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Abstract: Processed cheese is a dairy product with multiple end-use applications, where emulsifying
salts play a fundamental role in physicochemical changes during production. Moreover, some of
these salts may be a strategy to control spoilage and pathogenic microorganisms, contributing to
safety and shelf life extension. This study aimed to evaluate the in vitro inhibitory activity of two
emulsifying salts (ESSP = short polyP and BSLP = long polyP) against Bacillus thuringiensis CFBP
3476 and Clostridium perfringens ATCC 13124, and to compare the in situ effects of two emulsifying
salts treatments (T1 = 1.5% ESSP and T2 = 1.0% ESSP + 0.5% BSLP) in processed cheeses obtained
by two different methods (laboratory- and pilot-scales), during 45-day storage at 6 ◦C. C. perfringens
ATCC 13124 growth was not affected in vitro or in situ (p > 0.05), but both of the treatments reduced
B. thuringiensis CFBP 4376 counts in the tested condition. Counts of the treatments with B. thuringiensis
CFBP 3476 presented a higher and faster reduction in cheeses produced by the laboratory-scale
method (1.6 log cfu/g) when compared to the pilot-scale method (1.8 log cfu/g) (p < 0.05). For the
first time, the inhibitory effect of emulsifying salts in processed cheeses obtained by two different
methods was confirmed, and changes promoted by laboratory-scale equipment influenced important
interactions between the processed cheese matrix and emulsifying salts, resulting in B. thuringiensis
CFBP 4376 growth reduction.

Keywords: dairy; food safety; melting salts; microbiological stability; polyphosphate; shelf life;
spore-forming bacteria

1. Introduction

Processed cheese is a relatively new category of dairy products, set up a little over
100 years ago independently in Europe and the United States. Driven by the need to
increase the shelf life of natural cheese and with the possibility of recycling defective
cheeses, processed cheeses have emerged with a distinct texture, flavor and/or functional
properties. Through a technology able to standardize these properties, a versatile product
was introduced to the market [1–4]. From a technological point of view, processed cheese is
obtained by heating a mixture of cheeses, under partial vacuum conditions and constant
stirring, in the presence of emulsifying salts which are able to chelate calcium, disrupting
the casein structure and solubilizing it [1,5]. The process can be performed by using
different equipment, in which various types of cookers with different designs and operating
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conditions can be employed. The equipment may differ mainly on the type of mixing or
agitating systems, the type and mechanism of heating, and the mode of production, in
batch or continuous, according to the industry needs [6,7]. The appropriate selection of the
equipment and the type and quantity of emulsifying salts are among the most important
variables to produce processed cheese with desired final properties [8,9].

During processed cheese production, monophosphates, polyphosphates (polyP) and
citrates are emulsifying salts commonly used [5]. These salts consist of a monovalent
cation, typically sodium, bound to a charged polyvalent anionic tail that acts as a calcium
sequester, involved in the disruption of the calcium–phosphate-linked protein network
present in natural cheese. Both functions have an effect in hydrating the caseins, allowing
the interaction between water and fatty phases, thereby producing a homogeneous cheese
emulsion [5,8].

The use of different emulsifying salts with different emulsification capabilities is a
growing practice in the dairy industry [5,10,11]. Furthermore, based on the antimicrobial
effect of some emulsifying salts, the addition of phosphates has recently been proposed as
a strategy to control spoilage and pathogenic microorganisms, and ultimately, to reduce
the sodium content and prolong the shelf life of processed cheese [5,12,13].

Most of the studies on emulsifying salts in processed cheese have been focused on me-
chanical, physicochemical, microstructure, and rheology properties, as well matrix stability,
formation of casein fibrils and sensory traits [10,11,14–17]. However, the number of scien-
tific studies on the antimicrobial potential of emulsifying salts is low and few studies have
been published in the last five years [13,18,19]. Processed cheeses have been associated with
certain microbiological safety concerns and despite the lower susceptibility to microbial
spoilage, spore-forming bacteria, such as Bacillus thuringiensis and Clostridium perfringens
have been associated with blowing and putrid odor development [20,21]. Although the
spore-forming bacteria originated mainly from raw milk, the production environment can
also act as a source of contamination, due to the ability of these microorganisms to survive
cleaning and sanitation steps [22]. For this reason, the addition of emulsifying salts can be
considered in many processed cheese productions as a control option.

Based on the above scenario, this is the first study aimed at comparing the inhibitory
activity of emulsifying salts in processed cheese obtained by following different processes.
In particular, the inhibitory activity of two emulsifying salts against B. thuringiensis CFBP
3476 and C. perfringens ATCC 13124 inoculated in processed cheese obtained on a laboratory-
scale and a pilot-scale was explored.

2. Materials and Methods
2.1. Materials and Treatments

Two mixtures of emulsifying salts composed of polyphosphates (E452) and sodium
phosphates (E339) were used in this study. These mixtures differ in the total phosphate con-
tent (P2O5), the average chain length, and pH (1% solution), as follows: (ESSP) emulsifying
salt composed of short polyP, used as an emulsifier agent, 59.7 ± 1% P2O5, short-chain
polyphosphate, pH 9.0 ± 0.3; (BSLP) bacteriostatic salt composed of long polyP, used as a
bacteriostatic specialty, 69 ± 1% P2O5, long-chain polyphosphate, pH 6.0 ± 0.5.

To evaluate the inhibitory activity of emulsifying salts by in vitro and in situ ap-
proaches, two treatments were performed: Treatment 1 (T1) = 1.5% ESSP; and Treatment 2
(T2) = 1.0% ESSP + 0.5% BSLP.

The inhibitory activity of the emulsifying salts was tested against Bacillus thuringiensis
CFBP 3476 and Clostridium perfringens ATCC 13124. The strains were stored at −80 ◦C
in a culture medium and 20% (v/v) glycerol. For strains cultivation, incubation was in a
brain heart infusion broth (BHI; Kasvi, São José dos Pinhais, Brazil) for 22 ± 2 h at 30 ◦C
was used for B. thuringiensis CFBP 3476 and trypticase soy broth (TSB; Kasvi) for 22 ± 2 h
at 37 ◦C under anaerobiosis was used for C. perfringens ATCC 13124. Before use, the
strains were transferred into a broth medium, incubated and checked for purity in BHI or
TSA agar (Kasvi) after the incubation time. Then, a single colony was transferred to the
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appropriate broth medium, incubated, and diluted to turbidity similar to a 0.5 standard on
the MacFarland scale, equivalent to 1.5 × 108 cfu/mL.

For the assessment of in vitro inhibitory activity, these cultures were diluted on a
decimal scale to approximately 1.5 × 106 cfu/mL. For the assessment of in situ inhibitory
activity, the fresh cultures were centrifuged (Heraeus Megafuge 8R, Thermo Fisher Scientific,
Waltham, MA, USA) at 3260× g for 15 min at 7 ◦C. After discarding the supernatant, the
pellets were suspended in NaCl solution 0.85% (w/v) until turbidity similar to a 0.5 standard
on the MacFarland scale, corresponding to approximately 1.5 × 108 cfu/mL. Cultures of
B. thuringiensis CFBP 3476 and C. perfringens ATCC 13124 were separately used as primary
inoculum in the processed cheese.

2.2. In Vitro Inhibitory Activity

To detect the in vitro inhibitory activity, a streak assay protocol was performed on
nutrient agar (NT; Kasvi) [23]. Briefly, NT agar was prepared according to the manufac-
turer’s instructions (Kasvi), autoclaved (121 ◦C for 15 min), and cooled to 45 ◦C, after
which the emulsifying salts were added. To simulate the processed cheese processing,
agar solutions were homogenized, heated for 5 min at 90 ◦C in a water bath (MA156/6,
Marconi, Piracicaba, Brazil), and poured into Petri dishes. B. thuringiensis CFBP 3476
and C. perfringens ATCC 13124 at approximately 1.5 × 106 cfu/mL were streaked onto the
plates and incubated under the appropriate conditions for each strain for 48 h. Sterile
water was used as a negative control and agar plates without any addition of emulsifying
salts were considered as a control treatment for bacterial growth. After incubation, the
absence of bacterial growth was indicative of the inhibitory activity of the emulsifying salt
treatments. This assay was conducted in duplicate and with three independent repetitions.

2.3. In Situ Inhibitory Activity
2.3.1. Production of Processed Cheese

To produce processed cheese, the following ingredients and concentrations were
used: Mozzarella cheese aged for 2 weeks, 49% (w/w); butter, 17% (w/w); sterile mineral
water, 39.5% (w/w), and emulsifying salts according to treatments T1 and T2. For each
treatment, the production was carried out under aseptic conditions and the processing was
performed using two different methods: (I) laboratory-scale, using a Thermomix TM-5
(Vorwerk & Co. Thermomix; GmbH, Wuppertal, Germany) with a 2 kg capacity, and
(II) pilot-scale, using Stephan Geiger homogenizer-grinder GUMSK 12E NR12 (Geiger
Indústria de Máquinas Ltd.a., Pinhais, PR, Brazil) with a 7 kg capacity. The ingredients
were blended with subsequent processing by heating for 6 min until reaching a 90 ◦C
melting temperature, and shearing with a constant increase in rotation until 1100 rpm for
the laboratory-scale method, and until 1500 rpm for the pilot-scale method; the mixing
speed was performed for 5 min at 90 ◦C.

Then, four 200 g portions of each processed cheese treatment were split into sterile
bags (polyethylene bags; height 178 mm, width 76 mm, and thickness 0.07 mm; Kasvi) and
cooled to 12 ± 2 ◦C. Two portions of each treatment were separately inoculated with each
target strain (described above) at a final concentration of 1.5 × 105 cfu/g and homogenized
for 5 min (Bagmixer 400 VW; Interscience, Paris, France). The inoculated processed cheese
was equally divided into nine sterile bags (25 g) and stored at 6 ± 2 ◦C for 45 days. In
the next step, one portion of each processed cheese treatment was not inoculated and
considered as the negative control samples (blank), and another portion was also not
inoculated and used to monitor the pH and Aw during the storage time; each of them
was divided equally into six sterile bags (25 g) and kept at the same storage conditions.
Two independent repetitions of each processed cheese treatment were performed. For
each repetition, different batches of ingredients (cheese, butter, sterile mineral water, and
emulsifying salts) were used. The flow chart of the experimental design is reported in
Figure 1.
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Figure 1. Flow chart of procedures employed in the production of processed cheese samples and the
application of treatments to assess the inhibitory activity of emulsifying salts.

2.3.2. Microbiological Analyses

Processed cheese samples were subjected to microbiological analyses during the
45-day storage at 6 ± 2 ◦C (at day 0, day 7, day 14, day 21, day 28, and day 45). In detail,
a 25 g of sample was added to 225 mL of citrate solution 2% (w/v), homogenized, and
10-fold-diluted in NaCl solution 0.85% (w/v). For samples inoculated with B. thuringiensis
CFBP 3476, aliquots of 100 µL of selected dilutions were plated onto mannitol egg yolk
polymyxin (MYP; K25-1343, Kasvi) agar supplemented with egg yolk and polymyxin B
(K25-6021, Kasvi) and incubated at 30 ± 1 ◦C for 18–24 h [24,25]. For samples inoculated
with C. perfringens ATCC 13124, aliquots of 1 mL were pour-plated on tryptose sulfite
cycloserine (TSC; K25-1029, Kasvi) agar supplemented with Clostridium perfringens selective
supplement (K25-6020, Kasvi) and incubated under anaerobic conditions at 37 ± 1 ◦C for
24 h [26]. Control samples (blank samples) were analyzed following the same protocols
described above and for total viable counting in plate count agar (PCA; Kasvi) incubated
at 30 ± 1 ◦C for 72 h [27]. The results were expressed as colony-forming units per gram
and counts were converted into Log10 (Log10 cfu/g). These analyses were conducted in
triplicate and over two independent repetitions of each processed cheese treatment.

2.3.3. Water Activity and pH

The water activity (Aw) of blank processed cheese samples was measured using a
water activity meter (AquaLab 3TE; Decagon Devices Inc., Pullman, WA, USA). The sam-
ple cup was filled to half its depth and placed in the sample chamber and the Aw was
measured using the standard procedure. The pH of blank processed cheese samples was
measured using a pH meter (Hanna Instruments Ltd., Leighton Buzzard, UK). These analy-
ses were conducted in duplicate and over two independent repetitions of each processed
cheese treatment.

2.4. Statistical Analysis

Statistical analyses were performed using SAS® Studio software (Release: 3.8; Enter-
prise Edition; SAS Institute, Cary, NC, USA). Data were checked for normality of residuals
and homogeneity of variances using the Kolmogorov–Smirnov test and Bartlett’s test,
respectively, using the GLM and CAPABILITY procedures. Then, data were compared by
ANOVA and Tukey tests (p < 0.05), using the GLM procedure. The R software, version
4.0.2 (The R Foundation, Boston, MA, USA), and the RStudio, version 1.3.959 (Integrated
Development for R. RStudio, Boston, MA, USA), were used for graphical presentation with
the ggplot2 package [28].
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3. Results
3.1. In Vitro Inhibitory Activity

Results of the in vitro inhibitory activity, for both treatments T1 (1.5% ESSP) and T2
(1.0% ESSP + 0.5% BSLP), showed that B. thuringiensis CFBP 4376 growth was inhibited,
whereas C. perfringens ATCC 13124 was not inhibited.

3.2. In Situ Inhibitory Activity

Plate counts for the processed cheese blank samples (without inoculation) did not
present viable and cultivable cells during storage time. For the inoculated processed cheese
samples, different profiles were found and the results are reported below.

All treatments showed a significant effect on the inactivation of B. thuringiensis CFBP
4376 in both production methods (laboratory and pilot-scale). In comparison with time
zero, there was a significant difference (p < 0.05) from day 28 and 45 of storage in both
production methods. In addition, for the laboratory-scale method a significant difference
was observed after day 7 of storage for T1, and after day 14 of storage for T2 (Figure 2).
Higher levels of inhibition were recorded for T2 after 45 days of storage, being 3.43 Log10
CFU/g for the laboratory-scale and 3.18 Log10 CFU/g for the pilot-scale.

Figure 2. The effect of emulsifying salts on the inactivation of B. thuringiensis CFBP 4376, with
different processing methods over storage time. (*) indicates a significant difference with the zero
time of storage, according to Tukey’s test (p < 0.05). Error bars show standard deviations of the mean.

According to Figure 3, none of the treatments showed an inhibitory effect on the
multiplication of C. perfringens ATCC 13124. From the day 7 storage samples, the values of
Log10 CFU/g increased and differed significantly from time zero (p < 0.05) and for both
production methods. Between day 28 and day 45, a stationary phase was observed for
all treatments.



Foods 2022, 11, 3217 6 of 11

Figure 3. The effect of the emulsifying salts on C. perfringens ATCC 13124 development, with different
processing methods over storage time. (*) indicates a significant difference with the zero time of
storage, according to Tukey’s test (p < 0.05). Error bars show standard deviations of the mean.

3.3. Water Activity and pH

Blank samples produced at the pilot-scale showed significantly different pH values
over time of storage for T2 (Table 1). For T1, only at day 21 of storage did the pH value
not differ from time zero (p > 0.05). However, the pH of the blank samples was stable
when produced at the laboratory-scale, since, in both treatments, there was no significant
variation during storage (p > 0.05) compared to time zero.

Table 1. The pH results were obtained according to the methods, treatments and storage time applied
to blank processed cheese samples.

Storage Time (Days)
Pilot-Scale Laboratory-Scale

T1 T2 T1 T2

0 5.88 ± 0.04 ab 5.77 ± 0.01 a 5.74 ± 0.01 a 5.52 ± 0.04 a
7 5.72 ± 0.04 d 5.49 ± 0.06 e 5.76 ± 0.12 a 5.52 ± 0.06 a
14 5.83 ± 0.07 bc 5.53 ± 0.01 de 5.87 ± 0.11 a 5.60 ± 0.04 a
21 5.92 ± 0.03 a 5.67 ± 0.04 b 5.75 ± 0.03 a 5.52 ± 0.04 a
28 5.78 ± 0.01 cd 5.59 ± 0.04 cd 5.80 ± 0.05 a 5.54 ± 0.07 a
45 5.85 ± 0.01 bc 5.63 ± 0.01 bc 5.78 ± 0.06 a 5.52 ± 0.03 a

Data are presented as mean ± standard deviation. Different letters within the column indicate a significant
difference between storage times in each treatment, according to Tukey’s test (p < 0.05).

According to the analysis of variance of the results obtained for water activity (Aw,
Table 2), there was no statistical difference between the analyzed treatments (p > 0.05).
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Table 2. The Aw results were obtained according to the methods, treatments and storage time applied
to blank processed cheese samples.

Storage Time (Days)
Pilot-Scale Laboratory-Scale

T1 T2 T1 T2

0 0.983 ± 0.001 0.982 ± 0.001 0.985 ± 0.002 0.975 ± 0.010
7 0.985 ± 0.002 0.986 ± 0.001 0.983 ± 0.001 0.984 ± 0.001
14 0.991 ± 0.005 0.987 ± 0.005 0.990 ± 0.002 0.991 ± 0.007
21 0.983 ± 0.001 0.985 ± 0.002 0.979 ± 0.009 0.980 ± 0.012
28 0.984 ± 0.000 0.984 ± 0.002 0.986 ± 0.012 0.987 ± 0.010
45 0.984 ± 0.001 0.984 ± 0.001 0.983 ± 0.004 0.980 ± 0.004

Data are presented as mean ± standard deviation. No significant difference was observed according to Tukey’s
test (p > 0.05).

4. Discussion

The BSLP shows both bacteriostatic and fungistatic effects and prevents the outgrowth
of aerobic and anaerobic spores, although the dosage rate depends on the microbial species
and the matrix (according to the manufacturer’s information). As BSLP is a long-chain
polyP, its use is recommended simultaneously with other emulsifying salts, such as ESSP,
mainly in spreadable and sliceable processed cheese production. In the present study, a
standard formulation of ESSP, commonly applied in the dairy industry, and an additional
formulation, with partial replacement by BSLP were investigated. While C. perfringens
ATCC 13124 growth was not affected by any of the tested treatments, neither in vitro nor
in situ, both treatments with PolyP emulsifying salts were able to control B. thuringiensis
CFBP 4376 outgrowth, in both in vitro and in situ.

Buňková et al. [29] performed an in vitro study on the antimicrobial effects of three
commercially available emulsifying salts on reference microorganisms and bacteria isolated
from long-stored processed cheeses. The results of the present study agree with those
reported by Buňková et al. [29], which described the positive inhibition of 0.5% emulsifying
salts with 69.0% P2O5 treatment (the same P2O5 level as reported here for BSLP) against B.
cereus CCM 3953, Bacillus subtilis CCM 2216, Bacillus brevis SPSM 4101, Bacillus sphaericus
CCM 1615, Bacillus stearothermophilus SPSM 4103, Bacillus sp. NTS 01, NTS 02, NTS 03,
NTS 05, and NTS 06. However, the same study reported that 0.5% emulsifying salts with
a 59.7% P2O5 treatment (the same P2O5 level as reported here for ESSP) were not able to
inhibit the growth of B. subtilis CCM 2216, B. sphaericus CCM 1615, Bacillus sp. NTS 01,
NTS 03, NTS 05, and NTS 06. Lorencová et al. [30] carried out a study on the antibacterial
effect of seven emulsifying salts at different chain lengths and different phosphate contents;
the authors pointed out that the inhibitory effect can be affected by intrinsic factors, such
as the number of phosphorus atoms and the acid–basic properties of emulsifying salts in
aqueous solutions.

For processed cheese samples, the inactivation of B. thuringiensis CFBP 4376 growth
by the emulsifying salt treatments was verified. Although the emulsifying salts had an
effect on the inactivation of B. thuringiensis CFBP 4376 growth, a bacterial growth reduction
was reached more rapidly along the storage time when the laboratory-scale method was
applied; the means of T1 and T2 resulting in a 1.64 log unit reduction for laboratory-scale
and in a 1.8 log unit reduction for pilot-scale samples at the end of storage time. The main
differences between the two production methods were that on the laboratory-scale, no
steam injection was performed and an 1100 rpm shearing was applied, while on the pilot-
scale an indirect steam injection and a 1500 rpm shearing were performed. According to
Guinee [8], a higher agitation speed during processing significantly increases the firmness
and elasticity modulus of processed cheese and significantly reduces the level of flow and
the fluidity of the melted product. In addition, the general bacteriostatic effect of phosphates
may reflect interactions with bacterial proteins and the sequestration of calcium, which
generally serves as an important cellular cation and cofactor for some microbial enzymes.
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Species belonging to the genus Bacillus are commonly isolated from processed
cheese [22,31] and a major focus is placed on the role of B. cereus in foodborne disease
outbreaks. Furthermore, B. thuringiensis belongs to the phylogenetic group of B. cereus
and it is biochemically identical to the B. cereus species [32]. Therefore, the occurrence of
foodborne outbreaks of B. thuringiensis may be underestimated because routine microbial
diagnostics of B. cereus and B. thuringiensis are not differentiated [33]. Therefore, the effects
of the emulsifying salts observed here may be a useful strategy to control Bacillus spp. in
processed cheese.

In addition, the B. thuringiensis CFBP 4376 growth inactivation can be explained by the
mechanisms already described for B. cereus. According to Maier et al. [34], the antibacterial
activity of polyphosphates with a high level of P2O5, such as BSLP, against B. cereus is
related to the interaction of long-chain polyP in the exponential growth phase, affecting
the cell morphology manifested by cell lysis and the inability of septum formation during
division. Briefly, the authors proposed that polyP might influence the ubiquitous bacterial
cell division protein FtsZ, whose GTPase activity is known to be strictly dependent on
divalent metal ions.

For processed cheese samples inoculated with C. perfringens ATCC 13124, the bacterial
growth was not inhibited under the tested conditions. Loessner et al. [19] evaluated the
effect of long-chain polyP formulations on the growth of Clostridium tyrobutyricum ATCC
25755 in processed cheese spreads. Although the inoculation of spores was performed, the
samples were processed with the addition of an emulsifying salt with 59.7% P2O5, and
only at the end of the process was an aqueous solution of emulsifying salts with higher
levels of P2O5 added to the samples. This is not a common procedure followed at an
industrial scale. However, no viable cell was detected after 8 days of incubation by 0.5%
emulsifying salts with higher levels of P2O5, and total inhibition was obtained until 50 days
of storage in samples treated with 1.0% emulsifying salts with higher levels of P2O5 [19].
On the other hand, Akhtar et al. [35] performed a study to evaluate the effects of various
polyPs (sodium polyP, tetrasodium pyrophosphate, sodium tripolyphosphate, and sodium
acid pyrophosphate) on growth, sporulation, and spore germination of C. perfringens,
and germination and outgrowth of C. perfringens spores. The authors pointed out that
surprisingly, all 19 C. perfringens vegetative cells required higher polyP concentrations
(1.0–1.4%) than those previously reported for other bacteria, such as Staphylococcus aureus,
B. cereus, Listeria monocytogenes, C. tyrobutyricum, C. pasteuranium, and C. butyricum, where
the minimum inhibitory concentration, independently of the type of polyP, an in vitro assay
was at most 0.5%. According to Akhtar et al. [35], the high polyP resistance of C. perfringens,
compared to other bacteria, could be attributed to the higher synthesis of phosphatases
producing higher rates of polyP hydrolysis, and/or to differences in the cell wall structure.

In general, it is difficult to determine the polyP chain length and commonly only
approximate estimations can be found in the literature. Therefore, polyP is characterized
by the P2O5 content, which may reflect the average size of phosphate chains in a mixture,
and the higher the P2O5 content, the greater the size of the chain; its concentration is
given as a percentage rather than a molar [19,36]. BSLP is composed of 69.0 ± 1% P2O5,
while ESSP of 59.7 ± 1% P2O5; consequently, the chain size of the BSLP is larger. The
inhibitory effect of polyP is related to the length of the chain (condensation level), and
polyP with a lower amount of phosphorus is generally less effective in the suppression of
undesirable microorganism growth than long-chain phosphates [12,30]. Long-chain polyP
are characterized by a high affinity for divalent metal ions (Ca2+ and Mg2+), essential for
the integrity of Gram-positive bacteria cell walls [5,37]. According to the above-mentioned
results, the BSLP treatment was more effective against C. perfringens ATCC 13124 until
45 days of storage, even if no differences were observed for B. thuringiensis CFBP 4376.

Overall, the effect of polyP is mainly related to changes in environmental conditions
where they induce changes in the pH and ionic strength of the solution, modifying protein
configuration, solubility, and to the last extent, emulsifying salts bind Ca2+ [5,12]. PolyP
are used to shift the pH of the cheese upwards, typically from 5.0–5.5 of natural cheese
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to 5.6–6.0 of pasteurized processed cheese, and the stabilization that occurs may be due
to their high buffering capacity [1]. During processed cheese production, the pH change
contributes to an enhanced dissociation and calcium-sequestering ability of the emulsifying
salts, and an increased negative charge of the para-caseinate [1]. Thus, at a higher pH, more
complete dissociation of the phosphate molecules provides better ion exchange.

Different emulsifying salts influence the final properties of processed cheeses due to
their ability to exchange calcium ions for sodium ions and to stabilize pH values (buffering
capacity) [38]. The ion exchange ability increases with the length of the polyphosphate
chain [38,39]. In this way, processed cheese with the addition of short-chain emulsifying
salts has a higher pH compared to the addition of long-chain emulsifying salts, as was the
case for T1 and T2, respectively.

Regarding the Aw, one of the basic conditions for microbial growth, Awad et al. [40]
evaluated the influence of different emulsifying salt mixtures on the Aw of block-processed
cheese during storage at different temperatures for up to three months. The authors stated
that neither the different combinations of emulsifying salts nor storage had a significant
effect on the Aw of samples. In the present study, the detected Aw values are in accordance
with those reported by Kim et al. [41] who, evaluating 800 processed cheese samples, found
Aw values ranging from 0.8 to 1.0. In particular, the Aw values reported for cream cheese
and cheese portions (0.97 ± 0.01 and 0.97 ± 0.02, respectively) were very close to the results
reported in the present study (0.98 ± 0.004).

Finally, considering that the microbiological stability of processed cheese, as a low
acidic complex food matrix, remains a challenge, the application of the hurdle theory
represents the best strategy. In this scenario, the addition of polyP together with the
microbiological quality of milk and other ingredients used in the manufacture of processed
cheese becomes necessary. With the present study, for the first time, the inhibitory effect
of emulsifying salts against B. thuringiensis in processed cheese obtained by two different
methods was confirmed. Further studies on the use of different emulsifying salts are
required to better establish microbiologically and technologically available formulations
useful for the cheese industry, nevertheless, these preliminary findings must be considered
as the first steps toward the application of multifunctional ingredients in processed cheeses.

Author Contributions: Conceptualization, A.F. and A.F.d.C.; methodology, A.F.; validation, A.F.,
R.R.d.S., V.Q.C. and R.d.S.R.; formal analysis, A.F. and R.d.S.R.; investigation, A.F., R.R.d.S., J.A.H.,
S.R.d.J.S. and M.L.P.; resources, A.F.d.C.; writing—original draft preparation, A.F., V.Q.C. and R.d.S.R.;
writing—review and editing, A.F., V.Q.C., R.d.S.R., C.C., L.A.N. and A.F.d.C.; visualization, A.F. and
A.F.d.C.; supervision, C.C., L.A.N. and A.F.d.C.; project administration, A.F. All authors have read
and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: All related data and methods are presented in this paper. Additional
inquiries should be addressed to the corresponding author.

Acknowledgments: The authors are thankful to Coordenação de Aperfeiçoamento de Pessoal de
Nível Superior (CAPES, Brasília, DF, Brazil, Financial code 001), Conselho Nacional de Desenvolvi-
mento Científico e Tecnológico (CNPq, Brasília, DF, Brazil) and Fundação de Amparo à Pesquisa do
Estado de Minas Gerais (FAPEMIG, Belo Horizonte, MG, Brazil).

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Fox, P.F.; Guinee, T.P.; Cogan, T.M.; McSweeney, P.L.H. Processed Cheese and Substitute/Imitation Cheese Products. In

Fundamentals of Cheese Science; Springer: Berlin, Germany, 2017; pp. 589–627.
2. Ramel, P.R.; Marangoni, A.G. Processed Cheese as a Polymer Matrix Composite: A Particle Toolkit for the Replacement of Milk

Fat with Canola Oil in Processed Cheese. Food Res. Int. 2018, 107, 110–118. [CrossRef] [PubMed]
3. Farahat, E.S.A.; Mohamed, A.G.; El-Loly, M.M.; Gafour, W.A.M.S. Innovative Vegetables-Processed Cheese: I. Physicochemical,

Rheological and Sensory Characteristics. Food Biosci. 2021, 42, 101128. [CrossRef]

http://doi.org/10.1016/j.foodres.2018.02.019
http://www.ncbi.nlm.nih.gov/pubmed/29580468
http://doi.org/10.1016/j.fbio.2021.101128


Foods 2022, 11, 3217 10 of 11

4. Vollmer, A.H.; Kieferle, I.; Youssef, N.N.; Kulozik, U. Mechanisms of Structure Formation Underlying the Creaming Reaction in a
Processed Cheese Model System as Revealed by Light and Transmission Electron Microscopy. J. Dairy Sci. 2021, 104, 9505–9520.
[CrossRef] [PubMed]
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