

UNIVERSITÀ DEGLI STUDI DI CATANIA
DIPARTIMENTO DI INGEGNERIA ELETTRICA ELETTRONICA

E INFORMATICA

Dottorato di Ricerca in Ingegneria dei Sistemi, Energetica,

Informatica e delle Telecomunicazioni

XXXIII Ciclo

Marco Giuseppe Salafia

Definition of Novel IoT-based Solutions

for Interoperability in Industry 4.0

Ph.D Thesis

Coordinatore:
Chiar.mo Prof. P. Arena

Tutor:
Chiar.mo Prof. Ing. S. Cavalieri

Contents

1 Introduction 1

1.1 Motivations and Goals . 6

1.2 Structure of the Thesis . 7

2 Overview on Asset Administration Shell 10

2.1 I4.0 Component and the role of AAS 11

2.1.1 Composite I4.0 Component 13

2.1.2 Asset Type and Asset Instance 14

2.2 Structure of the AAS . 15

2.3 Implementation variants of an AAS 17

2.4 Asset Administration Shell metamodel 19

2.4.1 Common Classes . 20

2.4.2 Main Classes . 24

3 Overview on OPC UA 29

3.1 Information Modeling . 30

3.1.1 Metamodel and Base Information Model 31

3.1.2 Type modeling for Objects 35

3.2 Data type system of OPC UA 38

3.2.1 Encoding of DataTypes 40

3.3 Common practices for the definition of new Information Models 42

3.3.1 Variables and DataTypes definition 43

3.3.2 Objects and ObjectTypes definition 44

3.3.3 AddressSpace Organisation 44

i

3.4 Research activities to enhance interoperability based on OPC

UA . 45

3.4.1 OPC UA Web Platform 46

3.4.2 Interoperability between OPC UA and OCF 50

3.5 Publications . 52

4 OPC UA-based Asset Administration Shell 53

4.1 Introduction . 54

4.2 Mapping AAS metamodel into OPC UA Information Model . 55

4.2.1 Mapping AAS Entities 55

4.2.2 Structuring the OPC UA AddressSpace 59

4.2.3 Mapping AAS References 61

4.2.4 Mapping AAS common classes 64

4.2.5 Mapping HasDataSpecification and DataSpecification . 66

4.2.6 Mapping ConceptDictionary and ConceptDescription . 68

4.3 Case study: Operator Support System for assembly line 69

4.4 Discussion . 74

4.5 Publications . 76

5 AAS representing PLC based on IEC 61131-3 77

5.1 Introduction . 78

5.2 Overview on IEC 61131-3 . 80

5.3 Submodel for IEC 61131-3 . 82

5.3.1 Configuration . 84

5.3.2 Resource . 85

5.3.3 Program . 85

5.3.4 Function Block . 87

5.3.5 Function . 89

5.3.6 Task . 90

5.3.7 Variable . 90

5.3.8 Semantics for IEC 61131-3 elements 91

5.4 Using AASs to represent PLC and Real Plant 92

5.5 Case Study: Controlling a Drilling Machine 96

ii

5.6 Implementation of the approach leveraging OPC UA 102

5.7 Discussion . 105

5.8 Publications . 107

6 A model for PdM based on AAS 108

6.1 Introduction . 109

6.2 Overview on Predictive Maintenance 111

6.2.1 Data Acquisition . 112

6.2.2 Data Processing . 113

6.2.3 Maintenance Decision-making 114

6.3 AAS-based Model for Predictive Maintenance 116

6.3.1 Logical Block for PdM 118

6.3.2 AAS Submodels supporting PdM 121

6.3.3 Description of the PdM model 123

6.4 Case study: Modeling a Cloud-based Machine Learning PdM

solution . 126

6.4.1 Description of the use case 126

6.4.2 Representing the use case using the PdM model 127

6.5 Discussion . 131

6.6 Publications . 133

7 Conclusions 134

Bibliography 139

iii

Chapter 1

Introduction

Nowadays, we are facing a new industrial revolution, referred as the fourth

one, introducing the application of modern concepts of Information and Com-

munication Technology (ICT) in industrial contexts to create more flexible

products and introducing new business models and added value [1, 2]. The

first industrial revolution started at the end of the 18th century with the intro-

duction of mechanical machines in production plant based on steam power.

The second industrial revolution started at the beginning of the 20th cen-

tury with the introduction of electricity and mass production. The third one

started around 1970s with the adoption of electronics and Information Tech-

nology (IT), introducing the automation in manufacturing process by means

of programmed machines [3]. The concept of the fourth industrial revolution

was initially proposed in Germany with the term Industry 4.0 [4] to refer

the transformation of the factories of today into smart factories intended to

face the current challenges of shorter product life-cycles, highly customized

products and global competition [5]. Such challenges originate from a global

market containing several suppliers producing the same or similar products,

thus leading customers to pay more attention to the quality of the services

and features provided by producers. For these reasons, product customiza-

tion, schedule accuracy and flexibility are the fundamental goals that Industry

4.0 wants to achieve, because agile and easily re-configurable production can

face new products demands.

1

CHAPTER 1. INTRODUCTION 2

Traditional automation cannot achieve the required degree of flexibility.

Instead modular factories composed by smart devices, also known with the

term Cyber-Physical Systems (CPS), can overcome the currently rigid plan-

ning and production processes. Even though lot of several definitions exist,

CPS can be defined as “a system comprising a set of interacting physical

and digital components, which may be centralised or distributed, providing

a combination of sensing, control, computation and networking functions,

to influence outcomes in the real world through physical process” [6]. CPS

connected to each others define smart manufacturing networks to integrate

technologies from different vendors and heterogeneous data gathered across

the supply chain to achieve business goals. From this point of view, both

production lines and supply chains take advantages of data collected from

devices, sensors and actuators to optimize their value chain. Based on this,

connecting components and systems located at the shop level, also referred as

Operational Technology (OT), and components and systems of the produc-

tion management level, referred as IT, is required to achieve the connectivity

[7] needed to use data from low levels to plan production processes. Tech-

nologies like Internet of Things (IoT) and Cloud computing, among others,

play a key role in this context because enables the communication between

devices and people inside the same enterprise and between partners of the

value-chain network. This makes interoperability one of the major goals and

one of the outstanding challenges of Industry 4.0. Interoperability can be de-

fined as “the ability of two or more systems or components to exchange and

use exchanged information in an heterogeneous network” [8]. Heterogeneous

devices that were not designed to work together must interoperate to reach a

common goal, and this is one of the biggest issue given the complex ecosystem

of standards adopted, the presence of legacy systems, and smart components

[9]. From digitalization point of view, communication protocols, semantic

technologies and operational models must be specified and implemented to

guarantee that components and systems can be smoothly be connected and

that they can interoperate performing own operations and fulfilling business

objectives [7]. In [10], there are identified four levels of interoperability: tech-

nical, syntactic, semantic, and organizational interoperability.

CHAPTER 1. INTRODUCTION 3

Technical Interoperability It is achieved among communications-electronics

systems or part of them where services or information can be directly

exchanged between them and their users. This type of interoperabil-

ity often focuses on communication protocols and the infrastructure

required for the protocols to function.

Syntactic Interoperability Is ususally defined as the ability to exchange

data and it is generally associated to data formats. In particular, syn-

tactic interoperability involves the definition of well-defined syntax and

data encoding, for instance, in the exchange of message.

Semantic Interoperability It is defined as the ability to operate on the

data according to an agreed-upon semantics. It is usually related to the

definition of content from a human interpretation perspective and, in

particular, this level of interoperability is characterised by a common

understanding of the definitions used for the content of the data being

exchanged.

Organizational Interoperability It refers to the capability of organisation

to effectively transfer meaningful data regardless the variety of informa-

tion systems over significantly different types of infrastructure, possibly

across various geographic regions and cultures. It strictly depends from

technical, syntactic and semantic interoperability to be successful.

There are several interoperability assessment approaches in literature as

discussed in [11] and depicted in Figure 1.1 where models for the interoper-

ability assessment are ordered for popularity. Each of these models uses a

different approach to assess the degree of interoperability, pointing out that

the process of interoperability evaluation varies case by base on the basis of

the subjects and needs in exam.

A simplier approach for the assessment of interoperability levels is used,

for instance, in the standard IEC 62390 [12] and depicted in Figure 1.2 where

different levels are defined specifying the degrees of compatibility and co-

operation between profile based devices. A set of device features must be

satisfied for each compatibility level.

CHAPTER 1. INTRODUCTION 4

Figure 1.1: Popularity of the models for the interoperability assessment

Standards are the pillars of interoperability in Industry 4.0 because their

adoption creates the basis for the interworking between components, devices

and people in a value-chain network. Standards for communication and in-

formation exchange are required in this context to achieve interoperability

[13] because same data can be used in different domain for different purposes.

During the last few years, different organizations developed references archi-

tectures to align standards in the context of the fourth industrial revolution,

like Industrial Internet Reference Architecture (IIRA) for Industrial Internet

of Things (IIoT) published in 2015 by the Industrial Internet Consortium

(IIC), and Reference Architecture Model for Industrie 4.0 (RAMI4.0) pro-

posed by the german initiative ”Platform Industrie 4.0”. IIRA enables IIoT

system architect to design their own systems using a common vocabulary,

a standard-based architecture framework, where the architecture of software

systems is described, analysed, and defined to face specific concerns from the

viewpoint of different stakeholders. RAMI4.0 is a unified architectural refer-

ence model that provides a collective understanding for Industry 4.0 standards

that can be regarded as a tool to map I4.0 concepts and use cases. It provides

a three-dimensional model consisting of Layers, Life-Cycle & Value Stream,

CHAPTER 1. INTRODUCTION 5

Figure 1.2: Levels of functional compatibility in IEC 62390

and Hierarchy Levels dimensions in the relevant axis, depicted in Figure 1.3.

The purpose of this model is to represent a technical object (or asset), and all

aspects relevant to it, from its development production and use right through

to its disposal [14].

A central theme of RAMI4.0 is the definition of terms, properties and re-

lationships specific to industrial standards [9]. RAMI4.0 defines the concept

of Asset Administration Shell (AAS) as the cornerstone of the interoperabil-

ity. AAS is defined as a digital representation of an asset, which is defined

as an entity owned by an organization having either a perceived or actual

value for the organization itself (e.g., machines, products, software, licenses,

documents). The AAS exposes all information and functionalities relevant to

an asset in the form of standardised and semantically-annotated properties

and functionalities by means of a Industry 4.0-compliant communication –

or I4.0-communication – interface. RAMI4.0 identifies as only possible solu-

tion for the implementation of an I4.0-compliant communication the standard

IEC 62541 (OPC UA), which is a technology providing secure communication,

standardised service sets and an Information Model to structure data with an

approach similar to ontologies. Finally, RAMI4.0 defines the conjunction of

an AAS with its relevant asset as the so-called I4.0 Component, which realises

the concept of CPS in the context of RAMI4.0.

CHAPTER 1. INTRODUCTION 6

Figure 1.3: Reference Architecture Model for Industrie 4.0

The conducted research described in this thesis focuses on RAMI4.0 as a

reference model, trying to figure out how to take advantage of the concept of

AAS to achieve interoperability in Industry 4.0 scenario.

1.1 Motivations and Goals

The goals of this thesis is to point out how interoperability can be achieved by

means of AAS and how such a digital representation of a physical asset can be

exploited in real industrial scenarios to fulfill Industry 4.0 aims. The concept

of AAS can play a central role to enable collaboration between different tools

coming from different engineering domains. Tools can automatically detect

available plant configurations and data models coming from other tools, easing

re-configuration of plants or changing in the production process. For this rea-

sons the internal structure of the AAS must be studied in order to understand

the insights that makes it the corner stone of interoperability in Industry 4.0

so that it can be implemented and exploited in real implementations and use

CHAPTER 1. INTRODUCTION 7

cases.

The methodology followed for the conducted research consisted in the

study of the available standards and the state of the art relevant to AAS. As

said previously, since OPC UA is considered the only solution for communica-

tion in Industry 4.0 by RAMI4.0, in a first place we studied the feasibility for

the representation of an AAS using the OPC UA Information model. Even

though several works in literature already adopted OPC UA to implement

AASs in industrial scenario, all of them do not use a common or consis-

tent structure for the internal data of the AAS. This is due to an high-level

description of the concept of AAS and to the lack of guidelines for real im-

plementations. The AAS metamodel released in November 2019 in [15] is the

first of a series of specifications that try to define a concrete representation of

the concept of an AAS. This motivated our research in the adoption of OPC

UA as a means for the AAS representation and the exchange of its informa-

tion in a uniform and standardised manner. We deeply analysed the AAS

Metamodel providing insights and reasoning for its representation using the

modeling features of OPC UA. The importance of this work is due to the fact

that interoperability is achieved allowing standardised information relevant

to an asset (i.e. AAS) to be exposed in a standardised manner by means of a

I4.0-compliant communication (i.e. OPC UA). The next steps in the research

involved the adoption of the previous results to highlight how AAS can be

adopted in two common industrial scenarios to enhance interoperability. In

particular, we adopted the AAS for 1) the representation of Programmable

Logic Controller (PLC) based on IEC 61131-3 and for 2) the definition of a

Predictive Maintenance (PdM) model based on AASs.

1.2 Structure of the Thesis

The thesis is structured as follows. In Chapter 2 an overview on the AAS will

be provided, highlighting the general features of an AAS and, in particular,

the AAS metamodel which is the foundation of some of the research works.

Chapter 3 gives an overview on the standard OPC UA providing also the

description of some works, based on OPC UA, that we carried out to enhance

CHAPTER 1. INTRODUCTION 8

interoperability.

Chapter 4 describes in detail our contribution for the definition of an

OPC-UA based AAS, providing mapping solutions and insights behind the

representation of the main parts of the AAS metamodel using the OPC UA

modelling features. This research led to the definition of an OPC UA In-

formation Model for the representation of AAS inside an OPC UA Server.

Among the several advantages, this work present the possibility to exchange

AAS information between industrial application through OPC UA as com-

munication system. The major contribution consists in the insights behind

modelling techniques that should be adopted during the definition of OPC UA

Information Models exposing information relevant to the Industry 4.0 specific

domains of interest, and comparing eventually the rationales provided with

other mapping solutions present in literature.

In Chapter 5 a new approach for the representation of an IEC 61131-3

program inside tha AAS of a PLC is presented. Usually, the IEC 61131-3

programs, the PLC where they run, and the real plant controlled by them

are closely related. Considering the life-cycle of a production system, the

description of PLC programs and their relationships with the physical parts

of the plant should be clearly defined, leading to several advantages like, for

instance, the definition of testing plant operations, maintenance operations at

run-time and re-configuration process of the plant.This research work present

an AAS model able to represent IEC 61131-3 programs and their relationships

with physical devices and the PLCs controlling them.

Chapter 6 describes a novel approach based on the adoption of AASs for

the representation of PdM solutions, highlighting how the features of AAS are

of paramount importance for the definition of flexible manufacturing against

a maintenance program. Maintenance is one of the most important aspects in

industrial and production environments, and the adoption of vendor-specifc

solutions for PdM and the heterogeneity of technologies adopted in the brown-

field for condition monitoring of the machinery reduce the flexibility and the

interoperability required by Industry 4.0. Our approach leverage on the adop-

tion of AASs as a foundation for the definition of a PdM model to cope with

the aforementioned issues.

CHAPTER 1. INTRODUCTION 9

Finally, Chapter 7 summarised the results of the research carried out.

Chapter 2

Overview on Asset

Administration Shell

Reference models, like RAMI4.0 introduced in the previous chapter, provide a

solution-neutral reference architectural model for applications using technolo-

gies advancement in manufacturing process and represent a common structure

and language to specify and describe system architectures and thus to promote

common understanding and system interoperability. The vision of Industry

4.0 encompasses a massive digitalization process where every asset from the

physical world must be represented in the information world by a digital and

uniquely-identifiable counterpart [14]. RAMI4.0 refers to such an entity with

the name of AAS, but in literature and other reference architectures like In-

dustrial Internet Reference Architecture (IIRA), it is referred with the name

Digital Twin (DT). The conjunction of the physical asset with the AAS rep-

resenting it in the digital world realises the concept of CPS in the form of

an I4.0 Component, as specified in [14]. In addition, the AAS provides I4.0-

compliant communication with the other I4.0 components in the value-chain

network.

As the information model and the interface of AAS are both standardised

(even though definition of specifications are still in progress), AASs can be

exploited to cope with all the heterogeneous systems available in the industrial

environment (industrial silos) [16]. Therefore, since AAS is an abstraction

10

CHAPTER 2. OVERVIEW ON ASSET ADMINISTRATION SHELL 11

providing a common structure for the information relevant to assets and a

common way to exchange such information [43], it enables the cooperation

of assets based on different technologies. This chapter provides an overview

on the main concepts of I4.0 Component, AAS and the AAS metamodel

introduced in [15].

2.1 I4.0 Component and the role of AAS

In the context of Industry 4.0, an asset is defined as an entity with a value

for an organization, and this can be a machine, a product, but even a non-

physical entity like a product type, a software, a documents, or a license. One

central concept of Industry 4.0 is that assets can be combined together in any

way, and these assets are formally described in sufficient detail to be used

in the digital world. This solution provides sufficiently generic descriptions

for assets configuration but, by means of an increasing degree of detail, it

allows more specific descriptions too. To virtually represent configuration of

assets and all the relationships between them, the principle of recursive

description of assets [14] is used, which consists to characterise an asset as

follows:

• the structural description must comply with RAMI4.0;

• the configuration describing the connections between two or more assets

defines a new asset;

• components of an asset can in turn represent assets;

• the asset description is provided as a structured information in an AAS,

which acts as a virtual representation of the asset.

Following this principle, every configuration can be represented in the

digital world with any degree of granularity by describing structured assets

and any combination thereof using RAMI4.0, and thus the AAS.

As already said, the conjunction of the AAS and the relevant asset forms

the so called I4.0 Component, which realises the concept of CPS in RAMI4.0,

CHAPTER 2. OVERVIEW ON ASSET ADMINISTRATION SHELL 12

and thus identifies uniquely and globally identifiable participants able to com-

municate to each other, like depicted in Figure 2.1.

Figure 2.1: I4.0 Components communicating each other by means of an I4.0-
compliant communication.

An I4.0 component must satisfy the following properties to represents its

relevant asset in the information world:

• being clearly identifiable as an entity;

• being a type or an instance in a specific point of its life-cycle (e.g. a

model of sensor or a real instance of that specific model of sensor);

• being able to communicate by means of an I4.0-compliant communica-

tion;

• being a representation of an asset by means of information (e.g. prop-

erties, operations).

CHAPTER 2. OVERVIEW ON ASSET ADMINISTRATION SHELL 13

• having a technical functionality, but its not mandatory;

The AAS is the entity that convert an asset in a I4.0 Component, and it

is defined as “the virtual, digital and active representation of an asset”. The

AAS covers the first 4 layers of RAMI4.0 (i.e., Business, Functional, Informa-

tion, Communication) and partially the Integration layer, as shown in Figure

2.2. The AAS enables omnipresent communication and common understand-

ing between hardware and software components and humans through their

virtual representations.

Figure 2.2: Comparison of AAS with RAMI4.0 layers.

2.1.1 Composite I4.0 Component

One of the main features that an I4.0 Component provides is “nestability” as

discussed in RAMI4.0. This means that a machine may be seen as a com-

position of its parts, which in turn can also be I4.0 components. The AAS

of the composite component reflects the composition relationship referencing

the ASSs of its components. This reflects an application of the principle of

recursive description of assets described previously. In a composite compo-

nent, the AAS contains properties, functions and the status of the composite

asset. Data and functions of the individual I4.0 components that has been

CHAPTER 2. OVERVIEW ON ASSET ADMINISTRATION SHELL 14

integrated in the composite I4.0 component can still be accessed via their rel-

evant AAS. The integrated I4.0 components are referenced by the composite

component, as shown in Figure 2.3, while the corresponding assets are called

“self-managed assets”. Assets without an own AAS (named anonymous as-

sets) can still be part of a composite component, in which case they will be

called “co-managed assets” [17].

Figure 2.3: A Composite component.

2.1.2 Asset Type and Asset Instance

An asset can be defined with a state in a particular time and location through

its lifetime, which is distinguished in type and instance. Both asset type

and asset instance are unambiguously identifiable. An asset type defines a

set of properties and functions that are characteristics for all the instances

of that specific asset type. For example, a model for a temperature sensor

is an asset type, which defines all the features for such a sensor and which

all the sensor instances must comply to. An asset instance, instead, is a

physical asset characterised by the properties of its type. An instance always

CHAPTER 2. OVERVIEW ON ASSET ADMINISTRATION SHELL 15

maintains a string and unambiguous relationship with its type throughout the

whole life-cycle. Figure 2.4 summarises the life-cycle and the role of a type

and an instance.

Figure 2.4: Life-cycle phases and roles of type and instance.

2.2 Structure of the AAS

The internal structure of the AAS is described in a very high-level of abstrac-

tion in RAMI4.0 and in documents from Platform Industrie 4.0, like [18], as

depicted in Figure 2.5. It is composed by an Header and a Body; the former

contains all the information regarding the identification of both the AAS and

the relevant asset, whilst the latter contains all the inherent information of

the asset in the form of properties and functions (also referred as operations).

Properties are defined as classified and mutually independent characteristics

of a system that can be associated with values [19]. Functions, instead, model

the capabilities and the actions that an asset performs. Both properties and

functions are used to describe the functionalities of an asset and are grouped

together under so-called Submodels. Each submodel describes a specific as-

pect relevant to an asset like, among others, energy efficiency, positioning,

CHAPTER 2. OVERVIEW ON ASSET ADMINISTRATION SHELL 16

Figure 2.5: Structure of an AAS from an high-level point of view.

documentation, drilling, and maintenance. The aim is the standardization of

a submodel for every aspect of an asset [20], but up to know no standard-

ised submodel has been provided yet, even though several proposals start to

appear in literature, like in [21], [22], and [23].

Properties inside a Submodel must be semantically annotated so that the

inherent meaning of the value carried by properties cannot be ambiguous.

For instance, the property “height” of a drilling machine is different from the

property “height” of a pipe. Properties inside submodels features references to

external dictionary that defines their semantics. Such dictionaries are based

on the standard IEC 61360 for the property definition, and are hierarchi-

cally organised by increasingly detailed categories (e.g. Electric components

→ Electric Motors → Stepper Motor). Usually each category contains the

definitions of properties allowed for assets belonging to that category. Exam-

ples of such dictionaries are IEC Common Data Dictionary (IEC CDD)1 and

eCl@ss2. To each property of these dictionaries is associated a unique and

1https://cdd.iec.ch/cdd/iec61360/iec61360.nsf/TreeFrameset?OpenFrameSet
2https://www.eclass.eu/en/index.html

CHAPTER 2. OVERVIEW ON ASSET ADMINISTRATION SHELL 17

globally identifier.

Properties or functions composing an AAS contains a special attribute

(semanticId) pointing to a semantic definition contained in an external se-

mantic repository, as depicted in Figure 2.5. The term “semantic repository”

is used here as a generic name identifying any sort of database or catalogue

where all the semantic definitions reside. For instance, IEC CDD and elC@ss

can be considered semantic repositories. In Figure 2.5, semantic repository is

represented as a single unit just from a logical point of view, since in practice

a semantic repository can be constituted by different databases or dictionaries

located in different parts of the IT infrastructure.

2.3 Implementation variants of an AAS

The AAS is a software entity that can be used in different implementation

variants. An AAS can be provided in three different forms: 1) the passive

AAS in file format, 2) the passive AAS with an Application Programming

Interface (API), and 3) the active AAS [13].

The passive AAS in a file format is what is mainly described in [15],

where it is presented as a common exchange file format (XML or JSON)

between different partners of a value-chain network. Such an AAS is not

able to communicate over an I4.0 communication channel and cannot interact

with other AASs; it enables only a standardized information exchange of the

information relevant to an asset during its life-cycle.

The passive AAS with an API provides essentially the same informa-

tion of (1) but with the difference that its internal data are accessible only

via a CRUD-oriented interface (e.g. REST). It follows that, unlike (1), such

variant of AAS is accessible via the communication network. It is worth not-

ing that (2) is a reactive entity in the sense that it can respond to requests

coming from external clients but it cannot take any initiatives or establish

communications with other AASs, hence the name “passive AAS”.

In addition to a CRUD interface, an active AAS can be part of an hori-

zontal protocol-based interaction as specified in [24]. Active AASs interact to

achieve some goals and are the foundation behind the concept of Plug-and-

CHAPTER 2. OVERVIEW ON ASSET ADMINISTRATION SHELL 18

Produce in Industry 4.0 [25]. The guideline VDI/VDE 2193 describe a I4.0

Language that can be adopted between the interaction of AASs, as discussed

in [26], [27] and [28]. The active AAS relies on some internal algorithms imple-

menting some business logic. For instance, a new I4.0 component inserted in

a production line can interact with the AASs of similar devices nearby to re-

ceive configuration parameters, avoiding the manual configuration performed

by a human operator.

In Figure 2.6, all the variants of AASs are compared placing them in

the RAMI4.0 layers. Both AAS as a file and AAS with API are classified

Figure 2.6: Comparison of the variants of the AAS in relation to the layers
of RAMI 4.0.

as passive AAS. One of the main differences between the two variants is

the lack of communication in the former. Besides being accessible from the

communication network, an AAS with API provides an interface needed to

access the information structured in the AAS. Since a passive AAS with API

is necessarily embedded on computing device, it is possible that such an AAS

can execute some operations (e.g. drilling, cutting, turning on, etc) when

requested by an external client. Hence the presence of this type of AAS in

the Functional Layer. An active AAS, instead, covers all the aspects owned by

the passive AAS, providing in addition the implementation of some algorithms

exposing some business logic. This variant of AAS is a proactive software

CHAPTER 2. OVERVIEW ON ASSET ADMINISTRATION SHELL 19

entity and may not require any external solicitation to execute some decision

or optimization process. All the behaviours of the AAS is scheduled according

to its internal business logic, usually represented by means of state machines.

Depending on the nature of the AAS, different solution for its deployment

may exist. In general, RAMI4.0 do not put any constraints about the location

of an AAS. A passive AAS in file format may be stored in a database, whilst

both passive AAS with API and active AAS may be embedded in a smart

device or deployed in a completely different location (even though a connection

with the asset may be maintained). Furthermore, it is worth noting that

different parts of an AAS may be separated across the infrastructure, thus

the AAS is not required being a single monolithic software entity [14].

2.4 Asset Administration Shell metamodel

In November 2019 the first version of [15] was released providing a first specifi-

cation of an AAS metamodel to structure an AAS in a uniform and consistent

manner in order to facilitate the exchange of asset information between part-

ners of a value chain. The AAS metamodel is presented as an UML class

diagram and used as a reference model to structure the information inside

an AAS and to create relationships between the elements composing it. In

particular, the metamodel:

• defines a collection of classes used to structure information (referred in

the remainder as entities);

• defines a collection of abstract classes (referred in the remainder as com-

mon classes) used to defines aspects (attributes) common to different

entities of the metamodel;

• is based on the data types defined in the XML Schema Definition (XSD)

standard3. Furthermore, it defines new data types when the ones defined

in XSD do not satisfy the needs;

• uses an identification mechanism that can be either absolute or relative;

3https://www.w3.org/TR/xmlschema-2/

CHAPTER 2. OVERVIEW ON ASSET ADMINISTRATION SHELL 20

• defines a referencing mechanism between internal and external entities

of the AAS;

The main class of the AAS metamodel are shown in the UML class diagram

in Figure 2.7.

2.4.1 Common Classes

Common classes are abstract classes used to describe aspects shared by meta-

model entities; they are Identifiable, Referable, HasKind, HasSemantics, and

HasDataSpecification. Multiple inheritance is allowed in the AAS metamodel,

therefore entities in the AAS metamodel can inherit from more than one com-

mon class. In the remainder of this thesis the name of a common class will be

used as adjective to refer a particular metamodel entity inheriting from that

common class, e.g. ”HasKind entity” refers to an entity inheriting from the

common class HasKind.

Identifiable and Referable

In the digitalization process of an asset, everything should be unambiguously

identified: parts, products, people, software and services. But in order to

achieve interoperability, relationships between entities shall be identifiable

too. For this reason, the AAS metamodel makes a distinction between ele-

ments that are identifiable, referable or none of both. An Identifiable entity

can be identified with a globally unique identifier, which makes possible to

refer such an entity in any context.

Table 2.1 summarizes the attributes of identifiable entities. The type

Identifier is a new structured type defined in the metamodel and consists of a

string field (id), and a second field (idType) of type IdentifierType; Identifier-

Type is an enumerative type specifying the following values: IRDI, URI and

Custom. Values of identifier type are used inside the attribute identification

of Identifiable entities, as shown in Table 2.1.

In Table 2.2, the attributes of a Referable entity are summarised. A refer-

able entity provides a short identifier (idShort) that is unique only in the

CHAPTER 2. OVERVIEW ON ASSET ADMINISTRATION SHELL 21

Figure 2.7: Main class composing the AAS metamodel.

CHAPTER 2. OVERVIEW ON ASSET ADMINISTRATION SHELL 22

Attribute Description Type

administration Administrative information AdministrativeInformation

identification (mandatory) Global unique identifier Identifier

Table 2.1: Attributes of Identifiable.

context of its name space. The name space for a referable entity is defined as

its parent element that is either referable or identifiable. It is worth noting

that Identifiable entities are also referable but the vice versa is not true.

Attribute Description Type

idShort Identifying string of the entity within its
name space

String

category Additional meta information about the class
of the element, affecting the expected exis-
tence of certain attributes

String

description Description or comment of the element String

parent Reference to the next referable parent ele-
ment

Reference

Table 2.2: Attributes of Referable.

Reference mechanism of AAS metamodel The AAS metamodel pro-

vides the entity Reference in order to establish relationships between entities

composing the AAS. References can be used to point entities external to the

AAS and not only the ones defined internally. Reference can point only to

entities that are at least Referable.

The AAS reference entity features the attribute key, which is logically

structured as an ordered list of keys where each element refers an entity by

means of its identifier. The structure of this key list resembles an URI struc-

ture, where the first key refers to the root element and every following key

identifies the next element in the hierarchy leading to the referred element,

identified by the last key of the list.

CHAPTER 2. OVERVIEW ON ASSET ADMINISTRATION SHELL 23

Each key in the list belongs to a structured type named Key. The manda-

tory fields of this type are local, type, value and idType. The attribute local

specifies whether the referred element is local to the AAS or not. The at-

tribute type specifies the class name of the referenced entity; its value belongs

to a custom type named KeyElements, which is an enumeration whose values

are the names of the entities in the metamodel. The attribute value is a string

containing the identifier of the entity referred by the key. The attribute id-

Type describes the kind of identifier used in attribute value; its value is of type

KeyType which is an enumeration whose values are the kinds allowed for both

global and local identifiers, i.e., IRDI, IRI, Custom, idShort and FragmentId.

HasKind

The common class HasKind identifies all those entities that can have the

double nature of template and instance. Templates define common features

for all its instances. The HasKind common class features an unique optional

attribute, named kind, which can take either the value “Template” or “In-

stance”.

HasSemantics

The HasSemantics common class identifies the entities of the metamodel that

can be described by means of a concept. A HasSemantics entity owns a

reference to another external entity that describes its meaning in a proper

manner. HasSemantics defines only one optional attribute, semanticId, which

is a reference to the semantic definition of the element.

HasDataSpecification and DataSpecification

An entity that allows its instances to contain additional attributes to those

already defined in the entity itself is identified as HasDataSpecification entity.

Such an entity contains one or more References to so-called Data Specifica-

tion Templates (DST), which are used to define the additional attributes. The

common class HasDataSpecification defines only the optional attribute has-

DataSpecification, which contains References pointing to the DSTs eventually

CHAPTER 2. OVERVIEW ON ASSET ADMINISTRATION SHELL 24

used.

Even if [15] specifies that DST does not belong explicitly to the metamodel,

its internal structure is described using an entity named DataSpecification; it

is Identifiable, so that its identifier can be used inside references. It consists

of an entity named DataSpecificationContent containing the definition of the

additional attributes.

2.4.2 Main Classes

AssetAdministrationShell

The main element of the entire AAS metamodel is represented by the Asse-

tAdministrationShell entity, which is both Identifiable and HasDataSpecifica-

tion. It provides more attributes based on how an AAS is structured [18] and

summarised in Table 2.3.

Attribute Description Type

derivedFrom A Reference to the AAS the
current AAS was derived from

Reference

asset (Mandatory) A Reference to the Asset entity Reference

submodel References to the Submodels Reference

conceptDictionary One or more Concept Dictio-
nary entities

ConceptDicitonary

Table 2.3: Attributes of the AssetAdministrationShell.

The attribute derivedFrom is used to establish a relationship between two

AASs that are derived from each other by means of a a Reference. In case

of an AAS representing an asset instance, this reference points to the AAS

representing the corresponding asset type or another asset instance it was

derived from. The same holds for AAS of an asset type as types can also be

derived from other types.

CHAPTER 2. OVERVIEW ON ASSET ADMINISTRATION SHELL 25

Asset

The Asset entity contains all metadata of an asset represented by an AAS.

This entity is Identifiable and HasDataSpecification. Optionally, can feature

a reference to a Submodel entity describing identification aspect of the asset

itself.

It defines an attribute kind specifying whether the asset is a type or an

instance, in accordance to the asset life-cycle described in Subsection 2.1.2.

Submodel and SubmodelElement

The Submodel entity defines a specific aspect of the asset represented by

the AAS. It is used to structure the AAS into distinguishable parts, orga-

nizing related data and functionalities of a domain or subject. This entity is

Identifiable, HasKind, HasDataSpecification, and HasSemantics. In case of

a Submodel with kind = “Instance”, the semanticId attribute may refer to

another Submodel entity with kind = “Template”.

Submodel represents a collection of SubmodelElements that are related

to the same aspect of the asset identified by the Submodel itself. For this

reason, the entity Submodel defines the attribute submodelElement that is a

composition of zero or more SubmodelElements, as shown in Figure 2.8. A

SubmodelElement entity is suitable for the description and differentiation of

assets. The SubmodelElement entity is Referable, HasKind, HasDataSpeci-

fication and HasSemantics. All the SubmodelElements of a Submodel with

kind = “Template” are in turn SubmodelElement templates (i.e., kind =

“Template”). SubmodelElement is an abstract superclass for all those enti-

ties composing the internal structure of a Submodel, e.g. properties, files,

operations.

In general, a SubmodelElement can contain other SubmodelElements cre-

ating an internal hierarchy. The concrete class SubmodelElementCollection

(SEC) serves for this purpose as it is defined as a set or a list of SubmodelEle-

ments; such collection can be ordered and either allowing or refusing duplicate

elements. SEC is a very important entity because it is the only one that allows

the internal organization of a submodel, like a folder in a directory.

CHAPTER 2. OVERVIEW ON ASSET ADMINISTRATION SHELL 26

Figure 2.8: Class hierarchy relevant to Submodel structure.

DataElements

DataElement is an abstract class inheriting from SubmodelElement that iden-

tifies all the SubmodelElements that are no further composed out of other

SubmodelElements.

A Property is a concrete DataElement that is made up by the additional

attributes shown in Table 2.4. The attributes value and valueType are the

most important; the latter specifies which kind of data value is contained in

the former. This information is necessary to decode such a value.

Attribute Description Type

value The value of the Property in-
stance

ValueDataType

valueType Data type of the value DataTypeDef

valueId A Reference to the global unique
id of a coded value

Reference

Table 2.4: Attributes of Property.

CHAPTER 2. OVERVIEW ON ASSET ADMINISTRATION SHELL 27

Another concrete class of DataElement is File that represent the location

of a real file. Its attribute value is an URI that can represent an absolute

or a relative path. Finally, the class ReferenceElement is a DataElement

that defines a logical reference to another element of the same AAS or to a

different one, but it may also represent a reference to an external object or

entity. For example, a ReferenceElement instance may be used to correlate

two properties of different AASs. The attribute value of ReferenceElement

contains an instance of the class Reference.

The classes Property, File and ReferenceElement are represented in the

class hierarchy in Figure 2.8.

ConceptDictionary and ConceptDescription

ConceptDescription is one of the foundamental entities to achieve interoper-

ability because it is used to define the semantics for the other entities inside

the AAS metamodel. The entity ConceptDescription is Identifiable and Has-

DataSpecification. Every element in AAS that is HasSemantics should have

its semantics described by a ConceptDescription, unless a more specific solu-

tion is adopted.

The entity ConceptDictionary represents a collection of ConceptDescrip-

tion instances. ConceptDictionary is eferable and it defines an additional at-

tribute named conceptDescription that is a composition of References pointing

to ConceptDescription instances.

Typically, a ConceptDicitonary of an AAS contains only ConceptDescrip-

tions used by elements within the submodels of the AAS. In certain scenarios,

the ConceptDicitonary contain copies of property definitions coming from ex-

ternal standards, like IEC CDD or eCl@ss. In this case, a ConceptDescription

containing the entry of the external standard shall be added; for this reason,

ConceptDescription defines the additional optional attribute isCaseOf con-

taining a global reference to an external definition the concept is compatible

with or was derived from. ConceptDescription should follow a standardized

template to describe a concept. The only templates available in the meta-

model are used to define both semantics of Properties according IEC 61360

CHAPTER 2. OVERVIEW ON ASSET ADMINISTRATION SHELL 28

and physical unit of measurement.

Chapter 3

Overview on OPC UA

In the past years, the major effort in the process of standardisation of automa-

tion software was the access to automation data in devices based on several

different technologies, often vendor-specific, like bus systems, protocols, and

interfaces. The standard Classic OPC, also known as OPC Data Access, was

designated as an interface to communication drivers, providing a standardised

way to read or write data in automation devices [29].

The standard OPC UA (IEC 62541) is defined as an evolution of its prede-

cessor introducing a brand new technology that is platform-indipendent and

scalable. OPC UA provides a secure communication protocols that is based

on the Client-Server paradigm, and only in last few years a new specification

introducing the Publisher-Subscriber mechanism has been released. OPC UA

provides more than just a standardised communication channel between en-

tities, but provides also a mechanism for information modelling and a set of

standardised services to access data exposed by OPC UA Servers. All these

features make OPC UA the interoperability middleware for Industry 4.0; in

fact, RAMI4.0 identifies OPC UA as the only available solution to implement

the communication layer between I4.0-Components [27, 30].

This chapter focuses on the information modeling features of OPC UA,

providing a fundamental background for some of the research conducted and

discussed in the remainder of this thesis. Furthermore, this chapter intro-

duce some results we achieved during the research carried out to enhance

29

CHAPTER 3. OVERVIEW ON OPC UA 30

interoperability by means of OPC UA in the context of Industry 4.0.

3.1 Information Modeling

The main aim of OPC UA is making the information of an OPC UA Server

accessible to several OPC UA Clients. Data are structured inside an OPC

UA Server in the so-called AddressSpace following the specification of the

standard OPC UA base model. The base model provides the set of funda-

mental “building blocks” – or metamodel – and the rules needed to structure

the information in a meaningful manner so that data can be accessible and

understandable by every OPC UA Client.

The OPC UA Information modeling is based on the following principles:

Object-oriented techniques The AddressSpace contains typed instances

so that clients can manage instances of the same type in the same man-

ner or work with base types to ignore specialised information.

Types are similar to instances The AddressSpace exposes type informa-

tion in the same manner as instances so that clients can access them to

understand how data are organised. This mechanism resembles the one

of schemas for relational databases.

Information structured as a graph The AddressSpace is structured as a

full-meshed graph of nodes connected by references. Since OPC UA

allows the definition of hierarchies for nodes and references exposing

different semantics, information can be organised in different meaningful

ways. This mechanism is similar to ontologies coming from semantic

web.

Type extensibilitiy OPC UA allows the definition of new type hierarchies

or new subtypes inheriting from existing ones. It allows also the def-

inition of types for references connecting nodes in the AddressSpace,

specifying brand-new semantics for the relationships between nodes.

CHAPTER 3. OVERVIEW ON OPC UA 31

No limitations on information representation An OPC UA Server rep-

resenting a system that already contains a rich information model can

expose that model without mapping it to a different model.

Server-side Information modeling OPC UA information models always

reside in the AddressSpace of an OPC UA Server, never on an OPC UA

Client.

An OPC UA Information Model provides a standard way to structure

information inside a server and expose them to clients. The foundamental

element used to structure the AddressSpace, and thus defining an Informa-

tion Model, are Nodes and References. The concept of Node and Reference

constitute what is referred as the OPC UA metamodel. The standard OPC

UA provides its own base information model which every OPC UA Server

must use as a foundation of its own information models. Every Information

Model is identified by a Namespace URI; an OPC UA Server exposes in its

AddressSpace a NamespaceArray containing all the Namespace URIs rele-

vant to the Information Model adopted in the AddressSpace. Each URI in

the NamespaceArray is accessed by means of an integer index named Names-

paceIndex. The NamespaceIndex with value 0 refers always to the standard

base Information Model and its mandatory for every OPC UA Server.

3.1.1 Metamodel and Base Information Model

Any kind of information is represented inside an OPC UA Server as an OPC

UA Node. The set of all nodes inside the OPC UA Server defines its Ad-

dressSpace. Nodes belongs to exactly one of 8 NodeClasses, which identify

the kind of information a Node represents. Nodes expose attributes contain-

ing metadata of the Node; some attributes are common to all NodeClasses,

whereas other attributes depends on the NodeClass. The common attributes

for all NodeClasses are listed in Table 3.1.

There are 8 NodeClass defined in the OPC UA metamodel: Variable,

VariableType, DataType, ReferenceType, Method, View, Object and Ob-

jectType.

CHAPTER 3. OVERVIEW ON OPC UA 32

Attribute Description

NodeId Uniquely Identifies a Node in an OPC UA Server

NodeClass Identifies the NodeCLass of the Node.

BrowseName Identifies the node during the browsing service of OPC
UA

DisplayName A localized name that can be used to display the name
of the node in a user interface

Description A localized textual description of the Node

WriteMask Is optional an it is a bitmask specifying which attributes
of the Node are writable

UserWriteMask Is optional and it is a bitmask specifying which at-
tributes of the Node are writable by the user currently
connected to the Server

Table 3.1: Common attributes.

Variable It is used to model values of the system inside the OPC UA Ad-

dressSpace. A Variable can be a Property or a DataVariable depending

on the VariableType associated to the Variable Node. A Property rep-

resent a server-defined metadata associated to another Node and com-

monly used when metadata exposed from Node attributes are not suffi-

cient. A DataVariable, instead, represent data associated to an Object

Node. The Variable NodeClass features the attribute Value containing

the actual value of the Variable. The attribute DataType specifies the

type definition for the value contained in the attribute Value.

VariableType This NodeClass provides the type definition for another Vari-

able Node. The base model defines two VariableTypes: Property-

Type and BaseDataVariableType for Property and DataVariable, re-

spectively.

DataType This NodeClass provides the type definition for values contained

in the Value attribute of a Variable Node.

CHAPTER 3. OVERVIEW ON OPC UA 33

ReferenceType Defines the type for References used to connect Nodes in-

side the AddressSpace. This NodeClass is used mainly for the definition

of a semantics for the relationship between Nodes.

Method This NodeClass is used to model callable functions inside the Ad-

dressSpace.

Object This NodeClass represents entities in the real world like system com-

ponents, both hardware and software. An OPC UA Object is like a

container for other Objects, variables and Methods. Since an Object

does not provide a value ot its own, a DataVariable must be connected

to an Object for this purpose. For instance, a temperature sensor device

may be modeled as an Object whilst the measured temperature value

may be modeled as a DataVariable Node connected to the Object.

ObjectType It is used for the definition of a type for Object Nodes. The

standard OPC UA allows the extension of the standard base Object-

Types for the definition of new ones. All the Objects inside the Ad-

dressSpace inherit, either directly or indirectly, from the BaseObject-

Type ObjectType. One of the most important ObjectType defined in

the base Information Model of OPC UA is the FolderTypeObject Type

which is used to define ”Folder” Objects used to organise the AddressS-

pace in a proper manner.

The OPC UA standard provides a graphical notation to represent some

Nodes depicted in Figure 3.1.

The Nodes inside the AddressSpace are connected by means of Refer-

ences creating semantic relationship between them. Reference are classified

as Symmetric and Asymmetric, where in the former the semantics is the same

regardless the direction followed in the browsing, whilst in the latter the se-

mantics differs on the basis of the direction of the reference. Furthermore,

References can be classified also in Hierarchical and NonHierarchical.

The semantics associated to Hierarchical References is that of spanning a

hierarchy. Such type of References do not forbid loops, therefore it is possible

to reach the same starting node following only Hierarchical references. By

CHAPTER 3. OVERVIEW ON OPC UA 34

Figure 3.1: Graphical notation for some OPC UA NodeClass.

the way, it is forbidden having self-pointing Hierarchical references. The base

Information model provides some standard ReferencesType for Hierarchical

References. In the following some of the most important will be described.

HasComponent and HasOrderedComponent If the source Node is an

Object, the target Nodes may be Objects, DataVariables and Methods;

the semantics of this References is that the source Object is “composed”

by the target OPC UA Nodes. If the source Node is a DataVariable,

the target Nodes may be other OPC UA DataVariables; the semantics

is that the source Variable is “composed” by a set of other Variables.

The difference between the two variants is that in the former there is no

order relationship in the browse of components, whereas in the latter

an order relationship exists and every browse of the components must

be returned with the same sequence.

HasProperty This Reference connect the source Node with its Property.

The semantics is that the source Node features a property identified by

the target Node.

CHAPTER 3. OVERVIEW ON OPC UA 35

Organizes This references is used to connect a source Object of type Fold-

erType – also referred as Folder – to other Objects and/or Variables.

The semantics is that the source Node organizes the target Node like a

container.

HasChild It defines a non-looping hierarchy between Nodes.

Aggregates The semantics of this ReferenceType indicates that a Node “be-

longs” to another Node.

HasSubtype This Reference is used to connect an ObjectType or a Variable-

Type to another ObjectType or VariableType, respectively. This refer-

ences creates the inheritance semantics between Nodes defining types.

NonHierarchical References are used to define some relationship between

Nodes that do not span a hierarchy. The base Information model defines sev-

eral NonHierarchical References; one of them is HasTypeDefinition which is

used to bind an Object or a Variable to its relevant ObjectType or Variable-

Type.

The graphical notation for References defined in the OPC UA standard is

depicted in Figure 3.2.

Figure 3.2: Notation for References based on referenceTypes.

3.1.2 Type modeling for Objects

The information modeling mechanism of OPC UA uses an object-oriented

approach, thus Objects are considered instances of ObjectTypes. This means

CHAPTER 3. OVERVIEW ON OPC UA 36

that Nodes connected to the ObjectTypes by means of Hierarchical Refer-

ences can be present in the relevant Object representing an instance of that

ObjectType.

Even though both Object and ObjectType represent conceptually differ-

ent things, it is worth noting that from the point of view of the OPC UA

metamodel they are both Nodes. For instance, Variables connected under

an Object exposes some value related to that Object, whereas Variables con-

nected to an ObjectType have no value to expose (because its just a type).

OPC UA defines a specific mechanism to differentiate the nature of Variables

and Objects connected to ObjectTypes from the ones connected to an Object;

such mechanism used the so-called ModellingRules which specify how Vari-

ables and Objects connected to an ObjectType behaves respect to an instance

of that ObjectType.

Each OPC UA ObjectType must defines which ones among its Properties

and Components must or may be present in its relevant instances. Object-

Type instances may have some mandatory elements, whilst other elements

may be optional. The Reference HasModellingRule allows to point out this

kind of information for each OPC UA type. For each Variable or Object

(henceforward called InstanceDeclaration) referenced by an OPC UA type

Node, a HasModellingRule Reference points to a ModellingRule Object as

target Node. A ModellingRule associated to an InstanceDeclaration speci-

fies whether a copy of such InstanceDeclaration must be present or not in

every instance of an OPC UA type Node. A ModellingRule Mandatory for

a specific InstanceDeclaration specifies that instances of the OPC UA type

must have a copy of that InstanceDeclaration. A ModellingRule Optional,

instead, specifies that instances of the OPC UA type may have a copy of

that InstanceDeclaration, but it is not mandatory. Other two ModellingRules

exist named MandatoryPlaceholder and OptionalPlaceholder. The difference

with the previous ones is that the counterparts of InstanceDeclarations in the

relevant instances may be more than one, regardless of the BrowseName of

the InstanceDeclaration.

A graphical representation has been also defined for the InstanceDecla-

ration and ModellingRule Object and for HasModellingRule Reference. The

CHAPTER 3. OVERVIEW ON OPC UA 37

name displayed inside each InstanceDeclaration is relevant to its BrowseName.

The same happens for each counterpart of an InstanceDeclaration relevant to

an instance of OPC UA type. In case of an InstanceDeclaration having the

OptionalPlaceholder and MandatoryPlaceholder ModellingRule, the Browse-

Name will be enclosed within angle brackets. Furthermore, a ModellingRule

Object and the relevant HasModellingRule Reference are not graphically rep-

resented but only shown as a text containing the kind of the ModellingRule

Object written within square brackets and put inside the source InstanceDec-

laration Node (i.e. [Mandatory], [Optional], [OptionalPlaceholder], [Manda-

toryPlaceholder]). Figure 3.3 shows an example of the graphical notation just

described.

Figure 3.3: Example of graphical representation of InstanceDeclarations,
ModellingRule and HasModellingRule References.

Very recently, the OPCFoundation released an amendment introducing a

new feature in Address Space model called Interface [31]. An Interface is an

ObjectType representing a generic feature that can be used by different Ob-

jects or ObjectTypes. HasInterface is a new NonHierarchical ReferenceType;

an Object may have more HasInterface References connected to different In-

terfaces. When an Object references an Interface by means of a HasInterface

Reference, it inherits all the InstanceDeclarations exposed by the Interface,

CHAPTER 3. OVERVIEW ON OPC UA 38

following the same rules used for an Object that inherits all InstanceDec-

larations exposed by its ObjectType. The difference with the usual type

inheritance is that Interface mechaniusm allows multiple inheritance, thus an

Object can refer multiple Interfaces by means of HasInterface References.

3.2 Data type system of OPC UA

All attributes of Nodes except for the Value attribute of Variable and Vari-

ableType have a fixed data type. For Variable and VariableType Nodes,

the attribute DataType is used in combination with the attribute ValueRank

and ArrayDimension (defined only for these two NodeClasses) to define the

data type of the Value attribute. DataTypes are defined as Nodes in the Ad-

dressSpace and the attribute DataType of Variable and VariableType contains

always a NodeId of a specific DataType Node.

The fact that data types are represented as Nodes in the AddressSpace

allows OPC UA Servers to define their own DataTypes, so that OPC UA

Clients can access such information and understand how decode values. There

are four kinds of DataType in OPC UA: Built-in, Simple, Enumeration and

Structured. All these kinds of DataTypes are represented in the AddressSpace.

The DataType mechanism of OPC UA is based on an encoding mecha-

nism which is directly implemented in the OPC UA Stack. Such encoding

mechanism provides the a set of foundamental data types, named built-in

types that must be used for the serialization, and thus the transport, of every

value of a DataType defined in the AddressSpace. There are 25 built-in types

defined in the OPC UA standard, listed in Figure 3.4.

The aforementioned kinds of DataType represented in the AddressSpace

will be described in the following, describing also how they are represented

against the built-in types provided by the encoding mechanism of OPC UA:

Built-in DataType This DataType defines a set of fixed DataTypes speci-

fied by the OPC UA standard and cannot be extended by other Infor-

mation Models. They provide basic types like Int32, Boolean, Double

but also OPC UA-specific types like NodeId, LocalizedText and Quali-

CHAPTER 3. OVERVIEW ON OPC UA 39

Figure 3.4: Built-in types.

fiedName. Such DataTypes are directly mapped with the corresponding

built-in type with the same name at encoding level.

Simple DataType This DataType are subtypes of the Built-in DataTypes

and are encoded exactly like these last. In other words, a value of this

DataType cannot be distinguished from the same value of a Built-In

DataType; only accessing the relevant DataType attribute of Variable

or VariableType reveals that the value belongs to a Simple DataType.

Simple DataTypes are used to defines a semantics for data types; for in-

stance, Duration is a Simple DataType that extends the Double Built-In

DataType to define values representing intervals of time in milliseconds.

Apart from this, values of Duration and values of Double are encoded

in the same way.

CHAPTER 3. OVERVIEW ON OPC UA 40

Enumeration DataType This DataType represents a discrete set of named

values. Values of this kind of DataType are encoded using the built-

in type Int32, i.e. an integer. The Node representing an Enumeration

DataType features two mutual exclusive Properties named EnumStrings

and EnumValues. The Value attribute of EnumStrings is an Array of

LocalizedTexts containing human-readable representations of each enu-

merated value. The integer value represents the index of the relevant Lo-

calizedText in the array contained in EnumStrings. The value attribute

of EnumValues, instead, is used to represent Enumeration values of dis-

continuous integer values. Nodes of this kind of DataType are subtype

of the standard Enumeration DataType Node in the AddressSpace.

Structured DataType This DataType are used to represent structured

data and are the most powerful construct specifying user-defined com-

plex DataTypes. Structured DataTypes are mapped by the encoding

layer using the built-in type ExtensionObject, which behaves as a sort

of container capable of managing the representation of any possible data

presenting any type of structure. Nodes of this kind of DataType are

subtype of the standard Structure DataType Node in the AddressSpace.

3.2.1 Encoding of DataTypes

An OPC UA Server must always define how values of a certain DataType

must be encoded when sended to an OPC UA Client (or decoded by the

client). As said previously, OPC UA already defines encoding and decoding

rules for Built-in DataType and thus for Simple and Enumeration DataTypes

too. For Structured DataType, instead, an OPC UA Server must explicitly

specify in its AddressSpace how the value is encoded/decoded. In this way,

an OPC UA Client retrieving such information can decode the data when

reading the value or can encode the value when it desire to write it on the

server.

When an OPC UA Client connects to an OPC UA Server can use one

of three possible data encoding for the transmission of information: Binary,

XML or JSON [32]. Each data encoding provides the rules needed for the se-

CHAPTER 3. OVERVIEW ON OPC UA 41

rialization of every possible DataType using the relevant technology selected.

The DefaultBinary encoding is the one defined by the OPC UA standard

and the one that must be implemented in every OPC UA Server for Binary

encoding.

Encoding rules for structured DataTypes must be exposed in the Ad-

dressSpace allowing clients to retrieve them. A DataType Node representing

a Structured DataType points always to a DataTypeEncodingType Object con-

taining the encoding rules for the data encoding of the current connection.

The NodeId of such an Object is always sent together with every relevant

structured value during the transmission so that the client knows which en-

coding rules has been used by the server to encode the value. If the binary

encoding is used for the transmission, the DataTypeEncodingType Object is

named DefaultBinary. The OPC UA Server exposes in the AddressSpace a

DataTypeDictionaryType Variable (referred as Dictionary, for brevity) con-

taining all the description relevant to the selected data encoding for every

Structured DataType.

In Figure 3.5, an example shows this mechanism for the description of a

Structured DataType named MyType. The Node MyType is connected to

the relevant DefaultBinary Object of type DataTypeEncodingType by means

of a NonHierarchical Reference named HasEncoding. In turn, DefaultBinary

is connected by means of a NonHierarchical Reference named HasDescription

to a Variable of type DataTypeDescriptionType, named in the example My-

TypeDescription, containing in its Value attribute the entry of the Dictionary

to find the encoding rules of MyType. The Dictionary is depicted in figure

as a Variable with name MyTypeDicitonary and refers to MyTypeDescrip-

tion with an HasComponent Reference. As shown by figure, the Dictionary

contains in its Value attribute a long XML-formatted string consisting of

one or more entries called StructuredTypes; each entry contains several Field

elements. A Field refers to a component of the Structured DataType and

features a TypeName attribute that describes the relevant component. In the

example shown by Figure 2, MyType is a structure composed by two integer

fields (i.e., Built-In Data Type Int32).

CHAPTER 3. OVERVIEW ON OPC UA 42

Figure 3.5: Example of OPC UA Structured DataType description.

3.3 Common practices for the definition of

new Information Models

OPC UA Information Models structure and expose information coming from

different domains of interest, like IEC 618501 or IEC 61131-32. In general, the

definition of an OPC UA Information Model requires a phase where all the

requirements of the original domain of interest are gathered and compared

with the standard elements offered by the standard OPC UA Information

Model in order to find the suitable solution to satisfy such requirements in

the AddressSpace. Often, this process is not straightforward because some

concepts from the source domain cannot be mapped directly into OPC UA;

in these cases, the definition of new element types extending the original OPC

UA elements must be realized.

In the following some of the common practices adopted for this task will be

briefly discussed and in Chapter 4 will be discussed how we took advantages

of such common practices for our research.

1https://opcfoundation.org/developer-tools/specifications-opc-ua-information-
models/opc-unified-architecture-for-iec61850/

2https://opcfoundation.org/developer-tools/specifications-opc-ua-information-
models/opc-ua-for-plcopen/

CHAPTER 3. OVERVIEW ON OPC UA 43

3.3.1 Variables and DataTypes definition

Nodes of Variable NodeClass are usually used to represent data. For in-

stance, a Variable may represent the measurement of a temperature sensor

or the engineering unit of the measured temperature. In the former case it

represent a DataVariable whilst in the latter case it represents a Property.

OPC UA defines two main VariableTypes that Variables must inherit from:

BaseDataVariableType and PropertyType. A variable of type BaseDataVari-

ables defines a DataVariable and a Variable of type PropertyType defines a

Property. As pointed out in [29], it is not always so easy to decide when a

DataVariable or a Property should be used when modelling data. In gen-

eral, DataVariable may be chosen to represent data associated to an Object,

whereas a Property may be used to represent some characteristic of a Node

that usually cannot be described by means of the attributes of the Node itself.

As said in the previous section, DataTypes are used to define the data

type for values contained in Variables, and types can be Built-in, Simple,

Enumeration or Structured. In case of a structured value, the adoption of a

Structured DataType is not the only solution. One of the common practice

consist in modeling a structured value as a complex Object featuring several

Variables Nodes as components (i.e., linked to the Object by HasComponent

References), each of which represents a field of the structured value. Using

both a Structured DataType and a complex Object to represent a structured

value is a valid solution, however there are pros and cons for each solution.

Briefly, using a Structured DataType is possible to easily access all data at

once, whereas using an Object with components requires that each variable

component is accessed one by one. In other words, structured DataType

provides an implicit transaction context during the information access whereas

Object does not, and it must be explicitly managed. On the other hand, using

Object in order to access individual data of a structured value is easier than

accessing a value belonging to structured DataType. The latter involves an

overhead for this kind of operation because all the structured value must be

read to retrieve the value of a single field.

CHAPTER 3. OVERVIEW ON OPC UA 44

3.3.2 Objects and ObjectTypes definition

The NodeClass Object is used to represent entities like entire systems, system

components, real-world and software objects. In general, the meanings that

an Object can assume are unlimited; the important thing is understanding

how Object and its ObjectType are the building blocks of a well-organized

AddressSpace and, for each entity that must be represented in the AddressS-

pace, a relevant ObjectType should be properly defined.

When modelling a system, representation of domain-specific attributes

belonging to a particular entity occurs. First of all, the modelling of the

attributes must be realized during the definition of ObjectTypes mapping

such entities in the OPC UA Information Model. The two most frequent cases

consist of attributes containing data values or containing some other complex

object. An attribute containing value can be mapped as OPC UA Property

(connected with a HasProperty Reference) or DataVariable (connected with

a HasComponent Reference) depending on the consideration made previously

on Variables. An attribute containing a complex object, instead, may be

mapped as OPC UA Object component, which must be connected to the

OPC UA ObjectType by a HasComponent Reference; this is legit as this

reference represents a part-of relationship and domain-specific attributes may

be considered parts of an entity.

OPC UA Objects are also used for the AddressSpace organisation, as

explained in the following.

3.3.3 AddressSpace Organisation

When an OPC UA Information Model is used to model a system made up by

several entities, a good practice consists of defining an entry point to all the

relevant Nodes. Usually, a Folder Object contained in the standard “Objects”

folder is used as an entry point to the subset of the AddressSpace containing

all the OPC UA Nodes modelling the entities present in the system. All

these nodes may be organized in different ways according to the needs to be

fulfilled, as explained in the following. A Hierarchical relationship may occur

when entities are organized in a way that resembles the same organization

CHAPTER 3. OVERVIEW ON OPC UA 45

existing between folder and the relevant content in a generic file system. In

this case, this relationship may be modelled using a Folder Object modelling

the topmost entity and connecting it to the nodes modelling the child entities

by means of organizes references. If the hierarchical relationship, instead,

resembles an aggregation, particular OPC UA hierarchical references, like

HasComponent and HasProperty, may be used to connect the OPC UA nodes

modelling the original entities.

Considering a relationship between two entities belonging to two different

hierarchies, a common modelling practice in the organization of OPC UA

Information Model involves the use of non-hierarchical OPC UA references.

For instance, an object belonging to a Folder Object may be linked to the

relevant ObjectType (usually belonging to the standard “Types” Folder) by

a HasTypeDefinition reference. In general, it is possible to say that non-

hierarchical references organizes the AddressSpace from a semantics point of

view [29]. Usually ad-hoc non-hierarchical ReferenceTypes must be defined

in order to better represent the kind of relationships between entities to be

modelled.

3.4 Research activities to enhance interoper-

ability based on OPC UA

Most of our research to enhance interoperability in the context of Industry

4.0 involved the adoption of OPC UA. As already said, OPC UA plays an

important role in current industry environments [33] and is considered the

most accepted protocol harmonizing the machine-to-machine (M2M) interac-

tion [34]. During these last years, OPC UA has proven to be an effective

communications middleware mainly in industrial applications [35].

Although this standard already combines features coming from both indus-

trial and ICT contexts, current literature presents several approaches aimed

to introduce ICT enhancements into OPC UA in order to further improve its

usability in industrial environments and, in particular, in IoT environments.

Some of these approaches are based on the proposal to make OPC UA REST-

CHAPTER 3. OVERVIEW ON OPC UA 46

ful, due to many advantages of RESTful services in industrial settings and in

IoT. In Subsection 3.4.1, we discuss an approach differing from other existing

solutions to realise a lightweight OPC UA RESTful interface reducing the

complexity of the basic knowledge that must be held by a generic user. As a

consequence, such approach allows enhancement of OPC UA interoperability

towards resource-constrained devices, especially in IoT environment.

Since there is no universal language for the IoT, interoperability is an im-

perative requirement also in this context. To overcome this, industry players

have come together to form initiatives and consortiums of standards around

the various IoT components, including connected buildings, connected home

and Industrial IoT. Open Connectivity Foundation (OCF)3 is one of the

biggest connectivity standards organizations for IoT, whose specification has

been standardised in ISO/IEC 30118. In Subsection 3.4.2, we discuss a novel

solution towards interoperability between OPC UA and IoT providing map-

ping solution for the definition of an OCF Bridge device allowing the seamless

interaction between OPC UA-based devices and OCF-based devices.

3.4.1 OPC UA Web Platform

The aim of this research is the definition of a Cloud platform based on web

technologies to make accessible OPC UA Servers to IoT Devices. Such plat-

form realised a RESTful interface to masquerade the complexity of OPC UA

to constrained devices.

REpresentational State Transfer (REST) is an architectural style defined

by Roy Fielding in his Ph.D dissertation [36]; a Web Service based on REST

is called RESTful Web Service [11]. The advantages of using a RESTful Web

Services has already discussed in [37] and [38], and can be summariseed in

communication advantages (e.g., reduced communication overhead and pos-

sible introduction of caching layers) and system design advantages including

stable service interfaces across applications and the use of resource-oriented

information models in CPS. These reasons make the adoption of RESTful

services a quite frequent choice in the context of IoT architectures [39].

3https://openconnectivity.org/

CHAPTER 3. OVERVIEW ON OPC UA 47

An OPC UA Server exposes to OPC UA Clients several different kind of

Information, including Variables, Objects, Methods, type and encoding infor-

mation, among others. Accessing to such information requires that an OPC

UA Client have a full knowledge of the OPC UA data model. Furthermore the

number of service requests required to access an OPC UA Server can be high,

also in the case of a simple request from the client. This is mainly due to the

fact that OPC UA implements a statefull communication between client and

servers, hence sessions maintaining the status of the interaction is maintained.

For instance, just for the reading of a simple value exposed by an OPC UA

Server, the OPC UA Client must first create a Session (which first requires

the creation of a Secure Channel) and only then make the request to read the

value. All these operation requires the execution of several different service

calls. It follows that stateless approaches, like REST, are more desired in IoT

communication where network traffic and resources consumption in general

must be low.

Complex data model and intensive message exchanges may create some

difficulties for a resource-constrained device acting as client. In IIoT environ-

ment, certain applications may be constrained to access data sets of limited

complexity and to limit the number of transactions needed to access them.

This mainly occurs when applications run on physical devices featuring a set

of limited hardware and/or software resources.

For these reasons, in this research we defined a web platform offering to

generic clients a lightweighted interface to access OPC UA Servers. We named

this web platorm OPC UA Web Platform. We consider an interface being

lightweight when the services it provides requires less message exchanges and

semantics to be held from a client.

The platform defined in our research is based on REST architecture due

to the advantages proposed in [37], and it is shown in Figure 3.6. It offers to

a Web User the access to one or more OPC UA Servers. The generic term

“Web User” will identify a generic application which consumes the services

offered by the OPC UA Web Platform to access information maintained by

OPC UA Servers. Web Users have no knowledge of the OPC UA standard

and no awareness of the presence of OPC UA Servers behind the OPC UA

CHAPTER 3. OVERVIEW ON OPC UA 48

Web Platform. Web User is neither required to be an OPC UA Client nor

to implement the OPC UA communication stack (i.e., OPC UA protocol and

services).

Figure 3.6: OPC UA Web Platform.

The main parts composing the OPC UA Web Platform are:

RESTful Web Service Interface It accepts requests submitted by an au-

thenticated Web User. Communication between Web User and OPC

UA Web Platform is stateless, thus each Web User’s request is inde-

pendent from any stored context on the OPC UA Web Platform, and

each Web User’s request must contain all the information necessary to

the OPC UA Web Platform to accomplish the requested service and to

generate the relevant response.

Middleware It performs all the operations needed to fulfil each request com-

ing from a Web User. It is in charge to transorm every request done to

the RESTful Interface in OPC UA requests that must be forwarded to

the relevant OPC UA Servers. For this reason, the Middleware includes

an OPC UA Client used to access the OPC UA Servers. Communica-

tion between OPC UA Client and OPC UA Servers occurs according

the standard OPC UA communication protocol and services.

CHAPTER 3. OVERVIEW ON OPC UA 49

Communication between Web User and the OPC UA Web Platform is

mainly synchronous (based on RESTful web services) but provide also some

asynchronous services for monitoring (based on Publish/Subscribe Pattern).

A client-server approach based on request-repsonse model is not an ideal solu-

tion for networks with multiple servers and clients. An embedded server that

handles multiple clients can be an issue as well as a network traffic caused

by request and response messages [40]. Publish-Subscribe communication re-

duce the network traffic and decouple the actors of the communication (loose

coupling).

Synchronous communication is realised through the HTTP protocol using

a connection encrypted by the Transport Layer Security (TSL), i.e. HTTPS.

It realises the encryption of data transmitted between Web User and OPC

UA Web Platform, and vice versa. Asynchronous communication, instead, is

realised using both MQTT4 and Microsoft SignalR5.

The authentication is guaranteed using a token-based mechanism for all

the request done to the platform interface. In particular, the open standard

JSON Web Tokens (JWT)6 is the web technology used to implement such

token-based authentication.

The Web Platform completely hides the OPC UA Information Model of

the OPC UA servers connected and exposes, instead, a simple graph-based

resource model were each node maps a relevant Node in an OPC UA Server.

The exposed graph is accessible by means of the CRUD funcitonalities im-

pleemnted by the RESTful interface of the platform. Every RESTful service

is mapped by the platform in one or more OPC UA request by the Middle-

ware. As a result, a device not compliant with OPC UA can still access the

information contained in OPC UA server just using simple HTTP requests

and web mechanism guaranteeing security in the data exchange. All data are

returned to a client encoded in JSON format: the platform is in charge to cope

with all the encoding mechanism to translate values of OPC UA DataTypes

(also Structured ones) in comprehensive JSON data.

4https://mqtt.org/
5https://dotnet.microsoft.com/apps/aspnet/signalr
6https://jwt.io/

CHAPTER 3. OVERVIEW ON OPC UA 50

The platform defined for this research has been implemented and made

available on Github7.

3.4.2 Interoperability between OPC UA and OCF

This research proposes a novel solution to make interoperable OPC UA and

IoT ecosystems. One of the major goals of Industry 4.0 is interoperability of

industrial applications enabling ICT mainly based on IoT. In fact, accessing

data from smart sensor or provide them with new data from IT systems is of

paramount importance in this scenario since process data create new values

and help the definition of new business models.

To achieve this goal, the integration of communication standards and tech-

nologies currently used in both industrial scenario and IoT is required. The

standard OCF seems a promising solution to standardise the exchange of

information in IoT, therefore we chose OCF as a possible technology to be

integrated with OPC UA. A mapping between the information models of both

OCF and OPC UA allows the definition of a device with the role of OPC UA-

OCF Bridge which implements the mapping rules and enables the seamless

interaction between OCF and OPC UA devices.

Integration of applications belonging to different ecosystems (e.g., featur-

ing different information models, communication protocols and services) can

be realised using several approaches and achieving different levels of inter-

operability according to the main features of the integration itself [41]. We

proposed a solution involving the definition of rules to map each element of

the OPC UA Information Model in a corresponding element of the OCF Re-

source Model, and vice versa. This process includes the definition of new

models inside both the OPC UA AddressSpace and OCF Resource Model to

realise the correspondences between elements even when the native models

do not fit for some representations.

The mapping specifies how each element of the OCF Resource Model is

mapped in a corresponding element of the OPC UA AddressSpace of an OPC

UA Server, so that we defined a proper extension of the OPC UA Information

7https://github.com/OPCUAUniCT/OPCUAWebPlatformUniCT

CHAPTER 3. OVERVIEW ON OPC UA 51

Model. Through this proposal, information maintained by a generic OCF

Device can be published by an OPC UA Server providing them to whatever

OPC UA Client connected to the OPC UA Server.

The foundation of the research is the definition of a OPC UA-OCF Bridge

device depicted in Figure 3.7. The Bridge exposes a proper Server to each of

the two ecosystems, i.e. a virtual OPC UA Server for OPC UA Clients and

a virtual OCF Device acting as a Server. Both expose the information of the

information of one ecosystem to the other.

Figure 3.7: Mapping between OPC UA and OCF ecosystems.

The Virtual OCF Server is an OCF Device of a proper device type we

defined with the aim of exposing information coming from an OPC UA Server

to client devices in the OCf ecosystem. The mapping process may involve the

entire OPC UA AddressSpace of a specific OPC UA Server or part of it.

The Virtual OPC UA Server is an OPC UA Server using the Information

Model defined in the research carried out. The Infomration Model defined

allows the mapping of a generic OCF Device in corresponding elements of

the OPC UA AddressSpace of the Virtual OPC UA Server in order to expose

infromation coming from OCF to OPC UA Clients. The main component of

the Bridge is the Translator which realise the mapping rules defined in the

conducted research.

The advantages of the proposed solution can be better understand consid-

ering the following realistic application scenarios.

CHAPTER 3. OVERVIEW ON OPC UA 52

A typical application in an OPC UA ecosystem is a Supervisory Control

and Data Acquisition (SCADA) system, generally based on OPC UA Clients

that exchange data with one or more OPC UA Servers. According to our

solution involving the use of an OPC UA-OCF Bridge, a SCADA application

can be the client of a Virual OPC UA Server to collect information coming

from the OCf ecosystem (e.g., sensors and actuators in factory automation

scenarios). Moreover, the SCADA can also send commands to OCF devices

by means of the Virtual OCF Server.

In a typical application of factory, home and build automation realised in

an OCf ecosystem is represented by an OCF Device performing functions of

controllers and/or data analysis. According to our solution, the OCf ecosys-

tem can receive information coming from an OPC UA Server by means of the

Virtual OCF Server of the OPC Ua-OCF Bridge. The information retrieved

can be used for control and data analytics in addition to the OCF ecosystem

information. Finally, an OCF Device acting as controller may send commands

to the OPC UA ecosystem by means of the Virtual OPC UA Server.

The OPC UA Information Model for the mapping of OCF Resource Model

has been implemented and publicly available on GitHub8.

3.5 Publications

The research carried out on OPC UA Web Platform has been presented in

international conferences [42, 43, 44] and published in the scientific journal

“Computer Standards and Interfaces [45].

The solution proposed for the OPC UA-OCF mapping has been presented

in international conferences [46, 47], and published in the scientific journals

“IEEE Access” [48] and “Journal of Industrial Information Integration” [49].

8https://github.com/OPCUAUniCT/OPCUA-OCF-Information-Models-Mapping

Chapter 4

OPC UA-based Asset

Administration Shell

Previous chapter highlighted the relevance of both OPC UA and AAS for

interoperability in Industry 4.0. The possibility to use OPC UA to realise the

concept of the AAS pushed us to assess the state of the art and the possibility

to investigate new scenarios taking advantage of this research. For instance,

AAS digital information may be exchanged between industrial applications

through the OPC UA communication system but, to realise a seamless ex-

change, information models must be consistent and maintain the information

content.

The current version of the AAS metamodel specification [15] provides a

proposal of mapping into several technologies, including OPC UA. Since the

AAS metamodel, and thus its mapping in OPC UA, is continuously developed

and improved, the goal of this research is providing reasoning and insights

about mapping choices that aim to maintain the consistency of information

during the exchange and conversion of the AAS between partners of the value-

chain and avoid information loss.

The results of this research are preliminary to the research works described

in the following chapters of this thesis.

53

CHAPTER 4. OPC UA-BASED ASSET ADMINISTRATION SHELL 54

4.1 Introduction

State of the art presents lot of different works describing industrial scenarios

where implementation of the AAS is realised to accomplish some tasks. So

far, different proposals have been presented in literature. One of the most

known implementations is openAAS1, which is based on OPC UA for the

internal representation of the AAS. Since openAAS was defined before the re-

lease of the AAS metamodel, the internal representation of the AAS realised

using this framework is not compliant with the AAS metamodel. Lüder et al.

[50] presented an implementation based on companion specification of OPC

UA for AutomationML and IEC 61131-3 to structure information and func-

tions of an asset, respectively. Ye and Hong [51] propose an AAS template

implementing AASs using OPC UA and AutomationML for a manufacturing

system. Another implementation for AAS is described in [52] where authors

propose using semantic web technologies like Resource Description Frame-

work (RDF) as a middle layer to support interoperability between the data of

legacy systems and data generated by I4.0 components of the AAS. All these

implementation cannot cooperate each other because they are note defined in

accordance to a same structure for the internal information of the AAS, i.e.

the AAS metamodel.

Since AAS is defined as “virtual, digital and active representation of an

I4.0 Component in the I4.0 system” [14], in our research we identified OPC

UA as a good solution in order to give the “active” aspect to the AAS, pro-

viding communication capabilities and secure access to information stored in

a passive AAS.

This research work tries to figure out how the foundamental features of the

AAS metamodel can be realised in an OPC UA Information model, so that

OPC UA-based implementation of the AAS can meet the same requirements

as the AAS metamodel.

The approach followed for the realisation of this work involved the de-

structuring of the AAS metamodel in its fundamental parts. This process led

to a bottom-up solution for the mapping, where fined-grained elements are

1https://github.com/acplt/openAAS

CHAPTER 4. OPC UA-BASED ASSET ADMINISTRATION SHELL 55

mapped first, then followed by elements derived from their composition. As

will be described in the following, this approach realises a consistent mapping

for the OPC UA Information Model. Finally, we validated the results in a use

case involving an assembly system which uses an OPC UA-based Operator

Support System (OSS) reading the AASs stored in an OPC UA Server to

retrieve information for the parts of the assembled products.

4.2 Mapping AAS metamodel into OPC UA

Information Model

In Chapter 3, some of the common practices adopted for the definition of

an OPC UA Information model has been discussed. Such common practices

will be applied for the mapping of the AAS metamodel into the OPC UA

Information Model, providing the reasoning behind the main decisions that

must be taken for the mapping, and pointing out pros and cons when different

strategies can be adopted.

4.2.1 Mapping AAS Entities

In the process of defining an OPC UA Information Model, on of the most

important design decision to be taken is choosing the right OPC UA Node-

Class to map the main elements of the domain-specific information model to

map. In our case, the first step in the conducted research consisted in decid-

ing which NodeClass should be used to map each main element of the AAS

metamodel.

Entities in the AAS are defined as classes specifying some attributes. En-

tities can be classified in entities structuring the AAS (e.g., AssetAdministra-

tionShell, Submodel, and Asset) and entities defining types for attribute val-

ues (e.g., Identifier, Key). Attributes, instead, can be classified as attributes

containing values, attributes realizing composition and attributes containing

AAS References. In particular, attributes realizing composition may contain

also AAS References.

CHAPTER 4. OPC UA-BASED ASSET ADMINISTRATION SHELL 56

As said in chapter 3, since Objects structure the AddressSpace, it seems

reasonable using Objects for the representation of the main entities of the

AAS metamodel structuring the AAS. To semantically distinguish OPC UA

Objects mapping AAS entities between each other, declaration of Object-

Types for each metamodel entity is needed. For instance, an ObjectType

AASType may be defined to represent all Object Nodes mapping an Asse-

tAdministrationShell entity; an ObjectType AssetType can be defined for all

Object Nodes mapping an Asset entity. In general, for all entities of the

metamodel constituting the AAS structure, an ObjectType should be prop-

erly defined. Mapping proposed in [15] seems based on the same assumption,

in fact Objects map main entities, providing naming convention for the rele-

vant ObjectTypes.

AAS entities in the metamodel defining new types for attribute values

(from now on referred as type in the context of AAS metamodel) often re-

alize structures and enumerations and thus can easily be mapped as OPC

UA DataTypes because, as said in chapter 3, they can be both Structured

and Enumeration. For instance, the AAS metamodel defines two main types

for the identification of entities: Identifier and IdentifierType. The former is

a structured type and the latter is an enumerative type. Identifier is com-

posed by a string field (id), and a second field (idType) of type IdentifierType.

Values of Identifier are used inside the attribute identification of Identifiable

entities, as shown in Table 2.1. OPC UA Structured DataType and Enumera-

tion DataType can be used to map Identifier and IdentifierType, respectively.

A possible mapping solution is depicted in Figure 4.1.

Figure 4.1: Identifier and IdentifierType mapped as DataTypes.

CHAPTER 4. OPC UA-BASED ASSET ADMINISTRATION SHELL 57

In [15] mapping solutions for type entities vary from case to case, lead-

ing to an inconsistent mapping approach because no unique rule seems to be

adopted for this kind of entity. For instance, unlike our approach, Identifier is

mapped with an ObjectType named AASIdentifierType structured with two

Properties: id and idType. The two solutions are quite equivalent but, of

course, they will led to different implementation strategies for entities featur-

ing attributes containing values, like the identification attribute inherited by

identifiable (containing Identifier values), as will be detailed in the remainder

of this section.

Since entities structuring the AAS has been mapped as OPC UA Object

and the relevant ObjectType, the mapping of the attributes must be consid-

ered as the very next step. Considering attributes containing a value (from

now on referred as value attributes), they describe features of the AAS enti-

ties like, for instance, the attribute description (see Table 2.2) of a Referable

entity whose value is a brief description of the entity itself. Our solution

to map type entities with DataTypes led us to choose OPC UA Properties

for the mapping of value attributes. In fact, Properties representing such

attributes may contain values encoded using the DataTypes modelling the

relevant AAS type entities. For example, considering the attribute identifi-

cation, an OPC UA Property can be used to map such an attribute, where

the DataTypes shown by Figure 4.1 are internally used by the property to

represent the relevant value.

In [15], Identifier has been mapped using an ObjectTypem named AASI-

dentifierType, setting a constraint on the kind of NodeClass that can be used

to map the attribute identification, which according to this mapping solu-

tion can only be mapped as a component of another Object (i.e., the Object

modelling the entity featuring the attribute identification). In our opinion

the semantics of OPC UA Properties better reflect the meaning of value at-

tributes than semantics of an OPC UA component, which represents a part-of

relationship. In fact, the identifier of an entity cannot be considered a part

of the entity but an inherent information of the entity itself.

Attributes of AAS entities reflecting composition (from now on referred

as composition attributes) contain a collection of other entities. Unlike value

CHAPTER 4. OPC UA-BASED ASSET ADMINISTRATION SHELL 58

attributes, composition attributes do not contains values but instances of

other AAS entities. An example of composition attribute is conceptDictionary

of the entity AssetAdministrationShell (see Table 2.3), which contains a list

of ConceptDictionary entities related to the AAS. Some solutions to map in

OPC UA the conceptDictionary attribute are depicted in Figure 4.2. The

solutions shown can be generalised to all camposition attributes.

Figure 4.2: The (a) basic and (b) optimized mapping solutions for attributes
defining compositions.

Since ConceptDictionary is an entity structuring the AAS, in accordance

to our decision to map structural entities with Objects, all the ConceptDic-

tionary entities contained in the conceptDictionary attribute are mapped as

OPC UA Objects; furthermore, this solution may be realized defining a new

Hierarchical ReferenceType (which could be called “HasConceptDictionary”

as shown in Figure 4.2a) and using References of this new type to connect

the Object mapping the AssetAdministrationShell (“SampleAAS” Object in

the Figure 4.2) to the Objects mapping the ConceptDictionary entities con-

tained in the attribute conceptDictionary (“Dictionary 1” and “Dictionary 2”

in Figure 4.2). The reasoning behind this mapping solution consists in us-

ing ad-hoc defined hierarchical references to represent the list of the entities

contained in the composition attributes. In [15] this approach is adopted but

no specific ReferenceType is defined for the mapping, using HasComponent

References instead. The solution here proposed requires the definition of new

Hierarchical ReferenceTypes (that can inherit from HasComponent) to se-

mantically enrich the connection between an object and its components. The

CHAPTER 4. OPC UA-BASED ASSET ADMINISTRATION SHELL 59

use of ad-hoc defined ReferenceType has the advantages to give more clarity

about the structure of an Object and provides more filtering options during

the browsing of an Object to retrieve the content of the mapped composition

attributes. It is worth noting that the solution proposed so far, although it

realise the mapping of composition attributes, it has the disadvantage that

such attributes disappear in the mapping process (even though its informa-

tive content is spread over multiple hierarchical references), e.g., in Figure

4.2a, there is no OPC UA elements representing at glance the attribute con-

ceptDictionary. A second solution based on the use of Folder Objects and

depicted in Figure 4.2b provides a cleaner solution to map this kind of at-

tribute. Such attributes can be directly mapped as Folder Objects organising

the OPC UA objects mapping the entities of the composition using Organize

References. In figure, it has been assumed to name the Folder using the plural

noun of the mapped attribute (i.e., “ConceptDictionaries” for the attribute

conceptDictionary).

The last category of attributes of the AAS metamodel are attributes con-

taining AAS references to other entities. This discussion is postponed in

subsection 4.2.3. For the sake of clarity, in the remainder of this chapter AAS

Reference refers to the referencing mechanism of the AAS metamodel, whilst

OPC UA Reference refers to referencing mechanism of OPC UA.

In general, every attribute described for entities in the AAS metamodel is

annotated with a cardinality specifying whether the attribute is mandatory or

optional for the entity. This behavior shall be maintained when an attribute

is mapped either as a property or a component of an OPC UA ObjectType.

All the InstanceDeclarations defined for the mapping of attributes in the

context of an ObjectType must feature a ModellingRule that must be chosen

in accordance to the cardinality of the attribute modeled. This solution seems

adopted also in [15].

4.2.2 Structuring the OPC UA AddressSpace

The common practices described in Chapter 3 on structuring the AddressS-

pace involves the use of Folder Object contained in the standard “Objects”

CHAPTER 4. OPC UA-BASED ASSET ADMINISTRATION SHELL 60

folder as an entry point into the domain-specific Information Model. Since

the entity AssetAdministrationShell is the top-most entity in the hierarchy de-

fined by the AAS metamodel, it follows that defining a Folder Object named

“Asset Administration Shells” as a component of the “Objects” Folder (see

Figure 4.3) respects the aforementioned good practice. Such a Folder is used

to organize all the objects that are instances of AASType and thus represent

AASs. This same solution is adopted in [15] to structure the AddressSpace in

an OPC UA Server, where a Folder named “AASROOT” is used to aggregate

all Object representing AASs. Since all the Objects representing AAS are

located under a single folder (i.e., “Asset Administration Shells”), an OPC

UA Client can take advantage of this structure to select the desired AAS and

to browse all the sub-entities it contains. In the example depicted in figure,

the AASType Objects are connected to the AssetType Objects mapping the

relevant Assets. The kind ReferenceType (i.e. Hierarchical, NonHierarchical)

used for the references connecting the Objects are not important for moment

and will be detailed in the remainder of the section.

Figure 4.3: The (a) basic and (b)(c) optimized strategies to structure objects
in the AddressSpace.

Figure 4a depicts a simple scenario where two AASType Objects represent

two different versions of the same AAS (i.e., “AAS v1” and “AAS v2”). This

is a näıve solution because, from a logical point of view, the two instances of

AssetType represents the same Asset. This means that a solution like this led

to redundancy due to the mapping of the same entity on multiple Nodes. We

analysed the metamodel and found that this situation arises when Identifiable

entities are involved, because Identifiable entities are the only ones that can be

CHAPTER 4. OPC UA-BASED ASSET ADMINISTRATION SHELL 61

shared accross different AASs. An improvement to the first solution described

is depicted in Figure 4.3b, where a single node representing an asset is shared

across two objects representing the AASs. This simple solution solves the

problem of redundant data but has the drawback of having very important

data nested inside the AddressSpace structure. In fact, looking at Figure

4.3b, in order to know which assets are contained in the AddressSpace of

the OPC UA Server, a client should browse the folder “Asset Administration

Shells” and repeat the browsing recursively until it finds an AssetType Object,

then go back again and repeat the procedure for all the AASs. This kind of

operation leads to a graph traversal which can be very complex in some cases.

To address this problem, a third and more efficient solution for AddressS-

pace organization involves the creation of a Folder Object as entry point for

each kind of Identifiable entity defined in the AAS metamodel. This struc-

tures the AddressSpace like a sort of look-up table for identifiable entities,

which is an important feature in the context of the AAS environment. The

validity of this solution is confirmed by the choices made for the mappings of

AAS into XML and JSON provided by [15]. Figure 4.3c shows this solution

realised with the creation of a Folder Object named “Assets” to organize all

the AssetType objects inside the AddressSpace, in the same manner as the

folder “Asset Administration Shells” organizes AASType Objects.

4.2.3 Mapping AAS References

The referencing mechanism provided by AAs metamodel leverage on the entity

Reference used to connect other entities composing AASs. AAS Reference is

made up by a list of keys (containing in turn entity identifiers) composing

an unambiguous path to the pointed entity. The most important aspect to

consider in the mapping process of AAS References is guaranteeing that the

order of keys constituting the path is respected.

A näıve solution could be to use OPC UA References to map AAS Refer-

ences since both create connections between entities and nodes, respectively,

but AAS References contain inherent attributes (i.e., key) whilst OPC UA

References, for definition, contain neither attributes nor properties and com-

CHAPTER 4. OPC UA-BASED ASSET ADMINISTRATION SHELL 62

ponents. Furthermore, AAS References can point to an external source, and

such behavior cannot be replicated using OPC UA References, which can

point only to nodes contained in the AddressSpace.

The main aim of AAS References is connecting entities structuring the

AAS and also external entities. Therefore, we realised that AAS Reference

can be mappes as OPC UA Object, similarly to the approach used for entities

structuring the AAS. The entity AAS Reference may be mapped with an

ObjectType named AASReferenceType, whose structure is depicted by Figure

4.4.

Figure 4.4: Structure of the AASReferenceType ObjectType and relevant
DataTypes.

Following the same reasoning behind the mapping solution described in

subsection 4.2.1, the attribute key of AAS Reference is mapped as an OPC

UA Property. Furthermore, it has been assumed to map the Key type used

for the values inside the attribute key as an OPC UA Structured DataType

because this type entity is a structure. Since the type entities KeyType and

KeyElements are enumeration, they are accordingly mapped as OPC UA

Enumeration DataTypes, as shown in Figure 4.4. This solution has the great

advantage to organize all the keys composing the path to an entity as an

ordered array in the attribute Value of the OPC UA Property defined, so

that the original order is respected in the mapping. The root of the path is

CHAPTER 4. OPC UA-BASED ASSET ADMINISTRATION SHELL 63

identified by the element at index 0 and the element at last index identifies

the entity pointed by the AAS Reference.

The solution described so far respects the structure of the AAS meta-

model about referencing mechanism but presents some limitations from the

point of view of an OPC UA Client. The information of Reference is mapped

correctly inside an OPC UA Property but an OPC UA Client reading its

content cannot take advantage of such information because there is no mech-

anism that translate the path read from the Property value to the Node of

the AddressSpace referred by the path. This limitation can be overcome us-

ing OPC UA References to connect the Object mapping an AAS Reference

with the Node mapping the referenced entity. The type of such UA Refer-

ence may be an ad-hoc defined NonHierarchical ReferenceType representing

the semantics associated to the AAS Reference, in fact AAS Reference points

to entities to define some relationship, like the attribute asset of the entity

AssetAdministrationShell which points to the relevant asset entity. In this

last case, the “HasAsset” NonHierarchical ReferenceType can be defined to

represent this relationship. It is worth noting that with this simple enhance-

ment the number of browsing requests to know which object is pointed by an

AASReferenceType instance is drastically reduced. In [15] simalar consider-

ation are done to map AAS References in OPC UA, in fact AAS Reference

is mapped as an ObjectType with a property named “keys[]”. Furthermore,

a NonHierarchical ReferenceType named “AASReference” has been defined

and is used to connect objects mapping AAS References to the targeted object

in the AddressSpace.

There are two substantial differences between the solution proposed in

[15] and the one here described: 1) there is no specific mapping for keys,

therefore the complete path of the AAS Reference is converted in a string

formatted following a specific serialization rule mandated in [15]; 2) OPC UA

References of the same type (named “AASReference”) are used to connect

Objects mapping AAS References to the targeted Object in the AddressSpace,

regardless the semantics exposed by the AAS references in the AAS.

The disadvantage of 1) is that clients must parse the string path to re-

trieve all the information it contains, whilst mapping key values by means of

CHAPTER 4. OPC UA-BASED ASSET ADMINISTRATION SHELL 64

DataTypes, as we suggested, allows information to be understood at OPC UA

level. The disadvantage of 2), instead, is that an OPC UA Client browsing

the AddressSpace cannot distinguish the type of the Object pointed by the

OPC UA Reference on the basis of the reference itself, but it must reach the

Object through the reference to know its type. The solution here provided

requires the definition of different ReferenceTypes according to the object to

be pointed, so that an OPC UA Client browsing the AddressSpace can im-

mediately understand the type of object pointed by the reference, only by the

analysis of the type of the reference itself.

4.2.4 Mapping AAS common classes

In subsection 4.2.1, general mapping solutions have been covered for main

categories of elements composing the AAS metamodel. In particular, fine-

grained mapping solutions about attributes has been provided. A step further

will be done about mapping common classes in OPC UA considering a new

OPC UA feature, i.e. Interfaces, in order to create a direct representation of

such common classes in the AddressSpace.

Following the considerations done in subsection 4.2.1, all the general rules

described can be extended to all the metamodel entities inheriting from com-

mon classes. Let us consider the entity Submodel as an example to highlight

the possibilities for the mapping of common classes in OPC UA. Figure 4.5a

shows the mapping of SubmodelEntity defining an ObjectType named Sub-

modelType, where all the attributes inherited from the common classes of

Submodel are mapped as OPC UA Properties and for each of them a Mod-

ellingRule is selected according the cardinality specified by each common class

for every attribute. This solution is quite simple and allows to maintain the

same structure of the AAS metamodel, but does not scale because the at-

tribute mapped are not reusable and are valid just for the instances of the

type SubmodelType. For instance, all other ObjectTypes mapping Identifi-

able entities shall define again the Properties “identification”, “idShort” and

“description” as InstanceDeclarations.

Figure 4.5b shows another solution that leverages on the new OPC UA

CHAPTER 4. OPC UA-BASED ASSET ADMINISTRATION SHELL 65

Figure 4.5: Mapping common Classes using (a) classic OPC UA and (b) new
OPC UA Interfaces mechanism.

Interfaces mechanism. Both Identifiable and HasKind common classes are

mapped as interfaces called IIdentifiableType and IHasKindType, respec-

tively. All InstanceDeclaration defined under the Interface Objects are hiner-

ited by the SubmodelType ObjectType. Compared to the solution shown by

Figure 4.5a, attributes of common classes are mapped only once and different

ObjectTypes mapping metamodel entities can point to the relevant interfaces

by means of HasInterface References. This mapping solution scale better and

provide reusable interfaces in the mapping of the other AAS entities. In [15],

the OPC UA Interface-based mapping solution is used just for the common

classes Referable and Identifiable. For all other common classes different so-

lutions are applied case by case.

It is worth noting that all common classes can be mapped applying one of

the two proposed solutions but for HasDataSpecification a different approach

should be used, as will be discussed in the following subsection.

CHAPTER 4. OPC UA-BASED ASSET ADMINISTRATION SHELL 66

4.2.5 Mapping HasDataSpecification and DataSpecifi-

cation

In the AAS metamodel, instances of entities inheriting from the common

class HasDataSpecification feature more attributes than the ones defined by

its original class. The additional attributes are defined in a DST that the

HasDataSpecification entity must point to by means of an AAS Reference.

A behaviour like this cannot be realised following the standard inheritance

mechanism provided by OPC UA because this would require that instances

of a same ObjectType could feature different components and/or Properties

depending on which DST they are referring to. Moreover, a HasDataSpecifi-

cation entity can point to more than one DST, and this further complicates

the scenario.

Beside Interface, in [31] a new interesting feature named AddIn is specified.

An AddIn is an Object that associate features (represented by its ObjectType)

to the Node it is applied to. OPC UA AddIn model differs from Interface

model in that it is based on composition and not on inheritance. An AddIn

is applied to a Node by adding a Reference pointing to the AddIn Instance;

a HasAddIn Reference or a subtype shall be used. There are no restrictions

for AddIn ObjectTypes and there is no special super type for AddIns. This

feature fits for the mapping for HasDataSpecification entities.

According to the AddIn mechanism, the mapping of HasDataSpecification

entities can be done defining an ObjectType named DataSpecificationType

which is an AddIn mapping the entity DataSpecification. DataSpecification

is an abstract entity all the DST entities must inherit from. In order to map

a concrete DST entity, an ObjectType inheriting from DataSpecificationType

must be created. Recalling that DST entities are Identifiable, all the Object-

Types created must expose all the related attributes mapped properly. In the

following, it will be assumed to use the solution depicted in Figure 4.5a.

As depicted in Figure 4.6, an ObjectType named DataSpecificationIEC-

61360Type is created to map the DST DataSpecificationIEC61360 as an OPC

UA AddIn ObjectType defining Properties and components as InstanceDec-

larations mapping all the additional attributes defined by the DST.

CHAPTER 4. OPC UA-BASED ASSET ADMINISTRATION SHELL 67

Figure 4.6: Mapping data specification templates (DST) entities as AddIn
ObjectTypes and using them to map HasDataSpecification entities.

One important aspect about this mapping solution is that all the attributes

of DataSpecificationIEC61360 inherited by Identifiable are mapped as Prop-

erties and components containing all the information useful for the identi-

fication of the DST in the OPC UA AddressSpace, and thus these are not

InstanceDeclarations but actual Properties and Components of the Object-

Type DataSpecificationIEC61360Type.

To describe the solution specified for the mapping of instances of Has-

DataSpecification entities, the case of an instance of a ConceptDescription

describing an AAS property using the DataSpecificationIEC61360 will be

used. In Figure 4.6, the ConceptDescriptionType ObjectType is assumed to

map the ConceptDescription entity and the Object “SampleDescription” is an

instance of it. An AddIn Object of the DataSpecificationIEC61360Type Ob-

jectType is created (i.e., “IEC61360 Content”), connecting SampleDescription

by means of a HasDataSpecification reference. We preferred defining the Has-

CHAPTER 4. OPC UA-BASED ASSET ADMINISTRATION SHELL 68

DataSpecification ReferenceType as subtype of HasAddIn so that a generic

OPC UA client may easily detect the References involved in the mapping of

HasDataSpecification entity. In [15], the concept of DST has been mapped

using the OPC UA AddIn mechanism too.

4.2.6 Mapping ConceptDictionary and ConceptDescri-

ption

ConceptDictionary and ConceptDescription entities can be mapped in an

OPC UA Information Model defining proper ObjectTypes. Very recently,

OPC Foundation released an amendment [53] of the OPC UA Specification

defining new ObjectTypes and ReferenceTypes to define classification and

additional semantics of a device in terms of an external data dictionary. Such

new types can be used to attach semantics to nodes in the AddressSpace refer-

ring entries in an external dictionary like IEC CDD or eCl@ss. In particular,

two main ObjectTypes defined in the amendment [35] are DictionaryFolder-

Type that represents a dictionary, and DictionaryEntryType that represents

a pointer to an entry in an external dictionary.

Although mapping ConceptDictionary and ConceptDescription by using

these new ObjectTypes seems feasible and coherent with the strategies pro-

posed so far, it must be considered that both ConceptDicitonary and Concept-

Description inherit from some common classes and thus feature attributes that

seem not directly representable by properties defined in the two ObjectTypes

specified in [53]. Furthermore, ConceptDescrition is an HasDataSpecification

entity and its instances may feature different attributes depending on the re-

ferred DST. Therefore, a suitable mapping must be provided to reflect such

mechanism, like the one described in the previous subsection. In [15], it is

used the DictionaryEntryType ObjectType to map the ConceptDescription

entity. In particular, it defines specific subtypes of DictionaryEntryType that

have at least one AddIn Object to allow the usage of the IEC 61360 DST, as

described in the previous subsection.

CHAPTER 4. OPC UA-BASED ASSET ADMINISTRATION SHELL 69

4.3 Case study: Operator Support System for

assembly line

The case study is based on an Industry 4.0 assembly system and Operator

Support System (OSS) [54]. Several models of a certain product are assembled

by human operators in the same flow line where an OSS, provided by the

assembly system, gives to the operator all information needed to perform the

assembly cycle correctly and this information are provided as functions of the

model to assemble.

In this case study, the assembly of products composed of several differ-

ent components is assumed, among which there is always a motor controller.

Therefore, different models to be assembled feature a motor controller as a

component, but each model requires a motor controller with different specifi-

cation; in particular different product models require motor controllers with

different maximum rotation speed. For example, assembly of Model X re-

quires a motor controller with a maximum rotation speed greater or equal

to 2000, whilst the Model Y must be assembled including a motor controller

with a maximum rotation speed greater or equal to 3000. For each product

arrived to the human operator in the flow line, the OSS must suggest him the

right motor controller to be assembled according to the model of the product

received; the OSS must specify an unambiguous id of the product part to be

assembled in order to avoid assembling errors by the human operator.

Every motor controller used as component in the assembly line provides an

AAS containing all the information useful for the assembly, i.e. max rotation

speed. A simplified version of the AAS i depicted in Figure 4.7 as an UML

instance diagram using the same notation specified in [15]. The use case

here described involves the representation of the AAS inside an OPC UA

Server, so that an OSS based on OPC UA communication can take advantage

of the mapping solution described so far to simplify the assembly process.

The AAS (named SampleAAS) contains a Submodel (named 123456789) and

an asset (3S7PLFDRS35). The Submodel features only a property (NMax).

Furthermore, the AAS has a ConceptDictionary (SampleDict) containing a

ConceptDescription (NMaxDef).

CHAPTER 4. OPC UA-BASED ASSET ADMINISTRATION SHELL 70

Figure 4.7: UML instance diagram showing the AAS of the case study.

All the Identifiable entities feature the attribute identification containing

a globally unique identifier. Since NMax is a HasSemantics entity, its at-

tribute semanticId contains the identifier of the ConceptDescription defining

its semantics, i.e., NMaxDef. In particular, the semantics specifies that the

Property value (2000) represents the maximum rotation speed supported by

the motor controller, and it is expressed in rpm (revolutions per minute).

The AddressSpace that will contain the AASs of motor controller may be

organized creating a Folder for each kind of identifiable entity, as discussed

in Section 4.2.2. Therefore, the Folders “Asset Administration Shells” and

“Assets” (shown in Figure 4.8) will organize objects mapping the AAS and

the asset, respectively; in a similar manner, the folders “Submodels” and

“ConceptDescriptions” will organize objects mapping the Submodel and the

ConceptDescription, respectively. It is worth noting that these last two Fold-

ers are depicted in Figure 4.8, but for space reason, their contents are shown

in Figure 4.9.

All the identifiable entities in the use case are mapped using instances of

OPC UA ObjectTypes: AASType for SampleAAS (see Figure 4.8), Asset-

Type for 3S7PLFDRS35 (see Figure 4.8), SubmodelType for 123456789 (see

Figure 4.8) and ConceptDescriptionType for NMaxDef (see Figure 4.9). Since

all these ObjectTypes represent Identifiable entities of the metamodel, they

point to an OPC UA Interface “IIdentifiableType”, which is not depicted

in figures for space reason. All these instances feature a property “identi-

CHAPTER 4. OPC UA-BASED ASSET ADMINISTRATION SHELL 71

Figure 4.8: Mapping of one of the AAS considered in the case study into OPC
UA information model.

fication” that contains the relevant identifier of the entity represented. All

the attributes consisting in AAS References (depicted with <<ref >>in Fig-

ure 4.7) are mapped using instances of the AASReferenceType ObjectType.

Furthermore, ad-hoc defined Non-Hierarchical ReferenceTypes are used to

enhance the representation of AAS References in OPC UA and simplify the

browsing of an OPC UA Client: HasAsset, HasSubmodel, HasSemantics, Has-

ConceptDescription.

All the attributes consisting of composition are mapped as folder objects

named using the plural noun of the relevant attribute. Such folders organize

CHAPTER 4. OPC UA-BASED ASSET ADMINISTRATION SHELL 72

Figure 4.9: Continuation of the mapping of the AAS considered in the case
study.

objects mapping the entities contained by such composition attributes. The

ConceptDictionary SampleDict and the AAS Property NMax shown in Figure

4.7 are mapped using instances of ad-hoc defined ObjectTypes, i.e. Concept-

DictionaryType and SubmodelPropertyType, respectively. As depicted in

Figure 4.9, these instances are the Objects “SampleDict” and “NMax”. Fi-

nally, since the ConceptDescription NMaxDef features additional attributes

coming from the DST for IEC 61360, an AddIn instance of the DataSpecifi-

cationIEC61360Type ObjectType (i.e., “IEC61360 Content” in Figure 4.9) is

created and connected to the “NMaxDef” object by means of a HasDataSpec-

ification Reference. Therefore, all the properties of this AddIn instances are

filled accordingly to all the relevant values of the ConceptDescription.

We consider the scenario where the OSS uses an OPC UA Client to access

an OPC UA Server containing all the AASs of the motor controllers, as shown

CHAPTER 4. OPC UA-BASED ASSET ADMINISTRATION SHELL 73

in Figure 4.10. Different instances of AASType are present, both based on

”SampleAAs” shwn in Figure 4.7; only two instances are depicted for space

reason: Motor Controller 1 and Motor Controller 2. These instances differ for

the NMAX property, hence the motor controllers represented by these AASs

differ for the maximum rotation speeds supported.

Figure 4.10: Example of OPC UA Server maintaining instances of AASType.

At a certain moment in the assemply process, the OSS suggest to an human

operator a specific motor controller to be assembled on the basis of a query

submitted to the OPC UA Server. Assuming that the product to be assembled

requires a motor controller with maximum rotation speed supported greater

than 1800, the OSS uses the OPC UA Client to browse the AddressSpace in

the OPC UA Server looking for an instance of AASType featuring a Property

NMAX > 1800.

Based on the AAS depicted in Figure 4.7, the OSS knows that the property

CHAPTER 4. OPC UA-BASED ASSET ADMINISTRATION SHELL 74

it must check (i.e. Max Rotation Speed) have a semantics identified by the

id “0173-1#02-BAA120#007”. It is worth noting that the OSS does not look

for a Property named “NMAX” but for a property featuring a well-known

semantic identifier. This is of paramount importance, because Properties can

have different names but have the same semantics, which is always identified

with the same id.

Starting from folder “Concept Descriptions” (see point 1 in Figure 4.9),

the object “NMaxDef” of ConceptDescriptionType type is selected because it

features a Property “identification” containing the identification “0173-1#02-

BAA120#007” (point 2 in Figure 4.9). Starting from this Object, the OPC

UA HasSemantics Reference is followed in the opposite sense in order to look

for Objects of SubmodelPropertyType type. The object “NMAX” is reached

(Point 3 in the Figure 4.9). On the property “value” it is possible to perform

the query given in input. In this case, the condition of the query is satisfied.

The last step consists in returning to the OSS the id of the AAS found, which

models the real motor controller featuring a rotation speed greater than 1800.

Starting from object “NMAX” it is possible to reach its container, i.e., the

SubmodelType Object “123456789” (point 4 in Figure 4.9). Finally, following

the OPC UA Reference “HasSubmodel” in the opposite sense it is possible

retrieving the id of the AAS, i.e., Motor Controller 1 (Point 5 of Figure 4.9).

This information will be passed to the human operator, in order to realize the

correct assembly.

4.4 Discussion

The contribution of this research activity consists in the definition of an ap-

proach in the mapping of the AAS metamodel into an OPC UA Information

Model providing reasoning and rationales behind the approach adopted. The

AAS metamodel is a big step forward for the implementation of I4.0 Compo-

nent exposing a well-known interface and information structure. The docu-

ment [15] defines the AAS metamodel as the fundamental means for the in-

teroperable exchange of asset information between partners of the value-chain

network. The representation of AAS in file format using XML or JSON is lim-

CHAPTER 4. OPC UA-BASED ASSET ADMINISTRATION SHELL 75

ited to the scenario of data exchange between partners and cannot be used for

the realisation of an I4.0 component because there is no I4.0-compliant com-

munication to access internal data of the AAS. For this reason, OPC UA is

considered the right solution because it provides standardised communication

capabilities, several standardised service sets, and a standardised information

model mechanism for data representation. In [15] a preliminary work for the

definition of an OPC UA mapping of the AAS metamodel is provided and, in

our research, we validated the feasibility of OPC UA as the right technology

to expose AASs in industrial scenario.

Our research involved the adoption of a bottom-up approach for the map-

ping of the AAS metamodel entities in the elements of the OPC UA Informa-

tion Model. We started from the most fine-grained elements of the metamodel,

i.e. entities and attributes, classifying them respect the functionalities they

cover in the AAS metamodel (e.g. structuring the AAS, defining types, con-

taining values, containing AAS References, etc.) and then specifying possible

mapping solutions for each of them in comparison with the ones provided in

[15]. We continued mapping the complex construct and mechanisms of the

AAS metamodel, i.e. Common Classes and AAS Reference, providing several

possibilities for their mapping.

In the mapping process of the AAS metamodel, we realised that direct

representations of some AAS metamodel mechanisms in the OPC UA Ad-

dressSpace cannot be advantageous if they do not fit with some OPC UA

analogous mechanism. The best example is the AAS referencing mechanism,

which can be directly mapped inside the AddressSpace but cannot be used

because OPC UA already have its own referencing mechanism. Our solution

involved using OPC UA References to enchance the mapping of the AAS ref-

erence mechanism, defyining new NonHierarchical reference Types. Of course,

the information of the original AAS References mapped inside the AddressS-

pace is maintained inside their relevant Objects, but the addition of new OPC

UA reference allows the utilization of the AAS Referencing mechanism in the

context of OPC UA. This was demonstrated in the use case discussed in sec-

tion 4.3, where the OSS uses such UA References properly defined inside the

OPC UA AddressSpace to retrieve the desired information.

CHAPTER 4. OPC UA-BASED ASSET ADMINISTRATION SHELL 76

The mapping solutions developed in this research have been implemented

by the authors as an OPC UA Information model with the project name

CoreAAS, publicly available on GitHub2. CoreAAS has been used for the

development of an open source SDK for Node.js3, named node-opcua-coreaas4,

based on node-opcua5 for the realisation of OPC UA Server using CoreAAS

functionalities.

Iñigo et al. [55] realised an implementation of the AASs based on CoreAAS

for an industrial scenario to facilitate the integration of grinding machines

with other components or machines in the production plant.

4.5 Publications

A preliminary research carried out on OPC UA-based AAS has been pre-

sented at 45th Annual Conference of the IEEE Industrial Electronics Society

(IECON), Lisbon, Portugal [56].

All the rationales and insights behind the mapping of the AAS metamodel

in OPC UA has been published in the scientific journal “Computers” [57].

2https://github.com/OPCUAUniCT/coreAAS
3https://nodejs.org/
4https://github.com/OPCUAUniCT/node-opcua-coreaas
5https://github.com/node-opcua/node-opcua

Chapter 5

AAS representing PLC based

on IEC 61131-3

In the previous chapters the AAS has been presented as the universal mens

to access all the information relevant to an asset useful during whole life cycle

of a production system, from its development until its disposal. The AAS

metamodel has been presented as the universal means to structure information

inside an AAS and, in particular, in Chapter 4 mapping proposal for its

representation inside an OPC UA Server has been discussed. This results

allowed us to define an OPC UA Information Model specific for the realisation

of an OPC UA-based AAS which can be used to expose asset information

to clients in a standardised manner in order to facilitate common industrial

scenarios.

At the lowest level of the hierarchy of a production system, automation

and control programs are executed by Programmable Logic Controllers (PLC),

whose programming technology is based on IEC 61131-3 standard. Usually,

control programs, PLC running such programs, and the physical plants they

control are strictly related. The description of such relationships should be

clearly defined and accessible during the whole life cycle of a production sys-

tem, so that they can be used for the definition of testing plant operations,

maintenance operations at run-time and reconfiguration process of the plant.

In this chapter we discuss an approach leveraging the concept of AAS

77

CHAPTER 5. AAS REPRESENTING PLC BASED ON IEC 61131-3 78

to maintain such information, providing a model for the description of such

relationships between the IEC 61131-3 programs, the PLC and the production

system. The results presented in the previous chapter allowed us to realise

such model using OPC UA and realise a case study where the AASs describe

the relationships between a PLC, the program, and the physical parts needed

to control a drilling machine.

5.1 Introduction

Nowadays, automation and control programs are executed by PLCs and, due

to their massive adoption, it seems legit thinking that they will be used in the

age of Industry 4.0 too, as stated in [58]. The PLC programming technology

adopted nowadays is based on IEC 61131-3 [59], which is a standard defined

in the past to cope with the heterogeneity of vendor-specific languages and

technologies adopted for PLC programming. For this reason, it is legit imagine

that I4.0 controllers will be based on this standard [60], in particular during

the transaction of plants in Industry 4.0 where devices cannot be completely

replaced.

There are close relationships (both logical and physical) between IEC

61131-3 programs, the hardware and software resources of the PLC where

they run, and the plant. With plant are intended all the controlled machines,

control devices, control applications and communication systems. An exam-

ple of such relationships can be a variable of an IEC 61131-3 program mapped

to a real input or output of the PLC which, in turn, is connected to a real de-

vice (e.g. sensors, actuators). Another example is a variable shared between

an IEC 61131-3 program running in a PLC and a software tool running in

another device and exchanging information with the PLC.

Considering the life cycle of a production system, a comprehensive descrip-

tion of all these relationships could help the definition of testing operations

before the utilization of the plant (after its realization) and maintenance oper-

ations at run-time. Applying variations to the production system or changes

to the model of manufactured products often requires adjustments in the

plant configuration [61]; the reconfiguration process can be easily conducted

CHAPTER 5. AAS REPRESENTING PLC BASED ON IEC 61131-3 79

if a complete and standardised description of the entire system is available,

involving both the PLC programs and the relations with the actual plant.

Current literature presents many research papers dealing with integrated

models including IEC 61131-3 programs and the relevant plant controlled. For

the implementation of manufacturing line, proper verification of a line’s oper-

ational status are ususally performed using approaches involving simulation

techniques; since PLC programs only contain the control logic without speci-

fying device models, such approaches require a corresponding plant model to

perform simulation [62, 63]. In [64] a detailed overview on the development of

a PLC simulation environment is provided, pointing out the importance of re-

alising a corresponding virtual plant model (the counterpart system) required

to interact with the inputs and outputs of the PLC. Other approaches present

in the literature are based on the verification of properties of the state ma-

chine on which the PLC program is based; again these approached are based

on the use of a plant model integrated with the PLC program to be verified

[65]. Park et al. [66] describe another approach based on the visual verifica-

tion of PLC programs that integrates the program with a corresponding plant

model, so that users can intuitively verify the PLC program in a 3D graphic

environment.

Considering Cyber-Physical Systems (CPS), current literature presents

several approaches pointing out the need to model the entire set of CPS

functionalities, including control programs and the on-board hardware (e.g.

sensors) [67].

An AAS can be used to represent the relationships between PLCs and the

plant, but what is missing to realise such description is a model representing

PLC programs based on IEC 61131-3 and the relevant relationships with the

PLC hardware and the devices of the controlled plant. Our research involved

the study of the IEC 61131-3 software model in order to represent programs

based on it inside an AAS using the AAS metamodel. Therefore, in this

research activity we defined a specific AAS Submodel to model whatever

IEC 61131-3 program inside an AAS respecting, of course, the rules and

specifications of the standard IEC 61131-3. Starting from this Submodel,

the relationships between the software elements with other parts of the plant

CHAPTER 5. AAS REPRESENTING PLC BASED ON IEC 61131-3 80

or the PLC itself can be described inside the AAS.

5.2 Overview on IEC 61131-3

The standard IEC 61131 provides an architectural definition and a software

model for industrial PLCs. In particular, IEC 61131-3 cope with the problem

of the existence of different vendor-specific languages for PLCs programming

[68]. IEC 61131-3 specifies syntax and semantics of a unified suite of program-

ming languages for PLCs consisting in Instruction List (IL), Structured Text

(ST) Ladder Diagram (LD), Function Block Diagram (FBD) and Sequential

Function Chart (SFC).

The foundation of IEC 61131-3 is a unified software model for the PLC,

shown in Figure 5.1, which provides the basic high-level language elements

that are programmed using the aforementioned programming languages.

Figure 5.1: Software model of IEC 61131-3.

The main elements composing the software model of IEC 61131-3 are

Configuration, Resource, Task and Program Organisation Unit (POU).

Configuration This element defines the entire software project and must

include at least one Resource. A Configuration may refer to one or

more PLCs involved in the project.

Resource It represents a processing facility of the PLC that can execute a

program and is defined inside a Configuration. It allows the definition

of several information about the PLC, like hardware features (e.g. type

CHAPTER 5. AAS REPRESENTING PLC BASED ON IEC 61131-3 81

of processor, memory dimension, number of physical inputs and out-

puts) and software features (e.g. operating system version, firmware

identification).

Task This software element is used to define the desired execution mode of

a program. Among the available scheduling facilities there is the cyclic

execution, according to which a program can be periodically executed;

in this case, an interval is assigned to a Task, specifying the period the

program is executed.

POU Is a functional element wich is used to decompose an IEC 61131-3

control program. A POU may be a Program, a Function Block (FB) or

a Function (F).

All POUs can be defined using one of the programming language specified

in the standard. A Program typically consists of interconnected Function

Blocks exchanging data and can communicate with other Programs. The

execution of different parts of a Program may be controlled using Tasks.

A Function Block is used to wrap an algorithm and make it reusable inside

different parts of a Program. Using FBs, it is possible to create reusable parts

of code for a better modularization of the program. It consists of variables

for inputs, outputs, and internal storage, and it can use other FBs internally.

Function is a reusable software element that generates the same output values

when the same imput values are provided. It differs from FB in that it has no

internal state, whereas FB retains its internal values from the last execution.

Variables in an IEC 61131-3 program can be declared inside any of the

aforementioned elements of the software model. Depending on where and

how they are defined, variables can be global, local, input, output, external.

Variables may be declared using several attributes, like AT which allows the

association of a variable to particular memory address. According to the

standard IEC 61131-3, the internal memory of PLC is composed by the Input

(I) and Output (Q) process images and Merker (M) memories. The I and Q

process images are updated at each Program Scan [59]; inputs are sampled

and copied in memory I, whilst data stored in memory Q updates the actual

values of outputs at the end of each Program Scan.

CHAPTER 5. AAS REPRESENTING PLC BASED ON IEC 61131-3 82

The relationships between the software elements composing an IEC 61131-

3 can be highlighted using an UML class diagram depicted in Figure 5.2. This

diagram has been defined as a starting point, guiding us for the definition of

an AAS Submodel;

Figure 5.2: UML class diagram showing the relationships between entities of
the IEC 61131-3 software model.

5.3 Submodel for IEC 61131-3

The aim of this research activity is representing each element defined in an

IEC 61131-3 Configuration using the AAS metamodel. For this reason, an

AAS Submodel, referred in the following as “IEC 61131-3 Submodel”, has

been proposed to represent an IEC 61131-3 Configuration. Our idea is that

every AAS representing a PLC contains a “IEC 61131-3 Submodel” describing

the control program it runs. Of course other Submodels exist inside the PLC

AAS descrbing all different aspects relevant the asset, as usual.

According to Figure 5.2, IEC 61131-3 Configuration is made up by several

elements (e.g. Resources, POUs, Tasks, etc.), thus AAS SubmodelElements

CHAPTER 5. AAS REPRESENTING PLC BASED ON IEC 61131-3 83

inside the IEC 61131-3 Submodel can be used to represent the IEC 61131-3

elements.

The instances of the class SubmodelElementCollection (SEC) can be used

to organise a Submodel inside the AAS. SEC can be used in two different

ways: 1) using SEC as a Folder or 2) using SEC to represent a complex

element. With method 1), A SEC may be defined to contain several Submod-

elElements, each of which represent an IEC 61131-3 element. In this case the

SEC does not represent an IEC 61131-3 element, but it has only organization

purpose, like a folder in a file system. This kind of organization is proposed

to group SubmodelElements representing IEC 61131-3 elements of the same

category (e.g. Variables, Tasks, POUs). The relevant advantage is an easier

classification of SubmodelElements.

In some cases, an IEC 61131-3 element features so many characteristics

that cannot be represented using the standard attributes provided by the sub-

classes of SubmodelElement. For instance, an IEC 61131-3 Variable features

a lot of attributes, like AT, scope, and type wich cannot be represented all

together using a single SubmodelElement like a Property. In other words, a

Variable is a complex element and a SEC can be used to represent it using the

method 2). This method involves the use of SEC as a direct representation

of the complex element to group its attributes that, in turn, will be mapped

using proper SubmodelElement subclasses.

In summary, with method 1) the SEC have no meaning related to the IEC

61131-3 program, but it is just a means to organize the Submodel structure;

with method 2), instead, the SEC represents a real entity of the IEC 61131-3

program, like a Variable or a Task. To differentiate SEC at a glance, it has

been assumed to use the values of the attribute category (inherited by the

common class Referable), using a value “SET” to classify a SEC representing

just a container of other SubmodelElements (method 1) and using a value

“ELEMENT” to classify a SEC representing a complex element.

In the following, will be described how each element of the IEC 61131-3

software model depicted in Figure 5.2 can be represented inside the AAS using

the AAS metamodel.

CHAPTER 5. AAS REPRESENTING PLC BASED ON IEC 61131-3 84

5.3.1 Configuration

A Submodel named “IEC 61131-3” represents a Configuration in the context

of an AAS, as depicted in Figure 5.3.

Figure 5.3: Representation of an IEC 61131-3 Configuration.

Attributes describing the Configuration can be represented as Properties

and aggregated under this Submodel to describe the configuration itself. For

instance a Property “Name” could provide a mnemonic name of the Con-

figuration, whilst a File named “ProjectFile” could contain the path to the

location of the project file (e.g. the path shown in the value attribute).

Since configuration contain Variables and Resources, their representations

will be organized under proper SECs. A “folder” SEC named “IECVariables”

is defined under the IEC 61131-3 Submodel to contain information related to

Variables. How Variables are represented is described in the remainder of this

section. Resources, instead, are represented using “complex object” SECs,

thus featuring the value “ELEMENT” in the category attribute. The reason

behind the difference between Resource and Variables is that Resources are

numerically less than Variables, hence they require less organization in the

hierarchy. For this reason, we did not create a Folder to contain them, as

done for Variables, removing an unneeded level in the hierarchy of elements

composing the Submodel.

CHAPTER 5. AAS REPRESENTING PLC BASED ON IEC 61131-3 85

5.3.2 Resource

Resource can be represented with a SEC with category set to “ELEMENT”,

as depicted in Figure 5.4. It features Properties specific for the Resource, e.g.

name, CPU model, Operating System version, firmware identification. Since

Resource contains Variables, Tasks and POUs, three SECs with the attribute

category set to “SET” are created to organize specific representation of such

IEC elements. For Variables, Tasks, and POUs, the SECs “IECVariables”,

“IECTasks”, and “IECPOUs” are created, respectively.

The SEC named “IECVariables” collect all the information related to the

Variables defined under the Resource. The SEC “IECTasks” collect all the

information related to the Tasks defined in the relevant Resource. Finally, the

SEC “IECPOUs” collect all the information related to Programs, Function

Blocks and Functions that are used inside the relevant Resource.

Figure 5.4: Representation of an IEC 61131-3 Resource.

5.3.3 Program

As done for Resource, Program is represented as a SEC of category “ELE-

MENT” inside the AAS Submodel, as shown in Figure 5.5.

CHAPTER 5. AAS REPRESENTING PLC BASED ON IEC 61131-3 86

Figure 5.5: Representation of an IEC 61131-3 Program and its relationship
with an IEC Task.

Such element contains Properties related to the Program description like

a mnemonic name (“DeclarationName”) and the type of the POU (which is

set to “Program” in this case). Another Property is the “ProgrammingLan-

guage” used to specify the IEC 61131-3 programming language adopted for

the program; we defined the enumeration type “IECLanguage” inside the

AAS Submodel, which provides all the names of the IEC 61131-3 languages

as allowed values. For instance, in Figure 5.5, the value “ST” for this Property

shows that the language used for the Program is Structured Text.

An instance of ReferenceElement named “AssignedTask” is defined, in-

stead, to represent which Task the Program is associated with. It is worth

CHAPTER 5. AAS REPRESENTING PLC BASED ON IEC 61131-3 87

noting that the Task pointed by “AssignedTask” is one of the elements col-

lected under the SEC “IECTasks” of the relevant Resource contained in the

AAS Submodel. As done for Configuration and Resource, a SEC “IECVari-

ables” is defined to collect information related to Variables defined inside the

relevant Program.

According to the IEC 61131-3 standard, Programs may have input and

output parameters, called VAR INPUT and VAR OUTPUT, respectively [59,

68]. VAR INPUT represents the set of information received by a Program,

whilst VAR OUTPUT are the parameters whose value is given back by the

program. For this reason, two folder-like SECs named “Var Input” and

“Var Output” may optionally be defined inside “IECVariable” to collect even-

tually all the entities representing VAR INPUT and VAR OUTPUT Variables

of Program.

Since a Program may contains POUs like instances of Function Blocks or

Function calls, a SEC “IECPOUs” is used to collect all the information about

such POUs, i.e. instances of Function Blocks and Functions called inside the

Program.

5.3.4 Function Block

Since Function Blocks are like Programs, they can be represented like SECs

of category “ELEMENT”, like shown in Figure 5.6. Such element contains

Properties related to the Function Block instance like the declaration name

and the type of the POU (which is set to “Function Block” in this case).

As done for Programs, an ReferenceElement “AssignedTask” is defined to

show which Task the Function Block is eventually associated with.

Furthermore, the same consideration done for Programs about Variables

are valid for FB too. Therefore, “IECVariables” is used to collect all the infor-

mation related to the Variables, and the SECs “Var Input” and “Var Output”

can optionally be used to collect input and output Variables of the Function

Block, respectively.

A SEC of category “SET” named “IECPOUs” is used to collect all the

information relevant the POUs adopted by the Function Block, i.e. instances

CHAPTER 5. AAS REPRESENTING PLC BASED ON IEC 61131-3 88

Figure 5.6: Representation of an IEC 61131-3 Function Block and its rela-
tionship with an IEC Variable.

of other Function Blocks and Functions called by the Function Block. This

considerations reflect all the relationships between elements highlighted in

Figure 5.2.

In IEC 61131-3, FB may be assigned to Variables, thus such behavior must

be represented inside the AAS Submodel. For this reason, a ReferenceElement

named “AssignedTo” points to the SEC representing the Variable containing

the Function Block instance.

CHAPTER 5. AAS REPRESENTING PLC BASED ON IEC 61131-3 89

5.3.5 Function

A Function is represented as a SEC with category “ELEMENT”, as shown

in Figure 5.7. It may contain Properties related to the Function description

like the name and the POU type. A SEC “IECVariables” is used to collect

Figure 5.7: Representation of an IEC 61131-3 Function.

all the information related to the Variables of the Function. Functions may

have one or more input parameters (VAR INPUT Variables) but, differently

from FBs, they do not have output parameters but return exactly one element

as function “return” value. Therefore, the SECs “Var Input” can optionally

be used to collect input Variables representing the input parameters, whilst

a well-known variable named “Output” is defined among the Variables to

capture the value returned by the Function.

Finally, as done for the other POUs, a SEC “IECPOUs” is used to collect,

if needed, all the information relevant to the Function calls present inside the

Function.

CHAPTER 5. AAS REPRESENTING PLC BASED ON IEC 61131-3 90

5.3.6 Task

A Task is represented as a SEC of category “ELEMENT”, as depicted in

Figure 5.8, collecting all Properties containing information related to the task,

e.g. Interval and Priority.

Figure 5.8: Representation of an IEC 61131-3 Task and its relationship with
POUs.

In order to represent which POU is currently running under the Task, the

ReferenceElement “AssignedPOU” is used to point the SEC representing such

POU, which is contained in the SEC “IECPOUs” of the relevant Resource.

5.3.7 Variable

A single Variable is represented as a SEC of category “ELEMENT” as shown

in Figure 5.9. It contains Properties related to the description of the Variable

itself, e.g. Name, Retentive, Scope, DataType Value and Address.

Inside POUs, Variables can be assigned to other Variables or passed as in-

put or output parameter/variable of other POUs. Furthermore, results from

Function or expressions can be assigned to Variables. To represent these rela-

tionships, two ReferenceElements named “AssignedFrom” and “AssignedTo”

CHAPTER 5. AAS REPRESENTING PLC BASED ON IEC 61131-3 91

Figure 5.9: Representation of an IEC 61131-3 Variable.

are proposed to point to the element giving the value or receiving the value,

respectively; the name used for this ReferenceElement depends on the direc-

tion considered for the assignment. Instead, when the content of a Variable is

obtained as a result of an expression containing other Variables, one or more

ReferenceElements named “DependsOn” are used to point the representa-

tions of the relevant Variables used in the expression. For instance, if the

value of a Variable Z is obtained applying the formula Z = X + 3 ∗ Y , where

X and Y are in turn Variables, we say that Z depends on the value of both X

and Y. Therefore, the SEC representing Z will expose two ReferenceElements

“DependsOn” pointing to the SECs representing X and Y, respectively.

5.3.8 Semantics for IEC 61131-3 elements

When the IEC 61131-3 Submodel is explored, it must be clear what each

element represents in respect to the IEC 61131-3 standard. Clients accessing

the AAS Submodel ”IEC 61131-3” must be able to distinguish whether an

element, like a SEC, represents a Variable or a Resource. Furthermore, it must

be clear what a particular Property represents for an IEC 61131-3 program.

Definition of semantics played a very important role in the definition of this

Submodel because a mandatory requirement for the interoperability is that

the meaning of each element must be clearly understood and shared by all

the partners of the value chain.

Since each element inside the IEC 61131-3 Submodel inherit form the com-

mon class HasSemantics, the attribute semanticId of each element points to

CHAPTER 5. AAS REPRESENTING PLC BASED ON IEC 61131-3 92

a semantic description contained in a Semantics Repository properly defined.

The repository could be considered like a dictionary of IEC 61131-3 terms and

concepts used by the standard. In this way, the attribute semanticId allows

to point to the IEC 61131-3 concept defining uniquely the role of that element

inside the IEC 61131-3 standard. To achieve interoperability, the Semantics

Repository must be shared between all the value-chain partners using the

AAS IEC 61131-3 Submodel.

5.4 Using AASs to represent PLC and Real

Plant

AS said so far, several relationships logically and physically exist between

IEC 61131-3 programs running on PLC, the PLC physical parts, and the

various parts (e.g., devices, sensors, actuators, etc.) composing the plant.

Our research aim to describe all these information and make them accessible

by means of the AASs that represent all the involved parts in the digital

world.

The IEC 61131-3 Submodel described in the previous section is just one

part of the representation and on its own cannot encompass the description of

all the aforementioned relationships. As will be described in the reminder of

this section, new Submodels must be defined on the relevant AASs describing

both the parts of the Plant and the PLC.

Usually, a PLC features electrical connections, also referred as terminals,

used to connect devices depending to the characteristics of those connections

(e.g., input, output, 0-24V digital, 0..20mA analog, 4-20mA analog). Such

terminals are organized into I/O modules mounted in racks. In Figure 5.10

a so-called compact PLC is shown; it features input and output connections

and does not uses modular racks.

During the configuration of a PLC, some of the electrical connections

are mapped into internal memory locations of the I and Q memory [68]. In

turn, Variables defined in a IEC 61131-3 program may be associated to these

memory locations using the standard attribute AT. Finally, the I/O electrical

CHAPTER 5. AAS REPRESENTING PLC BASED ON IEC 61131-3 93

Figure 5.10: PLC and I/O electrical connections.

connections of the PLC are connected to the terminals of the devices con-

trolled by the PLC. For instance, a pump connected to a PLC is switched

depending on the value of a Variable defined inside the control Program of

the PLC. Therefore, there must be a boolean variable (e.g., ”PumpTest”) as-

sociated to a specific memory location (e.g., %Q0.0) which, in turn, maps the

output terminal of the PLC connected to the input terminal of the pump. The

description of such relationships highlights that a value true of the Variable

switches on the pump. The IEC 61131-3 Submodel is able to describe only the

mapping between the variable and the memory location (e.g. %Q0.0) and not

the parts relevant the physical connection. Another example of relationship

that cannot be represented by the IEC 61131-3 Submodel only is the case of

control applications distributed among several PLCs and/or other computing

devices. In this scenario it may happen that the applications running into

the different devices need to share one or more information (e.g. variables).

Let us consider the case of a Variable defined in a IEC 61131-3 program run-

ning on a certain PLC and let us assume that it must be set at run-time

by a configuration tool or a SCADA application running in another device

connected to the PLC. Even in this case, the description of the relationships

between internal variables and the external tools cannot be represented in the

CHAPTER 5. AAS REPRESENTING PLC BASED ON IEC 61131-3 94

definition of the IEC 61131-3 program.

The AAS describing the PLC (or in general the computing device where

the IEC 61131-3 program runs) must include the IEC 61131-3 Submodel and

must be enriched with the Submodels representing the physical I/O electrical

connections provided by the PLC. It is assumed that this last kind of Sub-

model contains Properties describing the features of the physical connections.

With this assumption, instances of ReferenceElement can be used inside the

AAS to connect elements inside the IEC 61131-3 Submodel modelling the

Variables with the elements representing the physical terminals the Variables

are referring to. Therefore, ReferenceElements connect elements of two dif-

ferent Submodels of the same AAS modelling the PLC.

An example of what just said is depicted in Figure 5.11, where a PLC is

connected to some devices of the plant. For the sake of simplicity, the plant

is described as a whole by means of a single AAS.

Figure 5.11: AASs representing PLC and the real plant.

The AAS of the PLC contains the IEC 61131-3 Submodel representing the

IEC 61131-3 programs running on the PLC. Due to lack of space, only two

SECs of category “ELEMENT” are shown representing a local Variable and

CHAPTER 5. AAS REPRESENTING PLC BASED ON IEC 61131-3 95

a global Variable, respectively. The local Variable is connected to the input

terminal of the PLC associated at memory location %I0.0 which in turn is

connected to the output terminal of a temperature sensor. This relationship

is highlighted by the AASs with red arrows that represent ReferenceElements.

The AAS of the PLC presents a Submodel named “I/O Connections” contain-

ing the representations of the I/O connections of the PLC, among which there

is the input connection associated to the memory address %I0.0 defined, for

semplicity, as a Property (i.e., Channel I 0). Therefore, a ReferenceElement

connects the SEC “Local Variable” inside the Submodel IEC 61131-3 to the

Property “Cannel I 0” of the Submodel “I/O Connections”. Let us assume

that a temperature sensor in the plant is connected with the input terminal of

the PLC associated to the memory address %I0.0. The AAS representing the

plant contains a Submodel named, for convention, “Device Connections” to

contain properties relevant to the physical connections of each device of plant.

One of these properties is named “Temperature Sensor” and represents the

physical connections of the relevant sensor with the PLC. Such relationship

is highlighted by a ReferenceElement connecting the Property “Temperature

Sensor” with the Property “Cannel I 0” of the PLC AAS.

As said before the real plant may feature distributed applications running

on other devices (e.g. PLC, computers) and exposing configuration values

that must be used by the PLC. In the example in Figure 5.11, the Submodel

“Configuration Tool” contains a Property (named “Parameter”) modelling

a setting value that must be used inside the PLC Programs to fill a global

shared Variable. Even in this case, a ReferenceElement can be used to connect

“Global Variable” in the PLC AAS with the “Parameter” Proeprty of the

AAS of the plant to describe this kind of relationship.

This approach to represent relationships as ReferenceElements inside the

AASs gives an overview of all the connections between elements composing

the entire plant, including devices, applications and I/O terminals, making

them both structured in a meaningful manner and accessible with a uniform

format.

CHAPTER 5. AAS REPRESENTING PLC BASED ON IEC 61131-3 96

5.5 Case Study: Controlling a Drilling Ma-

chine

In this section, our approach defined in this research will be applied to a real

industrial use case. The use case considers a PLC running a real IEC 61131-3

program written in ST that controls a drilling machine, as depicted in Figure.

5.12.

Figure 5.12: PLC and Drilling Machine.

The drilling machine can be moved up or down using a motor that receive

the commands DrillUp and DrillDown, respectively. Two proximity sensors

are used to track when the limit values in the range of the vertical movement

are reached, i.e. SensorUp and SensorDown. To activate the rotation of the

drill bit of the drilling machine, the command Rotate is used. The control

program in the PLC is started by an operator using the Start command. The

ST program controlling the drilling machine is reported in Listing 5.1.

CHAPTER 5. AAS REPRESENTING PLC BASED ON IEC 61131-3 97

1 PROGRAM Drill

2 VAR_EXTERNAL

3 T_PARAM: TIME;

4 END_VAR

5 VAR

6 DrillDown AT %Q0.0 : BOOL;

7 DrillUp AT %Q0.1 : BOOL;

8 DrillRotate AT %Q0.2 : BOOL;

9 Start AT %I0.0 : BOOL;

10 Sensor AT %I0.1 : BOOL;

11 SensorUp AT %I0.2 : BOOL;

12 EndDrill AT %M0.0 : BOOL:= FALSE;

13 Timer01: TON;

14 END_VAR

15 Timer01(IN:=Sensor , PT:= T_PARAM);

16 IF Start THEN

17 IF NOT EndDrill AND NOT Sensor THEN

18 DrillDown :=1;

19 DrillRotate :=1;

20 END_IF

21 IF NOT EndDrill AND Timer01.Q THEN

22 DrillDown :=0;

23 DrillRotate :=0;

24 EndDrill :=1;

25 END_IF

26 IF EndDrill THEN

27 DrillDown :=0;

28 DrillRotate :=0;

29 DrillUp :=1;

30 END_IF

31 IF EndDrill AND SensorUp THEN

32 DrillDown :=0;

33 DrillRotate :=0;

34 DrillUp :=0;

35 EndDrill :=0;

36 END_IF

37 END_IF

38 END_PROGRAM

39

40 CONFIGURATION Config

41 RESOURCE Resource1

42 VAR_GLOBAL

43 T_PARAM: TIME := T#10s;

44 END_VAR

45 TASK MainTask1(INTERVAL :=T#100ms , PRIORITY := 1);

46 PROGRAM MainInst1 WITH MainTask1: Drill;

47 END_RESOURCE

48 END_CONFIGURATION

Listing 5.1: IEC 61131-3 PLC Program

CHAPTER 5. AAS REPRESENTING PLC BASED ON IEC 61131-3 98

The program starts when the button Start is pressed. Therefore, the

DrillDown signal is activated. Once the proximity Sensor assumes the value

ON because the drill pit reach to the piece to be drilled, the rotation of the drill

bit is activated. The drill bit rotates and the drilling machine moves down

for a certain time interval specified by a user-configurable global Variable

called T PARAM. Once this time expires, the drilling machine moves up

(i.e. DrillUp command is activated) until it reaches the upmost position (i.e.

SensorUp is ON), thus stopping the drilling machine. It has been assumed

that the control program is restarted when the operator presses the Start

push-button again.

The program defines a Configuration named “Config1” including, in turn,

the Resource “Resource1”. This resource features the global shared Variable

T PARAM, and a periodic task “MainTask1” with a time interval of 100ms

controlling the execution of the Program “Drill”.

According to our approach, both the PLC and the drilling machine are

represented with the two AASs shown in Figure 5.13.

Figure 5.13: Case study showing relationships between Variables and Prop-
erties of AASs of a PLC and a drilling machine.

The AAS of the PLC contains a Submodel “IEC 61131-3” discussed in pre-

vious sections containing the representation of the elements of the program

CHAPTER 5. AAS REPRESENTING PLC BASED ON IEC 61131-3 99

in Listing 5.1. Furthermore a Submodel “I/O Terminals” contains the rep-

resentation for all the electrical terminals featured by the PLC. The AAS of

the Drilling machine, instead, contains a Submodel “I/O Terminals” exposing

the representation of all the electrical terminals used to send signals control-

ling the drilling machine, and a Submodel “Configuration” containing all the

configuration parameters of the drilling machine. In this use case, it has been

assumed that a configuration tool is used to set a value in the Property “Drill-

Time” contained inside the AAS of the drilling machine, which represents the

duration of a drilling task. The value contained inside this Property must

be used to parameterise the PLC program in Listing 5.1 setting the global

shared Variable “T PARAM”.

The program in Listing 5.1 can be represented inside the Submodel “IEC

61131-3” using the approach described in section 5.3. The representation of

the program inside the AAS is depicted in Figure 5.14 using an UML instance

diagram. For the sake of brevity, only the critical parts are discussed in the

remainder of this section. In the following, the term “folder SEC” is used to

indicate a SEC containing the value “SET” in its attribute category, whilst

the term “complex SEC” is used to indicate a SEC containing the value

“ELEMENT” in its attribute category.

The Resource “Resource1” is represented as a complex SEC containing

three folder SECs: “IECPOUs”, “IECVariables”, and “IECTasks”. They

organize all the SubmodelElements representing POUs, Variables and Tasks

related only to the Resource named Resource1, respectively. It is worth noting

how in this approach the hierarchy of SubmodelElements reflects the contex-

tual relationship (i.e. scope) in the IEC 61131-3 Program.

The Program instance “MainInst1” is represented as a complex SEC or-

ganized under IECPOUs of Resource1. Also in this case, this kind of or-

ganization refltects the fact that the program “MainInst1” is assigned to

the Resource “Resource1”. This SEC features some Properties describing

the Program like the programming language adopted, the kind of POU and

the name used for the declaration of the Program in Listing 5.1. The Ref-

erenceElement “AssignedTask” is used here to highlight that the program

MainInst1 is executed under the Task “MainTask1”, which is represented in

CHAPTER 5. AAS REPRESENTING PLC BASED ON IEC 61131-3 100

Figure 5.14: Representation of the drilling machine PLC program using a
Submodel.

CHAPTER 5. AAS REPRESENTING PLC BASED ON IEC 61131-3 101

the Submodel as a complex SEC “MainTask1” organized under “IECTasks”

of “Resource1”. The attribute value of “AssignedTask” contains a Refer-

ence to the SEC “MainTask1”, represented in figure with the nomenclature

“&(MainTask1)”. This nomenclature is an abbreviation for the reference path

used in the AAS metamodel, i.e. “&(MainTask1)” stands for “/IEC 61131-

3/Resource1/IECTasks/MainTask1”.

As done for “Resource1”, “MainInst1” features a folder SEC “IECVari-

ables” and a folder SEC “IECPOUs” organizing all the SubmodelElements

representing Variables and Function Blocks/Functions defined inside the Pro-

gram, respectively. Due to lack of space, only few Variables are represented,

i.e. DrillDown, Sensor and Timer01, represented using complex SECs. Drill-

Down features Properties describing the Variable, like scope, data type and

memory address associated (by AT attribute) to the Variable. Similar con-

siderations can be done for Sensor too.

The complex SEC “Timer01” specifies that its data type is TON, therefore

it can contain an instance of a Function Block TON as value. Which Function

Block instance is contained in the Variable Timer01 is shown by the Refer-

enceElement “AssignedFrom” that contains a Reference to the complex SEC

representing the relevant Function Block, i.e. Timer01 TON contained in the

folder SEC “IECPOUs” of “MainInst1”. The name “Timer01 TON” is chosen

to logically differentiate in the AAS Submodel the Function Block instance

from the Variable Timer01 containing it. “Timer01 TON” features Proper-

ties describing the Function Block instance like the type of POU and the

Function Block type. The ReferenceElement “AssignedTo” here shows that

“Timer01 TON” is assigned to the Variable Timer01. Inside the folder SEC

“IECVariables” of “Timer01 TON”, the folder SEC “Var Input” is used to

organize the SubmodelElement representing the input Variables of the Func-

tion Block “Timer01 TON” (i.e. IN and PT). For both complex SECs “IN”

and “PT”, a ReferenceElement “AssignedFrom” is used to point out which

Variables are passed as argument to the instance “Timer01 TON”. For this

reason, “AssignedFrom” of IN contains a Reference to Sensor, whilst “As-

signedFrom” of PT contains a Reference to T PARAM, in accordance with

the program in Listing 5.1.

CHAPTER 5. AAS REPRESENTING PLC BASED ON IEC 61131-3 102

The submodel “I/O Connections” features the Property “Output Channel

0” representing the output terminal of the PLC associated to the memory lo-

cation %Q0.0. Since in the program the Variable DrillDown features the AT

attribute set to %Q0.0, a ReferenceElement is used to connect the SEC “Drill-

Down” of the Submodel “IEC 61131-3” and the Property “Output Channel 0”

of the Submodel “I/O Connections”, as depicted in Figure 5.13. Furthermore,

as this terminal of the PLC is connected with the input terminal of the drilling

machine to move the driller down, a ReferenceElement is used to connect, in

turn, the Property “Output Channel 0” with the Property “T9-Motor-Down”

in the Submodel “I/O Terminals” of the AAS of the drilling machine. The

Property “T9-Motor-Down” inside the AAS of the drilling machine is the

representation of the physical input terminal of the drilling machine.

As said previously, the value of the Property “DrillTime” exposed by the

AAS of the drilling machine is used to parametrize the PLC program. In

fact, its value must be used to set the global shared Variable “T PARAM”

of the program in Listing 5.1. For this reason, in Figure 5.13 the Prop-

erty “DrillTime” exposes a relationship with the Variable T PARAM of the

PLC program represented with the ReferenceElement. For space reason this

ReferenceElement is not depicted in Figure 5.14, but it is legit realising a Ref-

erenceElement named, for instance, “DependsOn” connected to the complex

SEC “T PARAM” containing a full path to the external Property “DrillTime”

of the AAS of the drilling machine.

5.6 Implementation of the approach leverag-

ing OPC UA

The approach we discussed so far leveraging the AAS for the description of

IEC 61131-3 programs and their relationships with the controlled devices has

been applied for the representation of a program controlling an educational

factory model. We developed a scenario where such representation can be used

for an easy reconfiguration of the production plant applying some variation

inside the PLC program.

CHAPTER 5. AAS REPRESENTING PLC BASED ON IEC 61131-3 103

The factory model is composed by different working stations, i.e. ware-

house, gripper, hoven, and sorting line. To realise this implementation open

source software for the PLC runtime and for the editor has been adopted. In

particular, the OpenPLC1 run-time has been installed on a Raspberry Pi to

make it work as a real PLC. The IEC 61131-3 program has been developed

using the OpenPLC editor and, once uploaded, executed on the Raspberry

Pi connected to the factory model.

The results of the research activity discussed in Chapter 4 has been used

here to realise the AASs of both the PLC and the factory model using OPC

UA as implementation technology. For this reason, we developed an OPC

UA using the library node-opcua-coreaas, based on Node.js, that we devel-

oped to implement OPC UA-based AASs. In particular, an OPC UA server

hosting the AASs of the PLC and the factory has been developed on the same

Raspberry Pi acting as PLC. The AASs contain all the information relevant

the physical connections between the PLC and the factory; in particular, the

AAS of the PLC contains the Submodel IEC 61131-3 describing the program

and thus the connections between variables and the physical parts.

On a different Raspberry Pi, it has been developed a web application

(back-end and front-end) to apply variations to the configuration of the factory

model configuration. The frontend is developed using Angular.js2 whilst the

backend, based on Node.Js, includes an OPC UA Client that will be used for

the AAS information retrieval inside the OPC UA Server. The scenario is

depicted in Figure 5.15.

The PLC program running on the OpenPLC run-time performs a certain

control algorithm on the factory model, using the GPIO pins of the Raspberry

Pi as I/O terminal to control the working stations. All the connections be-

tween the elements of the program and the parts of the factory are represented

in the relevant AASs according to the approach discussed in this chapter.

As a test, we introduce some modifications in the production process (e.g.

change configuration parameters) using the interface of the web application.

The back-end of the web application uses the OPC UA client to explore the

1https://www.openplcproject.com/
2https://angularjs.org/

CHAPTER 5. AAS REPRESENTING PLC BASED ON IEC 61131-3 104

Figure 5.15: Implementation scenario.

AddressSpace of the OPC UA Server in order to retrieve all the informa-

tion needed to accomplish the variation in the production. Considering a

variation of a configuaration parameter, such modification is applied in the

relevant AAS and, in case such parameter is connected to a Variable of the

PLC program, the web application downloads the PLC program file using the

information contained in the PLC AAS (e.g. using a property ProjectFile of

the configuration as shown in Figure 5.3) and edits the value of the variable

associated at the parameter. Finally, it compiles the new program and upload

it on the OpenPLC run-time using a REST interface. As a result, the factory

model has been re-configured and the changing has been documented inside

the AASs.

In a real scenario, the AASs representations maintained by the OPC UA

Server may be used by technical teams to introduce real modification to the

plant, after the reconfiguration process. The availability of a unique, stan-

dardised and complete vision of the plant greatly simplifies the work of the

technical teams due to the possibility to better synchronize their works. Fi-

nally, the feature to upload the control program into the Raspberry Pi is very

useful in a real scenario, allowing an automatic reconfiguration of the software

once reconfiguration of the control program has been completed.

CHAPTER 5. AAS REPRESENTING PLC BASED ON IEC 61131-3 105

5.7 Discussion

The use of the AAS metamodel has the advantage that engineers or techni-

cians coming from different domains can easily understand the relationships

between the real plant and the relevant control programs. This was demon-

strated with the conducted research where the AAS metamodel has been

used as a lingua franca for the definition of a domain-specific Submodel, i.e.

IEC 61131-3, showing how its generic structure fit for the description of more

complex and detailed concepts. In particular, our research investigates how to

represent the IEC 61131-3 software model using the simple building blocks of

the AAS metamodel in order to represent and fully describe a PLC program

and its relationships with external elements, which usually belong to different

domains, hence different Submodels. According to the levels of interoper-

ability described in the introduction of this thesis, the approach satisfies the

requirement of semantic interoperability, since parts of the PLC Program, like

variables, now carry information about the meaning of their content.

Considering an Industry 4.0 scenario where all assets, including PLCs, are

represented in the information world with their own AASs, all the relation-

ships between properties of different assets are tracked and available in the

network, structured in a standard manner. To understand the advantage of

such an approach, it must be considered that nowadays in the development

of a SCADA system, usually tag-names for hardware I/O signals and internal

program points are assigned and documented in spreadsheets. Such spread-

sheets contain which terminal hardware is associated to each tag-name [69];

of course, this kind of documentation is error prone. With the proposed ap-

proach, maintenance of control programs of PLCs is greatly simplified because

all the information relevant to variables and their connection with the physi-

cal parts of the plant are documented and semantically enriched in the AASs.

If the developer of the PLC program is changed in a future iteration, the new

one can easily track-down, for instance, what a variable is referring to because

it points directly to the associated property of a AAS of the relevant device.

Furthermore, parameters inside the IEC 61131-3 program can be configured

automatically spilling the value from the information contained in the AAS

CHAPTER 5. AAS REPRESENTING PLC BASED ON IEC 61131-3 106

of the relevant machine or device. This was demonstrated with the use case

and the implementation discussed in this chapter.

What is not considered in the research carried out is how the AAS Sub-

model for the IEC 61131-3 program must be created and who is in charge

of its creation. Such Submodel in the AAS of a PLC contains a description

of the IEC 61131-3 program currently running on that PLC and features re-

lationships with other elements of the AAS (or different AASs) described in

terms of ReferenceElements. We did not address the question of who creates

this Submodel and describes such relationships because we considered it out

of the scope, but still a valid point to investigate for future work though. By

the way, we strongly believe that automatic creation of an AAS Submodel

starting from an existent PLC program is feasible and it represents a very

important topic from our point of view. According to the novel IEC 61131-10

standard [70], IEC 61131-3 programs are contained in XML-based project file

and solution for the automatic creation of the Submodel IEC 61131-3 may use

annotated statements in the XML-based project file consisting in additional

metadata (e.g. semantic references, AAS-specific information). For instance,

a variable declaration may be annotated with a reference to the AAS prop-

erty it represents. By means of a suited tool, such XML project files can be

parsed to retrieve both the IEC 61131-10 tags and the AAS-based tags and

using them for the automatic definition of an AAS. An approach like this

opens completely new scenarios; for instance, IDE for PLC programming can

be extended to include new AAS-related functionalities which in turn help the

developer to create the aforementioned extensions for an IEC 61131-10 XML

project file. Different tools can thus interoperate each other using the AASs

information as a common information source creating completely new ways to

approach the production management. Furthermore, the OPC UA Compan-

ion specification provided by PLCopen [71] defines a set of IEC 61131-3 based

function blocks for mapping an OPC UA Client functionalities that allow con-

trollers to initiate communication sessions to any available OPC UA Server.

Such functionalities can be adopted to create interactions between PLCs and

their relevant AASs for configurations retrieval. For instance, considering the

OPC UA-based implementation of the AAS proposed in this thesis, a PLC

CHAPTER 5. AAS REPRESENTING PLC BASED ON IEC 61131-3 107

program can take advantage of the Function Blocks defined in the companion

specification to create a direct connection with the OPC UA server contain-

ing AAS with information of a certain relevance for the configuration of the

program. For instance, considering the example described in Section 5.5, an

OPC UA Read Function Block can be used to retrieve the value of the Vari-

able “T PARAM” reading the value of the Property ”DrillTime” in the AAS

of the Drilling machine.

The research conducted focused mainly in the use of the description of

IEC 61131-3 program in the AAS of the PLC for configuration purposes,

as shown in the use case and the implementation discussed in this chapter,

but leveraging such approach to achive flexible manufacturing as intended

in Industry 4.0 requires more investigations. This is due to the fact that

PLC programs based on IEC 61131-3 are less prone to variations at run-time.

In fact, IEC 61131-3 languages use an imperative and procedural approach

which does not fit to dynamic variation. Of course, the possibility of applying

variations in production can be considered during the development of PLC

programs but, in general, such solutions do not scale very well. In future,

AASs can cover a more prominent role in the development of more flexible

control programs but this require further investigations, especially considering

the implementation of active AASs communicating with each other to take

initiative in the production process.

5.8 Publications

The results conducted for this research activities has been published in the

scientific journal “IEEE Access” [72].

Chapter 6

A Model for Predictive

Maintenance based on AAS

In the previous chapter, the AAS has been used for the description of relation-

ships between software elements of PLC programs and physical parts of the

production plant. We discussed how such uniform description of information

allows interoperability between tools of different domains enabling new forms

of collaboration during the production life cycle. In particular, we stated that

maintenance operations can take advantage of AAS information during the

maintenance phase.

Maintenance is one of the most important aspects in industrial and pro-

duction environment. In particular, the approach referred as Predictive main-

tenance (PdM) aims to schedule maintenance tasks based on historical data

in order to avoid machine failures and reducing the costs due to unneeded

maintenance actions.

Often, the implementations of maintenance solutions differ on the ba-

sis of the kind of data to be analysed and on the techniques and models

adopted for the failure forecasts and maintenance decision-making. As stated

in the previous chapters, Industry 4.0 introduces the concept of flexible and

adaptable manufacturing in order to satisfy a market requiring an increas-

ing demand of customization. The adoption of vendor-specific solutions for

PdM and the heterogeneity of technologies adopted in the brownfield for the

108

CHAPTER 6. A MODEL FOR PDM BASED ON AAS 109

condition monitoring of machinery reduce the flexibility and interoperability

required by Industry 4.0. For all these reasons that, of course, will be better

described in the remainder of this chapter, our research focused on the defini-

tion of generic and technology-independent model for PdM where the concept

of AAS is used as means to achieve interoperability between different devices

and to implement generic functionalities for PdM.

The model we defined is then applied for the description of a case study

considering an Industry 4.0 Cloud-based PdM maintenance program for 100

milling machine.

6.1 Introduction

Maintenance is of paramount importance for industrial or production plants

as it aims to maximize the production whilst reducing the costs as much as

possible. In fact, maintenance costs are some of the main components of the

total cost of a production facility as it is estimated that they represent be-

tween 15 and 60 percent of the cost of goods produced, where one-third of such

maintenance costs is wasted for unneeded or improperly carried out mainte-

nance operations [73]. Therefore, the overall cost of the plant strictly depend

on the strategy adopted for maintenance management. For this reason, differ-

ent maintenance strategies are used to maintain high the production efficiency

[74]. One of this maintenance strategies is PdM which schedule maintenance

operations when either a deterioration of the machines or a degradation in

the performances is detected.

In the context of Industry 4.0, where production must be efficient to face

the demand for a high level of product customization, maintenance plays

an important role as avoiding breakdowns, and thus loss of money, is a key

requirement in a challenging market that requires high efficiency and avail-

ability. Considering the presence in literature of different approaches for the

realisation of PdM solutions and different technologies in both the brownfield

area (e.g. sensors, fieldbus) and the IT area, it is difficult defining a PdM

solution that can adapt to the variation of the original production configu-

ration. This, of course, puts new constraints on the flexibility of the smart

CHAPTER 6. A MODEL FOR PDM BASED ON AAS 110

factory. For all these reasons, new mechanisms are required for the horizontal

integration hiding implementation details and guaranteeing a communication

channel between devices, regardless of both their manufacturer and technolo-

gies adopted. Using such an approach, a device can be easily replaced with

an equivalent one providing the same functionalities, i.e. production func-

tionalities and PdM functionalities. Furthermore, vertical integration must

be guaranteed because heterogeneous data coming from devices and directed

to enterprise levels must be presented in a uniform manner to allow a collab-

oration between all the components of the PdM solution.

An approach for the definition of a PdM program that satisfies the re-

quirements of flexibility and interoperability, as demanded by Industry 4.0,

must address two main objectives: 1) defining generic functionalities for the

description of a technology-independent PdM solution and 2) hiding the het-

erogeneity and complexity of the OT level. Groba et al [75] described such

objectives and analysed the aspect of PdM and the challenges to face con-

sidering such an approach. In this work, authors defined a PdM framework

integrating the diversity of different PdM techniques, thus addressing the ob-

jective 1), but they identified that one of the biggest challenges consists of

describing the shop floor equipment and corresponding condition indicators

in a uniform manner, hence addressing 2). In general, both the objectives 1)

and 2) are faced either separately or partially but, at the best of our knowl-

edge, there is no solution addressing both together in literature. Traini et

al. [76] proposed a framework to define PdM solutions for a generic manu-

facturing tool but it is based on ML techniques only and does not consider

the flexibility as a requirement. A framework defining a flexible maintenance

platform is described in [77] proposing an approach that uses modularisation

of maintenance functions, but such approaches is based only on AI solutions

for failures forecasting and furthermore the integration of devices and theirs

data is addressed partially.

As will be described in the following, our approach is strongly based on

modularisation of PdM functions. A similar idea has been used by [78] to de-

fine framework based on functional blocks collecting key functionalities for the

components constituting a generic PdM solution. The aim of this framework

CHAPTER 6. A MODEL FOR PDM BASED ON AAS 111

is reducing the complexity of PdM programs management but, differently

from our approach, it does not consider the interoperability of devices and

data as requirements.

It is worth noting that all the issues involved to address the objective 2)

are the same faced nowadays by CPS and DT in the context of Industry 4.0.

For this reason our approach is strongly based in the adoption of AAS to cope

with the objective 2). This choice is confirmed by [79] where, in production

automation, an appropriate infrastructure consisting of components with uni-

form interfaces is of utmost importance for condition monitoring and PdM

(see [80]).

In this research activity, we defined a logical model for PdM than encom-

pass all the “common factors” among the PdM solutions present in literature,

generalising all the aspect that a PdM solution implementation should cope

with and representing them in suited logical blocks collecting the relevant

functionalities. Abstraction and generalisation of PdM functionalities is the

foundation of our model to address the objective 1). To address the objec-

tive 2), instead, our model leverage on AASs since they create a standardised

abstraction layer above assets using different technologies that cannot interop-

erate each other. As confirmed in [81], the AAS model can be used to expose

different data modules in a uniform manner by means of the standardised

external interface of AAS, with the result of making the devices seamlessly

interoperable, solving the issue concerning the massive heterogeneity of tech-

nologies and information models adopted in the industrial environment. In

chapter 5, we already used the AAS to abstract and describe the complexity

of plant configuration against the software model of IEC 61360 for PLC pro-

grams but in the research described in the following we propose an approach

leveraging the AAS for the description of a PdM solution in terms of generic

and technology-independent functionalities.

6.2 Overview on Predictive Maintenance

A maintenance program based on PdM approach aims to prevent catastrophic

failure using some indicators of machinery conditions to schedule maintenance

CHAPTER 6. A MODEL FOR PDM BASED ON AAS 112

tasks and to detect the kind of failure, hence is referred in literature also

as condition-based maintenance (CBM). In fact a CBM solution uses actual

operating condition of the equipment to predict the future state of the machine

using a model based on historical data [74]. The foundation of predictive

maintenance is the condition monitoring (CM) process [82], where sensors are

applied in machinery to continuously monitor signals, or other appropriate

indicators, to assess the health of the equipment [83]. For instance, the ac

component of the output of pressure sensor (e.g. noise) can be used to detect

blockages in the pipe of a plant [84], or vibration analysis gives an indication

about reliability and safety of rotating machine [85].

PdM is a so broad subject area that literature presents sevceral differ-

ent approaches to implement a maintenance program. Often PdM solutions

differs each other on the basis of the kind of signals used for the health con-

dition assessment of the machine, the kind of machine to be maintained, the

approach adopted for the retrieval of the indicators and the approach used

for the failure forecasting, among others. For this reason in the remainder of

this section, the main parts composing a PdM approach will be pointed out

so that they can be used for the definition of the generic PdM model that is

the subject of this research activity.

A CBM program can be divided in three main parts: data acquisition,

data processing, and maintenance decision-making [86].

6.2.1 Data Acquisition

The first step in a PdM program consist in collecting data from the machinery

that is the subject of the maintenance program. Such data, usually coming

from sensors embedded or applied on the machinery itself, are used as indica-

tors of the health condition of the devices. The kinds of data collected vary

case by case depending on the machine to be maintained and hence on the

sensor used. Hashemian and Bean [84] identifies three major categories for

predictive maintenance depending on both the kind of information acquired

and the source adopted. The authors show that some techniques may adopt

signals coming from existent sensors embedded in the machinery to reveal

CHAPTER 6. A MODEL FOR PDM BASED ON AAS 113

its current status; other techniques involves the adoption of new sensors, like

accelerometers for vibration or acoustic sensors for leaks detection; finally,

other techniques involves the injection of test signals into the equipment to

measure the performances [87].

In the past, the adoption of a PdM approach was considered quite expen-

sive because old equipments required the additions of new sensors [88] and

because new tools for the monitoring were necessary [89, 83]. Nowadays, new

technologies in the field of data acquisitions, like IoT and sensor technology,

make the adoption of PdM solutions more accessible. In particular, the IoT

is the foundation of condition monitoring in the fourth industrial era, util-

ising sensors embedded in machinery to acquire data and communicate over

the Internet infrastructure with cloud-based solutions that analyse such data

[90].

It is worth noting that often the brownfield contains already smart equip-

ment providing more information than just basic data over intelligent com-

munication protocols, but systems from different vendors may run in different

parts of the production process and a way to allow them to understand the

information exchanged must be provided (e.g. industrial gateways).

6.2.2 Data Processing

The next step after the data acquisition consists of a series of processes of data

manipulation. Some involves data cleansing in order to remove, for instance,

sensor errors that may affect the data analysis. A pre-process step involves

the reduction of the volume of data (i.e. aggregation) to pass only the selected

and extracted indicators (i.e. feature extraction) [88] to the forecasting and/or

decision-making algorithms.

The techniques adopted to process and analyse data mainly depend on

both the types of data collected and the algorithms used to reveal the con-

dition of the machine. In [86], data are classified in three types: value type,

waveform type, and multidimension type. Value type are data collected at a

specific time epoch and containing a single value, like temperature, humidity,

or pressure. Waveform type are data collected in time series, like vibration or

CHAPTER 6. A MODEL FOR PDM BASED ON AAS 114

acoustic signals. Multidimension type contains multidimensional values, like

images coming from infrared thermographs.

In general, data analysis and signal process techniques operate in the time-

domain, frequency-domain, or time-frequency domain. As said previously, the

kind of techniques depends on the type of data processed and the feature to

be extracted. Examples of time-domain analysis are statistical indicators

like mean, standard deviation, root-mean square, kurtosis, skewness but also

peak, peak-to-peak interval, crest factor in case of time waveform signals.

With frequency-domain analysis, instead, it is possible identifying and isolat-

ing certain components of interest not accessible with time-domain analysis.

For instance, considering data coming from vibration analysis, in the time

domain we see only the sum of the effects of all the sources of vibrations.

But, with frequency-domain analysis we can isolate such sources of vibrations

because they operate in different frequencies. Examples of frequency-domain

analysis is the widely used spectrum analysis by means of Fast Fourier Trans-

form (FFT). Features in frequency domains are power bandwidth, mean fre-

quency, harmonics, peak frequencies, etc. Time-frequency analysis, instead, is

common to handle non-stationary waveform signals and uses time-frequency

distributions representing either the energy or the power in two-dimensional

function. Some features in time-frequency domain are spectral entropy and

spectral kurtosis, but more indicator exists in literature [86].

All features extracted in this step are indicators of the health condition

of the equipment and can also be used for an estimation about the remaining

operational time until a failure occurs.

6.2.3 Maintenance Decision-making

The techniques adopted for maintenance decision-making in CBM are classi-

fied in diagnostics and prognostics. The former deals with finding the source

of a fault, whilst the latter deals with estimating when a failure may occur in

future. Even though prognostics is better than diagnostics since the former

try to prevent a failure whilst in the latter the failure already occurred, diag-

nostics techniques are often used as complementary support for prognostics

CHAPTER 6. A MODEL FOR PDM BASED ON AAS 115

because prognostics cannot prevent all failures. Furthermore, diagnostics re-

sults can be used as feedback to improve the accuracy of prognostics solutions.

Decision strategies for machine fault diagnostics usually are procedures

that create correlations between data and/or features collected in the Data

Acquisition step with features of the faults, creating then a sort of classifi-

cation over measurement data. This mapping process is also called pattern

recognition. Usually, diagnostic solutions adopt statistical approaches or AI

over the information collected with condition monitoring, but model-based

solutions exist too. Some statistical approaches are hypothesis test [91], sta-

tistical process control (SPC) [92], and cluster analysis [93]. AI solutions,

instead, has shown better performance compared to conventional approaches

to diagnostics [86]. Common AI techniques include the adoption of artificial

neural network [94], fuzzy-neural networks [95], and evolutionary algorithms

[96]. Model-based solution instead uses physics or mathematical model to

simulate the behaviour of the monitored machine [97].

Most of the strategies adopted for prognostics involve the prediction of

the so-called Remaining Useful Lifetime (RUL), which indicates how much

time is left until a failure occurs. Other solutions usually adopted in high-

risk environment (where a failure is catastrophic) consist in calculating the

probability that a failure occurs between two inspections of the plant. By

the way, approaches considering RUL estimation constitutes the majority

in literature. There are three families of RUL estimation models: similarity

model, degenerate model, and survival model [98]. Similarity models are based

on historical failure data that combines the RUL prediction of a test machine

with the behaviour of a similar known machine. The degenerative models, also

referred in literature as degradation models, estimates the RUL predicting

when the condition indicator will cross a failure threshold. These models are

most useful when a known value can be used as a threshold indicating a failure,

which is not always available. The survival model, instead, is a statistical

method used for time-to-event data. It is particularly useful when a complete

history of failures is not available but only data about life span of similar

components and/or some other variables (i.e. covariates) that correlate with

the RUL. In particular, covariates are also referred as environmental variables

CHAPTER 6. A MODEL FOR PDM BASED ON AAS 116

and indicates the regime in which the component operates.

Of particular interest here are the solution based on AI because, due the

improvement in this area in the last years, lots of new solution for PdM

based on AI have been proposed. In [99] a multiple classifier PdM system is

proposed. Paolanti et al. [100] provides a new PdM methodology based on

ML for a cutting machine predicting different states for the machine with an

accuracy of the 95%. Koca et al. [101] trained an artificial neural network

using Mean Time-To-Failure (MTTF) values and the past failures history of

a robot system to predict future faults.

The adoption of AI-based solution for predictive maintenance perfectly

fits the vision of the fourth industrial revolution [36]. Since the initial cost of

a PdM maintenance program is quite expensive, in the context of Industry

4.0, where an high degrees of connectivity exist between partners of a value-

chain network, some facilities and tools become services that can be used

on demand, contracting or subcontracting activities and thus avoiding the

expanses of building new infrastructures for PdM [89]. For these reasons all

the biggest IT companies started to propose their PdM solution based on ML

and cloud technologies: Amazon with their AWS Solutions1, Microsoft with

Azure 2, and Google with Google Cloud Platform3.

6.3 AAS-based Model for Predictive Mainte-

nance

The research carried out on PdM allowed us to identify all the aspects common

to the PdM solutions regardless their actual implementations. We defined an

approach for the description of a PdM solution on the basis on a PdM model

leveraging on the concept of the so-called Logical Block (LB). A LB is a

modular element that group functionalities relevant to a specific aspect of

1https://aws.amazon.com/it/solutions/implementations/predictive-maintenance-using-
machine-learning/

2https://docs.microsoft.com/en-us/azure/iot-accelerators/iot-accelerators-predictive-
walkthrough

3https://cloud.google.com/blog/products/ai-machine-learning/solution-implementing-
industrial-predictive-maintenance-part-iii

CHAPTER 6. A MODEL FOR PDM BASED ON AAS 117

the PdM, like data acquisition or data manipulation. All the functionalities

collected under a LB are specific to an aspect of PdM and abstract specific

operations for the PdM process regardless how such operations are actually

implemented. For the sake of clarity, with the term functionality here is also

intended information, data structures and models, and not operations only.

LBs and their functionalities are meant to be modular and cooperating

elements, so that they can be used to describe a PdM solution (entirely or

part of it) in a generic manner without considering implementation details.

One of the advantages of such an approach is a simpler specification of which

PdM functionality should be assigned to the components of the IT and OT

infrastructure; in this manner, if a component of the PdM solution is described

in terms of generic LB functionalities it is possible to define a role for that

component. Such a role identifies a sort of equivalence class between all the

devices implementing the same functionalities. As a consequence, this makes

the replacement of a device with an equivalent one seamless from the point of

view of the PdM program. As already said in the introduction of this chapter,

this strategy allows to address the objective 1) required for the definition of

a flexible and interoperable PdM solution.

To address the objective 2), instead, the concept of AAS and I4.0 Com-

ponent is used for some devices present in OT infrastructure since they can

be exploited to face the problem of heterogeneity of technologies present at

that level. The common interfaces and the semantically enriched information

provided by the AAS make this last the foundation of the PdM model here

presented. In fact, AAS achieves interoperability at the lowest level of the

production infrastructure and thus allows a PdM program to be adapted for

production reconfiguration. For brevity, in the reminder of this chapter the

term “AAS-enabled device” will be used to identify all the devices exposed

by an AAS.

In the following, for the description of the PdM model here discussed

will be used a bottom-up approach, where the most fine-grained elements

composing it are described first, completing then with the high-level view of

the model where all the interactions between components are highlighted.

CHAPTER 6. A MODEL FOR PDM BASED ON AAS 118

6.3.1 Logical Block for PdM

The most important elements defining the AAS-based PdM model are LBs

since they abstract all the functionalities required for the PdM process. Such

an abstraction generalises and modularizes the description of the PdM so-

lution and allows the implementation of same functionalities and operations

using different technologies and approaches. LBs functionalities can be re-

alised following different standard specific for the aspect represented by an

LB, so that the PdM model does not put any limitation on the standards

or guideline to be adopted. For instance, standards like VDMA 24582 [80]

or ISO 17359 [102] can be used to implement LB functionalities related to

the condition monitoring. As will be described in the next subsection, for

AAS-enabled devices the LBs will be implemented inside specific well-known

AAS submodels.

The LBs specified for the AAS-based PdM model have been defined on

the basis of the state of the art of PdM summarised in section 6.2 and are

depicted in Figure 6.1 showing some examples of funcitonalities implemented

for every LB.

Figure 6.1: The logical blocks implementing generic functionalities related to
PdM aspects.

In the following the aspects related to the LBs will be described:

CHAPTER 6. A MODEL FOR PDM BASED ON AAS 119

Data Acquisition (DA) All the functionalities to access data coming from

sensors or other sources are provided by this LB. Example of such func-

tionalities are functions like the conversion of the output of a transducer

to a digital parameter representing the physical quantity. Such digital

values may be enhanced with more quality parameters, like calibration

or timestamp.

Data Manipulation (DM) This LB contains operations that perform anal-

ysis of signals and computes meaningful descriptors from raw measures

(usually coming from DA). It also performs transformations on signals

(e.g., FFT) and applies algorithms for features extraction. Most of the

approaches for data processing lies in this LB.

Configuration (Config) This LB provides an interface for the configura-

tion of other data-processing LBs exposing parameters and management

functions. It is one of the most important LBs since it is the only one

providing functionalities used to parametrise the functionalities of other

LBs. For instance, some configurations for DA may include the relative

position of the transducers, monitoring polling rates and calibration pa-

rameters, among others. Of course, parameters and functionalities of

Config may be strictly dependant from the implementation of the other

LBs. For instance, considering a block DA implemented with OPC UA

and using the Subscription mechanism for data retrieval, a Config block

may be used to configure parameters relevant to the publishing interval

or sampling interval.

Aggregation This LB provides the functionalities needed to perform data

aggregation of all the different data coming from logically “underlying”

devices. Such a block may include mechanisms of Sensor Data Fusion

when, for example, the data monitored of a complex device come from

sub-devices or sensors composing it. It is worth noting how this per-

fectly fits with the concept of AAS because it allows the representation

of complex devices by means of composition of the AASs of their sub-

devices. Therefore, the Aggregation block implemented in the AAS of

CHAPTER 6. A MODEL FOR PDM BASED ON AAS 120

a complex device can use data coming from the DM blocks contained

in the AASs of its sub-devices. Of course, there could exist aggrega-

tion of aggregations, thus input data of an Aggregation LB may come

from other Aggregation blocks. Such aggregation hierarchy is needed to

manage the large amounts of data coming from sensors.

Prediction Model This LB identifies all the functionalities and facilities re-

quired for the diagnostics and prognostics of the monitored machinery.

For instance, considering a PdM solution based on Artificial Intelli-

gence, this LB may consist of a neural network-based model or decision

tree-model, but lot of different solutions may be adopted too. When it

is possible, the models here provided are trained using historical data

including health indicators and faults of machines. Such data are gath-

ered and manipulated using functionalities of other LBs. Furthermore,

the models may be constantly trained using data gathered in real time

from AASs, and prediciton errors can be used to improve the accuracy

of the model. The output of the Prediciton Model block depends on its

implementation, and thus on the PdM technique adopted. Examples of

output may be a type of failure, an indicator of the machine’s status or

the RUL. It is worth noting that technical personnel working on data

analysis and the tools they use are considered entities implementing

functionalities of the Prediction Model LB.

Maintenance Decision-making All the functionalities for the analysis of

the information given by the Prediction Model LB to schedule appro-

priate maintenance actions for the predicted faulty machines are imple-

mented in this LB. This block involves the facilities for the scheduling

of maintenance tasks, the eventual commitment of available technicians

for the maintenance, and is in charge to change the operational state

of the machine (i.e. changing the operational state from “working” to

“maintenance”). All these kinds of operations change information on

the proper submodel in the AASs of devices, similarly to the approach

presented in [47]. In general, most of the functionality provided by a

Computer Maintenance Management System are considered being part

CHAPTER 6. A MODEL FOR PDM BASED ON AAS 121

of the Maintenance Decision-making block. The output of this LB may

be used as a feedback for the Prediction Model LB to adjust the accu-

racy of the model adopted or check its correctness.

Schedule This LB contains all the information relevant the maintenance

tasks like the date and the duration of the maintenance and the cre-

dentials of the operator committed for the maintenance operation. This

LB also includes the history log with all the maintenance operations

performed on the machine and, eventually, whether a replacement with

a new one occurred.

Status This LB contains all the information about the status of the machine.

In particular, it highlights when the machine is in operating mode or in

maintenance mode. This information may be useful to check the general

status of the plant or to label eventual data still being collected from

the machine even during a maintenance operation.

6.3.2 AAS Submodels supporting PdM

The AAS-based PdM model provides specific Submodels to implement some

LBs functionalities for AAS-enabled devices. The structure of a submodel

allows the definition of the PdM functionalities in terms of properties and

operations, both semantically annotated. The definition of such well-known

Submodels allows the assignment of some steps required for a PdM solution to

AAS-enabled devices using a common and standardised representation. Fur-

thermore, since AAS allows for composition, functionalities in submodel may

be represented as composition of functionalities of the AASs of sub-devices or

logically underlying devices. For instance, configuration functionalities of a

high-level device may be represented as a composition of several configuration

functionalities of underlying devices. The definition of LBs as modular com-

ponents perfectly fits with the nature of AAS structure so that composition

of PdM functionalities may be represented as composition of properties and

operations inside the relevant AASs.

For the PdM model here described, we defined two main Submodels im-

CHAPTER 6. A MODEL FOR PDM BASED ON AAS 122

plementing all the LB functionalities required for condition monitoring and

the administrations of data relevant to maintenance operations scheduled for

a device; they are named “Condition Monitoring” and “Maintenance”, re-

spectively. These two Submodels are depicted in Figure 6.2 showing that

exist relationships between them. It is worth noting that the presence of an

LB inside a Submodel is not mandatory, thus the implementation of some

functionalities is strictly dependent by the case in exam.

Figure 6.2: Submodel definition for Condition Monitoring and Maintenance
and the LB they implement.

The Submodel “Condition Monitoring” implements the blocks DA, DM,

Config and Aggregation. All the LBs in the Condition Monitoring submodel

may interact to each other, as depicted in figure by means of dotted arrows.

Such interactions may represent data flows, events dispatching, function calls

or parameter settings.

The submodel “Maintenance” implements the functionalities of the block

Schedule and Status, therefore it exposes all the information concerning the

maintenance tasks and operational condition of the device and the operations

to commit new maintenance tasks.

The LBs “Prediction Model” and “Maintenance Decision-making” are not

considered inside the submodels definitions provided for the AAS-based PdM

CHAPTER 6. A MODEL FOR PDM BASED ON AAS 123

model because such high-level functionalities with high-demanding computa-

tional requirement may not be easily implemented in an AAS-enabled device.

6.3.3 Description of the PdM model

The general structure of the AAS-based PdM model is depicted in Figure 6.3.

From a high-level point of view, the model is divided in two main parts: the

Operational Infrastructure (OI) and the Prognostics & Maintenance Manage-

ment Infrastructure (PMMI). OI encompasses all the components of the PdM

solution collecting and manipulating the data used for maintenance prognos-

tics. Examples of such elements are the machines to be maintained, industrial

gateways, industrial PCs, but even high-level tools like MES and ERP may

be considered being part of OI. The PMMI, instead, encompasses all the com-

ponents of the PdM solution using data coming from OI to forecast machine

failures and schedule maintenance actions. Examples of such elements may

be AI models (e.g. Recurrent Neural Network), tools for data analysis and

software for the maintenance management.

The red arrows in Figure 6.3 represent the relationships between com-

ponents and the data streams from low-level devices to the PMMI elements

for the decision-making task. Green arrows, instead, represent the interac-

tions between the topmost components and the maintained devices where the

former set the operational status of the latter and commit maintenance tasks.

OI contains AAS-enabled devices providing both data needed for the con-

dition monitoring and functions for data manipulation required from the first

steps of the PdM process (e.g. Smart Device, Industrial PC, Gateway). In

general, what is considered belonging to Operational Technology (OT) is part

of the OI, thus devices like sensors, actuators, machinery, but also PLC,

SCADA, DCS, may be considered part of it. It is important to point out that

IT components like databases, industrial PCs, or edge devices like gateways

may be part of OI too. The presence of AAS is mandatory for the devices

at the lowest levels of the infrastructure (i.e. brownfield) because, as said in

previous sections, such devices are the ones featuring a high degree of het-

erogeneity in the technologies and data representation adopted. The PdM

CHAPTER 6. A MODEL FOR PDM BASED ON AAS 124

Figure 6.3: AAS-based PdM model for predictive maintenance.

model requires only that every PdM component that need to interact with

an AAS-enabled device must be able to communicate with the AAS API and

thus understand its semantics.

Differently from OI, the nature of entities composing the PMMI is not

defined in terms of device types but in terms of which functionalities they

implement. PMMI consists of IT elements and software components provid-

ing all the functionalities needed for data analysis, failures prediction, and

scheduling of the maintenance tasks. The nature of such components is not

specified but they are described only in terms of the functionalities they pro-

vide (i.e., their LBs). Such functionalities may be implemented on devices

of the IT infrastructure and/or in the Cloud (in case of Cloud-based PdM),

so that how functionalities are implemented strictly depends on the solu-

CHAPTER 6. A MODEL FOR PDM BASED ON AAS 125

tion adopted for PdM. For instance, the prediction functionalities defined for

PMMI may be implemented either by a Recurrent Neural Network (Artificial

Intelligence-based solution) or by a physical person consulting a visual tool

for data analysis; even if the former is a software component and the latter is

a person, both of them are considered entities of the PMMI.

The AAS-enabled devices depicted in Figure 6.3 are differentiated in “De-

vice” and “Aggregator” but such classification is not formal and is used just

to clarify which role an entity plays in the OI. As said previously, the role an

entity plays depends on the LB it implements. In figure, AAS Device repre-

sents a generic Device that provides condition monitoring features and need

to be checked eventually for maintenance task. Similarly, AAS Aggregator

identifies a device that it is not a direct subject of the maintenance process,

but a component of the maintenance program. The LBs it implements sug-

gest that the role of AAS Aggregator is that of collecting all the data coming

from different AAS Devices and performing some sort of manipulation (e.g.

data aggregation, sensor data fusion) before sending them to other entities.

Roles can be defined just picking specific LB functionalities and combining

them properly and, viceversa, the role of an entity can be discriminated just

looking at the LBs it implements. This aspect of the PdM model allows the

definition of a sort of equivalence classes for PdM components because such

roles are defined in terms of collection of generic PdM functionalities. The

advantage of the proposed model is describing a device using a role so that it

can be replaced seamlessly with another device of the same role.

The structure of the PdM model allows the description of every PdM

program based on I4.0 Components at low levels of the infrastructure. In

fact, their AASs allows the description of all their functionalities in terms

of LBs generic functionalities, thus better defining the roles that such PdM

components play in the whole PdM solution. Generalisation realised using

the model allows easy reconfiguration and extensibility of the production sys-

tems, increasing the integration of all the different parts of the PdM solution.

The AAS is the foundation of this abstraction mechanism for low-level de-

vices featuring different implementation for similar functionalities, different

information models or different communication protocols. The presence of

CHAPTER 6. A MODEL FOR PDM BASED ON AAS 126

I4.0 Components allows their eventual replacement in a transparent fashion

from the point of view of both the PdM solution and the production system.

This important aspect is better point out in the next section.

6.4 Case study: Modeling a Cloud-based Ma-

chine Learning PdM solution

The AAS-based model will be used for the description of a use case consisting

of a simplified PdM solution based on machine learning techniques and cloud

technologies for the maintenance of 100 industrial milling machines. This

case study shows that the model and its LBs allow the description of a PdM

solution in a high-level perspective to better specify the functionalities and

roles played by the components of the infrastructure.

As already said, such description is possible at the lowest level of the infras-

tructure only because the common standardized structure and communication

interface provided by AAS hide the implementation details of the relevant as-

set and of the technologies used to implement its functionalities. In fact, the

generic LB functionalities provided by an asset can be implemented using any

suitable solution because the AAS abstracts the implementation details and

provides its information in a uniform (and semantically annotated) manner

exposed by its standardized API.

For the sake of simplicity, the AASs mentioned in this case study are

considered embedded in their relevant assets, which provides computation

and communication capabilities (e.g., microprocessor and network access). In

this use case scenario Microsoft Azure is used as cloud infrastructure.

6.4.1 Description of the use case

The case study in exam consists of a multi-class classification problem, thus a

ML algorithm is used to create the predictive model that learns from data col-

lected from 100 milling machines and exposed by their AAS. For the training

of the prediction model are considered four different data sources: real-time

CHAPTER 6. A MODEL FOR PDM BASED ON AAS 127

telemetry data from sensors (time-series), error logs, maintenance history, and

machine information.

In order to respect the desired information structure for the model train-

ing, telemetry data must be manipulated applying simple measurement unit

conversion or filtering operations. Furthermore, the amount of telemetry data

collected from each machine is aggregated every hour using an Industrial PC.

This first aggregation step is done averaging the data collected every hour.

An Edge Gateway, instead, collects telemetry data from all the milling ma-

chines and labels the records accordingly with the relevant machine names

(i.e., serial number or machine id). Finally, data are aggregated choosing a

lag window of 24 hours and using mean and standard deviation as rolling ag-

gregate measures. All the records are then sent in the cloud where eventually

other data manipulation processes may be applied to generate the data set

for the training of the ML model.

Error logs are generated by the milling machines and contains only non-

breaking errors that do not constitutes failures. The error timestamps are

rounded to the closest hour since telemetry data are aggregated at an hourly

rate during the first aggregation step, as previously said.

Maintenance history is a collection of record generated when a compo-

nent is replaced during a scheduled inspection or due to a failure. For the

sake of simplicity, maintenance history is considered already available because

collected in the past and stored in the databases.

Information about the machine, instead, contains the model name of the

milling machine and its age in terms of years of service.

6.4.2 Representing the use case using the PdM model

Considering the description of the case study previously provided and using

the means specified by the PdM model, we can say that the AASs of the

milling machines implement the LBs DA and DM, whereas the Industrial PC

and the Industrial Gateway require the functionalities of the LB Aggregation.

All of them, instead, must implement the functionalities of the LB Configura-

tion because they must expose the proper functionalities used by an external

CHAPTER 6. A MODEL FOR PDM BASED ON AAS 128

configuration tool to set the right parameters for data acquisition, data ma-

nipulation and aggregation, respectively. All these LBs are implemented in a

proper “Condition Monitoring” Submodel of the AASs.

The telemetry data are collected using sensors either directly applied or

embedded to the milling machines. Telemetry data consist in vibration, volt-

age, rotation, and pressure. Voltage and pressure are gathered using sensors

already embedded in the milling machine. The rotation speed is obtained us-

ing a rotation speed sensor applied to the machine and connected to a PLC.

Finally, the vibration data are gathered using a wireless vibration sensor.

Figure 6.4 shows how telemetry data are exposed by the AAS in a uniform

manner regardless how data are retrieved from sensors.

Figure 6.4: The structure of the AAS of a milling machine. The submodel
“Condition Monitoring” provides measurement value, configuration parame-
ters, alarms and operations in a uniform manner by means of the AAS inter-
face. All the implementation details and underling technologies adopted for
data collection and manipulation are hidden by the AAS.

CHAPTER 6. A MODEL FOR PDM BASED ON AAS 129

Telemetry data are collected under the Submodel “Condition monitoring”

including also the measurement values, alarms thresholds, configuration pa-

rameters for data acquisition, and operations for data manipulation. The

added value in the adoption of the AAS here is that logically different prop-

erties and operations are modelled using the same entities coming from the

AAS metamodel, thus hiding the details of the technologies required to gather

data or to implement the operations in the milling machine. Furthermore, the

AAS allows to configure how such data are retrieved (e.g. sampling rates) or

exposed by its interface. Suitable operations may use asset information and

configuration parameters and be applied to data collected to expose values in

a suitable manner for the ML solution of the use case, e.g. measurement unit

conversion.

The complete scenario of the case study with the interaction between all

the components involved in the PdM solution are depicted in Figure 6.5.

Since telemetry data exposed by the AASs of the milling machines are

already well structured in a uniform manner, the AASs of the Industrial PCs

are configured to collect measurement values from each relevant milling ma-

chine and saving them in a time-series database. In turn, the AAS of the Edge

Gateway is configured to collect the data of all the milling machines, putting

them all together and calculating the mean and the standard deviation in a

window of 24 hours and saving them in a cloud database, as said in the case

study description.

An external configuration tool is adopted to configure how data collec-

tion, data manipulation, and aggregation is performed by the AASs. This

tool interacts with the functionalities contained in the Submodel “Configu-

ration” of the relevant AASs. Figure 6.5 shows how the configuration of the

Edge Gateway may start cascading configuration processes to the underlying

Industrial PCs. This cascading function calls are possible because of the in-

herent modularity of LB functionalities, realised in turn by the modularity of

the structure of the AASs.

Error logs are generated by the Industrial PCs collecting alarms coming

from the AASs of the milling machines, whilst machine information can be

directly retrieved by the Enterprise Resource Manufacturing (ERP), which

CHAPTER 6. A MODEL FOR PDM BASED ON AAS 130

Figure 6.5: Complete overview of the scenario of the case study.

interacts with the AASs of the milling machines and save the information in

the cloud. A submodel “Identification” is considered inside the AAS of the

milling machines to contains data like identifiers, model type and age. Main-

tenance history, as already said, is considerd available in the cloud database

for semplicity.

For the preparation of the dataset and the training, tasting and validation

of the ML model, the tools offered by Azure ML Studio are used. The func-

tionalities of the LB Prediction Model are obviously implemented by the tools

of Azure ML Studio. Some functionalities of the LB Aggregation are also re-

quired at this level to put all data together and create the complete dataset.

It is worth noting that with an AAS-based infrastructure under the edge, the

CHAPTER 6. A MODEL FOR PDM BASED ON AAS 131

creation of datasets of features is simplified since all the steps required for

its construction are abstracted in LB functionalities exposed as uniform and

standardised AAS functionalities.

Once the ML-based prediction model is validated, real-time data are pro-

vided to the model implementing the functionality of the LB Prediction Model

in order to generate predictions. Such predictions are then used by a Main-

tenance decision-making tool deployed in the cloud that analyses the inputs

and eventually schedules maintenance actions. This tool interacts directly

with the AASs of the drilling machine to set all the maintenance informa-

tion in the properties of the Submodel “Maintenance”, which implements the

funcitonalities of the LB Schedule and Status.

The description of this scenario using LBs helps to identify the roles that

IT elements must play in order to realise the PdM program. The adoption of

AASs is of paramount importance because the implementation details of LBs

are hidden by the standardized structure and interface of the AAS. This is

a huge improvement in terms of interoperability, especially in the brownfield

where lot of different vendor-specific technologies can be used for data retrieval

and for communication. The harmonization of the technologies in OT level

using the AASs is an evident advantage for the definition (or re-definition)

of a PdM solution in the context of Industry 4.0. For instance, considering

the case where the wireless vibration sensor of one of the milling machine

must be changed with a new one with a different model, this reconfiguration

is absolutely transparent from the point of view of the PdM program as long

as the data exposed by the AAS of the milling machine are the same. This

example can be extended to every component of the PdM program, so that a

component can be replaced with a new one without causing disruptive effect

to the PdM program as long as it respects the role of the previous one, i.e. it

features the same LB functionalities.

6.5 Discussion

The main aim of this research is the harmonization of all possible approaches

applied for PdM in order to achieve flexibility and interoperability in the

CHAPTER 6. A MODEL FOR PDM BASED ON AAS 132

context of an Industry 4.0 smart factory. We assessed the state of the art

about PdM and generalised the steps and the functionalities needed for the

definition of a model able to describe every PdM solution in terms of com-

bination of generic functionalities. This is of paramount importance in the

context of smart manufacturing because production systems need to adapt

their configuration on the basis of the enterprise needs. As a consequence of

the re-configuration process, replacing machinery or adding new devices in

the production configuration may harm the PdM program.

We identified two main objectives that must be achieved in order define a

model describing PdM program acting on a flexible production plant: PdM

functionalities must be technology-independent in order to describe PdM pro-

grams regardless its effective implementation, and an abstraction mechanism

is required to hide all the heterogeneity of technologies adopted for the PdM

implementation.

Our approach is based on the definition of LBs grouping all the different

aspects involved in a generic PdM solution, like data acquisition or data ma-

nipulation. All the functionalities of an LB abstract a specific operation for the

PdM process, regardless how such operation is actually implemented. The ad-

vantage in the adoption of LBs is that they allow the definition of roles for the

components of the maintenance program, which enable both easy replacement

and changings in the PdM solution in a seamless manner. As we discussed

in the chapter, since functionalities are generic and technology-independent,

the PdM model allows the replacement of a device with another one featuring

the same role, even though the implementation of such functionalities differs.

This is possible because the LBs follow a “black box” approach where the

signatures of the operations are defined in generic terms and, as long as the

implementations of the funcitonalities respect such signatures, devices with

the same role are considered equivalent even though they achieve the same

goals using different implementations.

Furthermore, the concept of AAS provides an abstraction layer for the

heterogeneity of devices and technologies adopted (especially in the brown-

field) improving the degree of integration between PdM components and a

common structure to the information and operation featured by devices.

CHAPTER 6. A MODEL FOR PDM BASED ON AAS 133

Both LBs and AASs specified in the PdM model allow the definition of

maintenance programs to improve the level of flexibility in production, thus

satisfying the aforementioned main objectives for the definition of a flexible

PdM model.

The case study analysed in section 6.4 demonstrated how the the AAS is

a powerful Industry 4.0 concept that hides the implementation details behind

PdM solutions increasing the interoperability between both devices of different

manufacturer and devices using different technologies.

With this research we described a new scenario taking advantage of the

AAS as a single universal source of information relevant to assets in order

to achieve flexible manufacturing against a PdM maintenance program. Fu-

ture works can demonstrate how new information generated by procedures

of different areas (like PdM) can be used to improve production flexibility.

For instance, a manufacturing system may access the AAS of a machine to

retrieve its operational status; if the machine is either in maintenance or in

failure mode, the manufacturing system can use such information to assign

the next production step to a functionally equivalent machine. This may

show how the results coming from the PdM solution may be used to improve

the availability and the optimisation of the production system. According to

the classification of interoperability given in the introduction of this thesis,

the approach described in this chapter allows the technical, syntactic and se-

mantic interoperability inside the definition of a PdM solution, but it is not

possible speaking of organizational interoperability since the cooperation with

processes out of the context of the PdM program is not guaranteed.

6.6 Publications

The results conducted for this research activities has been published in the

scientific journal “Sensors” for the special issue “Industrial Internet of Things

in the Industry 4.0: New Researches, Applications and Challenges” [103].

Chapter 7

Conclusions

In this thesis, we discussed the importance of interoperability in Industry 4.0

and the importance of the concept of the AAS to achieve it. AAS is defined

in RAMI4.0 as the corner stone of interoperability because it is the only com-

ponent that allows the representation of physical assets in the digital world,

exposing them in a uniform, standardised and semantically-annotated struc-

ture. In this context, the AAS is the powerful component that “transform”

the asset it represents in a CPS (I4.0 Component), providing a uniform infor-

mation model and a standardised and interoperable communication interface

(I4.0 Communication).

Since the very beginning of RAMI4.0, the concept of the AAS has been

presented from an high-level point of view providing its generic structure and

functional behaviour in a very abstract manner. Only in last few years first

documents describing its concrete internal structure (from the informational

level point of view) start to appear, and in the very recent future other doc-

uments providing API and architectural structure will be released.

Our research started with the study of the existent technologies to achieve

interoperability; in particular, the standard IEC 62541 (OPC UA), which

is proposed by RAMI4.0 as the only possible technology to implement the

Communication Layer of a I4.0 Component, has been identified as a suitable

solution in order to implement an AAS.

Our first research activity involved the definition of an AAS using OPC

134

CHAPTER 7. CONCLUSIONS 135

UA and, in particular, a mapping between the AAS metamodel and the OPC

UA standard information model so that the internal structure of the AAS

realised with OPC UA still maintains the rules of the original metamodel.

We proposed reasoning behind the adoption of the instruments provided by

OPC UA to represent an AAS inside the AddressSpace of an OPC UA Server,

providing pros and cons behind each solution. We followed a bottom-up

approach for the mapping between the two information models, starting with

the most fine-grained elements of the AAS metamodel and finishing with more

complex mechanisms behind the AAS structure, like referencing and data

specification. We realised an OPC UA Information Model for the realisation

of AASs and described a use case where it is possible taking advantage of

the OPC UA technology to define an Operator Support System accessing the

AASs inside OPC UA Servers to configure the production in the context of

an assembly line.

The research continued defining two new methodologies taking advantage

of the concept of the AAS that highlight how new scenarios can benefit from

its introduction. The first methodology we introduced was the representa-

tion of PLC programs based on IEC 61131-3 inside the AASs of PLCs. The

representation of PLC programs in the digital world permits to underline re-

lationships between software elements defined inside programs and physical

parts constituting both assets and production plant. Such detailed descrip-

tion of the state of the plant permits not only an easier management of the

plant configuration in its whole life-cycle but also a means to create more flex-

ible production systems. We described use case scenarios where AASs can be

accessed by specific tools in order to evaluate configuration parameters and

generate new PLC programs according to these new parameters. Further-

more, we discussed how AAS information can be used in the future during

the development process of PLC programs creating a closer relationship be-

tween the digital world and the physical world.

The second methodology leveraging the AAS consist in the definition of

interoperable and flexible PdM programs for production systems. We defined

a PdM model that allows the description of a PdM solution using abstract and

technology-indipendent functionalities to address the issue faced by mainte-

CHAPTER 7. CONCLUSIONS 136

nance programs in the context of a re-configurable factory in industry 4.0. The

research question was “How can we change the plant configuration (changing

parameters or adding or replacing new machinery) without harming the PdM

program?”. Ususally PdM programs fit the machinery and data they provide;

replacing a machine or consider a new health indicator require a complete

revision of the maintenance programs and, usually, the complete redefinition

of the prediction model used for the assessment of machinery health. We

assessed the state of the art on PdM and we realised that two main objec-

tives must be achieved in order to define a flexible PdM program: 1) defining

generic functionalities for the description of a technology-independent PdM

solution and 2) hiding the heterogeneity and complexity of the OT level. This

is in accordance to the lessons we learned from OPC UA and AAS to achieve

interoperability since both define abstraction layers hiding implementation

details and uniform interfaces to generic functionalities that can be used to

describe detailed and domain-specific operations. Therefore, we defined a

PdM model providing generic functionalities grouped in so-called LBs, which

are modular elements that can be used to describe the role of a PdM com-

ponent in a technology-indipendent manner, hence addressing the objective

1). To address 2), instead, our model considers the adoption of AASs for

brownfield devices, showing how a PdM program based on the utilisation of

I4.0 Component easily achieve the objective 2). It is worth noting how the

definition of LBs is suited to being realised inside specific Submodels inside

the AAss of machinery, as described in chapter 6. Finally, we presented a

real scenario describing a PdM program for the maintenance of 100 industrial

milling machine where our PdM model is used for the definition of the PdM

solution. Such description abstracts the roles covered by the infrastructure

components in the context of the maintenance program and hides the imple-

mentation details, so that eventual modifications to the plant do not affect

the PdM program as long as replacing components respect the descriptions

(according the PdM Model) of the old ones.

We found that most of the features and the philosophy behind OPC UA

have lot in common with the concept of the AAS. Both provides elementary

and generic building blocks (i.e. metamodel) that can be used in order to re-

CHAPTER 7. CONCLUSIONS 137

alise more complex concepts. Both leverage on semantics to express concepts

represented with either same or similar structures, even though OPC UA and

AAS use different strategies to accomplish this.

The similarities between OPC UA and AAS highlight that interoperabil-

ity requires the definition of a universal and generic metamodel to express

more complex and domain-specific concepts, but this is just a necessary but

non-sufficient condition. What is of paramount importance is the possibility

to express a semantics over concepts defined using metamodels. OPC UA

uses the so-called Information model which defined standardised objects and

manners to compose elements of specific domains, whereas AAS uses external

dictionaries providing standard concept definition to semantically annotate

elements.

What comes out from this discussion is that, even though interoperabil-

ity requires abstraction layer and technology independent interfaces to create

data federation between information systems (syntactic interoperability)

and both semantic annotations and relationships to enable knowledge infer-

ence and machine computable logic (semantc interoperability), the foun-

dation of interoperability is standardisation. Elementary concepts, interface

operations and semantics must be standardised in order to start the descrip-

tion of more complex systems that must interoperate and companies must

agree with such concepts to start creating an Industry 4.0 approach.

Established this common shared foundation, technologies and approaches

from the field of Internet of Things act a major role to maintain data updated

in real-time and for the exchange of information. Telemetry protocols and em-

bedded systems are of paramount importance for gathering and exchanging

data from assets. In particular, future works may rely in Time-Sensitive Net-

working to create stronger relationships between assets and their digital twins,

providing a reliable means to fill in values for properties and to guarantee rel-

time executions of the operations defined inside the AASs. In this sense, the

OPC UA-based AAS discussed in this thesis can take advantage of the new

OPC UA PubSub specification [104] and, in general, the conjunction between

AAS and OPC UA with TSN [105] will guarantee interoperability between

different control subsystems, improving the management and analysis of field

CHAPTER 7. CONCLUSIONS 138

devices satisfying real-time communication constraints.

Bibliography

[1] Yongxin Liao et al. “Past, present and future of Industry 4.0 - a system-

atic literature review and research agenda proposal”. In: International

Journal of Production Research 55 (2017), pp. 3609–3629.

[2] L. Xu, Eric Xu, and L. Li. “Industry 4.0: state of the art and future

trends”. In: International Journal of Production Research 56 (2018),

pp. 2941–2962.

[3] Ateeq Khan. and Klaus Turowski. “A Perspective on Industry 4.0:

From Challenges to Opportunities in Production Systems”. In: Pro-

ceedings of the International Conference on Internet of Things and

Big Data - Volume 1: IoTBD, INSTICC. SciTePress, 2016, pp. 441–

448. isbn: 978-989-758-183-0. doi: 10.5220/0005929704410448.

[4] Henning Kagermann, Wolfgang Wahlster, and Johannes Helbig. Rec-

ommendations for Implementing the Strategic Initiative INDUSTRIE

4.0 – Securing the Future of German Manufacturing Industry. Fi-

nal Report of the Industrie 4.0 Working Group. acatech – National

Academy of Science and Engineering, 2013.

[5] Stephan Weyer et al. “Towards Industry 4.0 - Standardization as the

crucial challenge for highly modular, multi-vendor production systems”.

In: IFAC-PapersOnLine 48.3 (2015), pp. 579–584. issn: 2405-8963.

doi: https://doi.org/10.1016/j.ifacol.2015.06.143.

[6] Hugh Boyes et al. “The industrial internet of things (IIoT): An analysis

framework”. In: Computers in Industry 101 (2018), pp. 1–12. issn:

0166-3615. doi: https://doi.org/10.1016/j.compind.2018.04.

015.

139

BIBLIOGRAPHY 140

[7] D. Schulte and A. Colombo. “RAMI 4.0 based digitalization of an

industrial plate extruder system: Technical and infrastructural chal-

lenges”. In: IECON 2017 - 43rd Annual Conference of the IEEE In-

dustrial Electronics Society (2017), pp. 3506–3511.

[8] A. Geraci et al. “IEEE Standard Computer Dictionary: Compilation

of IEEE Standard Computer Glossaries”. In: 1991.

[9] Jacob Nilsson and F. Sandin. “Semantic Interoperability in Industry

4.0: Survey of Recent Developments and Outlook”. In: 2018 IEEE 16th

International Conference on Industrial Informatics (INDIN) (2018),

pp. 127–132.

[10] R. Rezaei, T. K. Chiew, and S. Lee. “A review of interoperability

assessment models”. In: Journal of Zhejiang University SCIENCE C

14 (2013), pp. 663–681.

[11] Didem Gürdür and Fredrik Asplund. “A Systematic Review to Merge

Discourses : Interoperability, Integration and Cyber-Physical Systems”.

In: Journal of Industrial Information Integration 9 (2017), pp. 14–23.

[12] IEC TR 62390:2005 – Common automation device - Profile guideline.

IEC.

[13] Jonathan Fuchs et al. “I4.0-compliant integration of assets utilizing the

Asset Administration Shell”. In: 2019 24th IEEE International Con-

ference on Emerging Technologies and Factory Automation (ETFA)

(2019), pp. 1243–1247.

[14] DIN SPEC 91345:2016-04, Reference Architecture Model Industrie 4.0

(RAMI4.0). Berlin: DIN, Mar. 2016.

[15] Platform Industrie 4.0 and ZVEI. Details of the Asset Administration

Shell - Part 1 - the exchange of information between partners in the

value chain of Industrie 4.0. 2020.

[16] M. A. Iñigo et al. “Towards an Asset Administration Shell scenario: a

use case for interoperability and standardization in Industry 4.0”. In:

NOMS 2020 - 2020 IEEE/IFIP Network Operations and Management

Symposium (2020), pp. 1–6.

BIBLIOGRAPHY 141

[17] Platform Industrie 4.0 and ZVEI. Relationships between I4.0 Compo-

nents - Composite Components and Smart Production. 2017.

[18] Platform Industrie 4.0. Structure of the Administration Shell - Con-

tinuation of the Development of the Reference Model for the Industrie

4.0 Component. 2016.

[19] David Kampert and U. Epple. “Modeling asset information for inter-

operable software systems”. In: IEEE 10th International Conference

on Industrial Informatics (2012), pp. 947–952.

[20] ZVEI. Examples of the Asset Administration Shell for Industrie 4.0

Components - Basic parts. 2017.

[21] Dorota Lang et al. “Utilization of the Asset Administration Shell to

Support Humans During the Maintenance Process”. In: 2019 IEEE

17th International Conference on Industrial Informatics (INDIN) 1

(2019), pp. 768–773.

[22] F. Prinz et al. “Configuration of Application Layer Protocols within

Real-time I4.0 Components”. In: 2019 IEEE 17th International Con-

ference on Industrial Informatics (INDIN) 1 (2019), pp. 971–976.

[23] Alejandro Seif, Carlos Toro, and Humza Akhtar. “Implementing In-

dustry 4.0 Asset Administrative Shells in Mini Factories”. In: KES.

2019.

[24] DIN SPEC 16593-1:2018-04 RM-SA, Reference Model for Industrie

4.0 Service Architectures - Part 1: Basic Concepts of an Interaction-

based Architecture. Berlin: DIN, 2018.

[25] S. Panda et al. “Plug&Produce Integration of Components into OPC

UA based data-space”. In: 2018 IEEE 23rd International Conference

on Emerging Technologies and Factory Automation (ETFA) 1 (2018),

pp. 1095–1100.

[26] Platform Industrie 4.0. I4.0-Sprache - Vokabular, Nachrichtenstruktur

und semantische Interaktionsprotokolle der I4.0-Sprache. 2018.

BIBLIOGRAPHY 142

[27] C. Diedrich et al. “Semantic interoperability for asset communication

within smart factories”. In: 2017 22nd IEEE International Conference

on Emerging Technologies and Factory Automation (ETFA) (2017),

pp. 1–8.

[28] A. Belyaev and C. Diedrich. Specification Testbed ”AAS networked”

- Proactive AAS - interaction according to the VDI/VDE 2193. July

2020. url: http://www.lia.ovgu.de/lia_media/LIA_Medien/

AASnetworked-p-250.pdf.

[29] Wolfgang Mahnke, Stefan-Helmut Leitner, and Matthias Damm. OPC

Unified Architecture. Springer, 2009.

[30] Wenbin Dai et al. “Modelling Industrial Cyber-Physical Systems using

IEC 61499 and OPC UA”. In: 2018 IEEE 16th International Confer-

ence on Industrial Informatics (INDIN) (2018), pp. 772–777.

[31] Specification Amendment 7: Interfaces and AddIns, release 1.04. OPC

Foundation, 2019.

[32] OPC UA Part 6: Mappings, release 1.04. OPC Foundation, 2017.

[33] José M. Gutiérrez-Guerrero and J. A. Holgado-Terriza. “Automatic

Configuration of OPC UA for Industrial Internet of Things Environ-

ments”. In: Electronics 8 (2019), p. 600.

[34] P. Ferrari et al. “Impact of Quality of Service on Cloud Based Industrial

IoT Applications with OPC UA”. In: Electronics 7 (2018), p. 109.

[35] Isáıas González et al. “A Literature Survey on Open Platform Com-

munications (OPC) Applied to Advanced Industrial Environments”.

In: Electronics 8 (2019), p. 510.

[36] R. Fielding. “Architectural Styles and the Design of Network-based

Software Architectures”; Doctoral dissertation”. In: 2000.

[37] S. Grüner, J. Pfrommer, and F. Palm. “RESTful Industrial Commu-

nication With OPC UA”. In: IEEE Transactions on Industrial Infor-

matics 12 (2016), pp. 1832–1841.

BIBLIOGRAPHY 143

[38] T. Luckenbach et al. “TinyREST – a Protocol for Integrating Sensor

Networks into the Internet”. In: 2005.

[39] D. Guinard, V. Trifa, and E. Wilde. “A resource oriented architecture

for the Web of Things”. In: 2010 Internet of Things (IOT) (2010),

pp. 1–8.

[40] R. Pribǐs, L. Beňo, and P. Drahoš. “An Industrial Communication

Platform for Industry 4.0 - case study”. In: 2020 Cybernetics & Infor-

matics (K&I) (2020), pp. 1–9.

[41] Ovidiu Vermesan et al. Strategy and coordination plan for IoT inter-

operability and standard approaches. Tech. rep. ETSI, 2017.

[42] S. Cavalieri et al. “A web-based platform for OPC UA integration in

IIoT environment”. In: IEEE International Conference on Emerging

Technologies and Factory Automation, ETFA (2017), pp. 1–6. doi:

10.1109/ETFA.2017.8247713.

[43] S. Cavalieri et al. “Integration of OPC UA into a web-based platform

to enhance interoperability”. In: IEEE International Symposium on

Industrial Electronics (2017), pp. 1206–1211. doi: 10.1109/ISIE.

2017.8001417.

[44] S. Cavalieri et al. “OPC UA integration into the web”. In: Proceedings

IECON 2017 - 43rd Annual Conference of the IEEE Industrial Elec-

tronics Society 2017-January (2017), pp. 3486–3491. doi: 10.1109/

IECON.2017.8216590.

[45] S. Cavalieri, M.G. Salafia, and M.S. Scroppo. “Integrating OPC UA

with web technologies to enhance interoperability”. In: Computer Stan-

dards and Interfaces 61 (2019), pp. 45–64. doi: 10.1016/j.csi.2018.

04.004.

[46] S. Cavalieri, M.G. Salafia, and M.S. Scroppo. “Mapping OPC UA Ad-

dressSpace to OCF resource model”. In: Proceedings - 2018 IEEE In-

dustrial Cyber-Physical Systems, ICPS 2018 (2018), pp. 135–140. doi:

10.1109/ICPHYS.2018.8387649.

BIBLIOGRAPHY 144

[47] S. Cavalieri et al. “Towards integration between OPC UA and OCF”.

In: ICEIS 2019 - Proceedings of the 21st International Conference on

Enterprise Information Systems 1 (2019), pp. 543–550. doi: 10.5220/

0007672205550562.

[48] S. Cavalieri, M.G. Salafia, and M.S. Scroppo. “Realising Interoperabil-

ity between OPC UA and OCF”. In: IEEE Access 6 (2018), pp. 69342–

69357. doi: 10.1109/ACCESS.2018.2880040.

[49] S. Cavalieri, M.G. Salafia, and M.S. Scroppo. “Towards interoperability

between OPC UA and OCF”. In: Journal of Industrial Information

Integration 15 (2019), pp. 122–137. doi: 10.1016/j.jii.2019.01.

002.

[50] A. Lüder et al. “One step towards an industry 4.0 component”. In:

2017 13th IEEE Conference on Automation Science and Engineering

(CASE) (2017), pp. 1268–1273.

[51] Xun Ye and S. Hong. “Toward Industry 4.0 Components: Insights Into

and Implementation of Asset Administration Shells”. In: IEEE Indus-

trial Electronics Magazine 13 (2019), pp. 13–25.

[52] Irlán Grangel-González et al. “Towards a Semantic Administrative

Shell for Industry 4.0 Components”. In: 2016 IEEE Tenth Interna-

tional Conference on Semantic Computing (ICSC) (2016), pp. 230–

237.

[53] Specification Amendment 5: Dictionary Reference, release 1.04. OPC

Foundation, 2019.

[54] Y. Cohen et al. “Assembly system configuration through Industry 4.0

principles: the expected change in the actual paradigms”. In: IFAC-

PapersOnLine 50 (2017), pp. 14958–14963.

[55] M. A. Iñigo et al. “Towards an Asset Administration Shell scenario: a

use case for interoperability and standardization in Industry 4.0”. In:

NOMS 2020 - 2020 IEEE/IFIP Network Operations and Management

Symposium (2020), pp. 1–6.

BIBLIOGRAPHY 145

[56] S. Cavalieri, S. Mule, and M.G. Salafia. “OPC UA-based Asset Admin-

istration Shell”. In: IECON Proceedings (Industrial Electronics Con-

ference) 2019-October (2019), pp. 2982–2989. doi: 10.1109/IECON.

2019.8926859.

[57] S. Cavalieri and M.G. Salafia. “Insights into mapping solutions based

on OPC UA information model applied to the industry 4.0 asset admin-

istration shell”. In: Computers 9.2 (2020). doi: 10.3390/computers9020028.

[58] R. Langmann and Leandro F. Rojas-Peña. “A PLC as an Industry

4.0 component”. In: 2016 13th International Conference on Remote

Engineering and Virtual Instrumentation (REV) (2016), pp. 10–15.

[59] IEC 61131-3:2013 - Part 3: Programming languages. International Elec-

trotechnical Commission (IEC), 2013.

[60] Langmann and Stiller. “The PLC as a Smart Service in Industry 4.0

Production Systems”. In: Applied Sciences 9 (2019), p. 3815.

[61] M. Wenger, Alois Zoitl, and T. Müller. “Connecting PLCs With Their

Asset Administration Shell For Automatic Device Configuration”. In:

2018 IEEE 16th International Conference on Industrial Informatics

(INDIN) (2018), pp. 74–79.

[62] Hyeong-Tae Park et al. “Plant model generation for PLC simulation”.

In: International Journal of Production Research 48 (2010), pp. 1517–

1529.

[63] S. Park et al. “PLCStudio: Simulation based PLC code verification”.

In: 2008 Winter Simulation Conference (2008), pp. 222–228.

[64] S. Park, Minsuk Ko, and Minho Chang. “A reverse engineering ap-

proach to generate a virtual plant model for PLC simulation”. In:

The International Journal of Advanced Manufacturing Technology 69

(2013), pp. 2459–2469.

[65] J. Machado et al. “LOGIC CONTROLLERS DEPENDABILITY VER-

IFICATION USING A PLANT MODEL”. In: IFAC Proceedings Vol-

umes 39 (2006), pp. 37–42.

BIBLIOGRAPHY 146

[66] S. Park, C. M. Park, and Gi-Nam Wang. “A PLC programming en-

vironment based on a virtual plant”. In: The International Journal of

Advanced Manufacturing Technology 39 (2008), pp. 1262–1270.

[67] Yuqi Chen, Christopher M. Poskitt, and J. Sun. “Learning from Mu-

tants: Using Code Mutation to Learn and Monitor Invariants of a

Cyber-Physical System”. In: 2018 IEEE Symposium on Security and

Privacy (SP) (2018), pp. 648–660.

[68] R. W. Lewis. Programming industrial control systems using IEC 61131-

3. The Institution of Electrical Engineers, 1998.

[69] S. G. McCrady. Designing SCADA Application Software. Elsevier, 2013.

[70] IEC 61131-10:2019 - Part 10: PLC open XML exchange format. In-

ternational Electrotechnical Commission (IEC), 2019.

[71] OPC 30001: IEC61131-3 Client Function Blocks for OPC UA. OPC

Foundation, PLCopen, 2016.

[72] S. Cavalieri and M.G. Salafia. “Asset Administration Shell for PLC

Representation Based on IEC 61131-3”. In: IEEE Access 8 (2020),

pp. 142606–142621. doi: 10.1109/ACCESS.2020.3013890.

[73] Mobley R. K. An introduction to Predictive Maintenance. Elsevier,

2002.

[74] O. Motaghare, A. S. Pillai, and K. I. Ramachandran. “Predictive Main-

tenance Architecture”. In: 2018 IEEE International Conference on

Computational Intelligence and Computing Research (ICCIC). 2018,

pp. 1–4. doi: 10.1109/ICCIC.2018.8782406.

[75] Christin Groba et al. “Architecture of a Predictive Maintenance Frame-

work”. In: 6th International Conference on Computer Information Sys-

tems and Industrial Management Applications (CISIM’07) (2007), pp. 59–

64.

[76] E. Traini et al. “Machine learning framework for predictive mainte-

nance in milling”. In: IFAC-PapersOnLine 52 (2019), pp. 177–182.

BIBLIOGRAPHY 147

[77] Go Muan Sang et al. “Towards Predictive Maintenance for Flexible

Manufacturing Using FIWARE”. In: Advanced Information Systems

Engineering Workshops 382 (2020), pp. 17–28.

[78] Antonio J. Guillén et al. “A framework for effective management of

condition based maintenance programs in the context of industrial de-

velopment of E-Maintenance strategies”. In: Comput. Ind. 82 (2016),

pp. 170–185.

[79] Platform Industrie 4.0. The Standardisation Roadmap of Predictive

Maintenance for Sino-German Industrie 4.0/Intelligent Manufactur-

ing. 2018.

[80] VDMA 24582:2014 – Fieldbus Neutral Reference Architecture for Con-

dition Monitoring in Production Automation. VDMA, 2014.

[81] Erdal Tantik and R. Anderl. “Potentials of the Asset Administration

Shell of Industrie 4.0 for Service-Oriented Business Models”. In: Pro-

cedia CIRP 64 (2017), pp. 363–368.

[82] Max Birtel et al. “Requirements for a Human-Centered Condition

Monitoring in Modular Production Environments”. In: IFAC-PapersOnLine

51 (2018), pp. 909–914.

[83] Ahmad Rosmaini and K. Shahrul. “An overview of time-based and

condition-based maintenance in industrial application”. In: Computers

& Industrial Engineering (2012).

[84] H. Hashemian and W. C. Bean. “State-of-the-Art Predictive Mainte-

nance Techniques*”. In: IEEE Transactions on Instrumentation and

Measurement 60 (2011), pp. 3480–3492.

[85] S. Patil and J. Gaikwad. “Vibration analysis of electrical rotating ma-

chines using FFT: A method of predictive maintenance”. In: 2013

Fourth International Conference on Computing, Communications and

Networking Technologies (ICCCNT) (2013), pp. 1–6.

BIBLIOGRAPHY 148

[86] A. K. S. Jardine, D. Lin, and D. Banjevic. “A review on machin-

ery diagnostics and prognostics implementing condition-based main-

tenance”. In: Mechanical Systems and Signal Processing 20 (2006),

pp. 1483–1510.

[87] H. Hashemian. “Response time testing of temperature sensors using

loop current step response method”. In: International Journal of Nu-

clear Energy Science and Technology 7 (2013), p. 209.

[88] Patrick Straus et al. “Enabling of Predictive Maintenance in the Brown-

field through Low-Cost Sensors, an IIoT-Architecture and Machine

Learning”. In: 2018 IEEE International Conference on Big Data (Big

Data) (2018), pp. 1474–1483.

[89] P. Poór, J. Basl, and D. Žeńı̌sek. “Predictive Maintenance 4.0 as next

evolution step in industrial maintenance development”. In: 2019 Inter-

national Research Conference on Smart Computing and Systems En-

gineering (SCSE) (2019), pp. 245–253.

[90] S. March and Gary D. Scudder. “Predictive maintenance: strategic

use of IT in manufacturing organizations”. In: Information Systems

Frontiers 21 (2019), pp. 327–341.

[91] Jun Ma and J. Li. “Detection of localised defects in rolling element

bearings via composite hypothesis test”. In: Mechanical Systems and

Signal Processing 9 (1995), pp. 63–75.

[92] M. Fugate, H. Sohn, and C. Farrar. “VIBRATION-BASED DAM-

AGE DETECTION USING STATISTICAL PROCESS CONTROL”.

In: Mechanical Systems and Signal Processing 15 (2001), pp. 707–721.

[93] V. Skormin et al. “Applications of cluster analysis in diagnostics-

related problems”. In: 1999 IEEE Aerospace Conference. Proceedings

(Cat. No.99TH8403) 3 (1999), 161–168 vol.3.

[94] S. Orlov, R. V. Girin, and O. Y. Uyutova. “Artificial Neural Network

for Technical Diagnostics of Control Systems by Thermography”. In:

2018 International Conference on Industrial Engineering, Applications

and Manufacturing (ICIEAM) (2018), pp. 1–4.

BIBLIOGRAPHY 149

[95] R. M. Tallam, T. Habetler, and R. Harley. “Self-commissioning train-

ing algorithms for neural networks with applications to electric ma-

chine fault diagnostics”. In: IEEE Transactions on Power Electronics

17 (2002), pp. 1089–1095.

[96] Suresh K. Sampath et al. “Engine-fault diagnostics:an optimisation

procedure”. In: Applied Energy 73 (2002), pp. 47–70.

[97] W. Bartelmus. “Diagnostic information on gearbox condition for mecha-

tronic systems”. In: Transactions of the Institute of Measurement &

Control 25 (2003), pp. 451–465.

[98] Yuhuang Zheng. “Predicting Remaining Useful Life Based on Hilbert-

Huang Entropy with Degradation Model”. In: J. Electr. Comput. Eng.

2019 (2019), 3203959:1–3203959:11.

[99] Gian Antonio Susto et al. “Machine Learning for Predictive Main-

tenance: A Multiple Classifier Approach”. In: IEEE Transactions on

Industrial Informatics 11 (2015), pp. 812–820.

[100] M. Paolanti et al. “Machine Learning approach for Predictive Main-

tenance in Industry 4.0”. In: 2018 14th IEEE/ASME International

Conference on Mechatronic and Embedded Systems and Applications

(MESA) (2018), pp. 1–6.

[101] O. Koca, O. T. Kaymakci, and M. Mercimek. “Advanced Predictive

Maintenance with Machine Learning Failure Estimation in Industrial

Packaging Robots”. In: 2020 International Conference on Development

and Application Systems (DAS) (2020), pp. 1–6.

[102] ISO 17359:2018 – Condition monitoring and diagnostics of machines

— General guidelines. ISO.

[103] S. Cavalieri and M.G. Salafia. “A model for predictive maintenance

based on asset administration shell”. In: Sensors (Switzerland) 20.21

(2020), pp. 1–20. doi: 10.3390/s20216028.

[104] OPC UA Part 14: PubSub. OPC Foundation, 2018.

BIBLIOGRAPHY 150

[105] D. Bruckner et al. “An Introduction to OPC UA TSN for Industrial

Communication Systems”. In: Proceedings of the IEEE 107 (2019),

pp. 1121–1131.

