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Introduction

In this thesis we present the main results obtained during the PhD course. It is

structured in three chapters: Chapter I is devoted to the preliminaries; Chapter

II contains the main results and their proofs; Chapter III contains some open

problems issued by the main results.

We will deal with two elliptic equations with zero Dirichlet boundary condition.

In particular:

1. the first equation involves the well known Laplacian operator defined by:

−∆
def
= −div(∇(·));

2. the second equation involves the following non-local operator of Kirchhoff

type:

−
(
a+ b

∫
Ω

|∇(·)|2 dx
)

∆.

Before summarizing the topics mentioned in the above discussion, we recall

some applications, especially in mathematical physics, of Dirichlet problems in-

volving the differential operators just introduced. Here, we consider a generic
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nonlinearity f(x, u) but, in the two problems we will expose in this thesis, the

nonlinearity has a specific form which is a model of physical phenomena with a

stronger absorbtion than diffusion.

Boundary-value problems of type
−∆u = f(x, u) in Ω

u = 0 on ∂Ω,

(P )

have been studied intensively during the last 40 years. Thay arise in application as

a stationary model for population dynamics, chemical reaction, combustion, etc...

, and positive solutions are, in many situations, the only relevant ones.

Here, Ω is a bounded domain, “the Laplacian is used to model diffusion”and

the “nonlinearity f represents the reaction term”.

Solutions of problem above can be interpreted as stationary solutions to the asso-

ciated parabolic problem.

Existence and other properties of solutions have been studied using various meth-

ods (sub- and super-solutions, critical-point theory, bifurcation) and combinations

of them. Usually, the nonlinear reaction term is smooth and, in many cases, sat-

isfies the conditions f(x, 0) ≥ 0.

Note that when f(0) = 0, then u(x) ≡ 0 is a solution (the “trivial one”). Ob-

viously, the relevant interest is the study of positive solution or nonnegative and

nonzero solutions.

Using variational method (see §1.3), under suitable assumptions on f , a solu-
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tion is found as the global minimum of the “energetic functional”defined by

I(u) =

∫
Ω

|∇u|2 dx−
∫

Ω

(∫ u(x)

0

f(x, t) dt

)
dx.

This point of view was introduced by Riemann in 1851 and it is known as Dirichlet

Principle. The fundamental idea is to interpret a Dirichlet problem as a differential

problem consisting in finding the solution of the so called Euler-Lagrange equation

I ′(u) = 0, (1)

where I ′ is the differential of the functional I (see §1.2). Usually, one looks for

global minimum points (or local minumim points) and not for global maximum

points of I. This is due to the properties that the functional I which, in general,

is only sequentially weakly lower semicontinuous .

Of course, not all the boundary value problems can be reformulated in the form

(1). When this occurs, one says that the problem has a variational structure.

From a physical point of view, the functional I can represent, for example,

the total energy of a homogeneous and isotropic thermal (or electrical) conductor

occupying the region Ω of the space and under the influence of distributed sources

of heat (or electric fields) .

The non-local general problem of Kirchhoff type:
−(a+ b

∫
Ω
|∇u|2 dx)∆u = f(x, u), in Ω,

u = 0, on ∂Ω

(Pa,b)

is related to the stationary analogue of the hyperbolic equation

utt −
(
a+ b

∫
Ω

|∇u|2 dx
)

∆u = f(x, u) in Ω, (2)
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where ∆ is the Laplacian operator defined above. Equation (2) is a general version

of the Kirchhoff equation

ρutt −
(
P0

h
+
E

2L

∫ L

0

u2
x dx

)
uxx = 0, (3)

presented by Kirchhoff in [13]. This equation is an extension of the classical

D’Alembert’s wave equation for free vibrations of elastic strings. The parame-

ters in equation (3) have the following meanings: E is the Young modulus of the

material, ρ is the mass density, L is the length of the string, h is the area of

cross-section, and P0 is the initial tension. Kirchhoff’s model takes into account

the changes in length of the string produced by transverse vibrations.

On the other hand, nonlocal boundary value problems like problem (Pa,b) model

several physical and biological system where u describe a process which depends

on the average of itself, as for example, the population density.

This problem has also been studied here using variational methods (§2.3).

In the first chapter we introduce some basic notations and classical results

which are the preliminaries to the development of the thesis. In general, the

solutions of the Euler-Lagrange equation I(u) = 0 are not classical solutions of

differential equations. They are usually called weak solutions and belongs to par-

ticular functional spaces, called Sobolev spaces, which are the natural spaces to

work with the variational methods.

The preliminaries contain some standard differentiability results for real func-

tionals and some other results about the existence of global minima of these latter.

Furthermore, we will also introduce the well known Palais-Smale Condition which
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is one of the key assumptions of the celebrated Mountain Pass Theorem by Am-

brosetti Rabinowitz [3]. This last result ensures the existence of solutions of the

Euler-Lagrange equation which are not local minima of the energy functional, so

that it represents an useful tool for establishing multiplicity results.

In the second chapter, we will present our main results. They concern the

existence of solutions for a class of elliptic problems.

We will first study the following non autonomous elliptic problem:
−∆u = α(x)us−1 − µβ(x)ur−1, in Ω

u ≥ 0, in Ω

u|∂Ω = 0

(Pµ)

Here, µ ∈ R is a parameter, α, β : Ω → R are two measurable weight functions,

and r, s are two exponents such that s ∈]1, 2[ and r ∈]1, s[.

We will establish, via minimax methods, a multiplicity result under suitable

summability conditions on the weight functions α, β.

Due to the condition 1 < r < s < 2, it happens that when β(x) is positive,

the reaction term f(x, u) = α(x)us−1 − µβ(x)ur−1 is negative and has a sublinear

growth for u small, so that it is a model for physical phenomena with a stronger

absorption than diffusion. In our case, this situation depends explicitly on spatial

variable x, namely the problem is non-autonomous.

Problem (Pµ) was first addressed by Hernández, Mancebo and Vega in [12],
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who considered the case α = β ≡ 1, that is the autonomous problem
−∆u = us−1 − µur−1, in Ω

u ≥ 0, in Ω

u|∂Ω = 0.

(P1,µ)

They proved the following result (cf. Theorem 3.13 of [12]) which is reported

here in a equivalent form which can be easily obtained by a scaling argument

Theorem A Let s ∈]0, 2[ and r ∈]0, s[. Then, there exists a positive constant µ0

such that the problem (P1,µ) admits at least a positive solution if µ ∈]0, µ0[; no

positive solution if µ > µ0.

The result of Hernández, Mancebo and Vega was successively improved in the

nonsingular case in [6] and partially extended to the quasi-linear case in [7]. In

particular, in [6] the author proved that

Theorem A’ Let s ∈]1, 2[, r ∈]1, s[ and µ0 be as in Theorem A. Then, for each

µ ∈]0, µ0[, there exist at least two solutions, one of which is a local minimum of the

energy functional associated to the problem and is positive in Ω; if µ = µ0, there

exists at least a non zero solution, and if µ > µ0, there are no positive solutions.

To deal with problem (Pµ), we use a similar idea as in [7], consisting of the

following steps:

• we find a global minimum point of the functional Iµ with negative energy,

(lemma 2.2.4);

• we find another local minimum point of Iµ, by assuming two sets of indepen-

dent hypotheses. In particular we find that
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– either u = 0 is a local minimum point, (Lemma 2.2.5);

– or there exists a local minimum point in any neighborhood of 0, (Lemma

2.2.7);

• we apply the Mountain Pass Theorem.

Next we study the following non-local autonomous version of (Pµ) involving

the Kirchhoff equation:


−
(
a+ b

∫
Ω

|∇u|2 dx
)

∆u = λus−1 − µur−1 in Ω

u > 0 in Ω

u = 0 on ∂Ω.

(Pλ,µ)

Here, s, r, a, b, λ, µ are positive real numbers with s ∈]1,min{4, 2∗}[ and r ∈]1, s[.

We will find a relation involving the above parameters which ensure the exis-

tence of at least two solution for (Pλ,µ).

Note that b = 0, a = 1, λ = 1 and 1 < r < s < 2, the problem is local and

gives back problem (P1,µ). Then, as seen before, there exist µ0 > 0 such that the

Theorem A is applies.

Actually, letting a > 0 and using a scaling argument, we can reformulate

Theorem A as follows:

Theorem B For each a > 0, s ∈]0, 2[, r ∈]0, s[, µ > 0, problem (Pλ,µ), with b = 0,

admits a solution if λ >
(
µ
µ0

) 2−s
2−r

a
s−r
r−2 , and no solution if 0 < λ <

(
µ
µ0

) 2−s
2−r

a
s−r
r−2 .

xii



Indeed, for s ∈]0, 2[, r ∈]0, s[ and λ, µ > 0, if we put µ′ := µ
λ

(
a
λ

) s−r
2−s , we have the

following equivalence:

v is a solution of problem (P1,µ′), with a = 1 and b = 0,

if and only if

u :=
(
λ
a

) 1
2−s v is a solution of problem (Pλ,µ), with a > 0 and b = 0.

Moreover, one has

µ′ ∈]0, µ0[ if and only if λ >
(
µ
µ0

) 2−s
2−r

a
s−r
r−2 .

Therefore, Theorem B is equivalent to Theorem A (which in turn is equivalent to

Theorem 3.13 of [12]).

Our goal is to extend Theorem B to the Kirchhoff problem (Pλ,µ), that is to the

case b > 0. We will consider the non singular case (that is r, s > 1) and we will

see that the upper bound s < 2 can be weakened by assuming a lower bound for λ

in the case s > 2. We point out that the presence of the nonlocal term
∫

Ω
|∇u|2dx

makes the sub-supersolution method somewhat hard to be applied to show, as in

[12], that, for a fixed λ > 0, the set of parameters µ such that a positive solution for

problem (Pλ,µ) exists is exactly an interval. Thus, this remains an open question

in the nonlocal case.
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Chapter 1

Preliminaries

In this chapter we introduce the basic notions and results, useful for the devel-

opment of the thesis. In particular, we will outline the functional spaces we will

work with, and we will recall some regularity properties of nonlinear functionals

as well as some of the main variational results.

We start by fixing our notations. For a measurable set E ⊂ RN (N ≥ 1)

and 1 ≤ p ≤ +∞, we denote by (Lp(E,RM), ‖ · ‖Lp(E,RM )) the Banach space of

measurable functions u : E → RM (M ≥ 1) for which the quantity

‖u‖Lp(E,RM ) :=



(∫
E
|u(x)|p dx

) 1
p if 1 ≤ p < +∞,

ess sup
x∈E

|u(x)| if p = +∞

is finite. Here the symbol | · | denotes the Euclidean norm of RM , which coincides

with the absolute value if M = 1. When there is no ambiguity, we abbreviate

Lp(E) = Lp(E,RM) and we will often write ‖ · ‖p to mean ‖ · ‖Lp(E,RM ).
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Definition 1.0.1. Let Ω ⊂ RN be an open set. We say that an open set Ω′ in RN

is strongly included in Ω and we write Ω′ ⊂⊂ Ω if Ω′ ⊂ Ω and Ω′ is compact.

We set

• C∞0 (Ω) = {ϕ ∈ C∞(Ω) : ϕ has a compact support}, which we call the test

function space;

• L1
loc(Ω) = {f : Ω → R : for all K ⊂ Ω compact, f ∈ L1(K)}, which is the

space of locally integrable functions on Ω;

We recall that a function u : Ω→ R is Hölder continuous with exponent α ∈ (0, 1]

(α-Hölder continuous in short) in Ω if there exists a constant C > 0 such that

|u(x)− u(y)| ≤ C|x− y|α for all x, y ∈ Ω.

We also set

• C0,α(Ω) := {u : Ω→ R : u is bounded and α-Hölder continuous in Ω}.

The space C0,α(Ω), 0 < α ≤ 1, is a Banach space with the norm

‖u‖C0,α(Ω) := sup
x∈Ω
|u(x)|+ sup

x,y∈Ω, x 6=y

|u(x)− u(y)|
|x− y|α

.

1.1 Sobolev Spaces

Sobolev spaces are the main tool in the modern approach to study nonlinear

boundary value problems. Their name is due to the Russian mathematician Sergei

Lvovich Sobolev.
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1.1.1 The spaces W 1,p and W 1,p
0

Definition 1.1.1 (Weak derivative). Let u, v1, v2, . . . , vN ∈ L1
loc(Ω) and ϕ ∈

C∞0 (Ω). We say that vi is the weak (or distributional) derivative of u, with re-

spect to the i-th variable xi, if∫
Ω

u
∂ϕ

∂xi
dx = −

∫
Ω

viϕdx for all ϕ ∈ C∞0 (Ω), (1.1)

where the symbol ∂
∂xi

denotes the classical derivative.

Remark 1. Following the literature, we use the same notation to indicate the

weak and classical partial derivatives of a function. When u ∈ W 1,p(Ω), unless

otherwise specified, ∂u
∂xi

is the weak partial derivative of u.

Definition 1.1.2. If u has weak derivatives ∂u
∂xi

for each i = 1, ..., N , we call weak

gradient of u, the vector ∇u := ( ∂u
∂x1
, ∂u
∂x2
, . . . , ∂u

∂xN
), where ∂u

∂xi
is the weak derivative

of u for i = 1, . . . , N .

Obviously the integrals in (1.1) makes sense. In fact, if u ∈ L1
loc(Ω) and ϕ ∈

C∞0 (Ω) then uϕ is summable in Ω and one has:∫
Ω

u(x)ϕ(x) dx =

∫
suppϕ

u(x)ϕ(x) dx.

Remark 2. If u is smooth enough to have a classical continuous derivative, then

we can integrate by parts and conclude that the classical derivative coincides with

the weak one. Of course, the weak derivative may exists without having the exis-

tence of the classical derivative. Moreover, the weak derivative, being an element

of L1
loc(Ω), is defined up to a Lebesgue-null set, and it is unique.

3



Definition 1.1.3 (Sobolev space). Let Ω ⊂ RN be an open set and 1 ≤ p ≤ +∞.

The Sobolev space W 1,p(Ω) is defined by

W 1,p(Ω) = {u ∈ Lp(Ω) :
∂u

∂xi
∈ Lp(Ω) for all i = 1, . . . , N}, (1.2)

being ∂u
∂xi

the weak partial derivative.

Remark 3. When p = 0, we set W 0,p(Ω) = Lp(Ω). Clearly, if u ∈ W 1,p(Ω) then

|∇u| ∈ Lp(Ω).

For all 1 ≤ p ≤ ∞, we consider the space W 1,p(Ω) endowed with the norm

(called Sobolev norm)

‖u‖W 1,p(Ω) = ‖u‖p + ‖∇u‖p. (1.3)

Remark 4. For 1 ≤ p <∞, sometimes the equivalent norm

‖u‖W 1,p(Ω) =
(
‖u‖pp + ‖∇u‖pp

) 1
p

is used.

Property 1.1.1. Let Ω ⊂ RN be an open set. Then the space (W 1,p(Ω), ‖·‖W 1,p(Ω))

is a:

1. Banach space if 1 ≤ p ≤ +∞;

2. separable space if 1 ≤ p < +∞;

3. uniformly convex space if 1 < p < +∞.
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From 3. of the above property and the Milman-Pettis theorem, one has that

W 1,p(Ω) is a reflexive space for 1 < p < +∞.

We give a characterization of W 1,p(Ω) in terms of difference quotients. Results

of this type are often useful in the regularity theory for partial differential equa-

tions. Moreover, they provide characterizations that do not involve derivatives and

thus they can be used to extend the definition of Sobolev spaces to more abstract

setting.

We recall two known results often useful in the context of Sobolev spaces, also

used in the proof of characterization (which we will not do).

Theorem 1.1.2 (Absolute continuity on lines). Let Ω ⊂ RN be an open set and

let 1 ≤ p <∞. A function u ∈ Lp(Ω) belongs to the space W 1,p(Ω) if and only if it

has a representative u that is absolutely continuous on LN−1-a.e. line segments of

Ω that are parallel to the coordinate axses and whose first-order (classical) partial

derivatives belong to Lp(Ω). Moreover the (classical) partial derivatives of u agree

LN -a.e. with the weak derivatives of u.

Theorem 1.1.3 (Compactness). Let Ω ⊂ RN be an open set and let 1 < p <∞.

Assume that {un} ⊂ W 1,p(Ω) is bounded. Then there exist a subsequence {unk} of

{un} and u ∈ W 1,p(Ω) such that unk ⇀ u in W 1,p(Ω).

Let Ω ⊂ RN be an open set and for ever i = 1, . . . , N and h > 0, let

Ωh,i := {x ∈ Ω : x+ tei ∈ Ω for all 0 < t ≤ h}.

We mention the following further characterization of W 1,p(Ω):
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Theorem 1.1.4. Let Ω ⊂ RN be an open set and let u ∈ W 1,p(Ω), 1 ≤ p < +∞.

Then for every i = i, . . . , N and h > 0,∫
Ωh,i

|u(x+ hei)− u(x)|p

hp
dx ≤

∫
Ω

∣∣∣∣ ∂u∂xi (x)

∣∣∣∣p dx (1.4)

and

lim
h→0+

(∫
Ωh,i

|u(x+ hei)− u(x)|p

hp
dx

) 1
p

=

(∫
Ω

∣∣∣∣ ∂u∂xi (x)

∣∣∣∣p dx) 1
p

. (1.5)

Conversely, if u ∈ Lp(Ω), 1 < p <∞, is such that

lim inf
h→0+

(∫
Ωh,i

|u(x+ hei)− u(x)|p

hp
dx

) 1
p

<∞ (1.6)

for every i = 1, . . . , N , then u ∈ W 1,p(Ω).

When p = 1, in the first part of the statement of the theorem, W 1,1(Ω) should

be replaced by the space of function of bounded variation BV (Ω), that is the space

of functions in L1(Ω) whose weak derivatives are bounded Radon measures.

Property 1.1.5. When p = 2, the Sobolev space W 1,2(Ω), also denoted by H1(Ω),

equipped with the inner product

(u, v)W 1,2(Ω) = (∇u · ∇v)L2(Ω) + (u, v)L2(Ω)

=

∫
Ω

∇u · ∇vdx+

∫
Ω

uvdx

is a Hilbert space. The norm endowed by the inner product is

‖u‖W 1,2(Ω) =
√

(u, u) =

(∫
Ω

|∇u|2dx+

∫
Ω

u2dx

) 1
2

,

which is an equivalent norm to (1.3).
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When we work with Dirichlet problem associated to elliptic equations, the

boundary condition means that the Sobolev spaces defined above are not the op-

timal ones. For this reason we introduce the subspace W 1,p
0 (Ω) of W 1,p(Ω) as

follows:

Definition 1.1.4. Let Ω ⊂ RN be an open set and let 1 ≤ p ≤ ∞. The space

W 1,p
0 (Ω) is defined as the closure of the space C∞0 (Ω) in W 1,p(Ω) (with respect to

the norm-topology of W 1,p(Ω)).

The spaceW 1,p
0 (Ω) can be equipped with theW 1,p(Ω)-norm and it is a separable

Banach space. Moreover, if 1 < p <∞, the space W 1,p
0 (Ω) is reflexive.

Remark 5. Since C∞0 (RN) is dense in W 1,p(RN), we have

W 1,p
0 (RN) = W 1,p(RN)

Moreover, if Ω ⊂ RN , in general, W 1,p
0 (Ω) ( W 1,p(Ω).

As done for W 1,p(Ω), we want to give a characterization of W 1,p
0 (Ω). We first

give the notions of regularity for the domain Ω.

Definition 1.1.5. Let Ω ⊂ RN be an open set. The boundary ∂Ω of Ω is called of

class C (or regular) if:

(i) ∂Ω = ∂(Ω),

(ii) for each point x0 ∈ ∂Ω there exist a neighborhood A of x0, local coordinates

y = (y′, yN) ∈ RN−1 × R, with y = 0 at x = x0, and a function f ∈

C
(
QN−1(0, r)

)
, r > 0, such that

∂Ω ∩ A = {(y′, f(y′)) : y′ ∈ QN−1(0, r)},

7



where QN−1 is the (N − 1)-dimensional cube.

Definition 1.1.6. The boundary ∂Ω of an open and bounded set Ω ⊂ RN is

uniformly Lipschitz if there exists ε, L > 0, M ∈ N, and a locally finite countable

open cover {Ωn} of ∂Ω such that

(i) if x ∈ ∂Ω, then B(x, ε) ⊂ Ωn for some n ∈ N,

(ii) no point of RN is contained in more than M of the Ωn’s,

(iii) for each n there exist local coordinates y = (y′, yN) ∈ RN−1×R and a Lipschitz

function f : RN−1 → R(both depending on n), with Lip(f) ≤ L, such that

Ωn ∩ Ω = Ωn ∩ {(y′, yn) ∈ RN−1 × R : yn > f(y′)}.

Studying the spaces W 1,p
0 (Ω), an important but delicate argument is the trace

theory. Since a function u ∈ W 1,p(Ω) is defined almost everywhere in Ω and the

measure of ∂Ω is zero, the restriction of u to ∂Ω in the classical sense has no

meaning. For this reason, to give a meaningful definition of restriction, we need

to introduce the concept of trace operator. We set

RN
+ = {x = (x′, xN) ∈ RN−1 × R : xN > 0}

and

Xp = {u ∈ L1
loc(RN

+ ) : ∇u ∈ Lp(RN
+ ,RN) and u vanishing at infinity},

with 1 < p < N .

The following theorem defines the trace operator “Tr”and some of its proper-

ties.
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Theorem 1.1.6. There exist a linear operator

Tr : Xp → L
p(N−1)
N−p (RN−1) (1.7)

and a constant C = C(N, p) > 0 such that

(i) Tr(u)(x′) = u(x′, 0) for all u ∈ Xp ∩ C
(
RN

+

)
,

(ii) for all u ∈ Xp,

(∫
RN−1

|Tr(u)(x′)|
p(N−1)
N−p dx′

) N−p
p(N−1)

≤ C

(∫
RN+
|∇u(x)|pdx

) 1
p

,

(iii) for all ϕ ∈ C1
0(RN), u ∈ Xp and i = 1, . . . , N∫
RN+
u
∂ϕ

∂xi
dx = −

∫
RN+
ϕ
∂u

∂xi
dx+

∫
RN−1

ϕTr(u)νidx
′,

where ν = −eN .

It is shown that the (ii) also holds in the case p = 1.

Remark 6. Note that W 1,p(Ω) ⊂ Xp, and so the linear operator Tr, restricted to

W 1,p(Ω), satisfies (i)− (iii). In particular, it is continuous in W 1,p(Ω).

We can now characterize the functions of W 1,p
0 (Ω) as the subspace of functions

in W 1,p(Ω) with trace zero.

Theorem 1.1.7. Let Ω ⊂ RN , N ≥ 2 be an open set whose boundary ∂Ω is

uniformly Lipschitz, let 1 ≤ p <∞, and let u ∈ W 1,p(Ω). Then Tr(u) = 0 if and

only if u ∈ W 1,p
0 (Ω).
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The following result provides an equivalent norm in W 1,p
0 (Ω) for a large class

of domains Ω.

Theorem 1.1.8 (Poincaré’s inequality in W 1,p
0 (Ω)). Assume that the open set

Ω ⊂ RN has finite width, that is, it lies between two parallel hyperplanes, and let

1 ≤ p <∞. Then for all u ∈ W 1,p
0 (Ω),∫

Ω

|u(x)|pdx ≤ dp

p

∫
Ω

|∇u(x)|pdx (1.8)

where d is the distance between the two hyperplanes.

Thus if the open set Ω ⊂ RN has finite width, then the inequality (1.8) says

that the expression ‖∇u‖p (which is a seminorm in W 1,p(Ω)) is a norm on W 1,p
0 (Ω)

which is equivalent to the norm (1.3).

Remark 7. In general, if Ω is an open bounded domain, we can say that there

exist a constant C = C(Ω, p) > 0 such that∫
Ω

|u(x)|pdx ≤ C

∫
Ω

|∇u(x)|pdx. (1.9)

If we consider the space W 1,2
0 (Ω) (also denoted by H1

0 (Ω)), then the bilinear

form

(u, v) :=

∫
Ω

∇u · ∇vdx

is a inner product that induces the norm ‖∇u‖2, and it is equivalent to the norm

(1.3).

From now on, we will set, for simplicity, ‖ · ‖ := ‖ · ‖W 1,2
0 (Ω).

Finally, we recall the following useful property
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Property 1.1.9. Let u ∈ W 1,2(Ω). Then

1. |u| ∈ W 1,2(Ω);

2. if we set u+(x) = max{u(x), 0} and u−(x) = max{−u(x), 0}, the functions

u+ and u− belong to W 1,2(Ω).

1.1.2 Embeddings and Sobolev Inequalities

In general terms “Sobolev inequality”has come to mean an estimation of lower

order derivatives of a function in terms of its higher order derivatives. Such es-

timates, valid for all functions in certain classes, are a standard tool in proving

existence and regularity of weak solutions of partial differential equations, and,

more in general, in the calculus of variations, in geometric measure theory and in

many others branches of analysis. The goal is to discover embeddings of various

Sobolev space in other space.

Remark 8. The inequalities (1.8 ) and (1.9) are examples of Sobolev inequalities.

In order to deal with embeddings theorems, we need to put forward two im-

portant definitions.

Definition 1.1.7. Let X and Y two Banach spaces. We say that X is embedded

continuously in Y (briefly X ↪→ Y ) if

1. X ⊆ Y ;
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2. the canonical injection j : X → Y is a continuous linear operator. This

means that there exists a constant C > 0 such that ‖j(u)‖Y ≤ C‖u‖X , which

one writes ‖u‖Y ≤ C‖u‖X , for all u ∈ X.

Definition 1.1.8. Let X and Y Banach space. We say that X is embedded com-

pactly in Y if X is embedded continuously in Y and the canonical injection j is a

compact operator, namely for ever bounded subset A in X, the set j(A) is relatively

compact in Y .

The Sobolev inequalities strongly depends on the relation between the exponent

p and the dimension N . For this reason we distinguish the cases: 1 ≤ p < N ,

p = N and N < p ≤ ∞.

Embeddings: 1 ≤ p < N

One of the most well-known Sobolev embeddings theorem is the following.

Theorem 1.1.10 (Sobolev-Gagliardo-Nirenberg’s embeddings theorem). Let 1 ≤

p < N . Then there exists a constant C = C(N, p) > 0 such that for every function

u ∈ W 1,p(RN), (∫
RN
|u(x)|qdx

) 1
q

≤ C

(∫
RN
|∇u(x)|pdx

) 1
p

, (1.10)

for each q ∈ [p, p∗], where p∗ := pN
N−p is the so called Sobolev critical exponent.

In particular, W 1,p(RN) is continuously embedded in Lq(RN), for each q ∈ [p, p∗]

(note that p∗ > p).
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Definition 1.1.9. Given 1 ≤ p < ∞, an open set Ω ⊂ RN is called an extension

domain for the Sobolev space W 1,p(Ω) if there exists a continuous linear operator

E : W 1,p(Ω)→ W 1,p(RN)

with the property that for all u ∈ W 1,p(Ω),

E(u)(x) = u(x) for a.e. x ∈ Ω.

Theorem 1.1.11. Let 1 ≤ p < N and let Ω ⊂ RN be an extension domain for

W 1,p(Ω). Then there exists a constant C = C(p,N,Ω) > 0 such that

‖u‖q ≤ C‖u‖W 1,p(Ω) (1.11)

for all q ≤ p ≤ p∗ and u ∈ W 1,p(Ω).

If p ≤ q < p∗ and Ω is an extension domain for W 1,p(Ω) with finite measure,

then the embedding

W 1,p(Ω) ↪→ Lq(Ω)

is actually compact, as stated from the next result.

Theorem 1.1.12 (Rellich-Kondrachov). Let 1 ≤ p < N and let Ω ⊂ RN be

an extension domain for W 1,p(Ω) with finite measure. Let {un} ⊂ W 1,p(Ω) be a

bounded sequence. Then there exist a subsequence {unk} of {un} and a function

u ∈ Lp∗(Ω) such that unk → u in Lq(Ω) for all 1 ≤ q < p∗.

In particular, Rellich-Kondrachov theorem applies in the case of bounded do-

mains with boundary of class C.
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Embeddings: p = N

For p = N , we still have embeddings of type

W 1,N(RN) ↪→ Lq(RN)

that is, inequality of the type

‖u‖Lq(RN ) ≤ c‖u‖W 1,N (RN ).

We begin by observing that when p → N then p∗ → ∞, and so one would be

tempted to say that if u ∈ W 1,N(RN), than u ∈ L∞(RN). For N = 1 this is true

since if u ∈ W 1,1(RN), it admits a representative locally absolutely continuous in

R, which is also bounded in R. For N > 1 this is not the case, indeed, for instance,

the function

u(x) := log

(
log

(
1 +

1

|x|

))
x ∈ B(0, 1) \ {0},

belongs to W 1,1(B(0, 1)) but not to L∞(B(0, 1)).

We have the following result.

Theorem 1.1.13. The space W 1,N(RN) is continuously embedded in the space

Lq(RN) for all N ≤ q <∞

Theorem 1.1.14. Let Ω ⊂ RN be an extension domain for W 1,N(Ω). Then,

(i) There is a constant C = C(N,Ω) > 0 such that

‖u‖q ≤ C‖u‖W 1,p(Ω)

for all N ≤ q <∞.
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(ii) if Ω has finite measure, the embedding

W 1,N(Ω) ↪→ Lq(Ω)

is compact for all 1 ≤ q <∞ .

Embeddings: N < p ≤ ∞

The next theorem show that if p > N , a function u ∈ W 1,p(RN) has a representa-

tive in the space C0,1−N
p (RN).

Theorem 1.1.15 (Morrey). Let p > N . Then the space W 1,p(RN) is continuously

embedded in C0,1−N
p (RN). Moreover, if u ∈ W 1,p(RN) and u is its representative

in C0,1−N
p (RN), then

lim
|x|→∞

u(x) = 0.

Remark 9. From the Morrey theorem, in particular from his proof, it can be seen

that if u ∈ W 1,p(RN) from some N < p ≤ ∞, then a representative u di u is

Hölder continuous with exponent 1− N
p

and there is a constant C = C(N, p) such

that

|u(x)− u(y)| ≤ C|x− y|1−
N
p ‖∇u‖Lp(RN ,RN )

for all x, y ∈ RN .

The Rellich-Kondrachof Theorem (1.1.12) is still valid

Theorem 1.1.16 (Rellich-Kondrachof, p > N). Let Ω ⊂ RN be an open bounded

extension domain for W 1,p(Ω) and let p > N . Then, for all 0 < α < 1 − N
p

the
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embedding

W 1,p(Ω) ↪→ C0,α(Ω)

is compact.

Since we will mainly deal with the space W 1,2(Ω), we prefer to explicitly state

the above results for this space.

Theorem 1.1.17. Let Ω ⊂ RN be an bounded open set, with N ≥ 3. Then

W 1,2
0 (Ω) ↪→ Lq(Ω)

for every q ∈ [1, 2∗], with 2∗ := 2N
N−2

as already defined above. Moreover, the

embeddings is compact if and only if q ∈ [1, 2∗[.

In the case Ω = RN one has

Theorem 1.1.18. Let N ≥ 3. Then

W 1,2(RN) ↪→ Lq(RN)

for every q ∈ [2, 2∗] and the embeddings is never compact.

In particular, for an arbitrary domain Ω, the following inequality holds

‖u‖q ≤ C‖u‖ for all u ∈ W 1,2
0 (Ω)

where C is a constant independent of u.
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1.2 Basics of Differential Calculus for Real Func-

tionals

We present a short review of the main definitions and results concerning the dif-

ferential calculus for real functionals defined on a Banach space.

Definition 1.2.1. Let X be a normed space and U ⊂ X. A functional I on U is

an application

I : U → R.

Given a normed space X, we denote by X∗ its topological dual, namely

X∗ := {A : X → R : A is a continuous linear functional}.

We recall that X∗ is always a Banach space, if endowed with the norm

‖A‖X∗ = sup
u∈X
‖u‖X=1

|A(u)|.

We present the two principal definitions of differentiability and their main

properties.

1.2.1 Fréchet differenziability

Definition 1.2.2. Let X a normed space, U an open subset of X and let I : U → R

be a functional. We say that I is Fréchet differentiable at u ∈ U if there exists

A ∈ X∗ such that

lim
‖v‖→0

I(u+ v)− I(u)− Av
‖v‖

= 0. (1.12)
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In the following, unless otherwise specified, the concept of differentiability will

be meant in the sense of Fréchet differentiability.

By definition of Fréchet differentiability we have that

I(u+ v)− I(u) = Av + 0(‖v‖)

as ‖v‖ → 0 for some A ∈ X∗, namely the increment I(u+ v)− I(u) is linear in v,

up to higher order quantity. This implies the following property

Property 1.2.1. Let X a normed space, U an open subset of X and let I : U → R

be a functional Fréchet differentiable at u ∈ U . Then I is continuous in u.

Property 1.2.2. Let X a normed space, U an open subset of X and let I : U → R

be a functional Fréchet differentiable at u ∈ U . Then, there is a unique A ∈ X∗

satisfying definition (1.2.2).

Proof. Let A and B be two different elements of X∗ that satisfy (1.12), then plainly

lim
‖v‖→0

(A−B)v

‖v‖
= 0,

so that, if u ∈ X and ‖u‖ = 1,

(A−B)u = lim
t→0+

(A−B)(tu)

t
= 0,

which means A = B.

Definition 1.2.3. Let X a normed space, U an open subset of X and let I : U → R

be a functional differentiable at u ∈ U . The unique element of X∗ such that (1.12)
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holds is called the Fréchet differential of I at u, and it is denoted by I ′(u) or by

dI(u). We thus have

I(u+ v) = I(u) + I ′(u)(v) + o(‖v‖)

as ‖v‖ → 0. If the functional I is differentiable at every u ∈ U , we say that I

is differentiable on U . The map I ′ : U → X∗ that send u ∈ U to I ′(u) ∈ X∗ is

called the Fréchet derivative of I and in general is a nonlinear map. Moreover,

if I ′ is continuous from U to X∗ we say that I is of class C1 on U and we write

I ∈ C1(U).

A particular but very important case is that of real functionals defined on a

Hilbert space H with scalar product (·, ·). We recall the following result

Theorem 1.2.3 (Riesz). Let H be a Hilbert space, and let H∗ be its topological

dual. Then for every f ∈ H∗ there exists a unique uf ∈ H such that

f(v) = (uf , v) for all v ∈ H.

Moreover, ‖uf‖H = ‖f‖H∗. The linear application R : H∗ → H that sends f to

uf is called the Riesz isomorphism.

For the previous theorem (1.2.3), thanks to the Riesz isomorphism, the linear

functional on H∗ can be represented by the scalar product in H, in the sense that

for every A ∈ H∗ there exists a unique RA ∈ H such that

A(u) = (RA, u) for every u ∈ H.
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Definition 1.2.4. Let H be a Hilbert space, U ⊆ H an open set and let R :

H∗ → H be the Riesz isomorphism. Assume that the functional I : U → R is

differentiable at u. The element RI ′(u) ∈ H is called gradient of I at u and it is

denoted by ∇I(u); therefore

I ′(u)v = (∇I(u), v) for every v ∈ H.

The following proposition collects the properties of the functional Fréchet dif-

ferentiable.

Proposition 1.2.4. Let X a normed space, U an open subset of X and let I, J :

U → R be two functionals. Assume that I and J are differentiable at u ∈ U . Then

the following properties hold:

1. if a and b are real numbers, aI + bJ is differentiable at u and

(aI + bJ)′(u) = aI ′(u) + bJ ′(u);

2. the product IJ is differentiable at u and

(IJ)′(u) = I ′(u)J(u) + I(u)J ′(u);

3. if γ : R → U is differentiable at t0 and u = γ(t0), then the composition

η : R→ R defined by η(t) = I(γ(t)) is differentiable at t0 and

η′(t0) = I ′(u)γ′(t0);

4. if A ⊆ R is an open set, f : A → R is differentiable at I(u) ∈ A, then the

composition K(u) = f(I(u)) is defined in an open neighborhood V of u, is
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differentiable at u and

K ′(u) = f ′(I(u))I ′(u).

1.2.2 Gâteaux differentiability

We now introduce a second notion of differentiability weaker than the Fréchet-

differentiability. This notion is easier to verify than the previous one, so it is very

useful for applications.

Definition 1.2.5. Let X be a normed space, U ⊆ X an open set and let I : U → R

be a functional. We say that I is Gâteaux differentiable at u ∈ U if there exists

A ∈ X∗ such that, for all v ∈ X,

lim
t→0

I(u+ tv)− I(u)

t
= Av. (1.13)

If I is Gâteaux differentiable at u, there is only one A ∈ X∗ satisfying (1.13). It

is called Gâteaux differential of I at u and it is denoted by I ′G(u).

Remark 10. By the definitions (1.2.2) and (1.2.5) is obviously that if I is Fréchet

differentiable at u, then it is also Gâteaux differentiable and I ′(u) = I ′G(u). In

general, the reverse is not true.

As for the notion of the Fréchet differentiability, if the functional I is Gâteaux

differentiable at every u of an open set U ⊂ X, we say that I is Gâteaux differ-

entiable on U . The (generally nonlinear) map I ′G : U → X∗ that sends u ∈ U to

I ′G(u) ∈ X∗ is called the Gâteaux derivative of I.
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Proposition 1.2.5. Let X be a normed space, U ⊆ X an open set and let I : U →

R be a functional which is Gâteaux differentiable functional on U . Given u, v ∈ U

such that the segment [u, v] = {tu+ (1− t)v : t ∈ [0, 1]} ⊆ U . Then, one has

|I(u)− I(v)| ≤ sup
w∈[u,v]

I ′G(w)‖u− v‖.

The following classical result gives a condition in order to a Gâteaux-differentiable

functional is also of Fréchet-differentialble.

Proposition 1.2.6. Let X be a normed space, U ⊆ X an open set and let I :

U → R be a functional which is Gâteaux differentiable functional on U . Suppose

that I ′G is continuous at u ∈ U . Then I is also Fréchet differentiable at u.

Proof. We consider the functional R : U → R defined by

R(h) := I(u+ h)− I(u)− I ′G(u)h.

Plainly, R is Gâteaux differentiable in the ball Bε, with ε > 0 small enough, and

R′G(h) : k → I ′G(u+ h)k − I ′G(u)k. (1.14)

Applying the proposition (1.2.5), with [u, v] = [0, h], being R(0) = 0, we find

|R(h)| ≤ sup
0≤t≤1

‖R′G(th)‖‖h‖. (1.15)

From (1.14), with th instead h, we deduce

‖R′G(th)‖ = ‖I ′G(u+ th)− I ′G(u)‖.

Substituting in (1.15), we find

|R(h)| ≤ sup
0≤t≤1

‖I ′G(u+ th)− I ′G(u)‖‖h‖.
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Since I ′G is continuous

sup
0≤t≤1

‖I ′G(u+ th)− I ′G(u)‖ → 0 as ‖h‖ → 0

and therefore R(h) = o(‖h‖).

Thus

I ′G(u)h = I(u+ h)− I(u)− o(‖h‖)

namely

I ′G(u)h = I ′(u)h.

Remark 11. The importance of this proposition lies in the fact that it is often

technically easier to compute the Gâteaux derivative and then prove that it is con-

tinuous, rather then proving directly the Fréchet differentiability.

We conclude this section with the definitions of critical points and critical levels,

which are fundamental concepts for the development of the thesis.

Definition 1.2.6. Let X be a Banach space, U ⊆ X an open set and assume that

I : U → R is functional differentiable in U . A critical point of I is a point u ∈ U

such that

I ′(u) = 0.

Since I ′(u) is an element of the dual space X∗, the equation I ′(u) = 0 is

equivalent to I ′(u)(v) = 0, for all v ∈ X.
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If I ′(u) = 0 and I(u) = c, we say that u is a critical point for I at level c. If

for some c ∈ R the set I−1(c) ⊂ X contains at least a critical point, we say that c

is a critical level for I.

The equation I ′(u) = 0 is called the Euler, or Euler-Lagrange equation associ-

ated to the functional I.

1.3 Variational Method

One of the main advantages of extending the class of solutions of a partial differen-

tial equation from classical solutions with continuous derivatives to weak solutions

with weak derivatives is that often it is easier to prove the existence of this latter

kind of solutions. Once the existence of weak solutions is established, one may then

studying their properties, such as uniqueness and regularity, and, in some cases,

proving, under appropriate assumptions, that the weak solutions are, actually,

classical solutions.

There is often considerable freedom in how one defines a weak solution of a

partial differential equation; for example, the function space to which a solution is

required to belong is not given a priori by the partial differential equation itself.

Typically, we look for a weak formulation that reduces to the classical formulation

under appropriate smoothness assumptions and which is amenable to a mathe-

matical analysis; the notion of solution and space to which solutions belong are

dictated by the available estimates and analysis.
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1.3.1 Weak Solutions and critical point

Let Ω ⊂ RN an bounded and open set with regular boundary ∂Ω.

Let us consider the Dirichlet problem for the Laplacian with homogeneous bound-

ary conditions

 −∆u = f(x, u(x)) in Ω

u = 0 on ∂Ω,

(P )

with f a continuous function on Ω× R.

Definition 1.3.1. A function u : Ω→ R is a classical solution of Problem (P ) if

u ∈ C2(Ω) and satisfies (P ) for every x ∈ Ω.

To introduce the definition of a weak solution, we need to make some observa-

tions.

Let ϕ ∈ C∞0 (Ω). We multiply the equation of (P ) by ϕ and integrate the result

over Ω one has

−
∫

Ω

∆uϕ dx =

∫
Ω

f(x, u)ϕdx for all ϕ ∈ C∞0 (Ω).

By the Green’s formula and noting that ϕ|∂Ω = 0, since ϕ has compact support,

we obtain that if u is a classical solution, then∫
Ω

∇u∇ϕdx =

∫
Ω

f(x, u)ϕdx for all ϕ ∈ C∞0 (Ω).

We observe that this equation makes sense even if u is not C2; for example C1

suffices. Therefore, the regularity requirements on u and ϕ can still be weakened
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very much. Indeed for the integrals to be finite it is enough that u, ϕ ∈ L2(Ω) and

so do ∂u
∂xi

and ∂ϕ
∂xi

, for every i = 1, . . . , N .

This motivates the definitions of weak solution.

Definition 1.3.2. Let f : Ω × R → R be a Carathéodory function such that

f(x, u)v ∈ L1(Ω), for each u, v ∈ W 1,2
0 (Ω), and with the following growth condition

ess sup
(x,t)∈Ω×R

|f(x, t)|
1 + |t|q

< +∞

where q ∈]0, 2∗[.

A weak solution of Problem (P ) is a function u ∈ W 1,2
0 (Ω) such that∫

Ω

∇u(x) · ∇v(x) dx =

∫
Ω

f(x, u(x))v(x) dx, for every v ∈ W 1,2
0 (Ω).

Remark 12. A classical solution is also a weak solutions. Moreover, it is easy to

prove that if u is a weak solution and u ∈ C2(Ω), then u is a classical solution.

The following definition is essential for the discussion, as it is closely linked to

weak solutions.

Definition 1.3.3 (Energy Functional). Let I : W 1,2
0 (Ω)→ R be a real functional.

We say I is the “energy functional”associated to problem (P ), if

I(u) =

1

2

∫
Ω

|∇u(x)|2 dx−
∫

Ω

(∫ u(x)

0

f(x, t) dt

)
dx, for each u ∈ W 1,2

0 (Ω).(1.16)

The next result gives a sufficient condition for the differentiability of the energy

functional associate to problem (P ).
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Theorem 1.3.1. Let Ω ⊂ RN , be a bounded open set. Let f : Ω × R → R be a

Carathéodory function such that

• ess sup
(x,t)∈Ω×R

|f(x,t)|
1+|t|q < +∞, for some q ∈ [0, 2∗ − 1], if N ≥ 3;

• ess sup
(x,t)∈Ω×R

|f(x,t)|
1+|t|q < +∞, for some q ∈ [0,+∞[, if N = 2;

• sup|t|≤r |f(·, t)| ∈ L1(Ω), for all r > 0, if N = 1.

Then, the functional I introduced in (1.16) is well defined and differentiable in

W 1,2
0 (Ω), and one has

I ′(u)(v) =∫
Ω

∇u(x)∇v(x)dx−
∫

Ω

f(x, u(x))v(x), for all u, v ∈ W 1,2
0 (Ω). (1.17)

Moreover, if q < 2∗ when N ≥ 3, the functional

u ∈ W 1,2
0 (Ω) −→

∫
Ω

(∫ u(x)

0

f(x, t) dt

)
dx

is sequentially weakly continuous. Thus, in particular, the functional I is sequen-

tially weakly lower semicontinuous in W 1,2
0 (Ω).

Now the connection between weak solutions and critical points is evident: com-

paring Definition (1.3.2) and (1.17), one sees that

u is a weak solution of problem (P) if and only if u is a critical point of the

functional I.

The correspondence between weak solutions and critical point of functionals

outlined above is valid of course for more general nonlinear problems.

27



Remark 13. The growth conditions imposed on f in Theorem (1.3.1) are es-

sentially to have that the energy functional is well-defined on W 1,2
0 (Ω). Indeed,

if f(x, ·) grows faster that |t|2∗−1, then F (x, t) =
∫ t

0
f(x, s)ds grows faster than

|t|2∗; therefore, since W 1,2
0 (Ω) is not embedded in Lp(Ω) for p > 2∗, the function

F (x, u(x)) might be not in L1(Ω), for some u ∈ W 1,2
0 (Ω).

Convex Functional and Minimum Theorems

The typical functionals I whose critical points give rise to weak solutions of dif-

ferential equations are integral functionals that normally contain a term involving

the gradient of u, in many cases the integral of some power of |∇u|. This term is

bounded below because it is nonnegative, but in general it is not bounded above.

In addiction, a term of this type is not sequentially weakly continuous but only

sequentially weakly lower semicontinuous. Thus if a functional contains such a

term, it may be perhaps minimized, but probably not maximized.

This is why the most “natural”critical points of differentiable integral function-

als are often its global (or local) minima.

A sometimes relevant assumption in looking for global minima is the convexity of

I.

Definition 1.3.4. A functional I : X → R on a vector space X is called convex

if, for every u, v ∈ X and every real t ∈ [0, 1], one has

I(tu+ (1− t)v) ≤ tI(u) + (1− t)I(v).

The functional is strictly convex if, for every u, v ∈ X, u 6= v, and every real
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t ∈ (0, 1), one has

I(tu+ (1− t)v) < tI(u) + (1− t)I(v).

Finally, we say that I is (strictly) concave if −I is (strictly) convex.

Theorem 1.3.2. Let I : X → R be a continuous convex functional on a normed

space X. Then I is (sequentially) weakly lower semicontinuous. In particular, for

every sequence {uk}k∈N ⊂ X converging weakly to u ∈ X, we have

I(u) ≤ lim inf
k→∞

I(uk).

Remark 14. The norm of a normed space is an example of a continuous convex

functional.

A continuous convex functional need not have a minimum, even if it is bounded

below. To have a minimum we need to introduce the concept of coercivity.

Definition 1.3.5. A functional I : X → R on a normed space X is called coercive

if

lim
‖u‖X→+∞

I(u) = +∞.

The following is one of the fundamental result in nonlinear analysis.

Theorem 1.3.3. Let X be a reflexive Banach space and let I : X → R be a

continuous, convex and coercive functional. Then I has a global minimum point.

Proof. Let m = infu∈X I(u) and let {uk}k∈N ⊂ X be a minimizing sequence.

Coercivity implies that {uk}k∈N is bounded. Since X is reflexive, by the Kakutani
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Theorem we can extract from {uk}k∈N a subsequence, still denoted uk, such that

uk converges weakly to some u ∈ X. By theorem (1.3.2) we then obtain

I(u) ≤ lim inf
k→∞

I(uk) = m.

Therefore I(u) = m and u is a global minimum for I.

We observe that the convexity assumption is only used to deduce weak lower

semicontinuity from continuity (via theorem (1.3.2)). A more general statement is

thus the following version of the Weierstrass Theorem:

Theorem 1.3.4 (Weierstrass). Let X a reflexive Banach space and let I : X → R

be a weakly lower semicontinuous and coercive functional. Then I has a global

minimum point.

The strict convexity is related to uniqueness properties.

Theorem 1.3.5. Let X vector space and let I : X → R be a strictly convex

functional. Then I has at most one minimum point in X.

Proof. Assume that I has two different global minima u1 and u2 in X. By strict

convexity,

min
u∈X

I(u) ≤ I

(
u1 + u2

2

)
<

1

2
I(u1) +

1

2
I(u2) =

1

2
min
u∈X

I(u) +
1

2
min
u∈X

I(u)

= min
u∈X

I(u),

a contradiction.

As a direct consequence of the previous result one has

Theorem 1.3.6. Let X be a normed space and let I : X → R be strictly convex

and differentiable. Then I has at most one critical point in X.
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1.4 Minimax Metod: The Mountain Pass Theo-

rem

In the preceding section we have seen that (sequential) weak lower semicontinuity

and coercivity of a functional J on a reflexive Banach space X suffice to guarantee

the existence of a minimizer of J .

To prove the existence of saddle points we will now strengthen the regularity

hypothesis on I and, in general, we will require I to be of class C1(X). Moreover,

we will impose a certain compactness assumption on J , the so called “Palais-Smale

condition”. At first, we recall a classical result in finite dimensions.

Theorem 1.4.1. Let J ∈ C1(RN) be a coercive functional having two distinct

strict relative minima u1 and u2. Then J possesses a critical point u3 which is not

a relative minimizer of J , and hence distinct from u1, u2. Moreover, u3 satisfies

J(u3) = inf
γ∈Γ

max
u∈γ

J(u), (1.18)

where

Γ = {γ ∈ C0([0, 1],RN) : γ(0) = u1, γ(1) = u2}

is the class of “paths”connecting u1 and u2.

A point satisfying the identity (1.18) is called “a saddle point”of J . The pre-

vious result is sometimes called the finite dimensional “Mountain Pass Theorem”.

In the infinite dimensional case things are a bit more complicated. In fact, the

previous result is no longer valid if J is defined in a infinite dimensional normed
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space. Indeed, in this case, under the same assumption on J , saddle points in

general need not exist, unless a certain compactness property holds.

Definition 1.4.1. Let X be a normed space and let J : X → R be a differentiable

functional. A sequence {uk}k∈N ⊆ X such that

{J(uk)}k is bounded (in R) and

J ′(uk)→ 0 (in X ′) as k →∞,

is called a Palais-Smale sequence for J .

Let c ∈ R. If

J(uk)→ c (in R) and

J ′(uk)→ 0 (in X ′) as k →∞,

then {uk}k is called a Palais-Smale sequence for J at level c. In this case c is

called a Palis-Smale level for J .

Remark 15. In a Hilbert space H we can identify the differential with the gradient

via the inner product. Therefore the second property of a Palais-Smale sequence

reads

∇J(uk)→ 0 (in H) as k →∞.

As we will see, the convergence of Palais–Smale sequences is crucial in proving

the existence of saddle points. This fact leads to the following definition

Definition 1.4.2 ((PS) condition). Let X be a Banach space and let J : X → R

be a differentiable functional. We say that J satisfies the Palais-Smale condition
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(shortly: J satisfies (PS)) if every Palais-Smale sequence for J has a converging

subsequence. We say that J satisfies the Palais-Smale condition at level c ∈ R

(shortly: J satisfies (PS)c ) if every Palais-Smale sequence at level c has a con-

verging subsequence.

A bounded below functional satisfying the (PS) condition always admits global

minima, as stated by the following theorem

Theorem 1.4.2. Let X be a Banach space and let J : X → R be a differentiable

functional bounded below in X and satisfies (PS). Then, there exists u0 ∈ X such

that

J(u0) = min
u∈X

J(u) and J ′(u0) = 0.

The prototype of a differentiable functional with (PS) condition is that of a

functional J : RN → R with continuous first partial derivatives and satisfying

coercivity condition J(u)→ +∞ as ‖u‖ → +∞.

Another important class of functionals satisfying (PS) is provided by the fol-

lowing proposition [see Example 38.25 of [18]]

Property 1.4.3. Let X be a Banach space and let A,C : X → R be Gâteaux

differentiable functionals. Suppose that

(i) A(u) + C(u)→ +∞ as ‖u‖ → +∞;

(ii) A′ : X → X∗ has a continuous inverse operator, and C ′ : X → X∗ is compact.

Then, A+ C satisfies the (PS) condition.
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Now, we present one of the most celebrated result in critical point theory, the

Mountain Pass Theorem by Ambrosetti - Rabinowitz [3]. This result have been

generalized in several directions, but very frequently it is still used in their original

form. We give below two versions of this result (see also [10] and [16] for other

versions).

Lemma 1.4.4 (Mountain Pass Lemma). Let X be a Banach space and let J :

X → R be a continuously differentiable functional. Assume that there exists two

distinct points u0 , u1 ∈ X and a number r ∈]0, ‖u0 − u1‖X [ such that

inf
‖u−u0‖=r

J(u) > max{J(u0), J(u1)}.

Moreover, let

c = inf
u∈Γ(u0,u1)

sup
t∈[0,1]

J(u(t)),

where Γ(u0, u1) = {u ∈ C0([0, 1], X) : u(0) = u0, u(1) = u1}.

Then, for all ε > 0 there exists uε ∈ X such that c ≤ J(uε) ≤ c+ ε

‖J ′(uε)‖X∗ ≤ ε.

(1.19)

Theorem 1.4.5 (Mountain Pass Theorem). Under the same hypotheses of Lemma

1.4.4, assume, in addiction, that J satisfies the (PS) condition. Then, there exist

û ∈ X such that:

J(û) = c and J ′(û) = 0X∗ .

Proof. By the Lemma (1.4.4), for all n ∈ N, there exists un ∈ X, such that:

c ≤ J(un) ≤ c+
1

n
; (1.20)
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‖J ′(un)‖X∗ ≤
1

n
. (1.21)

By (1.20) it follows that

lim
n→+∞

J(un) = c, (1.22)

while, by (1.21) one has

lim
n→+∞

‖J ′(un)‖X∗ = 0,

that is

lim
n→+∞

J ′(un) = 0X∗ . (1.23)

Therefore, {un}n is a Palais-Smale sequence for J . Since J satisfies the (PS)

condition, there exists a subsequence {unk}k of {un}n and û ∈ X such that

lim
k→+∞

unk = û.

By the continuity of J and J ′ in X and taking into account (1.22) and (1.23), one

has

J(û) = lim
k→+∞

J(unk) = c,

J ′(û) = lim
k→+∞

J ′(unk) = 0X∗ .

The most used form in applications is the following.

Theorem 1.4.6 (Mountain Pass Theorem). Let H be a Hilbert space, and let

J ∈ C1(H) satisfying J(0) = 0. Assume that there exist a positive numbers ρ and

α such that
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1. J(u) ≥ α if ‖u‖ = ρ;

2. There exists v ∈ H such that ‖v‖ > ρ and J(v) < α.

Then there exists a Palais-Smale sequence for J at a level c ≥ α. If J satisfies

(PS)c, then there exists a critical point at level c.

Remark 16. The term “mountain pass”is justified by the geometrical properties

of the graph of J . When a functional J satisfies the conditions 1. and 2. we say

that J has the “Mountain Pass Geometry”.

1.5 Maximum Principle

We conclude this first chapter of premises with a basic tool for proving existence of

positive solutions to elliptic boundary value problem, that is the “Hopf Maximum

Principle”.

The strong maximum principle is based on the Hopf boundary maximum prin-

ciple.

We consider the elliptic operator −∆ + c(x). The following lemma demon-

strates that a super-solution u cannot attain its minimum at an interior point of

a connected region at all, unless u is constant. This statement is the strong maxi-

mum principle, which depends on the following subtle analysis of the outer normal

derivative ∂u
∂ν

at a boundary maximum point.

Lemma 1.5.1 (Hopf’s Lemma). Assume u ∈ C2(Ω) ∩ C1(Ω) and

c ≡ 0 in Ω.
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Suppose further

−∆u+ c ≥ 0 in Ω,

and there exists a point x0 ∈ ∂Ω such that

u(x0) < u(x) for all x ∈ Ω.

Assume finally that Ω satisfies the interior ball condition at x0; that is, there exists

an open ball B ⊂ Ω with x0 ∈ ∂B.

(i) Then

∂u

∂ν
(x0) < 0,

where ν is the outer unit normal to B at x0.

(ii) If

c ≥ 0 in Ω,

the same conclusion holds provided

u(x0) ≤ 0.

Remark 17. The importance of (i) is the strict inequality: that ∂u
∂ν

(x0) ≤ 0 is

obvious. Note that the interior ball condition automatically holds if ∂Ω is C2.

Hopf’s Lemma is the main technical tool for demonstrating the following the-

orem

Theorem 1.5.2 (Strong maximum principle). Assume u ∈ C2(Ω) ∩ C(Ω) and

c ≡ 0 in Ω.
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Suppose also Ω is connected, open and bounded.

(i) If

−∆u+ c ≤ 0 in Ω

and u attains its maximum over Ω at an interior point, then

u is constant within Ω.

(ii) Similarly, if

−∆u+ c ≥ 0 in Ω

and u attains its minimum over Ω at in interior point, the

u is constant within Ω.

A classical version of the maximum principle (see B.4 Theorem of [17]) is the

following

Theorem 1.5.3. Under the same previous hypotheses, suppose that u satisfies

−∆u+ c ≥ 0 in Ω, and u ≥ 0 on ∂Ω.

Moreover, suppose there exists h ∈ C2(Ω) ∪ C0(Ω) such that

−∆h+ c ≥ 0 in Ω, and h > 0 on Ω.

Then, either u > 0 in Ω, or u = βh for some β ≤ 0.

As for the Laplacian (i.e. when the coefficient c ≡ 0 in Ω), one has the following:
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Corollary 1.5.4. Let u ∈ C1(Ω) ∩ C2(Ω) satisfy

−∆u ≥ 0 in Ω.

Suppose that u ≥ 0 on Ω. Then

• either u > 0 in Ω;

• or u ≡ 0 in Ω.

Remark 18. It is show that the previous corollary is still valid if the coefficient

c ∈ Cα(Ω).
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Chapter 2

Two Elliptic Problems involving

nonlinearities indefinite in sign

In this chapter, we study two elliptic equations with Dirichlet condition. In par-

ticular, we will establish multiplicity results of nonnegative and nonzero solutions.

2.1 Notations

Throughout this chapter Ω ⊂ RN , N ≥ 3, is nonempty open bounded set with

regular boundary ∂Ω (1.1.5). We will make use of the following notations, already

introduced in the first Chapter:

- for p ≥ 1, ‖ · ‖p :=

(∫
Ω

| · |pdx
) 1

p

is the standard norm in the space Lp(Ω);

- ‖ · ‖∞ = ess supΩ |u| is the standard norm in the space L∞(Ω).

- we denote by ‖ · ‖ def
= ‖∇(·)‖2 the standard norm in the space W 1,2

0 (Ω).
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- for p ∈ [1, 2∗],

cp
def
= sup

u∈W 1,2
0 (Ω)\{0}

‖u‖p
‖u‖

is the best constant for the embedding W 1,2
0 (Ω) ↪→ Lp(Ω), with 2∗ = 2N

N−2
.

In particular,

λ1 = c−2
2 ,

is the first eigenvalue of the Laplacian on Ω.

- ‖ · ‖C1(Ω) is the standard norm in the space C1(Ω).

- For α ∈]0, 1[, ‖ · ‖C1,α(Ω) is the standard norm in the space C1,α(Ω).

- Given a function h : Ω → R, the symbols h+, h− denotes the functions

defined by

h+(x)
def
= max{h(x), 0}, h−(x)

def
= max{−h(x), 0}, x ∈ Ω.

Remark 19. In the sequel, when we write u = 0 in ∂Ω we mean in the sense

of the trace (1.1.6). In literature it is usual to abuse the notation and write only

u|∂Ω = 0, omitting that it is in the sense of the trace operator.

2.2 A Multiplicity result for non-Autonomous

Sublinear Elliptic Problem

We first study a local problem involving two measurable weight functions α, β :

Ω→ R. Let s and r be two positive numbers such that s ∈]1, 2[ and r ∈]1, s[. We
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deal with the following non autonomous elliptic problem
−∆u = α(x)us−1 − µβ(x)ur−1, in Ω

u ≥ 0, in Ω

u|∂Ω = 0

(Pµ)

where µ ∈ R is a parameter. We will establish, via minimax methods, a multiplicity

result under suitable summability conditions on the weight functions α, β.

Solutions to problem (Pµ) will be understood in the weak sense, that is

Definition 2.2.1. A weak solution of problem (Pµ) is a function u ∈ W 1,2
0 (Ω),

with u ≥ 0 a.e. in Ω, satisfying the equation∫
Ω

(
∇u(x)∇ϕ(x)− α(x)u(x)s−1ϕ(x) + µβ(x)u(x)r−1ϕ(x)

)
dx = 0,

for all ϕ ∈ W 1,2
0 (Ω). A weak solution u to problem (Pµ) is said positive if u > 0

a.e. in Ω.

The next proposition gives suitable summability conditions on α, β in order to

the energy functional associated to (Pµ) is (well defined and) differentiable. The

proof follows standard arguments and we omit it for sake of brevity.

Property 2.2.1. Assume α ∈ L
2∗

2∗−s (Ω) and β ∈ L
2∗

2∗−r (Ω). Then, the functional

Iµ(u) =
1

2

∫
Ω

|∇u|2 dx− 1

s

∫
Ω

α(x)(u+)s dx+
µ

r

∫
Ω

β(x)(u+)r dx, u ∈ W 1,2
0 (Ω),

(2.1)

is well defined and Gâteaux differentiable in Ω for each µ ∈ R.

Assuming a higher summability on α, β we also get the sequential weak lower

semicontinuity of Iµ, as stated by the following proposition. Its proof is a direct

consequence of the Rellich-Kondrachov compact embeddings.
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Property 2.2.2. If α ∈ Lq(Ω) and β ∈ Lm(Ω), for some q > 2∗

2∗−s and m >

2∗

2∗−r , the functional Iµ turns out to be sequentially weakly lower semicontinuous in

W 1,2
0 (Ω).

Of course, Iµ is strongly continuous in W 1,2
0 (Ω) as well. Moreover, note that,

if u ∈ W 1,2
0 (Ω) is a critical point of I, one has

I ′µ(u)(v) =

∫
Ω

(
∇u(x)∇v(x)− α(x)u+(x)s−1v(x) + µβ(x)u+(x)r−1v(x)

)
dx

for all v ∈ W 1,2
0 (Ω). Testing with v = u−, we get ‖u−‖ = 0 which means that u is

nonnegative. Then, recalling (2.2.1), the critical points of Iµ are exactly the weak

solutions of (Pµ).

2.2.1 Existence results

Let us start by considering the functional associated with the unperturbed problem

(P0).

For µ = 0, the functional Iµ takes the form

Iµ(u) = I0(u) =
1

2
‖u‖2 − 1

s

∫
Ω

α(x)u+(x)s dx, u ∈ W 1,2
0 (Ω).

Our first result gives a sufficient condition (which is also necessary, as it can

be easily checked) on the weigh function α to get a global minimum point u0 of I0

with negative energy.

Lemma 2.2.3. Let q > 2∗

2∗−s and α ∈ Lq(Ω), with ess supΩ α > 0. Then, there

exists u0 ∈ W 1,2
0 (Ω) such that

I0(u0) = inf
u∈W 1,2

0 (Ω)
I0(u) < 0.
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Moreover, one has ‖u0‖ =

(
sup
‖u‖=1

∫
Ω

α(x)u+(x)sdx

) 1
2−s

.

Proof. At first, observe that

inf
u∈W 1,2

0 (Ω)
I0(u) = inf

σ>0
inf
‖u‖=σ

(
1

2
‖u‖2 − 1

s

∫
Ω

α(x)us+ dx

)
= inf

σ>0

(
1

2
σ2 + inf

‖u‖=σ

(
−1

s

∫
Ω

α(x)us+ dx

))
= inf

σ>0

(
1

2
σ2 − 1

s
sup
‖u‖=σ

∫
Ω

α(x)us+ dx

)

= inf
σ>0

(
1

2
σ2 − σs

s
sup
‖u‖=1

∫
Ω

α(x)us+ dx

)

Then, since s ∈]1, 2[, one has inf
u∈W 1,2

0 (Ω)
I0(u) < 0, if and only if

sup
‖u‖=1

∫
Ω

α(x)us+ dx > 0. (2.2)

Let us to show that the condition ess supΩ α > 0, which is equivalent to α+ 6= 0,

implies (2.2). To this end, note that if α+ 6= 0, one has∫
Ω

α+(x)α+(x)
s

2∗−s dx =

∫
Ω

α+(x)
2∗

2∗−s dx > 0. (2.3)

Moreover, the functional

J(u)
def
=

∫
Ω

α(x)u+(x)sdx, u ∈ L2∗(Ω)

is (well defined and) continuous in L2∗(Ω). Since α+(x)
1

2∗−s ∈ L2∗(Ω), we can

evaluate J at u = α+(x)
1

2∗−s . Thanks to (2.3), one has

J(α
1

2∗−s
+ ) =

∫
Ω

α+(x)
2∗

2∗−s dx > 0.
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Then, using the density of W 1,2
0 (Ω) in L2∗(Ω) and (2.3), we can find a function

v ∈ W 1,2
0 (Ω) \ {0} such that∫

Ω

α+(x)v+(x)dx > 0.

Therefore,

sup
‖u‖=1

∫
Ω

α+(x)u+(x)dx ≥
∫

Ω

α+(x)
v+(x)

‖v‖
dx > 0

which proves (2.2).

Finally, note that being I0 coercive and sequentially weakly lower semicontinu-

ous in W 1,2
0 (Ω), there exists a global minimum point u0 ∈ W 1,2

0 (Ω) of I0 in W 1,2
0 (Ω).

Since u0 is a critical point of I0, one has

I ′0(u0)(u0) = ‖u0‖2 −
∫

Ω

α(x)u0(x)sdx = 0.

Thus, if we consider the Nehari manifold N0 of I0, defined by

N0 =

{
u ∈ W 1,2

0 (Ω) \ {0} : ‖u‖2 =

∫
Ω

α(x)u(x)s+dx

}
={(∫

Ω
α(x)u(x)s+dx

‖u‖2

) 1
2−s

u : u ∈ W 1,2
0 (Ω) \ {0},

∫
Ω

α(x)u(x)s+dx ≥ 0

}
,

we get (
1

2
− 1

s

)
‖u0‖2 = I0(u0) =

inf
u∈W 1,2

0 (Ω)
I0(u) =

(
1

2
− 1

s

)
sup
u∈N0

‖u‖2 =

(
1

2
− 1

s

)[
sup

u∈W 1,2
0 (Ω)\{0}

‖u‖−1

(∫
Ω

α(x)u(x)s+dx

) 1
s

] 2s
2−s

=

(
1

2
− 1

s

)(
sup
‖u‖=1

∫
Ω

α(x)u(x)s+dx

) 2
2−s

,
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that is ‖u0‖ =

(
sup
‖u‖=1

∫
Ω

α(x)u(x)s+dx

) 1
2−s

which concludes the proof.

Thanks to the previous Lemma 2.2.3, we can find, for µ sufficiently small, a

global minimum point of Iµ with negative energy. More precisely, we will prove

the following lemma

Lemma 2.2.4. Let q > 2∗

2∗−s , m > 2∗

2∗−r , α ∈ Lq(Ω), with ess supΩ α > 0, and

β ∈ Lm(Ω). Then, there exist µ0, ρ, c0 ∈]0,+∞[ such that, for each µ ∈ [−µ0, µ0],

there exists a (nonnegative) function uµ ∈ W 1,2
0 (Ω) satisfying

Iµ(uµ) = inf
u∈W 1,2

0 (Ω)
Iµ(u) ≤ −ρ < 0, (2.4)

‖uµ‖ ≥ c0. (2.5)

Proof. For each µ > 0, the functional Iµ is coercive e sequentially weakly lower

semicontinuous. Hence, there exists uµ ∈ W 1,2
0 (Ω) (with uµ nonnegative in Ω) such

that

Iµ(uµ) = inf
u∈W 1,2

0 (Ω)
Iµ(u).

Now, consider the function g : R→ R defined by

g(µ) = inf
u∈W 1,2

0 (Ω)
Iµ(u), for each µ ∈ R.

Since g is the inferior envelope of affine functions, then g is concave in R, and thus

continuous there as well. Moreover, by Lemma 2.2.3, one has g(0) < 0. Thus, if

we fix ρ ∈]g(0), 0[, there exists µ0 > 0 such that g(µ) < ρ, for each µ ∈ [−µ0, µ0].

Therefore, (2.4) holds.
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It remains to prove (2.5). Let µ ∈ [−µ0, µ0] and let uµ ∈ W 1,2
0 (Ω) be satisfying

(2.4). Using the Sobolev embedding theorems, we can find two constants c1, c2 > 0

(depending only on N, s, r,Ω, µ0, α, β,) such that

−ρ ≥ Iµ(uµ) =

1

2
‖uµ‖2 − 1

s

∫
Ω

α(x)usµdx+
µ

r

∫
Ω

β(x)urµdx ≥

1

2
‖uµ‖2 − 1

s

∫
Ω

|α(x)|usµdx−
µ0

r

∫
Ω

|β(x)|urµdx ≥

1

2
‖uµ‖2 − c1‖uµ‖s − c2‖uµ‖r ≥

1

4
‖uµ‖2 − ε0‖uµ‖

where ε0 = maxt>0(c1t
s−1+c2t

r−1− 1
4
t) > 0. The inequality 1

4
‖uµ‖2−ε0‖uµ‖+ρ < 0

entails ε2
0 > ρ and

‖uµ‖ ≥ 2(ε0 −
√
ε2

0 − ρ) := c0 > 0.

This concludes the proof.

2.2.2 Multiplicity results

Our aim is now to see if there are additional conditions on the weight functions

α, β under which we get a mountain pass geometry for the functional Iµ, at least

for µ small enough. The next two lemmas give such conditions.

Let us consider two disjoint sets Ωα+ ,Ωα− ⊂ Ω such that Ωα+ ∪ Ωα− = Ω,

α(x) > 0 for almost all x ∈ Ωα+ , and α(x) ≤ 0 for almost all x ∈ Ωα− ;

Lemma 2.2.5. Let α, β be as in Lemma 2.2.4. Assume that

(i) λαβ
def
= ess inf

x∈Ωα+

β(x)

α(x)
> 0;
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(ii) α+ ∈ Lq(Ω), for some q > N
2

.

Then, for each µ > 0, there exists σ0 > 0 such that

inf
‖u‖=σ

Iµ(u) ≥ 1

4
σ2 > 0, for all σ ∈]0, σ0[ (2.6)

In particular, u = 0 is a (strict) local minimum point for the functional Iµ.

Proof. Let q > N
2

be such that α+ ∈ Lq(Ω) and let µ > 0. We may assume q <∞.

Let us denote q′ = q
q−1

. Then, q′ < N
N−2

and

p0
def
=

2∗

q′
∈]2, 2∗[.

By an easy calculation we see that for almost all x ∈ Ωα+ , one has α(x) > 0 and

sup
t>0

{ 1
s
α(x)ts − µ

r
β(x)tr

tp0

}
=

(
µ

r

β(x)

α(x)

)− p0−s
s−r

(
s− r
p0 − s

)
α(x) ≤M α(x) (2.7)

where

M = λ
− p0−s

s−r
αβ

(
r

µ

) p0−s
s−r

(
s− r
p0 − s

)
> 0.

Moreover, by the Hölder inequality, we see that α · up0 ∈ L1(Ω), for each u ∈

W 1,2
0 (Ω). Thus, keeping in mind (2.7), for σ > 0 one has:
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inf
‖u‖=σ

Iµ(u)

= inf
‖u‖=σ

(
1

2
‖u‖2 − 1

s

∫
Ω

α(x)us dx+
µ

r

∫
Ω

β(x)ur dx

)
=

1

2
σ2 − sup

‖u‖=σ

(∫
Ω

1

s
α(x)us − µ

r
β(x)ur dx

)
≥ 1

2
σ2 − sup

‖u‖=σ

∫
Ωα+

(
1

s
α(x)us − µ

r
β(x)ur

)
dx

≥ 1

2
σ2 −M sup

‖u‖=σ

∫
Ωα+

α(x)up0dx

≥ 1

2
σ2 −M sup

‖u‖=σ

(∫
Ωα+

α(x)qdx

) 1
q (∫

Ω

u2∗dx

) 1
q′

≥ 1

2
σ2 −Mc

2∗
q′
2∗ sup
‖u‖=σ

(∫
Ωα+

α(x)qdx

) 1
q

‖u‖p0

=
1

2
σ2 −Mc

2∗
q′
2∗

(∫
Ωα+

α(x)qdx

) 1
q

σp0

Since p0 > 2, one has

inf
‖u‖=σ

Iµ(u) ≥ 1

4
σ2 > 0 = Iµ(0),

provided that σ is small enough. This concludes the proof.

Property 2.2.6. Under the assumption of Lemmas 2.2.4 and 2.2.5, the energy

functional Iµ has the mountain pass geometry for all µ ∈]0, µ0].

Proof. To view this, just observe that:

1. from Lemma 2.2.5 inf‖u‖=σ Iµ(u) > 0 for all σ ∈]0, σ0[;
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2. from Lemma 2.2.4 there exists uµ ∈ W 1,2
0 (Ω) such that ‖uµ‖ > c0 and

Iµ(uµ) < 0.

Then, choosing σ ∈]0,min{c0, σ0}[, we realize that Iµ has the mountain pass ge-

ometry for all µ ∈]0, µ0].

The mountain pass geometry for Iµ derives from the fact that the inequality

(2.6) of the Lemma (2.2.5) says that Iµ has a strict local minimum at u = 0. This

property of Iµ can be also obtained under a different assumption, as stated by the

next lemma.

Lemma 2.2.7. Let α, β, c0, µ0 be as in Lemma 2.2.4. Assume that

(i) λαβ
def
= ess inf

x∈Ωα+

β(x)

α(x)
> 0;

(ii) lim inf
k→+∞

(
k

2∗
2∗−2

2−s
2∗−s

∫
α(x)≥k

α(x)
2∗

2∗−sdx

)
= 0

Then, for each µ ∈]0, µ0], there exists σ ∈]0, c0[ such that

inf
‖u‖=σ

Iµ(u) ≥ 1

6
σ2 > 0. (2.8)

Proof. Similarly as in the proof of Lemma 2.2.5, we see that for almost all x ∈ Ωα+ ,

one has

sup
t>0

{ 1
s
α(x)ts − µ

r
β(x)tr

t2∗

}
=

(
µ

r

β(x)

α(x)

)− 2∗−s
s−r
(
s− r
2∗ − s

)
α(x) ≤M α(x) (2.9)

where

M = λ
− 2∗−s

s−r
αβ

(
r

µ

) 2∗−s
s−r
(
s− r
2∗ − s

)
> 0.
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Keeping in mind (2.9) and using the Hölder’s inequality, for K, σ > 0 one has:

inf
‖u‖=σ

Iµ(u)

= inf
‖u‖=σ

(
1

2
‖u‖2 − 1

s

∫
Ω

α(x)us dx+
µ

r

∫
Ω

β(x)ur dx

)
=

1

2
σ2 − sup

‖u‖=σ

(∫
Ω

1

s
α(x)us − µ

r
β(x)ur dx

)
≥ 1

2
σ2 − sup

‖u‖=σ

[∫
0<α(x)≤k

(
1

s
α(x)us − µ

r
β(x)ur

)
dx+

1

s

∫
α(x)≥k

α(x)us dx

]
≥ 1

2
σ2 − sup

‖u‖=σ

∫
0<α(x)≤k

Mα(x)u2∗dx− 1

s
sup
‖u‖=σ

∫
α(x)≥k

α(x)us dx

≥ 1

2
σ2 −Mkc2∗

2∗σ
2∗ − cs2∗

s

(∫
α(x)≥k

α(x)
2∗

2∗−s dx

) 2∗−s
2∗

σs (2.10)

Now, thanks to assumption ii), we can find k0 > 0 such that

- (6Mc2∗

2∗)
1

2∗−2k
− 1

2∗−2

0 < c0,

- k
1

2∗−2

0

(∫
α(x)≥k0

α
2∗

2∗−s

) 2∗−s
2∗(2−s)

≤ (6Mc2∗

2∗)
1

2−2∗

(
6

s
cs2∗

) 1
s−2

.

Hence, we can fix σ > 0 such that(
6

s
cs2∗

) 1
2−s
(∫

α(x)≥k0
α

2∗
2∗−s

) (2∗−s)
2∗(2−s)

≤ σ ≤ (6Mc2∗

2∗)
1

2−2∗ k
1

2−2∗
0 < c0

We deduce that

inf
‖u‖=σ

Iµ(u)

≥ 1

6
σ2 +

(
1

6
σ2 −Mk0c

q
qσ

q

)
+

[
1

6
σ2 − cs2∗

s

(∫
α≥k

α(x)
2∗

2∗−s dx

) 2∗−s
2∗

σs

]
≥ 1

6
σ2 > 0
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As an easy consequence of the above lemmas we obtain the following multi-

plicity result:

Theorem 2.2.8. Let r, s ∈]1, 2[, with r < s, q > 2∗

2∗−s , m > 2∗

2∗−r , α ∈ Lq(Ω), and

β ∈ Lm(Ω). Assume that

a) ess supΩ α > 0.

Then, there exists µ0 > 0 such that problem (Pµ) admits at least a nonzero solution

for each µ ∈ [−µ0, µ0].

If, in addiction, α, β satisfy

b) β(x) ≥ 0 for a.e. x ∈ Ω;

c) λαβ
def
= ess inf

x∈Ωα+

β(x)

α(x)
> 0;

d) either α+ ∈ Lp(Ω) for some p > N
2

,

or lim inf
k→+∞

(
k

2∗
2∗−2

2−s
2∗−s

∫
α(x)≥k

α(x)
2∗

2∗−sdx

)
= 0,

then, for each µ ∈]0, µ0], admits at least two nonzero solutions.

Proof. Under assumption a), the first part of the thesis follows directly from

Lemma 2.2.4. Under the additional assumptions b), c) and d), Property 2.2.6

says that Iµ satisfies the mountain pass geometry for all µ ∈]0, µ0]. By Property

1.4.3 it is easy to realize that Iµ also satisfies the Palais-Smale condition. Then,

there exists a second solution of mountain pass type. This second solution is

nonzero in view of inequalities (2.6), (2.8).
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2.2.3 Remark on the assumption (ii) of the Lemma 2.2.7

A sufficient condition for the validity of assumption (ii) of the Lemma 2.2.7 can

be given in terms of the symmetric-decreasing rearrangement α∗+ of the function

α+, defined by

α∗+(x) =

∫ ∞
0

χ{α+>t}∗(x)dt, for all x ∈ Ω∗,

where Ω∗ is the open ball centered at 0 with the same measure as that of Ω,

{α+ > t}∗ is the open ball centered at 0 with the same measure as that of {y ∈

Ω : α+(y) > t}, and χ{α+>t}∗ is the characteristic function of {α+ > t}∗ (see [15],

page 80 for furher details). More precisely, let us to show that if

lim
|x|→0

|x|2α∗+(x) := 0

then, condition (ii) of Lemma 2.2.7 holds. Let ε > 0 and let δε > 0 be such that

|x|2α∗+(x) < ε, for each x ∈ RN such that |x| ≤ δε.

Put kε = δ−2
ε ε and let k ∈ R be such that k ≥ kε. Then, for each x ∈ RN such

that ε|x|−2 ≥ k one has |x| ≤ δε, and thus |x|2α∗+(x) < ε. Consequently, after

noticing that N
2

= 2∗

2∗−2
, one has∫
α∗+≥k

α∗+(x)
2∗

2∗−sdx

≤ ε

∫
ε|x|−2≥k

(ε|x|−2)
2∗

2∗−sdx

≤ ε
2∗

2∗−s

∫ √ ε
k

0

tN−1− 22∗
2∗−sdt

=

(
N − 22∗

2∗ − s

)−1

ε
2∗

2∗−s εN−
2∗

2∗−sk
N
2
− 2∗

2∗−s

= 2
2∗ − 2

2∗
2∗ − s
2− s

εNk
2∗

2∗−2
s−2
2∗−s
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Therefore, for k ≥ kε, one has

k
2∗

2∗−2
2−s
2∗−s

∫
α∗+≥k

α∗+(x)
2∗

2∗−sdx < 2
2∗ − 2

2∗
2∗ − s
2− s

εN .

This means that

lim
k→+∞

k
2∗

2∗−2
2−s
2∗−s

∫
α∗+≥k

α∗+(x)
2∗

2∗−sdx = 0. (2.11)

Then, the validity of assumption ii) of Lemma 2.2.7 follows by the identity (see

[15], pag 81)∫
α∗+≥k

α∗+(x)
2∗

2∗−sdx =

∫
α+≥k

α+(x)
2∗

2∗−sdx =

∫
α≥k

α(x)
2∗

2∗−sdx.

It is worth of noticing that, by similar arguments, one can show that the limit

(2.11) implies lim|x|→0 |x|2α∗+(x) := 0, but this latter might not hold if in (2.11)

“lim”is replaced by “liminf”.

2.3 Positive solutions to a Kirchhoff problem

We now pass to study a non-local parametric problem of Kirchhoff type, involving

a nonlinearity similar to that of problem (Pµ) introduced in the previous chapter.

Let s, r, a, b ∈ R be real numbers with a > 0, b > 0, and 1 < r < s <

min{4, 2∗}. We consider the following non-local Kirchhoff problem
−
(
a+ b

∫
Ω

|∇u|2 dx
)

∆u = λus−1 − µur−1 in Ω

u > 0 in Ω

u = 0 on ∂Ω.

(Pλ,µ)
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on varying of the parameters λ, µ > 0. We will establish, making use of some stan-

dard regularity results, the existence of a positive solution. Then, a multiplicity

result is also established via minimax methods.

As before, solutions to problem (Pλ,µ) will be understood in the weak sense,

that is

Definition 2.3.1. A weak solution of problem (Pλ,µ) is a function u ∈ W 1,2
0 (Ω),

with u > 0 a.e. in Ω, satisfying the equation(
a+ b‖u‖2

) ∫
Ω

∇u∇v dx−
∫

Ω

(λus−1 − µur−1)v dx = 0 (2.12)

for all v ∈ W 1,2
0 (Ω).

The energy functional Iλ,µ : W 1,2
0 (Ω) → R associated to the problem (Pλ,µ) is

defined by

Iλ,µ(u) =
1

2

(
a+

b

2

∫
Ω

|∇u|2 dx
)∫

Ω

|∇u|2 dx−
∫

Ω

(
λ

s
us+ −

µ

r
ur+

)
dx, (2.13)

u ∈ W 1,2
0 (Ω).

With some abuse of notation, we will write ‖u‖p in place of ‖u+‖p (p ≥ 1). With

this notation, we can rewrite Iλ,µ as follows:

Iλ,µ(u) =
a

2
‖u‖2 +

b

4
‖u‖4 − λ

s
‖u‖ss +

µ

r
‖u‖rr.

By classical compact embeddings theorems (e.g. 1.1.12) we have the following

property:

Property 2.3.1. Let s, r, a, b ∈ R be real numbers with a > 0, b > 0, and

1 < r < s < min{4, 2∗}. Then the functional

u ∈ W 1,2
0 (Ω)→

∫
Ω

(
λ

s
us+ −

µ

r
ur+

)
dx (2.14)
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is of class C1 and sequentially weakly continuous, and the functional

u ∈ W 1,2
0 (Ω)→ a

2
‖u‖2 +

b

4
‖u‖4 (2.15)

is of class C1 and sequentially weakly lower semicontinuous. Therefore, the func-

tional Iλ,µ is of class C1 and sequentially weakly lower semicontinuous in W 1,2
0 (Ω).

Of course, Iλ,µ is strongly continuous in W 1,2
0 (Ω) as well. Moreover, one us

I ′λ,µ(u)(v) =
(
a+ b‖u‖2

) ∫
Ω

∇u · ∇v dx−
∫

Ω

(
λus−1

+ − µur−1
+

)
v dx, (2.16)

for all v ∈ W 1,2
0 (Ω). From (2.12), it is an easy matter to see that the positive

critical point of Iλ,µ are exactly the weak solutions of (Pλ,µ).

Following the same arguments as in Chapter 1, we see that any u ∈ W 1,2
0 (Ω)

such that I ′λ,µ(u) = 0 is nonnegative and, by classical regularity results (see e.g.

Theorem A.5 and Lemma B.3 of [17]), it follows that u ∈ W 2,q ∩ W 1,2
0 (Ω) ↪→

C1,α(Ω), for some α ∈ (0, 1) and q <∞.

In particular, a weak solution of problem (Pλ,µ) is nonnegative and belongs to

the space C1,α(Ω), for some α ∈ (0, 1).

Finally, we introduce two definitions, useful for demonstrating the two main

results regarding the problem (Pλ,µ).

Consider the set

P =

{
u ∈ C1

0(Ω) : u > 0 in Ω and
∂u

∂ν
< 0 on ∂Ω

}
, (2.17)

with ν the outer normal on ∂Ω, which is the interior of the positive cone of C1,α
0 (Ω),
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and the sets

S = {(λ, µ) ∈]0,+∞[×[0,+∞[: (Pλ,µ) has a solution belonging to P};

Sλ = {µ > 0 : {λ} × [0, µ[⊂ S}, for each λ > 0.

Also, put

λa,b =


0 if 1 < s < 2,

aλ1 if s = 2,

s
css

(
b

2s−4

) s−2
2
(

a
4−s

) 4−s
2 if 2 < s < min{4, 2∗}.

(2.18)

2.3.1 Existence of Positive Solution

As for the previous problem, we first consider the unperturbed problem (Pλ,0),

whose associated energy functional is

Iλ,0(u) =
a

2
‖u‖2 +

b

4
‖u‖4 − λ

s
‖u‖ss, u ∈ W 1,2

0 (Ω).

The following lemma gives a necessary and sufficient conditions, involving the

constant λa,b defined above, to get a global minimum point of Iλ,0 with negative

energy.

Lemma 2.3.2. Let λa,b be as in (2.18). The functional Iλ,0 admits a global mini-

mum in W 1,2
0 (Ω) and one has

inf
W 1,2

0 (Ω)
Iλ,0 < 0 if and only if λ > λa,b. (2.19)

Moreover, any nonzero global minimum point of Iλ,0 belongs to P.
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Proof. Let λ > 0. Since

Iλ,0(u) ≥ a

2
‖u‖2 +

b

4
‖u‖4 − css

s
‖u‖s, for every u ∈ W 1,2

0 (Ω),

and s < 4, it follows

lim
‖u‖→+∞

Iλ,0(u) = +∞.

Then, Iλ,0 admits a global minimum point in W 1,2
0 (Ω). Let us to show that

inf
W 1,2

0 (Ω)
Iλ,0 < 0 if and only if λ > λa,b

We have

inf
u∈W 1,2

0 (Ω)
Iλ,0(u) = inf

σ>0
inf
‖u‖=σ

(
a

2
‖u‖2 +

b

4
‖u‖4 − λ

s

∫
Ω

us+ dx

)
= inf

σ>0

(
a

2
σ2 +

b

4
σ4 − λ

s
sup
‖u‖=σ

∫
Ω

us+ dx

)

= inf
σ>0

(
a

2
σ2 +

b

4
σ4 − λcss

s
σs
)

=

inf
σ>0

[
σs
(
a

2
σ2−s +

b

4
σ4−s − λ

s
css

)]
.

Since s ∈]1, 4[, an elementary calculation shows that

inf
σ∈]0,+∞[

(
a

2
σ2−s +

b

4
σ4−s − λcss

s

)
< 0 if and only if λ > λa,b.

Hence,

inf
u∈W 1,2

0 (Ω)
Iλ,0(u) < 0 if and only if λ > λa,b.

To conclude the proof, let u0 ∈ W 1,2
0 (Ω) be a nonzero global minimum point of I0.

Then, u0 is a critical point of I0. Therefore, as already observed, u0 is nonnegative.

Since u0 is also non-zero, by the Hopf’s Boundary Lemma we infer u0 ∈ P .
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For each λ, µ > 0, the next lemma allows us to find a non-zero global minimum

point of functional Iλ,µ. Furthermore, it provides a convergence property of these

minimum points.

Lemma 2.3.3. For each λ, µ > 0, the functional Iλ,µ admits a global minimum

point in W 1,2
0 (Ω). Moreover, for each fixed λ > 0, each sequence {µn}n∈N ⊂

]0,+∞[, with µn → 0, and each sequence {un}n∈N in W 1,2
0 (Ω) such that un is a

global minimum point of Iλ,µn, there exists a global minimum point u0 of Iλ,0 such

that (up to a subsequence)

lim
n→+∞

‖un − u0‖C1(Ω) = 0 (2.20)

Proof. Let λ, µ > 0. The proof of the existence of a global minimum for Iλ,µ is

the same as that for Iλ,0 in Lemma 2.3.3. Now, fix λ > 0 and let {µn}n∈N be a

sequence in ]0,+∞[ such that µn → 0. Also, for each n ∈ N, let {un}n∈N be a

global minimum point of Iλ,µn . One has

0 = I ′λ,µn(un)(un)

= a‖un‖2 + b‖un‖4 − λ‖un‖ss + µn‖un‖rr

≥ a‖un‖2 + b‖un‖4 − λcss‖un‖s, for each n ∈ N.

Since s < 4, the previous inequality says that {un}n∈N is bounded W 1,2
0 (Ω). There-

fore, it weakly converges to some u0 ∈ W 1,2
0 (Ω). Consequently, by the lower semi-

continuity of Iλ,0 and the fact that µn‖un‖rr → 0, we get

lim inf
n→+∞

Iλ,µn(un) = lim inf
n→+∞

(
Iλ,0(un) +

µn
r
‖un‖rr

)
≥ Iλ,0(u0) (2.21)
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Now, consider the function

µ ∈ R→ inf
u∈W 1,2

0 (Ω)
Iλ,µ(u).

This function is the lower envelop of a family of linear functions, thus it is convex

in R and, in particular, continuous there. Therefore, in view of (2.21), one has

inf
u∈W 1,2

0 (Ω)
Iλ,0(u) = lim

n→+∞
inf

u∈W 1,2
0 (Ω)

Iλ,µn(u) = lim
n→+∞

Iλ,µn(un) ≥ Iλ,0(u0).

This means that u0 is a global minimum point of Iλ,0. Finally, since un is a weak

solution to problem (Pλ,µn), then un ∈ C1,α(Ω), for some α ∈]0, 1[. Moreover,

recalling that s < 2∗, if we fix

σ ∈] max{2, s}, 2∗[ and q ∈
]

2∗

2∗ − 2
,

2∗

σ − 2

[
,

(note that 2∗

2∗−2
= N

2
), then there exists a constant C (independent of n) such that

‖un‖C1,α(Ω) ≤ C

[
1

a+ b‖un‖2

(∫
Ω

∣∣λus−1
n − µnur−1

n

∣∣q dx) 1
q

+ ‖un‖q

]
, (2.22)

for all n ∈ N (see Theorem 8.2’ of [2] for instance). Now, since σ > max{2, s}, from

(2.22), we infer that, for some constant C1 independent of n ∈ N, the following

inequality holds

‖un‖C1,α(Ω)

≤ C1

[
1 +

(∫
Ω

|un|q(σ−1)dx

) 1
q

]

≤ C1

[
1 +Kn

(∫
Ω

|un|2
∗
dx

)min{σ−1
2∗ ,

1
q}
]
, for all n ∈ N
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where

Kn = m(Ω)
2∗−q(σ−1)

2∗q , if q(σ − 1) ≤ 2∗,

and

Kn = ‖un‖
q(σ−1)−2∗

q

C1,α(Ω)
if q(σ − 1) > 2∗.

Observe also that, being q < 2∗

σ−2
, one has q(σ−1)−2∗

q
< 1. Therefore, the previous

inequality and the boundedness of {un}n∈N in W 1,2
0 (Ω) (thus in L2∗(Ω) as well),

imply the boundedness of {un}n∈N in C1,α(Ω). By the Ascoli-Arzelà Theorem,

we infer that, up to a subsequence, {un}n∈N converges in C1(Ω). Recalling that

un → u0 weakly in W 1,2
0 (Ω), we finally deduce that un → u0 in C1(Ω), that is the

limit (2.20) holds.

Exploiting the fact that P is an open subset of C1,α
0 (Ω), we will are able to

prove the existence of global minimum of Iλ,µ belonging to P , at least for µ small

enough.

Lemma 2.3.4. Let λ > λa,b. Then, there exists µ(λ) > 0 such that, for each

µ ∈ [0, µ(λ)[ and each global minimum point uµ of Iλ,µ, one has uµ ∈ P.

Proof. Arguing by contradiction, assume that there exists a sequence {µn}n∈N of

positive numbers, with µn → 0, and a global minimum point un of Iλ,µn , such that

un /∈ P . By Lemma 2.3.3, up to a subsequence, {un}n∈N converges in the C1(Ω)

topology to a global minimum point u0 of Iλ,0. Since λ > λa,b, we know, by Lemma
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2.3.2, that u0 ∈ P . Hence, being P an open set in C1(Ω), we infer that un ∈ P ,

for each n ∈ N big enough, a contradiction.

Now, consider the unique solution us ∈ P of the problem
−∆u = us−1 in Ω

u > 0 in Ω

u = 0 on ∂Ω,

and put Ks = maxΩ us. We have the following lemma

Lemma 2.3.5. For each (λ, µ) ∈ S one has µ ≤ λ
2−r

(2−s)(s−r)Ks−r
s .

Proof. Let (λ, µ) ∈ S and let uλ,µ ∈ P be a solution to problem (Pλ,µ). Then, we

see that it cannot be

λuλ,µ(x)s−1 − µuλ,µ(x)r−1 ≤ 0, for each x ∈ Ω,

for, otherwise, uλ,µ should be identically zero, by the Maximum Principle. There-

fore,

max
Ω

uλ,µ ≥
(µ
λ

) 1
s−r

. (2.23)

Moreover, uλ,µ turns out to be a subsolution of problem
−∆u = λ

a
us−1 in Ω

u > 0 in Ω

u = 0 on ∂Ω,

and that the function
(
λ
a

) 1
2−s us is a solution of the same problem. Thus, by

comparison results (see Lemma 3.3 of [4] for instance), we get

uλ,µ(x) ≤
(
λ

a

) 1
2−s

us(x) ≤
(
λ

a

) 1
2−s

Ks, for each x ∈ Ω.
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Consequently, from (2.23), it follows

(µ
λ

) 1
s−r ≤

(
λ

a

) 1
2−s

Ks

which is equivalent to µ ≤ λ
2−r

(2−s)(s−r)Ks−r
s .

A direct consequence of the previous two lemmas is the following theorem that

gives some information on the structure of the set of pairs of parameters (λ, µ)

such that the problem (Pλ,µ) have a positive solutions.

Theorem 2.3.6. Let r, s ∈]1,min{4, 2∗}[, with r < s, and let λ > λa,b. Then, Sλ

is a nonempty and bounded set.

Proof. The fact that Sλ is nonempty follows from Lemma 2.3.4. The boundedness

of Sλ follows from Lemma 2.3.5.

2.3.2 Multiplicity result

A multiplicity result of nonnegative solutions for problem (Pλ,µ) can be obtained

following the same technique as for problem (Pµ) previously discussed. Indeed, we

are going to show that the energy functional Iλ,µ defined in (2.13) has a mountain

pass geometry and satisfies the Palais-Smale condition.

Lemma 2.3.7. Let λ, µ > 0. There exists σ0 > 0 such that, for all σ ∈]0, σ0[, one

has:

inf
‖u‖=σ

Iλ,µ(u) > 0. (2.24)
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Proof. Fix q ∈]2,min{4, 2∗}[. By an easy calculation one has

sup
t>0

{
λ
s
ts − µ

r
tr

tq

}
=

(
r

µ

) q−s
s−r
(
λ(q − s)
s(q − r)

) q−r
s−r
(
s− r
q − s

)
:= M > 0

Put

σ0
def
=

(
a

2Mcqq

) 1
q−2

> 0

and let σ ∈]0, σ0[. Keeping in mind the definitions of M,σ0, we get

inf
‖u‖=σ

Iµ(u) = inf
‖u‖=σ

[
a

2
‖u‖2 +

b

4
‖u‖4 −

∫
Ω

(
λ

s
us+ −

µ

r
ur+

)
dx

]
=
a

2
σ2 +

b

4
σ4 − sup

‖u‖=σ

∫
Ω

(
λ

s
us+ −

µ

r
ur+

)
dx

≥ a

2
σ2 +

b

4
σ4 − sup

‖u‖=σ

∫
Ω

Muq+ dx

=
a

2
σ2 +

b

4
σ4 −Mσq sup

‖u‖=1

‖u‖qq

=
a

2
σ2 +

b

4
σ4 −Mcqqσ

q

> σ2
(a

2
−Mcqqσ

q−2
)
> 0.

Lemma 2.3.8. Let r, s, λ be as in Theorem 2.3.6, and let µ ∈]0, µ(λ)[, where µ(λ)

is as in Lemma 2.3.4. Then, Iλ,µ has the mountain pass geometry.

Proof. The proof is as that of Lemma 2.2.6.

Lemma 2.3.9. Let λ, µ > 0. Then, the functional Iλ,µ satisfies the Palais-Smale

condition.
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Proof. Define Φ,Ψ : W 1,2
0 (Ω)→ R as follows

Φ(u) =
a

2
‖u‖2 +

b

4
‖u‖4, Ψ(u) =

∫
Ω

(
λ

s
us+ −

µ

r
ur+

)
dx

for all u ∈ W 1,2
0 (Ω). Then,

Iλ,µ(u) = Φ(u)−Ψ(u).

Let us to show that Φ′ is invertible with continuous inverse. To this end, denote

by K the inverse of the function

t ∈ [0,+∞[−→ at+ bt3.

From the continuity of K and K(0) = 0, we have K(‖u‖)
‖u‖ u ∈ W 1,2

0 (Ω), for all

u ∈ W 1,2
0 (Ω) \ {0}. Moreover, if we consider the operator T : W 1,2

0 (Ω)→ W 1,2
0 (Ω)

defined by

T (u) =


K(‖u‖)
‖u‖ u if W 1,2

0 (Ω) \ {0}

0 if u = 0,

then T is continuous in W 1,2
0 (Ω) and, for each u ∈ W 1,2

0 (Ω) \ {0}, one has

T (Φ′(u)) = T ((a+ b‖u‖2)u) =
K((a+ b‖u‖2)‖u‖)

(a+ b‖u‖2)‖u‖
(a+ b‖u‖2)u

=
‖u‖

(a+ b‖u‖2)‖u‖
(a+ b‖u‖2)u = u.

Thus, T is a continuous inverse of Φ′. By compact embedding results, we also

know that Ψ′ is continuous and compact. Conclusion follows by Property 1.4.3.

As a consequence of the above lemmas, we obtained the following multiplicity

result:
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Theorem 2.3.10. Let r, s, λ, µ be as in Lemma 2.3.8. Then, there exist a positive

solution and a further nonzero and nonnegative solution of the problem
−
(
a+ b

∫
Ω

|∇u|2 dx
)

∆u = λus−1 − µur−1 in Ω

u = 0 on ∂Ω.

Proof. By Lemma 2.3.4, we know that Iλ,µ admits a global minimum point uµ ∈ P ,

which is a solution in P of the problem
−
(
a+ b

∫
Ω

|∇u|2 dx
)

∆u = λus−1 − µur−1, in Ω,

u = 0, on ∂Ω.

Therefore, thanks to Lemma 2.3.8 and 2.3.9, we can apply the Mountain Pass

Theorem 1.4.6 (or [10], [16]) to get a second nonzero and nonnegative solution vµ

of this problem.
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Chapter 3

Open problems and research

perspectives

We point out two open problems issued from Theorem 2.2.8 and Theorem 2.3.10.

Let us consider the particular but significant case of Theorem 2.2.8 where the

domain Ω contains the origin and the weight functions α, β have the form

α(x) = β(x) = |x|η

with η ∈ R. It is an easy matter to see that all the assumptions a), b), c), d)

of Theorem 2.2.8 are satisfied if and only if η > −2. Thus, it is of interest to

investigate the limit case η = −2 whose corresponding expression of the weight

functions is α(x) = β(x) = |x|−2. The function | · |−2 represents what is known in

literature as Calogero potential.

Clearly, one of the natural way to study problem (Pµ) in this case is to consider
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the following approximating problem
−∆u = 1

|x|2−εn (us−1 − µur−1) , in Ω

u ≥ 0, in Ω,

u|∂Ω = 0,

(Pµ,n)

where {εn} is a sequence of positive numbers converging to 0. Indeed, for each

n ∈ N, one has | · |−(2−εn) ∈ LN
2 (Ω) and N

2
> 2∗

2∗−s >
2∗

2∗−r , therefore, reasoning as

in Lemmas 2.2.3 and 2.2.4, we can infer that there exist µ0, ρ, c0 ∈]0,+∞[ such

that, for each n ∈ N and each µ ∈]0, µ0[, there exists a solution un,µ of problem

(Pµ,n) satisfying

1

2
‖un,µ‖2 −

∫
Ω

1

|x|2−εn

(
1

s
un,µ(x)s − µ

r
un,µ(x)r

)
dx ≤ −ρ < 0,

‖un,µ‖2 ≥ c0.

From the first inequality we deduce that the sequence {un,µ}n∈N is bounded in

W 1,2
0 (Ω), thus it weakly converges in W 1,2

0 (Ω) to a function uµ which satisfies

1

2
‖uµ‖2 −

∫
Ω

1

|x|2

(
1

s
uµ(x)s − µ

r
uµ(x)r

)
dx ≤ −ρ < 0,

and is a nonzero solution of the problem
−∆u = 1

|x|2 (us−1 − µur−1) , in Ω

u ≥ 0, in Ω,

u|∂Ω = 0,

(P ∗µ)

Applying Lemma 2.2.5 or Lemma 2.2.7 we can also infer the existence of a solution

vn,µ of mountain pass type of problem (Pµ,n). As before, we have that the sequence
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{vn,µ}n∈N is bounded in W 1,2
0 (Ω). This is an easy consequence of the identity

‖vn,µ‖2 −
∫

Ω

1

|x|2−εn
(vn,µ(x)s − µvn,µ(x)r) dx = 0.

Therefore, vn,µ weakly converges to a solution vµ ∈ W 1,2
0 (Ω) of (P ∗µ). However, in

this case, we have no sufficient information to conclude that vµ is nonzero.

We finally observe that when 0 ∈ Ω, one has | · |−2 ∈ Lq(Ω) for each q ∈ [1, N
2

[

and |·|−2 /∈ LN
2 (Ω). This means that the Moser iteration scheme cannot be applied

to derive the boundedness of a nonzero solution to (P ∗µ).

Then, it is quite natural to pose the following open questions:

a) Is the solution vµ nonzero in Ω?.

b) Is a nonzero solution to (P ∗µ) necessarily bounded? If not, what is the growth

rate of a nonzero solution near 0?

Concerning the last question we think that its investigation can be addressed

using the method introduced in the recent paper [11] where a similar topic was

considered.

A further question (already mentioned in the Introduction) we propose as re-

search perspective comes from a comparison of Theorem 2.3.6 and the results

obtained in [12] for the local case of problem (Pλ,µ) (corresponding to b = 0).

More precisely, in [12], the authors used a sub-super solution method to establish

that, for each λ > 0, the set Sλ of all µ > 0 such that (Pλ,µ) admits a positive

solution is exactly an interval. In the nonlocal case, due to the presence of the
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nonlocal term b

∫
Ω

|∇u|2dx, this method does not seem to work and the question

to known whether or not Sλ is an interval remains an open problem.

We think that, at least in the case s ∈]1, 2[, a possible way to address this

question could be the following: let λ > 0 and let µ′ > 0 such that problem (Pλ,µ′)

admits a positive solution, say uµ′ . Consider the function f : Ω× R→ R defined

by

f(x, t) =

 λuµ′(x)s−1 − µuµ′(x)r−1, if x ∈ Ω and t ≤ uµ′(x),

λts−1 − µtr−1, if x ∈ Ω and t > uµ′(x).

Clearly, f ∈ C0(Ω × R). Consider also the functional I1 : W 1,2
0 (Ω) → R, defined

by

I1(u) =
1

2
(a+ b‖uµ′‖2)‖u‖2 −

∫
Ω

F (x, u(x))dx, (3.1)

where

F (x, ξ) =

∫ ξ

0

f(x, t)dt, for each (x, ξ) ∈ Ω× R.

If s < 2, the functional I1 is coercive and admits a nonzero global minimum u1.

Similarly, we can consider the sequence of functionals {In}n∈N recursively defined

by

In+1(u) =
1

2
(a+ b‖un‖2)‖u‖2 −

∫
Ω

F (x, u(x))dx, u ∈ W 1,2
0 (Ω),

where un is a global minimum point of the functional In, and , for n = 1, u1

is the global minimum point of the functional I1 defined in (3.1). By a standard

regularity argument, we can see that the sequence {un}n∈N is bounded in the space

70



C1,α(Ω) (for some α ∈]0, 1[) and this means that, up to a subsequence, un strongly

converges in C1(Ω) to a function uµ which turns out a solution of the problem − (a+ b‖u‖2) ∆u = f(x, u) in Ω,

u = 0 on ∂Ω.

At this point, exploiting the properties of the sequence {un}, the goal is to see

whether uµ satisfies the inequality uµ(x) ≥ uµ′(x), for all x ∈ Ω. If this fact was

true, then uµ solves problem (Pµ) and this would allow to conclude that Sλ is an

interval.
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