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Abstract: Cardiofaciocutaneous (CFC) syndrome is one of the rarest RASopathies characterized
by multiple congenital ectodermal, cardiac and craniofacial abnormalities with a mild to severe
ocular, gastrointestinal and neurological involvement. It is an autosomal dominant syndrome, with
complete penetrance, caused by heterozygous pathogenic variants in the genes BRAF, MAP2K1/MEK1,
MAP2K2/MEK2, KRAS or, rarely, YWHAZ, all part of the RAS-MAPK pathway. This pathway is a
signal transduction cascade that plays a crucial role in normal cellular processes such as cell growth,
proliferation, differentiation, survival, metabolism and migration. CFC syndrome overlaps with
Noonan syndrome, Costello syndrome, neurofibromatosis type 1 and Legius syndrome, therefore
making the diagnosis challenging. Neurological involvement in CFC is more severe than in other
RASopathies. Phenotypic variability in CFC patients is related to the specific gene affected, without
a recognized genotype–phenotype correlation for distinct pathogenic variants. Currently, there is
no specific treatment for CFC syndrome. Encouraging zebrafish model system studies suggested
that, in the future, MEK inhibitors could be a suitable treatment of progressive phenotypes of CFC in
children. A multidisciplinary care is necessary for appropriate medical management.

Keywords: Cardiofaciocutaneous syndrome; CFC; neurodevelopment; hypertrophic cardiomyopathy;
RASopathies; MEK1 mutation; MEK2 mutation; BRAF mutation; KRAS mutation

1. Introduction

CFC syndrome (OMIM 115150) is a multisystemic disorder that affects 1 in 800,000 new-
borns. CFC belongs to a group of syndromes collectively known as “RASopathies”, caused
by germline mutations in one of the genes encoding components of the RAS-MAPK signal
transduction pathway [1,2]. The RAS-MAPK pathway is a signal transduction cascade
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that plays a crucial role in normal cellular processes such as cell growth, proliferation,
differentiation, survival, metabolism and migration. Somatic gain-of-function mutations
in RAS genes are a well-known cause of cancer and there has been an increasing number
of studies involving the RAS pathway in oncogenesis [3]. Though each syndrome has its
specific phenotype, many of the RASopathies have overlapping clinical features, therefore
making the diagnosis challenging. These can include facial dysmorphisms, intellectual
disability (ID), congenital heart disease, short stature, muscle skeletal anomalies and lym-
phatic dysfunction. CFC syndrome may clinically overlap with neurofibromatosis type
1 (NF1), Noonan syndrome (NS), Noonan syndrome with multiple lentigines (NS-ML),
Costello syndrome (CS), Legius syndrome (LS), central conducting lymphatic anomalies
syndrome (CCLA), SYNGAP1 syndrome, and capillary malformation arteriovenous mal-
formation syndrome (CM-AVM), though compared with other RASopathies, it exhibits
more severe neurologic complications and phenotype [4]. CFC patients frequently present
with a characteristic facial appearance, congenital heart disease, severe developmental
delay and psychomotor delay, ectodermal, ocular and gastrointestinal abnormalities, and
neurological involvement [1]. Characteristic facial features include high forehead, bitem-
poral constriction, supraorbital hypoplasia, downslanting palpebral fissures, depressed
nasal bridge and posteriorly rotated ears with thick helices [5,6]. Compared to other RA-
Sopathies, neurological involvement is more severe and commonly includes refractory
epilepsy, neurocognitive impairment, motor and speech deficits, hypotonia and behavioral
challenges; ventriculomegaly, cortical atrophy and hydrocephalus are the most frequent
imaging findings in CFC patients [6,7]. Cardiac involvement is common in CFC and mani-
fests as atrial and ventricular septal defects, hypertrophic cardiomyopathy and pulmonary
valve stenosis. These patients also have curly and friable hair, and sparse eyebrows and
eyelashes; skin involvement ranges from dry skin to hyperkeratosis. CFC is inherited in an
autosomal-dominant manner, and most pathogenic variants involve the genes BRAF (75%),
MAP2K1 (25%), MAP2K2 (25%), KRAS (2%) or, more rarely, YWHAZ [8]. The real incidence
is still unknown and a phenotypic variability related to the specific gene affected has
been identified, without a genotype–phenotype correlation for specific pathogenic variants
(Table 1) [5]. The diagnosis of CFC syndrome is suspected based on the distinctive clinical
features and it is confirmed by molecular genetic testing [5,9]. The aim of the study is to
give updated evidence on the pathogenesis, clinical and radiological features, diagnosis,
and available treatment for CFC, supplying practice guidelines for the management of
pediatric patients with CFC.

Table 1. Genetic findings in patients with CFC.

Gene OMIM Number Prevalence Inheritance CFC Phenotypic Features

BRAF *164757 75% • De novo missense
heterozygous variants

• Autosomal-dominant
missense variant
inherited by mother
(1 case)

Moderate to severe polymorphic seizures
(+exons 11–16) 57%
Moderate ID 89%
Motor delay and hypotonia (unable to walk,
needing support) 29%
Cardiac disease 72%
Greater risk of skin abnormalities
Ocular hypertelorism, optic nerve hypoplasia
Tumors (+melanoma, thyroid, colorectal, and
ovarian cancers, benign nevi, premalignant
colon polyps 8%
Pulmonary stenosis 50%

MAP2K1 *176872 25% De novo missense
heterozygous variants

Moderate to severe polymorphic seizures
(+p.Y130C/H/N variant, exon 3) 61%
Mild ID 84%
Motor delay and hypotonia (unable to walk,
needing support) 71%
Cardiac disease (lower frequency, NA)
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Table 1. Cont.

Gene OMIM Number Prevalence Inheritance CFC Phenotypic Features

Macrocephaly, high forehead, bitemporal
constriction, hypoplasia of the supraorbital
ridges, downslanting palpebral fissures
Musculoskeletal abnormalities

MAP2K2 *601263 25% • De novo missense
heterozygous variants

• Autosomal dominant
missense variants
inherited by mother
(4 cases)

Lower risk of seizure occurrence and less
severe seizure types 30%
Mild ID 25%
Motor delay and hypotonia (unable to walk,
needing support) 13%
Cardiac disease 64%
Macrocephaly, high forehead, bitemporal
constriction, hypoplasia of the supraorbital
ridges, downslanting palpebral fissures

KRAS *190070 2% • De novo missense
heterozygous variants

• Autosomal dominant
missense variants
inherited by mother
(2 cases)

No epilepsy
Neurodevelopmental delay
Coarse face
Cardiac defects

YWHAZ *601288 Rarely, NA De novo missense
heterozygous variants

Developmental delay, behavioural disorders
ID
Short stature
Motor and speech delay
Triangular facies, ptosis
Seizures
Feeding problems

2. Methodology

In this narrative review, we searched articles on PubMed up to September 2023. The
search formula was as follows: (((CFC) OR (Cardiofaciocutaneous Syndrome)) AND ((gene
pathogenic variants) OR (mutations) OR (related neurological disorders) OR (neuroradio-
logical findings) OR (related skin anomalies) OR (related gastrointestinal disorders) OR
(muscle-skeletal findings) OR (behavior and cognitive disorders) OR (cardiac disorders)
OR (craniofacial findings) OR (endocrinologic and growth disorders))).

We selected studies, published in English, that included CFC pathogenesis, clinical
and radiological features, diagnosis, and the latest evidence on new treatments.

We revised the literature, exploring the evolving spectrum related to pathogenic
variants affecting patients with CFC, described to date. Of note, we firstly reported sys-
tematically the phenotypic variability related to the specific gene affected in the syndrome,
with relevant prognostic–therapeutic implications. Additionally, we first mentioned in the
review the new gene causally related to CFC, YWHAZ, describing how de novo missense
pathogenic variants in this gene lead to RAS/MAPK pathway disruption and clinical
manifestations. The family involved in the study provided informed consent for being part
of this study.

3. Pathogenesis

Currently, BRAF, MAP2K1, MAP2K2 and, rarely, KRAS have been associated with
CFC encoding components of the RAS-MAPK pathway. The signal cascade of RAS-MAPK
is highly conserved and plays a crucial role in normal cellular processes as cell growth,
proliferation, differentiation, survival, metabolism and migration [5,10]. The pathway
is stimulated by growth factors that lead RAS-mediated RAF activation. This kinase
phosphorylates MEK1 and/or MEK2 with consequent ERK1/2 activation, downstream



Genes 2023, 14, 2111 4 of 14

the cascade [11]. ERK1 and ERK2 effectors act both in the nucleus and in the cytoplasm,
mediating the polymorphic cellular response to growth factors (Figure 1).
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Figure 1. The RAS-MAPK pathway.

Pathogenic variants are mainly missense with a gain-of-function mechanism on pro-
teins of the pathway, leading to ERK1-2 hyperactivation.

The RAS-MAPK pathway is a signal transduction cascade that plays a crucial role
in normal cellular processes such as cell growth, proliferation, differentiation, survival,
metabolism and migration. The pathway is stimulated by growth factors that lead to
RAS-mediated RAF activation. This kinase phosphorylates MEK1 and/or MEK2 with
consequent ERK1/2 activation, downstream the cascade. ERK1 and ERK2 effectors act both
in nucleus and in cytoplasm, mediating the polymorphic cellular response to growth factors.

4. Neurological Findings

Neurological involvement in CFC syndrome is present in nearly all individuals and
ranges from mild to severe. Developmental delay, ID, epilepsy and hypotonia are common
findings, although a few individuals may have normal cognitive function (IQ within
normal range).

In children with CFC, seizures frequently occurred, usually with onset in infancy or
early childhood and they included tonic–clonic and/or complex focal seizures, absence
seizures and epileptic infantile spasms [7,12–16]; seizures could occur later in infancy,
requiring polytherapy and refractoriness to antiseizure medications (ASMs) [5]. However,
in children, seizure may occur also due to multiple different genetic conditions [17–20].

Hypotonia is also described and presented typically with a neonatal onset with mild to
severe asthenia, motor delay and poor muscle mass [5]. Furthermore, behavior abnormali-
ties could characterize a neuropsychiatric disorder in CFC patients, including irritability,
obsessive compulsive disorder, anxiety and autistic traits [5,21].

A recent clinical study by Pierpont et al. [6] reported a higher rate of CFC patients
affected by epilepsy than in the previously published literature: seizures of various type
occurred in 57% of individuals with BRAF pathogenic variants, 61% of patients with
MAP2K1 pathogenic variants and 30% of subjects with MAP2K2 pathogenic variants.
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MAP2K2 mutations were associated with a lower risk of seizure occurrence and less severe
seizure types [6]. On the other hand, patients with pathogenic variants in BRAF and
MAP2K1 presented with moderate to severe polymorphic seizures, which were frequently
drug-resistant. Furthermore, a relevant study by Battaglia et al. [16] shed a light on
genotype–phenotype correlation concerning the epileptic phenotype. There seems to be a
strong genotype–phenotype correlation regarding the occurrence and severity of seizures,
since variants in the protein kinase domain of BRAF (exons 11–16) and the p.Y130C/H/N
variant of MAP2K1 (exon 3) correlate with a severe epileptic phenotype [6]. Nevertheless,
pathogenic variants in KRAS variants were not associated with epilepsy. Notably, most
children affected with the above genotypes and severe epilepsy were also presenting
neurodevelopmental impairment. ID was reported in most individuals (82 -100%), usually
carrying BRAF (89%) or MAP2K1 (84%) pathogenic variants, while it was described only
in 25% of patients with MAP2K2 pathogenic variants [6]. The degree of ID ranged from
mild (MEK) to moderate (BRAF) [22]. Neurodevelopmental delay may be mild and difficult
to notice in patients with mild or moderate involvement, while speech and motor delays
are usually obvious in severely affected children [23]. Nevertheless, those are non-specific
findings, often found also in children with other kinds of neurologic impairment [19,24–26].
Motor delay and hypotonia are the most frequently observed neurological features in CFC
syndrome [27]. Pierpont et al., reported a distinctive genotype–phenotype correlation:
children carrying pathogenic variants in MAP2K1 showed more need for support and
lack of independent ambulation (71%) compared to patients with BRAF (29%) or MAP2K2
(13%) mutations [6]. Language acquisition is usually delayed and speech abilities range
from full sentences to non-verbal communications (9–31%) [9]. Interestingly, mutations
promoting dysregulation of the RAS-MAPK cascade have been associated with an increased
psychopathological risk. Frequently, patients with CFC presented underdiagnosed autistic-
like behaviors [21].

A magnetic resonance imaging (MRI) evaluation could be useful during the diagnostic
work-up. Brain magnetic resonance imaging studies may prove useful in patients with
uncertain diagnosis and for prognostic information. Ventriculomegaly (43.9%) is the most
common finding and sometimes requires a ventriculo-peritoneal shunt [28,29].

Other findings comprise prominent Virchow–Robin spaces (10.6%), hydrocephalus
(24.2%) and myelination abnormalities. Some patients have structural brain anomalies,
including Type I Chiari malformation (4.5%), arachnoid cyst (1.5%) and subependymal
grey matter heterotopia (7.5%) [12].

Other abnormalities can include abnormal EEG, dilated perivascular spaces, dilated
perivascular spaces, corticospinal tract findings, agenesis of the corpus callosum (6%),
frontal lobe hypoplasia (1.5%), pachygyria (7.5%) and Chiari malformation (4.5%) [5]
(Figure 2).

4.1. Cardiac Findings

Congenital heart defects (CHDs) occur in most people with CFC syndrome
(~75%) [9,30–32]. The cardiac defects most frequently associated with this condition include
pulmonary valvular stenosis (PVS) (~45%), Hypertrophic cardiomyopathy (HCM) (~40%),
atrial septal defect (18–28%), ventricular septal defect (11–22%) and other anomalies such as
mitral valve dysplasia, arrhythmias, tricuspid valve dysplasia, and bicuspid aortic valve [9].
Patients with MAP2K1 variants have a lower frequency of cardiac disease than those with
MAP2K2 (64%) and BRAF variants (72%) [8]. Literature data show that neurological and
cardiac phenotypes do not segregate in a similar pattern, so different variants in CFC genes
have different consequences across tissues [6].
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Figure 2. Neuroradiological findings in patient with CFC. Magnetic resonance imaging (MRI) scan of
the brain of a 2-year-old patient with a MAP2K1 variant in CFC Syndrome. (A) Sagittal T1: Reduced
cerebral volume anteriorly with associated thinning of the corpus callosum. (B) Coronal T1: Bilateral
hippocampal malrotation. (C) Axial T1: Delayed myelination within the temporal lobes. (D) Axial
T2: Abnormal signal within the dentate nuclei.

4.2. Ectodermal Findings

Ectodermal anomalies are cardinal features of CFC syndrome; virtually all patients
with CFC syndrome develop some kind of ectodermal involvement.

The most common manifestations are sparse, curly, fine, brittle slow-growing hair;
sparse to absent eyebrows with ulerythema ophryogenes; sparse to absent eyelashes;
dystrophic rapid-growing nails; skin abnormalities such as keratosis pilaris, hyperkeratosis,
ichthyosis, eczemas, xerosis, hemangiomas and numerous pigmented naevi (more common
in patients with BRAF mutations) [33–36]. Some skin anomalies evolve with age: xerosis
and follicular hyperkeratosis can improve [37], palmoplantar hyperkeratosis tends to
worsen, especially in pressure areas, lymphedema may become more severe, and pigmented
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naevi [38,39] tend to grow in number [40]. It is also common for CFC patients to be affected
by severe skin infections [5].

4.3. Craniofacial Findings

Children with CFC syndrome have characteristic craniofacial features. Those include
macrocephaly, high forehead, bitemporal constriction, hypoplasia of the supraorbital ridges,
downslanting palpebral fissures (more frequent in patients with MEK mutations than
BRAF), ocular hypertelorism (more commonly associated with mutations in BRAF), ptosis,
epicanthal folds, telecanthus, short nose with depressed bridge and anteverted nares, low-
set and posteriorly angulated ears with prominent helices, high-arched palate and relative
micrognathia [9].

4.4. Gastrointestinal and Growth Findings

Feeding problems are very frequently reported, almost in all CFC patients, and there
does not seem to be any genotype–phenotype correlation [41,42]. These problems are
usually reported in the neonatal period and manifest as poor suck, swallow dysfunction,
vomiting, gastroesophageal reflux, aspiration, and oral aversion. Feeding issues are usually
followed by inadequate oral caloric intake, failure to thrive, and often require nasogastric
tube feeding (40%) or gastrotomy tube placement (50%) [9]. In these children, growth is
usually delayed with both weight and length below normal range [5]. Oral aversion can
persist during childhood but usually GI symptoms improve with age, other than in patients
with epilepsy onset in childhood. Their GI disorders become worse with age. Constipation
is often seen in children with CFC, other findings include intestinal malrotation, hernia
and also splenomegaly, hepatomegaly and steatosis. Many common symptoms are a
consequence of dysmotility including gastroesophageal reflux, vomiting and constipation
(Figure 3) [22].

It is important to notice that, though the short stature could be related to a growth
delay caused by poor feeding, it could also be linked to a growth hormone deficiency, since
the RAS-MAPK pathway plays an important role in the insulin-like growth factor I (IGF-I)
mediations and growth hormone (GH) secretion.

4.5. Additional Features

During perinatal period polyhydramnios (77%) and prematurity (up to 50%) have
been reported as common findings [9,22].

The vast majority of individuals present with musculoskeletal abnormalities including
hypotonia, pectus excavatum and carinatum, scoliosis, kyphosis, short neck and pterygium
coli. The orthopedic features are more common in patients with MAP2K1 variant than
in patients with other variants according to Leoni et al. [43]. Interestingly, patients with
CFC present a reduced bone mineral density (BMD), probably associated with reduced
physical activity and inflammatory cytokines. Despite vitamin D supplementation and
almost normal bone metabolism biomarkers, CFC patients showed significantly decreased
absolute values of DXA-assessed subtotal and lumbar BMD (p ≤ 0.05), compared to controls,
with BMD z-scores and t-scores below the reference range in CFC, and normal in healthy
controls [44].

Endocrine complications have been evaluated in patients with CFC. Specifically, a high
prevalence of thyroid autoimmunity, with an increased risk to develop autoimmune disor-
ders, and short stature have been described and presumably related to the dysregulation
of the RAS-MAPK pathway, the reduced physical activity, the presence of inflammatory
cytokines and the impaired IGF1 activity [45].

Ocular manifestations including strabismus, nystagmus, ocular hypertelorism, astig-
matism, optic nerve hypoplasia, myopia, hyperopia, cortical blindness, and cataracts are
present in most individuals with CFC syndrome and may result in poor visual acuity. Optic
nerve hypoplasia is more commonly reported in patients with BRAF mutations [22,46].
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Figure 3. Distinctive craniofacial features in a CFC patient through time. At 12 months (A), 5 years (B)
and 16 years of age (C,D), respectively.

Notably, functional limitations, pain and disability have been reported in patients with
CFC. Using the Pediatric Outcomes Data Collection Instrument (PODCI) and Pediatric
Evaluation of Disability Index (PEDI), an interesting study [27] documented that CFC
patients presented activity limitations in the PODCI domains of upper extremity function,
transfers and mobility, sport, and physical function. Concurrently, a relevant disability
in the PEDI domains of daily activity, mobility, socialization and cognition was noted.
Pain is highly prevalent in patients with RASopathies and CFC, as well. Specifically,
musculoskeletal and abdominal pain was more frequently reported and often interfered
with daily activities. Furthermore, pain negatively impacted QoL and sleeping patterns [47].

Interestingly, neoplasms, commonly observed in other RASopathies, have not been
reported in CFC syndrome, even though genetic mutations causing CFC syndrome are well
known to play a crucial role in development and oncogenesis. BRAF mutations have been
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associated with 7% of cancers [48,49], and there are few published reports of neoplasia in
CFC [23,50], with only one malignancy [51,52].

Urogenital anomalies may occur in ~33% of individuals with CFC: cryptorchidism
is the most common feature (66% of affected males); also, renal cysts, nephrolithiasis and
bladder abnormalities may be present.

5. Diagnosis

The diagnosis of CFC syndrome is often challenging, and it should be based on a
specific clinical manifestation and confirmed through molecular genetic testing.

The most common clinical features are short stature, distinctive craniofacial features,
developmental delay, neuromotor delay, ID, ectodermal abnormalities, congenital heart dis-
ease, musculoskeletal features, feeding and gastrointestinal problems, and cryptorchidism.
Features of CFC syndrome overlap considerably with some other RASopathies, including
Costello syndrome, and Noonan syndrome. Some features may be present since birth while
others may appear later in life; also, these clinical conditions can change over time either by
becoming better or becoming more severe. Phenotypic variability in CFC is also associated
with different variants in CFC genes. These phenotypic changes, overlaps and variability
create diagnostic difficulties [6].

CFC syndrome is an autosomal-dominant syndrome, with complete penetrance [5,23].
An affected person has a 50% chance of passing the altered gene to each child. The mu-

tation genes involved in CFC syndrome are BRAF (7q34) in up to 75% of the cases, MAP2K1
(15q22.1-q22.33) and MAP2K2 (19p13.3), both around 25% of the cases, and KRAS (12p12.1)
present in less than 2% of the cases. Most individuals with CFC syndrome reported to
date have a de novo BRAF, MAP2K1, MAP2K2, or KRAS pathogenic variant. Even though
CFC is an autosomal dominant disorder, sporadic cases are the majority. To date, only
seven families were reported as characterized by a vertical transmission of MEK2, KRAS,
and BRAF pathogenic variants, respectively. This suggests that CFC pathogenic variants
within the Ras/MAPK pathway are compatible with human reproduction. Additionally,
the reproductive success may be affected by CFC phenotypic features, such as neurode-
velopmental delay, instead of the disruption of the Ras/MAPK pathway. An intrafamilial
variable expressivity has been identified, as well [53].

Recently, YWHAZ, a 14-3-3 family member, has been identified as a new gene involved
in CFC. It was documented that the S230W YWHAZ variant enhanced Raf-stimulated Erk
phosphorylation to a higher level than wild type, with a gain-of-function mechanism in the
RAS-ERK pathway. This result supported that the variant was the underlying cause of the
CFC phenotype [8]. Mutations in these genes cause a dysregulation of the RAS/MAPK
signaling pathway. This pathway is critically involved in cell differentiation, proliferation,
migration, and apoptosis, and is one of the most studied signaling cascades.

The genetic diagnosis of CFC syndrome is established by the identification of a het-
erozygous pathogenic variant in BRAF, MAP2K1, MAP2K2, or KRAS genes.

Current Consensus Guidelines Strategy Include the Following

1. Multigene panel for common RASopathy genes that includes BRAF, MAP2K1, MAP2K2,
KRAS and YWHAZ usually detects up to 90% of individuals with CFC and it is the
preferred initial test.

2. Individual single-gene testing is recommended if panel testing is not available, begin-
ning with BRAF, MAP2K1, and MAP2K2, and KRAS.

3. If these molecular genetic tests are negative, a more comprehensive genetic sequencing
including exome and genome sequencing should be performed [5].

In the event that a pathogenic variant is identified, prenatal testing should be recom-
mended to determine if the mutations is inherited [5,54].
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6. Treatment

Currently, there is no specific treatment in CFC syndrome. More recently, genetic
pathway inhibitors, including MEK inhibitors, led to size reduction of inoperable plex-
iform neurofibromas (PNs) in NF1, with fewer side effects [55]. Moreover, in several
mouse or other model systems, MEK inhibitors were used as a prenatal preventative
therapy or postnatal treatment of non-NF1 RASopathies. In this context, in the in vivo
zebrafish model system, it was observed that CFC mutations in BRAF and MEK impaired
convergence–extension cell movements during gastrulation and MEK inhibitors prevented
the cell migration defects caused by this pathogenetic variants in CFC, treating the embryos
within a specific developmental time-window [11]. Additionally, an interesting functional
study using human dermal lymphatic endothelial cells (HDLECs) and zebrafish larvae, to
model KRAS pathogenic variants, documented an increased ERK phosphorylation with
biochemical and morphological changes, significantly rescued by the subsequent use of
MEK inhibitors [56]. Interestingly, two studies revealed how MEK inhibitors represented a
promising treatment in HCM related to CFC syndrome, especially if administered before
the onset of irreversible cardiac remodeling [57,58].

Moreover, a trial focusing on use of a MEK1/2 inhibitor, Trametinib, in NF1 or
GNA11/Q alterations, did not demonstrate meaningful clinical activity. However, it
appeared effective in one patient with multiple cancers, warranting future studies [59].
Furthermore, it was observed that Braf+/+ and BrafQ241R/+ mice treated with C-type na-
triuretic peptide (CNP), a stimulator of endochondral bone growth and a potent inhibitor of
the FGFR3-RAF1-MEK/ERK signaling, presented increased body and tail lengths, suggest-
ing that CNP could be a potential therapeutic target in CFC syndrome [60]. Additionally,
BrafQ241R/+ knock-in mice showing cardiovascular and lymphatic defects ameliorated
after combination treatment with a MEK inhibitor, PD0325901, and a histone 3 demethylase
inhibitor, GSK-J4, suggesting that epigenetic modulation as well as the inhibition of the
ERK pathway could be a potential therapeutic strategy [61].

These results suggest that small molecule inhibitors could be potentially used to treat
the progressive phenotypes of CFC in children. Hence, future pre-clinical models of CFC
should be developed, to better define protein interactions of the RAS/MAPK pathway, the
pathophysiology of the disorder, and endpoints for measuring treatment efficacy [62].

Multidisciplinary care is crucial in CFC children; despite this, there is no specific
treatment. Specifically, a comprehensive management should be performed, especially for
individuals at risk. If patients are at risk for pulmonary stenosis, HCM and other cardiac
defects, they should be submitted to a cardiac follow-up with blood pressure measurement
at each visit and echocardiogram every 2–3 y up to 20 years of age, if no cardiac disease
is found initially. Concurrently, frequent dermatology visits for the management of skin
abnormalities such as keratosis pilaris, hyperkeratosis, ichthyosis, eczemas, xerosis, he-
mangiomas and annual evaluation of pigmented naevi should be performed. Furthermore,
individuals at risk for infantile spasms, seizures, and brain anomalies should be evaluated
from neurologists in a continuous follow-up. Functional behavior assessment, special
education services, and early childhood intervention programs should be considered in
patients with cognitive and behavior disorders, as well. If gastrointestinal difficulties are
present, a regular follow-up to monitor growth and nutrition should be performed, with
the measurement of growth parameters and nutritional status at each visit. Moreover,
ophthalmologic defects should be controlled every six to 12 months, whereas audiologic
evaluation every two to three years. Concurrently, patients with musculoskeletal anoma-
lies, genitourinary malformations, hematologic disorders and dental lesions should be
systematically followed by specialists to prevent complications, improving the quality of
life of these complex patients [5,9].

7. Conclusions

In recent years, studies based on NGS and omics-related sciences revealed an expand-
ing molecular complexity underlying genetic disorders such as RASopathies [63–67]. Many
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novel molecular factors and genes have been identified with consequent benefits in terms
of refining clinical phenotypes, valuable prognostic information, detailed imaging studies
and targeted therapies for the children affected with these conditions [68–72]. The CFC phe-
notype is very heterogeneous, as it depends on the gene involved, as well as the type and
localization of the pathogenic variant, and it can change and evolve across time. Like other
RASopathies, CFC syndrome presents distinctive clinical features and involves numerous
organ systems. Even though, there is no specific treatment in CFC syndrome, encouraging
zebrafish model system studies suggested that MEK inhibitors could be a suitable targeted
treatment of progressive phenotypes of CFC in future. Currently, a multidisciplinary care
is necessary to manage the numerous issues that are present in this condition: neurological,
cardiological, gastroenterological, endocrinological, dermatological, orthopedic, ophthal-
mological, and behavioral problems. Recent clinical studies highlighted the strong and
significant correlations between different phenotypes and gene variants. Investigations to
better understand the disease pathway in this pediatric population is needed and it will
hopefully enable and guide more effective therapeutic avenues in the future.
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