
COMPUTATION & THEORY

Artificial neural networks test for the prediction

of chemical stability of pyroclastic deposits-based

AAMs and comparison with conventional mathematical

approach (MLR)

Claudio Finocchiaro1, Germana Barone1,*, Paolo Mazzoleni1, Caterina Sgarlata2,
Isabella Lancellotti2, Cristina Leonelli2, and Marcello Romagnoli2

1Department of Biological, Geological and Environmental Sciences, University of Catania, Corso Italia, 57, 95127 Catania, Italy
2Department of Engineering ‘‘Enzo Ferrari’’, University of Modena and Reggio Emilia, Via Pietro Vivarelli 10, 41125 Modena, Italy

Received: 28 May 2020

Accepted: 10 August 2020

Published online:

16 September 2020

� The Author(s) 2020

ABSTRACT

The investigation on the reticulation degree of volcanic alkali-activated mate-

rials, AAMs, were experimentally determined in terms of chemico-physical

properties: weight loss after leaching test in water, ionic conductivity and pH of

the leachate and compressive strength. Artificial neural network (ANN) was

successfully applied to predict the chemical stability of volcanic alkali-activated

materials. Nine input data per each chemico-physical parameter were used to

train each ANN. The training series of specific volcanic precursors were tested

also for the other one. Excellent correlations between experimental and calcu-

lated data of the same precursor type were found reaching values around one.

The evidence of strong effect on chemical stability of the alkaline activator SiO2/

Na2O molar ratio as well as the Si/Al ratio of precursor mixtures on the retic-

ulation degree of ghiara-based formulation with respect to volcanic ash-based

materials is presented. It must be noted that such effect was much less pro-

nounced on the compressive strength values, appearing more insensitive the

molar ratio of the alkaline activator. The comparison of the ANN results with

more conventional multiple linear regression (MLR) testifies the higher pre-

diction performance of the first method. MLRs results, less significant, are useful

to confirm the powerful capacity of ANNs to identify the more suitable formu-

lation using a set of experimental AAMs. This study, as few others, on the

correlation between chemical stability and compressive strength of AAMs

provide a great contribution in the direction of durability and in-life mechanical

performance of these class of materials.
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GRAPHIC ABSTRACT

Introduction

Alkali-activated aluminosilicate polymers, otherwise

known as geopolymers and proposed for the first

time by Davidovits [1], represent a valid alternative

to the common construction materials thanks to low-

energy-consuming and cost-efficient process, making

them strongly versatile [2–5]. Moreover, their pro-

duction process became of high interest for sustain-

able management of waste materials, which are used

as precursors or waste to be encapsulated in addition

to an alkaline solution [6–8]. Until now, according to

Italian National legislation, a volcanic deposit caused

by explosive eruptions represents a natural waste

material which requires specific managing protocol

and consequently high cost of management [9].

Indeed, the fresh particles, once erupted, require

treatments to remove chlorides and sulphates

deposited on their surfaces [10] before to be used in

small amount as aggregates to produce traditional

mortars [9]. However, volcanic particles thanks to

their high amorphous and aluminosilicate contents

are known as suitable precursors for alkali-activated

binder production [11–13], regardless they require

thermal treatments or metakaolin addition as addi-

tive component to reduce the setting time caused by

the high volcanic glass stability in alkaline

environment [14]. In this scenario, volcanic ash and

volcanic paleo-soils, the latter locally known with

ghiara term [15–20] and coming from Mt. Etna vol-

cano (Sicily, Italy), were used in binary mixture with

small metakaolin amount additions, allowing an

alkaline activation at room temperature with the aim

to produce geopolymeric binders to apply in situ

cultural heritage interventions [21]. In general, the

final physical properties of alkali-activated materials

(AAMs) are strongly influenced by different vari-

ables, such as SiO2/Al2O3, Na/Al and solid/liquid

ratios [22, 23], especially when aluminosilicate sour-

ces, as in this work, are natural waste materials,

characterized by an intrinsic heterogeneity.

Among all methods, artificial neural networks

(ANNs) are used and appreciated for materials sci-

ence [24–28], although geopolymer field is still few

explored despite a high request of a mix design tool

able to predict formulations with excellent chemical

stability features. Generally, ANNs have been

focused on predict mechanical behaviour [29–33] and

abrasion resistance [34] of geopolymer materials.

However, none of the ANNs have been applied to

AAMs based on volcanic residues until now.

Therefore, in this work, ANNs were test for the

first time to AAMs based on pyroclastic deposits

from Mt. Etna volcano, Italy, evaluating physical

properties, such as weight loss during leaching
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treatments in water, ionic conductivity and pH of the

leachate solution, and compressive strengths, which

are all strongly influenced by the chemical stability of

final product. Traditional multiple linear regressions

(MLR) were also implemented to compare the cor-

relation found with ANNs, aiming to highlight the

strength points of predictive approaches used. Our

ANN predictive approach can be defined useful to

provide an optimization of mix design for AAMs

based on volcanic particles with great durability

features and to promote the potentiality of this kind

of building materials still without market rules, but

very appreciate by scientific community.

Materials and methods

Materials and sample preparation

Eighteen binary mixtures made of volcanic ash

(indicated with ‘‘V’’) or ghiara paleo-soil (‘‘G’’), whose

sampling details and characterization results are

reported in [21], with small and progressive increases

(10–25 wt% on the solid total weight) of metakaolin

(MK), commercialized as ARGICALTM M1000 (pro-

vided by IMERYS, France) [35] and two different

sodium-activating solutions were considered. These

latter are differentiated by the type and the quantity

of sodium silicate used: (1) a combination of sodium

hydroxide (8 M) and sodium silicate, provided by

Ingessil s.r.l., Italy, with a molar ratio SiO2/Na2O = 3;

(2) a different sodium silicate (code: 373908), pro-

vided by Carlo Erba, Italy, with a molar ratio SiO2/

Na2O = 2, maintaining constant the quantity of

sodium hydroxide (8 M). Therefore, the samples

considered for the ANNs and MLR implementations

are labelled as following: VM/GM3-10/25 and VM/

GM2-10/25, indicating with the subscript the type of

silicate according to the SiO2/Na2O molar ratio.

Moreover, for VM/GM2 series, a formulation with

lower silicate amount, labelled VM/GM2-20LS, was

considered. All the formulations with corresponding

labels are reported in Table 1. The same preparation

steps were adopted for all series to make them

comparable. It was deeply explained in the previous

work [21], as well as the characterization results of

the samples belonging to VM/GM2 series, differently

for the results of VM/GM3 series which are reported

for the first time in this work.

Experimental methods

The eighteen samples of both series were character-

ized with the aim to assess the chemical stability in

aqueous environment evaluating the consolidation

performance after alkaline activation. Therefore, the

pH and the ionic conductivity test were performed

on the solutions following the immersion of samples,

after 28 room temperature curing days, at 25 �C in

de-ionized water. The ionic conductivity measures

the solution’s electrical conductivity which is influ-

enced by the motion of all the free ionic charges

released in the solutions and thus strongly depending

on the total dissolved solid.

Therefore, solid shreds of samples were immersed

in distilled water with a solid/liquid ratio of 1/10 in

stirring conditions for 24 h in a beaker. Measure-

ments were determined for different times 0, 5, 15, 30,

60, 120, 720 and 1440 min, evaluating the values

changes over the 24 h as results of amount of dis-

solved solid [21]. At the same time, the weight loss

after water treatments in stirring condition were

evaluated, comparing the initial (wi) and the final

(wf) weights, whose values are expressed in per-

centage according to the following equation:

weight loss %ð Þ ¼
wi � wf

wi
� 100

Compressive strength was determined using an

Instron 5567 Universal Testing Machine with 30 kN

load limit and displacement of 3 mm/min according

to the standard UNI EN 826 on four cubic samples

(2 9 2x2 cm3) of each formulation cured at 28 days.

Analysis approaches: ANN and MLR

ANN principles

ANNs are computational modelling tools used in

complex problem solving tasks organized with dense

architectures, highly interconnected by simple com-

puting elements (called artificial neurons or nodes)

capable to perform parallel computations for data

processing [36, 37]. ANNs find analogies with those

of human brain network. In detail, they are arranged

based on a hierarchical structure with three main

layers: input layer, hidden layer (one or more) and

output layer, linked through weighted connections

(i.e. values) [38–40]. Each node calculates the effect of
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inputs and weights through the sum function, which

calculates the net input linked to a neuron [31]. The

weighted sums of the input components (net)j are

calculated using the following equation:

netð Þj¼
Xn

i¼1

Wijxi þ b ð1Þ

where (net)j is the weighted sum of the jth neuron for

the input received from the preceding layer with n

neurons, Wij is the weight between the jth neuron in

the previous layer, xi is the output of the ith neuron in

the previous layer [41], b is a fix value, and
P

rep-

resents sum function.

Activation function is a function that processes the

net input obtained from sum function and determi-

nes the neuron output. In general, for multilayer

feedforward models as the activation function, sig-

moid activation function is used. The output of the

jth neuron (out)j is computed with a sigmoid activa-

tion function using the following equation [42]:

Oj ¼ f netð Þj¼
1

1þ e�a netð Þj
ð2Þ

where a is constant used to control the slope of the

semi-linear region. The sigmoid nonlinearity acti-

vates in every layer except in the input layer [42]. The

sigmoid activation function represented by Eq. (2)

gives outputs in (0, 1). If it desired, the outputs of this

function can be adjusted to (-1, 1) interval. As the

sigmoid processor represents a continuous function,

it is particularly used in nonlinear descriptions.

Because its derivatives can be determined easily with

regard to the parameters within (net)j variable [41].

However, these connections need to be trained to

induce the input variables to the expected results in

agreement with the experimental ones through con-

tinuous iterations [43, 44], computed for example

using a feedforward-backpropagation neural net-

work aimed to minimize the total error or mean error

of target computed by the neural network [45].

ANN design

Four ANNs for each physical parameter (weight loss,

conductivity, pH and compressive strengths), mea-

sured during the laboratory experiments with the

same measuring setting, were implemented using the

design reported in Table 2. ANN model has 6 neu-

rons in the input layer, ten neurons in one hidden

layer and one neuron as output layer as schematically

plotted in Fig. 1. The mix design of each formulation

was used as input data, considering the volcanic

precursor, metakaolin, sodium hydroxide, water,

sodium silicate type and amounts (Table 3). In detail,

the ANNs were created according to the type of

volcanic precursor (i.e. V-ANNs and G-ANNs).

Moreover, these latter were used as training series for

Table 1 Labels and formulation details (in wt%) of the experimentally prepared AAMs

Sample V or G (%) MK (%) NaOH (8 M) (%) Na2SiO3 (SiO2/Na2O = 3) (%) Na2SiO3 (SiO2/Na2O = 2) (%) H2O (%)

VM3-10 68.18 7.58 2.24 5.45 0.00 16.56

VM3-15 64.39 11.36 2.24 5.45 0.00 16.56

VM3-20 60.61 15.15 2.24 5.45 0.00 16.56

VM3-25 56.82 18.94 2.24 5.45 0.00 16.56

VM2-10 59.21 6.58 1.94 0.00 12.89 19.37

VM2-15 55.92 9.87 1.94 0.00 12.89 19.37

VM2-20 52.63 13.16 1.94 0.00 12.89 19.37

VM2-25 49.34 16.45 1.94 0.00 12.89 19.37

VM2-20LS 57.14 14.29 2.11 0.00 9.80 16.66

GM2-10 62.50 6.94 2.05 0.00 10.89 17.62

GM2-15 59.03 10.42 2.05 0.00 10.89 17.62

GM2-20 55.56 13.89 2.05 0.00 10.89 17.62

GM2-25 52.08 17.36 2.05 0.00 10.89 17.62

GM2-20LS 57.14 14.29 2.11 0.00 9.80 16.66

GM3-10 68.18 7.58 2.24 5.45 0.00 16.56

GM3-15 64.39 11.36 2.24 5.45 0.00 16.56

GM3-20 60.61 15.15 2.24 5.45 0.00 16.56

GM3-25 56.82 18.94 2.24 5.45 0.00 16.56
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the opposite one with the aim to observe affinities

among these pyroclastic materials (i.e. V-ANNs were

used to predict GM samples and vice versa). The

neurons of neighbouring layers are completely

interconnected by weights. The software used was

NNpred, a freeware MS-Excel implementation

developed by Angshuman Saha [46] and extensively

used across many field and academia. A feedfor-

ward-backpropagation neural network with a sig-

moid activation function was used. Momentum rate

and learning rate values did not optimise, but the

default values were used for model training. NNpred

is set by the developer to perform only 500 training

cycles, but it was forced to carry out 5000 epochs with

the aim to obtain a better fitting, thus, to reach the

least training error. This latter can be reached after

epoch nr. 5000 or lower depend on the setting and/or

dataset and, generally, already after few tens of

epochs, the training error decreases of much.

MLR principles

Through the regression analysis, the dependent

variables (Y) are evaluated considering the variations

of independent variables (Xm), with the aim to

determine which one has a significant impact.

According to the relationship between the dataset, a

straight-line regression is the commonly used. In

statistics, a linear regression is defined by the fol-

lowing mathematical equation:

Yi ¼ b0 þ b1X1 þ . . .þ bnXn þ e

where Yi = dependent variable, Xm = explanatory

variables, b0 = y-intercept (constant term), bm-

= slope coefficient of m-th explanatory variable,

e = the model’s error term (also known as the resid-

uals) which is the difference between the value of

dependent value and the expected one [47].

MLR design

Two set of multiple linear regressions (MLR) were

implemented, labelled V-MLR and G-MLR, respec-

tively, for volcanic ash and ghiara precursors. The

independent variables were chosen among the type

of reactants involved in each formulation considering

significant influences on dependent ones (i.e. weight

loss, conductivity, pH and compressive strengths). In

this scenario, all reactants used for alkaline activation

were considered except the sodium hydroxide and

the sodium silicate with molar ratio equal to three

(S3) which resulted statistically insignificant on

dependent variables due to: (1) the constant amount

of NaOH used in all formulations; (2) the constant

amount of S3 in VM3 and GM3 series contrary to the

other series (Table 3).

Table 2 Parameters used in ANNs

Network architecture

Number of inputs 6

Number of hidden layers 1

Hidden layer size 10

Number of outputs 1

Learning parameter (range 0–1) 0.4

Momentum (range 0–1) 0

Number of training cycles 5000

Training Mode Sequential

Figure 1 ANN model used: neuron (circle) and weight (arrow).

Input layer: volcanic ash/ghiara (V/G); metakaolin (MK); sodium

hydroxide (H); sodium silicate with SiO2/Na2O = 2 (S2); sodium

silicate with SiO2/Na2O = 3 (S3); water (W). Hidden layer (H01-

10); Output layer (O1-4): weight loss, conductivity, pH and

compressive strengths.
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MLRs were performed using Excel tool ‘‘Data

Analysis ? regression’’ based on the least square

method, with the goal to obtain the smallest possible

squares sum and draw a line closest to the data. The

interpretation of MLR was carried out considering

the determination coefficient R squared (range value

Table 3 Summary with input data (wt% reactants) and output data (experimental results)

Sample Input data Output data (experimental)

O1 O2 O3 O4

Vor G

(%)

MK

(%)

NaOH

(8 M) (%)

Na2SiO3(SiO2/

Na2O = 3) (%)

Na2SiO3(SiO2/

Na2O = 2) (%)

Tot.

H2O

(%)

weight

loss (%)

Conductivity

(mS/m)

pH Comp.

Strength

(MPa)

VM3-

10

68.18 7.58 2.24 5.45 0.00 16.56 1.76 312 9.3 24.77

VM3-

15

64.39 11.36 2.24 5.45 0.00 16.56 5.18 372 9.5 37.79

VM3-

20

60.61 15.15 2.24 5.45 0.00 16.56 0.87 245 8.6 32.58

VM3-

25

56.82 18.94 2.24 5.45 0.00 16.56 0.91 261 8.5 39.59

VM2-

10

59.21 6.58 1.94 0.00 12.89 19.37 5.95 574.1 12.2 14.27

VM2-

15

55.92 9.87 1.94 0.00 12.89 19.37 4.68 574 12.2 15.32

VM2-

20

52.63 13.16 1.94 0.00 12.89 19.37 4.15 504 12.0 23.3

VM2-

25

49.34 16.45 1.94 0.00 12.89 19.37 3.23 261.1 12.0 38.03

VM2-

20LS

57.14 14.29 2.11 0.00 9.80 16.66 3.94 261.2 11.8 34.21

GM2-

10

62.50 6.94 2.05 0.00 10.89 17.62 5.56 598 12.0 10.84

GM2-

15

59.03 10.42 2.05 0.00 10.89 17.62 4.38 648 12.2 15.09

GM2-

20

55.56 13.89 2.05 0.00 10.89 17.62 2.92 569 12.1 25.27

GM2-

25

52.08 17.36 2.05 0.00 10.89 17.62 1.76 454 12.1 37.9

GM2-

20LS

57.14 14.29 2.11 0.00 9.80 16.66 2.33 536 12.1 32.21

GM3-

10

68.18 7.58 2.24 5.45 0.00 16.56 1.84 331 9.0 16.87

GM3-

15

64.39 11.36 2.24 5.45 0.00 16.56 0.93 337 9.1 21.93

GM3-

20

60.61 15.15 2.24 5.45 0.00 16.56 0.87 265 9.2 27.65

GM3-

25

56.82 18.94 2.24 5.45 0.00 16.56 0.58 173 8.8 40.54

These latter include the results of chemical stability test (weight loss, ionic conductivity and pH) and compressive strengths after 28 curing

days. The errors of each equipment are: 0.01 g referred to balance sensitivity for weight loss; ± 1% full scale accuracy for ionic

conductivity; ± 0.1 pH; standard deviation was calculated for compressive strength. The double line divides the samples according to

V/G-ANNs. The results of VM/GM2 are reported from [21]
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0–1), indicator of the goodness of the adaptation, the

R-squared adjusted coefficient takes into account the

independent variables number in the model with the

aim to obtain both values much close each other and

finally, the significance (F) of variance analysis to

statistically quantify the reliability of the obtained

results. Generally, this latter should be less than 0.05

(5%) to demonstrate the goodness of the model used.

Results and discussion

Experimental results

The obtained results of all the series were reported in

Table 3. Briefly, the results showed a general pro-

gressive decreasing of weight loss, conductivity and

pH values at increasing metakaolin content in the

mixture, contrary to the compressive strengths which

increases increasing MK content. VM3-15 sample

highlighted contrasting values in comparison with

the entire trend, maybe due to instrumental error or

preparation one. In this scenario, we consider it

marginally. Therefore, according to these results, a

better reticulation was reached in the samples with

higher metakaolin amount, demonstrating the posi-

tive influence as additive component due to the

optimization of Si/Al ratio with the aim to obtain

binders at room temperature as in situ interventions.

By comparing the series activated with alkaline

solution with SiO2/Na2O = 3 and with SiO2/Na2-
O = 2, it appears evident the improvement of all the

properties for ratio = 3. This is an important finding

because it means such ratio strongly influences the

reticulation as well as the leaching of ionic species in

water, while the effect on compressive strength is not

so evident. In particular, all the chemical properties

such as weight loss, pH and conductivity decrease for

ratio 3, indicating the formation of a more stable ma-

trix, with a correlated increase in mechanical

properties.

A study of such trend with statistical model will

allow a deeper understanding and quantification of

the role of the alkaline solution and the aluminosili-

cate precursor (see next paragraph).

ANNs results

V-ANNs

The V-ANNs trained with the input data of VM

samples show an excellent capacity to predict the

experimental data. Figure 2 plots the correlations

between the experimental (x axis) and calculated (y

axis) data for each physical property by VM input

data. Indeed, the high determination coefficients (R2)

of each trendline confirm the good fitting. Moreover,

the correlation coefficients of each physical property

are almost equal to one (Table 4). Differently, the

previsions on calculated data of GM samples driven

by VM training data show, in general, a discrete

predicting capacity (Fig. 3) with a correlation coeffi-

cient ranging around 0.53–0.98. In particular, the pH

is the best predicted variable (Fig. 3c), while the

conductivity the worst among all the material prop-

erties considered (Fig. 3b).

Concerning the chemical stability results, in the

prediction of ionic conductivity (Fig. 2b) and pH

(Fig. 2c), the V-ANNs tends to linearize the results

for the V-AAMs series, leaving the VM3-15 values out

of trendline as expected. The G-ANNs plots using

VM-training overestimate the ionic conductivity for

the GM3 series while underestimate the GM2 series

(Fig. 3b). This means that the alkaline solution with

SiO2/Na2O molar ratio of 3 had a much stronger

reticulation effect, i.e. lower conductivity values, on

ghiara-based AAMs with respect to volcanic ash, that

appeared almost insensitive to such molar ratio.

Similar considerations can be deduced for the weight

loss plot (Fig. 3a), where GM3 series have values

overestimated. Also, in this case, the alkali activator

had a more efficient role of consolidating the

geopolymeric matrix in the ghiara-based materials

with respect to the volcanic ash. The comparison of

such ANNs results provide an interesting support to

the interpretation of the role of the two different

alkaline solutions used as activators for the produc-

tion of alkali-activated materials. In particular, the

ghiara-based formulation reacted much better in the

SiO2/Na2O molar ratio = 3 conditions, while in the

volcanic ash-base materials, the reactivity is mainly

due to the metakaolin fraction and proceed with the

linearity expected from the % amount of MK in the

mixture whatever the alkaline solution is used.
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Figure 2 V-ANNs plots for

each ANN created: a weight

loss; b conductivity; c pH;

d average compressive

strengths. The dashed line

indicates the trendline passing

for the origin. Legends: filled

circle VM2 series open circle

VM3 series.

Table 4 Correlation between experimental and calculated data using V-training

Sample Experimental data Calculated data

weight loss

(%)

Conductivity

(mS/m)

pH Comp. Strength

(MPa)

weight loss

(%)

Conductivity

(mS/m)

pH Comp. Strength

(MPa)

VM3-10 1.76 312 9.3 24.77 1.80 342.3 9.5 25.09

VM3-15 5.18 372 9.5 37.79 5.08 330.8 9.1 35.31

VM3-20 0.87 245 8.6 32.58 1.09 273.6 8.8 37.15

VM3-25 0.91 261 8.5 39.59 0.97 249.1 8.7 37.79

VM2-10 5.95 574.1 12.2 14.27 5.95 573.9 12.1 14.34

VM2-15 4.68 574 12.2 15.32 4.73 572.3 12.1 14.86

VM2-20 4.15 504 12.0 23.3 3.91 504.3 12.1 23.38

VM2-25 3.23 261.1 12.0 38.03 3.41 264.6 11.9 37.80

VM2-

20LS

3.94 261.2 11.8 34.21 3.92 258.1 11.8 34.25

Corr. Coef 0.998 0.988 0.994 0.980

GM3-10 1.84 331 9.0 16.87 1.85 342.3 9.5 25.09

GM3-15 0.93 337 9.1 21.93 5.03 330.8 9.1 35.31

GM3-20 0.87 265 9.2 27.65 1.10 273.6 8.8 37.15

GM3-25 0.58 173 8.8 40.54 1.00 249.1 8.7 37.79

GM2-10 5.56 598 12.0 10.84 5.95 562.4 12.1 14.39

GM2-15 4.38 648 12.2 15.09 5.89 457.7 12.1 15.92

GM2-20 2.92 569 12.1 25.27 3.64 270.6 12.0 31.65

GM2-25 1.76 454 12.1 37.9 3.01 247.6 11.7 38.47

GM2-

20LS

2.33 536 12.1 32.21 3.92 258.1 11.8 34.25

Corr. Coef 0.766 0.538 0.985 0.867
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G-ANNs

Analogously to the V-ANNs, the input data of GM

series were used to train the G-ANNs. The obtained

data, following the mathematical iterations of neural

networks, evidence great capacity to predict the

experimental results, as confirmed by the high cor-

relation coefficients (i.e. about one) (Table 5). The

correlations between the experimental (x axis) and

calculated (y axis) data were plotted in Fig. 4, whose

determination coefficients (R2) of each trendlines

demonstrated the good fitting. Moreover, the previ-

sions on calculated data of VM samples, driven by

GM training data, evidence an excellent predicting

capacity (Fig. 5) with a correlation coefficient ranging

around 0.71–0.98, whose highest value is linked to the

pH (Fig. 5c) following by the compressive strengths

(Fig. 5d).

Also, in this case, when considering the chemical

aspects of the stabilization of the solid structure

derived from the alkali activation process, the

V-ANNs plots using GM-training indicate the sensi-

tivity of the ghiara-based formulation upon the acti-

vating alkaline solution used. In plots reported in

Fig. 5a, b, the ANNs are not predicting the linearity

typical of the volcanic ash-based materials for the

VM2 series that were clearly overestimated by the

prediction. These results suggest the strategy for

optimizing the mix design using S3 Na-silicate.

MLR results

V-MLR

With the aim to compare the ANN results with those

of other more conventional statistical methods, mul-

tiple linear regression approach was carried out on

the same sample sets. To evaluate the goodness of

fitting, the calculated and experimental results of

each physical property were plotted. These graphs

are shown in Fig. 6. The line was forced to pass

through the origin of Cartesian graph to avoid the

negative intercepts obtained by least square itera-

tions. If a good agreement is obtained, the points

describe a straight line with slope and a R2 close to

one. The original (R2) and R2 adjusted coefficient, as

well as the significance of variance analysis, are

showed in Table 6 (see Table S1 for details on

experimental and calculated results).

The first one is loosely interpreted as the propor-

tion of the variability in the data explained by the

model, the latter is a variation of the previous one

that reflect the percentage of variation explained by

only the independent variables that actually affect the

dependent variable. The two parameters must be

close [48]. The MLR of the weight loss showed a

better fitting for the VM2 series (Fig. 6a), although R2

and R2 adjusted are the lowest among all V-MLR, as

well as confirmed by the highest significance
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Table 5 Correlation between experimental and calculated data using G-training

Sample Experimental data Calculated data

weight loss

(%)

Conductivity

(mS/m)

pH Comp. Strength

(MPa)

weight loss

(%)

Conductivity

(mS/m)

pH Comp. Strength

(MPa)

GM3-10 1.84 331 9.0 16.87 1.83 339.1 9.1 17.40

GM3-15 0.93 337 9.1 21.93 0.98 327.0 9.0 20.77

GM3-20 0.87 265 9.2 27.65 0.75 261.4 9.0 28.82

GM3-25 0.58 173 8.8 40.54 0.68 195.1 9.0 38.62

GM2-10 5.56 598 12.0 10.84 5.33 626.7 12.1 12.11

GM2-15 4.38 648 12.2 15.09 4.49 620.5 12.1 14.34

GM2-20 2.92 569 12.1 25.27 2.89 577.6 12.1 25.27

GM2-25 1.76 454 12.1 37.9 1.75 451.2 12.1 38.47

GM2-

20LS

2.33 536 12.1 32.21 2.32 536.3 12.1 32.23

Corr. Coef 0.998 0.995 0.997 0.995

VM3-10 1.76 312 9.3 24.77 1.83 339.1 9.1 17.40

VM3-15 5.18 372 9.5 37.79 0.98 327.0 9.0 20.77

VM3-20 0.87 245 8.6 32.58 0.75 261.4 9.0 28.82

VM3-25 0.91 261 8.5 39.59 0.68 195.1 9.0 38.62

VM2-10 5.95 574.1 12.2 14.27 5.39 640.6 12.1 11.13

VM2-15 4.68 574 12.2 15.32 4.83 633.9 12.1 11.55

VM2-20 4.15 504 12.0 23.3 3.64 596.3 12.1 14.70

VM2-25 3.23 261.1 12.0 38.03 2.49 526.9 12.1 29.48

VM2-

20LS

3.94 261.2 11.8 34.21 2.32 536.3 12.1 32.23

Corr. Coef 0.715 0.713 0.982 0.873
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(F) value (31%) (Table 6). The MLR of conductivity

(Fig. 6b) and compressive strengths (Fig. 6d) showed

a comparable behaviour, from which no series pre-

vails and whose values suggest a poor correlation.

Contrary, the MLR of pH evidences an excellent

correlation (Fig. 6c), as highlighted by the signifi-

cance (F) and the high determination coefficient close

to one (Table 6). From the figures, it appears evident

the higher correlation for VM2 with respect to VM3,

probably because the activation with S3 solution is

not considered as reported in MLR design paragraph.

Further, the lower correlation is for chemical prop-

erties (weight loss and conductivity) strictly related

to reticulation degree in terms of amount of release
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ions. The pH values within the same series are less

influenced due to the alkaline environment for all the

compositions.

G-MLR

All G-MLR evidenced excellent correlations for each

physical property, whose graphs are plotted in Fig. 7

while the coefficients in Table 6 (see Table S1 for

details on experimental and calculated results).

Regardless the values higher than 90%, some thin

distinctions can be done. The MLR of weight loss

showed the lowest agreement between calculated

and experimental data (Fig. 7a), while those one of

conductivity (Fig. 7b) and compressive strengths

(Fig. 7d) are comparable and that one of pH the

highest R2 and agreement between calculated and

experimental data (Fig. 7c; Table 6). Both GM2 and

GM3 series highlighted the same behaviour and a

great fitting, from which cannot be suppose none

better network.

Conclusion

This work evidenced the possibility to use mathe-

matical approaches, such as ANNs and MLR, to

predict chemical stability of AAMs based on pyro-

clastic materials, whose main conclusions drawn are

the following:

• For ANNs results, an excellent correlation among

experimental and calculated data for the corre-

sponding training series was found. Contrary,

medium prediction capability for cross-correla-

tions with the opposite volcanic series was

Table 6 MLR correlations of VM and GM samples for each physical property

Weight loss (%) Conductivity (mS/m) pH Compressive strength (MPa)

VM GM VM GM VM GM VM GM

R2 0.625 0.907 0.756 0.988 0.985 0.998 0.791 0.962

R2 adjusted 0.250 0.814 0.513 0.975 0.970 0.996 0.582 0.925

Significance (F) 0.31616 0.02425 0.14905 0.00046 0.00068 0.00001 0.11257 0.00415
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evidenced even if a further round of experimental

data is needed to give quantitative values. Being

ANN a more sophisticated method with respect to

MLR, it is possible to verify the influence of the

different activating solutions, resulting, thus,

more powerful method than MLR as also reported

for other application fields [49, 50].

• Concerning the chemical stability results, from the

ANNs, the results appear evident that the alkaline

solution with SiO2/Na2O molar ratio of 3 had a

much stronger reticulation effect on GM samples

with respect to volcanic ash that appeared almost

insensitive to such molar ratio. For these VM

samples, the reactivity is mainly due to the

metakaolin fraction and proceed with the linearity

expected from the % amount of MK in the mixture

whatever the alkaline solution is used. In this

context, the comparison of such ANNs results

provides an interesting support to the interpreta-

tion of the role of the two different alkaline

solutions used as activators.

• No suppositions on better network or on the best

alkaline activation solution can be done according

to MLR results due to the insensitivity of S3,

which was excluded by MLR iteration for the null

and void influence. However, G-MLR evidenced

an excellent correlation contrary to V-MLR.

Therefore, according to our dataset, ANN

approach was more useful to suppose the variables

which influence the chemical stability of these sam-

ples, contrary to the limitations occurred in MLR

method. However, only thanks to the combination of

both methods was possible to reach these conclu-

sions. Finally, the compressive strength values of

similar precursors and few known in the literature (in

comparison with metakaolin and fly ash), such as

volcanic deposits, are almost insensitive to the

chemical network variations, differently from the

results of weight loss, conductivity and pH that are

strongly influenced by the degree of reticulation of

the aluminosilicate matrix and in turn by Si/Al ratio

of precursor mixtures. This study, as few others, on

the chemical stability of AAMs provides a great

contribution in the direction of durability and in-life

mechanical performance of these class of materials.

Any further optimization of AAMs mix design will

start from those formulations that already have

adopted the S3 alkaline solution of Na-silicate.
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