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 ABSTRACT 

 This thesis presents an upgrade of the discrete macro-element model (DMEM), 

accounting for P-Delta effects (P-Δ), to describe the rocking response of masonry walls 

subjected to Out-Of-Plane (OOP) loadings.   

 According to the DMEM strategy, the proposed model describes the wall by a mesh 

of discrete macro-elements connected by interfaces accounting for material nonlinearities 

and takes into accounts constitutive and geometric nonlinearities still maintaining a limited 

computational cost, compared to refined Distinct Element and Finite Element approaches. 

The model also allows for a straightforward calibration based on macroscopic mechanical 

masonry parameters following a fiber calibration strategy which encompasses the 

membrane behaviour on the elements’ interfaces. The three-dimensionality of the macro-

elements allows to include both the in-plane and the OOP behaviour avoiding limiting the 

global model to the simulation of the box behavior only, as in the well-known equivalent 

frame models or other simplified approach in which only the in-plane behaviour of masonry 

walls is accounted for. 

 OOP failure mechanisms are one of the main causes of severe damage or structural 

failure for unreinforced masonry (URM) buildings, including historical and monumental 

constructions subjected to seismic actions, as pointed out by observations after even not 

strong earthquakes. The activation of these mechanisms is generally associated with lower 

seismic excitation and displacements than those necessary for in-plane collapse. However, 

after their activation, these mechanisms may often evolve towards large displacements, 

related to rigid-block-like kinematics, that strongly affect the mechanical post-peak 

response. Therefore, geometrical nonlinearities, often ignored in the numerical models for 

computational reasons, should be included in the analyses when OOP failure mechanisms 

dominates the structural response.   

 This thesis presents a new, simplified, still accurate DMEM P-Delta formulation 

according to which the global equilibrium is imposed by referring to the undeformed 
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system configuration, avoiding assembling and updating the geometrical stiffness matrix 

during the analysis. Then, the system load vector is updated at each step of the analysis, 

accounting for the additional moments generated by the forces acting on the macro-

elements in the deformed configuration. The proposed model is validated in the static field 

against closed-form analytical solutions of rigid-block-like benchmarks in large 

displacements and with reference to the results of quasi-static experimental tests already 

available in the literature. In addition, extensive parametric analyses are performed to 

investigate the role of the mechanical parameters of masonry and geometrical characteristic 

of the wall on the rocking response.  

 Moreover, aiming at investigating the role of dissipation involved on the OOP 

response, a stiffness-proportional damping model is considered and associated with 

interface elements to describe the dynamic response of rigid blocks approximating 

masonry-wall kinematics. With this purpose, a local damping matrix is computed at each 

interface identifying a rocking section of the OOP failure kinematics. This damping matrix 

is updated at each step of the analysis keeping it proportional to the local tangential stiffness 

matrix of the interface and summed to the global damping matrix, accounting for other 

sources of energy damping not explicitly accounted for in the model. The proposed 

damping model is then validated by carrying out dynamic free- and harmonic-vibration 

analyses on quasi-rigid blocks and comparing the results with some experimental tests 

conducted on quasi-rigid blocks, analytical solutions, and advanced FEM simulations 

available in the literature. The results demonstrated that the proposed damping model, 

combined with the newly-developed P-Delta DMEM formulation, accurately predicts the 

nonlinear rocking response of masonry walls up to the attainment of the critical 

configuration at which gravity loads becomes un-stabilising.  

 In the last part of the thesis, representative case studies represented by a church’s 

façade and an entire church are analysed through static and dynamic analyses. P-Delta 

effects are alternatively considered and neglected in the simulations in order to evaluate 

their influence on the response and on the evaluation of the ultimate capacity of a real 

unreinforced masonry structure. 
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ABSTRACT 

 (Italian version)  

 Il presente lavoro presenta un’evoluzione the macro-elemento discrete che tiene 

conto degli effetti del secondo ordine (cosiddetti effetti P-Delta P-Δ) in grado di descriver 

la risposta di rocking di muri in muratura soggetti a carichi fuori dal proprio piano.  

 In accordo con la strategia a macro-elementi discreti, il modello proposto descrive 

un muro di muratura attraverso una mesh di macro-elementi discreti connessi tramite 

interfacce che simulano le non linearità costitutive e considera l’effetto delle non linearità 

geometriche seppur mantenendo un onere computazionale limitato se confrontato con le 

più accurate strategie di modellazione agli elementi finiti (Finite Element Method FEM) e  

agli elementi distinti (Distinct Element Method DEM). Il modello consente anche una 

semplice calibrazione basata su parametri meccanici macroscopici della muratura seguendo 

una semplice seppur efficace strategia di calibrazione a fibre. La tridimensionalità dei 

macroelementi consente di includere sia il comportamento nel piano che quello fuori piano 

evitando di limitare il modello globale alla sola simulazione del comportamento detto “box-

type”, come nei noti modelli a telaio equivalente o ad altri approcci semplificati in cui viene 

considerato solo il comportamento nel piano delle pareti in muratura. 

 I meccanismi di collasso fuori piano sono una delle principali cause di danno o 

addirittura collasso strutturale per strutture murarie non rinforzate che includono 

costruzioni storiche e monumentali soggette a carichi di tipo sismico, come dimostrato dalle 

diverse osservazioni dopo terremoti anche di intensità limitata. L'attivazione di questi 

meccanismi è generalmente associata a eccitazione e spostamenti sismici inferiori a quelli 

necessari per il collasso nel piano. Tuttavia, dopo la loro attivazione, questi meccanismi 

possono spesso evolvere verso grandi spostamenti, associati a cinematiche da blocco rigido, 

che influenzano fortemente la risposta meccanica e cinematica post-picco. Pertanto, le non-

linearità geometriche, spesso ignorate nei modelli numerici per ragioni computazionali, 
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dovrebbero essere incluse nelle analisi quando i meccanismi di collasso fuori piano 

dominano la risposta strutturale.  

 Il presente lavoro presenta una nuova, semplificata ma allo stesso tempo accurata, 

formulazione degli effetti P-Delta all’interno della strategia di modellazione a macro-

elementi discreti secondo cui l'equilibrio globale viene imposto facendo riferimento alla 

configurazione del sistema indeformata, evitando di assemblare e aggiornare la matrice di 

rigidezza geometrica durante l'analisi. l vettore di carico del sistema viene, quindi,  

aggiornato in ogni fase dell'analisi, tenendo conto dei momenti aggiuntivi generati dalle 

forze agenti sui macroelementi nella configurazione deformata. Il modello proposto è 

validato in campo statico rispetto a soluzioni analitiche in forma chiusa di benchmark a 

blocchi rigidi in grandi spostamenti e con riferimento ai risultati di prove sperimentali 

quasi-statiche già disponibili in letteratura. Inoltre, vengono eseguite ampie analisi 

parametriche per indagare il ruolo dei parametri meccanici della muratura e delle 

caratteristiche geometriche della parete sulla risposta di rocking della parete muraria. 

 Inoltre, al fine di investigare il ruolo della dissipazione coinvolta nel meccanismo 

di rocking di un blocco rigido, è stato considerato un modello di damping proporzionale 

alla rigidezza locale delle interfacce. Con questo scopo, è stata calcolata e assemblata un 

amatrice di smorzamento locale per ogni interfaccia di rocking. Tale matrice di 

smorzamento viene aggiornata ad ogni step dell’analisi in modo che sia ad ogni instante 

proporzionale alla matrice di rigidezza tangente delle interfacce. Qualora siano presente 

alter sorgenti di dissipazione viscosa tale matrici vengono sommate. Il modello di 

smorzamento proposto è stato quindi validato conducendo analisi dinamiche non lineari in 

vibrazioni libere e armoniche su modelli di blocco rigido confrontando i risultai con quelli 

previsti dalla teoria classica proposta da Housner nel 1963 e con test sperimentali riportati 

in letteratura che includono avanzate simulazioni agli elementi finite. I risultati hanno 

dimostrato che il modello di smorzamento proposto, combinato con la formulazione P-

Delta DMEM di nuova concezione, prevede accuratamente la risposta fuori piano non 

lineare delle pareti in muratura fino al raggiungimento della configurazione critica in 

corrispondenza della quale i carichi gravitazionali diventano non stabilizzanti. 
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 Nell'ultima parte della tesi, attraverso analisi statiche e dinamiche non lineari, 

vengono analizzati casi studio rappresentativi. In particolare, due casi studio sono stati 

analizzati: uno relative ad una facciata di una chiesa e uno relativo ad un modello di 

un'intera chiesa. Gli effetti P Delta sono alternativamente considerati e trascurati nelle 

simulazioni al fine di valutarne l'influenza sulla risposta e sulla valutazione della capacità 

ultima di una struttura muraria. 
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1. INTRODUCTION 

 

 Unreinforced Masonry (URM) structures, including historical and monumental 

construction, represent a significant percentage of architectural heritage in several seismic 

areas worldwide, some of which have significant social and cultural value. However, the 

high vulnerability of these structures has been pointed out by several post-earthquake 

surveys [1]–[6], highlighting how they suffer severe damage even in the occurrence of 

moderate magnitude earthquakes, with significant economic, social, and human losses. The 

seismic assessment of URM structures is one of the most important current research topics 

for safety reasons, related to the loss of human lives and the need to preserve the existing 

architectural heritage. For all these reasons, an in-depth knowledge of the dynamic response 

of existing and historical masonry structures and reliable numerical tools for its prediction 

are needed. In the last few decades, significant research has been conducted in order to 

develop reliable and efficient numerical methods, some of which have been implemented 

into technical regulations to guide practitioners toward seismic assessment and retrofitting 

of URM structures. 

 

1.1 Seismic response of unreinforced masonry buildings 

 Masonry can be defined as a heterogeneous material whose macroscopic behaviour 

is related to the mechanical properties of its components (units and mortar) [7]. Units can 

be stones or bricks and can be of various materials, shapes and dimensions, interacting 

through dry or mortar joints by following different patterns [8], [9], significantly affecting 

the masonry mechanical behaviour. In particular, historical masonry structures have been 

generally built following simple empirical rules often related to local tradition and 

construction techniques, adopting irregular units and geometrical layouts. As a result, 

masonry walls are weakly connected to each other and to other structural elements leading 

to very complex seismic behavior, which is governed by the interaction between in-plane 
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and out-of-plane (OOP) responses of masonry walls. For these reasons, different parts of 

the building can exhibit local seismic response that is mainly related to OOP mechanisms 

as the overturning of the main façade. At the material level, the constitutive masonry 

behavior is highly non-linear and characterised by a degrading cyclic response dominated 

by the low tensile strength, making the numerical simulation of the seismic response of 

URM structures a challenging task [10], [11].  

Therefore, the capacity of existing masonry buildings to resist earthquake 

excitations (or their vulnerability) is strongly related to the mechanical characteristics of 

masonry units and joints, the masonry bond, the geometrical construction layouts, and the 

quality of structural connections between its different elements. All these aspects should be 

adequately considered in the analysis and seismic assessment.  

 In-situ post-earthquake observations showed that OOP failures of URM walls 

constitute the most severe life hazard for this type of construction, particularly in the case 

of slender façade walls with poor connection to transversal elements or diaphragms [3], 

[12]. In addition, once activated, the OOP failure mechanism can evolve towards large 

displacement, generally assumed represented by rigid-block-like kinematics [13], strongly 

influencing the structural response and this entails a significant increase in complexity in 

the study of the non-linear behavior of URM structures already characterised by a highly 

non-linear constitutive behavior even at a small intensity of the seismic load. Figure 1 

illustrates two residential URM buildings, which suffered heavy damage during the 

catastrophic 1908 Messina earthquake, whose estimated magnitude was 7.3 [14], [15]. Both 

buildings show a collapse scenario with significant parts collapsed and other building 

portions mainly subjected to in-plane damage of masonry walls in piers and spandrels. In 

particular, Figure 1a shows a building that suffered the complete overturning of the main 

facade at the top level, with the related total collapse of the roof. In addition, the corner 

portion of the building collapsed. Figure 1b shows a heavily damaged building with the 

complete failure of a corner portion with a detachment of the remaining part in 

correspondence with the spandrels [16].   
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(a) 

 

(b) 

Figure 1 - Messina earthquake (1908): (a) in-plane damaged building; (b) local failure [16] 

This behaviour is typical of URM buildings where a global response is not always 

guaranteed, particularly for historical structures. During the seismic event, the low tensile 

strength of the masonry walls and the weak or incomplete connections between walls and 

between walls and slabs can lead to a damage scenario that tends to evolve during the 

dynamic response [16].   

 When subjected to strong earthquakes, an undamaged URM building responds to 

the early stage of a seismic event by global behaviour. However, once the building is 

damaged, it tends to separate into sub-portions that can behave differently during strong 

earthquakes. This is particularly true for the facade of URM buildings, which, in many 

cases, represent the first structural elements to be subjected to local collapse due to a 

complete detachment from the other parts of the building and a rocking behaviour 

dominated by a rigid body motion (Figure 2).  

 Figure 3a shows the damage scenario of a building that suffered in-plane damage 

of spandrels without being subjected to local collapse during the L’Aquila earthquake 

(2009). In this case, the building exhibited a global response, and no local failure occurred; 

this is the response that a URM building should show when subjected to a strong earthquake 

if correctly designed to resist earthquake loadings. It is expected that the building can suffer 

in-plane damage to masonry walls, but no local or global collapse should occur. Figure 3b, 
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instead, shows a totally different scenario of two aggregate URM buildings that suffered 

heavy damage during the L’Aquila earthquake in 2009. In this picture, a total collapse of a 

significant portion of a unit of the aggregate is observed while the other unit exhibited a 

significant rocking out-of-plane response with a complete detachment between the facade 

and one of the orthogonal walls, resulting in an incipient overturning condition [16]. 

 

Figure 2 - Messina earthquakes (1908): OOP failures of external walls  [17] 

 

(a) 

 

(b) 

Figure 3 - L'Aquila earthquake (2009): (a) in-plane and (b) out-of-plane failures of URM 

buildings  [17] 
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1.2 Numerical modelling strategies to predict the seismic 

response of unreinforced masonry buildings 

 The accurate numerical simulation of masonry walls, in terms of non-linear, static 

or dynamic response, when subjected to seismic excitations, represents a complex 

computational issue since rigorously requires accounting for constitutive and geometrical 

nonlinearities. Accurate analyses, employing detailed Finite Element (FEM) or Distinct 

Element (DEM) models, including both geometric and constitutive nonlinearities in large 

displacements, imply the adoption of advanced numerical strategies to update the system 

configuration and the geometrical stiffness matrices during the analyses. Consequently, 

these approaches present the disadvantage of being very complex, time-consuming, and 

computationally expensive. However, geometric nonlinearities can be taken into account 

in a simplified way by considering the so-called second-order (P-Delta) effects. Despite 

this, the number of P-Delta formulations available in the literature for assessing masonry 

structures is generally restricted to the use of FEM approaches [18]. Fewer approaches have 

been proposed based on simplified macro-elements [19], [20], which typically neglect 

geometric nonlinearities.       

 Numerous non-linear numerical strategies, characterised by different levels of 

accuracy and efficiency, have already been proposed to assess the non-linear response of 

URM walls when subjected to OOP loading. Among these, within the general framework 

of the force-based approach (FBA), practical tools are based on the macro-block limit 

analysis approach, which describes the wall as the kinematics of rigid blocks and are used 

to evaluate the lateral load amplitude activating the OOP mechanism [21]–[24]. These 

methods are often employed for the seismic assessment of local failures of URM structures 

in international (EC8) and Italian structural codes [26].   

 Within the framework of FBA, advanced limit analysis formulations have been 

proposed in order to account for the effects of the lateral and orthogonal walls [27]–[30] 

and the interaction with horizontal diaphragms [31]. More detailed meso-scale limit-

analysis formulations have also been proposed to investigate the torsion-shear behavior 

[32]–[34]. Nevertheless, FBA can be over-conservative because they tend to neglect the 
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dynamic reserve of stability, particularly in the case of large-scale structures, which 

undergo significant displacements before overturning. Moreover, they cannot provide 

information about the evolution of the mechanism after the activation and the effective 

displacement capacity. To overcome this limit, displacement-based approaches (DBA) 

have gained popularity for the evaluation of the seismic response of URM structures [13], 

[35]–[37]. These methods aim to assess the displacement capacity of the structural system. 

These strategies are straightforward, and they can also consider the P-Delta effects making 

them widely used by practitioners.  

 Another effective method largely used to assess OOP rocking walls is the rigid-

block model, which describes the entire wall by a single rigid block overturning around its 

base vertexes and subjected to ground acceleration time histories. This model response is 

generally obtained by directly integrating the equation of the motion in large displacements 

and was first proposed by Housner [38]. Since the wall is assumed rigid, this approximate 

approach allows for a simplified dynamic analysis with a low computational cost. However, 

the rigid body assumption does not account for masonry deformability and 3D geometrical 

layouts or boundary constraints. Moreover, it requires hypotheses on the energy dissipation 

model that is only related to the impacts of the block, representing an unrealistic assumption 

for a masonry wall and is also difficult to calibrate.  

 On the other hand, detailed FEM and DEM approaches, explicitly accounting for 

3D OOP boundary conditions, the actual masonry bond, and geometrical nonlinearities, 

have been proposed in the literature to simulate the non-linear response of masonry 

structures. Among them, numerical methods characterised by different orders of 

complexity have been proposed and applied. These strategies include micro-scale [39], 

[40], meso-scale [8], [41], [42], and continuum FEM approaches [8], [43]. Mesoscale FEM 

analyses explicitly account for the actual masonry bond through the use of zero-thickness 

interfaces, while continuum FEM models simulate masonry walls through an homogeneous 

equivalent medium at the macro-scale [44] under the hypothesis of small deformations and 

large displacements. DEM approaches are well suited for masonry structures with dry- and 

mortared joints and allow to perform non-linear static and dynamic analyses accounting for 

large displacements and the separation of structural parts. In these approaches, the position 
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and orientation of elements and contacts are updated at each step of the analysis [45]. It 

makes them particularly suitable to describe local failures, characterising irregular masonry 

[46]–[48]. However, the disadvantage of FEM and DEM strategies is that, in general, these 

methods are based on complex 3D or 2D constitutive laws, requiring expert judgments in 

the model implementation and the interpretation of the results, and cumbersome calibration 

procedures. Moreover, these methods require a high computational cost making them very 

useful in research but rarely suitable for practical seismic assessment. For these reasons, 

over the last few decades, many research groups have proposed simplified numerical 

methodologies for predicting the non-linear seismic behaviour of URM structures [49], 

[50]. These engineering-oriented simplified methods, such as the Equivalent Frame Model 

(EFM) or the Discrete Macro-Element Model (DMEM), are identified in the literature as 

structural component models or macro-models since they simulate masonry walls as an 

assemblage of macroscopic structural elements. Because of its simplicity and low 

computational demand, the EFM is adopted by a number of national and international 

regulations in combination with nonlinear static analysis [51]. It simulates piers and 

spandrels using one-dimensional elements connected by rigid nodes [52]–[54]. However, 

despite the advantages of the EFM method, it is worth underlining some limitations: i) 

discretisation of structure with an irregular position of openings is sometimes ambiguous 

or not possible, ii) geometric inconsistency of the approach, as it represents a plane portion 

such as masonry panels with a mono-dimensional element, iii) presence of areas which 

cannot be damaged, generally identified as rigid links. Moreover, frame model approaches 

generally neglect the OOP response of masonry walls, and their use is restricted to assessing 

the global response of masonry buildings. Recently an enhanced frame-like macro-element 

incorporated the OOP response, also accounting for second-order effects has been proposed 

in the literature [19], [20], [55].   

 The present study aims to cover this research gap by upgrading the DMEM  

introduced by Caliò et al. [50], with the inclusion of geometric nonlinearities related to P-

Delta effects. The DMEM was originally proposed to overcome the limitations of EFM and 

could simulate the IP response of masonry panels. Subsequently, DMEM was extended to 

3D kinematics to account for masonry walls' coupled in-plane and OOP behaviour when 
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subjected to earthquake loadings [56], [57]. The model presents many advantages, 

compared to previous proposed models for masonry structures, related to the geometrical 

consistency, the low computational cost, the possibility to couple discrete and finite 

elements, the straightforward model calibration, the possibility to be used at macro and 

meso-scale [58]. The novelty proposed in this study consists in accounting for second-order 

P-Delta effects in a simplified but robust way within a time-efficient discrete macro-

element (DMEM) strategy in order to simulate the effects of geometrical non-linearities 

and exploit the use of DMEM to perform realistic dynamic analyses of URM rocking walls.  

 

1.3 Outline 

 This thesis aims to introduce, validate, and apply a P-Delta formulation within the 

framework of the DMEM strategy for the seismic assessment of masonry structures. To 

provide a better description and explanation of the research topics and results, the thesis 

has been partitioned into seven sections, as follows: 

 

1. Section 1 – INTRODUCTION: A brief introduction of the research problem 

and the associated motivation, including the thesis's focus and the document's 

outline. 

 

2. Section 2 – OUT-OF-PLANE SEISMIC ASSESSMENT TECHNIQUES 

FOR UNREINFORCED MASONRY STRUCTURES, presents a brief 

literature review concerning the most common strategy to assess the seismic 

behavior of URM structures. These techniques, following the work of Ferreira 

et al. [59], are divided into three main families: (i) numerical methods, which 

include finite-, discrete-, and macro-element methods; (ii) Analytical 

assessment techniques, namely force- and displacement-based approach and 

experimental in situ or laboratory tests. For each of these assessment techniques, 

the main works are cited and briefly discussed.  
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3. Section 3 – OUT-OF-PLANE IN STANDARDS, describes the problem of the 

assessment of the out-of-plane behavior of masonry walls within the current 

scenario of national and international technical regulations. A brief presentation 

of three standards is given in this section, namely the Eurocode (EC8), the 

Italian Code (NTC18), and the American Code (ASCE/SEI 41 2017).  

 

4. Section 4 – DISCRETE MACRO-ELEMENT METHOD (DMEM), aims to 

describe the simplified numerical tool proposed by Caliò et al. and herein 

upgraded to account for second-order effects. The method can simulate the 

coupled in-plane and out-of-plane seismic behavior of unreinforced masonry 

structures in static and dynamic fields. The main kinematic and mechanical 

aspects of this method are presented and extensively discussed. 

 

5. Section 5 – P-DELTA EFFECTS WITHIN THE DISCRETE MACRO-

ELEMENT METHOD, reports the P-Delta formulation within the macro-

element method (DMEM) discussed in Section 4, which has been implemented 

in the structural software HiStrA (Historical Structural Analyses) and validated, 

in the static field, through the comparison with analytical solutions and 

experimental results [60], already reported in the literature. Moreover, extensive 

parametric analyses are performed to investigate the role of the mechanical 

parameters of masonry and geometrical characteristic of the wall of the rocking 

response. 

 

6.  Section 6 – DYNAMIC SIMULATION OF RIGID BLOCKS, aims to 

validate the P-Delta formulation in dynamic field carrying out undamped free-

vibration analysis on rocking rigid block comparing the results with those 

predicted by the classical theory of rigid blocks proposed by Housner [38]. 

Moreover, a non-classic stiffness-proportional damping model associated with 

interface elements is developed to describe the loss of energy related to the 
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impact which characterize the dynamic of rigid blocks. The proposed damping 

model is validated by carrying out dynamic free- and harmonic-vibration 

analyses on quasi-rigid blocks and comparing the results with some 

experimental tests conducted on quasi-rigid blocks, analytical solutions, and 

advanced FEM simulations available in the literature. 

 

7. Section 7 – DYNAMIC SIMULATION OF UNREINFORCED MASONRY 

WALLS INCLUDING P-DELTA EFFECTS presents the application of the 

P-Delta formulation to a different case study. In particular, a masonry church’s 

façade undergoing two-sided rocking and a real masonry church are studied both 

under static and dynamic excitations. P-Delta effects are alternatively 

considered and neglected in order to obtain first useful outcomes on the 

importance to keep into consideration the geometric nonlinearities in the 

prediction of the ultimate capacity of a URM construction both in terms of 

strength and displacement.   

 

8. Section 8 – Conclusions summarizes the new developments introduced within 

the Discrete Macro-Element Strategy and the obtained results, pointing out the 

capability of the model to accurately reproduce the rigid-block dynamic 

behavior and the OOP response of URM structures when subjected to seismic 

excitation even in presence of relatively large rotations, while maintaining the 

typical computational efficiency of the DMEM.  

 

1.4 Research target 

 The main target of this research is to provide an accurate and efficient numerical 

tool for the seismic assessment of existing URM masonry structures subjected to out-of-

plane mechanisms, allowing numerical simulations to consider both in-plane and out-of-

plane wall responses and their mutual interaction taking into account all sources of 

nonlinearities.   
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 With this target, the thesis aims to bring an original contribution to the numerical 

methodologies for the seismic assessment of unreinforced masonry (URM) structures 

toward the inclusion of the effects of geometric nonlinearities within a comprehensive 

analysis of the structure, conducted without adopting the conventional separation between 

in-plane and out-of-plane wall responses and a priori hypotheses on the failure mechanism, 

often adopted in engineering practice and academic research.  

 

1.5 Methodology 

 The research is based on a simplified macroscopic description of masonry walls. In 

particular, the new formulations and the numerical analyses are developed and performed 

by adopting the discrete macro-element method (DMEM). This method brings the great 

advantage of limiting the computational effort compared to detailed modelling approaches, 

like finite element (FEM) or distinct element (DEM) models.  

 The model is formulated in the static and the dynamic fields and implemented 

within the HiStrA (Historical Structure Analysis) software [61]. In particular, the dynamic 

implementation of the model is enriched by a non-classic damping model associated with 

interface elements, describing the energy dissipation associated with the impact during the 

rocking motion. The model is used to perform non-linear static (pushover) and dynamic 

analyses. The predictions of the newly-developed DMEM model are compared to the 

results of more detailed FEM simulations, analytical solutions, and experimental tests 

available in the literature. In addition, parametric investigations and Incremental Dynamic 

Analyses (IDAs) are performed on a real case study of a masonry church as a representative 

of a structural typology highly vulnerable to OOP failure mechanisms.     
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2. OUT-OF-PLANE SEISMIC 

ASSESSMENT OF URM WALLS  

 

 Existing masonry constructions, representing most architectural heritage worldwide 

(buildings, towers, castles, churches, etc.), are among the most spread structural typologies 

built without following seismic design standards. These structures are often characterised 

by complex and irregular geometrical schemes and weak structural connections, making 

them high-vulnerable to out-of-plane (OOP) failure mechanisms. Even in the presence of 

good connections, OOP failure mechanisms can occur in slender parapets, long 

unrestrained top spandrels, and vertical spanning walls. OOP generally occurs at lower 

intensities than those causing in-plane failure mechanisms, as evidenced by post-

earthquake observations. In the last decades, the scientific community devoted a consistent 

effort to the numerical description and assessment of URM structures. Despite this, 

describing the dynamic response of masonry walls subjected to OOP rocking behaviour 

and predicting their ultimate seismic capacity represent challenging tasks and current open 

issues within Earthquake Engineering. This is due to the complex mechanical behaviour, 

the inhomogeneity characterising the masonry material, and the complex interaction 

between the different parts of the building [62], [63].   

 The OOP ultimate response of URM walls is dominated by large displacements. 

Therefore, apart from the material non-linearities, geometrical non-linearities and second-

order effects also assume great importance. Indeed, the OOP collapse of URM walls 

subjected to seismic excitation is primarily associated with an excess displacement demand 

rather than the attainment of the static OOP strength of the wall. In this regard, many 

experimental and analytical studies [35], [60], [64], [65] have shown how dynamically 

loaded walls can sustain acceleration greater than that implied by their static capabilities. 

Given the complexity of the problem, several modelling and assessment strategies, different 

for accuracy in describing the mechanical behavior of masonry and typology of structural 
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analysis, have been proposed.  Historically, the first attempt came from Rondelet (1812), 

who first framed the OOP behavior of masonry walls in terms of stability rather than 

strength. He identified three main failure mechanisms as a function of the boundary 

conditions and the geometry of the wall (Figure 4). The awareness of such vulnerability 

has encouraged the development of assessment strategies of varied complexity.   

 Several methods and computational tools are currently available for the assessment 

of the OOP behavior of URM structures, taking into account both constitutive and 

geometric non-linearities with different levels of accuracy and complexity. In this work, 

following the classification proposed by Ferreira et al. (2015), reported in Figure 5, three 

main families are identified: numerical methods, analytical methods and experimental tests. 

Each one of these assessment methods is described in the following sections, where the 

most important references and applications are reported and briefly discussed. 

 

Figure 4 - OOP mechanisms by Rondelet (1812) 

 

2.1 Numerical Methods 

 As already discussed, the numerical modelling of the seismic behavior of URM 

structures represents a complex task due to significant constitutive and geometric 

nonlinearities even at relatively low values of the seismic excitation. In addition, the 

anisotropic nature of masonry, strictly related to the specific bond masonry arrangement 

[66], rigorously would require 3D constitutive laws difficult to implement and to calibrate 

on the basis of traditional in situ tests. Moreover, monumental URM structures are often 

characterised by uncertainties in the definition of the actual structural geometry, not being 

clear in distinguishing between structural and non-structural parts. In the last half-century, 
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the research community devoted a consistent effort to the computational analysis of URM 

structures to develop tools for predicting and assessing their structural behavior.   

 

Figure 5 – Existing techniques for assessing the OOP seismic behavior of URM structures 

 Given the complexity of the seismic behavior of masonry structures, different 

approaches characterised by different complexity and scale of representation, as well as 

different strategies of analysis, have been proposed [67]. Moreover, geometric 

nonlinearities assume great importance when performing a non-linear seismic analysis on 

a URM masonry structures undergoing geometrical and material nonlinearities [68]. This 

entails a significant increase in complexity in the study of the non-linear behavior of URM 

structures already characterised by a highly non-linear constitutive behavior even at a slight 

intensity of the seismic load. On the other hand, the accurate numerical simulations of the 

non-linear incremental static or dynamic response of masonry walls subjected to seismic 

excitation, considering both constitutive and geometrical nonlinearities,  represent a very 
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complex computational issue that has been the subject of extensive research over the last 

decades and that represents the main goal of this thesis project.  

 Some accurate analyses employing detailed finite element (FEM) or distinct 

element (DEM) models [41], [44], [45], [47], [69]–[71] which account for both geometric 

and constitutive nonlinearities in large displacements, requiring the adoption of advanced 

numerical strategies to update the system configuration and the geometrical stiffness 

matrices during the analyses, have been proposed in the literature. Such approaches model 

the masonry material using different representation scales, i.e., equivalent continuum, 

macro-blocks, or discrete representations. FEM allows a more versatile application as 

masonry can be represented either through a homogeneous equivalent media (macro-

modelling) or by a discrete representation of units and joints (micro-modelling). Linear and 

nonlinear static and dynamic analyses are eligible. Nonetheless, additionally to the 

significant amount of data needed to characterise the nonlinear response of materials, these 

approaches when performed at real scale structure are time-consuming and computationally 

expensive.   

 In order to satisfy the need of having reliable results with limited elaboration times, 

several authors proposed alternative approaches, performed at the macro-scale, according 

to which the structures are described as an assemblage of macroscopic structural elements 

representative of macro-portion of the masonry panels. Because of their simplicity and 

computational efficiency, these alternative approaches are widely adopted in engineering 

practice.   

 In the subsequent paragraphs, a brief review of the main numerical modelling 

strategies used for the analysis of the OOP behavior of URM structures is reported. In 

particular, numerical methods are classified into three main categories: Finite Element 

Method (FEM) Approach, Distinct Element Method (DEM) Approach and Macro-element 

Method (MEM) Approach. 
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2.1.1 Finite Element Method (FEM) Approach  

 Finite Element Method is one of the most adopted numerical methods for accurately 

evaluating the seismic response of URM structures subjected to in-plane and OOP loadings. 

This approach can be applied both at the macro and the micro scale (detailed models).   

 When applied for obtaining a detailed description of the nonlinear response can 

effectively describe complex masonry structures with complex geometry, general 3D 

loading scenarios, and complex mechanical material behaviour, taking into account 

numerous factors affecting the masonry response, like dimensions and characteristics of 

units and joints and the effects of the masonry bond, for large scale simulations a detailed 

model often will require partition modelling strategies as those proposed by Izzuddin et al. 

[72]  

 Therefore, depending on the level of accuracy, it is possible to use different model 

strategies [73]: micro-models, which explicitly describe the constitutive elements of the 

masonry (units and joints) and the interfaces between them; macro-scale models, describing 

the masonry as an equivalent homogenised continuum material; meso-scale models which 

represents an intermediate approach between macro and micro models and approximating 

masonry joints by weakness layers modelled by zero-thickness interface elements.   

 

            (a)                                                 (b)                                           (c)  

Figure 6 - Modelling strategies for masonry structures [73]: (a) micro-modelling, (b) meso-

modelling and (c) macro-modelling strategies 
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2.1.1.1 Micro-modelling strategy  

 In this approach, elastic and inelastic properties of both unit and mortar are taken 

into account: constituent elements of the masonry, namely unit and mortar, and interfaces 

between them, are modelled individually (Figure 6a). Due to the high computational burden 

required by this approach, its application is limited only to limited portions of masonry 

structures and academic research. This strategy is considered a reliable tool for the 

assessment of the seismic response of this typology of structures since it allows the 

simulation of failure mechanisms such as the crushing of masonry units as well as cracking 

or sliding of mortar joints.  

 

2.1.1.2 Meso-modelling strategy  

 According to a meso-scale approach, each joint, consisting of mortar and the two 

unit-mortar interfaces, is lumped into an average interface while the units are expanded in 

order to keep the geometry unchanged Figure 6b. Masonry is considered a set of elastic 

blocks bounded by potential fracture/slip lines at joints.   

 Meso-modelling is an interesting alternative to combine benefits from extreme 

micro and macro modelling scales. Most of the mesoscale models for URM masonry 

presented so far account for the in-plane behavior.   

 According to Macorini and Izzudin (2011), such models cannot be effectively 

employed to assess the structural performance of URM elements under complex loading 

conditions, as in the case of the seismic action, which presents both in-plane and out-of-

plane components. Even so, these authors tackled this issue by defining a new interface 

element for the geometric and material non-linear analysis of URM structures, which 

enables the representation of any 3D arrangement of masonry and allows the investigation 

of both the in-plane and the out-of-plane responses of URM panels. 
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2.1.1.3 Macro-modelling strategy 

 A macro-modelling strategy does not distinguish between individual units and 

joints but treats masonry as an equivalent, homogeneous, anisotropic continuum (Figure 

6c). As noticed, homogenized modes for masonry attempt to combine the two distinct 

phases of the units and joints and their respective constitutive laws to determine the overall 

elastic properties of masonry.   

 Several authors proposed different homogenization procedures for macro-

modelling approaches stressing the fact that moderate changes in the material parameter 

can lead to different predominant failure mechanisms [73]. Milani et al. (2011) used a 

macro-scale approach to reproduce the nonlinear behavior of masonry walls in the case of 

large displacement through a simplified “homogenized” procedure.   

 The nonlinear incremental response of the structure is accounted for by a specific 

quadratic programming routine where second-order effects are suitably addressed by the 

geometric stiffness matrix.  

 

2.1.2 Discrete Element Method Approach  

 In the discrete macro-element approach, the masonry is modelled through an 

assemblage of blocks interacting with each other through interface elements. The discrete 

Element Approach is now well suited for masonry with both dry [74] and mortared joints 

but still requires a full representation of the blocks (masonry units) arrangement [45]. 

 In the framework of Discrete Element Approaches must be cited the Rigid Body 

Spring Model (RBSM), the Distinct Element Method (DEM), and the more recent Applied 

Element Method (EAM). 

 

2.1.2.1 Rigid-body spring model (RBSM) 

 The Rigid-Body Spring Model (RBSM) was introduced, for the first time, by Kawai 

in 1978 [75]. He started from the following idea: when a structure reaches its ultimate state 

of loading, it crushes into pieces, and after that, each part moves as a rigid body.   
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 This simple idea falls in RBSM approach in which a portion of masonry (Figure 7) 

can be simulated by a set of rigid blocks (rigid bodies) (Figure 7b), which are assembled 

by means of springs (Figure 7c). It is worth noting that the RBSM is a 2D model, but it is 

able to reproduce specific OOP mechanisms. 

 Each contact of the rigid body is composed of a couple of orthogonal links together 

with an additional longitudinal one. The stiffnesses related to orthogonal and longitudinal 

links are denoted respectively as kx and kv  for  vertical  contacts,  and  ky  or  ks  for  contacts  

in  a  horizontal  direction.  Three  DOFs describe the kinematics of each rigid block: two 

of them are associated with horizontal and vertical displacements u and v, and the 

remaining one is related to the rotation φ of the rigid block.   

 The axial and flexural mechanisms are governed by the two orthogonal springs 

located at the edges of the rigid blocks presenting a value of stiffness, kx and ky, in Figure 

8a associated with Young’s modulus of masonry without considering the effects of 

Poisson’s ratio. The proper simulation of the flexural response requires the estimation of 

an optimum distance d at which the orthogonal springs are placed (Figure 8b). Such 

distance is generally considered as a third of the middle length of the rigid block e in a 

given contact direction. The shear behaviour of the rigid blocks is ruled by the additional 

longitudinal links whose values of stiffness ks and kv are related to the shear modulus of 

the masonry material (Figure 8c). The flexural and shear  mechanisms  of  the  deformable  

elements  are  influenced  by  the  Poisson’s  ratio [69].  The RBSM was further upgraded 

for the assessment of the seismic response of masonry structures in the dynamic field, as 

reported by Casolo and Peña [76]. The post-elastic response of these models is ruled by 

nonlinear behaviour associated with flexural and shear mechanisms. The constitutive law 

that governs the flexural response consists firstly of a low value of tensile strength ft in 

which the post-peak branch is described by a rapid degradation of the strength. Due to the 

brittle behaviour that characterizes the flexural response, the dissipation of hysteretic 

energy during unloading cycles related to the tensile response does not present a significant 

value. On the other hand, the compressive behaviour is described by limited ductility once 

it reaches the value of compressive strength fc.  The shear behaviour is associated with the 
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mechanical behaviour of the mortar joints, and it is governed by a Mohr-Coulomb yielding 

criterion in which the residual shear capacity depends on the vertical axial load.  

 

(a)                                            (b)                                           (c) 

Figure 7 - Scheme of two masonry-like texture; a common rigid element discretization is shown in 

the centre [69] 

 

Figure 8 – Failure mechanisms simulated by RBSM due to: (a) horizontal and vertical axial 

loading, (b) in-plane bending loading, (c) shear loading [69] 
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2.1.2.2 Distinct Element Method (DEM) 

 The DEM approach consists of the assemblage of either rigid or deformable 

elements, representing blocks whose interaction is conducted using concentrated links.   

Originally developed for geotechnical aspects [77], the distinct element method (DEM) has 

been used for the structural analysis of masonry, taking advantage of its capability of 

accurately representing irregular geometries.   

 The first DEM model was developed by Cundall [77], aiming at the evaluation of 

the behavior of rocks and soils using plane elements and further upgrading by means of 

spatial elements [78]. The DEM based on this hypothesis enables an independent meshing 

of the blocks without the necessity of node matching; and therefore, allows different 

typologies of geometric interactions. The masses of the system are concentrated in the 

nodes, and both acceleration and displacements are computed with references to this nodes 

during each time step.   

 DEM takes into account the effective morphology and arrangement of the blocks, 

crack opening, and joint sliding, which typically induce structural damage or collapse, and 

accounts for large displacements and rotations by automatically updating the position of 

the blocks and their interactions during the analysis and for this reason, finite displacement 

and rotation can be taken into account. The complete detachment between blocks is also 

considered [71] and new contacts are automatically created during the analysis, allowing 

the modelling of the dynamic collapse behavior of complex structures.  

 

Figure 9 - Discretization of a masonry segment according to the DEM [71] 

 Explicit time-stepping algorithms are commonly used for DEM, where the 

equations of motion are integrated using a central-difference scheme [79], [80]. However, 
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the main problem related to DEM is that the calibration of the contact links is not 

straightforward and generally based on experimental data applying empirical relations. The 

main difference between DEM and RBSM is that according to DEM approach, each rigid 

element represents a single masonry unit while, each rigid element in the RBSM approach 

represents a macro-portion of the masonry wall (Figure 7 and Figure 9).    

 

2.1.2.3 Applied Element Method (AEM) 

 The Applied Element Method (AEM) was introduced for the first time by Meguro 

et al. (2002) to simulate controlled structural demolition of reinforced concrete buildings 

[81], [82]. It allows linear and nonlinear, static and dynamic, and small and large 

displacement analysis. Such an approach is very similar to RBSM.   

 The AEM is based on the division of the structural members into virtual elements 

connected through springs: each unit is modelled as a rigid body that interacts with the 

adjacent ones by means of an equivalent zero-thickness interface. Each spring entirely 

represents the stresses, strains, deformations, and failure of a certain portion of the 

structure. The main advantage of this method is that it can follow the structural behavior 

from the initial loading stages until collapse with reliable accuracy and in reasonable CPU 

time. 

 

(a)                                           (b) 

 

(c) 

Figure 10 - Modelling of the structure in AEM: (a) Element generation in AEM, (b) Spring 

distribution and area of influence, (c) Element shape, contact point and DoFs [81]  
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  Its accuracy in the large displacement range is verified by comparing the numerical 

results with theoretical ones: agreement is very good [81].   

 In the two-dimensional model, each element has three DOFs, which represent the 

element’s rigid body motion (Figure 10), and they are connected to each other at discrete 

points by a pair of normal and shear springs with stiffness, respectively:  

n

EdT
K

a
=  2.1 

S

GdT
K

a
=  2.2 

where d is the distance between springs, T is the element thickness, a is the length of the 

representative area, E the material Young’s modulus, and G is the material shear modulus.

 Unlike other methods (such as FEM) in the AEM, there is no need to determine the 

geometrical stiffness matrix to take into account the large displacement. The large 

displacement procedure is based on the following expression:  

m g
KΔU Δf R R= + +  2.3 

in which: 

- K is the nonlinear stiffness matrix; 

- ΔU is the incremental displacement vector; 

- Δf is the incremental load vector; 

- Rm is the residual force vector due to cracking or incompatibility between spring 

stress and strain; 

- Rg is the residual force vector due to geometrical changes in the structure during 

loading. 

In [81] the application of AEM in large displacement is explained. In particular, it follows 

the following steps:  

1. Assume that Rm and RG are null and solve Eq. 2.3 to get ∆u.  
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2. Modify the structural geometry according to the calculated incremental 

displacements.  

3. Modify the direction of the spring force vectors according to the new element 

configuration. The geometrical changes generate incompatibility between the applied 

forces and internal stresses.  

4. Verify whether cracking occurred and calculate Rm. In elastic analysis, Rm is zero.  

5. Calculate the element force vector, Fm, by summing the forces of the springs around 

each element.  

6. Calculate the geometrical residuals around each element with the following 

expression in which f is the applied force vector:  

g m
R f F= −  2.4 

Small deformations are assumed during each increment. 

7. Calculate the stiffness matrix for the structure with the new configuration 

considering stiffness changes due to cracking or yielding. 

8. Repeat the entire process. 

 To compare this approach to DEM approach, it is worth noting also that DEM 

considers interface springs located at the unit vertices, and their number is limited to four 

per contact area, which may lead to stress localisation phenomena or unconservative 

results, especially when considering out-of-plane mechanism. Using AEM, instead, an 

unlimited number of springs, uniformly distributed at the interface, can be employed.  

 The applicability of such an approach to the modelling of URM structures was 

investigated ad verified by comparing numerical results with a wide range of experimental 

outcomes in [83].  

 A commercial software called “Extreme loadings for structures” is based on this 

method. Despite its simplicity, the method, can provide reliable predictions. However, it 

generally requires very refined mesh discretisation, corresponding to a large number of 

DoFs, leading to a high computational cost.  
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2.1.3 Structural Macro Element Method Approach   

 In order to overcome the high computational cost which characterized the numerical 

strategies discussed before, during the last decades, several researchers proposed numerical 

models based on simplified mechanical schemes according to which masonry can be 

modelled by an assemblage of macro-elements. This methodology is based on the fact that 

some structural elements are found in a recurring way in historic buildings, and each wall 

can be described by an assemblage of a single or a few macro-portions, called “macro-

element”. The main advantage of these methods is the high reduction of the computational 

burden.   

 Several macro-element approaches were proposed in which structures are described 

as an assemblage of macroscopic structural elements. A distinction can be made between 

Equivalent Frame Model (EFM) and Plane Model. The former consists of the modelling of 

the masonry wall by means of equivalent frames, which are composed of rigid elements 

connected to deformable ones. Approaches such as the POR [84] and SAM [54] methods 

can classify into this category. EFMs are today suggested by several national and 

international standards in combination with the nonlinear static (pushover) analysis [51].   

 On the other hand, the plane models consider a two-dimensional representation of 

masonry structures. Approaches such as Multi-fan Panel [85], [86], Variable Geometry 

[87], [88], Three-layer [49], and Strut-and-tie models belong to this category.  

 Because of their simplicity and low computational demand, EFMs are one of the 

most widely diffused methods of analysis in engineering practice [89]. However, despite 

the advantages, it is worth underlining some limitations, i.e., i) discretisation of structure 

with an irregular position of openings is sometimes not possible, ii) geometric 

inconsistency as they model plane portion such as masonry panels with mono-dimensional 

element, iii) presence of areas which cannot be damaged. Finally, these approaches are not 

able to simulate the OOP response of masonry walls, and for this reason, they are not widely 

discussed in this study. 
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2.1.3.1 Three-layer model 

 Firstly proposed by Gambarotta and Lagomarsino [90] and Brenchich and 

Lagomarsino [49] the three-layer model was able to predict the global response of box-

behavior masonry buildings, for which the OOP mechanisms are prevented. Therofore, the 

model was able to describe the in-plane response of masonry walls. According to this 

strategy, masonry walls are modelled by means of macro-elements connected by means of 

rigid elements, as shown in Figure 11a and Figure 11b for two- and three-dimensional 

masonry structures, respectively. The deformable panels or macro-elements aim at 

simulating the behaviour of masonry components such as piers and spandrels which are 

characterized  by  a  localised  failure  mechanism.  On  the other hand, the rigid elements 

connecting the  deformable panels do not experience any significant damage concentration. 

Each deformable macro-element is divided into three layers aiming at simulating the 

flexural behaviour and shear deformation of masonry walls. The flexural mechanism is 

governed by the bottom (1) and top (3) zero-thickness layers, whereas the shear mechanism 

is ruled by an additional central layer (2), as reported in Figure 12.  

 

(a)                                                                      (b) 

Figure 11 - Three-layer model: (a) two- and (b) three- dimensional representation of masonry 

structures (Figure from [49]) 
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                                      (a)                                                          (b) 

Figure 12 – Three-layer model: (a) kinematic and (b) static variables of the deformable macro-

elements (Figure from [49]) 

 The model has been further developed by Penna et al. [91], including cyclic 

constitutive laws for the in-plane flexural and shear mechanisms of masonry panels. 

According to the three layer model, the panel is defined by two nodes (i and j in Figure 12), 

and since the central part is assumed as a rigid body with the possibility to have only shear 

deformations, under the hypothesis of small displacements, the kinematic of each macro-

element can be fully described by eight Lagrangian parameters: six of them are associated 

with the in-plane rigid-body degrees of freedom associated to the two nodes, the remaining 

two correspond to additional translation and rotation DOFs of the central layer (Figure 12a). 

The Lagrangian parameters are collected in the vector reported in Eq. 2.5. In this regard, 

the static variable of each macro-element is described by eight components as shown in 

Figure 12b, and given by the vector q in Eq. 2.6  

T

i i i j j j e eu w u w wa  =      2.5 

T

i i i j j j e eV N M V N M N Mq  =    2.6 

 The element was implemented in the software TREMURI [52] and presents the 

great advantage of being simple and computationally efficient. However, despite its 

simplicity and low computational cost, such an element is not able to simulate the OOP 
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behavior of masonry walls, making it unsuitable for the seismic assessment of historical 

and monumental structures for which the box-type behavior is an unrealistic hypothesis. 

 The model was recently upgraded by Bracchi et al. [20] in order to account for 

second-order effects. In particular, in the new macro-element, the equilibrium equations of 

the macro-element, originally referred to as the undeformed configuration (Figure 13a), are 

written in the deformed one (Figure 13b) 

 

                                        (a)                                        (b) 

Figure 13 - Equilibrium in the (a) first- and (b) second-order configuration [20] 

 The lever arm (h) of the horizontal shear force (V) is assumed constant and equal 

to h since, for common masonry panels, the vertical displacement is small with respect to 

the height of the element. On the contrary, the lever arm (uj – ui) of the vertical axial forces 

is updated during the analysis according to the deformed configuration of the panel and 

generating an additional moment.  

 The authors found that in the presence of a pure rocking response, piers achieving 

in-plane drift ratios higher than 10% are affected by second-order effects. 

 The above-described model has been upgraded by Vanin et al. [19] in order to 

simulate the spatial response of masonry walls, accounting for second-order effects. The 



VALERIA CUSMANO 

49 

 

model was implemented in OpenSees, the macro-element is formulated as a one-

dimensional element defined by three nodes, two at the element ends and one at the 

midspan, all defined in three-dimensional space. It consists of an assemblage of two panels 

subjected to the same average shear deformation and separated by three nonlinear sections 

accounting for deformations due to axial strains. The kinematic of this element is presented 

in Figure 14. The shear response is controlled by a non-linear interface located at mid-

height of the element, in which all shear deformations of the two panels are lumped (Figure 

14b). The flexural response is described by three sections that can model coupled in-plane 

and out-of-plane rocking. The midspan section of the element allows the one-way out-of-

plane bending to be modelled in a simplified way. The element nodes are located at the 

extremities and at the midspan of the element.   

 The end nodes (named i and j in Figure 14) are standard three-dimensional node 

whose degrees of freedom describe three displacements and three rotations in space. The 

internal node e defines the displacements of the extremities of block A and B (points A’ 

and B’ in Figure 14 in three directions, from which the finite rotation of the two blocks can 

be derived. As a consequence each macro-element possess 18 local degrees of freedom 

(Figure 15a) which are collected in the vector ulocal reported in Eq. 2.7 to which corresponds 

the vector qlocal as expressed in Eq. 2.8.  

 From the vector of local displacements, the 12 displacements (ubasic) (Figure 15b) 

defining those at the flexural sections, the shear deformations of the panels, and a constant 

torsional deformation along the element can be obtained as reported in Eq. 2.9. To avoid 

complex co-rotational formulation while still accounting for second-order effects for 

moderate displacements, the element was implemented using only P-Δ formulation (Eq. 

2.9), derived as a second-order Taylor-series expansion of the exact equations.   

T

i i i xi yi zi j j j xj yj zj eA eA eA eB eB eBu , v , w , , , , u , v , w , , , , u , v , w ,u , v , wlocalu  =         2.7 

T

i yi zi xi yi zi j yj zj xj yj zj eA yA zA eB yB zBN ,V ,V ,T ,M ,M , N ,V ,V ,T ,M ,M , N ,V ,V , N ,V ,Vlocalq  =    2.8 
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(a) 

 

(b) 

 

(c) 

Figure 14 - Deformation modes of the macro-element: (a) in-plane flexure, (b) in-plane flexure 

and shear and (c) out-of-plane response [19]  

 

 

(a) 

 

(b) 

Figure 15 - Definition of (a) local and (b) basic degrees of freedom of the macro-element [19] 
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2.9 

 The section models adopted for the three flexural sections and the shear interface 

shown in Figure 15 provide the local response in terms of sectional forces and the stiffness 

matrices of these sections. The vector of basic forces qbasic is assembled as reported in Eq. 

2.10.   

 The equilibrium matrix can be derived by formulating the equilibrium conditions in 

the deformed configuration of the nodal forces. The second-order effects are included in 

the vector q0 and are added to the sectional forces in the basic system. Once such forces are 

expressed in the local system through the incremental equilibrium matrix ΓE, a second 

vector p0, containing the reactions to the applied element loads in the local system, needs 

to be subtracted to ensure equilibrium at the nodes (Eq. 2.11).   
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1 z1 y1 2 z2 y2 3 z3 y3 y z torsN ,M ,M , N ,M ,M , N ,M ,M , V ,V ,T
basic

q  =    2.10 

( )
local E basic 0 0

q Γ q q p= + −  2.11 

 

2.1.3.2 The Discrete Macro-Element Method (DMEM) 

 The Discrete Macro-Element Model was firstly introduced by Caliò et al. [92] and 

then upgraded by several authors in order to make it able to simulate the in-plane and out-

of-plane nonlinear behavior of masonry structures under seismic excitation. Since this 

thesis is focused on DMEM approach, this numerical method is properly and fully 

discussed in Section 4.  

 

2.2 Analytical Methods 

 As represented in Figure 5, two main analytical methodologies are generally 

adopted for assessing the out-of-plane mechanisms of URM walls based on the theorems 

of the limit analysis and Housner’s rigid block theory. These methodologies are generally 

associated with two different assessment strategies: the Force-based assessment (FBA) and 

the displacement-based assessment (DBA) approaches.   

 The FBA defines the wall safety factor in terms of acceleration, particularly as the 

ratio between the acceleration that activates the mechanism to the PGA expected in situ. 

Conversely, DBA approaches compare the system demand and capacity in terms of 

displacement. A detailed description of the assessment techniques is out of the scope of this 

thesis. However, more details on this topic can be found in [59], [93]. Finally, it is worth 

mentioning that several researchers over the past few decades corroborate the assumption 

that the OOP behavior of masonry walls is more correlated to velocity and displacement 

demands rather than acceleration values which are more related to the developments of 

forces [60]. 
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2.2.1 Force-Based vs Displacement-Based Approaches 

 Limited attention has been given to the dynamic out-of-plane response of masonry 

walls. Indeed, FBA was initially recommended because URM is considered a very brittle 

material. Nonetheless, the recent possibility, due to the potentiality offered by computers 

today and some experimental campaigns, to study the out-of-plane dynamic behavior of 

wall structures has demonstrated that URM walls, subjected to dynamic loads, can resist 

acceleration higher than their static strength [60], [94], [95]. Hence, Displacement-Based 

Approaches (DBA) have also gained popularity for the seismic evaluation of masonry 

structures [13].  

 In 1985 Priestley et al. [62], by introducing the concept of ductility within an energy 

framework, demonstrated that the level of seismic loading required to cause failure, 

especially for face-loaded walls, tends to greatly exceed the prediction obtained by simple 

ultimate strength calculations. The topic was discussed in more detail in Doherty (2000) 

[60]. A few years later, a SDOF idealization of the rocking behavior of vertical spanning 

(VS) or parapet URM was proposed by Doherty et al. (2002) [35]. They presented a new 

simplified linearized displacement-based procedure in which a tri-linear relationship is 

used to characterised to the non-linear force-displacement relationship of URM walls. This 

procedure is founded on the reserve capacity of rocking unreinforced masonry walls to 

displace OOP without overturning, arising as the wall’s post-cracking response is governed 

by stability mechanisms, that is to say, geometric instability of URM walls will only occur 

when the mid-height displacement exceeds its stability limit. The proposed idealized tri-

linear force-displacement relationship represents the actual curvilinear relationship and 

encompasses axial and flexural deformations and rocking displacement for single-leaf 

walls. 

 Griffith et al. (2003) [96] systematically evaluated the presented simplified 

procedure to evaluate the response of URM walls subjected to OOP excitations by means 

of the tri-linear force-displacement curve and demonstrated that the collapse of the wall is 

mainly conditioned by its maximum strength and displacement capacity rather than its 

initial stiffness. In this work, the wall is idealized as a rigid body on simple one-way 

bending. A procedure to evaluate trilinear model for multi-leaf walls was proposed by 
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Derakhshan, Griffith and Ingham (2013) [97]. These procedures include, first, the 

calculation of rigid bilinear relationship (Figure 16a,b)  and next the trilinear relationship 

(Figure 16c) using three defining parameters, i.e., Δ1, Δ2,  F0*. The amplitude of the force 

plateaux is therefore controlled by the ratio between Δ1 and Δ2, on the other hand the initial 

slope of the tri-linear curve is governed by the force amplitude F0* and the value of Δ1. 

 
  

(a) (b) (c) 

Figure 16 - Force-displacement relationship.  Rigid bi-linear model for a) parapet wall, b) 

vertical spanning wall, c) tri-linear idealizations [35] 

 Doherty et al. (2002) proposed the value of the ratio between Δ1 and Δ2 as a function 

of the condition of the walls, distinguishing between “undamaged”, “moderately 

degraded”, and “severely degraded” conditions.  

 One of the main conclusions obtained by these studies was that the lateral static 

strength and the ultimate displacement of unreinforced masonry walls subjected to OOP 

are only conditioned by: geometry, boundary conditions, and applied vertical forces 

(including self-weight). In this kind of analysis, the uncertainties in the mechanical 

properties of the material (especially the elastic modulus and the compressive and tensile 

strength of masonry) do not significantly affect the results.  

 

2.2.2 Limit Analysis models 

 These analytical approaches are based on limit analysis theorems which have the 

great advantage of being simple to use and independent of many material properties but, 

for this reason, related to very simplified materials models.   

 Limit analysis was one of the first methods used for the safety assessment of 

F0* 
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masonry structures. The limit analysis is set within the theoretical frame of plasticity theory 

for masonry structures, as formulated by Heyman (1996) [98]. Heyman was the first who 

apply this theory to the analysis of masonry structures [98]. His works were based on the 

assumption that limit theorems of plasticity (lower-bound theorem and upper-bound 

theorem) can be applied to masonry structures only if i) masonry has no tensile strength (it 

can resist infinite compression), and ii) no sliding will occur within the masonry. According 

to this formulation, the failure in URM structures can only occur due to instability rather 

than material failure. According to this, the application of the static theorem leads to a 

lower-bound solution based on equilibrium equations, while the application of the 

kinematic theorem provides an upper-bound multiplier of the collapse load factor. The 

solution that satisfies the hypotheses of both theorems, equilibrium, compatibility, and 

material conditions, is the correct solution and provides the collapse load multiplier for the 

specific problem.   

 The application of the limit analysis to a given URM building requires the 

preliminary formulation of all possible failure mechanisms, followed by the identification 

of the one associated with the lowest value of the load multiplier, able to maintain a limit 

equilibrium configuration. The method consists in assuming a reasonable number of 

collapse mechanisms involving the entire structure or part of it and deriving the relative 

kinematic multipliers in order to identify the minimum value corresponding to the collapse 

multiplier. Several developments have been made in the use of limit analysis without the 

strict applicability of the limit theorems, which led to the so-called non-standard limit 

analysis.   

 In 1989 Giuffrè [99] presented original works based on a series of post-seismic 

damage surveys carried out in the sequence of Irpinia and Syracuse earthquakes in Italy, 

wherein the author underlined the complex nature of the possible out-of-plane mechanism 

in URM walls and taking into account the load pattern that caused each of the possible 

modes showing that in most of the cases, the damages were caused by OOP behavior, rather 

than IP failure.   

 Two years later (1991) [100] he stated that it is possible to study only a part of the 

building because the lack of structural connections in existing masonry structures leads to 
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every structural portion supporting its own loads without the participation of the adjacent 

parts. This considerably simplifies the analysis of existing masonry buildings because it is 

limited by a series of “sub-structures”, but it increases the number of possible collapse 

mechanisms to be controlled. Therefore, given the complex nature of the possible out-of-

plane mechanisms and taking into account the load patterns that cause each of the possible 

modes, the study of this type of mechanisms must be performed on an individual basis,  

identifying the different loads, geometry, and boundary conditions controlling each 

mechanism.    

    

A 

Vertical overturning 

 

B1 

Overturning with 

one side wing 

B2 

Overturning with 

two side wing 

C 

Corner failure 

 

    

D 

Partial overturning 

E 

Vertical strip 

overturning 

F 

Horizontal 

bending 

G 

Vertical bending 

Figure 17 - Typical out-of-plane collapse mechanisms for historic masonry buildings [101] 

 After this early work, several authors proposed failure modes and new out-of-plane 

mechanisms with different load-pattern, geometry, and boundary conditions. D’Ayala and 

Speranza (2003) [101] developed a collection of simple mechanical models based on limit 

state analysis and macro-elements (Figure 17). According to this proposal, the load factor 

is described by the ratio between the lateral acceleration, a, and the gravitational 
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acceleration, g, under the assumption that dead load and horizontal forces are applied at the 

center of mass of the portion of the building involved the mechanism and are expressed as 

a function of the gravity constant; the masonry walls are simulated as a system of rigid 

bodies articulated by hinges; the masonry is simulated by a discontinuum model with 

friction. The failure mode associated with the minimum load factor is the most likely to 

occur. The collapse modes and the resulting analytical models account for connections, 

loading and restraints effects of horizontal structures, presence of strengthening devices 

(such as ties and ring beams).   

 Following the limit analysis approach, several authors have studied more 

sophisticated upgraded formulations in order to take into account frictional resistance for 

the combing rocking-sliding, horizontal-flexure, and torsion-bending interactions [24], 

[28], [29]. The major advantage of limit analysis is the simplicity of the approach, allowing 

the development of practical computational tools characterized by a reduced number of 

input parameters. This fact makes the limit analysis very used in the professional field for 

the assessment of historic masonry structures for which the input data are usually very 

difficult or even impossible to obtain. Nevertheless, the fact that limit analysis leads to very 

conservative results because the OOP seismic behavior tends to be governed by maximum 

displacement rather than by maximum strength is a clear limitation of the methods [101]. 

 

2.2.3 Rigid-Block Models 

 As reported by Makris and Konstantinidis (2003) [102], reconnaissance reports 

after a strong earthquake include the uplift, rocking, and in some cases, the overturning of 

a variety of slender structures. This fact increases the need to understand and predict this 

kind of failure and has motivated a large number of studies on the rocking response of rigid 

blocks, which would be applied in the evaluation of the rocking response of masonry 

structures under earthquake excitations.   

 The problem of a rigid block (RB) on a rigid foundation experiencing lateral 

dynamic loading has been of interest to researchers for many years. Several analytical and 

numerical models have been proposed to study this phenomenon, starting from Housner 

(1963) [38], who was the first to examine free and forced vibration of a rigid rectangular 
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block set to rocking when the bouncing does not occur and the coefficient of friction is 

sufficiently large to prevent sliding between the block and the base introducing what is 

known as the classical theory discussed below. Following Housner’s work, Priestley, 

Evison, and Carr (1978) [103] presented a study comparing Housner’s theory results for 

the free rocking of the rigid block with experimental results from a simple structural model 

with different foundation conditions (Figure 18).   

 In 1980, Aslam, Scalise, and Godden [104] studied the rocking and overturning 

response of blocks of various sizes and aspect ratios under strong earthquakes, also 

considering the effects of the coefficient of restitution and vertical load. This study points 

out the sensitivity of the results in small changes in base geometry and coefficient of 

restitution. In the same year and following the same line, Yim, Chopra e Penzien (1980) 

[105] developed a numerical procedure to solve the non-linear equations of motion 

governing the rocking motion of rigid blocks on rigid bases subjected to horizontal and 

vertical ground motions. The authors stressed the fact that the rocking response is very 

sensitive to small changes in its size and slenderness ratio.  

 

Figure 18 - Comparison between Housner’s theory for free rocking of rigid blocks and 

experiment for Priestley’s model [103] 

 Following these first studies, a large number of works deal with the dynamic of a 

rigid rocking block. In 1983 Ishiyama [106] studied the conditions of rocking activation 

and overturning of rigid blocks under earthquake excitations and obtained, by considering 

a sinusoidal base input, lower limits for seismic Intensities Measures (IMs): PGA, PGV 
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and PGD. From his study was evident that PGA influenced the activation of rocking but 

cannot be a proper IM for overturning except for very small blocks. Overturning is, instead, 

mainly related to PGD.   

 Years later, Makris and Konstantinidis (2003) [102] highlighted the differences 

between the oscillatory response of a single-degree-of-freedom (SDOF) oscillator (regular 

pendulum) and the rocking response of a rigid block (inverted pendulum). In 2008 

Sorrentino et al. [107] applied the rigid-body-based principles with the study of the rocking 

response of URM facades. The authors investigate the one-sided rocking behavior of 

typical masonry facades of Gaeta in Central Italy, proving that one-sided rocking is more 

dangerous than two-sided rocking and that the static results can be overly conservative, 

leading to unnecessary retrofitting actions.   

 Sorrentino (2011) experimentally assessed the coefficient of restitution, which 

govern the rocking response at each impact [108]. Subsequently, Shawa et al. (2012) [109] 

developed a modelling strategy to reproduce the out-of-plane dynamic behavior of masonry 

façade walls taking advantage of the discrete nature of these elements, consisting of a 

façade separated from the transverse walls.   

 Starting from existing rocking models, which concentrate damping at the impact, 

the authors developed a model that considers the asymmetry provided by the transverse 

walls and from out-of-plumb of the wall in the configuration at rest. The analytical 

coefficient of restitution was deduced based on a set of experiments performed on masonry 

walls undergoing free-rocking oscillations.   

 Furthermore, the influence of both seismological parameters [110] and certain 

structural characteristics, such as the presence of additional loads, due to, e. g., masses from 

floor and/or roof elements and vaults [111], [112], tie bars [63], [112], and transverse walls 

[108], [109], [113], were the subjects of different researches.  

 Alongside the SDOF-based approaches, which have been extensively studied, only 

a few works have been presented that deal with the analysis of the rocking behavior of rigid 

blocks resorting to multi-degrees-of-freedom (MDOF) approaches.    
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Pattern 1 

 

Pattern 2 

 

Pattern 3 

 

Pattern 4  

 Figure 19 - Rocking patterns for a system of two stacked rigid blocks [114] 

   As highlighted by D’Ayala and Shi (2011) [115], even for the simplest case of a 

system composed of two blocks, the rocking problem becomes very complex. In 1990, 

Psycharis [116] presented an analysis of the dynamic behavior of a system consisting of 

two rigid blocks without sliding subjected to horizontal and vertical ground motion. The 

authors identify four possible patterns of response and impact, assuming conservative 

angular momentum (Figure 19). Although, such a procedure proved to be too complicated, 

and the equations of motion and energy dissipation had to be formulated for every possible 

mode of response. Every non-linear equation of motion has been integrated for each pattern. 

Following Psycharis’ work, Spanos, Roussis, and Politis (2001) [114] studied the dynamic 

behavior of a system composed of two blocks assuming no sliding, and derived, for each 

pattern, the non-linear equations governing the rocking response of the system subjected to 

horizontal and vertical ground motion. Numerical results for both free and seismic 

responses have been derived.   
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 Other studies have been proposed in order to study the motion of the two blocks 

and the patterns of relative motion and sliding [115], to develop a 2-DOF model for the 

analysis of the dynamic out-of-plane behavior of a single wall considering the hypothesis 

of the flexible diaphragm  [117] or to describe the OOP response of one-way spanning 

unreinforced masonry walls including the effects of crack height, overburden load and 

mortar compressive strength [97].   

 

2.2.3.1 Housner’s classical theory  

Housner (1968) was the first who examined free and forced vibration of a 

rectangular block set to rocking when the bouncing does not occur and the coefficient of 

friction is sufficiently large to prevent sliding between the block and the base and showed 

that the rocking frequency decrease with initial rotation amplitude, also presenting what 

was called as scale-effects, by which the larger of two similar geometrical blocks could 

survive the excitation while the smaller block topples [38].    

 Housner was the first author that solved the equation of motion of a rigid block 

subjected to rocking in closed form. According to this model, the rigid block of height 2h 

and width 2b, shown in Figure 20, will oscillate about the center of rotation O and O’ when 

it is set to rocking.   

 The significant properties of rigid blocks are: 

- Its weight,  W = mg; 

- Its inertia moment, I0 =
4

3
 m (b2 + h2), about the point O; 

- The location of the center of gravity a distance h above the base, a distance b from 

the side of the block; 

- The radial distance from the center of rotation to the center of gravity, R =

 √b2 + h2, when the block is at rest, R makes an angle α with the vertical side. 

- The tilting of the block from the vertical is measured by the angle θ. 

 In the case of free vibration, when the block is rotated through an angle θ, the weight 

of the block will exert a restoring moment WRsin(α − θ). The equation of motion is then:  
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0I WR sin( )θ θ= −  −  2.12 

 Being ( )arctg B H = . Eq. 2.12 subjected to the conditions 𝜽(0) =  𝜃0 e �̇�(0) =

 �̇�0, has the solution:  

0( )cos(p )θ t=  −  −  2.13 

where p2 = WR I0⁄  is a frequency parameter of the block referring to the pendulum 

frequency.    

 From a physical perspective, the frequency parameter p refers to the pendulum 

frequency of the block as if it is hanging from its pivot point and not the classical natural 

frequency, which usually measures cycles of vibration per second. This discrepancy stems 

from the fact that the natural frequency and period of the rocking motion are amplitude-

dependent and, thus, unsuitable for characterizing a structure. 

    

Figure 20 – Rectangular Rigid block (Housner 1963) 
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 Eq. 2.13 describes the rotation of the block about point O as it falls back into the 

vertical position. The block will then tilt about the point O’, and if there is negligible energy 

loss during impact, the block will rotate through an angle 𝜃 =  − 𝜃0. The block will then 

fall back again to the vertical position and will rise about point 0 until θ is again equal to 

θ0. At this instant, one complete cycle will have been completed. The time, T, required to 

complete this cycle is the period of free vibration. The block will fall from θ =  θ0 to θ =

 0 in a time t = T/4 and at this instant Eq. 2.13 becomes:  

0

T
0 ( )cosh p

4

 
=  − −  

 
 2.14 

Therefore, the period T can be written as a function of p and the ratio 
𝜃0

𝛼
:  

1

0

4 1
T cosh

p 1

−  
=  

−    

2.15 

 From Eq. 2.15 is evident that the period is strongly dependent upon the amplitude 

ratio θ0 α⁄ .  In particular, when the ratio θ0 α⁄   is close to unity, the period is long; instead, 

when the ratio is close to zero, the period is short (Figure 21).  

 

Figure 21 - Period of Vibration of rigid block vs amplitude of rotation 

 Energy dissipation is assumed to occur entirely at the impact, in which the rotation 

is switched from one base edge of the block to another. The impact, which is considered as 
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an instantaneous event where the system is characterized by infinite stiffness, induces a 

reduction of the velocity, quantified by the coefficient of reduction e ranging from 0 to 1. 

A value of 𝑒 = 0 corresponds to a totally inelastic impact, while 𝑒 = 1 indicates a perfectly 

elastic impact. Conservation of the angular moment about the center of rotation, just before 

and after each impact, gives the analytical relationship for a maximum value of the 

coefficient of restitution (Eq. 2.17), which correlates with the velocity of the block just after 

(𝑡𝑖
+) and before (𝑡𝑖

−)  the impact (Eq. 2.16), highlighting that the energy loss during the 

impact is strongly related to the geometry of the block and not the material properties (mass 

or stiffness). Some experimental observations showed different values of the restitution 

coefficient than those predicted by the classic theory suggesting that continuum energy 

dissipations due to flexural masonry deformation and plastic deformations at the rocking 

interfaces contribute significantly to the energy dissipation process [102]. In a recent work, 

Tomasetti et al. [118] found values of the coefficient of restitution coefficient ranging from 

0.84 to 0.91.  

i i(t ) e (t )θ θ
+ −=   2.16 

23
e 1 sin

2
= −   2.17 

 

Figure 22 - Free Vibration rocking motion of a rectangular rigid block 

impact impact 
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Damping consideration for the rocking behavior 

 As the complexity of the structure increases, e.g., more degrees of freedom, 

different boundary conditions, or introduction of flexible interfaces, among others, the 

classical rocking theory becomes complicated.   

 Hence, alternative analytical and numerical models have been proposed to capture 

the transient nonlinear dynamic response of various rocking configurations [114], [119], 

[120]. At the same time, recent developments in computational approaches used for 

modelling masonry structures are gaining momentum, particularly block-based models, 

which have been found capable of reproducing the dynamic response of masonry walls 

while also being able to model masonry texture and interaction with surrounding structural 

elements. These include the finite-element (FE) methods and the discrete-element (DE) 

methods, among others. However, despite their widespread use, the applications of these 

models usually lack a reliable treatment of energy loss due to the non-smooth behavior of 

impacts during rocking motion [121], [122].   

 The numerical model often treats energy dissipation in a different manner than the 

classical theory; Specifically, instead of the instantaneous event-based approach that the 

classical rocking theory assumes, energy loss is regarded as a continuous process through 

rocking motion, usually simulated via viscous definition and hysteretic constitutive 

relationship. In particular, by definition, viscous models assume that the damping forces 

(fD), expressed in Eq. 2.18, are proportional the velocity, u  

D
f C u=   2.18 

in which C is the global damping matrix of the system. 

 Viscous damping models are mathematical artifices employed to simulate the 

source of dissipation, and they can be treated as a material characteristic assigned at each 

DOFs of the structure, and in this case, the dissipation process is distributed along the 

structure. Nevertheless, this kind of viscous damping model is not consistent with the 

physical phenomenon of impacts considering the localized nature of the damping problem 
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in the rocking motion. Different viscous damping models have been proposed to describe 

the energy dissipation during the response history of a structure (Figure 23).    

 

Figure 23 - Viscous damping models with respect to the frequency content  

 The most widely used damping model are those represented in Figure 23. In 

particular, constant damping coefficient (CDC) model retains the same value of C 

throughout the response history. This is equivalent to a mass-proportional (MP) damping 

definition, thus damping out low-frequency content. MP damping consists of the 

application of a force resulting from the product of the absolute velocity of the block, the 

mass of the block, damping ratio, and rotational frequency, with a direction opposite to the 

velocity vector. This type of damping decreases non-linearly with increasing the frequency, 

resulting in a plausible damping ratio for higher frequency motion but producing an 

overdamped response at a low frequency that potentially leads to the artificially restricted 

motion of the blocks. Thus, MP damping is generally non recommended for problems that 

involve large displacements of blocks, which implies low-frequency oscillations [123]. 

Another well-established model associates a constant damping ratio (CDR) with all 

frequencies. This definition allows an update of the stiffness matrix but not the damping 

ratio ξ during the response history, resulting in an equivalent dissipation of all the frequency 

content. Nevertheless, it is usually challenging to define a constant damping ratio for all 

the frequencies.   

 Alternatively, when the phenomena to be modelled imply high-frequency 

oscillation, a stiffness-proportional damping ratio (SDR) is desirable in order to avoid 

unrealistic behavior. SDR allows the damping ratio ξ to follow the changes in the stiffness 
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matrix during the analysis if the full Newton-Raphson method is used. As a result, the high-

frequency content of the response is highly dissipated. However, the computational time of 

certain problems may then become impractically long because the application of SPR 

damping requires a time step very small [123]. Finally, a combination of both mass and 

stiffness proportional models acting at the same time, known as Rayleigh damping, damps 

out both the low and high range of the frequency content.   

 Often, authors assume that the SDR damping model presents a convenient approach 

to model the damping of rocking structures [122], [123], associated with a localized 

damping model because, during rocking, when impact occurs, a huge increase in the 

frequency content takes place for a very short, yet finite, time and displacement. In addition, 

proper treatment of impact requires a proper definition of the value of c (or, equally, the 

value of ξ).   

 Particularly for the rocking problem, a relationship between the coefficient of 

restitution e and damping ratio ξ is critical to ensure energy equivalence between the 

classical rocking theory and the numerical viscous damping model. Several authors 

proposed ξ– e relationship in literature.   

  More specifically, Priestley et al. (1978) [103] first examined the energy loss 

equivalence of the classical impulsive dynamics theory and the viscous decay of an elastic 

oscillator. Later, Makris and Konstantinidis (2003) [102] simplified the ξ– e expression of 

Priestley et al. (1978), assuming damping independent of the rocking amplitude. 

Anagnostopoulus (2004) [124] studied the energy equivalence between the restitution 

coefficient e and a spring-dashpot viscous model based on the two colliding masses scheme 

and Imanishi et al. (2012) [125] proposed equivalent formulations. DeJong (2009) [126] 

simulated the rocking block with corner spring dashpots adopting a SDR damping 

formulation to critically damp either the axial frequency, the corner frequency, or the 

rotational frequency. More recently, Tomasetti et al. (2019) followed a calibration process 

of a single degree of freedom (SDOF) analytical formulation of rocking structures adopting 

different formulations of viscous models (i.e., CDC, CDR, and SDR), proposing an 

empirical expression to evaluate the equivalent damping ratio ξ𝑒𝑞 which has to be 

associated to the initial elastic frequency of the system (𝜔𝐿 = √𝐾𝐿 𝑚𝑒𝑓𝑓⁄ ), where  𝑚𝑒𝑓𝑓 is 
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the effective mass of associated to the system and 𝐾𝐿  is the initial stiffness. The influences 

on the response of additional parameters, such as the interface stiffness, rocking amplitude, 

and aspect ratio, were also investigated. Finally, Vlachakis et al. (2021) formulated a ξ–e 

empirical “ready to use” relationships able to reproduce the impulsive dynamics’ energy 

loss characteristics and subsequently ensure dynamic equivalence between the classical 

rocking theory and the numerical viscous damping model. They found through a 

phenomenological calibration methodology [122] the value of the equivalent damping ratio 

for both one- and two-side rocking which is related to the axial stiffness of the base 

interface, and depend on the geometric characteristic of the block. The performance of the 

new model is evaluated through comparisons with experimental tests from the literature. In 

general, the novel numerical model performs reasonably well for the two-sided free-

rocking case, with only slightly faster energy dissipation than its experimental counterpart. 

Table 1 provides a summary of the ξ– e relationships available in literature applicable to 

the rocking problem accompanied by their basic assumptions.  

 Considering the numerous options for the application of damping and the multiple 

factors that influence the results described above, one can find it challenging to choose a 

correct damping approach with sufficient confidence. It was found that several authors have 

previously assigned damping values without a thorough discussion when using DEM and 

FEM dynamic simulations, probably due to a lack of explanatory literature available on the 

topic.   

 A valid attempt to establish guidance to support future modelling research using 

DEM strategy was recently made by Galvez et al. (2022) [123], which used the Rayleigh 

damping distribution model implemented in 3DEC to study the differences between mass 

proportional and stiffness proportional damping configurations. In conclusion, he found 

that, when considering numerical simulations that incorporated mass proportional damping 

and led to results that were seemingly well-matched to experimental tests, it was found that 

the apparent robustness of decisions pertaining to the adopted input parameters was 

deceptive in most cases. Consequently, stiffness-proportional damping was recommended 

for numerical rocking simulations.   
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References Relationship 

Priestley et al. (1978) 

[103] 
𝜉𝑒𝑞 =  

1

𝑛 ∙ 𝜋
𝑙𝑛 {

𝜃0

𝛼
[1 − √1 − 𝑒2𝑛 [1 − (1 − 

𝜃0

𝛼
)

2

]]

−1

} 

Giannini and Masiani 

(1990) [127] 
𝜉𝑒𝑞 =  

2 ∙ (1 − 𝑒)

𝜋 ∙ (1 + 𝑒)
 

Makris and 

Konstantinidis (2003) 

[102] 

𝜉𝑒𝑞 =  −0.68 ∙ ln (𝑒) 

Anagnostopoulus (2004) 

[124] 
𝜉𝑒𝑞 = − 

ln (𝑒)

√𝜋2 + (ln(𝑒))2
 

Cheng (2007) [128] 𝜉𝑒𝑞 =  
(1 − 𝑒2)

𝜋 ∙ (1 − ∆ 𝑏⁄ )
 

DeJong (2009) [126] 𝜉𝑒𝑞 =
𝑏

2ℎ
; 𝜉𝑒𝑞 =

𝑏

𝑅
; 𝜉𝑒𝑞 = 100% 

Imanishi et al. (2012) 

[125] 
𝜉𝑒𝑞 =  − 

ln(𝑒)

√4𝜋2 + (ln(𝑒))2
 

Tomasetti et al. (2019) 

[118] 
𝜉𝑒𝑞 = −0.218  𝑎1 −  0.195 ln (𝑒) 

Vlachakis et al. (2021) 

[122] 

𝜉𝑒𝑞,2𝑆 = −0.000292 ∙ (
𝐻

𝐵
)

0.935

∙ 𝑘𝑛,𝑏𝑎𝑠𝑒
0.343 ∙ 𝑙𝑛(𝑒2𝑆) 

𝜉𝑒𝑞,1𝑆 = −0.0807 ∙ (
𝐻

𝐵
)

0.2548

∙ 𝑘𝑛,𝑏𝑎𝑠𝑒
−0.1283 ∙ 𝑙𝑛(|𝑒1𝑆|) 

Table 1 – ξ-e  relationship for the rocking problem 
Note: Δ/b = amplitude of motion; a1 = alternative definition of system’s stiffness based on a tri-linear force-

displacement relationship 
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2.3 Experimental Tests 

 During the last decades, several experimental works have been done aiming at the 

assessment of the out-of-plane behavior of masonry elements by experimental-laboratory 

campaign or in-situ tests. Overall other evaluation techniques, experimental works have the 

great advantage of dealing with real structures and observations rather than analytical or 

numerical models. Despite what one may think, laboratory tests of masonry constructions 

deal with some limitations and difficulties, mainly regarding the correct reproduction of the 

existing materials and in-situ conditions. Moreover, also the need to have scaled masonry 

models to perform shaking table tests may strongly influence the reliability of the results 

[129]. 

 

2.3.1 Laboratory Tests 

 An extensive experimental campaign was carried out by ABK (1984) [94] to study 

the dynamic out-of-plane behavior of URM walls, aiming at developing a methodology for 

the mitigation of seismic hazards in existing masonry buildings. For this reason, twenty 

unreinforced masonry walls with slenderness ratios varying from 14 to 25 were subjected 

to dynamic out-of-plane tests with acceleration varying from 0.1g to 0.4g. The tests 

demonstrated that the resistance of the walls to out-of-plane collapse was dependent on the 

PGV and the input at the base and the at the top of the walls. In 1991, Tomaževič, et al. 

[130] investigated the influence of the roof rigidity on the out-of-plane behaviour of stone 

masonry buildings by the application of shaking table tests on scaled specimens. From such 

experimental campaign, it was possible to determine the crack pattern and failure 

mechanisms associated with masonry structures in the presence of flexible diaphragms.  

Another extensive laboratory programme was conducted in 1998  by  Benedetti,  et  al.  

[131] aiming  at  the  evaluation  of  the  response  of  masonry structures before and after 

the application of a retrofitting procedure. For the purpose of such investigation,  fourteen  

half-scaled  specimens  were  subjected  to  seismic  inputs  until  a considerable  damage  

pattern  was  identified.   

 A new approach oriented to the study of the out-of-plane collapse mechanism of 



VALERIA CUSMANO 

71 

 

simple URM walls was presented in 2002 by Doherty [35]. This work also involved a series 

of shaking table tests whose results demonstrated that, for the ultimate conditions, out-of-

plane walls are more susceptible to displacement demand rather than acceleration. Also, 

Lam et al. (2003) [132] carried out experimental shaking table tests which pointed out the 

fact that response spectral displacement, as opposed to acceleration, is a better indicator of 

ultimate performance, and also it was observed that the displacement response of the wall 

varies linearly with the frequency of the applied excitation. Griffith et al. (2007) [133] 

presented an experimental campaign aiming at assessing the OOP behavior of URM 

structures subjected to two-way bending loading. In this campaign 8 full-scale URM walls 

with different geometry and axial loads were subjected to static tests using a system of 

airbags in order to obtain cyclic load-displacement relationships. As a result, the authors 

stressed the observation of a substantial post-peak capacity in terms of both displacements 

and strengths.    

 Al Shawa et al. (2012) [109] performed 34 shaking table tests on a tuff masonry u-

shaped structures composed of a single façade with two transversal walls finding interesting 

results regarding the influence of input motion on the overturning of the façade. 

 A more recent investigation, on a u-shaped non-symmetric configuration, was 

conducted in 2017 by Candeias et al. [134] aiming at assessing the out-of-plane behaviour 

of two URM structures  by  means  of  shaking  table  testing. The prototype was composed 

of one main gable wall and two non-symmetric return walls. A uniaxial seismic input was 

increasingly applied in the direction perpendicular to the main gable wall up to failure.  

 More recently, Meriggi et al. (2019) [48] performed shaking table tests on two full-

scale wall specimens built in tuff and stone masonry in out-of-plane bending. 

 

2.3.2 In Situ Tests 

 On  the  other  hand,  the  out-of-plane  behaviour  of  masonry  structures  has  also  

been assessed by means of in-situ experimental testing. However, the literature regarding 

this topic is quite limited.  

 The first in situ experimental campaign aiming at studying the OOP seismic 
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behavior of URM structures was carried out by Costa in 2002 [135], in which stone 

masonry walls were subjected to cyclic out-of-plane loading by means of an attached device 

composed of steel frames, aiming at discussing the role of testing techniques in the 

definition of adequate rehabilitation and strengthening procedures pre- and post-

earthquake.   

 Another in-situ campaign test was conducted by Tumialan in 2003 [136] in which 

seven masonry specimens were subjected to out-of-plane loading up to failure by means of 

a hand driven hydraulic jack. In particular, two of the seven specimens were tests as-built 

while the remaining five were tested after being reinforced.  

 In 2008 Arȇde et al. [137] performed an experimental in-situ campaign on 

traditional masonry houses abandoned after the 1998 earthquake that hit the Faial island of 

the Azores. In this experimental campaign, five different specimens were tested, aiming to 

study the OOP behavior and the efficacy of some of the strengthening techniques 

recommended for post-earthquake interventions.   

 In 2009 Dizhur et al. [138] developed an in-situ testing program under which airbag 

tests were performed on two non-load-bearing partition walls at the William Weir Wing of 

Weir House in Wallington. The walls were subjected to a uniform distribution of out-of-

plane  loading  and  unloading  by  means  of  an  arrangement  of  airbags,  placed  centrally  

and symmetrically to the walls in order to assess the stiffness degradation. One wall was 

tested in its as-built conditions, and the second was retrofitted with carbon fiber-reinforced 

polymers (CFRP). Testing confirmed that the boundary conditions in real buildings can 

significantly affect the experimental response and also confirmed that the FRP solution is 

an excellent low-invasive option for seismic strengthening of unreinforced masonry 

buildings. A similar investigation was later conducted by Ismail et al. [139] aiming at 

evaluating the out-of-plane behaviour of strengthened masonry structures. Masonry walls 

from a historic house in New Zealand in as-built conditions and strengthened with near 

surface mounted twisted steel bars were tested in-situ by means of an airbag system. An 

additional laboratory experimental programme was conducted for the validation of the 

results obtained in-situ. 
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3.  TECHNICAL REGULATIONS  

 

 Despite the importance of OOP mechanisms, only a few international regulations 

implement reliable assessment procedures to evaluate the safety factors against these 

mechanisms, in some cases, based on empirical or oversimplified approaches. For a  

comprehensive review of this topic, the reader is referred to Sorrentino et al. [140].   

 This section presents a brief description of the procedures implemented in the 

European regulations (Eurocode 8), the Italian (NTC18), and the American (ASCE/SEI 41-

13) codes. The symbols have been homogenised for consistency by taking Eurocode 8 [25] 

as the main reference. 

 

3.1 Eurocodes 

 Eurocode 8 (EC8 2004) reports in Section 9 specific rules for masonry buildings. 

In particular, in Section 9.6, it is established that for the verification of safety against 

collapse, the design resistance of each structural element should be evaluated in accordance 

with Eurocode 6, which is not specific for seismic action and involves a strength approach 

any one of three methods (Eurocode 6: Design of Masonry Structures. 2005 - Section 6.4.1) 

which are discussed below. 

 Following EC6, the first method to assess OOP mechanisms consists of using a 

capacity reduction factor Φ which considers the effects of slenderness and the eccentricity 

of vertical loads due to initial eccentricities and the earthquake inertia forces (EC6. 2005 - 

Section 6.1.2). A second method, included in EC6 (EC6 2005, Section 6.3.1), follows the 

FBA. More specifically, the horizontal and vertical design moment MEd per unit length and 

height of the wall, respectively, is calculated taking into account the panel boundary 

conditions and the wall aspect ratio. Values of the bending coefficients are suggested in the 

code (EC6 2005, Annex E) as a function of the orthogonal ratio, μ, of the design flexural 

strengths of the masonry and referring to 12 fully restrained/simply-supported/free-edge 
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boundary conditions. The design value of a masonry wall's OOP resistant moment, MRd, 

evaluated independently in the two main masonry directions,  depends on the panel 

boundary conditions and the design flexural strength of masonry in that direction. The 

beneficial impact of the vertical stress may be taken into account when a vertical load is 

present, and vertical bending is being considered. 

Finally, EC8 (2004, Section 4.3.5.2) suggests evaluating the design value of uniform lateral 

load to the panel, equivalent to inertia forces, as Sa/q, where Sa is the elastic spectrum and 

q = 2.0 is the behavior factor for non-structural elements [140].     

 

 

3.2 ASCE/SEI 41 (2017) 

 In the USA, OOP performance of URM walls of existing buildings is addressed in 

ASCE/SEI 41 (2017, Section 11.3.3). As required by Section 7.2.11 of ASCE/SEI 41, out-

of-plane stability of URM walls shall be evaluated for out-of-plane inertial forces by 

considering components to span vertically between diaphragm levels when effective wall-

to-diaphragm connections are present, or to span horizontally between intersecting walls, 

columns, or pilasters, or to span with two-way action.   

 According to ASCE/SEI 41 (2017), which gives the acceptance criteria for URM 

walls subjected to OOP actions, for the Immediate Occupancy Structural Performance 

Level, flexural cracking in URM walls caused by OOP inertial loading shall not be 

permitted. On the other hand, flexural cracking caused by OOP inertial loading shall be 

permitted for the Life Safety and Collapse Prevention Structural Levels, provided that the 

cracked wall remains stable during dynamic excitation. Moreover, for the Collapse 

Prevention Structural Level, vertical-spanning walls should have a height-to-thickness ratio 

less than or equal to the tabulated values depending on the position of the wall up the height 

of the building and the spectral pseudo-acceleration at T = 1.0 s. These values are derived 

from the tests ABK (1984) conducted on vertically spanning walls. The code also discusses 

the role of non-near-source and near-source ground motion, for which these values are 

sometimes unconservative. Moreover, the role of the “scale effect” (the thicker of two walls 

with the same slenderness ratio is more stable) and the position of the intermediate cracks, 
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which often do not occur at the mid-height [97], is also discussed. Finally, the code specifies 

the acceleration, a, for which the wall needs to be checked:  

 max 4 ( 0.2 ); 1 0.1= =ea S T s   3.1 

where χ is the factor for calculating the OOP wall forces, equal to 1 for collapse prevention, 

1.3 for life safety and 2 for immediate occupancy, and acceleration are measured in g. 

 

3.3 Italian technical standards (2018) 

 Italian code (NTC2018), in the chapter about masonry new-construction buildings, 

accounts for vertical bending alone. The formulation is similar to the capacity reduction 

factor Φ of EC6. In addition, the Italian code provides the design acceleration value to use 

in the checks.  

 A more comprehensive methodology is reported in the section on existing 

buildings, and the commentary on the Italian Code (CSLLPP 2019, Section C8.4) 

recommends the assessment of local-collapse mechanisms. This approach starts from the 

rigid-body approach studied by Giuffrè (1996) and is discussed in [13], [93]. In particular, 

the commentary on the Italian Code generalizes the displacement-base assessment to any 

OOP mechanism, and it is based on a series of theoretical and experimental studies on a 

large number of possible ultimate configurations compatible with external boundary 

conditions [64], [101], [144]. In addition, later studies underlined the possibility of 

considering stabilising effects of compressive strength involving an indentation of the pivot 

point along the contact section and of friction stresses due to the interlocking with 

transverse walls without changing the fundamental framework [22]–[24], [30], [93], [108], 

[145].  

 Each collapse configuration, defined by the displacement dk of a control point, is 

studied in terms of the pushover curve, and the collapse load multiplier λ is calculated based 

on the Virtual Work Theorem. The curve starts with the static horizontal multiplier λ0, a 

non-dimensional value of the acceleration necessary to activate the rocking mechanism 
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(under the hypothesis that the system's behavior is rigid). It ends when the load multiplier 

equals zero, and the instability is reached. Then, following the capacity spectrum method 

(Fajfar 1999) the pushover curve is defined, assuming the displacement shape to be virtual 

displacements at the initial configuration. Subsequently, the displacement, dk,  is converted 

in the equivalent spectral displacement, d*, by the following transformation:  

2

i x,i

i
k

x,k i x,i

i

P

d* d
P



=
 




 3.2 

being δx,i the virtual horizontal displacement of the point of application of the generic i-th 

weight force Pi and δx,k the virtual horizontal displacement of the control point k. Than, the 

equivalent spectral acceleration is given by:  

g (d*)
a(d*)

e*


=  3.3 

where e* is the fraction of participating mass of the mechanism.  

 The commentary on the Italian Code suggests two equivalent static procedures: 

force-based and displacement-based. For the damage-limitation Limit Stat (DLS) the force-

based procedure involves the following checks:  

 0 1* max ; ( ) g ea a S S T   3.4 

with a0* the acceleration capacity of the mechanism at rest, Se(T1) the DLS horizontal 

ground acceleration response spectrum evaluated at the fundamental period T1, of the 

building in the considered direction, whose modal participation factor is λ  and whose mode 

ψ is evaluated at the centroid of the mechanism’s restraints, and S is the site response 

coefficient. The second acceleration demand inside the curly brackets needs to be checked 

if the local mechanism involves a portion of the building at a specific height, where the 

acceleration is generally amplified with respect to the free field.  

 The commentary to the Italian Code suggests simplified formulations to estimate 

the modal building parameters. For the Life-Safety Limit State (LLS), the design ground 
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motion parameters are divided by a behavior factor q=2.0. In the case of LLS a, 

displacement-based assessment is also possible.  The spectral displacement capacity, du*, 

is the minimum between 40% of the mechanical instability displacement and the 

displacement which corresponds to a local instability of the structural element. The 

procedure involves the following checks:  

2
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where SDe(TS) is the elastic displacement response spectrum evaluated at the mechanism 

secant period TS, equal to  

*
2

*
= S

S

S

d
T

a
  3.6 

with dS* = 0.4 du*, and aS* is the acceleration of the response curve for d* = dS*. The two 

procedures have been studied in Al Shawa O. et al. (2012) where the displacement-base 

procedure proved to be less scattered and less conservative. 

 

3.4 Assessment procedures  

 Different assessment procedures have been proposed in the literature, and 

implemented in the current national (and international) regulations, based on the results of 

nonlinear static analysis. All these procedures are based on approximating the real multi-

degrees of freedom (MDOF) system by means of an equivalent simple oscillator with a 

single degree of freedom (SDOF system). However, depending on how this SDOF system 

is defined, the procedure can be distinguished in: i) capacity spectrum method (CSM), 

according to which the equivalent SDOF system consists of an elastic oscillator with a 

secant stiffness and an equivalent viscous damping and ii) N2 method (adopted in NTC18) 
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which consider elasto-plastic SDOF systems with initial stiffness and evaluate the 

displacement demand through constant-ductility inelastic spectra. Presently, the N2 method 

is the most popular method to assess the seismic performance of existing buildings. 

Nevertheless, it has yet to be fully explored in the case of irregular URM buildings and 

URM buildings without rigid diaphragms. A brief description of the N2 method, as 

implemented in the Eurocode and Italian standards, is reported in the following.   

  The first step of the procedure consists of defining a non-linear SDOF system with 

effective mass expressed by:  

* = i im m f  3.7 

whose constitutive curve is obtained by dividing the base shear force (𝑉𝑏) and the 

displacement of the control point (d) of the real MDOF system by the modal participation 

factor defined as follow:  

2* / =  i im m  3.8 

with 𝑚𝑖 the mass at the i-th level and 𝜙𝑖 a predefined form of lateral displacements, 

normalized to 1 at the control point, generally considered coincident to the fundamental 

mode of vibration in the load direction. After that, an equivalent nonlinear SDOF system 

with peak strength Fy and ultimate displacement du* is first defined according to the 

following equations:  

,max
=



b

y

V
F  3.9 

*=


m
u

d
d  3.10 

being Vb,max and dm the peak-strength and the corresponding displacement of the real 

MDOF system (Figure 24a). The yield displacement (dy*) is evaluated by imposing an 

energetic equivalence between the non-linear and the bi-linear system. 
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(a)                                                             (b)  

Figure 24 - Seismic assessment procedure performed through the application of a) N2-method for  

the evaluation of the SDOF system and b) the capacity spectrum method for the evaluation of the 

displacement demand 

 The bi-linear SDOF system is drawn in the spectrum acceleration (𝑆𝑎) – spectra 

displacement (𝑆𝑑) space, together with the elastic spectrum (Figure 24b). In this space, the 

parameters characterizing the SDOF system are the yield acceleration 𝑆𝑎𝑦 = 𝐹𝑦/𝑚∗ and 

displacement 𝑆𝑑𝑦 = 𝑆𝐴𝑦𝑇2/(4𝜋2). The elastic acceleration (𝑆𝑎𝑒) and displacement (𝑆𝑑𝑒) 

of the equivalent elastic system are determined by the intersection between the line 

corresponding to the period 𝑇 = 2𝜋√𝑚∗𝑑𝑦
∗ /𝐹𝑦 and the elastic spectrum. Consequently, the 

reduction factor (𝑅), defined as the ratio between the elastic spectrum and the inelastic 

spectrum, results: 𝑅 = 𝑆𝑎𝑒/𝑆𝑎𝑦. Known 𝑅, assuming a relation 𝑅 = 𝑅(𝜇, 𝑇) with 𝜇 the 

ductility demand, the displacement demand of the non-linear system is equal to 𝑆𝑑 =

𝜇𝑆𝑑𝑒/R.   

/=d DeS S R  3.11 

 It is worth mentioning that all seismic assessment procedures, including the N2 

method, have been developed for reinforced concrete frame structures, then extended to 

URM masonry structures through their adoption in the international codes. However, URM 

structures present very different ranges of periods and dissipation mechanisms if compared 

to those pertinent to reinforced concrete constructions, strongly depending on the failure 

mechanism activated [17], [54]. Therefore, a reliable prediction of the inelastic 
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displacement demand should be based on cyclic pushover analyses rather than monotonic 

analyses. On the other hand, international regulations do not consider this issue, only 

explicitly considering the structural period and ductility. This may result in underestimating 

the displacement demand, mainly for buildings with short periods, more sensitive to the 

hysteretic dissipation capacity [17]. In order to find a solution to this issue, recently 

Guerrini et al. [147] analysed a large number of URM prototypes characterized by different 

hysteretic behaviours proposing, as a result of that study, an improved -R-T relationship 

related to the global hysteresis cycles of the structure evaluated by performing cyclic 

pushover analyses.  
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4. DISCRETE MACRO-

ELEMENT METHOD (DMEM) 

 

 This section presents a novel simplified approach for the seismic assessment of 

URM structures initially proposed by Caliò et al. [92] and subsequently upgraded in 

numerous works, as briefly described in the following. Such a modelling strategy has been 

implemented in the structural software 3DMacro and HiStrA [61].   

 Starting from the pioneering work in 2004 [148], a research team at the University 

of Catania proposed a new original Macro-Element Modelling strategy. This approach was 

based on the subdivision of the structure into several macro-portions, each represented by 

a shear-deformable quadrilateral, interacting with the adjacent elements through a nonlinear 

zero-thickness discrete interfaces.  

 The first implementation of the DMEM approach was based on a 2D element [92], 

able to simulate the main IP failure mechanism of a masonry panel, not being able to 

describe the OOP behavior. To overcome this limit, the macro-element was improved to 

investigate OOP response of URM structure by developing a three-dimensional macro-

element, able to simulate the interaction between the in-plane and OOP nonlinear responses 

of masonry walls or curved elements [149]. The latter elements, used to model arches and 

vaults, are fundamental in the buildings' local and global static behaviour, especially in the 

monumental ones [150], [151]. In this 3D formulation, the base element is a shell macro-

element characterized by an irregular geometry, variable thickness along the element, and 

skew perimetral interfaces, allowing the model to discretise single or double-curved 

geometries. Both experimental and numerical validations showed the capability of the 

proposed approach to be applied to predict the static nonlinear response of URM structures 

under different loading conditions [151]. A more recent implementation was conducted to 

assess the seismic behaviour of URM structures subjected to earthquake excitations by 

introducing a consistent or lumped mass matrix [152]. As demonstrated [57], the DMEM 
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strategy showed its capability to simulate dynamic response characterised by combined in-

plane/OOP failure mechanisms. The limited number of DOFs associated with each macro-

element makes this approach highly efficient compared to the classical finite element 

formulations [17].   

 In its last formulation, the DMEM is able to describe the seismic behavior of URM 

structures characterised by complex and curved geometry, considering both the in-plane 

and out-of-plane response of masonry panels, under static and dynamic loadings.  

 In the following subsection, a brief introduction of the different DMEM 

formulations, already presented in the literature, is discussed. The newly P-Delta 

formulation, reported in Section 5, is implemented within the DMEM strategy.  

 

4.1 The 2D macro-element  

 In the initial two-dimensional formulation of the DMEM model [92], each macro-

element (panel) can be represented by a simple equivalent mechanical scheme consisting 

of an articulated quadrilateral with four rigid edges connected by four hinges and two 

diagonal non-linear links. The kinematics of the element is described by four degrees of 

freedom, three related to the in-plane rigid body motion: two translations (U, V) (Figure 

25a,b), and one rotation (Φ) (Figure 25c), and the remaining DOF associated with the shear 

deformability of the panel in its plane (γ) (Figure 25d). 

 
  

 

(a) (b) (c) (d) 

Figure 25 - Degrees of freedom of the basic 2D macro-element 
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 The interaction between adjacent panels is enabled through zero-thickness linear 

interface elements (Figure 27a). Each interface comprises a discrete distribution of non-

linear links: one link placed parallel to the edges of the connected panels, which governs 

the sliding behavior, and a discrete distribution of non-linear links perpendicular to the 

edges, responsible for the membrane and flexural behavior. The kinematic of each interface 

element is described by six local degrees of freedom, two along its length and the reaming 

four in the perpendicular direction, representing the relative displacement between the 

connected panels, and directly related to the panels’ DOFs, and not requiring additional 

DOFs (Figure 26).  

 

Figure 26 - Local degrees of freedom of the interface  

 The adopted model has the advantage of allowing the interaction with the adjacent 

elements along the overall perimeter (Figure 27a), making it possible to use the model with 

different mesh discretisation, when necessary for a better description of the failure 

mechanism. It is worth noting that a more detailed response and a better representation of 

the collapse mechanism are obtained when using a more discretised mesh.  

  The DMEM describes masonry as a continuum and homogeneous material (Figure 

27b). However, its mechanical scheme also allows modelling brick-masonry at the 

mesoscale level, in which each unit is modelled by a single macro-element, and mortar 

joints are modelled by the interface (Figure 27c) [58]. Although mesoscale DMEM 

discretisation requires a significant increment of DOFs, it remains significantly lower than 

that required by FEM mesoscale strategies presented in the literature [153].  

node i node j 
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(a) 

 

(b) 

 

(c) 

Figure 27 – DMEM strategy: (a) equivalent mechanical scheme, (b) Macro-scale and (c) 

mesoscale  discretisation of a brick-masonry panel. 

 The geometric consistency of the DMEM also allows an efficient simulation of 

infilled frame structures employing a hybrid approach in which the beams are modelled 

with inelastic frame elements and the infill is modelled through a mesh of plane macro-

elements [154].     

 The 2D macro-element has been conceived for the simulation of the non-linear IP 

response of masonry walls when subjected to horizontal loading. It is worth noting that 

each of these IP mechanisms, namely flexural, shear diagonal and shear sliding, are 

governed by a specific set of non-linear links after properly calibrating them. In particular, 

the IP flexural mechanism, associated with the rocking of masonry in its plane, is simulated 

by the discrete distribution of non-linear links orthogonal to the plane, denoted as 

transversal N-links (Figure 28a-b). The shear-sliding mechanism, related to the slipping of 

masonry along the interface, is controlled by the single non-linear link placed along the 

length of the interface elements (Figure 28c-d). Finally, the two diagonal links simulate the 

shear diagonal mechanism associated with the formation of diagonal cracks (Figure 28d-e) 

caused by tensile principal stresses in the case of irregular masonries or sliding at the bed 

joints in regular brick bonds. To enable a reliable simulation of the masonry in-plane 

response, robust and objective calibration procedures have been developed to evaluate the 

mechanical properties of each link typology based on the macroscale mechanical 

parameters of masonry and the geometry of the panel.  
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(a) (c) (e) 

   

(b) (d) (f) 

Figure 28 - IP mechanisms of masonry structures and corresponding simulation using DMEM 

approach: (a, b) flexural, (c, d) shear-diagonal, (e, f) shear-sliding 

 

4.2 The spatial irregular macro-element 

 The 2D macro-element allows the simulation of a masonry wall's seismic behavior 

when loaded in its plane but ignores the OOP response. For these reasons, its use is 

recommended only for structures that show a box-type behavior. To overcome this limit, 

the macro-element was upgraded by introducing the needed degrees of freedom and 

additional sets of non-linear links to simulate the OOP collapse mechanism [151].  

 The mechanical scheme of the 3D macro-element is still represented by an 

articulated quadrilateral of four rigid plates connected by hinges and a single diagonal non-
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linear link. Its kinematics is now governed by seven DOFs that describe the IP and OOP 

rigid body motion and the IP shear deformability [150].   

 An additional upgrade was conducted to represent curved masonry structures, such 

as vaults or domes, using three-dimensional panels with irregular geometry whose average 

surface belongs, by hypothesis, to a plane. Figure 29 shows the overall evolution of the 

presented macro-element. 

  
 

(a) (b) (c) 

Figure 29 - DMEM evolution: a) Plane Element, b) Spatial Regular Element, c) Spatial irregular 

element 

 The discretization of curved structures is made using two different sets of grids. The 

first set of grids is composed of curved lines defined by means of horizontal planes (red 

lines in Figure 30a) distributed along the height of the masonry element. On the other side, 

the second set of grids is also composed of curved lines which are defined by vertical planes 

that rotate around a fixed axis in the masonry element (blue lines in Figure 30a). Based on 

this discretization, a single computational element (Figure 30b) is characterized by four 

vertex vi (i=1,…4) together with their corresponding thickness ti and unit vector mi, normal 

to the element surface. The parameters that define each discretized element are better 

illustrated in Figure 30c. In this regard, the central plane surface of an irregular macro-

element is defined by connecting the four middle vertexes of the discretised element, as 

shown in Figure 30d. The thickness of the irregular macro-element is obtained by 

projecting the original configuration of the discretised element into the newly defined 
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central plane surface.  If  the orientation of the thickness of each vertex is coplanar to the 

initial unit vector of the discretised element, the definition of the unit vector ni 

corresponding to the irregular macro-element is required (Figure 30e). 

 

(a) 

 

(b) 

 

                       (c)                                         (d)                                           (e) 

Figure 30 – Modelling of curved structures: a) discretization procedure, b) discretised element, c) 

middle vertexes, d) central surface, e) unit vectors of irregular macro-element (Figure from [155], 

[156]) 

 The  mechanical  scheme  of  this  irregular  macro-element  presents  no  major 

modifications with respect to the regular one. It is still composed of four rigid plates 

connected by four hinges and one diagonal nonlinear link.  

 The connection between adjacent elements is still conducted by means of interface 

elements, which is now discretised into a matrix of 𝑚 × 𝑛 non-linear links. Moreover, the 

interface elements are endowed with additional OOP shear-sliding nonlinear links required 

to control the OOP sliding mechanism and the torsional behavior around the axis 
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perpendicular to the plane of the interface. Consequently, the kinematic of the interface 

element is now fully described by twelve degrees of freedom (six for each of the two 

plates). The first six describe the flexural behavior (Figure 31a), while the remaining is the 

sliding behavior, both in-plane and out-of-plane (Figure 31b). The detailed kinematics 

description of the irregular element is reported in Section 5. In the following some details 

on the macro-element constitutive calibration are reported. 

 

(a) 

 

(b) 

Figure 31 - a) Flexural and b) sliding Lagrangian parameters of the three-dimensional interface 

 

4.3 Calibration of the non-linear links  

 This section reports the calibration procedure associated with the nonlinear links 

concerning the regular two-dimensional or three-dimensional spatial panels. Nevertheless, 

the calibration of the nonlinear links related to irregular three-dimensional panels presents 

no theoretical modifications but a more sophisticated procedure due to geometrical 

complications, which is beyond the scope of this thesis. A detailed description of the 

calibration procedure for irregular macro-elements can be found in  [155].    

 According to the latter reference, macro-element nonlinear links are divided into: 

- Transversal (or orthogonal) nonlinear links (Figure 32a): they simulate the axial and 

bi-dimensional flexural responses of masonry structures; 

- Diagonal nonlinear links (Figure 32b): it rules the in-plane shear diagonal behavior; 
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- In-plane sliding links (Figure 32c): they describe the sliding in-plane behavior due to 

the slipping of mortar joints; 

- Out-of-plane sliding links (Figure 32d): they describe the out-of-plane sliding behavior 

due to the slipping of mortar joints out-of-plane and also the torsional behavior. 

 The number of the transversal nonlinear links, adopted in the interface elements, is 

selected according to the desired level of accuracy of the non-linear response. 

 

    

                             (a)                   (b) 

  

                                              (c)                    (d) 

Figure 32 - Nonlinear links; a) Transversal nonlinear links, b) Diagonal nonlinear link, c) In-

plane sliding links, d) Out-of-plane sliding links 
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4.3.1 Transversal nonlinear links 

 The definition of the elastic and nonlinear mechanical properties of this set of links 

is based on a fibre calibration procedure in which a single equivalent link represents a 

masonry strip corresponding to two adjacent panels, as illustrated in Figure 33a.  

 The calibration procedure comprises two steps. First, each masonry strip 

representing the two adjacent macro-elements (e.g., panels l and k) in a given material 

direction is replaced by two nonlinear links in series. Then, each couple of transversal 

nonlinear links in series is replaced by a single equivalent nonlinear link, as depicted in 

Figure 33b, following the simple rules described in [92]. It is worth noting that the 

behaviour of masonry as an orthotropic material is conducted by a separate calibration of 

horizontal and vertical interface elements using the corresponding mechanical properties in 

the given direction.   

 Following the fibre-discretisation strategy, the initial stiffness of each link in series 

is related to the axial rigidity of the masonry strip to which it corresponds, which is 

characterised by the masonry Young’s modulus En (in the considered direction), the 

influence area Asn corresponding to the panel cross-section discretisation, and Ln the half-

length of the panel in the direction parallel to the link (with n=l, k). Equations 4.1 and 4.2 

provide the initial stiffness Kin of each of the links in series and the initial stiffness Ki of 

the equivalent link, respectively.   

 The yielding forces in tension Fytn and compression Fycn of each transversal link in 

series (Eq. 4.3 and Eq. 4.4) are related to their influence area and the tensile and 

compressive strengths of the corresponding panel, respectively. If two adjacent panels 

present different tensile or compressive strengths or different geometry, the yielding forces 

in tension Fyt and compression Fyc of the equivalent link are defined as the minimum and 

maximum values between the two corresponding forces of the links in series as expressed 

in Eq. 4.5 and 4.6.   

 The yielding force in compression of the link equivalent to the two links in-serie 

corresponds to the minimum, in terms of absolute value, between their two compression 

strengths.    
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(a) (b) 

Figure 33 - Transversal nonlinear links: a) definition of masonry strip; b) fibre calibration 

procedure 

 The nonlinear behavior of the transversal links can be characterised according to 

any uniaxial constitutive law. In HiStrA software [61], three different constitutive laws for 

tensile and compressive responses have been adopted (Figure 34). The first one is related 
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to an elastoplastic behaviour in which the post-yielding stiffness is defined by means of a 

ratio αt or αc, as illustrated in Figure 34a. Two other constitutive laws are defined in which 

the tensile response is simulated by means of linear (Figure 34b) and exponential (Figure 

34c) softening curves in which the ultimate displacement for  tension  uut  and  compression  

uuc are identified by defining the corresponding values of the yielding force (Fyt, Fyc) and 

fracture energy (Gt , Gc). At the same time, the response in compression can be simulated 

by two curves, linear (Figure 34b) and parabolic (Figure 34c). The cyclic behaviour 

associated with the transversal nonlinear links was adapted from the hysteretic model 

introduced by Takeda [157] and implemented in OpenSees [158]. The  hysteretic  model  

is  characterised  by  a  coefficient  that  modifies  the  stiffness governing the unloading 

cycles. This unloading coefficient, denoted as β, can present a value ranging between 0 and 

1. Figure 35 illustrates the cyclic behaviour of a transversal nonlinear link in which the 

tensile and compressive responses are ruled by exponential and parabolic curves, 

respectively. Three different unloading behaviours can be observed in this figure. The first 

one corresponds to an unloading cycle with an initial stiffness, and it is characterised by a 

β coefficient equal to 0. This behaviour is described throughout segments BC and EF for 

tension and  compression,  respectively.  The  second  one  corresponds  to  an  unloading  

cycle  with  an intermediate stiffness, in which the β coefficient presents a value different 

to 0 or 1. In Figure 35,  this  unloading  cycle  in  tension  is  depicted  by  segment  GH,  

whereas  in  compression segment IJ applies. The last unloading cycle is governed by a 

stiffness oriented to the origin (secant stiffness), and the β coefficient presents a value equal 

to 1 as depicted by segments KO and  LO.  It  is  worth  noting  that  tensile  and  compressive  

behaviours  may  present  different unloading cycles; and therefore, their corresponding 

unloading coefficient βt  and βc  are defined independently. Once a nonlinear link reaches 

a zero force, the unloading cycle finishes, and the loading in the opposite direction begins. 

As illustrated in Figure 3.14, this reloading is oriented to the maximum displacement 

reached in the previous cycle. Segments CD, HE, and OI correspond to the compressive 

reloading due to unloading cycles in tension based on initial, intermediate, and secant 

stiffness, respective. On the other hand, segments FB and JG are the corresponding tensile 

reloading cycles associated with compressive unloading. 
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                    (a)                                            (b)                                             (c)  

Figure 34 - Constitutive laws for transversal links: a) elastoplastic, b) linear-softening, c) 

exponential and parabolic softening [156] 

 

Figure 35 - Cyclic constitutive model of the transversal nonlinear links 

 

4.3.2 Diagonal Shear nonlinear link 

 The diagonal shear nonlinear link describes the in-plane shear failure mechanism, 

which can be associated with tensile cracking along with the principal directions of the 

material (diagonal shear failure) or sliding along with bed mortar joints. The diagonal shear 

nonlinear link has the fundamental role to preside over the diagonal shear failure collapse. 

The elastic properties of this link are calibrated by enforcing an equivalence between a 
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finite portion of masonry with pure shear deformability and a single macro-element.   

 The masonry is characterised by the shear modulus G, the transversal area At, the 

panel height h, and base b. Applying a shear force V on a masonry panel discretised by a 

single macro-element (Figure 36b), the deformation δ is given by Eq. 4.7 for the 

homogeneous media (δhom) and the corresponding relationship in the macro-element is 

reported in Eq. 4.8 (δdis). The initial elastic stiffness kD of the diagonal link is obtained by 

equating Eq. 4.7 and Eq. 4.8 and it is expressed in Eq. 4.9 in which θ is defined as 

arctan (𝑏/ℎ). It is worth noting that as the global in-plane shear response of an URM wall 

is simulated by two different set of nonlinear links, the value kD depends on a shear factor 

denoted as αs, which ranges between 0 and 1. A value of αs equal to 1 means that the global 

initial stiffness is entirely associated with the diagonal link, and the in-plane sliding links 

are assumed to be rigid. On the other hand, if αs presents a value lower than 1, the global 

in-plane shear response is given by the contribution of diagonal and sliding in-plane 

nonlinear links. For αs = 0 the blocks behave rigidly. Thus, there is no diagonal shear 

deformation.  

hom

t

V h

G A


 =


 4.7 

dis s2

D

V

cos k
 = 


 4.8 

t
D 2

s

G A
k

h cos


=

 
 4.9 

 For the shear failure of URM piers associated with diagonal cracking many different 

yielding criteria can be adopted [159], [160] all accounting for a shear resistance strongly 

dependent on vertical compression stresses in the wall, σ0.   

 In the macro-element strategy  Mohr-Coulomb and Turnsek-Cacovic criteria [159] 

are considered. These criteria consider the confinement condition due to normal stress to 

estimate the overall shear-diagonal capacity of URM structures. In the case of Mohr-
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Coulomb criterion, which has been accepted by Eurocode 6 (Design of masonry structures) 

[141] the shear strength is defined according to Eq. 4.10  

( )v 0 y0 d nf f = +   4.10 

Where fy0 is the shear strength under zero compression stress, μd is a friction coefficient 

defining the contribution of compressive stresses σn. The value of fy0 and μd should be 

determined by experimental tests.  This criterion is the same suggested for the description 

of the sliding-shear failure, although characterised by appropriate values of fy0 and μd that 

in general do not coincide with the corresponding values that govern the sliding-shear 

failure (see Section 4.3.3).   

 In the proposed macro-modelling approach, the two mechanisms are controlled 

separately.   

 Instead, in the case of  Turnsek-Cacovic criterion, the shear strength of the masonry 

piers, is defined according to Eq. 4.11  

( ) 0
v 0 t

t

f f 1
1.5 f


 = +


 4.11 

Where ft is the tensile strength of masonry, σ0 is the average compression stress due to 

vertical load N.  

 The yielding force of the diagonal shear link in the discrete macro-element strategy 

it is therefore equal to  

( )v 0 t

D

f A
F

cos

 
=


 4.12 

 Aiming at introducing a degrading behavior, the cyclic response of the diagonal 

nonlinear links is also governed by the hysteretic model introduced by Takeda [157]. 
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(a) (b) 

Figure 36 - Equivalence for the calibration of the diagonal nonlinear links: (a) finite portion of 

masonry with pure shear deformability, and (b) single macro-element 

 

4.3.3 Sliding nonlinear links 

 Alongside the diagonal shear behavior, the overall in-plane shear mechanism of 

URM structures is also associated with the slipping of mortar joints. This kind of shear 

mechanism is described as the relative motion between two adjacent elements and is 

governed by a set of three nonlinear links. One, denoted as in-plane sliding nonlinear link, 

is situated along the edges of the connecting interface elements and a couple of nonlinear 

links, known as out-of-plane nonlinear links responsible for the out-of-plane slipping of the 

mortar joints. It is worth noting that this couple of links simulate the nonlinear torsion 

response of URM structure. The initial stiffness Ks related to the sliding mechanism is 

associated with the panels' shear modulus G, the effective length defined as the summation 

of the half-length of adjacent panels (Lk/2 + Ll/2), and the influence area As of the 

corresponding nonlinear link. The expression which provides the initial stiffness Ks for in-

plane and out-of-plane nonlinear links is given by Eq. 4.13. It is worth pointing out that As 

represents the tributary area of the links, which is different for the in-plane and OOP links, 

coinciding with the entire contact area and the contact area of the half interface for the in-

plane and OOP links, respectively (Figure 37).  
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  Conversely, the out-of-plane shear mechanism is solely associated with the 

nonlinear links along the thickness of the interface element, and there is no need to 

introduce a shear factor in the out-of-plane direction. On the other hand, aiming at 

maintaining a suitable torsional elastic calibration, although maintaining a simplified 

calibration strategy, the torsional stiffness KΦ which governs the torsional response, is 

evaluated by enforcing an equivalence between a beam model and the corresponding 

macro-element model. Based on this equivalence, and once the elastic shear stiffness has 

been assigned,  it is possible to determine the distance d between the out-of-plane nonlinear 

links, whose expression is given by Eq. 4.16, to simulate the torsion response. The elastic 

torsional stiffness (Eq. 4.14) is associated with a torsional rigidity factor Jϕ given by  

Eq.4.15, in which s corresponds to the thickness of the panel, evaluated considering a 

rectangular elastic element of thickness s and width B. More detailed on the calibration of 

the out-of-plane sliding and torsional links can be found in [151].  

s
s

k l
s

G A
K

L L
(1 )

2 2


=
 

+  − 
 

 
4.13 

k l

G J
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L L

2 2





=
 

+ 
 

 
4.14 

4
3

4

1 s s
J B s 0.21 1

3 B 12 B


  
=  − −  

  
 4.15 

4

4

1 s s
d 2s 0.21 1

3 B 12 B

 
= − − 

 
 4.16 

 The shear sliding response of URM structures is associated with a frictional 

phenomenon along the mortar joints. Such a mechanism can be adequately described by 

means of a Mohr-Coulomb yielding criterion. Based on this approach, the current yielding 

force Fy of the in-plane and out-of-plane links is defined by defining the cohesion c and 
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friction coefficient µs of the masonry material, the current contact area A, and the normal 

force N  applied to the interface element as expressed in Eq. 4.17.  It is worth noting that 

the definition of the current contact area A of the sliding links is influenced by the behaviour 

of the discretised matrix of transversal links.  

y sF c A N=  +   4.17 

 The cyclic nonlinear behavior is characterised by an elastic perfectly-plastic 

constitutive model in which the unloading and reloading stiffness are equal to the initial 

one.  

  

(a) (b) 

Figure 37 -  Shear-sliding mechanism: (a) in-plane, and (b) out-of-plane nonlinear links and their 

corresponding tributary area 
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5. P-DELTA FORMULATION 

WITHIN DISCRETE MACRO-

ELEMENT METHOD 

 

 The main concern in OOP seismic behavior of masonry walls is the existence of 

large displacements (or equivalently rotations) during rocking motion, which might cause 

instability and eventually overturning of the structure. Therefore, the associated challenges 

behind this peculiar seismic behavior should be properly addressed with advanced 

analytical and numerical simulations that can capture, with the needed accuracy, the 

transient nonlinear dynamic behavior of rocking structures. After the activation of the 

rocking mechanism, the system response can evolve towards large displacements in this 

latter case, due to the typical slender geometry of masonry walls, the stabilising effects of 

vertical loads could progressively reduce until the achievement of the critical condition in 

which vertical loads will no longer play stabilizing moments. A rigorous description of 

geometrical nonlinearities, within the context of DMEM, would require the adoption of 

large displacement kinematics with the definition of the geometrical stiffness matrix and 

its step by step updating. Furthermore, a more complex theoretical formulation and, above 

all, a significant increase of the associated computational cost would also be required. 

Aiming at maintaining the benefits of the DMEM a simplified but robust and efficient 

P-Delta approach is proposed, leading to a reasonable accuracy for engineering applications 

while maintaining a simple theoretical formulation and, above all, a low computational 

effort. More specifically, the P-Delta effects are described by updating the element force 

vector applied to each macro-element, accounting for the additional moments produced by 

the membrane action directly applied to the element in its current configuration. Since the 

momentum equilibrium is performed for each macro-element, both the external forces and 
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the internal ones transferred by the interfaces must be considered.   

 The theoretical description reported in the following first provides a detailed 

description of the kinematics of the irregular macro-element, then provides the calculation 

of the additional loading contribution due to the P-Delta effects and the evaluation of the 

equilibrium conditions for each macro-element, including the P-Delta effects.  

 Finally, the new DMEM model, including P-Delta effects, is validated in the static 

field by comparing the results obtained using DMEM with those obtained by the analytical 

solution and some experimental tests presented in the literature. 

 

5.1 Element’s kinematic 

 In this section the kinematic of the irregular spatial macro-element is presented. As 

discussed in the previous chapter, each irregular macro-element is identified by four 

vertexes (v1,…,v4) which identify the plane of the element (π). A single macro-element is 

geometrically characterized by the length of each side (l1,…,l4) and internal angles (α1,…, 

α4), which characterise the element irregularity.   

 A local fixed reference system, referred to the global cartesian coordinates, is 

associated within each macro-element, with origin O and axis x,y and z, whose versors are 

indicated with i, j and k (Figure 38a) and such that:  

- The origin O coincides with the barycentre of the generic element (assumed coincident 

with the centre of mass); 

- i is directed like the side 1-2 of the quadrilateral and oriented in the direction that goes 

from vertex 1 to vertex 2; 

- j lies on the middle plane of the element, perpendicular to i and is oriented upwards; 

- k is perpendicular to the plane of the element and such as to form a right-handed triad 

with the other two; 

 The element kinematic is completely described by seven Lagrangian parameters 

only collected in the vector d (Eq. 5.1). The first six parameters (U, V, W, Φ,  Θ, Ψ), are 

related to the spatial rigid motion, three translations and three rotations associated to global 
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displacements of the origin of the local reference system. A further internal Lagrangian 

parameter γ, is related to the generalized macro-element shear deformation and has been 

associated with the angle variation between the panel edges connecting the vertex v1 to 

vertex v2 and the vertex v1 to vertex v4, respectively (Figure 38b). The zero-thickness plane 

interfaces i (i=1,..4), (Figure 38a), whose orientation is associated with unit vectors ni 

(i=1,..4), cut and identify the element along its perimeter and rule the connections with the 

adjacent elements. Different thicknesses can be considered at each of the panel’s corners 

(t1,..,t4) leading to direct and easy modelling of linear variable cross-thickness elements. 

Local reference systems en1, en2, en3 (n=1,..4) are also associated with each interface, as 

shown in Figure 38c, for the description of the interfaces’ kinematics. More details on the 

DMEM kinematics can be found in [150] [161]. It is worth noticing that no additional 

Lagrangian parameters are needed to describe the kinematics of interfaces. Therefore, the 

total degrees of freedom of the model are directly given by 7xN being N, the number of 

elements. This aspect strongly contributes to containing the model's computational burden.  

 T
d =    U V W  5.1 

   

(a) (b) (c) 

Figure 38 - 3D Discrete Macro-Model: (a) panels definition and local reference system ; (b) 

Lagrangian parameters of the panel; (c) Local reference system of the perimeter interfaces.[161] 

 Considering second-order linearised kinematics for the adopted macro-element, a 

direct expression between the displacements of the n-th vertex (n = 1,…,4) of the irregular 



VALERIA CUSMANO 

103 

 

quadrilateral ( vn
u ), in the local reference system, and the seven Lagrangian parameters (Eq. 

5.1), can be established as reported in Eq. 5.2. This relation is partially related to the rigid 

body motion DOFs and in part to the additional internal DOF associated with the 

generalised shear deformability.  

 vn 3x3 vn vnu I Ω Γ d;=       with (n = 1,…,4) 5.2 

being I3x3 a 3x3 identity matrix and Ωvn a matrix related to the rigid rotation of the element, 

defined as follows:  

vn

vn

vn vn

0 0 y

0 0 x

y x 0

vn
Ω

− 
 

=
 
 − 

 5.3 

with: xvn, yvn, the coordinated of the vertex  vn in the local reference system; 𝚪𝒗𝒏 (n=1,..4) 

a vector accounting for the contribution of the generalized shear deformation that, for each 

vertex, can be written as:  

4 2 1 3 4 1

4 2 4 3 4 1

0 0 l sin sin sin l sin

0 ; 0 ; l cos sin sin ; l cos

0 0 0 0

v1 v2 v3 v4
Γ Γ Γ Γ

−    −        
       

= = = −    = − 
       
              

 5.4 

Being αn (n=1,..4) the corner angles, which are measured at the middle plane of the element 

(Figure 38a). It is worth noticing that the generalized shear deformation is defined in the 

middle plane of the macro-element and is assumed independent of the z coordinate. 

 An intrinsic reference system (ξ, η) is introduced (Figure 39c) aiming at evaluating 

the displacement of any point P(x,y,z) belonging to the volume of the element (Figure 39a). 

The point P is projected on the plan of the element (π), identifying the point Pπ(x,y) in 

Figure 39b, which corresponds to Pπ(ξ,η) in the intrinsic space (Figure 39c) through the bi-

linear polynomial transformations (Eq. 5.6). According to the iso-parametric formulation, 

the displacement of the point Pπ(ξ,η) in the local reference system can therefore be obtained 
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by interpolating the displacements of the vertexes using the interpolating function in Eq. 

5.6, and the results are reported in Eq. 5.5.  

v1 v4

v1 v4

v1 v4

N ( , ) 0 0 . . . N ( , ) 0 0

( , ) 0 N ( , ) 0 . . . 0 N ( , ) 0

0 0 N ( , ) . . . 0 0 N ( , )

v1 v1

v2 v2

v3 v3

v4 v4

3x3

3x3

3x3

3x3

I Ω Γ

I Ω Γ
u d

I Ω Γ

I Ω Γ

   

  =      

   

 
 

 
 

 
 

 
 

  
 

 5.5 

Where:   

v1
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v3

v4

(1 )(1 )
, ) ;
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(

(
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N

 5.6 

Eq. 5.5 in compact form can be written as follows  

( ), ( , ) , ,

3x3 v1 v1

3x3 v2 v2

3x3 v3 v3

3x3 v4 v4

I Ω Γ

I Ω Γ
u( ) N d Ψ d

I Ω Γ

I Ω Γ

 
 
   =    =    
 
 
 

 5.7 

being ( ), ,Ψ     a 3x7 matrix (Eq. 5.8) collecting seven shape functions governing the 

element kinematics.  

( ) ( ) ( ) ( )1 2 7, , , , , , . . . , ,Ψ Ψ Ψ Ψ   =             5.8 

 Each shape function is a vector with three components that can be easily derived 

using Eq. 5.5. It is worth noticing that the shape functions depend on the shear deformation 

parameter and are unaffected by the local coordinate z. The independence on the z 

coordinate of the local reference system comes from the adopted shear kinematics, since 
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each plan parallel to middle plane π is characterized by the same shear deformation. It is 

worth noting that Eq. 5.7 is referred to local reference system in terms of the intrinsic 

coordinates but provides the displacement of any point of the macro-element in the global 

reference system.  

   

(a) (b) (c) 

Figure 39 – a) Spatial macro-element in cartesian coordinates, b) Macro-element’s middle plane, 

c) intrinsic iso-parametric reference system [161] 

 

5.2 Calculation of the equivalent external force vector 

 The vector u(ξ,η) expressed in Eq. 5.7, provides the displacement components in 

the local reference system for each point of the macro-element, given the generalized shear 

deformation independent of the local coordinate z. Considering a force distribution f(x,y), 

belonging to the middle plane of macro-element (π), the corresponding vector of equivalent 

forces F0, associated with macro-element degrees of freedom, can be evaluated through the 

external virtual work [162]:  

ve

A

L (x, y) (x, y)dATf u=   
5.9 

Being A the load application area and (x, y)u  is a virtual displacements field that in view 

of Eq. 5.7 can be written in terms of intrinsic coordinates and the virtual displacements (�̃�) 

corresponding to the adopted degrees of freedom, expressed in Eq. 5.1, as follow:  
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( , ) , ,u Ψ( )d  =     5.10 

In view of Eq. 5.9 and Eq. 5.10, the external virtual work can therefore be written as  

1 1 1 1

ve

1 1 1 1

L ( , ) ( , )J( , )d d ( , ) ( , , )J( , )d dT Tf u f Ψ d
− − − −

=        =                 ∀�̃�                  5.11 

Being J(ξ,η) the Jacobian of the transformation. Eq. 5.11 provides the vector of equivalent 

forces F0 for each macro-element for any load distribution applied the middle plane of the 

macro-element:  

1 1

1 1

( , ) ( , , )J( , )d dT
0F f Ψ

− −

=            5.12 

 If the force distribution is applied with a z eccentricity, with respect to the middle 

plane, the corresponding moment must be added to the vector F0, which accounts only for 

the loading distribution applied in the middle plane of the element.  

 The general expression reported in Eq. 5.12 can be evaluated according to the type 

of load distribution. In particular, we can distinguish between point, line, and area loads. 

 

5.2.1 Point loads 

 Considering a finite number n of external force Fj (j = 1, 2, 3, …, n) acting in as 

many points of the considered macro-element.  

j,x

j,y

j,z

F

F

F

j
F

 
 

=  
 
 

   with (j = 1, 2, 3, …, n) 5.13 

 The external virtual work (Eq. 5.11) can be written for the point loads as reported 

below  
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n n

j 1 j 1

ve (x, y) ( , , )L T T

j j
F u F Ψ d

= =

 
 =      

 
=             ∀�̃�   5.14 

 Therefore, the vector of equivalent forces F0,(7x1) in case of concentrated loads is 

expressed as follow:  

n

,(7x1),point

j 1

( , , )T

0 jF F Ψ
=

=                   5.15 

 

5.2.2 Line loads 

 Considering a line distribution load conditions along a line (Figure 40) whose 

parametric equations in the local reference system of the macro-element are known and 

expressed as a function of a single parameter, t, as reported in Eq. 5.16.   

  0 1

x x(t)
t t , t

y y(t)

=
→ 

=
             5.16 

The parametric expression of the three components for the load f(t) is given by:  

x

y

z

f (t)

(t) f (t)

f (t)

f

 
 

=
 
  

              5.17 

 

Figure 40 - Line distribution load condition (figure from [155]) 
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 The expression of the external virtual work is given by:  

T

veL (s) (s)dsf u


=                5.18 

Where s is the curvilinear abscissa. In order to solve the integral reported in Eq. 5.18 it is 

necessary to perform a change of variables to return to the integration domain [-1, 1]. It is 

worth noting that this methodology is valid for a line  of any shape for which the 

parametric equations are provided. For simplicity, a linear load distribution along a segment 

between the points P0(x0,y0) e P1(x1,y1) is here considered. For this particular load condition 

the parametric equations can be written:  

 
0 1

0 1

1 t 1 t
x(t) x x

2 2
P(t) t 1,1

1 t 1 t
y(t) y y

2 2

− +
= +

  −
− + = +



   5.19 

Carrying out the above change of variables, we thus obtain   

1 0x - x
dx = dt

2
            5.20 

1 0y - y
dy = dt

2
 5.21 

2 2ds = (dx) + (dy)    5.22 

from which  

2 2

1 0 1 0

1 L
ds (x x ) (y y ) dt dt

2 2
= − + − =  5.23 

where L is the distance between the two external points of the line  of application of the 

load. Therefore, the external virtual work will be given by: 
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1 1

T T

ve

1 1

L L
L (t) (s) dt (t) ( (t), (t), )dt

2 2
f u f Ψ d

− −

= =           ∀�̃�        5.24 

 Once again, it is necessary to change the reference system from cartesian to 

intrinsic. The expression of ξ(t) and η(t) are reported in Eq. 5.25  

 
0 1

0 1

1 t 1 t
(t)

2 2
t 1,1

1 t 1 t
(t)

2 2

− +
 =  + 

 −
− + =  +



 5.25 

 In this way there is a one-to-one correspondence between the points Z0(ξ0, η0) and 

Z1(ξ1, η1) in the intrinsic reference system (Figure 41b) and P0(x0, y0) and P1(x1, y1) in the 

local cartesian reference system (Figure 41a).  

 Therefore, the vector of equivalent forces F0,(7x1) in case of linear loads distribution 

is evaluated as follows:  

1

T

,(7x1),linear

1

L
(t) ( (t), (t), )dt

2
0F f Ψ

−

=             5.26 

 

                                      a                                                                   b                 

Figure 41 - Linear load distribution in a) Local cartesian and b) intrinsic reference system. 

(Figure from [155]) 
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5.2.3 Area loads 

Let us consider a load distribution along an area of application over the middle plane 

of the element. The load distribution is defined in the local reference system, denoting with 

p(x,y) the intensity of the load and with r(x,y) the unit vector which identifies the direction 

of the load point-by-point, it is possible to evaluate for the generic point of the macro-

element the three components of the load through the following expression:  

x

y

z

f (x, y) p(x, y) (x, y)

f (x, y) p(x, y) (x, y)

f (x, y) p(x, y) (x, y)

r i

r j

r k

 = 


= 
 = 

  5.27 

 For simplicity in the present study, it is assumed that the area load distribution acts 

on the entire surface of the element. Given the intensity and the direction of the loads at the 

vertexes, the load at each point of the element can be calculated through linear interpolation 

of the shape function Nvi(ξ,η) reported in Eq.5.6. The load can therefore be expressed in 

the intrinsic reference system as:   

( , ) p( , ) ( )f r  =     5.28 

With  

4

i i

i 1

p( , ) p N ( , )
=

  =       5.29 

4

i i

i 1

( ) N ( )r r
=

 =   5.30 

Being pi and ri the intensity and the direction of the load at the i-th vertex of the element 

(i=1,…,4).  

 Therefore, the external virtual work for an area load distribution can be written as: 
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1 1 4 4

ve i i i i

i 1 i 11 1

L p N ( , ) N ( , ) ( , , )J( , ) d dr Ψ d
= =− −

 
=            

 
        ∀�̃�          5.31 

 Finally, the equivalent the vector of equivalent forces F0,(7x1) in case of area loads 

distribution is evaluated as follows:  

1 1 4 4

,(7x1),area i i i i

i 1 i 11 1

p N ( , ) N ( , ) ( , , )J( , ) d d0F r Ψ
= =− −

 
=            

 
    5.32 

 A particular case when it deals with area load distribution is the calculation of the 

nodal forces equivalent to the self-weight. In this case, the expression reported in Eq. 5.32 

must be written under the hypothesis of the constant load direction and intensity 

proportional to the thickness, t(ξ,η), of the element in each point.  

( . ) t( , )f g =     5.33 

Where ρ is the mass volume density and g is the gravity acceleration whose modulus is 

equal to 9.81 m/s2. From Eq. 5.12 and Eq. 5.33 it follows that the vector equivalent to the 

area load distribution due to the self-weight can be evaluated as follow:  

1 1 4
T

,(7x1),mass

i 11 1

( , , )t( , )J( , ) d d0F g Ψ
=− −

=             5.34 

 Finally, the total equivalent force vector is obtained considering the contribution of 

each type of load distribution, as expressed below.  

,(7x1) ,(7x1),mass ,(7x1),area ,(7x1),linear ,(7x1),point0 0 0 0 0
F F F F F= + + +  5.35 

 More details on the equivalent external force vector can be found in [155]. 
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5.2.4 The additional loading contribution due to P-Delta effects 

 Let us consider a generic force field f(x,y) applied to a generic area A belonging to 

the middle plane of a macro-element, as represented in Figure 42 in which, for a sake of 

simplicity, is represented the resultant of the area load distribution (indicated as F) applied 

in its barycenter Q and (*) indicates the positions of nodes at the current configuration. The 

corresponding vector moment (𝑴𝑷−𝚫) describing the P-Delta effects, referring to the 

current configuration of the element identified by the current degrees of freedom d, is given 

by   

A

( ) ( (x, y) ) (x, y) dAP-Δ GM f u u f= −   
5.36 

Being x,y the coordinates of the loading application point referred to the element local 

system, u(x,y) the corresponding displacement field. In view of Eq. 5.7, Eq. 5.36 can be 

written as  

( )
1 1

G

1 1

( ) , , ( , )J( , )d dP-ΔM f Ψ Ψ d f
− −

=    −             5.37 

 Considering 𝐏𝑖 (i=1,..,4) the resultant of the internal forces that the macro-element 

receives from the other panels through the interface elements applied in the generic point 

cj
j j jc c c( , , z )  , the corresponding P-Delta moment is given by  

4

cj cj cj G j

j 1

( ) ( , , z )P-ΔM P u u P
=

 =   −    5.38 

Where ξcj, ηcj and the intrinsic coordinates of the projection of cj in the mid-plane of the 

element and zcj the eccentricity of cj from that plane.  

Considering both the external and along-interface forces applied to the elements, 

the total P-Delta moment for each macro-element can be expressed as:  
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( ) ( )
P-Δ P-Δ P-Δ

M M f M P= +  5.39 

 Finally, The P-Delta vector moment 𝐌𝐏−𝚫 expressed by Eq. 5.39 is related to the 

current configuration of the element and is considered through an additional external 

element vector forces, ( )
P-Δ

F u , as follows  

T

P ,(1 3)( ) 0 0 0 0P-ΔF u M − 
 =    5.40 

 P-Delta effects are considered in both static [161] and dynamic field. In the 

following the iterative Newton-Raphson procedure in the case of static loadings (Section 

0) and the integration method for the dynamic equation of motion (Section 6.1.1) are 

discussed.  

 

Figure 42 - P-Delta effects due to rigid rotations and shear in-plane deformation 
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5.1.1. The Newton-Raphson Integration method 

 The equation of equilibrium in the static field, considering P-Delta effects, can be 

written as follow:  

s ( ) ( )
P-Δ

f u p F u= +  5.41 

in which  

- fS(u) is the elastic forces’ vector; 

- p is the vector of the applied loads, evaluated in the initial configuration of the 

element; 

- FP-Δ (u) is the vector of P-Delta effects (Eq. 5.40). 

To perform incremental nonlinear static analyses using the new DMEM formulation, the 

vector of the P-Delta effects is included within a standard Newton Rapson procedure. At 

the generic j-th iteration of the  i-th step of the analysis, the global equilibrium of the system 

can be written as follows:   

( j) ( j)

P- ,i i int,i i( ) ( )R p F u F u= + −  5.42 

where, R(j) represents the current unbalance vector. According to the Newton Raphson 

strategy, the increment of internal forces in the elastic prediction stage is evaluated as:  

( j) ( j 1) ( j) ( j) ( j) ( j)

int,i int,i int,i i i( ) ( )F F u F u k u R
+ = − =  = −  5.43 

where ki
(j) can alternatively represent the tangent stiffness matrix computed considering the 

material nonlinearities, and updated at each iteration or kept constant during the iterations 

( (0)

ik ) if a modified Newton Raphson strategy is employed [163].     

 From Eq. 5.43, it is obtained:   

( )
1

( j) ( j) ( j)

i iu k R
−

 = −  5.44 

and, the displacement vector is updated as follows: 
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( j 1) ( j) ( j)

i i iu u u
+ = +   5.45 

 Then, the updated displacement vector (ui
(j+1)) is used to compute the vectors of 

internal forces by integrating the nonlinear constitutive laws of each element. Finally, the 

unbalance for the new iteration is evaluated by Eq. 5.42. Once the convergence is reached 

the vector of P-Delta effects is updated. 

 

5.3 Model validation 

 In this section, the numerical predictions obtained by the proposed model are 

compared to the analytical results obtained by considering the rigid block assumption. 

Under this hypothesis, the system does not show lateral displacements until the un-

stabilising moment, due to the lateral forces, reaches the stabilizing value related to the wall 

self-weight and to the applied vertical loads.  

 Once the incipient rocking condition is achieved the rocking mechanism is activated 

and the system monotonic load-displacement curve follows a softening branch due to 

geometrical nonlinearities [60], [65], [96], [164], as qualitatively reported in Figure 43.   

 The effects of corner imperfection of the rigid block can lead to a reduction of the 

lateral resistance of the rigid system and the effect of block deformability will produce both 

a reduction of the resisting moment and a displacement of the system due to the system 

flexibility (Figure 43).  

 

Figure 43 - Force-displacement relationships for rigid and deformable rocking walls 
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 This latter behavior will be encounter in the numerical simulations performed by 

the DMEM being the wall characterized by a finite stiffness as a consequence the rigid 

body assumption has to be considered as a limit condition.    

 As benchmark models two isolated walls, whose mechanisms are characterized by 

the rotation around horizontal hinges, are considered (Figure 44). More specifically, a 

parapet wall (PW) of height h, thickness t and weight W (Figure 44a), and a simply-

supported wall (SSW), constituted by two rigid blocks of height h1 and h2, weight W1 and 

W2 respectively and thickness t, spanning vertically between supports at ceiling/floor levels, 

are considered, as shown in (Figure 44b). Only two one-way bending moment schemes are 

considered in order to avoid to consider the influence of combined flexural-shear-torsion 

wall response ([151], [165]), the role of this latter interaction in presence of geometrical 

nonlinearities could be the object of future developments, such as the consideration of more 

complex 3d rocking scenario, (as, for examples, free-standing objects). The analytical 

expressions of the force-displacement (F-u) law is a bi-linear curve and therefore can be 

described by evaluating the parameters F0 and ucr, identifying the activation force and the 

ultimate displacement, respectively, reported in Table 2, for each of the two considered 

mechanisms. Before undergoing non-linear rocking behavior, URM walls are characterized 

by a linear and perfectly rigid response. Once the mechanism is triggered, the rigid-

softening restoring force-displacement law becomes the reference curve until the 

displacement value equal to ucr is reached, corresponding to which the lateral force becomes 

zero. It can be observed that the displacement capacity is essentially a function of the wall 

thickness, whereas the strength capacity is significantly influenced by the wall boundary 

conditions [60].   

 In the simulations reported in the following, two different geometric layouts, 

characterized by different values of wall slenderness, are considered, as specified in Table 

3. The analyses are conducted initially considering no external forces (P=0) applied to the 

wall (considering the force related to the masonry self-weight). Then, some parametric 

analyses are conducted considering different values of the external forces (see Figure 47 

and Figure 48), assuming zero eccentricity so that the pre-compression force P is centred 

on the geometric barycentre of the block.  
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 All the numerical analyses (nonlinear static and dynamic) reported in this work are 

performed using an Intel(R) Core(TM) i7-9750H CPU @2.60GHz.   

  

(a) (b) 

Figure 44 - Rocking masonry walls: (a) Parapet Wall (PW) and (b) Simply-Supported Wall (SSW) 

Mechanism F0 ucr 

PW 
1 2

(W P) t P e
h h

+  +   
2 h (W P) t 2 2 h P e

2 h (W 2 P)

 +  −  

 + 
 

VSW 

1 1

2 P
(W P) t (t 2 e)

h h h
+  + + 

−
 

1 1

1 1

2 h (W P) t P (t 2 e) (h h )

2 h (W P) 2 P (h h )

 +  +  +  −

 + +  −
 

Table 2 - Force-displacement relationship. Force capacity (F0) and instability displacement (ucr) 

associated with parapet wall and vertical spanning wall mechanisms 

Wall 
h 

[mm] 

t 

[mm] 

l 

[mm] 

t/h 

[-] 

W 

[kN] 

Specimen 1 1000 120 375 0.12 1.18 

Specimen 2 1000 250 754 0.25 4.94 

Table 3 - Geometrical characteristics of the walls 

 The DMEM models are developed considering a single panel in the case of the PW 

and two panels for the SSW. In the latter case, it is considered h1=h2=h/2. The interface 
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links of the macro-element are characterised by assuming a no-tension material (namely, 

tensile strength σt = 0 MPa and fracture energy in tension Gt = 0 N/mm), linear elastic in 

compression, with kn representing the stiffness of a unitary area, which is set sufficiently 

high to approximate an almost rigid block.  

 

5.3.1 Numerical-analytical comparison 

 The results obtained by the DMEM for the two (PW and SSW) walls and the two 

different geometries are shown in Figure 45, compared to the corresponding analytical 

capacity curves of the rigid-block models. The results are normalised by the ultimate force 

(F0) and critical displacement (ucr) corresponding to the case of zero compression load P.  

In the analyses, the number of interface transversal links rows, discretising the wall 

thickness, has changed from 5 to 50 to investigate the influence of this discretization 

parameter on the wall response. In particular, the number of rows of links, being centred 

on the competent area, affects the approximation of the wall thickness and the location of 

the rotation point. Namely, using 50 rows, the effective model thickness (coincident with 

the distance between the two extreme links) is equal to 117.6 mm in the case of Specimen 

1 and 245 mm in the case of Specimen 2, corresponding to an error of 2%. It is apparent 

that this error can be controlled by considering a different geometrical distribution of the 

nonlinear links in the fibre discretization of the wall section. However, a classical fibre 

discretization has been adopted in the numerical simulations. The transversal stiffness (kn) 

of the masonry wall is set equal to 5E+08 N/m3, according to the assumption already 

adopted in the referenced paper [122]. Observing the graphs in Figure 45, it can be noted 

that the DMEM model well describes the overall response of the walls since the force-

displacement curve tends to the theoretical rigid-block response as the number of links 

increases. Small differences between the numerical and the analytical responses are 

observed in the pre-peak and peak load stages due to the finite stiffness of the DMEM 

model, as already qualitatively highlighted in Figure 43. These differences are more evident 

for specimen 1-PW, which is characterised by a higher value of slenderness. In all the cases, 

the response is very close to the analytical limit case when more than twenty rows are 
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employed in the discretization. In the following simulations, the interfaces are discretised 

using fifty rows of links to guarantee a very well model accuracy, although for practical 

applications, ten rows could be sufficient to obtain satisfactory results. It is worth noticing 

that the number of links does not significantly affect the computational burden and 

computing time since the overall degrees of freedom are associated to the number of macro-

elements only. 

  

(PW - specimen 1) (PW - specimen 2) 

  

(SSW - specimen 1) (SSW - specimen 2) 

Figure 45 - Force-displacement relationship varying the number of rows of links 

 Figure 46 shows force-displacement relationships varying the interface stiffness kn 

from 5E+7 to 2E+10. It can be observed that numerical response is strongly affected by 

this parameter both in terms of peak force and ultimate displacement capacity. As expected, 

the greater the stiffness of the base, the more the numerical curve approaches the results 

predicted by the rigid block theory, at the expense of a more significant computational 

burden. Higher values of normal stiffness are not consistent with the behaviour of real 

masonry walls and reduce the model performances leading to an increase in the average 

number of iterations.   

 The comparisons here reported aim to validate the proposed DMEM and also to 
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show the limits of the rigid block behaviour assumption. Slenderer wall (specimen 1) 

appears more sensitive to the variation of the interface stiffness, ranging the ultimate force 

from 40% to 60% of the corresponding theoretical peak force of the PW and SSW rigid 

block (Figure 46). In specimen 2, the corresponding ultimate force reductions results in 

60% and 80% (Figure 46). These values are consistent with the simplified SDOF approach 

proposed by [35], [60], [96], showing a peak force close to 0.75 of the theoretical rigid-

block peak force. A less influence of interface stiffness on the critical displacement is 

observed. The largest difference on the ultimate displacement between the DMEM and the 

rigid-block models is about 20%, for the PW of specimen 1, while the interface stiffness 

does not significantly affect the ultimate displacement of SSW specimens. 

  

(PW - specimen 1) (PW - specimen 2) 

  

(SSW - specimen 1) (SSW - specimen 2) 

Figure 46 - Force-displacement relationship varying kn 

 As a further investigation, the influence of an applied axial load is also evaluated 

by comparing numerical and analytical results in terms of force-displacement relationships 

(F-u) by varying the axial compression force applied at the top of the wall. It can be 

observed how the presence of a vertical pre-compression plays a fundamental role in the 
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stability of these types of mechanisms as it increases the value of the capacity in terms of 

strength but decreases its capacity in terms of displacement (Figure 47). These results are 

related to the role played by the applied load at the top of the wall produces an overturning 

action when a top displacement of half depth of the wall is reached. This latter reduced 

displacement capacity is enhanced by the wall flexibility.   

 As already observed in previous results, the most significant differences correspond 

to PW and SSW walls of specimen 1. In particular, PW walls show a progressive 

inconsistency between the rigid-block curve and the DMEM prediction with the axial load 

increase, reaching a difference of 35% and 43% between the numeric and analytical peak 

load in the case of specimen 1 and specimen 2, respectively, when the compression load is 

0.15MPa. These differences reduce by 60% and 80% in the corresponding specimens of 

the SSW walls. A lower but still significant dependency of the ultimate displacement on 

the compression load is observed, with the maximum discrepancy between the numeric and 

analytical model of 20% registered in the case of specimen 1 of PW. These results are 

particularly significant regarding the assessment of historical construction when PW 

mechanism is more likely to be activated and, as evidenced by the above results, the 

presence of a significant compression load can make rigid-block predictions more 

unrealistic.        

 Finally, in Figure 48, the role of P-Delta effects is quantified by comparing the 

results obtained by the previous and novel formulations of the DMEM model, neglecting 

and considering the P-Delta effects, respectively. In the figure, the continue line 

corresponds to the numerical solution obtained considering P-Delta effects, while the 

dashed line represents the solution obtained by neglecting their effects. Both are compared 

with the analytical solution represented by the dotted line. The comparisons highlight how 

neglecting the P-Delta effects not only influences the prediction of the ultimate 

displacement but also affects the accuracy in terms of peak load prediction. From  Figure 

48, it is also evident how the P-Delta effects become significant at a rather low displacement 

magnitude. Considering the cases investigated in this section, that threshold can be assumed 

to be around 10% and 20% of the ultimate displacement for specimen 1 and specimen 2, 

respectively. It is worth noting that the computational time necessary for the pushover 
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analyses of the benchmarks reported above is the same with and without P-Delta effects. 

For this reason, it can be stated that P-Delta effects are computationally efficient and do 

not increase the computational cost in terms of time compared to the case in which they are 

neglected. 

  

(PW - specimen 1) (PW - specimen 2) 

  

(SSW - specimen 1) (SSW - specimen 2) 

Figure 47 - Force-displacement relationships varying the wall pre-compression force 

PW

 

VSW 

 

Figure 48 - Force-displacement relationship considering (continue line) and neglecting (dashed 

line) P-Delta effects for Specimen 2 
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5.3.2 Numerical-experimental comparison 

 In this section, the proposed 3D-DMEM modelling strategy is employed to simulate 

a series of experimental tests consisting in isolated walls subjected to a one-way OOP 

bending moment, carried out by [60] and numerically investigated by different authors 

([60], [166]–[168]). The comparison between the numerical DMEM prediction with 

experimental observations and the results of more refined modelling strategies enables 

evaluating the accuracy of the proposed model in describing the OOP rocking behavior of 

URM walls. 

 

Experimental tests 

 The experimental campaign has been performed at the Chapman Structural Testing 

laboratory of the University of Adelaide and the results are reported in [60] and in [166]. 

The tests have been carried out on simply-supported walls with and without pre-

compression, representing load-bearing and non-load-bearing walls in URM buildings, 

which were subjected to monotonic static loads and dynamic excitations along the OOP 

direction (Figure 49a).  The specimens consisted in single-leaf brick-masonry walls, 110 

mm thick, 1500 mm height and 950 mm width. Standard extruded clay brick units with 

dimensions 230x110x76 mm3 and a typical Australian mix of 1:1:6 (cement:lime:sand) 

mortar were used in the tests, and 10mm mortar joints were adopted as well per standard 

construction practices in Australia. The average density of specimens was determined to be 

1800 kg/m3.   

 The tests were conducted on uncracked and cracked specimens to investigate the 

influence of pre-existing structural damage on the OOP wall response. In the present study, 

the simulations are conducted considering only the uncracked specimens subjected to static 

loads. One specimen was subjected to an initial axial load designed to provide a uniform 

precompression sv = 0.15 MPa to simulate the conditions of a real wall in a multistorey 

building. In all the static tests, the lateral load (F) was uniformly applied at the wall mid-

height using a hand pump-driven hydraulic actuator. A rigid steel frame prevented the 
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lateral OOP displacements at the base and top sections of the wall (Figure 49a). In the 

specimen with zero axial load, both the vertical displacement component and the rotation 

at the top wall section were allowed. In the specimen with initial axial load, the vertical 

displacement and rotation at the top section were partially restrained due to a spring, which 

was put in unilateral contact with the top wall section to transfer initial vertical load and 

simulate the presence of a slab interacting with the wall. However, the real values of the 

elastic stiffnesses were not measured experimentally. Finally, during the experimental 

campaign, tests on masonry prisms, to determine the masonry flexural and compression 

strengths and Young’s module, resulted in 0.49MPa, 13.4MPa and 5,322 MPa, 

respectively.   

 

Numerical simulations and comparisons 

 The DMEM model has been performed by adopting a refined mesh. Namely, a 

number of 18 macro-elements, corresponding to the number of brick layers of the specimen, 

and 19 interfaces equally distributed along the wall height discretized with seven rows of 

links have been considered.   

In the analyses, the top restraint of the model with precompression is modelled by 

considering a rigid element at the top section of the wall, connected with the wall by a no-

tension interface (simulating the dry joint between the wall and the steel apparatus used in 

the test). The rigid element is then fully restrained against rotation and elastically restrained 

against vertical displacements (Figure 49c) whose stiffness has been evaluated by fitting 

the experimental results as discussed later. The elastic and nonlinear masonry material 

parameters required to calibrate the DMEM model have been chosen according to [167] 

and [168] and are summarised in Table 4. In particular, the tensile strength of the mortar 

joint (σt) is assumed, according to [169], 1/3 of the masonry flexural strength provided by 

Doherty (2000) [60]. An elastoplastic constitutive law with softening governed by fracture 

energies in tension and compression is used for the transversal links. An elasto-plastic 

Mohr-Coulomb criterion is used for the shear sliding interface mechanisms. Pushover 

analyses have been performed to obtain the complete pre- and post-cracking force-
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displacement curve for the case of 𝜎𝑣 = 0 (Figure 50a) and 𝜎𝑣 = 0.15MPa (Figure 50b), 

compared with the experimental results and the FEM predictions results reported in (Minga 

2017).  The results obtained by DMEM are also reported in terms of collapse mechanisms 

(Figure 51). The pushover curve of the DMEM model in Figure 50b has been obtained by 

fitting the stiffness of the top spring kspring equal to 1560 N/mm, after having validated the 

model for 𝜎𝑣 = 0. In both the analysed specimens, the pre-peak branch is linear elastic with 

high stiffness, up to a maximum force that depends on the boundary and loading conditions. 

Once the maximum force is reached, which corresponds to the cracking of the mid-height 

interface element, the curve shows a sudden drop in resistance in the case of 𝜎𝑣 = 0 the 

softening continues up to the residual strength of approximately 0.4 kN. Differently, the 

load-bearing wall recovers the lateral strength showing a much more ductile response, due 

to the effect of the top restraint. The overall DMEM response agrees well with experimental 

results and FEM predictions for both the specimens investigated.   

Em [MPa] 

Young’s 

modulus   

σt [MPa] 

Tensile 

strength   

σc [MPa] 

Compressive 

strength   

Gt [N/mm] 

Fracture 

energy in 

tensile  

Gc [N/mm] 

Compressive 

fracture energy   

c [MPa] 

Cohesion 

 

tg(φ) [-] 

Friction 

coefficient   

1560  0.163 6.2 0.05 1.00 0.23 0.58 

Table 4 - Mechanical parameters of masonry 

(a) 

(b) 

 

(c) 

Figure 49 - (a) Static push test configuration; (b) non load-bearing and (c) load-bearing 

boundary conditions 
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(a) 

 

(b) 

Figure 50 - Experimental-numerical comparison of pushover curves: (a) σv = 0 MPa; (b) σv = 

0.15 MPa 

 

(a) 

 

(b) 

Figure 51 - Collapse mechanisms for : (a) σv = 0 MPa; (b) σv = 0.15 MPa 

 As a further investigation, parametric analyses have been performed on the wall 

with zero pre-tension, to investigate the role of the mesh size and the number of interface 

transversal links.   

 The simulations were conducted considering two different mesh discretisation. 

Namely, the fine mesh, already adopted in the simulation above, and a coarse mesh, 

obtained doubling the element size concerning the fine mesh and three different interface 

discretisation: 5-10-20 rows of interface transversal links.   

 Figure 52 shows the responses of the DMEM model obtained by varying the mesh 
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size while keeping constant the number of rows of links equal to 20.  Figure 52b shows the 

results obtained by changing the number of rows of links while adopting the fine mesh. In 

the graphs, the experimental results and numerical FEM predictions are reported for 

comparison. Observing Figure 52, it is possible to conclude that the parameters investigated 

do not significantly affect the DMEM model's accuracy.   

 Moreover, the DMEM model could provide reliable predictions of the wall 

response, even adopting a coarse mesh and a low number of rows of links, with clear benefit 

in terms of the model’s efficiency. 

  

(a) (b) 

Figure 52 - Parametric analysis varying: (a) the dimension of the mesh (b) the rows of links 

 Furthermore, for the load-bearing case, numerical results obtained with different 

values of the stiffness of the top spring (kspring) are reported in Figure 53. In particular, two 

limit values are considered, corresponding to +50% and -50% of the reference value used 

to fit the experiments in Figure 50b.  From Figure 53, it is apparent how this parameter 

affects the post-peak wall response and its ultimate displacement capacity. In the final 

analysis, the influence of masonry deformability on the rocking behaviour of the specimen 

is investigated. Analyses are performed on the specimen with no precompression (𝜎𝑣 = 0) 

varying the masonry Young’s modulus by doubling and halve the reference value reported 

in Table 4. The results are reported in Figure 54 concerning the refined mesh (Figure 54a) 

and the coarse mesh (Figure 54b) discretisation.  
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Figure 53 - Load-bearing condition with different values of the top spring's  stiffness 

  

(a) (b) 

Figure 54 - Parametric analysis varying masonry Young's modulus: (a) refined mesh (b) course 

mesh 

 Comparing the graphs reported in Figure 54a and in Figure 54b, it can be concluded 

that the mesh discretisation does not significantly affect the wall response, confirming the 

results reported in Figure 50a. Moreover, it is clear how the masonry deformability 

influences the pre-peak response and the peak load. More specifically, the lateral wall 

strength showed a variation of approximately 20% due to the Young’s modulus variation.  

 

5.3.3 Parametric analysis 

 In this section, the role of the main masonry mechanical parameter is investigated 

by considering the specimens considered in the previous section without applying any axial 
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load. Figure 55 shows the first parametric investigation on the influence of tensile strength, 

the analyses are performed considering an elasto-brittle constitutive law for three different 

values of axial strength. It can be observed how the masonry strength significantly 

influences the pre-peak response, strongly influencing the ultimate load of the mechanisms. 

Namely, the ultimate load corresponding to a tensile strength of 0.15 MPa is over double 

the ultimate load corresponding to the no-tension material model. Nevertheless, once the 

rocking is activated, the mechanism evolves following the softening branch obtained 

considering a no-tension material.   

  

(PW  Specimen 1) (PW  Specimen 2) 

  

(SSW  Specimen 1) (SSW  Specimen 2) 

Figure 55 - Force-displacement relationship varying the tensile strength (σt) 

 In Figure 56, a linear-softening post-elastic behavior is considered with different 

values of fracture energy and keeping constant the tensile strength equal to 0.15Mpa. 

Higher values of fracture energy lead to an increased peak load and a moderate increase in 

displacement capacity immediately after the peak-load displacement. That influence 

becomes negligible for the less slender specimen 2. However, then the mechanism evolves 

towards the rigid block curves.    
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 This result confirms how the ultimate rocking behaviour is mainly governed by the 

geometrical parameters when geometrical nonlinearities are considered. Material strength 

and fracture energy contribute only to the pre-peak response, influencing only the activation 

of the rocking and increasing the ultimate load. In the investigated range of variation of the 

fracture energy, the ultimate load ranged from 2 to approximately 5, and the displacement 

capacity displacement is affected up to 60% of the ultimate one (in the case of the PW wall 

specimen 1) (Figure 56). The slender specimen 1 is much more affected, in terms of 

capacity displacement by fracture energy than specimen 2.    

  

(PW  Specimen 1) (PW  Specimen 2) 

  

(SSW  Specimen 1) (SSW  Specimen 2) 

Figure 56 - Force-displacement relationship varying the tensile Fracture Energy (Gt) 
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6.  SIMULATION OF RIGID 

BLOCK DYNAMICS 

 The dynamic response of rocking rigid blocks has been studied for over 60 years. 

As already said in Section 2, numerous structures are modelled as rocking blocks, i.e. tall 

buildings, URM walls with poor connection, parapet walls, etc.   

 The first researcher who derived the equation of motion for a rectangular rigid block 

free to rock at the base was Housner (1963) [38], who established a rocking model known 

as the classical theory, which many researchers have widely referred to in the past. As 

proposed by Housner, the equations of motion are derived, assuming a high frictional 

coefficient at the interface between the block and the ground so that sliding cannot occur, 

furthermore the rocking motion have been investigated under the hypothesis of small 

rotations. The source of dissipation have been associated to a loss of kinetic energy when 

an impact with the rigid supports takes place leading to a discontinuous dissipation model 

being instantaneous since related to the impact instants only.    

 This section aims at assessing the accuracy of the P-Delta DMEM formulation when 

simulating the dynamic response of rocking rigid blocks and evaluate the role played by 

P-Delta effects in the response of these remarkable benchmarks. With this aim, the two 

specimens, PW1 and PW2, investigated in Section 5, whose geometric characteristics are 

reported in Table 2, are considered.   

 The DMEM predictions are compared to the analytical responses of rigid blocks 

under free vibrations induced by an initial rotation. Firstly, free-vibration nonlinear 

analyses are carried out, assuming that the impact at the base is perfectly elastic (undamped 

systems). Then, a non-classic damping model associated with the rocking interfaces is 

formulated and implemented within the DMEM strategy to simulate the energy loss 

associated with each impact.  It is worth noting that the damping matrix is classic at a level 

of the interface, while it is non-classic at the system level. Finally, free- and harmonic-

damped vibration analyses are conducted to evaluate the model's accuracy, compared to the 
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analytical solution of an ideal rigid block proposed by Housner and to the results of detailed 

FEM simulations [122] and experimental tests available in the literature [170]. 

 

6.1 The damping model 

 This section presents a non-classic damping model used to describe the 

energy dissipation caused by impacts during the dynamic rocking motion of rigid-block 

systems. A viscous damping is associated with the interface elements involved in the 

rocking motion (i.e., connecting two macro-portions behaving as a quasi-rigid blocks).  

Let us consider the generic i-th interface involved in the rocking motion. The local 

interface damping matrix (cloc,i) is assumed proportional to the interface tangent stiffness 

matrix (kloc,flex,i), as reported in Eq. 6.1, where   is a model parameter to be calibrated. It 

is worth noting that the local damping matrix is at each step proportional to the tangent 

stiffness and not to the elastic stiffness matrix in order to concentrate the loss of energy at 

the interface closure, corresponding to the impact of the rigid block system.  

loc,i loc,flex,ic k=   6.1 

 The element viscous forces (fd,i) are assumed to be proportional to the velocities of 

the flexural degrees of freedom of the interfaces (�̇�), as defined in Figure 57a and Figure 

57b in the case of unrestrained and restrained interfaces, respectively. It follows:   

1
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d loc loc
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u
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=  =   
 
 
 
  

 6.2 

 It is worth noticing that no energy dissipation is associated with the sliding 

deformations of the interfaces.  
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(a) (b) 

Figure 57 - a) Not constrained, b) constrained interfaces' DOFs of interest 

The parameter α in Eq. 6.1 is evaluated according to Eq. 6.3, where 𝜉𝑒𝑞 is an 

equivalent viscous damping ratio describing the dissipative properties of the physical 

contact surfaces represented by the interface and frot,contact  is the elastic rotational frequency 

of the kinematic rocking motion, i.e., the natural frequency of the system with all the 

rocking interfaces at the complete contact.   

eq.

rot,contact

2

f


 =  6.3 

 Referring in the following to the simplest case represented by single rigid body 

rocking around its base interface, and considering the empirical formulation proposed by 

Vlachakis et al. (2021), the expressions of  𝜉𝑒𝑞 reported in Eq. 6.4 is considered.  

0.935

0.343

eq n,base

H
0.000292 ln(e)

B

 
 = −   

 
k  6.4 

and the rotational frequency of the system at the contact can be expressed as follows:        

rot,contact

rot,contact

rot

f
2

kl

I
=


 6.5 

where Irot is the rotational mass moment of inertia about the center of the interface section, 

t and l, the interface dimensions in the direction parallel and orthogonal to the plane of 
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rocking, kn the normal stiffness of the interface per unit of area and krot,contact is calculated 

as reported in Eq. 6.6.   

3

rot n

1
(2t) (2l)

12
k k=  6.6 

 The global damping matrix c of the system is obtained by assembling the interface 

local damping matrices cloc.   

 As a result of the changing of the local stiffness matrix, the damping matrix changes 

during the simulations and it has to be updated at each step of the analysis. It requires some 

changes in the numerical integration of the equations of the motion, as discussed in the 

following section. 

 

6.1.1 Integration of the equations of the motion 

 In this section, the numerical integration method is specialised for the case of the 

damping matrix changes during the analysis, according to the damping model described in 

the previous section (see Eq. 6.8). Moreover, the contribution related to the P-Delta loads’ 

vector is also introduced within the integration of the equation of motion using Newmark’s 

method.  

 In the dynamic field the equation of equilibrium contains the inertia ( IF mu= ) and 

the damping forces ( D ( )F c u u=  ), and it can be written as follow:  

S P( ) ( ) ( )mu c u u f u p F u−+  + = +  6.7 

in which: 

- m is the mass matrix; 

- c is the damping matrix; 

- 𝐟S(𝐮) is the elastic forces’ vector; 

- 𝐅P−Δ(𝐮) is the P-Delta loads’ vector.  

- p is the external forces’ vector  
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 Writing 6.7 in incremental form, which is convenient for nonlinear system, for the 

generic j-th iteration of the i-th step, considering that the damping matrix is updated at each 

step of the analysis, it can be written:  

( j)

i D,i int,im u F F R +  +  = −  6.8 

In the predictor phase:  

( j)

i i i i im u c u k u R +  +  = −  6.9 

where R(j) represents the dynamic unbalance vector and is equal to 

( j) ( j)

P- ,i i int,i i i i i i( ) ( )R p F u F u c u m u= + − − −  6.10 

The Newmark’s Method is based on the following equations:  

( )i i 1 i 1 i1 t ( t)u u u u− −= + −   +     6.11 

( ) ( )( ) ( )( )
2 2

i i 1 i 1 i 1 it 0.5 t tu u u u u− − −
   = +  + −  +  
   

 6.12 

Where  and  are parameters of the model and t the integration time step.  

 These two equations combined with the equilibrium equation at the end of the time 

step, provide the basis for computing ui+1, u̇i+1, üi+1 at the time (i+1) from the known 𝑢𝑖, 

�̇�𝑖, �̈�𝑖  at the time (i).   

 Eq. 6.11 and Eq. 6.12 can be written as follow:  

( ) ( )i i it tu u u =  +    6.13 

( )
( )

( )
2

2

i i i i

t
t t

2
u u u u


 =  + +    6.14 

 Eq. 6.14 can be rearranged to obtain the increment of acceleration as a function of 

the current velocities and accelerations and the increment of displacements as follows:  
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( )
i i i i2

1 1 1

t 2t
u u u u =  − −

  
 

6.15 

Substituting Eq. 6.15 into Eq. 6.13, it can be obtained:  

i i i it 1
t 2

u u u u
   

 =  − + − 
   

 6.16 

Substituting Eq. 6.15 and 6.16 into Eq. 6.8 and carrying out the calculation  

( )
( )j

i i i2

( j)

i i i i

1

tt

1 1
t 1

t 2 2

m c k u

R m c u m c u

 
+ +  = 

   

     
= + + + +  −    

       

 6.17 

Consistently with the classic formulation of Newmark’s method, imposing:  

( )
i i i2

1ˆ
tt

k m c k
 

= + + 
   

 6.18 

And  

( j)

i i i i

1 1
ˆ t 1

t 2 2
p R m c u m c

     
 = + + + +  −    

       

 6.19 

Eq. 6.17 can be written as:  

( )j
i i i

ˆ ˆk u p =   6.20 

Finally,  

( j 1) ( j) ( j)

i i iu u u
+ = +   6.21 
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 Analogously to the static case the updated displacement vector (ui
(j+1)) is used to 

update the vectors of internal forces, for the next iteration, by integrating the nonlinear 

constitutive laws of each element and the vector accounting for the P-Delta moments.  

 

6.1.2 Dissipated energy  

 The loss of energy, which in reality is associated with an instantaneous impact, is 

described by the DMEM strategy through the negative work done by the interface viscous 

dumping forces as long as the flexural stiffness of the interface is not zero. This limit state 

is reached when all links are yielded in tension, and only the external row of links is active. 

Due to the elastic deformability and finite tensile strength of the links, the interface opening 

and closure happen gradually in a finite interval of time.   

 Calling Nstep the number of analysis steps required  for an opened interface to close 

completely, the loss of dissipated energy can be calculated as follows:  

step step
TN N

1

d,i

i 1 i 1

E
2

d,i d,i

d i

F F
E u

−

= =

+ 
=  =  

 
   6.22 

being Fd,i+1 and Fd,i the dissipative force at the step i and i-1, and Δui is the vector of the 

displacement increment of the flexural DOFs of the interface. 

 

6.2 Undamped free-vibrations 

 As the first investigation in the dynamic field, undamped free-vibration simulations 

are performed on the three specimens varying the value of initial rotation θ0.   

 The first two specimens are those used to validate the P-Delta effects in the static 

field, while the third specimen is characterised by an intermediate slenderness ratio.   

 The geometric characteristics of the specimens are reported in  Table 5. 
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Wall 
h 

[mm] 

t 

[mm] 

l 

[mm] 

θcr = t/h 

[-] 

W 

[kN] 

Specimen 1 1000 120 375 0.12 1.18 

Specimen 2 1000 250 754 0.25 4.94 

Specimen 3 1000 170 500 0.17 2.24 

Table 5- Geometrical details of the investigated specimens 

  

  

Figure 58 - Displacement time-histories for PW1 

 A concentrated mass matrix is considered for the DMEM model, where the mass of 

each macro-element is concentrated to its barycentric point. More details can be found in 

[171].   The nonlinear dynamic analyses are performed using HiStrA [61], employing the 
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Newmark method with a time step of 0.002 s and the Newmark’s parameters β and γ equal 

0.25 and 0.5, respectively. Finally, an energy-based convergence criterion with absolute 

tolerance of 1E-07 Nm is adopted in the simulations. In the analyses, the number of 

transversal links was set equal to 12, 25, and 17 for specimen 1, specimen 2 and specimen 

3, respectively, to maintain the error of the effective thickness in each specimen less than 

1cm. The masonry wall's transversal stiffness (kn) is set equal to 5E+08 N/m3, according to 

the assumption already adopted in the referenced paper [122].    

Figure 58, Figure 59, and Figure 60 show the base rotation time histories, normalised by 

the critical rotation (θcr = t/h), for the three specimens (PW1, PW2 and PW3) obtained by 

the DMEM model, applying increasing initial rotations from about the 30% to 80% of the 

critical rotation, for all the three specimens.  

  

  

Figure 59 - Displacement time-histories for PW2 
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 The P-Delta effects are alternatively considered (DMEM-PD) and neglected 

(DMEM) compared with the rigid-block (RB) solution obtained considering large 

displacements. It can be observed that the higher the initial rotation, the greater the need to 

consider the P-Delta effects. Nevertheless, even for quite small initial rotations, the P-Delta 

effects have significant influence on the period of vibration of the wall making the dynamic 

response consistent with that of the rigid block.  

 A further study was conducted on the period of vibration varying the initial rotation. 

Again, the results are compared with the analytical value of period predicted by the classical 

theory, trough the Eq. 2.15.   

  

  

Figure 60 -Displacement time-histories for PW3 
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 The vibration period of the DMEM model is evaluated as the time needed for the 

model to return to the initial position at the end of the first oscillation. Numerical damping 

is observed in the DMEM analyses, which increases as the initial rotation increases. Figure 

61 shows the period of vibration versus the initial rotation for the three specimens. In the 

figure, continuous lines indicate the values of analytical solutions, dashed lines indicate the 

numerical DMEM predictions with P-Delta effects, and dotted lines indicate DMEM 

predictions without P-Delta effects.   

 In all the specimens considered, P-Delta effects need to consistently predict the 

period of vibration as initial rotation reaches 25% of the critical rotation, equal to 0.11, 

0.24, and 0.16 radiant, respectively, in the case of specimen 1, specimen 2, and specimen 

3. In particular, considering the three investigated specimens, the error in the period 

exceeded 10% as the initial rotation reached 30% of that critical.  

 Conversely, DMEM predictions obtained considering P-Delta effects result in a 

good agreement with the analytical solutions in a significantly more extensive range of 

oscillations. Namely, considering the three investigated specimens, the percentage error on 

the predicted period resulted in less than 10% until the initial rotation reached 85% of the 

critical one. After this limit, the approximated kinematics considered in the DMEM model 

does not allow for reproducing the results of the analytical solutions. More specifically, in 

the case of specimen 1, characterised by the higher slender ratio, even for initial rotation 

equal to 90% of the critical one, the error on the period is about 7.5%. For Specimen 2,  

characterised by the lower slender ratio, the error is 13% for initial rotations equal to 90% 

of the critical one and goes up to 21% when the initial rotation reaches 95% of the critical 

one.   

 Finally, an intermediate trend is shown by specimen 3, with an error less than 10% 

and 15%, corresponding to an initial rotation equal to 90% and 95% of the critical one, 

respectively.   

 The obtained results are also summarised in Table 6, which reports the average of 

the percentage errors varying the range of initial rotations considering (“P-D” in Table 6) 

and neglecting (“SD” in Table 6) P-Delta effects (then following the Small Displacement 

theory) for the three considered specimens. 
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θ0/ θcr < 20% 20 - 40% 40 - 60% 60 - 80% > 80% 

 P-D SD P-D SD P-D SD P-D SD P-D SD 

Specimen 

1 
8 7.5 4.0 11.0 1.5  22.5  1.0 34.5 7.5 50.0 

Specimen 

2 

7.5 5.0 2.5 11.0 1.0 22.5 3.5 36.5 13.2  55.0 

Specimen 

3 
6.0 4.0 2.5 12 1.0 23.0 1.5 35.5 8.5 52.5 

Table 6 - Percentage error on the period of vibration 

 

 

Figure 61 - Period of vibration vs amplitude of initial rotation 
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Specimen 1 

  
Specimen 2 

  
Specimen 3 

  
(a) (b) 

Figure 62 - Percentage error on the period of vibration (a) neglecting and (b) considering P-

Delta effects 
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6.3 Damped free- and harmonic-vibrations 

 The three specimens, already considered in the case of undamped vibrations, are 

used to validate the newly-implemented interface damping model. For these samples, 

experimental data are available from an extensive campaign conducted by Peňa et al. [170] 

on granitic blocks. During that campaign, the coefficient of restitution (eexp) has been 

evaluated. This parameter is used in this study to evaluate the equivalent damping ratio (ξeq)  

adopting the empirical relationship proposed by Vlachakis et al. [122], for two-side 

rocking. The geometric and dynamic parameters characterising the three specimens are 

summarised in Table 7.   

 The normal interface stiffness kn [N/m3] was not measured experimentally. 

Therefore, a value of 5E+08 N/m3 is adopted in the analyses, consistently with Vlachakis 

et al. [122].  

 Figure 63 reports the free-rocking response of the three specimens, predicted by the 

proposed model. The adopted Newmark parameters are fixed as β = 0.3025 and γ = 0.6 in 

order to damp the high frequency due to the large value of stiffness used. In the figure, the 

DMEM results are compared the rigid-block analytical solution considering e = eexp and the 

results of finite element simulations obtained by Vlachakis et al. [122]. 

Wall eexp [-] ξeq  [%] 

Specimen 1 0.978 4.53 

Specimen 2 0.936 6.79 

Specimen 3 0.973 4.03 

Table 7 - Damping parameters 

 The comparisons show a good agreement between the experimental, analytical and 

numeric responses in terms of period, confirming that the proposed DMEM model can 

reproduce the response of damped systems with good accuracy.   

 This result can be further appreciated if one also considers that the different 

specimens are characterized by different values of slenderness and different initial rotations 

and, thus, different coefficients of restitution (Eq. 2.19), demonstrating the robustness of 

the proposed model.   
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(a) 

 
(b) 

 
(c) 

Figure 63 - Two-side free-rocking response for: a) Specimen 1, b) Specimen 2; c) Specimen 3 
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 In terms of energy dissipation, in all the investigated specimens numerical models 

overestimate the damping faster than the experiments and analytical solution. However, a 

very good agreement is observed between the proposed simplified model and the FEM 

predictions. More specifically, the FEM response (indicated with “Vlachakis” in Figure 63) 

completely damps out after 10, 2.5 and 13 seconds, respectively in the case of specimens 

1, 2 and 3; while the corresponding DMEM responses damp out after 9, 3.5 and 12 sec. In 

particular, “damping out” means that the block has stopped rocking. Both FEM and DMEM 

results in very good agreement with experiments in the first cycles of the response while 

diverging from that for smaller rocking angles. That result has already been observed in 

[122] and is most probably related to the inaccuracy of the empirical relationship used to 

calibrate the equivalent damping coefficient, which is independent on the rotation 

amplitude. On the contrary, it is well-known the dependency of dissipation on the rocking 

amplitude [122]. The related loss of energy, both in terms of increment and total damping 

energy, is calculated together with the interface “contact ratio”, which represents the ratio 

between the contact and the total area of the interface Ac/Atot, ranging from 1 (total contact) 

and zero (interface completely open).   

 The time histories of the cumulated (Ed) and instantaneous (ΔEd) dissipated 

energies, and the contact ratio are shown in Figure 64. It can be observed that the maximum 

increment of the damping energy corresponds to the impact, which are characterized by a 

displacement of the control point equal to zero (block in vertical position) and a 

compressive ratio equal to one. On the other hand, when the interface is open (small value 

of the compressive ratio) the increment of the damping energy is equal to zero, and 

consequently, the total energy remains constant until the next impact shows a stepwise 

trend.   

 It is worth noting that such a damping model is related to an empirical relationship, 

which aims at evaluating the loss of energy associated with the impact at the rocking 

interface of a rigid block, and for this reason, it cannot be used to simulate a more general 

damping problem. Further calibration and formulations are needed in order to employ this 

kind of localised damping model in a more general problem aiming at simulating the overall 

damped energy of URM structures that exhibit OOP collapse mechanisms.  
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(a) 

 
(b) 
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(c) 

Figure 64 - Displacement time-history, increment of damping energy, total damping energy and 

compressive ratio vs step for: a) Specimen 1, b) Specimen 2, c) Specimen 3 

 As a further investigation, the accuracy of the proposed model is evaluated 

considering harmonic vibrations with reference to specimens 2 and 3 subjects to sinusoidal 

excitations with a frequency equal to 3.3 Hz and 5 Hz, amplitude equal to 6 mm and 5 mm, 

and a duration of 20 and 10 sec., respectively.   

 The responses predicted by the DMEM model are shown in Figure 65, compared to 

the FEM predictions obtained by Vlachakis et al. [122]. It can be observed that the DMEM 

model effectively replicates the experimental response in terms of period and peaks with 

adequate accuracy, both in the transient and stationary phases of the response.  

 Finally, the model sensitivity on the analysis’ step size is investigated. Parametric 

free-vibration analyses are carried out, varying the step from the largest value of 0.005 s to 

the smallest value of 0.002 s. The results are reported in Figure 66 compared to the 

analytical solution of the classical theory.  
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(a) 

 

 
(b) 

Figure 65 - Harmonic vibrations for a) Specimen 2 and b) Specimen 3 
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(a) 

 

(b) 

 

(c) 

Figure 66 - Free rocking response varying the step size for: a) Specimen 1, b) Specimen 2 and c) 

Specimen 3 
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 Figure 66 clearly shows that the slenderest specimen (Specimen 1) is less sensitive 

to the step size, while the smaller the slenderness, the greater the sensitivity to the analysis’ 

step size. More simulations and applications are needed to better understand the sensitivity 

to the time step to detect which are the causes and what could be done to reduce this issue. 

Nevertheless, the error in the period can be justified by the simplified calibration of the 

damping coefficient, independent of the displacement amplitude. However, taking into 

account the first complete cycle of vibration, the error on the period made using the DMEM 

strategy, with respect to the rigid block solution, ranged from about 1% to 8%, as the time 

step ranged from about 1E-02 to 1E-04 the elastic period of the system, respectively.  

 As regard the computational time needed for the nonlinear dynamic analysis of the 

three PW benchmark studied before, the computation time was coincident in the case when 

the P-Delta effects were included or neglected.  
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7. DYNAMIC SIMULATION OF 

UNREINFORCED MASONRY 

STRUCTURES INCLUDING 

P-DELTA EFFECTS 

 

 In this section, the new P-Delta macro-element model is applied to the simulation 

OOP behavior of different URM structures. In order to investigate the influence of 

including P-Delta effects within a nonlinear numerical analysis, the latter are alternatively 

considered and neglected in order to show the capability of the model to reproduce the 

complex OOP behavior of a URM structure and the importance of considering the 

geometric nonlinearities, particularly for masonry monumental structures characterised by 

slender walls often badly connected to the orthogonal walls. In particular, two URM case 

studies investigating the OOP behaviour of the main façade of  the San Michele Church in 

Lisciano and of the church of San Nicolò di Capodimonte are considered. For the first case 

study nonlinear dynamic analysis are carried out under both harmonic excitations and 

earthquake input motions. On the second case study, static nonlinear analysis are conducted 

considering two different models, namely a global model of the entire church and a 

simplified model in which the lateral orthogonal walls are modelled using a set of nonlinear 

links adequately calibrated accounting for the connections to the orthogonal walls. These 

analyses are conducted by varying the quality of connection with the lateral walls by means 

of a “bond coefficient” in order to investigate the influence of the boundary conditions 

when P-Delta effects are considered.  In all the nonlinear dynamic analyses conducted on 

the first case study, a classic viscous Rayleigh damping was assumed. 
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7.1 The case study of the San Michele church in Lisciano 

 This section investigates the dynamic behavior of the façade of San Michele church 

located in Lisciano, central Italy, which exhibited an incipient out-of-plane failure 

mechanism during the 2016-2017 Central Italy earthquake swarm.    

  

  (a) (b) 

  
(c) 

 
(d) 

Figure 67 - San Michele church; (a) global view, (b) view from inside, (c) dimensions of the 

façade (in meters), (d) structural DMEM model 

Control point  



Out-of-plane seismic response of Unreinforced Masonry structures:  

a Discrete Macro-Element Approach including P-Delta effects 

156 

 

 The church has already been investigated in the literature [172], [173]. It includes a 

single nave with a rectangular plan (10 m x 20 m) and an unsymmetric bell tower interacting 

with the main building (Figure 67a,b). The façade is 9.30 m wide, 0.65 m thick and 9.70 m 

high. Its slenderness ratio α is about 0.07, obtained as the arctangent of the ratio of half-

thickness and the height of the center of mass (0.325 m/4.6 m) (Figure 67c). More details 

on the features of the church can be found in [172], [173].  In the following the , the free-

standing condition of the façade is considered, representing a scenario in which the façade 

is fully separated from the rest of the church. The DMEM model of the church’s façade is 

supposed to be elastic, being the nonlinearities concentrated only at the base interface, 

which is characterised by an elastic stiffness for a unit area equal to 5E+08 N/m3, elastic 

behaviour in compression, and two alternative constitutive laws in tension: a no-tension 

material and an elastoplastic material with a tensile strength equal to 0.05 MPa. The 

structural model is made of 16 macro-elements for a total of 112 degrees of freedom. An 

image of the structural model is reported in Figure 67b.  

 The simulations are performed by applying harmonic and earthquake inputs to 

investigate the effects of different dynamic excitations on the façade’s dynamic response 

and stability when P-Delta effects are considered.   

 

7.1.1 Harmonic vibrations  

 A set of harmonic nonlinear dynamic analyses are carried out on the structural 

model applying a sinusoidal input in the direction orthogonal to the plane of the façade with 

increasing amplitude. In particular, 840 nonlinear dynamic analyses are carried out, 

considering two alternative constitutive laws in tension: a no-tension material and an 

elastoplastic material with a tensile strength equal to 0.05 MPa. Seven values of the 

amplitude (A [cm/s2]) ranging from 10 cm/s2 to 100 cm/s2 and varying the frequency (ω 

[Hz]), for each amplitude, between 0.025 Hz and 3.0 Hz.   

 The analyses are conducted considering and neglecting the P-Delta effects aiming 

at evaluating their influence. Figure 68 shows the displacement response spectra of the 

harmonic response of the façade for all the considered amplitude values. In particular, 
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Figure 68a shows the results relative to the no-tension material, while Figure 68b shows 

those relative to σt = 0.05 MPa. It can be observed that the range of frequencies that causes 

the overturning of the façade, with the same amplitude, increases significantly when P-

Delta effects are taken into account regardless of the tensile strength value considered. It is 

also evident that when the P-Delta effects produce a decrease in the value of the maximum 

amplification frequency. 

  

 
(a) 

 
(b) 

Figure 68 - Displacement response spectra of the facade subjected to harmonic oscillations: a) 

no-tension material, b) σt=0.05 MPa 

 Figure 69 shows the “un-safe” domain at each amplitude of the harmonic input. 

Namely the figure shown the range of the frequencies for which the block reaches the 

collapse for a specific value of the amplitude of the harmonic input. It is clear that the un-

safe region is smaller when the P-Delta effects are neglected. Moreover, it can be observed 

that when P-Delta effects are taken into consideration the region corresponding to collapse 

has the same dimension regardless of the tensile strength value. In particular, the tensile 
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strength value has an influence only for the smallest amplitude value of the harmonic input 

that causes the collapse (40 cm/s2) and, more in detail, for this amplitude value, the collapse 

occurs in the frequency range ranging from 0.1 to 0.5 Hz (Figure 69a) and from 0.3 to 0.5 

Hz (Figure 69b) for the case of no-tension material and σt = 0.05 MPa respectively. 

Conversely, when the P-Delta effects are neglected, the overturning region is strongly 

dependent on the mechanical properties of the model. This is due to the fact that for large 

displacements, that occurs for larger value of the signal’s amplitude, the geometrical 

nonlinearities govern the rocking seismic response, and the latter is almost  independent on 

the mechanical parameters of the masonry material. Intermediate amplitude values should 

be considered to have a more accurate domain. 

  
(a) (b) 

Figure 69 - Capacity domain under harmonic oscillations: a) no-tension material, b) σt=0.05 

MPa 

 

7.1.2 Earthquake excitations 

 This sub-section reports the results of nonlinear time history analyses performed 

applying three registrations from 2016-2017 Central Italy earthquakes, which are 

characterized by high values of Peak Ground Acceleration (PGA), Peak Ground Velocity 

(PGV), and PGA/PGV ratio. The considered earthquakes and their parameters are reported 

in Table 8. Namely the most significant 20 seconds of Amatrice 2016 (AMT), Norcia 2016 

(NOR) and a signal recorded in the T1213 station (T1213) 2016 have been considered. In 
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particular, AMT and T1213 have the highest PGA and PGV, while NOR has the highest 

PGV/PGA ratio. The relative accelerograms are reported in Figure 70. 

 PGA [m/s2] PGV [m/s] PGV/PGV [s] 

AMT 5.216 0.379 0.07 

NOR 3.057 0.562 0.18 

T1213 7.793 0.607 0.08 

Table 8 – Intensity measures of selected seismic inputs 

 
(a) 

 
(b) 

 
(c) 

Figure 70 - Seismic records: a) AMT, b) NOR, c) T1213 
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 For all the three seismic records, Incremental Dynamics Analyses (IDAs) are 

performed considering and neglecting P-Delta effects. The construction of the IDA curves 

involves performing a series of nonlinear dynamic analysis for each record by scaling it to 

multiple levels of intensity.  

  In this work, the displacement of the control point was defined as Engineering 

Demand Parameter (EDP), while the PGA and the PGV are alternatively selected as 

intensity measures (IMs).   

 The IDAs curves are  built by scaling the signals by an scale factor (SF) ranging 

from 0.05, to 1.20. For each scaled accelerogram, the maximum value of the displacement 

of the control point is registered. The effects of the tensile strength of the rocking interface 

are studied using three different values of σt. Namely, a no-tension material, σt = 0 MPa, 

and two finite values, σt = 0.05 MPa and σt = 0.1 MPa, are considered being the latter a high 

value of tensile strength that can be considered as an upper limit.   

 The IDAs curves are reported in Figure 71 both in terms of PGA and PGV for all 

the seismic records. From Figure 71 it is evident that for small values of displacements, 

there are small differences between the curves obtained considering or neglecting the 

P-Delta effects. In particular, for AMT and T1213, which have the highest PGA and PGV, 

the curves with and without P-Delta effects have the same trend up to a displacement that 

is equal to half of the wall thickness (32.5 cm) approximately, instead for NOR, they have 

the same trend up to almost 80% of the wall thickness (52 cm).  Moreover, from the same 

figure, it is also apparent that when the P-Delta effects are considered, the bearing capacity 

of the façade, both in terms of PGA and PGV, is less sensitive to the signal with respect to 

the analyses conducted neglecting them.   

 Finally, the same observation can be made for the influence of the tensile strength 

of the rocking interface, and this is because when the displacements are large, the geometric 

effects have a greater influence, also in the dynamic response, than the constitutive 

nonlinearities. 
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(a) 

  
(b) 

  
(c) 

Figure 71 - IDAs curves obtained considering: a) AMT, b) NOR, c) T1213 
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7.2 The case study of San Nicolò di Capodimonte in Camogli 

 This section considers the Church of San Nicolò di Capodimonte (Camogli, 

Genova, Italy) as a case study, which has already been investigated in the literature by using 

different modelling approaches [164], [174]. A view of the Church and its geometrical 

representation are reported in Figure 72. The church is made of blocks representative of a 

typical ancient church characterized by a longitudinal plan, in the form of the Latin Cross 

with a long single nave of about 18 m, crossed by a transept 14 m large.      

  
(a) (b) 

 
(c) (d) 

Figure 72 - a) San Nicolò di Capodimonte church, b) plan of the Church, c) elevation A-A', d) 

elevation B-B' (figure from [164]) 
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The construction also comprises a 17 m height bell tower and a 14 m height chapel located 

at the side of the transept. The contribution of the roof structure is not taken into 

consideration, according to Malena et al. (2019) [164] and Funari et al. (2021) [174].  

 The geometric model was generated in Autodesk using 2D (3D-face) elements and, 

for the curved parts of the church (i.e., the chapel, the bell tower, and the apse), 3D 

Polyfacemesh elements consistently with those reported in and in [164] and in [174].  

 

7.2.1 The adopted structural models 

 Two models have been developed and used to perform nolinear static analyses, 

namely a 3D global model (DMEM-G) and a simplified model comprising only the façade 

(DMEM-F) are developed to perform the simulations.   

 The out-of-plane (OOP) behavior of masonry walls, especially for tall and slender 

walls such as church facades, is significantly influenced by boundary conditions, especially 

horizontal restraints due to orthogonal walls, timber beams, or tie-rods. For these reasons, 

there is a need to have global models capable of simulating the complex interactions 

between all the structural elements. Nevertheless, global models may be computationally 

expensive and time-consuming [175]. Therefore, simplified façade models that simulate 

the structural horizontal restrained through horizontal links have been introduced in the 

literature [113], [176], where “compressive” links simulate the impact between the façade 

and the lateral walls. In contrast, the stabilising effects of the horizontal links in tension is 

neglected in the models. Afterward, Casapulla et al. [177] introduced a horizontal 

distribution of orthogonal links to simulate the effect of lateral walls, possessing non-zero 

compression and tensile stiffnesses, so employed to perform incremental dynamic analyses. 

The latter strategy is employed in this study in the case of the model DMEM-F, in which 

the retaining walls are accounted for by equivalent non-linear links working in tension and 

compression with the same elastic stiffness, with nonlinear mechanical parameters 

evaluated considering a cohesive-friction strength criterion, describing the brick 

interlocking between the façade and the retaining walls, and considering the axial load due 

to the masonry self-weight [175].   
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 The deformability properties, namely the Young’s and shear modules, the 

compressive strength, and the self-weight, are chosen according to Italian standards [26] 

for natural-stone masonry. In addition, the tensile strength and cohesion are assumed to 

equal 0.01 MPa, to simulate a quasi-no-tension friction material consistently to [164], 

[174]. Finally, the tensile fracture energy is assumed to equal 0.001N/mm. The mechanical 

parameters of masonry adopted in the analyses are summarised in Table 9. 

Young’s 

modulus  

 

E  

[MPa] 

Shear 

modulus 

 

G  

[MPa] 

Compressive 

strength 

 

 σc  

[MPa] 

Tensile 

strength 

 

 σt  

[MPa] 

Tensile  

fracture  

energy 

 Gt  

[N/mm] 

Cohesion 

 

 

c  

[MPa] 

Friction  

coefficient  

 

μ  

[-] 

1500 500 3.8 0.01 0.01 0.01 0.6 

Table 9 - Mechanical masonry parameters. 

 The P-Delta effects are alternatively considered and neglected to evaluate their 

effects on the ultimate strength and displacement capacity of the façade. Once again, the 

two computational models have, been developed in the structural code HiStrA (Historical 

Structural Analysis) [61]. The displacement control analyses were conducted using the 

“Arc Length” method. The results are reported in terms of capacity curves and collapse 

mechanisms at the last step of the analysis. The global model (DMEM-G) includes vertical 

walls, the apse, the triumphal arches, the bell tower and the chapel, and it has been used a 

mesh size of about 70 cm per side, refined where deemed necessary, in particular in 

correspondence with the portion of the nave affected by the collapse mechanism identified 

by Malena et al. (2019) [164] and Funari et al. (2021) [174].   

 A simplified mesoscale modelling strategy is employed to take into account the 

effect of the blocks' interlocking: the vertical interfaces are modelled as not aligned in the 

macro-element scale. The mesh is automatically generated, maintaining the average shape 

ratio of units reported in [164]. In the models, the average in-plane dimensions of macro-

elements are 1600mm x 800mm, while the actual dimensions of units can be assumed to 

be 800mm x 400mm. Therefore, each macro-element represents a masonry volume 

corresponding to about 2x2 units. Thus, the discrete model comprises of 1433 quad 

elements, 37 vertex and 3719 interfaces and , and 10235 degrees of freedom overall. Figure 
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73 shows 3D view of the DMEM-G model implemented in the software HiStrA.   

 On the other hand, the simplified model of the façade (DMEM-F), including only 

the façade and the discrete distribution of non-linear links accounting for the interaction 

with the lateral walls, comprises 141 macro-elements, 5 rigid elements, 34 non-linear links, 

and 318 interfaces with 1017 degrees of freedom, corresponding to approximately 10% of 

the DMEM-G’s model. Figure 74 shows 3D view (Figure 74a) and the mechanical scheme 

(Figure 74b) of the simplified model (DMEM-F) of the façade.  

 For the distribution of nonlinear links an elasto-plastic constitutive law with a fixed 

ultimate displacement is considered. The elastic stiffness (K), both in tension and 

compression, is calculated assuming the yielding displacement equal to 1.5 mm and the 

ultimate force (Fu) equal to:  

uF N c A=  +   7.1 

being N the axial force and A the transversal section of a single horizontal block-to-block 

interlocking surface. Finally, the ultimate displacement du is assumed to equal 50% of the 

average length of the stone blocks. The results of the nonlinear links calibration are 

summarised in Table 10. For the sake of simplicity, the value of N is evaluated considering 

the vertical loads and is kept constant during the pushover analysis.  

  

Figure 73 - 3D view of the DMEM-G model of the Church  
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(a) (b) 

Figure 74 - (a) Simplified model (DMEM-F) of the facade; (b) mechanical scheme 

Quote of 

the link 

z  

[mm] 

Tributar

y area 

z 

[mm] 

Axial 

force  

N  

[kN] 

Elastic  

stiffness   

K  

[kN/mm] 

Ultimate  

force  

Fu 

[kN] 

Ultimate  

displacement  

du 

[mm] 

692 692 3.19 2.987 4.48 285 

1505 813 6.94 4.489 6.73 285 

2329 824 10.75 6.011 9.01 285 

3148 819 14.53 7.523 11.28 285 

4110 962 18.97 9.300 13.95 285 

5365 522 21.38 10.264 15.39 285 

4632 733 24.77 11.618 17.42 285 

6108 743 28.20 12.990 19.48 285 

6850 742 31.62 14.360 21.54 285 

7398 548 34.15 15.372 23.05 285 

7946 548 36.68 16.384 24.57 285 

8494 548 39.21 17.3967 26.09 285 

9042 548 41.74 18.408 27.61 285 

9590 548 44.27 19.420 29.13 285 

10228 638 47.22 20.599 30.89 285 

10868 640 50.17 21.781 32.67 285 

11508 640 53.13 22.962 34.44 285 

Table 10 - Calibration of the lateral non-linear links according to Eq. 7.1 
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7.2.2 Nonlinear static analysis 

 In this section, the results of the nonlinear static analysis are reported both in terms 

of capacity curves and collapse mechanisms at the last step of the analysis, considering and 

neglecting the P-Delta effects.  

 Figure 75 shows the load multiplier vs. displacement curves for the global model 

and the facade models considering and neglecting the P-Delta effects. The difference 

between the two models is due to the different collapse mechanisms shown in Figure 76. 

In particular, the DMEM-F model, cannot describe the collapse mechanism involving 

portions of the orthogonal walls.   

 In order to investigate the differences between the global and simplified models, 

and the role of lateral walls on the response of the façade, a parameter α “bond coefficient”, 

ranging from 0 to 1, and multiplying the strength and ductility capacity of the non-linear 

links that simulate the presence of lateral walls, is considered (the results reported in Figure 

75 and Figure 76 can be seen associated with the value α=1). In the latter figure, the colour 

map shows the ratio between the maximum plastic deformation over the ultimate plastic 

deformation at the last step of the analyses for the two developed models. 

 

Figure 75 - Pushover curves considering (continue lines) and neglecting (dashed lines) P-Delta 

effects 
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(a) 

 

(b) 

 

Figure 76 - Distributions of plastic deformations at the last step of the analysis for the a) DMEM-

G model and b) DMEM-F model. 

 Figure 77 shows the pushover curves obtained varying the value of α. It is worth 

noting that for α ≥ 0.5 (Figure 78a and Figure 78b) the collapse mechanism does not involve 

the failure of the links, and the façade fails by activating a vertical central crack. 

Conversely, values of α < 0.5 (Figure 78c) lead to the yield of a significant number of links, 

consistent with the damage observed in the lateral walls of the global model (Figure 76a) 

and a façade damage pattern similar to that observed in the façade of the DMEM-G model. 

These results may be justified by the fact that the global model allows for combined shear-

flexural mechanisms involving the lateral walls due to the low axial load level. In contrast, 

the facade model considers a pure cohesive-friction mechanism.   

 Comparing the curves obtained by including and neglecting P-Delta effects, it can 

be noted that they start diverging at about 0.1m of displacement (9% of the wall thickness). 

After that level of displacement, the capacity curves of the analyses with P-Delta effects 

show a softening behaviour, while the analyses without P-Delta effects show a hardening 

response, leading to a significant overestimation of the load capacity of the system, with 

higher errors observed in the case of weak connections (low values of ).  
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 Finally, Figure 79 shows the axial stresses of the normal nonlinear links. It can be 

observed that the highest links (with the smallest abscissa z) are those subject to the greatest 

deformations, reaching their limit of ductility capacity in the case of α < 0.5, where the 

axial stress goes to zero (indicated with the white colour in Figure 79). 

 

(a)  

 

(b) 

Figure 77 - Pushover curves for the DMEM-G model and the DMEM-F model varying the quality 

factor α: a) neglecting and b) considering P-Delta effects. 
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(a) (b) (c) (d) 

Figure 78 - Collapse mechanisms of simplified models for a) α = 0.75; b) α = 0.50; c) α = 0.25; 

d) α = 0 

    

 

(a) (b) (c) (d)  

Figure 79 - Stresses in the links of the simplified model for a) α = 1; b) α = 0.75; c) α = 0.50; d) α 

= 0.25. 

 Moreover, non-linear static analyses are carried out on DMEM-G model, 

considering a distribution of lateral loads proportional to the mass along two different 

loading directions: the transverse direction (x-axis) parallel to the transept and the 

longitudinal direction (y-axis) parallel to the nave.   
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 The results are once again reported in terms of pushover curves and collapse 

mechanisms considering and neglecting P-Delta effects. In addition, the horizontal 

displacements of three control points are monitored, namely the point at the top of the 

façade and two at the top of the two lateral walls.    

 In order to investigate the overall nonlinear response of the structural, nonlinear 

dynamic analysis are carried out also in the transversal direction and in the slanting 

direction (Figure 80). Moreover, the horizontal displacement of three different control 

points is monitored during the analysis for all the five load directions. The control points 

are located at the top of the main façade (PT1 - Figure 80) and at the top of the two 

transversal walls (PT2 and PT3 - Figure 80) in order to fully describe the response of the 

church when an OOP collapse mechanism which involves the main façade is activated.   

 

 

 

Figure 80 - Load directions and control points of static nonlinear analysis 

 Again, the results are reported in terms of both capacity curves and collapse 

mechanisms obtained considering and neglecting P-Delta effects respectively for each of 

the considered directions. In the capacity curves are reported both the results obtained 

x 

y 

0° 180° 

225° 315° 

270° 
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considering (continue line) and neglecting (dashed line) P-Delta effects. The reported 

collapse mechanisms are related to the last step of each analysis.  

 From the capacity curves it is evident that not considering P-Delta leads to an 

overestimation of the bearing capacity of the structure in all the considered directions. In 

particular, at the last step of the analysis the capacity of the structure in terms of strength 

decreased by about 35% and 13% for the +x (0°) (Figure 81) and -x (180°) (Figure 82) 

direction respectively. At the last step of the analysis, the bearing capacity is reduced by 

13% also with reference to the longitudinal directions (270°) (Figure 84). While for the two 

oblique directions (225° and 315°) the reduction of the bearing capacity is lower (Figure 

83 and Figure 85). It is worth noting that the difference between the curves obtained 

considering and neglecting P-Delta effects begin to be evident starting from 10 cm of 

displacement of the control points. As regard the collapse mechanisms there are no obvious 

differences when delta effects are considered. In particular, DMEM strategy predicts a 

collapse mechanism that essentially involves in-plane failures in the main façade and in the 

triumphal arches, parallel to the main façade when a transversal load direction is considered 

(Figure 81 and Figure 82). Diagonal cracks are observed in the façade between the openings 

and in the lower part of the chapel, while the longitudinal walls parallel to y-z plane remain 

almost undamaged. On the other hand, when a longitudinal load direction is considered, 

the models predict the overturning of the main façade and a portion of the sidewalls where 

a diagonal crack open starting from the openings (Figure 84). As imaginable, an 

intermediate mechanism between those activated for the transversal and longitudinal 

directions is activated for the oblique directions (Figure 83 and Figure 85). 
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No P-Delta 

 

P-Delta 

Figure 81 - Pushover curves and collapse mechanisms - 0° direction 
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No P-Delta 

 

 

P-Delta 

Figure 82 - Pushover curves and collapse mechanisms – 180° direction 
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No P-Delta 

 

P-Delta 

Figure 83 - Pushover curves and collapse mechanisms - 225° direction 
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No P-Delta 

 

P-Delta 

Figure 84 - Pushover curves and collapse mechanisms - 270° direction 
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No P-Delta 

 

P-Delta 

Figure 85 - Pushover curves and collapse mechanisms - 315° direction 
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8. CONCLUSIONS 

 

This work aims to assess the out-of-plane (OOP) seismic behavior of URM 

structures when they are subjected to seismi loading. Response of unreinforced masonry 

walls to out-of-plane actions is one of the most complex, yet inadequately addressed, 

themes in seismic analysis.  

 Contemporary seismic codes for design of new masonry buildings provide 

dimensioning and detailing rules that make out-of-plane failure almost improbable even 

under severe seismic load. In contrast, out-of-plane collapse is a recurring mechanism in 

existing URM buildings: when the connections between walls or, more in general, between 

vertical and horizontal structural elements do not guarantee a box-type behavior (as most 

of the historic structures), the out-of-plane mechanism represents the main source of severe 

structural damage and collapse.  

 Observations after strong earthquakes shows that OOPfailures of unreinforced 

masonry (URM) buildings constitutes the most serious life-safety hazard for this type of 

construction. Additionally, even if connections to floors and transverse walls are effective, 

OOP failures can occur in slender walls, parapets, long unrestrained top spandrels. As 

consequence several types of OOP mechanism can be activate.   

 The seismic response of walls undergoing OOP rocking motions is rather complex 

due to the discontinuous and non-homogeneous nature of masonry, the high nonlinear 

constitutive behavior and the interaction with the remainder of the building. Moreover, the 

wall response is mainly related to geometric stability rather than to the strength of materials. 

For this reason, in the assessment of the out-of-plane behavior of URM structure geometric 

nonlinearities play a fundamental role, making the seismic behavior even more complex. 

This work presents a further development of the Discrete Macro-Element Method 

(DMEM) model by including an effective way for accounting the geometric nonlinearities 

of the vertical applied loads, P-delta effects. These effects are particularly significant when 
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failure mechanisms associated to the out-of-plane behavior and, in particular, to the rocking 

of masonry walls occur, typical of unreinforced masonry (URM) buildings and structures. 

A simplified, but robust, P-Delta formulation is presented and implemented within a 

standard iterative Newton-Raphson method in the HiStrA software which implements the 

DMEM numerical approach. DMEM has the great advantage of being very simple, thanks 

to its mechanical scheme and the straightforward fiber calibration of its interfaces, but, at 

the same time, very accurate and computational inexpensive if compared to the classical 

FEM and DEM strategies usually used for the assessment of the OOP behavior.  

 The proposed P-Delta formulation does not require assembling and updating the 

geometrical matrix of the system, conversely, the geometrical nonlinearities are addressed 

during the analyses by updating the global load vector according to the macro-elements' 

current configurations. Specifically, according to the proposed strategy, the equilibrium is 

imposed considering the system’s undeformed configuration, while the global load vector 

is computed at each step of the analysis according to the current position of loads.  As a 

result, the proposed model does not require a significant increase of the computational cost 

compared to DMEM models not accounting for the P-Delta effects. 

 The proposed model is validated, in the static field, against analytical, numerical 

and experimental results demonstrating its capacity to describe the mechanical and 

geometrical nonlinearities characterizing the response of masonry walls subjected to 

different boundary conditions. The results show the accuracy of the proposed model, which 

was able to describe the pre-peak and post-peak response as well as the ultimate lateral 

strength and the displacement capacity of masonry walls exhibiting common OOP rocking 

mechanisms. Namely, cantilever and vertical spanning mechanisms for different 

geometrical layouts, loading and boundary conditions confirmed the model’s potential to 

be employed for real structural assessments of masonry structures whose nonlinear 

response is characterized by the activation of rocking failure mechanisms. Parametric 

analyses have been conducted to investigate the role of i) modelling parameters, like the 

mesh discretization and the interface link discretization; (ii)  masonry deformability; iii) 

axial compression loads, iv) mechanical parameters like tensile strength and fracture 

energy.  
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 The P-Delta formulation is extended in the dynamic field and validated against 

analytical prevision on the period of vibration of the rigid block proposed by Housner 

(1963). The results of numerical simulations confirm the importance of considering 

geometric nonlinearities when masonry walls experience OOP mechanisms.  

 Additionally, to compare results with numerical and experimental simulations, a 

local damping model is introduced in order to simulate the loss of energy related to the 

impacts typically of the rigid blocks’ dynamic. A viscous damping model proportional to 

the local stiffness matrix of the rocking interface is adopted able to reproduce the rigid 

block dynamic. The viscous damping ratio is calibrated according to an empirical ξ-e 

relationship recently proposed in literature by Vlachakis et al. (2021). The model 

predictions are compared to those obtained by analytical solutions and FEM models 

obtained by Vlachakis. The comparisons show the capability of the model to effectively 

dissipates the energy when impacts occur. 

 Finally, different case studies are considered. Firstly, church façade has been 

subjected to dynamic loads in order to study the influence of considering the P-Delta effects 

in a structural model of masonry buildings. In particular, harmonic and earthquake dynamic 

nonlinear analyses have been conducted. More specifically, a set of nonlinear analyses 

considering a sinusoidal signal with seven values of the amplitude and varying the load 

frequency, for each amplitude, between 0.025 Hz and 3.0 Hz, have been considered. The 

analyses were conducted considering and neglecting the P-Delta effects, respectively and 

they confirmed that the collapse region is larger, both in terms of displacement and 

amplitude, when the P-Delta effects are taken into account. Incremental dynamic analyses 

were conducted considering three different seismic inputs characterized by different 

magnitude levels. This latter analysis pointed out the lower sensitivity to signal and 

mechanical parameters of the model when P-Delta effects are considered.   

 A second case study was investigated in order to investigate the stabilising 

contribution of retaining walls when P-Delta effects are considered. With reference to the 

case study of the San Nicolò di Capodimonte Church (Italy), two different models are 

developed, namely a 3D model of the entire church accounting for the unit interlocking 

between the façade and retaining walls, and a simplified model of the façade in which a 
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discrete distribution of non-linear links with an ad-hoc calibration accounts for the 

contribution of the retaining walls. Both models are analysed through pushover analyses 

performed along with the direction orthogonal to the façade to i) assess the role of lateral 

walls; ii) validate the simplified model of the façade; iii) assess the role of P-Delta effects 

on the façade response. With these aims, the analyses are performed considering and 

neglecting the P-Delta effects and considering different strength and ductility values for the 

facade-to-lateral-wall connections. For the investigated case study, the P-Delta effects 

become significant at a level of displacement magnitude of the control point of the façade 

approximately of 10% of the masonry thickness,  with larger discrepancies between the two 

models observed in the presence of weaker connections.  

 These results confirm that neglecting the P-Delta effects may lead to significant 

errors in the ultimate limit checks, for which the displacement threshold mentioned above 

is easily reached or passed by the seismic demand. The comparisons between the global 

model and the simplified one show a reasonable accuracy of the simplified model, with the 

introduction of a bond coefficient, requiring a significantly lower computational effort, so 

confirming its applicability for assessing large facades. 

 Overall, the presented results demonstrate the importance of including geometric 

nonlinearities in assessing masonry walls subjected to seismic rocking motion and confirm 

the accuracy of the proposed model, which can provide good predictions of the ultimate 

behavior of rocking walls to large lateral displacements, maintain the advantage of the 

DMEM strategy consisting in limiting the computational effort. 

 

8.1 Future developments 

 Despite the results presented in this work are particularly interesting in the study of 

the out-of-plane behavior of masonry structures providing additional insight regarding the 

assessment of the seismic behavior of masonry structures characterised by predominant 

out-of-plane failure mechanisms. Nevertheless, several aspects still need to be investigated 

due to the complexity of this behavior; therefore, further investigations should be 
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conducted, performing nonlinear static and dynamic simulations on more complex 3D 

rocking scenarios relative to free-standing objects. Moreover, the effects of other 

mechanical parameters characterising the behavior of masonry constructions will be 

investigated, such as the deformability and the compressive strength of the blocks, also 

investigating the influence of the wall slenderness and “scale-effects”. 

 Future developments and further calibrations are needed to extend the damping 

model localised at the interface to describe the energy dissipation in multi-block rocking 

systems. Such a development will allow DMEM to properly simulate energy dissipation 

concentrated at mortar joints or newly retrofitting strategies for enhancing the performance 

of masonry structures by using dissipative joints [178].  

 Finally, future developments will investigate more real case studies in static and 

dynamic fields. Moreover, probabilistic assessments on complex monumental structures 

will be carried out by constructing fragility curves, both considering and neglecting P-Delta 

effects.  
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