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We give a positive solution to the decidability problem for the fragment of set theory, dubbed BST⊗, consisting of quantiier-

free formulae involving the Boolean set operators of union, intersection, and set diference, along with the unordered Cartesian

product operator ⊗ (where � ⊗ � ≔
{

{�, �} | � ∈ � ∧ � ∈ �
}

), and the equality predicate, but no membership. Speciically, we

provide nondeterministic exponential decision procedures for both the ordinary and the inite satisiability problems for BST⊗.

We expect that these decision procedures can be adapted for the standard Cartesian product and, with added technicalities, to

the cases involving membership, providing a solution to a longstanding problem in computable set theory.
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INTRODUCTION

The decision problem in set theory has been studied quite thoroughly in the last decades, giving rise to the ield
of Computable Set Theory [CFO89]. The initial goal was the mechanical formalization of mathematics with a
proof veriier based on the set-theoretic formalism [OS02, COSU03, OCPS06, SCO11], but soon a foundational
interest aimed at the identiication of the boundary in set theory between the decidable and the undecidable
became more and more compelling.
The precursor fragment of set theory investigated for decidability was MLS, which stands for Multi-Level

Syllogistic.MLS consists of the quantiier-free formulae of set theory involving only the Boolean set operators
∪, ∩, \ and the relators = and ∈, besides set variables (assumed to be existentially quantiied). The satisiability
problem (s.p., briely) for MLS, namely the problem of establishing whether or not any given MLS-formula
is satisiable by some set assignment, has been proved to be decidable in the seminal paper [FOS80], and its
NP-completeness has later been established in [COP90]. Following that, several extensions of MLS with various
combinations of the set operators {·} (singleton), pow (power set),

⋃

(unary union),
⋂

(unary intersection), rk
(rank), etc., and of the set predicates rank comparison, cardinality comparison, initeness, etc., have been also
proved decidable over the years.1

However, the decidability problem for the extensionMLS× of MLS with the Cartesian product ×,2 proposed
by the irst author since the middle 80s, soon appeared to be very challenging and resisted several eforts to

1The monographs [CFO89, COP01, SCO11, OPT17, CU18] provide a rather comprehensive account.
2For deiniteness, we may assume that the Cartesian product is expressed in terms of Kuratowski’s ordered pairs (�, �) ≔ {{�}, {�, �}}.

Hence, � × � ≔ { (�, �) |� ∈ �, � ∈ � }, for any sets � and � .
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ind a solution, either positive or negative. As a matter of fact, for long it was not even excluded that the s.p.
for MLS× were undecidable (in particular, when restricted to inite modelsÐinite s.p.) and that some tricky
reduction of the well-celebrated Hilbert’s Tenth problem (H10, for short) to the s.p. for MLS× was lurking
around. We recall that H10, posed by David Hilbert at the beginning of last century [Hil02] asks for a uniform
procedure that can determine in a inite number of steps whether any given Diophantine polynomial equation
with integral coeicients is solvable in integers. In 1970, it was shown that no algorithmic procedure exists for
H10, as result of the combined eforts of M. Davis, H. Putnam, J. Robinson, and Yu. Matiyasevich (DPRM theorem,
see [Rob52, DPR61, Mat70]).
It was deemed reasonable that the union of disjoint sets and the Cartesian product might somehow play the

roles of integer addition and multiplication in H10, respectively, in consideration of the fact that |� ∪ � | = |� | + |� |,
for any disjoint sets � and � , and |� × � | = |� | · |� |, for any sets � and � . In fact, such an observation is at the base of
the proof of the undecidability of the s.p. for MLS× when it is extended with cardinality comparison, namely the
two-place predicate | · | ⩽ | · | where |� | ⩽ |� | holds if and only if the cardinality of � does not exceed that of � (see
[CCP90] and [COP20]).
Attempts to solve the s.p. for MLS× helped shape the development of computable set theory and led to the

introduction of the powerful technique of formative processes,3 which has been the main tool in the highly
technical solutions to the decision problems for the extension MLSSP of MLS with the power set and the
singleton operators [COU02] and the extension MLSSPF with the initeness predicate too [CU14].

In this paper, we provide an algorithmic solution to the s.p., both unrestricted and restricted to (hereditarily)
inite models, for the fragment of set theory dubbed BST⊗, which is closely related to MLS×. The fragment
BST⊗ (which stands for Boolean Set Theory with the unordered Cartesian product ⊗) is obtained by dropping the
membership predicate ∈ fromMLS× and replacing the (ordered) Cartesian product operator × with its unordered
variant ⊗, where, for any sets � and � , � ⊗ � is the set of all unordered pairs {�, �} for which � ∈ � and � ∈ � , namely

� ⊗ � ≔
{

{�, �} | � ∈ � ∧ � ∈ �
}

.

Notice that none of the above two changes afects the aforementioned connection with H10. The reason why
we chose to address here the case of BST⊗ rather than the one of MLS× is that in doing so we can get rid of
irrelevant features that would only make our analysis much more technical. In fact, we are very conident that
the s.p. for the fragments BST× and MLS× admit an algorithmic solution too.4

For both variants of the s.p. for BST⊗ (unrestricted and restricted to inite models), we shall provide nondeter-
ministic exponential decision procedures. These will be expressed in terms of the existence of a special graph,
called ⊗-graph, enjoying a certain connectivity property of accessibility. Given a BST⊗-formula Φ to be tested
for satisiability, in the case of the ordinary s.p. it will be enough to require that a candidate accessible ⊗-graph
fulills Φ, in a sense that will be deined in due course. In the case of the inite s.p. it will be additionally required
that the ⊗-graph admits also a sort of topological order. In both cases, it will be shown that, when satisied, these
conditions (which are also necessary) ensure that the ⊗-graph can be used as a sort of low graph that allows one
to build a model for Φ in denumerably many steps, in the case of the ordinary s.p., or in a bounded inite number
of steps, in the case of the (hereditarily) inite s.p. Such a construction procedure can be regarded as a simpliied
use of the formative processes mentioned before.

As shown in [Schw78, CCS90], the inite s.p. for the extension of MLS with cardinality comparison can be
reduced to purely existential Presburger arithmetic, which is known to be NP-complete (see [Sca84]). On the
other hand, when either BST× or BST⊗ is enriched with cardinality comparison, the inite s.p. for the resulting
extensions becomes undecidable, as sketched in Section 1.6.1, since H10 would be reducible to it, much as proved

3See [CU18] for a quite accessible introduction.
4Of course, BST× is Boolean Set Theory with Cartesian product.
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in [CCP90] and [COP20] forMLS⊗ andMLS×. This is clear evidence that the decision problem for both BST×

and BST⊗ is very close to the edge of decidability.

ÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐ

The paper is organized as follows. In Section 1, we introduce the precise syntax and semantics of the fragment
of our interest BST⊗ and of other related theories. In particular, semantics is presented in terms of satisfying
partitions, and it is shown that this approach leads easily to the decidability of the purely Boolean subset BST
of BST⊗. We also provide a sketch of the proof of the undecidability of the inite s.p. for the extension of BST⊗

with cardinality comparison. Subsequently, in Section 2, we introduce the central notion of accessible ⊗-graphs,
together with that of fullilment of a BST⊗-formula by an accessible ⊗-graph, and we prove that any satisiable
BST⊗-formula is fulilled by a suitable accessible ⊗-graph. We also prove that the existence of an accessible
⊗-graph G fulilling a given BST-formula Φ is suicient for the satisiability of Φ, by describing in details a
construction process that uses the ⊗-graph G as a kind of low graph that allows one to build a model for Φ in
denumerably many steps. The main deinitions and proofs of the section are illustrated in detail with the help of
a running example in ive parts. Afterward, in Section 3, we introduce the notion of ordered ⊗-graphs and prove
that the existence of an ordered ⊗-graph fulilling a given BST⊗-formula Φ is a necessary and suicient condition
for Φ to be (hereditarily) initely satisiable. Finally, in Section 4, we briely discuss some plans for future research.

1 PRELIMINARIES

We briely review some signiicant fragments of computable set theory, providing their syntax and semantics.
Then we illustrate the notion of satisiability by partition in the simpliied case in which the unordered Cartesian
product ⊗ is not present, in view of its generalization to the complete case of BST⊗. We also recall the deinition
of some complexity classes relevant to our decision procedures. Finally, we sketch the proof of the undecidability
of the s.p. for the extension of BST⊗ with the cardinality comparison predicate, providing evidence that the
decision problem for BST⊗ (and BST×) is at the verge of decidability.

1.1 A glimpse to computable set theory

The quantiier-free fragments of set theory, whose decision problem has been actively investigated during the
last decades, involve, among others and in various combinations, the following set operators and predicates:

ś the Boolean set operators of union ł∪ž, intersection ł∩ž, and set diference ł\ž;
ś the singleton ł{·}ž and inite enumerations ł{·, . . . , ·}ž operators;
ś the Cartesian product ł×ž and its unordered variant ł⊗ž;
ś the powerset łpowž, unary union ł

⋃

ž, and unary intersection ł
⋂

ž operators;
ś set equality ł=ž, inclusion ł⊆ž, membership ł∈ž, initeness łFinite(·)ž, and cardinality comparison ł| · | ⩽ | · |ž.

The fragment of primary importance for the present paper is BST⊗, namely the quantiier-free propositional
closure of atoms of the following types:

� = � ∪ �, � = � ∩ �, � = � \ �, � ⊆ �, � = � ⊗ �,

where �,�, � stand for (existentially quantiied) set variables.
Particularly relevant to our research are also the fragmentsMLS (Multi-Level Syllogistics) and BST (Boolean

Set Theory), and their extensionsMLS×,MLS⊗, and BST× with the Cartesian product × and its unordered variant
⊗, for which we provide precise deinitions, for completeness sake:

ACM Trans. Comput. Logic



4 • Domenico Cantone and Pietro Ursino

ś MLS is the propositional combination of literals of the forms

� = � ∪ �, � = � ∩ �, � = � \ �, � ⊆ �, � ∈ �;

ś BST is the propositional combination of literals of the forms

� = � ∪ �, � = � ∩ �, � = � \ �, � ⊆ �;

ś MLS× is the extension of MLS with literals of the form � = � × �;
ś MLS⊗ is the extension of MLS with literals of the form � = � ⊗ �;
ś BST× is the extension of BST with literals of the form � = � × �.

Given a formula Φ in any of the above fragments, we denote by Vars(Φ) the collection of all the set variables
occurring in Φ.

1.2 Semantics

The standard way to deine the semantics of fragments of set theory is through set assignments. In the following,
we deine accurately the semantics of MLS and BST, and their extensions with literals of the forms � = � × � and
� = � ⊗ �.

A set assignment� is any map from a collection � of set variables (called the variable-domain of� and
denoted dom(�)) into the von Neumann universe V of all well-founded sets.

We recall that V is a cumulative hierarchy constructed in stages by transinite recursion over the class On of all
ordinals. Speciically, V ≔

⋃

�∈OnV� where, recursively,V� ≔
⋃

�<�pow(V� ), for every � ∈ On, with pow(·)
denoting the powerset operator. Based on that construction, we can readily deine the rank of any well-founded
set � ∈ V, denoted rk � , as the least ordinal � such that � ⊆ V� . The collection of the sets of inite rank, hence
belonging toV� for some inite ordinal � , forms the set HF of the hereditarily finite sets. Thus, HF = V� ,
where � is the irst limit ordinal, namely the smallest non-null ordinal with no immediate predecessor.

Given a set assignment� and a set of variables� ⊆ � , where � ≔ dom(�), we put�� ≔ {�� | � ∈� }.
The set-domain of� is deined as the set

⋃

�� =
⋃

�∈��� . A set assignment� is finite (resp., hereditarily
finite), if so is its set-domain.

The operators in the fragments of our interest are interpreted according to their usual semantics. Thus, given a
set assignment� , for any �,�, � ∈ dom(�) we put:

� (� ★�) ≔ �� ★��, (1)

where★ ∈ {∪,∩, \,×, ⊗} and where we have � × � ≔ {(�, �) |� ∈ �, � ∈ �} (with (�, �) ≔ {{�}, {�, �}} the ordered
Kuratowski pair) and � ⊗ � ≔ {{�, �} | � ∈ �, � ∈ �}, for any sets � and � .5

Finally, any set assignment� is extended to a true/false interpretation of all the formulae of our fragments,
over the variables in dom(�), by putting

� (� = � ★ �) = true
Def

←−→ �� = � (� ★ �),

� (� = �) = true
Def

←−→ �� = ��,

� (� ⊆ �) = true
Def

←−→ �� ⊆ ��,

� (� ∈ �) = true
Def

←−→ �� ∈ ��,

� (Finite(�)) = true
Def

←−→ �� is inite,

5We did not bother to use diferent symbols in (1) for the operator and the operation: hence, the ‘★’ in the deiniendum stands for a set

operator, whereas the ‘★’ in the deiniens stands for the corresponding set operation.
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for all �,�, � ∈ dom(�) and ★ ∈ {∪,∩, \,×, ⊗}, and recursively

� (¬Φ) ≔ ¬�Φ, � (Φ ∧ Ψ) ≔ �Φ ∧�Ψ,

� (Φ ∨ Ψ) ≔ �Φ ∨�Ψ, � (Φ→ Ψ) ≔ �Φ→ �Ψ, etc.,

for all formulae Φ and Ψ such that Vars(Φ),Vars(Ψ) ⊆ dom(�) and all the propositional connectives such as ¬,
∧, ∨,→, etc.

Given a formula Φ, a set assignment� over Vars(Φ) is said to satisfy Φ if�Φ = true holds, in which case we
also write� |= Φ and say that� is a model for Φ. If Φ has a model, we say that Φ is satisfiable; otherwise, we
say that Φ is unsatisfiable. If� |= Φ and� is inite (resp., hereditarily inite), then Φ is finitely satisfiable
(resp., hereditarily finitely satisfiable).

For a quantiier-free fragment S of set theory (such asMLS, BST, and their extensions), the satisfiability
problem (s.p.) for S is the problem of establishing whether or not any given S-formula is satisiable by some
set assignment. If there is an algorithmic test AS that can answer all of its instances, the s.p. for S is said to
be decidable and the test AS is called a decision procedure for S; otherwise it is undecidable. Likewise, if
there is an algorithmic test A′

S
that can answer all the positive (resp., negative) instances, the satisiability (resp.,

unsatisiability) problem for S is said to be semi-decidable and the test A′
S
is called a semi-decision test for S.

By restricting oneself to (hereditarily) inite set assignments, one can deine in the obvious way the (heredi-
tarily) finite satisfiability problem for S.

Any two S-formulae Φ and Ψ are (finitely) eqisatisfiable when Φ is (initely) satisiable if and only if so is
Ψ, possibly by diferent models.

The s.p. for MLS has been solved in [FOS80], whereas as of now the satisiability problems for MLS× and
MLS⊗ are still open.
Since BST is a subfragment of MLS, the same decision procedure forMLS works also for BST. Recently, an

alternative decision procedure for the s.p. for BST in terms of partition assignments has been presented in [CU18,
Sect. 2.1.3]. We shall review a version of it in Section 1.5, slightly adapted to our needs in preparation for the
main results of the paper, namely the design of algorithmic solutions to the s.p.Ðboth unrestricted and initeÐfor
BST⊗.

For the sake of completeness, we list some relevant fragments of set theory whose decision problem has already
been solved over the years (after each acronym, we list the operators and relators present in the fragment and
the appropriate references to the literature):

MLS: ∪, ∩, \, ⊆, =, ∈ (cf. [FOS80])
MLSS: ∪, ∩, \, ⊆, =, ∈, {·} (cf. [FOS80])
MLSU: ∪, ∩, \, ⊆, =, ∈,

⋃

(·) (cf. [CFS87])
MLSSI: ∪, ∩, \, ⊆, =, ∈, {·},

⋂

(·) (cf. [CC89])
MLSP: ∪, ∩, \, ⊆, =, ∈, pow(·) (cf. [CFS85])
MLSSP: ∪, ∩, \, ⊆, =, ∈, {·}, pow(·) (cf. [Can91] and [COU02])
MLSSPF: ∪, ∩, \, ⊆, =, ∈, {·}, pow(·), Finite(·) (cf. [CU14]) .

The interested reader can ind an extensive treatment of these and other results in [CFO89, COP01, SCO11].
We also mention a recent research aimed at identifying useful ‘small’ fragments of set theory, all of them easily

expressible in MLS, endowed with polynomial-time decision procedures.
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More speciically, we analyzed the 2040 fragments of the collection of all conjunctions of literals of the following
types

� = ∅, � ≠ ∅, � ∩ � = ∅, � ∩ � ≠ ∅,

� ⊆ �, � ⊈ �, � = �, � ≠ �,

where � and � stand for terms that can involve set variables and the Boolean set operators ∪, intersection ∩,
and set diference \ . After identifying the 18 minimal NP-complete fragments and the 5 maximal polynomial
fragments, it was proved in [CDMO21] that 1278 of these fragments are NP-complete and the remaining 762 are
polynomial (of degree at most 4). Some notable cases admitting cubic decision procedures have been reported in
[CMO21] and in [CMO23].

We also analyzed in [CMO20] the fragments of the collection of all the conjunctions of literals of the two forms

� ∈ � and � ∉ �,

where as above � and � stand for terms that can involve set variables and the Boolean set operators ∪, intersection
∩, and set diference \ . The maximal polynomial and the minimal NP-complete fragments have been identiied
and some notable non-maximal polynomial fragments have been explored in depth.

1.3 Satisfiability by partitions

Satisiability by set assignments is equivalent to the notion of satisiability by partitions, introduced in [CU18,
Sect. 2.1.3], which we review next.

A partition is a set of pairwise disjoint non-null sets, called the blocks of the partition. The union
⋃

Σ of a
partition Σ is its domain.

Let � be a inite set of set variables and Σ a partition. Also, let ℑ : � → pow(Σ) be any map. In a very natural
way, the map ℑ induces a set assignment�ℑ over � deined by:

�ℑ� ≔
⋃

ℑ(�), for � ∈ � .

We refer to the map ℑ (or to the pair (Σ,ℑ), when we want also to emphasize the partition Σ) as a partition
assignment.

Definition 1. Let Σ be a partition and ℑ : � → pow(Σ) be a partition assignment over a inite set � of set
variables. Given a BST⊗-formula Φ such that Vars(Φ) ⊆ � , we say that ℑ satisfies Φ, and write ℑ |= Φ, when
the set assignment�ℑ induced by ℑ satisies Φ (equivalently, one may say that Σ satisfies Φ via the map ℑ,
and write Σ,ℑ |= Φ, if we want to emphasize the partition Σ). We say that Σ satisfies Φ, and write Σ |= Φ, if Σ
satisies Φ via some map ℑ : � → pow(Σ). □

The following result can be proved immediately.

Lemma 1.1. If a BST⊗-formula is satisied by a partition Σ, then it is satisied by any partition Σ that includes Σ

as a subset, namely such that Σ ⊆ Σ.

Plainly, a BST⊗-formula Φ satisied by some partition is satisied by a set assignment. Indeed, if Σ |= Φ, then
Σ,ℑ |= Φ for some map ℑ : � → pow(Σ), and therefore�ℑ |= Φ. The converse holds too. In fact, let us assume
that� |= Φ, for some set assignment� over the set � = Vars(Φ) of the set variables occurring in Φ, and let Σ�

be the Euler-Venn partition induced by� , namely

Σ� ≔

{

⋂

�� ′ \
(

⋃

� (� \� ′)
)

| ∅ ≠ � ′ ⊆ �
}

\
{

∅
}

.

Hence, we have:

- (∀� ∈ Σ� ) (∀� ∈ � ) (� ∩�� = ∅ ∨ � ⊆ ��),
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- (∀�, � ′ ∈ Σ� )
(

(∀� ∈ � ) (� ⊆ �� ⇐⇒ � ′ ⊆ ��) ⇐⇒ � = � ′
)

, and
-
⋃

Σ� =
⋃

�� .

Let ℑ� : � → pow(Σ� ) be the map deined by

ℑ� (�) ≔ {� ∈ Σ� | � ⊆ ��}, for � ∈ � .

It is an easy matter to check that the set assignment induced by ℑ� is just� . Thus Σ� ,ℑ� |= Φ, and therefore
Σ� |= Φ, proving that Φ is satisied by some partition, in fact by the Euler-Venn partition induced by� , whose
size is at most 2 |� | − 1.

Thus, the notion of satisiability by set assignments and that of satisiability by partitions coincide.
As a by-product of Lemma 1.1 and of the above considerations, we also have:

Lemma 1.2. Every BST⊗-formula Φ with � distinct variables is satisiable if and only if it is satisied by some
partition with 2� − 1 blocks.

1.4 Normalization of BST⊗-formulae

By applying disjoint normal form and the simpliication rules illustrated in [CU18], the satisiability problem for
BST⊗ can be reduced to the satisiability problem for normalized conjunctions of BST⊗, namely conjunctions
of BST⊗-literals of the following restricted types:

� = � ∪ �, � = � \ �, � = � ⊗ �, � ≠ �, (2)

where �,�, � stand for set variables. Indeed, it is enough to observe that:

ś � ⊆ � is equivalent to � = � ∩ �;
ś the terms � ∩ � and � \ (� \ �) are equivalent, so an atom of the form � = � ∩ � is equisatisiable with the
conjunction � = � \ �′ ∧ �′ = � \ �, where �′ stands for any fresh set variable;

ś each negative literal of the form � ≠ � ★ � (with ★ ∈ {∪,∩, \, ⊗}) is equisatisiable with the conjunction
� ′ = � ★ � ∧ � ′ ≠ � , where � ′ stands for any fresh set variable.

We shall refer to literals of the form � = � ⊗ � as ⊗-literals, and similarly for the other types of literals in (2).

1.5 The Boolean case

In order to allow a smooth transition to the treatment of the s.p. for BST⊗-formulae, it is useful to preliminarily
review the restricted case (solved in [CU18, Sect. 2.3]) of BST-conjunctions, namely conjunctions of Boolean
literals of the forms

� = � ∪ �, � = � \ �, � ≠ �,

where ⊗-literals are not present.
Speciically, we prove next that the satisiability status of any BST-conjunction by a given partition Σ depends

solely on the size of Σ, and not on the internal structure of its blocks. Though in this case we could restrict
ourselves to the special case in which all the blocks are singletons, we prefer to proceed in full generality to allow
for a more natural generalization to the case of BST⊗-conjunctions of our interest in Sections 2 and 3.

Lemma 1.3. Let Σ be a partition and let ℑ : � → pow(Σ) be a partition assignment over a (inite) set of variables
� . Then, for all �,�, � ∈ � and ★ ∈ {∪, \}, we have:

(a) ℑ |=
(

� = � ★ �
)

⇐⇒ ℑ(�) = ℑ(�) ★ℑ(�),

(b) ℑ |=
(

� ≠ �
)

⇐⇒ ℑ(�) ≠ ℑ(�).

ACM Trans. Comput. Logic
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Proof. It is enough to observe that since Σ is a partition (and therefore its blocks are nonempty and mutually
disjoint), for all �,�, � ∈ � and ★ ∈ {∪, \ } we have:

ℑ |=
(

� = � ★ �
)

⇐⇒
⋃

ℑ(�) =
⋃

ℑ(�) ★
⋃

ℑ(�)

⇐⇒
⋃

ℑ(�) =
⋃

(

ℑ(�) ★ℑ(�)
)

⇐⇒ ℑ(�) = ℑ(�) ★ℑ(�)

and

ℑ |=
(

� ≠ �
)

⇐⇒
⋃

ℑ(�) ≠
⋃

ℑ(�)

⇐⇒ ℑ(�) ≠ ℑ(�). □

Satisiability of BST-conjunctions can be expressed in purely combinatorial terms by means of fulilling maps.

Deinition 1.4. Let Φ be a BST-conjunction, and let� : � → pow(pow+ (� )) be any map, where � ≔ Vars(Φ)
and pow+ (� ) ≔ pow(� ) \ {∅}. We say that the map� fulfills Φ provided that:

(a) �(�) = �(�) ★�(�), for each conjunct � = � ★ � in Φ, with ★ ∈ {∪, \};
(b) �(�) ≠ �(�), for each conjunct � ≠ � in Φ.

A map� satisfying conditions (a) and (b) above is called a fulfilling map for Φ. □

In Section 2.2, the deinition of fulilling maps in the context of the s.p. for BST⊗ will be strengthened so as to
take into account also ⊗-literals.

Lemma 1.5. Any satisiable BST-conjunction admits some fulilling map.

Proof. Let Φ be a satisiable BST-conjunction and let Σ be a partition satisfying Φ via a certain map ℑ : � →
pow(Σ), where � ≔ Vars(Φ). For each � ∈ Σ, we put:

�� ≔ {� ∈ � | � ∈ ℑ(�)}.

Let us deine the map�ℑ : � → pow(pow+ (� )) by putting

�ℑ (�) ≔ {�� | � ∈ ℑ(�)}, for � ∈ � .

Preliminarily, we observe that

�� ∈ �ℑ (�) ⇐⇒ � ∈ ℑ(�), for � ∈ Σ and � ∈ � . (3)

Indeed, if �� ∈ �ℑ (�), then �� = �� ′ , for some � ′ ∈ ℑ(�). But then, since � ∈ ℑ(�) ⇐⇒ � ′ ∈ ℑ(�) for all � ∈ � ,
we have � ∈ ℑ(�).

Thus, for every conjunct � = � ★ � in Φ (with ★ ∈ {∪, \}), we have:

�ℑ (�) = {�� | � ∈ ℑ(�)}

= {�� | � ∈ ℑ(�) ★ℑ(�)} (by Lemma 1.3(a))

= {�� | � ∈ ℑ(�)} ★ {�� | � ∈ ℑ(�)} (by (3))

= �ℑ (�) ★�ℑ (�).

Likewise, for every conjunct � ≠ � in Φ, by Lemma 1.3(b) and (3) we have:

�ℑ (�) = {�� | � ∈ ℑ(�)} ≠ {�� | � ∈ ℑ(�)} = �ℑ (�).

Hence, the map�ℑ fulills Φ. □

Lemma 1.6. If a BST-conjunction with � distinct variables admits a fulilling map, then it is satisied by every
partition of size 2� − 1.
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Proof. LetΦ be a satisiableBST-conjunctionwith� distinct variables fulilled by amap� : � → pow(pow+ (� )),
where � ≔ Vars(Φ), and let Σ� be any partition of size 2� − 1. We prove that the partition Σ� satisies Φ. Thus,
let � : pow+ (� ) ↠↣ Σ� be any bijection from pow+ (� ) onto Σ� and deine the map ℑ� : � → pow(Σ�) by setting

ℑ� (�) ≔ � [�(�)], for � ∈ � .

Then, for every literal � = � ★ � in Φ (with ★ ∈ {∪, \}), we have:

ℑ� (�) = � [�(�)] = � [�(�) ★�(�)] = � [�(�)] ★ � [�(�)] = ℑ� (�) ★ℑ� (�).

Hence, by Lemma 1.3(a), ℑ� |=
(

� = � ★ �
)

.
Similarly, for every conjunct � ≠ � in Φ, we have

ℑ� (�) = � [�(�)] ≠ � [�(�)] = ℑ� (�),

proving that, by Lemma 1.3(b), ℑ� |=
(

� ≠ �
)

.
Thus, in conclusion, we have ℑ� |= Φ, and so the partition Σ� satisies Φ. □

Immediate consequences of the preceding lemma are the following results.

Lemma 1.7. A BST-conjunction is satisiable if and only if it admits a fulilling map.

Lemma 1.8. A BST-conjunction with � distinct variables is satisiable if and only if it is satisied by any partition
of size 2� − 1.

In the light of [CU18, Lemma 2.36, p. 42] and Lemma 1.2, Lemmas 1.8 and 1.7 can be strengthened as follows:

Lemma 1.9. A BST-conjunction involving � distinct variables is satisiable if and only if it is satisied by any
partition of size � − 1.

Lemma 1.10. A BST-conjunction over a set � of variables is satisiable if and only if it is fulilled by a map
� : � → pow(pow+ (� )) such that |

⋃

�[� ] | ⩽ |� | − 1.

The previous two lemmas readily yield that the satisiability problem for BST-conjunctions can be solved in
nondeterministic polynomial time, namely it belongs to the class NP.
As shown in [CDMO19], the satisiability problem for conjunctions of Boolean literals of the form �1 ≠ �2,

where �1 and �2 are set terms involving only variables and the set diference operator ‘\’, isNP-complete. Therefore,
we have:

Lemma 1.11. The satisiability problem for BST-conjunctions is NP-complete.

1.5.1 Some complexity classes.

We recall that NP (nondeterministic polynomial time) is the set of decision problems whose positive instances
are solvable in polynomial time by a nondeterministic Turing machine. Equivalently, NP is the set of all decision
problems whose positive instances can be certiied in deterministic polynomial time.

Some of the decision problems in NP are harder than the others, in the sense that any deterministic polynomial-
time solution for them would yield a deterministic polynomial-time solution to all the decision problems in NP.
These are the so-calledNP-complete problems. A notable example of anNP-complete problem is the propositional
satisiability problem (SAT).

Similarly, NEXPTIME (nondeterministic exponential time) is the set of decision problems whose positive
instances can be solved in exponential time by a nondeterministic Turing machine.
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1.6 Dealing also with literals of type � = � ⊗ �: the unary unordered Cartesian product

It is convenient to introduce a unary variant of the unordered Cartesian product, in analogy with the binary set
operators ∪ and ∩, which are equipped with the following unary variants:

⋃

� ≔ {� | � ∈ �, for some � ∈ �} and
⋂

� ≔ {� | � ∈ �, for all � ∈ �}.

Speciically, for all sets � and � (not necessarily distinct), we put

⊗{�, �} = � ⊗ � . (4)

The deinition of the operator ⊗ (·) is well-given, as the binary unordered product is commutative, namely
� ⊗ � = � ⊗ � holds.

Remark 1.12. Though in this paper the operator ⊗ (·) will be used only with arguments of the form {�, �}, for
the sake of completeness we extend it to any set � by putting

⊗� ≔
{

{�, �} | �, � ∈
⋃

� and {�, �} ∩ � ≠ ∅ for all � ∈ �
}

. (5)

Plainly, (5) agrees with (4).

In the extended form, the operator ⊗ (·) is a variant of the intersecting power set operator pow∗, where
for any set �

pow∗ (�) ≔
{

� ⊆
⋃

� | � ∩ � ≠ ∅, for every � ∈ �
}

,

introduced in [Can91] in connection with the solution of the satisiability problem for a fragment of set theory
involving the power set and the singleton operators.6 Speciically, for any set � it holds that ⊗� = pow∗

{1,2}
(�),

where, more in general, for every � ⊆ N we have

pow∗� (�) ≔
{

� ∈ pow∗(�) | |� | ∈ �
}

.

Likewise, we put

pow� (�) ≔
{

� ∈ pow∗ (�) | |� | ∈ �
}

.

Thus, for any � ⊆ N,

- pow∗� (�) is the set of all the members of pow∗ (�) whose cardinality belongs to � ; and
- pow� (�) is the set of all the subsets of � whose cardinality belongs to � . □

Given any partition Σ, it is an easy matter to check that the ⊗ (·) operator is injective over pow{1,2} (Σ),
7

namely the following equivalence holds

⊗� = ⊗�′ ⇐⇒ � = �′ (6)

for all �, �′ ∈ pow{1,2} (Σ). In fact, the ⊗ (·) operator enjoys a stronger injectivity property, as stated in the
following lemma.

Lemma 1.13 (Strong injectivity). Given any partition Σ, for all �, �′ ∈ pow{1,2} (Σ), the following equivalence
holds:

⊗� ∩ ⊗�′ ≠ ∅ ⇐⇒ � = �′ .

6It is worth noticing that several properties of the operator pow∗ are listed in [CU18, pp. 16ś20].
7According to the Remark 1.12, pow{1,2} (Σ) is the set of all the subsets of Σ that contain either one or two elements.
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Proof. Let Σ, �, and �′ be as in the hypothesis. Plainly, if � = �′ then ⊗� ∩ ⊗�′ = ⊗� ≠ ∅.
For the converse implication, it is convenient to specify the members of � and �′. So, let � = {�1, �2} and

�′ = {� ′1, �
′
2}, for suitable blocks �1, �2, �

′
1, �
′
2 of Σ, where it is not excluded that �1 = �2 and/or �

′
1 = � ′2 may hold.

Let us assume that ⊗� ∩ ⊗�′ ≠ ∅ holds, that is, (�1 ⊗ �2) ∩ (�
′
1 ⊗ � ′2) ≠ ∅, and let {�, �} ∈ (�1 ⊗ �2) ∩ (�

′
1 ⊗ � ′2).

Then, for some �0, �0 ∈ {1, 2} we have

� ∈ ��0 , � ∈ �3−�0 and � ∈ � ′�0 , � ∈ �
′
3− �0

.

Thus, ��0 = � ′�0 and �3−�0 = � ′3− �0 hold, and therefore

{�1, �2} = {��0 , �3−�0 } = {� ′�0 , �
′
3− �0
} = {� ′1, �

′
2},

completing the proof of the lemma. □

As proved in the following lemma, the injectivity property (6) can be readily generalized to the image map
⊗ [·] induced by the operator ⊗ (·) over the set pow(pow{1,2} (Σ)), where

⊗ [B] ≔ {⊗� | � ∈ B}, (7)

for all B ∈ pow(pow{1,2} (Σ)).
8

Lemma 1.14. Let Σ be a partition. For all B,B′ ⊆ pow{1,2} (Σ), we have
⋃

⊗ [B] =
⋃

⊗ [B′] ⇐⇒ B = B′ .

Proof. As in the hypotheses, let Σ be any partition, and let B,B′ ⊆ pow{1,2} (Σ). If B = B′, then we

immediately have
⋃

⊗ [B] =
⋃

⊗ [B′]. On the other hand, if B ≠ B′ and assuming without loss of generality
that B ⊈ B′, we can pick {�1, �2} ∈ B \ B

′. Then ⊗{�1, �2} ∈ ⊗ [B] and so ⊗{�1, �2} ⊆
⋃

⊗ [B]. We claim that
⊗{�1, �2} ⊈

⋃

⊗ [B′]. Indeed, if for a contradiction ⊗{�1, �2} ⊆
⋃

⊗ [B′], then there would exist

{�1, �2} ∈ ⊗{�1, �2} ∩ ⊗{�′1, �
′
2},

for some {�′1, �
′
2} ∈ B

′. Hence,
�1 ∈ �� ∩ �

′
� and �2 ∈ �3−� ∩ �

′
3− �

would hold for some 1 ⩽ �, � ⩽ 2. By recalling that �1, �2, �
′
1, �
′
2 are blocks of the partition Σ, we must have �� = �′�

and �3−� = �′3− � , and therefore {�1, �2} = {�
′
1, �
′
2} ∈ B

′, which contradicts our assumption {�1, �2} ∉ B
′. Thus,

⊗{�1, �2} ⊈
⋃

⊗ [B′] holds as claimed, and therefore we must have
⋃

⊗ [B] ≠
⋃

⊗ [B′], completing the proof
of the lemma. □

The unordered Cartesian operator ⊗ enjoys the following distributive property.

Lemma 1.15 (Distributivity). For all sets � and � , the following identity holds:
⋃

� ⊗
⋃

� =
⋃

{� ⊗ � | � ∈ �, � ∈ � }. (8)

Proof. Let � ∈
⋃

� ⊗
⋃

� . Then � = {�′, �′′} for some �′ ∈
⋃

� and �′′ ∈
⋃

� . Hence, �′ ∈ � and �′′ ∈ � for
some � ∈ � and � ∈ � , so that � = {�′, �′′} ∈ � ⊗ � ⊆

⋃

{� ⊗ � | � ∈ �, � ∈ � }. Thus,
⋃

� ⊗
⋃

� ⊆
⋃

{� ⊗ � | � ∈ �, � ∈ � }. (9)

For the converse inclusion, let � ∈
⋃

{� ⊗ � | � ∈ �, � ∈ � }. Then � ∈ � ⊗ � , for some � ∈ � and � ∈ � , and
therefore � = {�′, �′′}, for some �′ ∈ � and �′′ ∈ � . Since � ⊆

⋃

� and � ⊆
⋃

� , then � ∈
⋃

� ⊗
⋃

� , and so
⋃

{� ⊗ � | � ∈ �, � ∈ � } ⊆
⋃

� ⊗
⋃

� .

Together with the converse inclusion (9), the latter yields (8), completing the proof of the lemma. □

8We warn the reader that in the rest of the paper we will often use terms of the form ⊗ ( ·) and ⊗ [ · ], whose precise meanings are deined

by (4) and (7), respectively.
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Before proving our main decidability results for BST⊗-formulae, we sketch the proof (based on [CCP90] and
[COP20]) that the extension BST⊗⩽ of BST⊗ with cardinality comparison | · | ⩽ | · | has an undecidable inite s.p.,
by way of a reduction of the celebrated Hilbert’s Tenth problem (H10).

1.6.1 Undecidability of the finite s.p. for BST⊗⩽ .

The reduction of H10 to the inite s.p. for BST⊗⩽ is based on the fact that, under initeness, the following
relations (empty set, equinumerosity, product and sum of cardinalities, and unitary cardinality) are expressible by
BST⊗⩽ -formulae:

(i) empty set: � = ∅ ≡Def � = � \ � ;
(ii) equinumerosity: |� | = |� | ≡Def |� | ⩽ |� | ∧ |� | ⩽ |� |;
(iii) product of cardinalities: |� | = |� | · |� | ≡Def |� | = |� ⊗ �

′ | ∧ |�′ | = |� | ∧ �′ ∩ � = ∅;
(iv) sum of cardinalities: |� | = |� | + |� | ≡Def |� | = |� ∪ �

′ | ∧ |�′ | = |� | ∧ �′ ∩ � = ∅;
(v) unitary cardinality: |� | = 1 ≡Def |� | = |� ⊗ � | ∧ � ≠ ∅.

By iterating (iii), one can express |� | = |� |� , for any integer constant � ⩾ 1, and more in general |� | =
|�1 |

�1 · . . . · |�� |
�� , for any integer constants �1, . . . , �� ⩾ 1 where � ⩾ 1. Since by (v) one can express |� | = 1,

it is also possible to express |� | = � ( |�1 |, . . . , |�� |) for any monic monomial � (�1, . . . , �� ), even of degree 0.
Finally, by iterating (iv), one can express |� | = � ( |�1 |, . . . , |�� |), for any monomial � (�1, . . . , �� ) with any positive
integral coeicient, and more in general |� | = � ( |�1 |, . . . , |�� |), for any polynomial � (�1, . . . , �� ) with positive
integral coeicients. Thus, given a Diophantine equation

� (�1, . . . , �� ) = 0, (10)

letting �+ (�1, . . . , �� ) be the sum of the positive monomials in � (�1, . . . , �� ) and −�
− (�1, . . . , �� ) the sum of the

negative monomials in � (�1, . . . , �� ), equation (10) admits a nonnegative integral solution if and only if the
corresponding BST⊗⩽ -formula

|� | = �+ ( |�1 |, . . . , |�� |) ∧ |� | = �− ( |�1 |, . . . , |�� |) (11)

is initely satisiable, namely it is satisied by a inite set assignment over the variables �, �1, . . . , �� , plus all the
auxiliary set variables implicit in (11).

For instance, the Diophantine equation � 3 +� 2 − 3� − 2 = 0 admits a nonnegative integral solution if and only
if the BST⊗⩽ -formula

∧7
�=1 �� is initely satisiable, where

�1 ≡Def |�
′
2 | = |�

′ ⊗ � | ∧ |�3 | = |�
′′ ⊗ � ′2 | ∧ |�

′ | = |� | ∧ � ′ ∩ � = ∅ ∧ |� ′′ | = |� | ∧ � ′′ ∩ � ′2 = ∅;
�2 ≡Def |�2 | = |�

′ ⊗ � | ∧ |�′ | = |� | ∧ �′ ∩ � = ∅;
�3 ≡Def |�

′
2 | = |�

′ ⊗ � | ∧ |�3 | = |�
′′ ∪ �′2 | ∧ |�

′ | = |� | ∧ �′ ∩ � = ∅ ∧ |�′′ | = |� | ∧ �′′ ∩ �′2 = ∅;
�4 ≡Def |�2 | = |�

′′ ∪� ′ | ∧ |� ′ ⊗� ′ | = |� ′ | ∧� ′ ≠ ∅ ∧ |� ′′ | = |� ′ | ∧� ′′ ∩� ′ = ∅;
�5 ≡Def |�

+ | = |�′2 ∪ �3 | ∧ |�
′
2 | = |�2 | ∧ �

′
2 ∩ �3 = ∅;

�6 ≡Def |�
− | = |� ′2 ∪ �3 | ∧ |�

′
2 | = |�2 | ∧�

′
2 ∩ �3 = ∅;

�7 ≡Def |�
+ | = |�− |.

Indeed,

�1 is equisatisiable with |�3 | = |� |
3

�2 is equisatisiable with |�2 | = |� |
2

�3 is equisatisiable with |�3 | = 3 · |� |

�1 ∧ �2 ∧ �5 is equisatisiable with |�+ | = |� |3 + |� |2

�3 ∧ �4 ∧ �6 is initely equisatisiable with |�− | = 3 · |� | + 2
7
∧

�=1

�� is initely equisatisiable with |� |3 + |� |2 − 3 · |� | − 2 = 0.
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In view of the undecidability of H10 (cf. [Mat70]), we have the following result:

Theorem 1.16. The inite s.p. for BST⊗⩽ is undecidable.

2 THE ORDINARY SATISFIABILITY PROBLEM FOR BST⊗-CONJUNCTIONS

Results like those contained in Lemmas 1.8 and 1.9 cannot hold for BST⊗, since literals of type � = � ⊗ � put
constraints on the internal structure of certain blocks in any partition Σ that satisies them. Roughly speaking,
these are the ⊗-blocks, for which we provide next a general characterization that is independent of any particular
BST⊗-conjunction. Their collection will form a subpartition of Σ to be denoted Σ⊗ .
Speciically, given any ixed ⊗-literal � = � ⊗ � satisied by Σ, the subpartition Σ⊗ will contain exactly all the

blocks � in ℑ(�), for each partition assignment ℑ : {�,�, �} → pow(Σ) that satisies � = � ⊗ �, namely such that
it holds that

⋃

ℑ(�) =
⋃

ℑ(�) ⊗
⋃

ℑ(�).

It will also be convenient to deine a companion collection Π⊗ ⊆ Σ ⊗ Σ of unordered pairs of blocks that includes
exactly all the unordered pairs {�,�} in ℑ(�) ⊗ ℑ(�), for each partition assignment ℑ : {�,�, �} → pow(Σ) that
satisies � = � ⊗ �.

Deinition 2.1. Given a partition Σ, a subpartition Σ
∗ of Σ is a ⊗-subpartition if

⋃

Σ
∗ =

⋃

⊗ [B], for some
B ⊆ Σ ⊗ Σ.

We denote by Σ⊗ the largest ⊗-subpartition of Σ and we refer to its elements as the ⊗-blocks of Σ, whereas the
remaining blocks are called source blocks. We also denote by Π⊗ the subset of Σ⊗ Σ such that

⋃

Σ⊗ =
⋃

⊗ [Π⊗].
□

Remark 2.2. The deinitions of Σ⊗ and Π⊗ are well-given. Concerning Σ⊗ , it is enough to show that the set
of the ⊗-subpartitions of Σ is closed under union. Thus, let {Σ� | � ∈ � } be any set of ⊗-subpartitions of Σ, and
let {B� | � ∈ � } be a corresponding collection of subsets of Σ ⊗ Σ such that

⋃

Σ� =
⋃

⊗ [B� ], for � ∈ � . Then, we
plainly have:

⋃⋃

�∈�Σ� =
⋃

�∈�
⋃

Σ� =
⋃

�∈�
⋃

⊗ [B� ] =
⋃⋃

�∈�⊗ [B� ] =
⋃

⊗ [
⋃

�∈�B� ],

proving that
⋃

�∈�Σ� is a ⊗-subpartition of Σ, as
⋃

�∈�Σ� ⊆ Σ and
⋃

�∈�B� ⊆ Σ ⊗ Σ. Hence,

Σ⊗ ≔
⋃

{

Σ
∗
| Σ
∗ is a ⊗-subpartition of Σ

}

is the largest ⊗-subpartition of Σ.
Having shown that Σ⊗ is the largest ⊗-subpartition of Σ, then, in particular,

⋃

Σ⊗ =
⋃

⊗ [B] for someB ⊆ Σ⊗Σ.
In addition, such B is unique, by Lemma 1.14. Hence, the set Π⊗ is well-deined as well. □

We illustrate Deinition 2.1 with the following example.

Running Example (Part I). Let us consider the partition Σ = {�1, �2, �3, �4}, where

�1 =
{

{∅}
}

, �2 = (HF ⊗ HF) \ �1, �3 = HF \ (�1 ∪ �2), �4 =
{

{∅,HF}
}

(we recall that HF is the set of the hereditarily inite sets; see Section 1.2).
We have:

ś {�1, �2} is a ⊗-subpartition of Σ. Indeed, by preliminarily observing that

�1 ∪ �2 = HF ⊗ HF and
⋃

{�1, �2, �3} = �1 ∪ �2 ∪ �3 = HF,
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we have

�1 ∪ �2 = HF ⊗ HF

=
⋃

{�1, �2, �3} ⊗
⋃

{�1, �2, �3}

=
⋃

{

⊗{�� , � � } | 1 ⩽ � ⩽ � ⩽ 3
}

(by Lemma 1.15)

=
⋃

⊗ [{�1, �2, �3} ⊗ {�1, �2, �3}] .

As obviously ⊗ [{�1, �2, �3} ⊗ {�1, �2, �3}] ⊆ Σ ⊗ Σ, it readily follows that {�1, �2} is a ⊗-subpartition of Σ.
ś �3 does not belong to any ⊗-subpartition of Σ. It is enough to observe that �3 contains elements that are
not unordered pairs, such as

{

∅, {∅}, {{∅}}
}

;
ś �4 does not belong to any ⊗-subpartition of Σ. Indeed, since the set HF does not belong to any �� , it follows
that �4 ⊈

⋃

⊗
[ (

⋃

1⩽�⩽4
��
)

⊗
(
⋃

1⩽�⩽4
��
) ]

.

Hence, {�1, �2} is the largest ⊗-subpartition of Σ. We can therefore conclude that Σ⊗ = {�1, �2}, namely �1 and
�2 are the ⊗-blocks of Σ, and Π⊗ = {�1, �2, �3} ⊗ {�1, �2, �3}. □

As a consequence of Lemma 1.8 (resp., Lemma 1.9), to test whether a given BST-conjunction Φ with � distinct
variables is satisiable, it is enough to pick any partition with 2� − 1 (resp., � − 1) blocks and check whether it
satisies Φ.
Instead, as we shall see, in the case of BST⊗-conjunctions with � distinct variables, rather than checking a

single partition for satisiability, one would have to test a whole set of doubly exponential size of partitions with
2� − 1 blocks. Remarkably, the partitions in such a set can be conveniently described by special graphs, called
⊗-graphs, which enjoy a particular connectivity property termed accessibility.
Given a BST⊗-conjunction Φ to be tested for satisiability, in the case of the ordinary s.p. it will be enough

to ind an accessible ⊗-graph which fulills Φ, in the sense that will be soon made precise, whereas for the
(hereditarily) inite s.p., besides accessibility and fulillability, it will be additionally requested that the ⊗-graphs
admit a łweakž topological order.
Both for the ordinary s.p. and for the (hereditarily) inite s.p., such an approach will yield nondeterministic

exponential decision procedures in the number of distinct variables of the input formula.

Next, we provide precise deinitions of the notions mentioned above. We begin with ⊗-graphs.

2.1 ⊗-graphs

The mere characterization of the largest ⊗-subpartition Σ⊗ of a given partition Σ and of its accompanying set
Π⊗ ⊆ Σ ⊗ Σ such that

⋃

Σ⊗ =
⋃

⊗ [Π⊗] (12)

is not suicient for our decidability purposes. We need also to characterize the low of the unordered pairs from
the (unordered Cartesian product of the) members of Π⊗ to the members of Σ⊗ . From (12), it follows that every
member � of any set ⊗�, for � ∈ Π⊗ , belongs to some block �� in Σ⊗ .

9 Such additional information is gathered

in the following directed bipartite graph GΣ (called ⊗-graph), whose parts are Σ and Π⊗ ,
10 and whose edges are

(i) ⟨�, �⟩, for each � ∈ � ∈ Π⊗ ;
(ii) ⟨�, �⟩, for each � ∈ Π⊗ and � ∈ {�� | � ∈ ⊗�},

namely for each � ∈ Π⊗ and for each block � ∈ Σ⊗ such that

� ∩ ⊗� ≠ ∅. (13)
9And, conversely, every member � of any block � in Σ⊗ belongs to some ⊗�, for � ∈ Π⊗ (and therefore it is an unordered pair).
10In the present introductory overview, we assume that the sets Σ and Π⊗ are disjoint. The upcomoing Deinition (2.3) will take care also of

the case left out now.
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It turns out that the information contained in the graph GΣ is enough for our purposes. Indeed, it can be shown
that if Σ and Σ

′ are any partitions whose corresponding graphs GΣ and GΣ
′ , constructed as outlined above, are

isomorphic, then Σ and Σ
′ satisfy the very same BST⊗-formulae, namely

Σ |= Φ ⇐⇒ Σ
′ |= Φ

holds, for every BST⊗-formula Φ.
In more formal terms, ⊗-graphs are deined as follows.

Deinition 2.3 (⊗-graphs). A ⊗-graph G is a directed bipartite graph whose set of vertices comprises two
disjoint parts: a set of places P, such that P ∩ (P ⊗ P) = ∅, and a set of ⊗-nodes N , where N ⊆ P ⊗ P.11 The
edges issuing from each place � are exactly all pairs ⟨�, �⟩ such that � ∈ � ∈ N: these are the membership edges.
The remaining edges of G, called distribution edges, go from ⊗-nodes to places. When there is an edge ⟨�, �⟩
from a ⊗-node � to a place �, we say that � is a target of �. Every ⊗-node must have at least one target. A place
that is a target of some ⊗-node is a ⊗-place. The map Tover N deined by

T(�) ≔ {� ∈ P | � is a target of �}, for � ∈ N,

is the target map of G, hence we have T : N → pow+ (P). Plainly, a ⊗-graph G is fully characterized by the set
P of its places and its target map T, since the sets of ⊗-nodes of G is expressible as dom(T ). When convenient,
we shall explicitly write G = (P,N ,T) for a ⊗-graph with set of places P, set of ⊗-nodes N , and target map T .
The size of a ⊗-graph is the cardinality of its set of places. □

Next, we illustrate how to construct the ⊗-graph GΣ induced by a given a partition Σ. Let Σ⊗ be the largest
⊗-subpartition of Σ, and let Π⊗ ⊆ Σ ⊗ Σ be such that

⋃

Σ⊗ =
⋃

⊗ [Π⊗].
To begin with, we select a set of places PΣ, of the same cardinality as Σ and such that PΣ and PΣ ⊗ PΣ are

disjoint. Places � in PΣ are intended to be an abstract representation of the blocks of Σ via a bijection � ↦→ � (•)

from PΣ onto Σ. Then we deine the setNΣ of the ⊗-nodes of GΣ as the collection of the unordered pairs {�, �} of
places such that {� (•) , � (•) } ∈ Π⊗ , that is,NΣ ≔ {� ∈ PΣ ⊗ PΣ |�

(•) ∈ Π⊗}, where the bijection
(•) has naturally

been extended to any set � ∈ PΣ ⊗ PΣ by putting � (•) ≔ {� (•) | � ∈ �}.12 At this point, we deine the vertex set
of GΣ as the union PΣ ∪NΣ. The disjoint sets PΣ andNΣ will form the parts of the bipartite graph GΣ we are after.
Having deined the vertex set of GΣ, next we describe its edge set. The edges issuing from each place � are

exactly all pairs ⟨�, �⟩ such that � ∈ � ∈ NΣ (membership edges of GΣ). The remaining edges of GΣ go from
⊗-nodes to places (these are the distribution edges of GΣ). Speciically, for a ⊗-node � and a place � of GΣ, there
is an edge ⟨�, �⟩ in GΣ exactly when

� (•) ∩ ⊗� (•) ≠ ∅, (14)

in agreement with (13), namely when there is a łlowž of unordered pairs from ⊗� (•) to � (•) (through the edge
⟨�, �⟩).
Only places � corresponding to ⊗-blocks � (•) of Σ (namely the blocks in PΣ), hence called ⊗-places and whose

collection is denoted by PΣ, ⊗ , can have incoming edges. This is a consequence of the following lemma.

Lemma 2.4. A place � of the ⊗-graph GΣ = (PΣ,NΣ,TΣ) induced by Σ is a ⊗-place if and only if � (•) is a ⊗-block.

Proof. If � is a ⊗-place, then it has some incoming edge ⟨�, �⟩ in GΣ, for some � ∈ NΣ. Hence �
(•) ∈ Π⊗ and

� (•) ∩ ⊗� (•) ≠ ∅ hold, and therefore

∅ ≠ � (•) ∩ ⊗� (•) ⊆ � (•) ∩
⋃

⊗ [Π⊗] = � (•) ∩
⋃

Σ⊗ .

11The terms place and node have been originally introduced in [FOS80] and [CFS85], respectively.
12Hence, ⊗-nodes {�,�} in NΣ are intended to represent the unordered pairs {� (•) , � (•) } of the blocks represented by their places.
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Thus, � (•) ∩
⋃

Σ⊗ ≠ ∅, so that � (•) ∈ Σ⊗ , namely � (•) is a ⊗-block.
Conversely, if � (•) is a ⊗-block, then � (•) ∈ Σ⊗ , and therefore

� (•) ∩
⋃

⊗ [Π⊗] = � (•) ∩
⋃

Σ⊗ = � (•) ≠ ∅.

Thus, � (•) ∩ ⊗� (•) ≠ ∅, for some � (•) ∈ Π⊗ . Hence, � is a ⊗-node of GΣ and, by (14), ⟨�, �⟩ is a distribution edge
of GΣ, proving that the place � has incoming edges and so it is a ⊗-place. □

Similarly, every ⊗-node of GΣ must have some outgoing edges. Indeed, if � is any ⊗-node of GΣ, then �
(•) ∈ Π⊗ ,

and since
∅ ≠ ⊗� (•) ⊆

⋃

⊗ [Π⊗] =
⋃

Σ⊗,

we have ⊗� (•) ∩ � (•) ≠ ∅ for some � (•) ∈ Σ⊗ , so that, by (14), the ⊗-place � is a target of the ⊗-node �.
The target map TΣ of GΣ is plainly deined by

TΣ (�) ≔ {� ∈ PΣ,⊗ | �
(•) ∩ ⊗� (•) ≠ ∅}, for � ∈ NΣ .

Running Example (Part II). We construct the ⊗-graph GΣ induced by the partition Σ = {�1, �2, �3, �4} in Part
I, where

�1 =
{

{∅}
}

, �2 = (HF ⊗ HF) \ �1, �3 = HF \ (�1 ∪ �2), �4 =
{

{∅,HF}
}

.

Let PΣ ≔ {�1, �2, �3, �4}, where the �� ’s are pairwise distinct and none of them is an unordered pair, so that

PΣ ∩ (PΣ ⊗ PΣ) = ∅. Also let � ↦→ � (•) be the bijection from PΣ onto Σ such that �
(•)
� = �� , for � = 1, 2, 3, 4.

Recalling from Part I that Σ⊗ = {�1, �2} and Π⊗ = {�1, �2, �3} ⊗ {�1, �2, �3}, the set of the ⊗-places of GΣ is
PΣ,⊗ = {�1, �2} and the set of the ⊗-nodes of GΣ is NΣ = {�1, �2, �3} ⊗ {�1, �2, �3}. The membership edges of GΣ

are

⟨�1, {�1}⟩, ⟨�2, {�2}⟩, ⟨�3, {�3}⟩, ⟨�1, {�1, �2}⟩, ⟨�2, {�1, �2}⟩,

⟨�1, {�1, �3}⟩, ⟨�3, {�1, �3}⟩, ⟨�2, {�2, �3}⟩, ⟨�3, {�2, �3}⟩;

and the distribution egdes of GΣ are

⟨{�1}, �2⟩, ⟨{�1, �2}, �2⟩ ⟨{�1, �3}, �2⟩ ⟨{�2, �3}, �2⟩, ⟨{�3}, �1⟩, ⟨{�3}, �2⟩.

Finally, the target map TΣ is:

TΣ ({�1}) = {�2}, TΣ ({�1, �2}) = {�2}, TΣ ({�1, �3}) = {�2},

TΣ ({�2, �3}) = {�2}, TΣ ({�3}) = {�1, �2}.

The ⊗-graph GΣ of the partition Σ is shown in Fig. 1. Distribution edges are in black, whereas membership
edges are grayed out. Notice that the graph GΣ is cyclic, due to the presence of the łcloverž centered in the place
�2, and contains an isolated vertex, namely place �4. □

2.1.1 Accessible ⊗-graphs.

Only accessible ⊗-graphs are relevant for our decidability results.

Deinition 2.5 (Accessible ⊗-graphs). A place of a ⊗-graph G = (P,N ,T) is a source place if it has no incoming
edges. The remaining places, namely those with incoming edges, are called ⊗-places. We denote by P⊗ the set of
the ⊗-places of G.
A place of G is accessible (from the source places of G) if either it is a source place or, recursively, it is

the target of some node of G whose places are all accessible from the source places of G. Finally, a ⊗-graph is
accessible when all its places are accessible.13 □

13Thus, a ⊗-graph with no source places is trivially not accessible.
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Fig. 1. The ⊗-graph GΣ of the partition Σ in Part II of our running example. Distribution edges are shown in black, whereas

membership edges have been grayed out. Source places are in a gray field.

The following result holds.

Lemma 2.6. The ⊗-graph GΣ induced by a given partition Σ is accessible.

Proof. Let GΣ = (PΣ,NΣ,TΣ) be the ⊗-graph induced by the partition Σ via a given bijection � ↦→ � (•) from
PΣ onto Σ.
For a contradiction, let us assume that GΣ is not accessible. Among the non-accessible places of GΣ, we select a

place � ∈ PΣ whose corresponding block � (•) ∈ Σ contains an element � of smallest rank. Plainly, � must be a
⊗-place, because otherwise it would be a source place, which is trivially accessible. Thus, by Lemma 2.4, � (•)

must be a ⊗-block, and therefore � (•) ⊆
⋃

Σ⊗ =
⋃

⊗ [Π⊗], , where we recall that Π⊗ is the subset of Σ ⊗ Σ such
that

⋃

Σ⊗ =
⋃

⊗ [Π⊗] (see Deinition 2.1), and so � ∈
⋃

⊗ [Π⊗]. Hence, � = {�1, �2} ∈ ⊗� (•) , for some ⊗-node

� = {�1, �2} such that �1 ∈ �
(•)
1 and �2 ∈ �

(•)
2 , and therefore � ∈ TΣ (�). Since �

(•)
1 and �

(•)
2 contain elements of

rank strictly less than the rank of � , the places �1 and �2 must be accessible. Thus, after all, the place � would be
one of the targets of a node whose places are both accessible, and therefore it would be accessible, contradicting
our assumption. Hence, GΣ is accessible. □

Running Example (Part III). We check that the ⊗-graph GΣ in Fig. 1, induced by the partition Σ in Part I, is
accessible, as it should be in view of Lemma 2.6. Indeed,

ś �3 and �4 are source places, so they are accessible;
ś the place �1 is accessible, because of the edge ⟨{�3}, �1⟩; and
ś the place �2 is accessible, because of the edge ⟨{�3}, �2⟩ (but also thanks to the edges ⟨{�1}, �2⟩ and
⟨{�1, �3}, �2⟩). □

2.2 Fulfillment by an accessible ⊗-graph

Our next task is to igure out which additional properties, besides accessibility, are enjoyed by the ⊗-graph GΣ

induced by a partition Σ (via a certain bijection � ↦→ � (•) from PΣ onto Σ) that satisies a given BST⊗-conjunction
Φ.
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Thus, let us assume that Σ satisies a conjunction Φ via a partition assignment ℑ : Vars(Φ) → pow(Σ). Our
sought-after properties will pertain to the abstraction�Σ : Vars(Φ) → pow(PΣ) of the map ℑ, which is deined
by

�Σ (�) ≔ {� ∈ PΣ | �
(•) ∈ ℑ(�)}, for � ∈ Vars(Φ). (15)

For each literal in Φ, we shall derive suitable efective conditions on the map �Σ that are necessary for the
satisiability of Φ. Subsequently, in Section 2.3, we shall prove that such conditions are also suicient for the
satisiability of Φ, thereby proving that the s.p. for BST⊗ can be solved algorithmically.

To begin with, we show that, for every Boolean literal � = � ★ � in Φ (with ★ ∈ {∪, \}), we have

(a) �Σ (�) = �Σ (�) ★�Σ (�).

Indeed, since ℑ |= � = � ★ �, by Lemma 1.3 we have ℑ(�) = ℑ(�) ★ ℑ(�), and therefore by (15) we obtain
�Σ (�) = �Σ (�) ★�Σ (�).

Similarly, for every literal � ≠ � in Φ, we have

(b) �Σ (�) ≠ �Σ (�).

Indeed, in this case we have ℑ |= � ≠ �, which yields�Σ (�) ≠ �Σ (�), again by (15) and Lemma 1.3.

The situation for literals � = � ⊗ � is more complex. Speciically, we prove that the following conditions hold
for each such literal in Φ:

(c1) {�, � } ∈ NΣ and ∅ ≠ TΣ ({�, � }) ⊆ �Σ (�), for all � ∈ �Σ (�) and � ∈ �Σ (�);
(c2) �Σ (�) ⊆

⋃

TΣ [�Σ (�) ⊗�Σ (�)];
(c3)

⋃

TΣ [NΣ \ (�Σ (�) ⊗�Σ (�))] ∩�Σ (�) = ∅.

Concerning (c1), since ℑ |= � = � ⊗ �, then
⋃

ℑ(�) =
⋃

ℑ(�) ⊗
⋃

ℑ(�) (16)

holds. Hence, ℑ(�) is a ⊗-subpartition of Σ and so ℑ(�) ⊆ Σ⊗ . Indeed,
⋃

ℑ(�) =
⋃

ℑ(�) ⊗
⋃

ℑ(�) (by (16))

=
⋃

{

� ⊗ � | � ∈ ℑ(�), � ∈ ℑ(�)
}

(by Lemma 1.15)

=
⋃

⊗ [ℑ(�) ⊗ ℑ(�)] .

Next, let � ∈ �Σ (�) and � ∈ �Σ (�). Then � (•) ⊆
⋃

ℑ(�) and � (•) ⊆
⋃

ℑ(�), and consequently, by (16),
� (•) ⊗ � (•) ⊆

⋃

ℑ(�). In addition, since ∅ ≠ � (•) ⊗ � (•) ⊆
⋃

ℑ(�), there exists some � (•) ∈ ℑ(�) such that
� (•) ∩ (� (•) ⊗ � (•) ) ≠ ∅. Conversely, if � (•) ∩ (� (•) ⊗ � (•) ) ≠ ∅ for some � ∈ PΣ, then

� (•) ∩
⋃

ℑ(�) = � (•) ∩
(
⋃

ℑ(�) ⊗
⋃

ℑ(�)
)

≠ ∅.

Hence � (•) ∩
⋃

ℑ(�) ⊆ Σ⊗ , namely � (•) is a ⊗-block, and so � is a ⊗-place. Thus,

∅ ≠
{

� (•) ∈ Σ | � (•) ∩ (� (•) ⊗ � (•) ) ≠ ∅
}

⊆ ℑ(�),

which yields

∅ ≠
{

� ∈ PΣ | �
(•) ∩ (� (•) ⊗ � (•) ) ≠ ∅

}

⊆ �Σ (�) ∩ PΣ, ⊗,

and therefore

{�, � } ∈ NΣ and ∅ ≠ TΣ ({�, � }) =
{

� ∈ PΣ,⊗ | �
(•) ∩ (� (•) ⊗ � (•) ) ≠ ∅

}

⊆ �Σ (�).
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As for (c2), let � ∈ �Σ (�), so that �
(•) ⊆

⋃

ℑ(�). Let � ∈ � (•) . Hence, by (16), � ∈
⋃

ℑ(�) ⊗
⋃

ℑ(�), and therefore
� ∈ � (•) ⊗ � (•) , for some �, � ∈ PΣ such that � (•) ∈ ℑ(�) and � (•) ∈ ℑ(�). Thus, � ∈ �Σ (�) and � ∈ �Σ (�). Since
� (•) ∩ (� (•) ⊗ � (•) ) ≠ ∅ and � (•) ∈ Σ⊗ , we have � ∈ TΣ ({�, � }) ⊆

⋃

TΣ [�Σ (�) ⊗�Σ (�)] . Hence, we have

�Σ (�) ⊆
⋃

TΣ [�Σ (�) ⊗�Σ (�)] .

Finally, concerning (c3), let us assume for a contradiction that there exists some� ∈
⋃

TΣ [NΣ\(�Σ (�)⊗�Σ (�))]∩

�Σ (�). Hence, � ∈ TΣ (�), for some � ∈ NΣ \ (�Σ (�) ⊗ �Σ (�)). Since �
(•) ∩ ⊗� (•) ≠ ∅ and � (•) ⊆

⋃

ℑ(�), by
(16) we have ⊗� (•) ∩ (

⋃

ℑ(�) ⊗
⋃

ℑ(�)) ≠ ∅, and so ⊗� (•) ∩ (� (•) ⊗ � (•) ) ≠ ∅, for some � (•) ∈ ℑ(�) and
� (•) ∈ ℑ(�). Thus, by Lemma 1.13 we have � (•) = {� (•) , � (•) }, and therefore � = {�, � } ∈ �Σ (�) ⊗�Σ (�), which
is a contradiction, thus proving (c3).

We can recap what we have just established by saying that the accessible ⊗-graph induced by any partition Σ

satisfying a given BST⊗-conjunction Φ fulills Φ, according to the following deinition.

Deinition 2.7 (Fulillment by an accessible ⊗-graph). An accessible ⊗-graph G = (P,N ,T) fulfills a given
BST⊗-conjunction Φ provided that there exists a map� : Vars(Φ) → pow(P) (called a G-fulfilling map for Φ)
such that the following conditions are satisied:

(a) �(�) = �(�) ★�(�), for every conjunct � = � ★ � in Φ, where ★ ∈ {∪, \};
(b) �(�) ≠ �(�), for every conjunct � ≠ � in Φ;
(c) for every conjunct � = � ⊗ � in Φ,
(c1) {�, � } ∈ N and ∅ ≠ T ({�, � }) ⊆ �(�), for all � ∈ �(�) and � ∈ �(�);
(c2) �(�) ⊆

⋃

T [�(�) ⊗�(�)];
(c3)

⋃

T [N \ (�(�) ⊗�(�))] ∩�(�) = ∅. □

In summary, we have proved the following result:

Lemma 2.8. The accessible ⊗-graph induced by a partition satisfying a given BST⊗-conjunction Φ fulills Φ.

As an immediate consequence, we have:

Corollary 2.9. A satisiable BST⊗-conjunction with � variables is fulilled by an accessible ⊗-graph of size (at
most) 2� − 1.

Proof. Let Φ be a satisiable BST⊗-conjunction with � variables. As stated in Lemma 1.2, Φ is satisied by a
partition Σ with exactly 2� − 1 blocks. Thus, the ⊗-graph GΣ induced by Σ has size 2� − 1 and, by Lemmas 2.6
and 2.8, it is accessible and fulills Φ. □

Running Example (Part IV). Let Φ be the following BST⊗-conjunction:

� = � \ � ∧ � = � \ � ∧ � ≠ � ∧ � ≠ � ∧ � = � \ � ∧ � = � ⊗ �,

and let again Σ = {�1, �2, �3, �4} be the partition in our running example, with

�1 =
{

{∅}
}

, �2 = (HF ⊗ HF) \ �1, �3 = HF \ (�1 ∪ �2), �4 =
{

{∅,HF}
}

.

Let ℑ : � → pow(Σ) be the following partition assignment over � ≔ {�,�, �,�, �}:

ℑ(�) = {�4}, ℑ(�) = {�2, �4}, ℑ(�) = {�1, �2, �3}, ℑ(�) = ∅, ℑ(�) = {�1, �2}.

Also, let�ℑ be the set assignment over � induced by ℑ:

�ℑ� =
{

{∅,HF}
}

, �ℑ� =
(

(HF ⊗ HF) \ {{∅}}
)

∪
{

{∅,HF}
}

, �ℑ� = HF,

�ℑ� = ∅, �ℑ� = HF ⊗ HF.

It it an easy matter to check that�ℑ |= Φ. Hence, Σ,ℑ |= Φ, namely the partition Σ satisies Φ via the map ℑ.
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Let GΣ be the ⊗-graph induced by Σ via the bijection � ↦→ � (•) from PΣ onto Σ deined in Part II (see Fig. 1).
The partition assignment ℑ induces the following map�Σ : {�,�, �,�, �} → pow(PΣ):

�Σ (�) = {�4}, �Σ (�) = {�2, �4}, �Σ (�) = {�1, �2, �3}, �Σ (�) = ∅, �Σ (�) = {�1, �2}.

Next we check that the ⊗-graph GΣ fulills the conjunction Φ via the map�Σ. Plainly, we have:

�Σ (�) = �Σ (�) \�Σ (�), �Σ (�) ≠ �Σ (�) ≠ �Σ (�), �Σ (�) = �Σ (�) \�Σ (�).

hold. Hence the map�Σ indeed satisies conditions (a) and (b) of Deinition 2.7.
Next we check that also condition (c) of Deinition 2.7 is satisied.
We have just one ⊗-literal in Φ, namely � = � ⊗ � . Recalling from Part II that

TΣ ({�1}) = {�2}, TΣ ({�1, �2}) = {�2}, TΣ ({�1, �3}) = {�2},

TΣ ({�2, �3}) = {�2}, TΣ ({�3}) = {�1, �2},

it is immediate to check that

{�, � } ∈ NΣ and ∅ ≠ {�2} ⊆ TΣ ({�, � }) ⊆ {�1, �2} = �Σ (�),

for all �, � ∈ �Σ (�), so the sub-condition (c1) of Deinition 2.7 is veriied.
Concerning the sub-condition (c2), we have to check that �Σ (�) ⊆

⋃

TΣ
[

�Σ (�) ⊗ �Σ (�)
]

holds. Plainly,

TΣ
[

�Σ (�) ⊗�Σ (�)
]

=
{

{�2}, {�1, �2}
}

, and so

�Σ (�) = {�1, �2} =
⋃

TΣ
[

�Σ (�) ⊗�Σ (�)
]

.

Hence, also sub-condition (c2) is satisied.
Finally, we observe that sub-condition (c3) is vacuously true, since NΣ \

(

�Σ (�) ⊗�Σ (�)
)

= ∅. Thus condition
(c) of Deinition 2.7 is satisied too, and therefore the ⊗-graph GΣ indeed fulills Φ via the map�Σ. □

2.3 Construction process

Corollary 2.9 provides a necessary condition for a BST⊗-conjunction Φ with � distinct variables to be satisiable.
We also observe that such condition can be efectively checked, as there is a bounded number of accessible ⊗-
graphs of size 2� − 1 and for each of them one can efectively check whether it fulills the given BST⊗-conjunction
Φ.

We prove next that the condition in Corollary 2.9 is not only necessary but also suicient for aBST⊗-conjunction
Φ with � distinct variables to be satisiable, thereby showing that the s.p. for BST⊗-formulae is decidable.

Lemma 2.10. If a BST⊗-conjunction is fulilled by an accessible ⊗-graph, then it is satisiable.

Proof. Let G = (P,N ,T) be an accessible ⊗-graph, and let us assume that G fulills a given BST⊗-conjunction
Φ via the map� : Vars(Φ) → pow(P).
To each place � ∈ P, we associate a set � (•) , initially empty. Then, by suitably exploiting the ⊗-graph G as

a kind of low graph, we shall show that the sets � (•) can be monotonically extended by a (possibly ininite)
construction process (comprising a inite initialization phase and a subsequent, possibly ininite, stabilization phase)
in such a way that the following properties hold:

(P1) After each step, the sets � (•) are pairwise disjoint.
(P2) At the end of the initialization phase all the � (•) ’s are nonempty (and pairwise disjoint). Thus, after each

step in the subsequent stabilization phase, the sets � (•) , with � ∈ P, form a partition equinumerous with P.
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(P3) After each step in the stabilization phase, the inclusion

� (•) ⊆
⋃

{

⊗� (•) |� ∈ T −1 (�)
}

holds, for each ⊗-place � ∈ P⊗ , where, as before, we are using the notation � (•) ≔ {� (•) | � ∈ �} for
� ∈ N .

(P4) At the end of the construction process, we have

⊗� (•) ⊆
⋃

{� (•) | � ∈ T (�)},

for each ⊗-node �.14

Subsequently, we shall prove that the properties (P1)ś(P4) together with the conditions (a)ś(c) of Deinition 2.7,
characterizing the fulilling ⊗-graph G, allow one to show that the partition {� (•) | � ∈ P} resulting from the
above construction process satisies our conjunction Φ.

The initialization and stabilization phases of our construction process consist of the following steps.

Initialization phase:

(I1) To begin with, let {� | � ∈ P \ P⊗} be any partition equinumerous with the set P \ P⊗ of the source places
of G, where each block �, for � ∈ P \ P⊗ , is a hereditarily inite set of cardinality (at least) max(2 |P⊗ |, 1)
and whose members all have cardinality strictly greater than 2,15 and put

� (•) ≔

{

� if � ∈ P \ P⊗

∅ if � ∈ P⊗ .

We say that a place � ∈ P has already been initialized when � (•) ≠ ∅. Likewise, a ⊗-node � ∈ N⊗ has been
initialized when its places have all been initialized. During the initialization phase, an initialized ⊗-node � ∈ N⊗
is said to be ready if it has some target that has not been yet initialized.

(I2) While there are places in P not yet initialized, pick any ready node � ∈ N and distribute evenly all the
members of ⊗� (•) among all of its targets.

More precisely, for a ready node�with � distinct targets�1, . . . , �� , the set⊗�(•) is partitioned into � blocks Δ1, . . . ,Δ�
such that

⌊

�

�⊗�(•)
�

�/�
⌋

⩽ |Δ1 | , . . . , |Δ1 | ⩽
⌊

�

�⊗�(•)
�

�/�
⌋

+ 1

and then the following � assignments

�
(•)
1 ≔ �

(•)
1 ∪ Δ1 , . . . , �

(•)

�
≔ �

(•)

�
∪ Δ�

are executed.

The accessibility of G guarantees that the while-loop (I2) terminates in a inite number of iterations.
At the end of the initialization phase all the � (•) ’s are nonempty, so property (P2) holds. Indeed, if there were

no ⊗-places, then all places would be initialized just after step (I1), and so all the � (•) ’s would be nonempty sets.
On the other hand, if |P⊗ | > 0, then at the end of the while-loop (I2) we shall have |�

(•) | ⩾ 2 |P⊗ |, for each � ∈ P.

14Should the construction process involve denumerably many steps, the inal values of the � (•) ’s are to be intended as limit of the sequences

of their values after each step in the stabilization phase.
15For the present case concerning the ordinary satisiability problem, we could have allowed that the �’s were all ininite sets, rather than

hereditarily inite sets. However, we chose to enforce hereditarily initeness of the �’s even in the current case in order that the initialization

phase would coincide with that for the hereditarily inite satisiability case to be addressed in the next section.
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This follows just from the initialization step (I1), for all source places � ∈ P \ P⊗ . Otherwise, by induction, we
have |� (•) | ⩾ 2 |P⊗ |, for every � in a ready node � ∈ N , and therefore

|⊗� (•) | ⩾

(

2 |P⊗ |

2

)

+ 2 |P⊗ | = |P⊗ | · (2 |P⊗ | + 1).

Hence, each of the |T (�) | ⩽ |P⊗ | sets �
(•) , for � ∈ T (�), will receive at least 2 |P⊗ |+1 elements by the distribution

step relative to the node �.
Concerning property (P1), we observe that at each distribution step, only elements of cardinality 1 or 2 are

added to the sets � (•) . Therefore, the disjointness of the sets �
(•)
1 and �

(•)
2 , for any two distinct places �1, �2 ∈ P

such that at least one of them is a source place, will be guaranteed. Indeed, if both �1 and �2 are source places,

then �
(•)
1 ∩�

(•)
2 = �1 ∩�2 = ∅. On the other hand, if only one of them is a source node, say �1, then since �

(•)
1 = �1

contains only members of cardinality strictly greater than 2 whereas, by step (I2), all the members of �
(•)
2 have

cardinality less than or equal to 2, it follows that even in this case we have �
(•)
1 ∩ �

(•)
2 = ∅. Finally, for any two

distinct places �1 and �2, none of which is a source node, we observe that if they have been initialized by a

distribution step applied to the same node � ∈ N , we trivially have �
(•)
1 ∩ �

(•)
2 = ∅. On the other hand, if �� is

initialized by distributing over a ⊗-node �� , where � = 1, 2 and �1 ≠ �2, we can easily show using induction on

the number of distribution steps and Lemma 1.13 that�
(•)
1 ≠ �

(•)
2 and therefore �

(•)
1 ∩�

(•)
2 ⊆ ⊗� (•)1 ∩⊗�

(•)
2 = ∅.

Stabilization phase: During the stabilization phase, a ⊗-node � ∈ N⊗ is ripe if

⊗� (•) \
⋃

{

� (•) | � ∈ T (�)
}

≠ ∅.

We execute the following (possibly ininite) loop:

(S1) While there are ripe ⊗-nodes, pick any of them, say � ∈ N , and distribute all the members of ⊗� (•) \
⋃

{

� (•) | � ∈ T (�)
}

(namely the members of ⊗� (•) that have not been distributed yet) among its targets
howsoever.

The fairness condition that one must comply with is the following:

once a ⊗-node becomes ripe during the stabilization phase, it must be picked for distribution within
a inite number of iterations of the while-loop (S1).

A way to enforce such condition consists, for instance, in maintaining all ripe ⊗-nodes in a queue Q, picking
always the ⊗-node to be used in a distribution step from the front of Q and adding the ⊗-nodes that have just
become ripe to the back of Q, unless they are already in Q.
By induction on � ∈ N, it can be shown that properties (P1) and (P3) will hold just after the �-th iteration of

the while-loop (S1) of the stabilization phase, and that property (P4) will hold at the end of the stabilization phase,
in case of termination.

Instead, when the stabilization phase runs for denumerably many steps, the inal partition P (•) is to be intended
as the limit of the partial partitions constructed after each step of the stabilization phase. Speciically, for each
place � ∈ P, we let � (� ) be the value of � (•) just after the �-th iteration of (S1). Plainly, we have

� (� ) ⊆ � (�+1) , for � ∈ N. (17)

Then we put

� (•) ≔
⋃

�∈N
� (� ) , for � ∈ P (18)

(notation overloading should not be a problem).

ACM Trans. Comput. Logic



Decidability of the satisfiability problem for Boolean set theory with the unordered Cartesian product operator • 23

By way of illustration, we prove that property (P4) holds for the partition P (•) =
{

� (•) | � ∈ P
}

, when the

� (•) ’s are deined by (18). To this purpose, let � ∈ N be such that T (�) ≠ ∅, and assume for contradiction that

⊗� (•) ⊈
⋃

{

� (•) | � ∈ T (�)
}

.

Let � be any element in ⊗� (•) \
⋃

{

� (•) | � ∈ T (�)
}

, and let � ∈ N be the smallest index such that � ∈ ⊗� (� ) ,
where � (� ) ≔ {� (� ) | � ∈ �}. Since � ∈ ⊗� (� ) \

⋃
{

� (� ) | � ∈ T (�)
}

, the node � must have been ripe just after
the �-th iteration of (S1). Therefore, by the fairness condition, the node � will be picked for distribution in a inite
number of steps, say � , after the �-th step, so that we have

⊗� (� ) ⊆ ⊗� (�+� ) (by (17))

⊆
⋃

{

� (�+�+1) | � ∈ T (�)
}

⊆
⋃

{

� (•) | � ∈ T (�)
}

,

and therefore � ∈
⋃

{

� (•) | � ∈ T (�)
}

, which is a contradiction. Thus, property (P4) holds also when the
construction process takes a denumerable number of steps.

Next, we show that the inal partition P (•) = {� (•) |� ∈ P} satisies Φ. In particular, we prove that the partition
assignment ℑ : Vars(Φ) → pow(P (•) ) deined by

ℑ(�) ≔ {� (•) | � ∈ �(�)}, for � ∈ Vars(Φ),

satisies Φ, where we recall that� is the G-fulilling map for Φ.
Since� is a G-fulilling map for Φ, then

- for every literal � = � ★ � in Φ, with ★ ∈ {∪, \}, we have�(�) = �(�) ★�(�), so that ℑ(�) = ℑ(�) ★ℑ(�)

holds; and
- for every literal � ≠ � in Φ, we have�(�) ≠ �(�), so that ℑ(�) ≠ ℑ(�) holds.

Thus, by Lemma 1.3, the partition assignment ℑ satisies all Boolean literals in Φ of the following types

� = � ∪ �, � = � \ �, � ≠ �.

Next, let � = � ⊗ � be a conjunct of Φ. We prove separately that the following inclusions hold:

⋃

ℑ(�) ⊆
⋃

ℑ(�) ⊗
⋃

ℑ(�) (19)
⋃

ℑ(�) ⊗
⋃

ℑ(�) ⊆
⋃

ℑ(�). (20)

Concerning (19), let � (•) ⊆
⋃

ℑ(�). Then � (•) ∈ ℑ(�), so that � ∈ �(�). By (c2) of Deinition 2.7, � cannot be a
source place. Hence, by (P3), we have:

� (•) ⊆
⋃

{

⊗� (•) |� ∈ T −1 (�)
}

.

We show now that

T −1 (�) ⊆ �(�) ⊗�(�). (21)

Let � ∈ T −1 (�) (so that � ∈ T (�)), and for contradiction assume that � ∉ �(�) ⊗ �(�). Then, by (c3) of
Deinition 2.7, we have T (�) ∩�(�) = ∅, contradicting � ∈ T (�) ∩�(�). Thus, � ∈ �(�) ⊗�(�), proving (21).
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Hence, we have:

� (•) ⊆
⋃

{

⊗� (•) |� ∈ T −1 (�)
}

⊆
⋃

{

⊗� (•) |� ∈ �(�) ⊗�(�)
}

=
⋃

{

⊗� (•) |� (•) ∈ ℑ(�) ⊗ ℑ(�)
}

=
⋃

ℑ(�) ⊗
⋃

ℑ(�) (by Lemma 1.15),

and therefore the inclusion (19) holds.

Concerning the inclusion (20), let � ∈
⋃

ℑ(�) ⊗
⋃

ℑ(�). Hence, � ∈ �
(•)
1 ⊗ �

(•)
2 = ⊗{� (•)1 , �

(•)
2 }, for some

�1 ∈ �(�) and �2 ∈ �(�). From (c1), we have ∅ ≠ T ({�1, �2}) ⊆ �(�). Thus, by (P4),

⊗{� (•)1 , �
(•)
2 } ⊆

⋃

{� (•) | � ∈ T ({�1, �2})} ⊆
⋃

{� (•) | � ∈ �(�)} =
⋃

ℑ(�),

and therefore � ∈
⋃

ℑ(�), proving (20).
Thus, the partition assignment ℑ satisies also all the ⊗-conjuncts of Φ, and in turn the inal partition P (•)

satisies the conjunction Φ. □

Running Example (Part Vśfinal). Let Φ be the BST⊗-conjunction in Part IV and GΣ the accessible ⊗-graph
in Fig. 1 (see also Part II). As already checked before, GΣ fulills Φ.
We illustrate now how the construction process applied to the ⊗-graph GΣ allows us to generate a partition

(not necessarily equal to Σ) that satisies Φ.
Thus, let

�1 ≔ �2 ≔ ∅, �3 ≔ {�1, �2, �3, �4}, �4 ≔ {�1, �2, �3, �4},

where the �� ’s and the �� ’s are pairwise distinct hereditarily inite sets of cardinality at least 2, and put

q
(•)
� ≔ �� , for � = 1, 2, 3, 4.

The sets q
(•)
� ’s have been printed in boldface to distinguish them from the sets �

(•)
� ’s in Part II. Notice also that

|�2 | = |�2 | = max(2|PΣ,⊗ |, 1) = 4,

where PΣ,⊗ is the set of ⊗-places of GΣ.
After these initial assignments, the places �3 and �4 are initialized and the ⊗-node {�3}, which has two targets

(namely �1 and �2), is ready.

The set ⊗q(•)3 has 10 elements, so 5 of these will be assigned to q
(•)
1 and the remaining 5 to q

(•)
2 .

At this point, all places of GΣ are initialized, so the initialization phase terminates and the stabilization phase
stars, with all the ⊗-nodes of GΣ but {�3} ripe. Notice that all of these ⊗-nodes have as target just the ⊗-place �2.

Hence, q
(•)
2 is the only set that will receive new elements at each step the stabilization phase, and so after the

execution of each such step the ⊗-nodes {�1, �2}, {�2}, and {�2, �3} will always be ripe. Thus, the stabilization

phase never stops, taking denumerably many steps and yielding a inal limit partition
{

q
(•)
1 , q

(•)
2 , q

(•)
3 , q

(•)
4

}

(distinct from Σ and where q
(•)
2 is ininite) that satisies Φ. This can be proved by induction on the number of

iterations of the stabilization loop.

In order to facilitate the understanding of what has been said, we present the coniguration of the queue Q of
the ripe ⊗-nodes after the irst six steps of the stabilization phase (see Table 1). The queue Q is depicted with its
front on the left and its back on the right.

- Step 0 shows the coniguration ofQ when the stabilization phase starts, namely at the end of the initialization
phase.
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Stabilization
step Queue Q

Selected
⊗-node

0 {�1}, {�1, �3}, {�1, �2}, {�2}, {�2, �3} —

1 {�1, �3}, {�1, �2}, {�2}, {�2, �3} {�1}

2 {�1, �2}, {�2}, {�2, �3} {�1, �3}

3 {�2}, {�2, �3}, {�1, �2} {�1, �2}

4 {�2, �3}, {�1, �2}, {�2} {�2}

5 {�1, �2}, {�2}, {�2, �3} {�2, �3}

6 {�2}, {�2, �3}, {�1, �2} {�1, �2}

...
...

...

Table 1. Configuration of the queue Q of the ripe ⊗-nodes ater the first six steps of the stabilization phase. The front of the

queue is on the let and the back is on the right.

- During step 1, the ripe node {�1} is selected for distribution, so fresh elements are added to the block
corresponding to its lonely target �2. Thus, {�1} leaves the queue and no other ripe node enters it, since the
nodes {�1, �2}, {�2}, {�2, �3} are already in queue. So the coniguration of the queue at the end of step 1 is

{�1, �3}, {�1, �2}, {�2}, {�2, �3},

as reported in the table.
- During step 2, the ripe node {�1, �3} is selected for distribution, so fresh elements are added to the block
corresponding to its lonely target �2. Thus, {�1, �3} leaves the queue and no other ripe node enters Q, since
the nodes {�1, �2}, {�2}, {�2, �3} are already in Q.

- During step 3, the ripe node {�1, �2} is selected for distribution, so fresh elements are added to the block
corresponding to its lonely target �2. Thus, {�1, �2} leaves the queue and it reenters it, since it became ripe
again (nothing is done for the other nodes {�2} and {�2, �3}, as they are already in the queue).

- During step 4, the ripe node {�2} is selected for distribution, so fresh elements are added to the block
corresponding to its lonely target �2. Thus, {�2} leaves the queue and it immediately reenters it, since it
became ripe again (nothing is done for the other nodes {�2, �3} and {�1, �2}, as they are already in the
queue).

- During step 5, the ripe node {�2, �3} is selected for distribution, so fresh elements are added to the block
corresponding to its lonely target �2. Thus, {�2, �3} leaves the queue and it immediately reenters it, since
it became ripe again (nothing is done for the other nodes {�1, �2} and {�2}, since they are already in the
queue).

- During step 6, the ripe node {�1, �2} is selected for distribution, so fresh elements are added to the block
corresponding to its lonely target �2. Thus, {�1, �2} leaves the queue and it immediately reenters it, since
it became ripe again (nothing is done for the other nodes {�2} and {�2, �3}, since they are already in the
queue).

- We observe that the queue coniguration Q at the end of step 6 is identical to that at the end of step 3. As a
consequence, the queue will endlessly loop through the conigurations at the end of steps 3, 4, and 5 in
sequence. □
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By combining Lemmas 2.8 and 2.10 and Corollary 2.9, we obtain:

Theorem 2.11. A BST⊗-conjunction with � variables is satisiable if and only if it is fulilled by an accessible
⊗-graph of size (at most) 2� − 1.

The preceding theorem is at the base of the following trivial decision procedure for BST⊗:

procedure BST⊗-satisfiability-test(Φ);

1. � ≔ |Vars(Φ) |;

2. for each ⊗-graph G with 2� − 1 places do

3. if G is accessible and fulills Φ then

4. return łΦ is satisiablež;

5. return łΦ is unsatisiablež;

end procedure;

Concerning the complexity of the above procedure, we observe that, given a BST⊗-conjunction Φ of size�
and with � distinct variables, we have:

- the size of a ⊗-graph with 2� − 1 places is O(8�);
- the size of any candidate fulilling map over a set of � variables is O(�2�) and the time needed to check
whether it is actually a G-fulilling map for Φ, for a given ⊗-graph G with 2� − 1 places, is O(�8�).

Hence, for a BST⊗-conjunction Φ with � distinct variables the procedure BST⊗-satisfiability-test has a nonde-
terministic O(�8�)-time complexity. Thus, we have:

Theorem 2.12. The satisiability problem for BST⊗-conjunctions belongs to the complexity class NEXPTIME.

The above result can be easily generalized to BST⊗-formulae that are not necessarily conjunctions.

Theorem 2.13. The satisiability problem for BST⊗-formulae belongs to the complexity class NEXPTIME.

As we have seen, the formula Φ in Part IV of our running example, namely

� = � \ � ∧ � = � \ � ∧ � ≠ � ∧ � ≠ � ∧ � = � \ � ∧ � = � ⊗ �,

admits several distinct ininite models: the one induced by the partition Σ and the map ℑ in Part IV of our running
example and the ininitely many ones corresponding to diferent ways to instantiate the construction process
based on the fulilling ⊗-graph GΣ (and possibly on other fulilling ⊗-graphs).
A question is therefore in order: Does our formula Φ admit also any inite model?
The answer is negative. Indeed, if � is any model for Φ, then �� = �� \ ��, and so �� = ∅. Hence,

�� = �� \�� implies�� ⊆ �� , and since�� = �� ⊗�� , we have�� ⊗�� ⊆ �� . Finally,�� ≠ �� implies
�� ≠ ∅, so � ∈ �� for some set � . But then, iteratively, the ininitely many sets

{�}, {{�}}, {{{�}}}, . . .

must all belong to�� , proving that�� must be ininite.
It is therefore worthwhile to investigate the inite s.p. for BST⊗, which we do in the next section.

3 THE FINITE AND THE HEREDITARILY FINITE SATISFIABILITY PROBLEMS FOR BST⊗

Let Φ be a initely satisiable BST⊗-conjunction, and let now Σ be a partition with inite domain
⋃

Σ that satisies
Φ via some partition assignment ℑ : Vars(Φ) → pow(Σ). Also, let GΣ = (PΣ,NΣ,TΣ) be the ⊗-graph induced by
Σ via a given bijection � ↦→ � (•) . As argued just before Lemma 2.6, the graph GΣ is ⊗-accessible and fulills Φ via
the map�Σ : Vars(Φ) → pow(PΣ) induced by ℑ and deined by

�Σ (�) ≔ {� ∈ PΣ | �
(•) ∈ ℑ(�)}, for � ∈ Vars(Φ)
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(so,�Σ is a GΣ-fulilling map for Φ).
We shall see that the initeness of

⋃

Σ yields a weak kind of acyclicity for the induced ⊗-graph GΣ, which is
expressed in terms of a restricted form of topological order.

Deinition 3.1. A topological ⊗-order of a ⊗-graph G = (P,N ,T) is any total order ≺ over its set of places
P such that

max
≺

� ≺ max
≺
T (�), (22)

for every ⊗-node � of G.
We write G = (P,N ,T , ≺) for a ⊗-graph (P,N ,T) endowed with a topological ⊗-order ≺, and we refer to it

as a (topologically) ⊗-ordered graph. □

Notice that a ⊗-ordered graph need not be acyclic. On the other hand, any acyclic ⊗-graph admits a topological
order of its vertices and therefore a topological ⊗-order, as can be easily checked. In this sense, topological
⊗-orders are less demanding than ordinary topological orders.
Later we shall also see that, together with fulillability and accessibility, the existence of a topological ⊗-order

is suicient for a BST⊗-conjunction to be hereditarily initely satisiable, thereby showing that the inite and the
hereditarily inite satisiability problems for BST⊗ are equivalent.

To start with, we show, as announced before, that the induced ⊗-graph GΣ admits a topological ⊗-order. Thus,
let ≺Σ be any total order over PΣ that reines the partial order induced by the rank function, namely such that

rk � (•) < rk � (•) =⇒ � ≺Σ �, for �, � ∈ PΣ .

We prove that (22) holds for ≺Σ, namely ≺Σ is a topological ⊗-order of GΣ. So, let � be any ⊗-node of GΣ. For
each � ∈ �, we select an �� ∈ �

(•) of maximal rank, which exists since � (•) is inite, and put �� ≔ {�� | � ∈ �}.

Let �� be the target of � such that �� ∈ �
(•)

�
(plainly, such a target exists, since �� ∈ ⊗� (•) ⊆

⋃

Σ⊗). Hence, for
each � ∈ � we have

rk � (•) ⩽ rk �� < rk �
(•)

�
,

so that � ≺Σ �� holds. But then

max
≺Σ

� ≺Σ �� ≺
=Σ max

≺Σ
T (�),

showing that ≺Σ is a topological ⊗-order of GΣ.
Summing up, we have proved that:

Lemma 3.2. A initely satisiable BST⊗-conjunction is fulilled by an accessible ordered ⊗-graph.

Next, we prove that if a BST⊗-conjunction Φ is fulilled by an accessible ordered ⊗-graph, then it is satisiable
by a hereditarily inite model.

Thus, let G = (P,N ,T , ≺) be an accessible ordered ⊗-graph that fulills Φ via a map� : Vars(Φ) → pow(P),
and let ≼ be the total preorder induced by ≺ over N , deined by

� ≼ �
Def

←−→ max
≺

� ≺
=

max
≺

�,

for all �, � ∈ N .
Much the same construction process described at depth in the proof of Lemma 2.10 concerning the ordinary

s.p. for BST⊗ will allow us to build a hereditarily inite model for Φ.
Speciically, the initialization phase of our new construction process coincides with that of the old construction

process, and therefore consists in the steps (I1) and (I2) seen previously. Instead, the old stabilization loop (S1) is
replaced by the following one:
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(S′1) While there are ripe ⊗-nodes, pick any ≼-minimal ripe ⊗-node, say � ∈ N⊗ , and assign all members of

⊗� (•) \
⋃

{

� (•) | � ∈ T (�)
}

to the block �
(•)

�
such that �� = max≺ T (�), namely execute the assignment

�
(•)

�
≔

(

�
(•)

�
∪ ⊗� (•)

)

\
⋃

{

� (•) | � ∈ T (�)
}

.

(As before, during the stabilization phase a ⊗-node � is ripe if the set ⊗� (•) \
⋃

{

� (•) | � ∈ T (�)
}

is
nonempty.)

We prove that the while-loop (S′1) can be executed at most |N⊗ | times. Thus, let

�1, �2, . . . , �� , . . . (23)

be the sequence of the ⊗-nodes picked for distribution during the execution of the loop (S′1). It is enough to show
that the ⊗-nodes in the sequence (23) are pairwise distinct. To this end, we irst prove that we have

�1 ≼ �2 ≼ . . . ≼ �� ≼ . . . (24)

Arguing by contradiction, assume that (24) does not hold, and let ℓ ∈ N be the least index such that we have

�ℓ ̸≼ �ℓ+1, (25)

so that �ℓ+1 ≼ �ℓ must hold, since the preorder ≼ is total. Plainly, at the ℓ-th iteration of (S′1), the node �ℓ+1

cannot be ripe, as otherwise it would have been chosen at step ℓ in place of �ℓ . So, the target ��ℓ
= max≺ T (�ℓ )

of �ℓ must belong to �ℓ+1, and therefore

max
≺

�ℓ ≺ max
≺
T (�ℓ ) = ��ℓ ≺

=
max
≺

�ℓ+1

must hold, yielding �ℓ ≼ �ℓ+1 which contradicts (25).
In what follows, for any node � ∈ N we shall denote by � (� ) the value of the set � (•) (associated with �) just

before the �-th iteration of the loop (S′1).
We are now ready to prove that the nodes in the sequence (23) are pairwise distinct. Arguing by contradiction,

suppose that �� = � � , with � < � . Then �
(� )
� ≠ �

( � )
� , so that at least one place � in �� must be the ≺-maximum

target of some ⊗-node, say �� (with � ⩽ � ⩽ � − 1), in the sequence �� , . . . , � �−1. But then we would have:

max
≺

�� ≺
=

max
≺

�� ≺ ��� ≺
=

max
≺

�� ,

which is a contradiction. Therefore, the while-loop (S′1) must terminate in at most |N⊗ | iterations.

Thus, at the end of the construction process under consideration, all sets � (•) with � ∈ P are plainly hereditarily
inite, and since the loop (S′1) is a particular instance (which is guaranteed to terminate) of the loop (S1), then the

partition {� (•) | � ∈ P} resulting from the above construction process satisies our conjunction Φ, just as argued
in the proof of Lemma 2.10.

In conclusion, we have:

Lemma 3.3. A BST⊗-conjunction fulilled by an accessible ordered ⊗-graph is satisiable by a hereditarily inite
model.

From Lemmas 3.2 and 3.3 and Corollary 2.9, we deduce:

Theorem 3.4. The inite and the hereditarily inite satisiability problems for BST⊗-conjunctions are equivalent.
In addition, any BST⊗-conjunction with � variables is (hereditarily) initely satisiable if and only if it is fulilled

by an accessible ordered ⊗-graph of size (at most) 2� − 1.

The preceding theorem justiies the following trivial decision procedure for the (hereditarily) inite satisiability
problem for BST⊗:
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procedure BST⊗-finite-satisfiability-test(Φ);

1. � ≔ |Vars(Φ) |;

2. for each ⊗-graph G with 2� − 1 places do

3. if G is ⊗-ordered, accessible and fulills Φ then

4. return łΦ is (hereditarily) initely satisiablež;

5. return łΦ is not (hereditarily) initely satisiablež;

end procedure;

Much as in the previous section, we can deduce that:

Theorem 3.5. The (hereditarily) inite satisiability problem for BST⊗-conjunctions belongs to the complexity
class NEXPTIME.

4 CONCLUDING REMARKS

In this paper, we provided an algorithmic solution to the s.p. for the slightly simpliied variant BST⊗ ofMLS×,
whose decision problem has been a long-standing open problem in computable set theory. BST⊗ difers from
MLS× in that membership has been dropped and the Cartesian product has been replaced by its unordered variant
⊗. Speciically, we proved that both the ordinary s.p. and the (hereditarily) inite s.p. for BST⊗ are in NEXPTIME.
Despite the simpliications made in moving from MLS× to BST⊗, the s.p. for BST⊗ remains fully representative
of the combinatorial diiculties due to the presence of the Cartesian product operator.

We expect that the technique introduced in this paper, based on ⊗-graphs and fulilling maps, may be adapted
to ascertain the decidability of various extensions of BST with operators belonging to a speciic class, which
includes, among others, the (ordered) Cartesian product × and the power set operator and its ‘siblings’ pow∗� (·)
and pow� (·).

Finally, we are very conident that the decidability result for BST⊗ can be adapted toMLS×, though at the cost
of several technicalities, and we intend to carry on such a generalization in the future.
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