows a summary (Figure 4B) of the uploaded
files to check for file selection mistakes. If everything is

FIGURE 5 | Echo Network and Shortest path panel: The first (A) is used to extract the neighborhood of a given node and type. (B) The second one, instead, returns
the shortest path among two specified biological entities.
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correct, the user can trigger network loading on Neo4j by
clicking the import button.

2.2.2 Searching Module
Once the network has been imported, a user may execute several
queries through our “GUI”, composed of the following panels:
Searching panel (Figure 5) and Graph panel (Figure 6).

The Searching Panel is used for setting the query parameters
based on the selected menu: 1) Echo network or 2) shortest path.

• When the Echo Network option is selected, a user may search
the Echo Network of a biological entity “bei”. Therefore, he
should provide the type and name of the biological entity to be
analyzed (Figure 5A, red rectangle) and the type of the other
entities (Figure 5A, orange rectangle) to include within the
echo network. To avoid building a large graph, a maximum
number of entities has to be supplied (ranging from 10 to 200

nodes) through the “Top n” section (Figure 5A, green
rectangle). Once all the required parameters have been
filled, the search process can be triggered by clicking the
Submit button. This process transforms the specified
parameters in a “Cypher query”8 that looks for the “Top
n” nodes having one or more links from/to “bei”.

• When the Shortest Panel option is selected (Figure 5B), a
user looks for the shortest path between two biological
entities. First, the user specifies the type and name of the
source “el_src” and destination “el_dst” entities (Figure 5B,
red rectangle), and then BioTAGME transforms all these
parameters into a proper “Cypher query” which is mainly
based on a Neo4j shortest path computation.

FIGURE 6 | Blood coagulation—gene interaction network. A limit of 30 has been set. In addition, the yellow edges represent a set of BioTagME unpredicted edges
(extracted by external databases). Instead, the orange ones (yellow + red) are edges both predicted (by BioTagME) and extracted from the external databases.

8Cypher is Neo4j′s query language to retrieve data from the graph, and was inspired
by SQL.
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The Graph phanel is used to plot [by using the CytoscapeJS
library (Franz et al. (2015))] the sub-graph (Figure 6) corresponding
to a user-submitted query. The edges of such sub-graph are
interactive. Thus, if a user clicks on them, then a relationship
window (Figure 7) containing the following data is shown:

• A table containing the name of the source and destination
nodes as well as the BioTagME and STRING scores. In
addition, the last column of the table also reports the
literature evidence (1 if the relationship is reported in at
least one of the literature databases, 0 otherwise).

• A navigation panel with three different options. The first
two (Element 1 Wikipedia Pages and Element 2 Wikipedia
Pages) show several links among Wikipedia pages and
source or destination nodes, respectively. The last one
(PubMed articles) shows all the links to PubMed articles
containing the selected relationship.

3 EXPERIMENTAL ANALYSIS

We analyzed the the reliability of BioTagMe on two case studies.
The first one aims at determining preduction quality by

evaluating our ability to extract “Basigin” relationships. The
results were compared with STRING (Szklarczyk et al. (2018)).
The second case study focuses on the construction of a “blood
coagulation” network. Such a network is then compared against a
literature one (generated by the links among the external
databases employed in BioTagME, Table 1).

3.1 Case study 1
Many tools and computational models (Alaimo et al. (2020)) rely
on existing network databases, such as KEGG (Kanehisa and
Goto (2000)) and Reactome (Fabregat et al. (2017)). However,
despite the enormous amount of available data, these databases
are still incomplete and therefore have partial information.

In this case study, we have chosen Basigin (BSG), also known as
CD147 or EMMPRIN, as a starting point to construct a protein-
protein functional network. This gene represents an example of a
biological element that should be supplemented to the KEGG
network since it is not currently described in their pathways. BSG is
a transmembrane glycoprotein of the immunoglobulin
superfamily, expressed in many tissues and cells. It is known to
participate in several highgly relevant biological and clinical
processes. Furthermore, BSG is a crucial molecule in the
pathogenesis of several human diseases (Xiong et al. (2014)).

FIGURE 7 | Relationship window.
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Missing a crucial gene within a biological network can
compromise scientists’ efforts to understand certain
molecular mechanisms. However, the most reliable
approach to date remains the manual curation through
careful and time-consuming literature analysis. On the
other hand, a manually constructed network provides
partial information due to the limited number of articles
that a scientist could read.

Our case study tackle this issue by providing a practical
example of how BioTagME can create valuable networks
(Figure 8) by analyzing a large sets of PubMed abstracts. In
addition, such a network has been compared with STRING to
assess sensitivity and specificity.

Through BioTagMe, we inferred 426 true positive relations
and 38 false negatives. Qualitatively, this network includes most
of the interconnections mentioned in STRING, thus providing a

reliable and comprehensive overview of the molecular function of
Basigin. Quantitatively, BioTagME achieved a sensitivity of
91.8%, and a specificity of 94.8%.

3.2 Case Study 2
The second case study aims to build a general functional network
related to the “blood coagulation pathway” and other biological
entities (i.e. diseases, genes).

Blood coagulation is a complex chain process involving a
series of stimulus responses in conjunction with coagulation
factors and enzymes, whose intent is to stop blood fluxes
when a vascular tissue injury occurs (Ngo et al. (2012)).

To evaluate the quality of BioTagME, our network (Figure 6)
is compared with a “literature network” (generated by data and
relationships into the external databases, Table 1) in terms of
sensitivity and specificity.

FIGURE 8 | Basigin-Proteins interaction network. It has been created using the Neo4j user interface. In addition a limit of 30 nodes has been set. BioTagme and
STRING edges have been merged in a single one.
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BioTagMe was able to infer 54 true positive and 23 false
negative. Quantitatively, We achieved a sensitivity of 70.12%, and
a specificity of 96.43%. Indeed, we could predict the relation
between blood coagulation and PROS1 (Figure 6). Such gene
plays a crucial role on the mechanism of PtdSer exposure during
immunity and blood coagulation (Wang et al. (2022)).

Moreover, BioTagME could predict the relations among blood
coagulation and the thrombin and plasmin enzymes (Figure 9).
The role of Thrombin enzyme is to catalyze the initiation and
propagation phases of blood coagulation. In addition, it converts
soluble fibrinogen to insoluble fibrin (Becker et al. (2013)).

4 CONCLUSION

In this paper, we have implemented the BioTAGME framework
for building offline biological knowledge graphs from all
documents’ titles and abstracts in PubMed. First, the graph’s
nodes (biological entities) have been extracted by TAGME. The
edges, instead, have been predicted through the combination of
the DT-Hybrid algorithm score and the TAGME relatedness
computation. Such predicted edges have also been enriched with
literature evidence resulting from laboratory experiments,
biological, and biophysical processes (extracted from the
connections among external databases), and protein-protein
relationships in STRING. Moreover, an uploader module has
been implemented to download and annotate new documents in
PubMed to keep the graph up-to-date. Finally, the main pipeline
(pipeline one) has been implemented using the Spark
Framework to distribute the computation among several
machines. Future works will include: 1) construction of
knowledge-graphs based on open-access documents’ title,
abstract and full-text in PubMed and PubMed Central; 2)
implementation and integration of new prediction algorithms

to improve and increase the prediction of the relationship
among biological entities; 3) implement a TAGME version
based on a biological Wikipedia corpus (no biological pages
will be pruned); 4) development of a new search panel to
enable advanced queries in the knowledge-graph. Such a panel
will provide: algorithms for community detection (clustering);
matching, shortest path, and k-shortest path based on
BioTagME score, nodes and edges types, publication date,
etc; centrality measures; cypher free text for writing custom
queries. Moreover, we will add a list of sentences (where
possible) to describe predicted relationships.

4.1 Permission to Reuse and Copyright
Figures, tables, and images will be published under a Creative
Commons CC-BY license, and permission must be obtained for
the use of copyrighted material from other sources (including re-
published/adapted/modified/partial figures and images from the
internet). It is the responsibility of the authors to acquire the
licenses, follow any citation instructions requested by third-party
rights holders, and cover any supplementary charges.
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