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Summary

Ultracold atomic systems have emerged as strong contenders amongst the various quan-

tum systems relevant for developing and implementing quantum technologies due to their

enhanced control and flexibility of the operating conditions. Recent developments in micro-

optics technology paved the way for engineering atomic circuits in various architectures.

Ring-shaped geometries, which are a simple case of these circuits, are of particular in-

terest. In such circuits, a guided matter-wave, specifically a persistent current, can be

generated by the application of an effective magnetic field. One of the peculiar knobs

that can be exploited in cold atoms is the statistics of the quantum fluid flowing in the

ring, be they bosons, fermions, or a mixture thereof. Naturally, the persistent current

can exhibit specific dependencies and attributes depending on the nature of the quantum

matter constituting it. Indeed, such quantum fluids enjoy specific physical properties and

quantization rules, which are expected to be harnessed in atomtronic circuital elements

with unique features.

In this thesis, we explore persistent currents generated in a ring-shaped quantum gas of

strongly interacting N -component fermions, the so-called SU(N) fermions. These multi-

component fermionic systems, as provided by alkaline earth-like atoms, extend beyond the

physics of the typical two-component fermions found in condensed matter systems. We

find that the persistent current of N -component fermions exhibits a fractional quantiza-

tion of the angular momentum, with important differences arising on whether the atoms

are subject to repulsive or attractive interactions. For repulsive interactions, the fractional

quantization is manifested by a current whose period is reduced by 1/Np, with Np being

the number of particles in the system. Similarly, the attractive regime also sees a current

with a reduced periodicity, albeit with a dependency on the number of components 1/N .

By monitoring these specific properties of the quantization, the persistent current can be

used as a diagnostic tool to probe interacting quantum many-particle phenomena. The

fractional quantization of the persistent current can be read out through interference dy-

namics obtained via homodyne and self-heterodyne protocols.

The systems in physical conditions and parameter ranges discussed in this thesis can be

experimentally realized within the current state-of-the-art cold atoms quantum technology.

Our results, apart from being a relevant contribution to many-body physics, provide the
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‘primum mobile’ for a new concept of matter-wave circuits based on SU(N) fermionic

platforms opening an exciting chapter in the field of atomtronics. Indeed, the specific

properties of quantization are expected to provide the core to fabricate quantum devices

with enhanced sensitivity like interferometers. At the same time, SU(N) fermionic circuits

show promise in engineering cold atoms quantum simulators with this artificial fermionic

matter.
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Sommario

I sistemi atomici ultrafreddi si sono imposti come forti contendenti tra i vari sistemi quan-

tistici rilevanti per lo sviluppo e l’implementazione di tecnologie quantistiche grazie al loro

maggiore controllo e alla flessibilità delle condizioni operative. I recenti sviluppi nella tec-

nologia della micro-ottica hanno aperto la strada all’ingegneria dei circuiti atomici in varie

architetture. Le geometrie a forma di anello, che sono un semplice caso di questi circuiti,

sono di particolare interesse. In tali circuiti, un’onda-materia guidata, nello specifico una

corrente persistente, può essere generata dall’applicazione di un campo magnetico efficace.

Uno degli aspetti peculiari dei sistemi atomici ultrafreddi è il controllo della statistica del

fluido quantistico che scorre nell’anello, siano essi bosoni, fermioni o una loro miscela.

Naturalmente, la corrente persistente può presentare dipendenze e attributi specifici a

seconda della natura della materia quantistica che la costituisce. Infatti, tali fluidi quan-

tistici godono di specifiche proprietà fisiche e regole di quantizzazione , che dovrebbero

essere sfruttate in elementi circuitali atomtronici con caratteristiche uniche.

In questa tesi, esploriamo le correnti persistenti generate in un gas quantistico di fermioni

fortemente interagenti a N -componenti, i cosiddetti fermioni SU(N), intrappolato in una

geometria ad anello. Questi sistemi fermionici multicomponenti, realizzabili con metalli

alcalino-terrosi, presentano proprietà fisiche che vanno oltre quelle dei tipici fermioni a

due componenti presenti nei sistemi di materia condensata. I nostri risultati mostrano che

la corrente persistente dei fermioni a N -componenti esibisce un quantizzazione frazionaria

del momento angolare, con importanti differenze derivanti dal fatto che gli atomi siano

soggetti a interazioni repulsive o attrattive. Nel caso di interazioni repulsive, la quan-

tizzazione frazionaria si manifesta con una corrente il cui periodo è ridotto di 1/Np, ove

Np è il numero di particelle nel sistema. Allo stesso modo, anche il regime attrattivo

presenta una periodicità ridotta nella corrente, anche se con una dipendenza dal numero

di componenti 1/N . Monitorando queste proprietà specifiche della quantizzazione, la cor-

rente persistente può essere utilizzata come strumento diagnostico per sondare i fenomeni

quantistici di molte particelle. La quantizzazione frazionaria della corrente persistente

può essere letta attraverso figure di interferenza ottenute attraverso protocolli cosiddetti

“homodyne” e “self-heterodyne”.

I sistemi fisici discussi in questa tesi possono essere sperimentalmente realizzati medi-
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ante le attuali tecnologie quantistiche che utilizzano atomi ultrafreddi. I nostri risultati,

oltre a costituire un contributo rilevante alla fisica dei sistemi a molti corpi, forniscono

il ‘primum mobile’ per un nuovo concetto di circuiti onda-materia basati su piattaforme

fermioniche SU(N), che aprono un entusiasmante capitolo nel campo dell’atomtronica.

Infatti, ci si aspetta che le proprietà specifiche della quantizzazione forniscano le basi per

fabbricare dispositivi quantistici con maggiore sensibilità come gli interferometri. Allo

stesso tempo, i circuiti di fermioni SU(N) si dimostrano delle piattaforme promettenti per

l’ingegnerizzazione di simulatori quantistici che impiegano atomi freddi di natura fermion-

ica SU(N).
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CHAPTER 1

Introduction

Fundamental science and technology are inextricably linked. Basic research furnishes new

novel concepts that can be harnessed to engineer devices and instruments with improved

specifications. In turn, these technological advancements enable us to investigate fun-

damental aspects of nature with enhanced precision and sensitivity, prompting further

scientific investigation. This virtuous cycle between science and technology, wherein the

two continually foster one another, can be credited with ushering epochal changes in hu-

man history. The 18th century industrial revolution and, more recently, the first quantum

revolution that culminated in the digital era of lasers, electronics, and computers, show-

case how the symbiosis between science and technology underpins human progress.

Presently, a second quantum revolution is underway. Its primary objective is to fabricate

quantum technologies [1]. Quantum technology intertwines basic and applied science to

an unprecedented degree: different quantum systems, manipulated and controlled from

the macroscopic spatial scale down to the individual or atomic level, can be platforms

for quantum devices and simulators with refined capabilities; at the same time, quantum

matter constituting the quantum device might exhibit new fundamental and unexpected

physical features due to the specific conditions required for the technology to operate. The

defining goal of quantum technology is to harness genuine quantum effects to construct

devices with distinctive physical principles that are of practical value in the domains of

communication [2], computation [3], sensing [4], and simulation [5]. A variety of physical

systems have been put forward as suitable candidates to develop and implement these

quantum technologies. These platforms range from solid state systems such as arrays of

quantum dots [6], superconducting qubits [7], and colour centers (e.g., nitrogen-vacancy

centers) in diamonds [8] to atomic and molecular ones that include photonic systems [9],

Rydberg atoms [10], trapped ions [11] and lastly cold atoms [12], which is the imple-

mentation that the present thesis focuses on. The appeal of ultracold atomic platforms

consist in their versatility and their enhanced control and flexibility of their operating
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conditions [13, 14].

The field of ultracold atomic physics sees its beginning marked with the milestones of the

experimental realization of a Bose-Einstein condensate [15, 16] and attaining Fermi degen-

eracy [17] as the 20th century drew to a close. After decades of tremendous progress in

laser cooling techniques [18–20], a charge-neutral gas of alkali atoms, placed in a vacuum

and spatially confined with suitable electromagnetic fields, was cooled down to temper-

atures of the order of nanokelvin [13]. At these extremely low temperatures, quantum

effects are more pronounced as the thermal de Broglie wavelength is comparable to the

average inter-particle distance. Ultracold atoms platforms are characterized by robust co-

herences due to the effective shielding of the external environment. They can be realized

with fundamentally different quantum statistics of the gas constituent. The atom-atom

interactions can be tuned to be attractive or repulsive through Feshbach resonances [21]

and can even be enhanced by controlling the potential depth of the optical lattices confin-

ing the atoms [13]. Moreover, due to the remarkable progress in micro-optics technology,

cold atoms can be trapped in a wide variety of potentials, shapes, and intensities [22, 23].

These are some relevant features as to why ultracold atoms provide an important instance

of artificial quantum matter that can be used as ‘hardware’ to advance the fabrication of

quantum devices [12, 14, 24] with practical value such as in sensing [25, 26]. An interest-

ing application of cold atoms technology is in quantum simulation [5, 12, 24]. Originally

proposed by Feynman [27], quantum simulators are quantum systems that can be tailored

to mimic other physical systems. Accordingly, the physics and dynamics of many-body

systems that are not tractable with classical computers can be investigated through quan-

tum simulation. In this regard, cold atoms platforms prove to be a powerful asset due to

their adaptability and tuneability. There are multiple experimental investigations demon-

strating that models such as the Bose-Hubbard [28] and Fermi-Hubbard [29, 30] can be

accurately implemented in ultracold atoms systems. In addition, various phenomena have

been observed, such as Mott insulators [31, 32] and Tonks-Girardeau gases [33], to name

a few.

Atomtronics is an emerging research area in quantum technology exploiting cold atoms

trapped with light and magnetic fields to realize matter-wave circuits in a variety of dif-

ferent architectures [34–39]. Atomtronics incorporates the high degree of control and ver-

satility of the cold atoms constituting them. Specifically, the key properties of atomtronic

circuits include the robust coherence properties of the quantum fluid flowing through it, the

nature of the particles’ statistics, tunable atom-atom interactions, and flexible potential

landscapes. A natural venue for this research activity has been constructing matter-wave

analogues of conventional electronic devices, with the name atomtronics being an amalgam

of atoms and electronics [35, 40]. Several atomtronic technologies mimicking the function-

ality of such devices have been realized, ranging from elementary circuits of linear [41–43]

and annular [44–48] matter-wave guides to atomic batteries [49, 50], transistors [51–53]

and diodes [54]. Being characterized by distinctive physical attributes, atomtronics has

the potential to realize devices with unprecedented capabilities and novel functionalities
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compared to their classical counterparts. Recently, atomic components have been fabri-

cated to replicate quantum electronics, such as the atomic counterpart of superconducting

quantum interference devices (SQUIDs) [44, 55–57], which are believed to be of paramount

importance for guided interferometers [41, 58–62]. This is just one example illustrating

how quantum technologies implemented in other platforms can be studied in a completely

new way through cold atoms, especially given the flexibility and dynamical adaptability

of the operating conditions. While the defining goal of the atomtronics field is to fabricate

quantum devices of practical value and sensors with enhanced performances, it is also

suitable for extending the field of cold atoms quantum simulators. An interesting domain

where atomtronics could play a vital role is that of mesoscopic physics, where concepts

such as quantum transport and persistent currents can be revisited in a completely new

way. In particular, the study of persistent current in atomtronic circuits is one of the core

added values of the field [38, 39].

The persistent current is one of the purest expressions of mesoscopic behaviour [63]. It is

a remarkable effect giving fundamental information on the crossover between the micro-

scopic, purely quantum regime and the macroscopic world: when a mesoscopic ring-shaped

physical system is pierced by a magnetic field, it can display quantum coherence by start-

ing a dissipation-less quantized matter-wave current [64]. Persistent currents have been

extensively investigated in superconductors [65–67] and in normal metallic rings [68–71].

Studies of such a phenomenon have been defining a very active research field in physics

with significant impacts in technology, culminating with the engineering of several quan-

tum devices of practical value as the aforementioned SQUID [72]. With the advent of cold

atoms quantum technology, persistent currents can be imparted in a variety of systems

made of bosonic [44, 73–75] or fermionic constituents [47, 48]. Owing to their charge-

neutral nature, ultracold atoms cannot be made to flow via magnetic means as charged

particles are in electronic and superconducting systems. The simplest way adopted in the

first experiments relied on exploiting the equivalence between the Lorentz and Coriolis

forces, to create an artificial magnetic field through rotation [13, 76, 77]. This can be

carried out by stirring the quantum fluid with a barrier [47, 73, 78]. Alternatively, one

can induce an effective rotation through shaking [79–81], whereby the atomic potential

is periodically modulated in time. Circulating current states can also be generated by

transferring non-zero angular momentum through two-photon Raman transitions [76, 82]

and through phase imprinting [83–85].

Angular momentum quantization of the persistent current in 87Rb atomtronic ring-shaped

circuits has been studied both theoretically and experimentally [55, 57]. Such studies have

been instrumental in defining the atomic counterpart of SQUIDs [44, 55–57]. Another facet

of persistent currents in atomtronics is as diagnostic tools to probe quantum correlations in

many-body systems [38, 39], defining an instance of current-based quantum simulators: In

the same spirit as current-voltage characteristics in solid state physics, many-body systems

can be probed by monitoring the behaviour current flowing through them with respect

to changes in the external parameters. For example, the formation of bright solitons in
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bosonic circuits with attractive interactions is reflected in the persistent current, which

displays a fractional quantization of the angular momentum [86, 87]. To be specific, when

the Np-particle bound state is created, the corresponding effective mass leads to having a

matter-wave current with a reduced period of 1/Np with respect to the free bosonic case.

The phenomenon of fractionalization in attracting bosons presents an exciting avenue for

current-based simulators in atomtronics and in addition, has been predicted to lead to

enhanced performances in rotation sensing [87, 88].

Most of the studies carried out so far have been devoted to atomtronics circuits of ul-

tracold bosons, whilst ones comprised of interacting ultracold fermions are still in their

infancy. The reason being that it is more challenging to cool [17, 89], manipulate [13], and

image [47, 48] a fermionic gas. Recent experimental advances in cold atoms technology

have paved the way for the realization of atomtronic circuits comprised of matter-waves of

fermionic natures [47, 48]. As mentioned previously, persistent currents have been widely

explored in solid state systems [65, 66]. However, in cold atoms, fermionic matter-wave

currents can be realized in an environment where all system parameters are completely

under control. In turn, phenomena such as fermionic superfluidity and the celebrated

BCS-BEC crossover can be studied from a different angle [48, 90].

This thesis focuses on persistent currents in fermionic atomtronic circuits. However, the

quantum fluid flowing in the circuit is not comprised of ordinary two-component fermions

but of strongly interacting N -component fermions. These so-called SU(N) symmetric

fermions are a new artificial quantum matter that has been recently engineered owing to

the developments in the cooling and trapping techniques of alkaline earth-like atoms [91–

96].

From a theoretical point of view, SU(N) fermionic systems have been studied since the

1960s. However, models with enlarged SU(N) symmetry were regarded as idealizations

that could not be directly realized in actual physical systems. Accordingly, the experimen-

tal realization of SU(N) fermions has rekindled theoretical interest to conduct quantum

simulations with these systems. At the operating conditions of cold atoms, the interac-

tions are dominated by contact s-wave scattering, which necessitates that the interacting

fermions be in different orientations due to their fermionic statistics. By virtue of their

N internal degrees of freedom, the Pauli exclusion principle relaxes for SU(N) fermions

thereby enhancing the number and type of interactions. Such a feature makes alkaline

earth-like atoms, especially with lattice confinements, an ideal platform to study exotic

quantum matter, including higher spin magnetism [97, 98], spin liquids [99, 100], topolog-

ical matter [101] and Mott insulators [93, 102, 103]. Additionally, SU(N>2) fermions are

also relevant to areas beyond condensed matter physics. For instance, it can be beneficial

to the high energy physics community, where SU(3) symmetry governs the interactions

between quarks, to study long-standing problems in the field, such as colour deconfinement

in quantum chromodynamics [104–106].
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In this thesis, we explore the concept of matter-wave circuits based on SU(N) symmetric

degenerate gas platforms. The reasons behind doing so are two-fold: (i) to extend the

framework of current-based quantum simulators in atomtronics to fermionic systems; (ii)

to utilize the persistent current as a diagnostic tool to probe exotic phenomena in SU(N)

fermionic systems. The thesis is structured as follows.

In Chapter 2, we present the main theoretical tools and concepts utilised throughout this

thesis. To start, we introduce the Fermi-Hubbard model and provide a description of its

exact solution provided by Bethe ansatz. Next, the emergence of SU(N) symmetry in

ultracold atoms systems is explored. Finally, we round off this chapter by reviewing some

experimental considerations concerning different trapping techniques and the realization

of SU(N) fermions.

Chapter 3 is devoted to the phenomenon of persistent currents. First, we provide a brief

overview of persistent currents in condensed matter physics and then focus on the recent

developments of these matter-wave currents in ultracold atomic gases. Afterwards, we

study from a theoretical viewpoint as to how cold atoms can be used to simulate charged

particles moving in a magnetic field and look at some of the experimental schemes that

have been implemented to generate persistent currents in bosonic and fermionic systems.

Lastly, we discuss the basic properties of persistent currents in the free particle regime and

introduce the Leggett theorem, which is an essential theorem for our analysis of persistent

currents.

Chapter 4 focuses on the simple case of an atomtronic circuit provided by a ring-shaped

quantum gas of strongly interacting repulsive SU(N) fermions pierced by an effective

magnetic flux [107]. In particular, we investigate how the persistent current, the response

to this applied field, displays specific dependencies on the parameters characterizing the

physical conditions of the system. Several surprising effects emerge. Firstly, we find that

as a combined effect of spin correlations, interaction, and effective magnetic flux, spin ex-

citations can be created in the ground-state leading to a re-definition of the fundamental

flux quantum of the system: fractional values of the angular momentum are dependent on

the number of particles in the system. The persistent current landscape is affected dra-

matically by these changes and displays a universal behaviour. Moreover, we demonstrate

that despite its mesoscopic character, the persistent current is able to detect the onset to

a quantum phase transition (from superfluid to Mott phase).

In Chapter 5, our attention shifts to atomtronic circuits of attracting SU(3) fermions [108].

We find that by utilising the persistent current as our diagnostic tool, one can distinguish

between the two types of bound states formed by three-component fermions: trions and

colour superfluids (CSFs), which are the analogues of hadrons and mesons in quantum

chromodynamics (QCD). Furthermore, we perform a thorough analysis of the persistent

current’s dependence on interaction and thermal fluctuations, gaining access to a quanti-

tative description of the celebrated colour deconfinement in QCD. Specifically, for small
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interactions, a crossover is observed from a colourless bound state to coloured multiplets

that displays similarities with Quark-Gluon Plasma formation at large temperatures and

small baryonic densities.

Chapter 6 deals with the read-out of SU(N) persistent currents in an experimental set-

ting [109]. Our approach employs both homodyne and self-heterodyne protocols, which are

two procedures for interfering ultracold matter-waves that are well-established within the

current experimental capabilities. Through interference dynamics, we demonstrate how

the fractional values of angular momenta displayed in the persistent current of strongly

attractive and repulsive N -component fermions, can not only be monitored but also ob-

served in some cases. Additionally, our analysis shows that the study of interference

patterns grants us access to both the number of particles and components, two quantities

that are notoriously hard to extract experimentally.

In Chapter 7, a theoretical framework to study the exact one-particle density matrix of

strongly repulsive SU(N) fermions in a ring-shaped potential is developed [110]. The ap-

proach hinges on the fact that at the limit of infinite repulsion, the spin and charge degrees

of freedom decouple, simplifying the problem by splitting it into the spinless and SU(N)

Heisenberg models. Then, we consider the specific case of SU(N) matter flowing in a ring

when subjected to an effective magnetic flux. In this context, we show how the developed

framework can be used to calculate the interference dynamics of the two read-out protocols

introduced in the previous chapter, albeit at system parameters that are not accessible

numerically within the current state-of-the-art.

Finally, in Chapter 8, we summarize the work presented in this thesis and then provide

some future outlooks and perspectives for developments in the field.
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CHAPTER 2

Basic concepts and models

In this chapter, we provide an overview of the main theoretical concepts and models used

in this thesis to describe the systems under investigation. Section 2.1 is devoted to the

main physical systems under consideration in this thesis, which are SU(N) symmetric

fermions. Subsequently, in Section 2.2, we introduce the SU(N) Fermi-Hubbard Hamil-

tonian, an experimentally relevant model describing itinerant, interacting N -component

fermions on a lattice. Section 2.2.1 details the Bethe ansatz equations for the model.

Lastly, we briefly present experimental considerations for ultracold atomic systems, par-

ticularly SU(N) fermions, in Section 2.3.

2.1 SU(N ) symmetry in ultracold fermionic systems

The concept of symmetry is deeply ingrained in nature and the physical laws that describe

it [111]. Noether’s theorem relating continuous symmetries to conservation laws [112] and

the classification of all elementary particles through exchange symmetry are but a few

examples that showcase symmetry as a powerful and invaluable tool in physics. Several

theories in modern physics were formulated by resorting to symmetry arguments, from

Einstein’s theories of relativity [113, 114] to quantum field theories where the gauge sym-

metries govern the fundamental interactions [115–117].

In this thesis, the SU(N) symmetry is an essential element. It plays an important role in

several branches of physics: SU(3) for the strong interaction in quantum chromodynamics

and SU(2) spin symmetry of electrons in solid state physics, being some notable examples.

While in condensed matter, SU(N) symmetry can emerge only effectively and often as

a result of finely tuning the parameters [101, 118–124]1 ground and metastable excited
3P0 states as they have zero electronic angular momentum [101, 124–126], ultracold atoms

1One example is the SU(4) spin-valley symmetry in graphene [118], which is associated with the rota-

tional invariance of the Coloumb interaction governing the fractional quantum Hall effect [118, 123].
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2.1. SU(N) symmetry in ultracold fermionic systems

prove to be an ideal platform due to unprecedented degree of control and flexibility of

the operating conditions [13, 127]. Indeed, the recent milestones in the field paved the

way for the experimental realization of SU(N) symmetric fermionic systems using alkaline

earth-like atoms2 [92–96, 103, 128–135].

The emergent SU(N) symmetry arises from the decoupling of the nuclear spin I and

the electronic angular momentum J . Such a phenomenon results in the total internal

angular momentum F being provided solely by the nuclear spin degrees of freedom. Con-

sequently, hyperfine interactions are absent, resulting in two-body collisions independent

of the nuclear spin with an enlarged SU(N) symmetry. The strong decoupling between the

nuclear and electron angular momentum without fine-tuning is an inherent characteristic

of fermionic alkaline earth-like atoms ground and metastable excited 3P0 states as they

have zero electronic angular momentum [101, 124–126].

FermionsBosons SU(N) Fermions

Figure 2.1: Schematic diagram for the level occupation of bosons, spinless fermions and

SU(N) fermions. Whilst bosons (left) can all occupy the same state, spinless fermions

(middle) are restricted by the Pauli exclusion principle and so only one particle can inhabit

a given energy level. On going to SU(N) fermions (right), the Pauli exclusion principle

relaxes, enabling N fermions to occupy in a given level. Accordingly, there are N −1

interactions for a given particle. Figure reproduced from [96].

Put simply, SU(N) symmetric fermions are N -component fermions. From Figure 2.1, it

is clear that on increasing N , the Pauli exclusion principle relaxes, enhancing the number

and type of interactions. Eventually, as N → ∞, SU(N) fermions emulate bosons in

terms of level occupations. Interactions occurring at the low temperatures of cold atoms

experiments are typically characterized by s-wave scattering lengths, which result to be

vanishing for spinless fermions. Accordingly, SU(N) fermions present the opportunity to

circumvent this constraint by realizing interacting systems of multicomponent fermions,

with the increased interplay of interactions leading to exotic physics that extends beyond

that of two-component fermions in condensed matter physics [101, 124].

2The designation alkaline earth-like atoms encompasses not only the group II elements of the periodic

table but also those with a similar electronic structure such as zinc and ytterbium, that are elements

residing in the d and f blocks, respectively.
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2.1. SU(N) symmetry in ultracold fermionic systems

Multicomponent fermions are found to possess richer phase diagrams compared to their

two-component counterparts. To start, two- and three-dimensional SU(N) fermionic sys-

tems have been theoretically shown to behave like Fermi liquids [124, 136], whose prop-

erties display a significant dependence on the number of components [136]. On going to

one-dimension, it is expected that an SU(N) Luttinger liquid behaviour emerges [98, 101].

Recent experiments have shown that the SU(N) symmetry causes a deviation in the dy-

namical properties of the spinless and two-component Luttinger liquids [94]. An interesting

aspect of SU(N) fermions is their ability to form bound states with different types and

natures when subjected to an attractive interaction [137, 138]. In this regime, one can

revisit established phenomena like BCS pairing [139, 140] and fermionic superfluidity [104]

from a completely different angle. On a similar note, repulsive SU(N) fermions also dis-

play interesting phases [101, 141]. One such example is that of SU(N) Mott insulators,

which have been experimentally realized and shown to display modified finite temperature

properties compared to SU(2) ones on account of their enlarged symmetry [93, 133, 142].

In addition, the enlarged symmetry of these N -component fermions makes them, espe-

cially in lattices, an ideal platform to study exotic quantum matter, including higher spin

magnetism [98, 104, 128], spin liquids [99, 143] and topological matter [97] and, beyond

condensed matter physics, in QCD [105, 144], lattice gauge theories [145] and the fabrica-

tion of synthetic dimensions [146].

2.1.1 Interacting multicomponent fermions

At the typical operating conditions of ultracold atoms, i.e., very low temperatures and

dilute gases, the relevant contributions to the scattering processes are two-body s-wave

collisions. Therefore, in this regime, the effective interaction between two atoms can be

approximated by the Fermi contact potential [147, 148]

V (r− r′) =
4πℏ2

m
asδ(r− r′), (2.1)

which is a pseudo-potential characterised by the s-wave scattering length as [149]3. Due

to the particles’ statistics, interactions via s-wave collisions occur only for fermions with

different spin projections and are absent for identical fermions. The Lee-Huang-Yang

pseudo-potential introduced in Equation (2.1) can only be applied to bosons and two-

component fermions. As such, it has to be generalised when dealing with spinor bosonic

condensates [151–153] or fermionic gases with higher spin [27].

To obtain the form of interaction occurring in multicomponent systems with SU(N) sym-

metry, we start by considering a collision between two spin-F fermionic atoms, with half-

odd integer F , mediated by a short-range potential. In the absence of symmetry breaking

terms, such as an applied magnetic field or non-spherical trapping potentials, this two-body

interaction is taken to be rotationally invariant in the “spinor gas collision” approxima-

tion [153]. In turn, the total angular momentum of the colliding pair, which includes

3Note that this is called pseudo-potential since in the strongly interacting regime, the contact potential

is regularised by substituting the Dirac delta with δ(r) ∂
∂r
r [150].
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2.1. SU(N) symmetry in ultracold fermionic systems

the orbital and internal angular momenta, is conserved. As mentioned previously, in ul-

tracold atom systems, interactions are mainly characterised by s-wave collisions, which

means that the collision’s orbital angular momentum is vanishing. Hence, the total angu-

lar momentum of the interaction is given solely by the pair’s internal angular momentum

f , generating a higher dimensional SU(2) representation associated with the rotational

invariance of the interatomic potential [101, 124]. Keeping this in mind, we can construct

the pseudo-potential between two spin-F fermions as having the form

Vf (r, r′) =
1

2

2F−1∑
f=0,2,...

gfPfδ(r− r′), (2.2)

where gf = (4πℏ2/m)af is the coupling constant dependent on the s-wave scattering

lengths af , Pf corresponds to the projection operator onto states having a total spin-f ,

with f = 0, 2, . . . , 2F − 1. From all the possible values that f can take, we can only

consider the even valued ones, since, in s-wave collisions it is only the anti-symmetric

combinations that are allowed to participate [27, 153]. Indeed, from Equation (2.2), it is

evident that there are (2F + 1)/2 scattering lengths characterizing the collision between

the pair of spin-F fermions [101]. In second quantization, the projection operator can be

expressed as

Pf =

f∑
mf=−f

A†
f,mf

Af,mf
, (2.3)

where A†
f,mf

and Af,mf
are the creation and annihilation pairing operators with spin

magnetization mf [101], being defined as

A†
f,mf

(r) =
F∑

α,β=−F

⟨F, α;F, β|f,mf ⟩ψ†
α(r)ψ†

β(r), (2.4)

Af,mf
(r) =

F∑
α,β=−F

⟨f,mf |F, α;F, β⟩ψβ(r)ψα(r), (2.5)

where ⟨f,mf |F, α;F, β⟩ corresponds to the Clebsch-Gordan coefficient to form a total spin

f state from a pair of spin-F particles [151]. Consequently, the interatomic potential can

be expressed in the following form

Vf (r) =
1

2

2F−1∑
f=0,2,...

gf
∑
mf

∑
α1,α2,
β1,β2

∫
⟨F, α2;F, β2|f,mf ⟩ ⟨f,mf |F, α1;F, β1⟩

× ψ†
α2

(r)ψ†
β2

(r)ψβ1(r)ψα1(r)dr. (2.6)

A striking consequence of Equation (2.6) is the presence of spin-changing processes. The

scattering length’s dependence on the total spin projection f of the colliding fermions

enables the population of different spin states with coupled spin f [154]. Due to this,

even though the spin projection of the interaction fermions is conserved, typically, their

individual one is not [124, 126].
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2.1. SU(N) symmetry in ultracold fermionic systems

There exists a special case where all the scattering lengths, and in turn the coupling

constants, are all equal. In such an instance, the pseudo-potential reads

Vf (r) =
g

2

2F−1∑
f=0,2,...

∑
mf

∑
α1,α2,
β1,β2

∫
⟨F, α2;F, β2|f,mf ⟩ ⟨f,mf |F, α1;F, β1⟩

× ψ†
α2

(r)ψ†
β2

(r)ψβ1(r)ψα1(r)dr, (2.7)

and by noting that
∑

f

∑
mf

|f,mf ⟩ ⟨f,mf | = 1 forms a complete basis, can be simplified

to give

Vf (r) =
g

2

∑
α ̸=β

∫
ψ†
α(r)ψ†

β(r)ψβ(r)ψα(r)dr. (2.8)

The equal scattering lengths imply that the interatomic potential is independent of the

nuclear spins. During a collision, the nuclear spin typically exerts its influence through

its hyperfine coupling with the electron angular momentum. As we alluded to previously,

hyperfine interactions are absent in fermionic alkaline earth-like atoms ground-states and

vanishing up to leading order in the excited state 3P0 [155, 156], owing to the decoupling of

the nuclear and electronic spin degrees of freedom [124, 126]. Subsequently, the scattering

processes are equal and independent of the nuclear spin, with the latter’s impact on the

collision being to enforce the Pauli exclusion principle, as shown in Equation (2.8).

In such a scenario, several appealing properties emerge. We start by noting that the

pseudo-potential in Equation (2.8) is in possession of an enhanced symmetry in comparison

to the SU(2) symmetry introduced earlier. The symmetry gets enlarged to the SU(N)

group where N = 2F + 1, with the interaction Hamiltonian defined in Equation (2.8),

being invariant under all transformations pertaining to this group. Defining the nuclear

spin-permutation operators as

Sβ
α =

∫
ψ†
α(r)ψβ(r)dr, (2.9)

we have that the interaction Hamiltonian, now denoted by U , commutes with any spin-

permutation operator.

[U , Sβ
α] = 0 ∀α, β, (2.10)

Thus, the interaction is SU(N) symmetric since the spin-permutation operators are the

generators of the SU(N) Lie algebra group satisfying the SU(N) algebra [Sβ
α, Sϵ

γ ] = δβγS
ϵ
α−

δαϵS
β
γ [126]. An immediate consequence of SU(N) symmetry is that there are no spin-

exchange collisions, with the population of each spin state being conserved. This can be

clearly visualized by re-writing interaction potential in the following manner

U =
g

2

∑
α ̸=β

∫
nα(r)nβ(r)dr, (2.11)

by introducing the density field operator nα(r) = ψ†
α(r)ψα(r). Additionally, this poses

another important implication. An atom with a large nuclear spin can effectively behave

like one with a lower spin, by preparing it such that only a subset of the spin states are
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2.2. SU(N) Fermi-Hubbard model

occupied [101, 126]. Essentially, N can take any value up to 2F + 1.

The emergent SU(N) symmetry comes from the inherent properties of fermionic alkaline

earth-like atoms. Naturally, it begs the question as to whether such a symmetry can be

accessed in others systems by fine-tuning the scattering lengths. Alkali systems with F >

1/2, which already boast enlarged symmetries with independent couplings [157, 158], can

achieve SU(N) symmetry with fine-tuning, at least in principle. Indeed, it has been shown

experimentally that SU(3) symmetry emerges in three-component systems of lithium gases

at large magnetic fields but is not sustained at moderate magnetic field strengths [159–

163]. As such, it is preferable to utilize alkaline earth-like atoms such as ytterbium and

strontium as no fine-tuning is required to attain the enhanced SU(N) symmetry.

2.2 SU(N ) Fermi-Hubbard model

The Hubbard model, originally introduced by John Hubbard to provide an effective de-

scription of the electron dynamics in solids [164], is a paradigmatic example addressing

the physical properties of strongly interacting quantum many-body systems, ranging from

superconductivity to quantum magnetism [165–167]. Recent successes in the field of cold

atoms quantum simulators include the emulation of the Hubbard model [30, 127, 168, 169]

and, very recently, its generalization to N -components [95, 103]. Here, we sketch out the

derivation for the SU(N) Fermi-Hubbard model in an ultracold atom setting, which is the

central model utilized to describe the physical systems under investigation in this thesis.

From microscopic theory, the many-body Hamiltonian describing a system of Np interact-

ing two-component fermions of mass m can be expressed in second quantization as

H =

N∑
α=1

∫
ψ†
α(r)H0Ψα(r)dr +

1

2

N∑
α,β=1

∫
Ψ†

α(r′)Ψ†
β(r)V(r− r′)Ψβ(r)Ψα(r′)drdr′, (2.12)

where Ψ†
α(r) [Ψα(r)] is the fermionic field operator that creates (annihilates) a fermion with

spin projection α at position r, satisfying the anti-commutation relations: {Ψα(r),Ψ†
β(r′)}

= δα,βδ(r − r′) and {Ψα(r),Ψβ(r′)} = {Ψ†
α(r),Ψ†

β(r′)} = 04. The first term in Equa-

tion (2.12) corresponds to the single-particle Hamiltonian H0, which consists of the kinetic

energy operator (−ℏ2/2m)∇2 and the three-dimensional external potential Vext(r) provid-

ing a lattice structure to the system. The second term V(r− r′) denotes the interatomic

potential of two-body collisions, which from Equation (2.8) reads

V(r− r′) =
4πℏ2

m
aIδ(r− r′), (2.13)

where aI is the scattering length independent of the nuclear spin. The nature and strength

of the interactions can be very precisely tuned through Feshbach resonances [170, 171],

generated via external optical [172–174] or magnetic fields [21, 175, 176]. The sign of aI

be it negative (aI < 0) or positive (aI > 0), dictates whether the effective interactions

4Note that for the sake of convenience, we have re-labelled α, β = −F, . . . , F → α, β = 1, . . . , N .
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2.2. SU(N) Fermi-Hubbard model

between the atoms are attractive or repulsive respectively.

To write the Hamiltonian in second quantisation requires us to choose a suitable basis.

In the presence of a homogenous periodic potential, such that Vext(r) = V0(cos2(kx) +

cos2(ky) + cos2(kz)), for example [28], the eigenfunctions of the one-body Hamiltonian

H0 are Bloch functions φaq(r) with band index a and crystal momentum q running over

the first Brillouin zone [149, 177]. Bloch waves are highly delocalised, spanning the whole

lattice, which makes them inappropriate to represent local properties, as is the case with

the short-range interaction outlined in Equation (2.1). Therefore, we can construct a

new basis, one that is complementary to the Bloch basis and readily obtained through its

Fourier transform. The Wannier functions are maximally localised functions defined as

waj(r) ≡ wa(r− rj) =
1√
L

∑
q

e−ıqrjφaq(r), (2.14)

centered around the lattice potential minimum rj of the j-th site, with L denoting the

number of lattice sites [178]. Forming an orthogonal basis for different band and site

indices, Wannier functions are well suited to handle contact interactions. Expanding

the field operators in terms of the Wannier operators ψ†
α(r) =

∑
aj w

∗
a(r − rj)c

†
aj,α, the

Hamiltonian introduced in Equation (2.12) is expressed in the Wannier basis as

H =
∑
i,j,α,a

taijc
†
ai,αcaj,α +

1

2

∑
i,j,k,l
abde

∑
α,β

Uabde
ijkl c

†
ai,αc

†
bj,βcdk,βcel,α, (2.15)

where c†j,α (cj,α) creates (annihilates) an electron with spin α localized at site j. These oper-

ators obey the canonical fermion algebra {ci,α, c†j,β} = δαβδij and {ci,α, cj,β} = {c†i,α, c
†
j,β} =

0. From this, it is straightforward to see that (c†j,α)2 = 0 thereby ensuring the Pauli ex-

clusion principle.

The tunneling amplitude taij with which particles tunnel from site i to site j within a given

band a, is of the form

taij =

∫
w∗
a(r− ri)

(
− ℏ2

2m
∇2 + Vext(r)

)
wa(r− rj)dr. (2.16)

Likewise, the interaction strength parameterised by Uabde
ijkl is given by

Uabde
ijkl =

∫
w∗
a(r′ − ri)w

∗
b (r− rj)V(r− r′)wd(r− rk)we(r

′ − rl)drdr′. (2.17)

The Hamiltonian provided in Equation (2.15) is the multi-band model. However, in this

thesis, we restrict ourselves to a more simplified version by considering the effective one-

band model. Firstly, we restrict ourselves to occupying the lowest Bloch band a = 1, which

is valid when the spectral gap is larger than all energy scales, as is the case at very low

temperatures and sufficiently large lattice depths [28, 149]. Next, we consider the tight-

binding approximation maintains the tunneling terms between nearest neighbours [167].

The overlap between two non-neighbouring Wannier functions is negligible, especially for

deep lattices [13], and in turn, the tunneling amplitude decays exponentially with distance.
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2.2. SU(N) Fermi-Hubbard model

With the same logic, we have that the interaction range is small such that the only relevant

contribution from Equation (2.17) is Uaaaa
iiii , fitting in with the narrative of having a contact

interaction. Consequently, we may write the full SU(N) Hubbard Hamiltonian [124–126],

which reads

HSU(N) = −t
L∑

⟨i,j⟩

N∑
α=1

(c†i,αcj,α + h.c.) +
U

2

L∑
i

ni(ni − 1), (2.18)

where ⟨i, j⟩ indicates that the summation runs over nearest-neighbours and ni =
∑N

α c†i,αci,α

is the local number operator counting the number of multi-occupied sites (sketched in Fig-

ure 2.2 for N = 2). Note that we have assumed isotropic couplings t in the system and

neglected on-site hopping terms tii. In this thesis, all energy scales are measured in units

of the tunneling amplitude, which is given by t = 1.

Figure 2.2: Schematic representation of the SU(N) Fermi-Hubbard model for N = 2.

The fermions depicted by red and blue spheres are confined in a one-dimensional lattice

potential. The fermions tunnel between neighbouring sites with tunneling amplitude t and

experience an on-site interaction with strength U on doubly occupied sites.

The number of particles per component Nα and in turn, the total number of particles

Np are conserved in the SU(N) Hubbard model. This can either be seen from the com-

mutation of the Hamiltonian with the operators, [H, N̂α] = 0, defined respectively as

N̂α =
∑L

j=1 nj,α or in a more intuitive way. There are no terms in model (2.18) that

add (c†i,αc
†
j,β) or remove (ci,αcj,β) particles from the system, with ones that enable spin-

exchange (c†i,αcj,β) also being absent.

It is straightforward to show that the full Hamiltonian preserves the SU(N) symmetry

through its commutation with the SU(N) spin-permutation operators. These operators

can be defined as

Sa =
1

2

L∑
j=1

N∑
α,β=1

c†j,α(λa)αβcj,β a = 1, . . . , N2 − 1, (2.19)
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2.2. SU(N) Fermi-Hubbard model

with σa corresponding to the generators of the SU(N) generators5. We see by construction

that these operators generate a representation of the SU(N) Lie algebra. Through its

commutation with these spin operators, [H, Sa] = 0, the Hubbard Hamiltonian boasts

SU(N) symmetry. Structurally, the SU(N) Hamiltonian is the same as the two-component

model (setting N = 2 in Equation (2.18)). The difference between the two models is subtle

in that it lies in the enhanced symmetry of the former due to the N >2 internal degrees

of freedom6, which is quite straightforward to show. Consequently, the SU(N) Hubbard

model displays a richer phase diagram for both repulsive and attractive interactions [101,

124], which will be explored in this thesis.

2.2.1 Integrability of the SU(N ) Hubbard model

The SU(N) Fermi-Hubbard model exhibits several rich phenomena that can be attributed

to the interplay between the kinetic and interaction terms, having opposing preferences

tending to delocalize and localize electrons, respectively. They do not commute, resulting

in Hamiltonian (2.18) not being diagonal in either the Bloch or Wannier basis except in

the tight-binding (U = 0) or atomic limit (t = 0), respectively. Typically, to solve such a

model, one would need to rely on perturbative or numerical methods to understand the

underlying many-body physics of the system [166]. However, this is not the case for the

one-dimensional Hubbard model since it belongs to the special class of quantum integrable

systems [179].

Although the notion of integrability in quantum theory is less clear-cut than in classical

physics, a well-posed definition can be formulated through scattering. In other words,

constraints are imposed on the scattering of the system such that there is no diffraction

in any scattering of the particles but a simple exchange of momenta [180]. Effectively,

this corresponds to a closed set of equations that, when solved, yield the spectrum of the

model and enable the calculation of several physical properties exactly. Typically, these

equations are obtained through the so-called Bethe ansatz, originally developed by Bethe

to solve the one-dimensional XXX Heisenberg model [181]. Following its introduction, this

powerful method has been instrumental in providing the exact solution to a wide variety

of systems, ranging from one-dimensional bosonic gases [182, 183], fermionic gases both

in the continuum [137, 184–190] and lattice [179, 191], to two-dimensional classical spin

chains [192, 193] and even in string theory [194–196].

The logic behind the Bethe ansatz is common for all systems in that the many-body wave-

function is constructed through an educated guess, which in turn reduces the problem

into solving a set of coupled algebraic equations. Generally, diagonalizing a matrix is a

transcendental problem7. The route involving the Bethe ansatz equations has a lower

5For N = 2, the generators correspond to the Pauli matrices. In the case of N>2, the SU(N) generators

are a generalized form of the Gell-Mann matrices (see Appendix B).
6We will refer to the internal degrees of freedom as components, colours or species interchangeably.
7In accordance with Galois theory, any polynomial of a degree greater than 5 corresponds to a tran-

scendental function leading to a jump in complexity for matrices of this dimensionality [197].
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2.2. SU(N) Fermi-Hubbard model

complexity, at least in concept, as we can obtain the whole spectrum via algebraic means,

enabling us to study physics in situations that can be accessed numerically within the

current state-of-the-art. Remarkably, the Bethe equations can be exactly solved in an

explicit way in the thermodynamic limit [198].

The SU(2) Hubbard model was found to be Bethe ansatz integrable in the seminal paper

of Lieb and Wu [179], where they employed the nested Bethe ansatz approach that was

introduced to solve the Gaudin-Yang model [187, 188]. Unlike its SU(2) counterpart, the

SU(N) Hubbard model is not Bethe ansatz solvable for all system parameters and filling

fractions [101, 180, 199]. A key step in Bethe ansatz is that the many-particle problem

can be factorised into two-body scatterings [200]. This concept, which is at the core of the

nested Bethe ansatz formulated by Gaudin [187] and Yang [188] to handle models with

internal degrees of freedom, would go on to serve as the foundation for the Yang-Baxter

equation, a sufficient condition for Bethe ansatz integrable systems [201–203]. In the case

of SU(2) fermions, this factorisation is guaranteed by the Pauli exclusion principle. On

the other hand, up to N particles can inhabit a given site when dealing with SU(N)

fermions resulting in diffractive scattering, in the sense that the scattering matrix does

not obey the Yang-Baxter relations. Indeed, as N → ∞, the Pauli exclusion principle

relaxes, increasing the number of two-body interactions resulting in SU(N) fermions emu-

lating bosons [94, 199, 204] (see Figure 2.1), which turns out to not be integrable [205–207].

There exist two regimes where two-body interactions are assured, thereby preserving the

integrability of model (2.18). The first regime is attained for filling fractions of one particle

per site and very large repulsive values U ≫ t [191, 208]. In such a setting, which is mod-

eled by the Lai-Sutherland Hamiltonian, the motion of the particles is constrained as they

must pay a penalty to traverse to an already occupied site. The second regime presents

itself in continuum limit with vanishing lattice spacing, described by the Gaudin-Yang-

Sutherland model [190, 209]. An important property of the continuous limit is that the

centre of mass dynamics separate from the relative coordinates. Such a property is lost in

the lattice theories [87]. This is one of the key features explaining the lack of integrability

of the lattice regularization of continuous theories. A heuristic way to understand why

the system becomes integrable in the continuous limit (for both attractive and repulsive

interactions) is to note that the diluteness condition makes the probability of more than

two particles interacting vanish [199].

The models that govern these two integrable regimes were solved by Sutherland through

successive applications of the Bethe-Yang hypothesis on the spin wavefunction coefficients,

each time reducing the dimensionality of the problem [190, 191]8. In Appendix C, the steps

to derive the Bethe ansatz equations for the SU(2) Hubbard model are detailed for a system

of Np particles with M flipped spins. Here, we provide a brief overview of the approach for

N -component fermions. To exemplify this, let us consider Np three-component fermions

with N−M particles in colour A, M−M1 particles in colour B, and M1 particles in colour

8It is for this reason that this approach is called the nested Bethe ansatz.
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2.2. SU(N) Fermi-Hubbard model

Figure 2.3: Diagrammatic representation of the logic behind the nested Bethe ansatz

approach for SU(3) fermions. Starting out with 9 particles (black), we take 3 of them to

be of a given colour (blue) with the rest being green. Subsequently, we take 3 of these to

be of another colour(red). The final distribution of particles per colour is that of 3 each

corresponding to Np −M , M −M1 and M1.

C as depicted in Figure 2.3. Just as in the two-component case discussed in Appendix C,

we initially take M particles to be of a different type than the Np − M particles and

administer the Bethe-Yang hypothesis for a given sector Q ∈ SM , albeit in a slightly

different form

Φ =
∑

P∈SM

ψ[Q;P ]
M∏
n=1

F (ΛPn, yQn). (2.20)

Then, we separate the problem again by taking M1 to be of another type different than

the M − M1 particles, allowing us to apply the Bethe-Yang hypothesis once more for

ψ[Q;P ]. By going through all the motions as in the two-component case and applying

periodic boundary conditions, we obtain the Bethe ansatz equations for SU(3) fermions.

This methodology can be straightforwardly generalized to N -component fermions and

applied until all internal degrees of freedom are eliminated [204, 210]. In the case of the

Gaudin-Yang-Sutherland model, the Bethe equations for Np SU(N) symmetric fermions

read

eıkjL =

M1∏
α=1

kj − Λ
(1)
α + ıc

kj − Λ
(1)
α − ıc

, j = 1, . . . , Np (2.21)

Mr∏
β=1
β ̸=α

Λ
(r)
α − Λ

(r)
β + 2ıc

Λ
(r)
α − Λ

(r)
β − 2ıc

=

Mr−1∏
β=1

Λ
(r)
α − Λ

(r−1)
β + ıc

Λ
(r)
α − Λ

(r−1)
β − ıc

·
Mr+1∏
β=1

Λ
(r)
α − Λ

(r+1)
β + ıc

Λ
(r)
α − Λ

(r+1)
β − ıc

, α = 1, . . . ,Mr

(2.22)

for r = 1, . . . , N −1, where M0 = Np and Λ0
β = kβ. Mr corresponds to the number

of particles in a given colour, with kj and Λ
(r)
α being the charge and spin rapidities re-

spectively. Note that the Bethe equations for the Lai-Sutherland model are of the same

structure, with the added difference that kj → sin kj in the RHS of Equations (2.21)

and (2.22). Naturally, for N = 2 we recover the Bethe equations for spin-12 fermions (see

Appendix C).
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2.3 Experimental Aspects of cold SU(N ) fermions

In this section, we sketch the logic employed in trapping and controlling systems of cold

atoms, with special consideration of SU(N) fermionic systems.

One of the cornerstones of ultracold atoms experiments is the ability to confine and ma-

nipulate atoms in potentials. The realization of smooth, complex, and versatile trapping

potentials has led to the creation of various architectures, prompting an interesting in-

terplay between theory and experiment [39]. Such confining potentials can be engineered

either by magnetic or optical fields [20].

Magnetic trapping techniques exploit the Zeeman coupling between an external magnetic

field B and the atoms’ internal state [211]. The potential corresponding to this interaction

is of the form VZ(r) = −µ · B(r) where µ is the magnetic dipole moment of the atoms.

In the presence of a homogenous magnetic field, the spins are prone to align themselves

parallel (VZ < 0) or anti-parallel (VZ > 0) to B [212]. Therefore, by suitable design, atoms

can be trapped in the minima of magnetic fields. Various magnetic trap designs can be

crafted: bubbles and sheets via radiofrequency adiabatic potentials [213, 214]; stacks of

rings (pancakes) and half-moon shapes through time-averaged adiabatic potentials [215];

complex two-dimensional structures having H-, T- and U-shapes using current-carrying

micro-fabricated wires on a substrate (atom chips) [216–218].

Optical trapping techniques confine the atoms by an induced dipole interaction. The optical

dipole potential generated from this interaction takes the form U(r) = −I(r)(3πc2Γ)/(2w3
0∆)

where I(r) corresponds to the intensity of the beam, c is the speed of light in the vacuum

and Γ is the damping rate of the excited state’s population [219]. The sign of the detuning

∆ = ω − ω0 between the frequency of the laser field ω and the resonant frequency of the

atom ω0 accounts if the dipole force is repulsive or attractive [220]. Different geometries,

such a three-dimensional cubic grid to triangular lattices [28], can be fashioned through

spatial variation of the intensity. More complex structures can be crafted by considering

more advanced techniques that enable the potential to be tailored in any desired form [221].

Such methods include: (i) “painted” time-averaged optical potential [222–224]; (ii) spatial

light modulators [225, 226]; and (iii) digital micro-mirror devices [22].

In this thesis, we are only concerned with ring-shaped geometries, which have been the

subject of intensive investigation in the emerging field of atomtronics [38, 39] and atom

interferometry community [25]. Rings traps can be created by both magnetic and op-

tical potentials. Examples of magnetic traps include those constructed by wire struc-

tures like atom-chips [227, 228], adiabatic [214, 229], and time-averaged adiabatic po-

tentials [42, 215, 230]. In the case of optical traps, for instance, rings can be created

by static [231–233] or spatial light modulator [61, 234] generated Laguerre-Gauss beams,

painted potentials [222, 223, 226], and through digital micro-mirror devices [22].
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2.3. Experimental Aspects of cold SU(N) fermions

Experiment realization of SU(N) symmetric fermions is mainly carried out with alkaline

earth-like atoms. The absence of hyperfine interactions in the ground-state not only makes

them the ideal candidates to investigate SU(N) symmetry but also as state-of-the-art opti-

cal atomic clocks that vastly surpass the current standard of caesium clocks [124, 235, 236].

However, this lack of magnetic electronic structure presented some hurdles as some of the

conventional methods used to cool, trap and manipulate alkaline atoms in experiments

could not be used.

For instance, an all optical cooling setup is required to bring the atoms to quantum de-

generacy. In the standard procedure for cooling atoms, the atoms are loaded into the

magneto-optical trap (MOT) where by illumination with red-detuned laser beams, they

are cooled to an extent. Subsequently, the atoms are cooled even further by transferring

to another magnetic trap, whose depth is changed to allow the “hot” atoms to escape the

trap in what is known as evaporative cooling [18, 237]. Seeing as a magnetic trap is reliant

on an atom’s internal state, it is unfeasible to trap alkaline earth atoms with magnetic

means [91]. As a result, an all optical cooling setup needs to be used, where the evapo-

rative cooling is carried out in an optical trap that typically consists of a crossed optical

dipole trap [95, 131, 238]. Through this method, fermionic alkaline earth-like atoms have

been brought to quantum degeneracy [91, 96, 131, 239]9.

Magnetic Feshbach resonances, which are an indispensable tool in cold atoms experi-

ments, cannot be utilised for the same reason outlined above, in that the susceptibility

of the nuclear spin degrees of freedom to an external magnetic field is significantly less

than their electronic counterparts. However, it is interesting to note that recently orbital

Feshbach resonances have been observed [129, 240]. These types of resonances, which

preserve SU(N) symmetry, couple the orbital and nuclear spin degrees of freedom through

a magnetic field in a similar fashion to the tuning of alkali gases with magnetic Fesh-

bach resonances [241]. Typically, the preferred way to tune the interactions in alkaline

earth-like gases is through optical Feshbach resonances [242, 243]. The mechanism behind

this involves coupling the colliding atomic pair to an excited molecular bound state via

lasers. A major drawback of this method is that the SU(N) symmetry can be broken upon

coupling with an excited state possessing a hyperfine structure [124].

9A striking consequence of the enlarged symmetry of SU(N) fermions is that they can be cooled more

efficiently than their SU(2) counterparts. This stems from the enhanced collisions between the internal

degrees of freedom during the evaporative cooling, which allows entropy to be removed more efficiently [93,

96, 134, 142]. This phenomenon is called the Pomeranchuk cooling effect [93].

19



2.3. Experimental Aspects of cold SU(N) fermions

20



CHAPTER 3

Persistent currents in ultracold gases

Persistent currents are a quantized dissipationless flow of matter reflecting the phase coher-

ence of the system [63]. This purely quantum phenomenon defines a very active research

area in fundamental and applied science, especially in the context of quantum sensing and

simulation.

The existence of persistent currents was discovered in superconducting circuits at the turn

of the 20th century [72]. Initially associated with superconductivity, it was eventually ob-

served that the two concepts are not intrinsically linked. The matter-wave current arises

not due to the zero resistance of the device but from the macroscopic phase coherence

in the system [65–67]. Decades later, it was predicted that matter-wave currents should

also be observed in normal metals [68–70]: when a mesoscopic metal ring is threaded by

a magnetic flux, a persistent current can arise in the system [64] defining an instance of

the Aharonov-Bohm effect in a closed loop [244]. In this case, the matter-wave current

arises by virtue of the large coherence length of the electrons flowing in the ring with

respect to the system length. Such a counter-intuitive phenomenon can only be observed

in the quantum regime at very low temperatures where decoherence effects coming from

thermal fluctuations are negligible. The magnitude of the persistent current in normal

metallic rings is significantly lower than their superconducting counterparts owing to their

origin. Moreover, the presence of impurities leads to decoherence, which, even though do

not destroy the persistent current completely, reduce its signal dramatically. As a result,

it turns out to be quite challenging to detect currents in normal metals due to their very

small signals [245, 246].

Soon after the first experiments on bosonic ultracold atoms [15, 16], attention was de-

voted to the superfluid phenomenon and its consequences. Analogously to the persistent

currents discovered in superconducting circuits, dissipationless matter-waves were also

observed in superfluids. It is well known that dissipationless matter-waves can occur in
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3.1. Artificial gauge fields in cold atoms systems

superfluids [247, 248], but ultracold atoms provide a platform to realize persistent currents

with very specific capabilities that cannot be accessed by solid state physics implementa-

tions. To start with, ultracold atoms have paradigmatically robust coherence properties

and control of the physical conditions that can be changed in the course of the experi-

ment ‘on the fly’ [13, 22]. Additionally, their quantum fluid can deal with different atomic

species. Indeed, the first experimental realizations of matter-wave currents of bosonic na-

ture [44, 73, 78, 249, 250]. Fermionic persistent currents have also been recently observed

experimentally [47, 48], enabling the investigation of currents from new angles compared

to solid-state systems. These new advances have opened new avenues for the investiga-

tion of matter-wave currents in exotic platforms such as Rydberg atoms [251] and SU(N)

fermions [107–110, 252], which have no analogues in condensed matter.

Depending on the fundamental features of the cold atoms matter, persistent currents have

been observed to display distinctive properties, reflecting important features of the sys-

tems [86–88, 90, 253]. This fact, combined with the aforementioned enhanced control and

flexibility, makes persistent currents a valuable tool for diagnosing many-body systems.

Finally, after a decade of basic research activity, the field is now at a stage where technol-

ogy based on this mesoscopic phenomenon is starting to surface. In particular, persistent

currents are the core added value of Atomtronics, the newly emerged field of guided ul-

tracold atoms technology [38, 39]. A fruitful starting point in this context has been to

consider devices in an analogy of quantum electronics [35, 40]. The atomic analog of the

SQUID [55–57, 62], Sagnac interferometry [59, 254], or gyroscopes [60, 255]. Quantum

devices based on persistent currents of cold atoms have the potential to define radically

new quantum devices depending on the particular features of the system. Examples in

this direction are the bright soliton interferometers [254, 256].

The rest of the chapter is organized in the following manner. Section 3.1 details the

introduction of an artificial gauge field in a Hamiltonian, allowing matter to be put in

motion. Section 3.2 is devoted to the basic properties of persistent currents.

3.1 Artificial gauge fields in cold atoms systems

A natural question that emerges is how to set these cold atoms in motion. Being charge-

neutral in nature, ultracold atoms are not affected by Lorentz forces when subjected to a

magnetic field. Nevertheless, cold atoms can emulate the behaviour of charged particles in

a magnetic field through the application of a synthetic gauge field [76, 77], which can be

implemented through various techniques. One method of inducing rotation in the system

is to stir the quantum fluid, typically carried out by a moving barrier [47, 73, 78, 257].

The Coriolis force, which is the response to the applied rotation, mimics the action of

the Lorentz force on a charged particle. Another approach is to utilize phase imprinting,

where an arbitrary phase is imparted to the system through tailored time-dependent laser

potentials [48, 85, 232]. Circulating current states in lattices can be prepared through Flo-

quet engineering [258]: in such a scheme, the confining potential is modulated periodically
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3.1. Artificial gauge fields in cold atoms systems

in time. By choosing a suitable modulation in the limit of a large driving frequency, the

system is described by an effective time-independent target Hamiltonian. As such, one can

engineer complex tunneling terms that correspond to a synthetic magnetic flux [79, 81].

Lastly, we point out that it was recently proposed to engineer persistent currents through

machine-learning [259]. Through these methods, matter-wave currents in ultracold atomic

gases have been experimentally realized in both bosonic [44, 75, 249] and, very recently, in

fermionic systems [47, 48]. Below, we illustrate how synthetic gauge fields are introduced

in the Hamiltonian, describing the system by providing a specific example of inducing a

rotation by stirring the quantum fluid with a moving barrier.

Consider Np particles of mass m, that can be either bosonic or fermionic in nature, residing

on a ring of radius R interacting by a contact potential such that the system is described

by the following Hamiltonian

H0 = −
Np∑
j

ℏ2

2m

∂2

∂x2j
+ g

Np∑
i<j

δ(xi − xj), (3.1)

where g corresponds to the interaction strength. To rotate the condensate, we introduce

a time-dependent potential barrier denoted by V (x−ΩRt) moving at an angular velocity

Ω, such that

H(Ω, t) = H0 + V (x− ΩRt). (3.2)

By switching over to the rotating reference frame having the same frequency as the poten-

tial barrier, such that Hrot = U †(t)H(Ω, t)U(t), the time dependency of the Hamiltonian

is removed

Hrot = H0 + V (x) − ΩL̂z, (3.3)

with U = exp
(
ıL̂zΩt/ℏ

)
. The ring is taken to lie in the x-y plane such that the z-

component of the angular momentum denoted by L̂z is perpendicular to it. Accordingly,

the position of the j-th particle on the ring is given by the arc Rφj with φj being the

azimuthal angle on the ring. Translating the system from Cartesian to polar coordinates,

x = R cos(φ) and y = R sin(φ), the angular momentum can be expressed as

−ΩL̂z = ıℏΩ
∂

∂φ
, (3.4)

and in turn the Hamiltonian can be recast into the following form

Hrot =

Np∑
j=1

1

2m

(−ıℏ
R

∂

∂φj
−mΩR

)2

+
g

R

Np∑
i<j

δ(φi − φj) −
1

2
mΩ2R2. (3.5)

The action of the induced rotation produces a shift in the momentum operator and the

total energy of the system. At the single particle level, we can compare Hrot with the

Hamiltonian Hc describing a particle with charge q and momentum p = −ıℏ∂x subjected

to a gauge field A

H =
(p− qA)2

2m
. (3.6)
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It becomes immediately apparent that the two expressions have a similar structure to one

another with qA = mΩR. As such, the analogy that an artificial gauge field mΩR gener-

ated through rotation mimics the action of an actual magnetic field holds. The angular

velocity Ω that induces the rotation can be attributed to the Coriolis force and as such,

is typically called the Coriolis flux.

Next, we showcase how these artificial gauge fields give rise to the persistent currents,

which are the main subject of investigation in this thesis. For simplicity, the single-

particle case is considered. The time-independent Schrödinger equation in the presence of

a gauge field takes the following form

1

2m

(
− ıℏ
R

∂

∂φ
−mΩR

)2

ψn(φ) = Enψn(φ). (3.7)

where En denotes the n-th energy level and ψn is the corresponding single-particle wave-

function. Multiplying both sides by ψ∗
n and integrating over the whole space, we arrive to

En = − 1

2m

2π∫
0

Rψ∗
nK

2(φ)ψn, (3.8)

with K is the kinetic term of the Hamiltonian in Equation (3.7). Performing the derivative

with respect to the flux and subsequently integrating by parts we find that [260]

∂En

∂Ω
=

1

2πR

ıℏ
2m

2π∫
0

R[ψ∗
nKψn − ψnK

∗ψ∗
n]dφ = − 1

2π

2π∫
0

jn(φ)dφ. (3.9)

Note that the last term in the above expression jn(φ) corresponds to the textbook defini-

tion of the probability current in quantum mechanics [149], which is the analogue to an

electric current in electromagnetism. This shows that persistent currents can be defined

as the derivative of a thermodynamic potential with respect to the flux. In the canonical

ensemble, the persistent current I(φ) corresponds to

I(φ) = −∂F (φ)

∂φ
, (3.10)

where F denotes the Helmholtz free energy [71]. At zero temperatures, only the ground-

state level of the system is occupied and the current can be defined as

I(ϕ) = −∂E0

∂Ω
, (3.11)

with E0 being the ground-state energy of the system. It must be stressed that even

though the derivation for the persistent current was performed for the free particle case,

one obtains the same result in the presence of interactions since the flux dependence in

the Hamiltonian manifests itself in the kinetic operator of the many-body Hamiltonian.

So far, the flux dependence of the system was explicitly introduced in the Hamiltonian.

However, one can perform a unitary transformation on the system by choosing a suitable
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gauge in order to obtain a Hamiltonian that is field free and the effect of the flux becomes

encoded in the periodic boundary conditions, that now become “twisted”. The unitary

transformation under consideration is of the form

U(2π) = exp

(
− ı

ℏ

∫
mΩRRdφ

)
. (3.12)

Upon applying this transformation, the Hamiltonian goes back to its field free form as

in Equation (3.1) and the wavefunction acquires a phase as it is makes a turn around

the closed loop: ψ(0) = ψ(2π)U(2π). Such a phenomenon is due to the Aharonov-Bohm

effect [244], a mesoscopic phenomenon for which a particle acquires a phase shift as it

travels in a closed path. For our case, of a particle moving around a closed loop, we find

that the Aharonov-Bohm phase is

− ı

ℏ
∆θ = − ı

ℏ

∮
2π

ÃRdφ = 2ıπ
Ω

Ω0
(3.13)

with ∆θ being the phase difference in the wavefunction at the boundary condition and

Ã = mΩR. The quantity Ω0 = ℏ/(mR2) is the elementary (bare flux quantum). In this

thesis, we work in the rotating reference frame unless explicitly stated. Additionally, the

flux threading the system is denoted by ϕ and the corresponding bare flux quantum by

ϕ0, which is taken be be equal to 1.

3.1.1 Peierls substitution

The main system considered in this thesis is described by the SU(N) Hubbard Hamil-

tonian, which is a lattice model. Therefore, in the following we will describe how to

incorporate an effective magnetic flux into a lattice description. Neglecting interactions,

the one-body Hamiltonian subjected an artificial gauge field Ã reads

H =

Np∑
j=1

(pj − Ã)2

2m
, (3.14)

In the presence of a lattice, the wavefunction can be expressed in terms of Ψ(x) =∑
j wj(x)aj where aj corresponds to the annihilation operator on site j and wj(x) is

the Wannier function discussed in Chapter 2. The flux dependence of the Hamiltonian

can be gauged away by introducing the following transformation into the Wannier function

w̃j(x) = exp

(
ı

ℏ

x∫
xj

Ã(x′)dx′

)
wj(x), (3.15)

where xj is the position of lattice site j. Therefore, we start by calculating

Hw̃n(x) =

( Np∑
j=1

(pj − Ã(x))2

2m

)
exp

(
ı

ℏ

x∫
xn

Ã(x′)dx′

)
wn(x), (3.16)

and making use of the fact that pj = −ıℏ∂xj , we find that

Hw̃n(x) = exp

(
ı

ℏ

x∫
xn

Ã(x′)dx′

)( Np∑
j=1

(pj − Ã(x) + Ã(x))2

2m

)
wn(x), (3.17)
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such that the flux dependence of the Hamiltonian is gauged away. The effective hopping

amplitudes of the lattice are given by

∫
w̃∗
l (x)Hw̃n(x)dx =

∫
w∗
l (x) exp

(
− ı

ℏ

x∫
xl

Ã(x′)dx′ +
ı

ℏ

x∫
xn

Ã(x′)dx′

)
H0wn(x)dx,

= exp

(
ı

ℏ

xl∫
xn

Ã(x′)dx′

)∫
w∗
l (x) exp

(
ı

ℏ

∮
xn→x→xj→xn

A(x′)dx

)
H0wn(x)dx,

(3.18)

with H0 =
∑

j

p2j
2m . In the case where the flux threading the system is sufficiently uniform

at the atomic scale, the closed path integral is approximately zero. Consequently, we have

that ∫
w̃∗
l (x)Hw̃n(x)dx = exp

(
ı

ℏ

xl∫
xn

Ã(x′)dx′

)∫
w∗
l (x)H0wn(x)dx. (3.19)

The above expression corresponds to that of the hopping amplitude introduced in Chap-

ter 2 albeit with an extra complex phase factor

tij = tij exp

(
ı

ℏ

xj∫
xi

A(x′)dx′

)
. (3.20)

This phase factor is called the Peierls phase factor and the technique employed to get it

is known as the Peierls substitution [167, 261]. The tunneling amplitudes considered here

are for hopping between arbitrary lattice sites. In this thesis, we only consider isotropic

nearest-neighbour hopping amplitudes such that xj = xi + 1.

For the SU(N) Hubbard model under consideration describing a system of Np fermions

with SU(N) symmetry residing in a ring-shaped lattice composed of L sites threaded with

a magnetic flux ϕ

HSU(N) = −t
L∑

j=1

N∑
α=1

(
eı

2πϕ
L c†α,jcα,j+1 + h.c.

)
+ U

L∑
j

N∑
α<β

nj,αnj,β, (3.21)

the effective magnetic field is realized by performing the Peierls substitution t → teı
2πϕ
L .

For lattice models, one can compute the persistent current either through the numeri-

cal derivative of Equation (3.11) or through the current operator obtained through the

Hellmann-Feynmann theorem1 and evaluated on the ground-state of Equation (3.21).

Î(ϕ) =
2ıπt

L

L∑
j=1

N∑
α=1

(e2ıπϕ/Lc†j,αcj+1,α − h.c.), (3.22)

with the factor 1/L accounting for the persistent current’s mesoscopic nature. Note that

in lattice systems, the center of mass and relative coordinates are no longer decoupled as

opposed to their continuous counterparts leading to particular lattice effects [86, 87].

1dE/dϕ = ⟨ψ(ϕ)|dH(ϕ)/dϕ|ψ(ϕ)⟩
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3.2 Properties of persistent currents in the non-interacting

regime

Here we discuss the basic properties of persistent currents in non-interacting fermionic

systems. This will set the stage for the rest of this thesis, where we will be considering

the effects of particle interactions both in the attractive and repulsive regimes.

As discussed in this chapter, persistent currents can be understood in terms of the energy

landscape as a function of the effective magnetic flux. By considering the gauge transfor-

mation described in Equation (3.12), one can readily observe that the eigenstates of the

Hamiltonian are given by plane waves with the added constraint imposed by the twisted

boundary conditions. The momentum associated to these eigenstates is given by

kn =
2π

LR
(n− ϕ), (3.23)

and therefore the corresponding energy reads

E =
∑
{n}

ℏ2

2m

[
2π

LR
(n− ϕ)

]2
, (3.24)

with LR denoting the length of the ring and {n} being the set of quantum numbers

for spinless fermions [262]. The quantum numbers n are related to the charge quantum

numbers Ij (see Appendix C) in the following manner: Ij = n and Ij = n + 1
2 for

systems with an odd and even number of particles respectively. The sum of these quantum

numbers, which is always integer by construction, is related to the total angular momentum

perpendicular to the ring’s plane denoted by ℓ per particle such that N
∑

j Ij
Np

= ℓ.

(a) (b)

Figure 3.1: (a) Schematic of the single-particle energy E(ϕ) as a function of the effective

magnetic flux ϕ. As one traverses from one parabola to the next with increasing ϕ, the

angular momentum quantum number ℓ of the system increases to minimize the ground-

state energy. (b) The corresponding persistent current I(ϕ) as a function of flux. The

jumps in the current coincide with the crossings between the different parabolas.

The energy spectrum of the system as a function of the effective magnetic flux is presented

in Figure 3.1. The spectrum is periodic with the flux ϕ having a period fixed by the
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3.2. Properties of persistent currents in the non-interacting regime

elementary flux quantum ϕ0, analogous to the Bloch theorem of particles in a periodic

lattice. Such a theorem is originally due to Leggett, stating that the persistent current

is dictated by the effective flux quantum and is independent of disorder [263]. As the

flux threading the system increases, the set of quantum numbers {n} shifts such that the

energy is minimized. This shift in the quantum numbers occurs precisely at the level

crossings between parabolas with different ℓ. Such a change is also reflected as jumps in

the persistent current, which displays a characteristic sawtooth behaviour –Figure 3.1(b).

Figure 3.2: Energy as a function of the effective magnetic flux, denoted by E and ϕ

respectively, for systems with Np = (2n + 1) (left) and Np = (2n) (right) for integer N .

The difference between the left and right panels stems from the parity of the system,

which is diamagnetic and paramagnetic respectively depending on whether the ground-

state energy increases or decreases with the flux ϕ. The degeneracy point ϕd, which is

the point where two parabolas cross, is at (half-odd) integer values for (diamagnetic)

paramagnetic systems. Figure adapted from [109].

Figure 3.3: Persistent current I(ϕ) as a function of the effective magnetic flux in the lab

frame. Jumps in I(ϕ) correspond to the change of angular momentum in the system.

In the case of spinless fermions, the degeneracy point ϕd corresponding to these level

crossings can occur either at integer or half-odd integer values of the flux depending on

the even/odd parity of the system respectively. This is another facet of the Leggett the-

orem, which states that the parity of the energy and in turn the persistent current, is

diamagnetic [paramagnetic] for systems Np = (2n+ 1) [Np = (2n)] particles for integer n.
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For bosons, the parity of the current is always diamagnetic [253]. Diamagnetic (paramag-

netic) systems are characterized by whether the ground-state energy increases (decreases)

on increasing the flux –Figure 3.2. We note that the energy spectrum in the presence

of the lattice behaves in the same manner and can be straightforwardly checked through

discrete Fourier transformation into momentum space, where any translationally invariant

one-body Hamiltonian is diagonal in the Bloch basis [167].

When going to the lab frame, the quantized nature of the persistent current is displayed

by a characteristic step-like behaviour shown in Figure 3.3. Such a behaviour has been

reported in ultracold atoms experiments with remarkable precision [73]. Additionally, it

is important to point out the difference in the energy landscapes between the rotating and

lab frame. Whilst in the former the energy is periodic, in the latter the energy increases

on going to larger angular momenta presenting local minimas at integer/half-odd integer

flux values depending on the parity of the system [260]. Such a feature reflects that the

condensate becomes less stable at larger values of the angular momentum, which will be

tackled briefly in Chapter 6.
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CHAPTER 4

Atomtronic circuits with repulsive SU(N) fermionic matter

Atomtronics is the technology of matter-wave circuits of ultracold atoms [38, 39]. Most

of the studies so far have been devoted to atomtronic circuits of ultracold bosons, while

ones comprised of ultracold fermions still require extensive investigation. However, recent

advances in the field have broken new ground with the experimental realization of atom-

tronic circuits of two-component fermions [47, 48]. This thesis aims to expand the scope

of fermionic atomtronic circuits, with quantum fluids comprised of the SU(N) fermionic

matter discussed in Chapter 2. These strongly interacting N -component fermions, as

provided by alkaline earth-like gases, are very relevant both for high-precision measure-

ment [235, 264, 265] and to enlarge the area of cold atoms quantum simulators of many-

body systems [103, 266, 267], which is in line with the recent research activity in atom-

tronics [38, 39].

In this chapter, we initiate this venture by focusing on SU(N) fermions with repulsive

interactions trapped in a ring-shaped circuit of mesoscopic size [63] and pierced by an

artificial gauge field. The persistent current, which is the response to this applied field,

provides a standard avenue to probe the coherence of the system [64]. Here, we analyze

the specific dependence of the persistent current’s quantization properties on the param-

eters characterizing the physical conditions of the system. Different regimes depending

on the filling fractions are explored. Specifically, we consider the incommensurate and

commensurate fillings since, in these regimes, the numerical results of the system can be

monitored with the exact Bethe ansatz analysis [190, 191].

The chapter is structured as follows. In Section 4.1, the model and methods are introduced.

Section 4.1.1 tackles the Bethe ansatz of the model in the strong repulsive regime, where

it becomes markedly simplified. Sections 4.2 and 4.3 are devoted to the results achieved

for the incommensurate and commensurate filling regimes. Specific parity effects of the

current are handled in Section 4.4. Conclusions are presented in closing Section 4.5.
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4.1 Model and methods

A system of Np fermions with SU(N) symmetry residing in a ring-shaped lattice composed

of L sites threaded with a magnetic flux ϕ can be modeled using the SU(N) Hubbard model

HSU(N) = −t
L∑

j=1

N∑
α=1

(
eı

2πϕ
L c†α,jcα,j+1 + h.c.

)
+ U

L∑
j

N∑
α<β

nj,αnj,β. (4.1)

In what follows, the energy scale is given by setting the hopping strength t = 1 and the

on-site interaction is set to U > 0 to account for the repulsive interactions. The effective

magnetic field is realized by performing the Peierls substitution t → teı
2πϕ
L outlined in

Chapter 3 into the SU(N) Hubbard Hamiltonian defined in Equation (2.18).

For N = 2, the Hubbard model describing spin-12 fermions is obtained. In this case,

the Hamiltonian (4.1) is integrable by Bethe Ansatz for any U/t and filling fractions

ν = Np/L [179]. On the other hand, as we discussed in Chapter 2, the Bethe ansatz

integrability for N>2 is preserved only in two regimes. The first is in the continuous limit

of vanishing lattice spacing governed by the Gaudin-Yang-Sutherland model describing

SU(N) fermions with delta interactions [137, 138, 190], with such a regime achieved by

model (4.1) in the dilute limit of small ν ≪ 1. The other integrable regime of model (4.1)

is obtained for filling fractions ν = 1 of one particle per site and large repulsive values of

U ≫ t, for which the system is modeled by the Lai-Sutherland Hamiltonian [101, 191, 208].

According to the general theory of Bethe ansatz solvable models, the spectrum is obtained

through the solution of coupled transcendental equations, parameterised by a specific set

of numbers called the quantum numbers [262]. For the specific case of the integrable

SU(N) Hubbard model, the many-body excitations are customarily labeled by the quan-

tum numbers: Ij , j = 1, . . . , Np and Jβl
, βl = 1, . . . ,Ml for l = 1, . . . , N−1, where Ij and

Jβl
are the charge and spin quantum numbers respectively, and Ml refers to the number

of particles with a given component [137, 167, 190] (see Section 4.1.1). At zero flux, the

ground-state is found to be characterized by quantum numbers with consecutive sequences:

Ij = I1, I1 + 1, I1 + 2, . . . I1 +Np and Jβl
= Jβl

, Jβl
+ 1, Jβl

+ 2, . . . Jβl
+Ml. Instead, for

non-vanishing flux, we shall see that the quantum numbers configurations {Ij , Jβl
} can

change. Any variations of the quantum numbers from their ground-state configurations

results in the creation of excitations: sequences of Ij = I1 − 1, ∨ , I1 + 1, I1 + 2, . . . I1 +Np

and Jβl
= Jβl

− 1, ∨ , Jβl
+ 1, Jβl

+ 2, . . . Jβl
+ Ml with ‘holes’ correspond to excitations;

in particular holes in {Jβ} characterize the so-called spinon excitations [268]. For SU(N)

fermions, there can be N−1 different types of such spinon states [199, 210] as opposed

to one type for SU(2). Indeed, the Hubbard models for SU(2) and SU(N) fermions enjoy

very different physics. For incommensurate fillings, a metallic behaviour is found with

characteristic oscillations of the spin-spin and charge correlation functions that, for N>2

can be coupled to each other. At integer filling fractions ν = 1, fermions may be in a Mott

phase. Such a phase is suppressed only exponentially for N = 2 [179]; in striking contrast,

for N>2 the system displays a Mott transition for a finite value of U/t [101, 124, 269].

32



4.1. Model and methods

At mesoscopic size, the properties discussed above are displayed as specific traits [63]. By

mesoscopic effects, we refer to those arising on length scales that are comparable with the

particles’ coherence length. In this regime, even though the application of the magnetic

flux does not change the nature of the possible excitations, as we shall see that the latter

may be indeed promoted to ground-states. Our diagnostic tool is the persistent current,

providing access to the particles’ phase coherence [64, 270]. At zero temperature, the

persistent current of the system is given by I(ϕ) = −∂E0
∂ϕ where E0 is the ground-state

energy (see Chapter 3). The persistent current is of mesoscopic nature in that it corre-

sponds to 1/L corrections of the ground-state energy [64]. For a quantum system in a

ring, the angular momentum is quantized. Accordingly, the persistent current displays a

characteristic sawtooth behaviour, with a periodicity that Leggett proved to be fixed by

the effective flux quantum of the system [263]. This theorem is important in our approach

since the periodicity of the persistent current reflects the structure of the ground-state. In

the case of a gas of non-interacting particles, the effective flux quantum is the bare flux

quantum ϕ0; while for a BCS ground-state, the period is halved due to the formation of

Cooper pairs [65, 66]. Similarly, for bosonic systems, a persistent current with a period of

1/Np, has been found, indicating the formation of a bound state of Np particles [86–88].

In our approach, we combine exact diagonalization or DMRG [271, 272] results with, when-

ever possible, those obtained from Bethe ansatz. Specifically, in the integrable regimes of

dilute systems and a filling of one particle per site and large interactions, the Bethe ansatz

results (through the Bethe quantum numbers introduced above) are exploited as book-

keeping to monitor the eigenstates provided by the numerical results. This way, the nature

and physical content of the system’s ground-state can be established as functions of the

parameters. Here, systems with an equal number of particles per species are considered.

4.1.1 Bethe ansatz in the limit of large repulsive interactions

In the continuous limit, the SU(N) Hubbard model tends to the Gaudin-Yang-Sutherland

Hamiltonian describing N -component fermions with a delta interaction of strength c [190,

273], which reads

HGY S =
N∑

m=1

Nm∑
i=1

(
− i

∂

∂xi,m
− 2π

LR
ϕ

)2

+ 4c
N∑

m<n

∑
i,j

δ(xi,m − xj,n), (4.2)

where Nm is the number of electrons with colour α of with m = 1, . . . N , and LR being

the size of the ring. The model is integrable by Bethe ansatz through Equations (2.21)

and (2.22), which in the presence of an effective magnetic flux read:

eı(kjLR−ϕ) =

M1∏
α=1

kj − Λ
(1)
α + ıc

kj − Λ
(1)
α − ıc

j = 1, . . . , Np, (4.3)

Mr∏
β=1
β ̸=α

Λ
(r)
α − Λ

(r)
β + 2ıc

Λ
(r)
α − Λ

(r)
β − 2ıc

=

Mr−1∏
β=1

Λ
(r)
α − Λ

(r−1)
β + ıc

Λ
(r)
α − Λ

(r−1)
β − ıc

·
Mr+1∏
β=1

Λ
(r)
α − Λ

(r+1)
β + ıc

Λ
(r)
α − Λ

(r+1)
β − ıc

α = 1, . . . ,Mr,

(4.4)
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for r = 1, . . . , N−1 where M0 = Np, MN = 0 and λ
(0)
β = kβ. Mr corresponds to the colour

with kj and Λ
(r)
α being the charge and spin momenta respectively. The energy of the

system is given by E =
∑Np

j k2j . The flux dependence in the Bethe equations, is obtained

by applying the twisted boundary conditions [270] discussed in Chapter 3 in place of the

typical periodic boundary conditions illustrated in Appendix C1. Taking the SU(3) case

as an example, one obtains a set consisting of three non-linear equations2

eı(kjLR−ϕ) =

M1∏
α=1

4(kj − Λα) + ıU

4(kj − Λα) − ıU
j = 1, . . . , Np, (4.5)

M1∏
β ̸=α

2(Λα − Λβ) + ıU

2(Λα − Λβ) − ıU
=

Np∏
j=1

4(Λα − kj) + ıU

4(Λα − kj) − ıU

M2∏
a=1

4(Λα − λa) + ıU

4(Λα − λa) − ıU
α = 1, . . . ,M1, (4.6)

M2∏
b ̸=a

2(λa − λb) + ıU

2(λa − λb) − ıU
=

M1∏
α=1

4(λa − Λα) + ıU

4(λa − Λα) − ıU
a = 1, . . . ,M2. (4.7)

Note that we opted to take c = U/4t in the Bethe equations above, such that the results

could be matched with the numerical ones. The relation between the interaction strengths

in the two limits is straightforwardly obtained during the mapping (see Appendix A).

Subsequently by taking the logarithm of Equations (4.5) through (4.7) and noting that

2i arctanx = ±π + ln
x− i

x+ i
, (4.8)

the Bethe equations can be recast into the following form

kjLR + 2

M1∑
α=1

arctan

[
4(kj − Λα)

U

]
= 2π(Ij + ϕ), (4.9)

2

Np∑
j=1

arctan

[
4(Λα − kj)

U

]
+2

M2∑
a=1

arctan

[
4(Λα − λa)

U

]
−2

M1∑
β=1

arctan

[
2(Λα − Λβ)

U

]
= 2πJα,

(4.10)

2

M1∑
α=1

arctan

[
4(λa − Λβ)

U

]
− 2

M2∑
b=1

arctan

[
2(λa − λb)

U

]
= 2πLa, (4.11)

where Ij , Jα and La are the previously mentioned Bethe quantum numbers, the first being

associated with the charge quasimomenta and the other two for the spin momenta.

In the limit U
Np

→ ∞ [275, 276], we observe that the kj/U terms will tend to zero, and

so they can be neglected since they are significantly smaller in magnitude compared to

the spin momenta. Accordingly, the Bethe equations simplify and making use of the anti-

symmetry of the arctangent function arctan(−x) = − arctan(x), it can be shown that the

quasimomenta kj can be expressed as

kjLR = 2π

[
Ij +

1

Np

(
M1∑
α=1

Jα +

M2∑
a=1

La

)
+ ϕ

]
. (4.12)

1It must be stressed that the flux is taken to be independent of the particles’ colour and so it only

enters in the first equation. If the twist in the wavefunction is colour dependent, the solvability of the

model would not be assured [274].
2For the sake of conveniency, we changed Λ

(1)
α and Λ

(2)
α to Λα and λa.
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Consequently, the system’s energy can be recast into

E =

(
2π

L

)2
[ Np∑

j

I2j + 2

Np∑
j

Ij

(
X

Np
+ ϕ

)
+Np

(
X

Np

)2

+Np

(
2ϕ

X

Np
+ ϕ2

)]
, (4.13)

where X =
(∑M1

α=1 Jα +
∑M2

a=1 La

)
. In the case of SU(N) fermions, one would still have

the same expression for the energy, with the added difference that X =
∑N−1

l

∑Ml
αl
Jβl

accounting for the N−1 spin rapidities.

For the other integrable regime of the SU(N) Hubbard model, i.e., commensurate filling

fractions in the presence of a lattice, we find that kj has the same form as Equation (4.12).

The corresponding energy in the lattice model is E = −2
∑Np

j cos kj , which comes out from

lattice regularisation as discussed in Chapter 2. Therefore, by assuming that the charge

quantum numbers Ij are a consecutive integer/half-integer set, the ground-state energy is

expressed as:

E0(ϕ) = −Em cos

[
2π

L

(
D +

X

Np
+ ϕ

)]
, (4.14)

where Em = 2 sin
(Npπ

L

)
/ sin

(
π
L

)
and D = Imax+Imin

2 . The above expression is a gen-

eralization of the ground-state energy of SU(2) fermions obtained in [275, 277]. As we

stated previously, the continuous limit can be accessed by considering model (4.1) with

dilute filling fractions. Such a statement can be confirmed through the small-angle ap-

proximation, with the energies of the two models being related in the following manner:

EGY S = ESU(N) + 2Np.

The energy expressions provided in Equations (4.13) and (4.14) hold in the limit of infinite

repulsion. At large but finite interactions, we need to introduce a correction to the energy

that will be called the energy spin correction Es. When U is infinite, the charge momenta

kj are of order unity, whilst the spin momenta Λβ are of order U . As such, by defining

the scaled variables xα as,

xα = lim
U→∞

(
2λα
U

)
, (4.15)

and performing a Taylor expansion of the arctangent function in Equation (4.5) to leading

order in kj/U , we find the following correction to the quasimomenta

∆kj = −2
sin kj
UL

M∑
α

1

x2α + 1
4

. (4.16)

Correspondingly, the energy correction takes the form

Es = − 4

UL

( Np∑
j=1

sin2 kj

)
M∑
α

1

x2α + 1
4

= Jeff

M∑
α

1

x2α + 1
4

, (4.17)

having the same form in the continuous limit albeit that sin kj → kj . The energy Es

corresponds to that of an SU(N) Heisenberg anti-ferromagnetic spin chain with Np spins,

M of which are flipped, having an exchange coupling Jeff [275]. This connection between

the Hubbard and Heisenberg models will be explored in more detail in Chapter 7.
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4.2 Incommensurate fillings

Our analysis begins in the continuous limit of low filling fractions wherein we can rely on

exact results of the Gaudin-Yang-Sutherland model Bethe ansatz. The numerical analysis

shows that, by increasing the effective magnetic flux, specific energy level crossings occur in

the ground-state of the system. The Bethe ansatz analysis allows us to recognize such level

crossings as ground-state transitions between no-spinons and spinons states –Figure 4.1.

a)

d)

Figure 4.1: Spinon creation in incommensurate SU(N) fermionic systems. The case of

N = 3 is considered for Np = 3 fermions residing on a ring of L = 30 sites. The above

figures show how the Bethe ansatz energies need to be characterized by spinon quantum

numbers in order to have the actual ground-state for various values of the interaction U .

Results calculated with the Bethe ansatz of the Gaudin-Yang-Sutherland model and exact

diagonalization. Figure adapted from [107].

To obtain the minimum energy, for a given value of the flux ϕ, one requires that the

summation over the spin rapidities X satisfies the degeneracy point equation having the

form [275, 277]
2w − 1

2Np
≤ ϕ+D ≤ 2w + 1

2Np
where X = −w, (4.18)

with w only being allowed to have integer or half-integer values due to the nature of the spin

rapidities. Consequently, to reach the target value ofX, we find that spinons can be created

in the ground-state as the effective magnetic flux increases. Such a phenomenon occurs as

a specific ‘screening’ of the external flux, which being a continuously adjustable quantity,

can be compensated by the spin excitations (quantized in nature) only partially. This in
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turn results in an imbalance and causes the persistent current to display characteristic

oscillations with a period of 1/Np in the ground-state as the flux is varied. Therefore, a

curve with Np cusps/parabolic-wise segments per flux quantum emerges. Correspondingly,

each parabola is characterized by fractional quantized values of the angular momentum.

In the limit of infinite interaction, the persistent current is analytically obtained through

the derivative of Equation (4.13) as

I(ϕ) = −2

(
2π

L

)2 Np∑
j

[
Ij +

X

Np
+ ϕ

]
. (4.19)

This expression shows that, in this regime, the persistent current displays a reduced peri-

odicity 1/Np shorter than the bare flux quantum ϕ0 –Figure 4.2. Therefore, in this regime,

the bare flux quantum of the system is evenly shared among all the particles. Such a fea-

ture was evidenced for two-component fermions in the large interaction regime [275, 277].

Figure 4.2: Persistent current I(ϕ) for SU(3) fermions with different interaction strengths

U in the dilute filling regime of the Hubbard model. The exact diagonalization for Np = 3

SU(3) fermions in a ring of L = 30 sites is monitored with the Bethe ansatz of the Gaudin-

Yang-Sutherland model. The red, black and green dots in the main figure depict the Bethe

ansatz results for the persistent current for U = 0.1, 1.0 and 10,000 respectively. These

dots are meant to be a guide to the eye, to aid in perceiving the fractionalization of the

persistent current. Insets show how the Bethe ansatz energies need to be characterized

by X ̸= 0, to be the actual ground-state. At U = 0, the ground-state energy is a periodic

sequence of parabolas meeting at degeneracy points ϕd (ϕd = 1/2 for the case in this

figure). ϕs corresponds to the flux at which spinons are created. Figure taken from [107].
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Configuration 1 Configuration 2

Magnetic flux Jα1 Jα2 Jα1 Jα2 X

0.0 − 0.1 {−0.5, 0.5} {0} {−0.5, 0.5} {0} 0

0.2 − 0.5 {−1.5, 0.5} {0} {−0.5, 0.5} {−1} −1

0.6 − 0.8 {−0.5, 1.5} {0} {−0.5, 0.5} {+1} +1

0.9 − 1.0 {−0.5, 0.5} {0} {−0.5, 0.5} {0} 0

Table 4.1: Spin quantum number configurations as functions of the flux ϕ for Np = 3

fermions with SU(3) symmetry obtained by Equation (4.18). On increasing ϕ, the ground-

state configuration sees the introduction of ‘holes’ and is no longer consecutive. As a

characteristic property of SU(N>2), the target value X can be reached via two different

configurations of Jα1 and Jα2 leading to degenerate states.

In our analysis, we find that spinon creation defines a phenomenon occurring for any value

of interaction. Specifically, it is observed for UL/Np ≫ 1 for any number of components

N . While the fractionalization is mainly dependent on the number of particles, the spinon

creation mechanism displays a non-trivial dependence on N . Indeed, the different N−
1 spinon configurations are found to play a relevant role in the fractionalization. The

quantity X =
∑N−1

j

∑Mj

βj
Jβj

can be exploited to characterize the properties of the specific

spinon excitations that are created in the ground-state.

Figure 4.3: Spinon creation flux distance |ϕs − ϕd| against interaction U . Minimum value

of U required for spinons to be created in the ground-state for a given ϕ is recorded. All

the distances |ϕs − ϕd| at which the state with no spinons crosses states with any spinon

states are monitored, where ϕs is the flux at which spinons are created and ϕd is the

degeneracy point (see Figure 4.2). Bottom inset depicts |ϕs − ϕd| against U , rescaled by

N and Np respectively, in the limit of low UNp. All the presented results are obtained by

the Bethe ansatz of model (4.2) for LR = 40.
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Specifically, for small and intermediate interactions, while the system’s ground-state with

no spinons is found to be non-degenerate, the one with spinons can be made of degener-

ate multiplets corresponding to Bethe states with distinct configurations of the quantum

numbers Jβj
. This is only applicable for SU(N > 2) fermions as they have different sets

of spin quantum numbers (see Table 4.1). By further increasing interactions, the spinon

states organize themselves in multiplets of increasing degeneracy on a wider interval of

the flux. At large but finite interactions, the exact Bethe ansatz analysis shows that the

spectrum can be reproduced by a suitable continuous limit of a SU(N) t − Jeff model

with Jeff defined in Equation (4.17). We remark that the specific features of the SU(N)

fermions enter the entire energy spectrum of the system through the SU(N) quantum

numbers {Ia, Jβj
}. We note that, in the infinite U regime, the ground-state reaches the

highest degeneracy –see lower inset of Figure 4.2.

Figure 4.4: Spinon creation flux distance |ϕs − ϕd| against the interaction per particle

U/Np. Bottom (top) inset contains data in the low (intermediate) U/Np regime. The

discontinuities observed in the intermediate U/Np regime when Np/N >1, are more pro-

nounced for larger values of Np/N for a system with the same Np but different N . All the

presented results are obtained by Bethe ansatz of model (4.2) for LR = 40.

As a global view of spinon creation in the ground-state, we monitor, for different values of

U , N , and Np, the values of the flux ϕs at which the ground-state energy in the system is

no longer given by a state with no spinons –Figure 4.3. Such values provide the number

of spinons that can be present in the ground-state at a given interaction. At moderate

interactions, spinon production is found to be a universal function of Np/N –see lower

inset of Figure 4.3: for systems with lower Np, spinons are generated at a lower value of

interaction. On going to larger interactions, spinon production is dictated by Np, with a

fine structure that is determined by N : Systems with higher Np produce spinons at a lower
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value of U ; for fixed Np, systems with a lower value of Np/N generate spinons at a lower U

–see upper inset of Figure 4.3. Such a phenomenon depends on the specific degeneracies

of the system discussed previously, that facilitate spinon creation by increasing N (see

Table 4.1). This feature emerges also by analysing the dependence of the phenomenon

on the interaction per particle U/Np –Figure 4.4. We observe that N enhances spinon

production. While the number of spinons decreases with Np for two-component fermions,

such a trend appears to be reversed for N > 2. For intermediate interaction values,

discontinuities arise in the curves in cases where Np/N >1 – see upper inset of Figure 4.4.

These discontinuities correspond to jumps ∆X in the spinon character X. By comparing

systems with the same Np but different N , we note that the discontinuities tend to be

smoothed out by increasing N and L –Figure 4.4. The value of ∆X results to be parity

dependent.

a) b)

Figure 4.5: (a) Spinon creation flux distance |ϕs − ϕd| against interaction U is considered

for a ring of L = 40 sites with Np = 4 fermions with N = 2 and N = 4 components,

where ϕs is the flux at which spinons are created and ϕd is the degeneracy point. The

intermediate U regime (inset) highlights the discontinuity present in the SU(2) case that

disappears for SU(4). (b) Spinon creation flux distance for a system of Np = 6 particles

with SU(3) symmetry for various system sizes, LR = {20, 30, 40}. The discontinuity

becomes less pronounced with increasing ring size. All the presented results are obtained

with Bethe ansatz of the Gaudin-Yang-Sutherland model. Figure reprinted from [107].

4.3 Commensurate fillings

At integer fillings of one particle per site ν = 1, the system can become a Mott insulator. In

the Mott phase, the motion of particles is constrained as they need to pay an energy penalty

U to move around3. As such, the hopping process occurs virtually and the system can

be effectively described by an antiferromagnetic SU(N) Heisenberg model that captures

3Mott insulators are different than band insulators in that the latter, which occurs for ν = N , the

particles are not able to move because of the Pauli exclusion principle as the lowest Bloch band is completely

filled.
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4.3. Commensurate fillings

the low energy physics of model 4.1. Through second order perturbation theory one

obtains [124, 167]

HH =
2t2

U

∑
⟨i,j⟩

∑
α,β

Sβ
α(i)Sα

β (j), (4.20)

where the spin-ladder operators Sβ
α(i) = c†i,αci,β obey the SU(N) algebra discussed in

Chapter 2. An alternative way to confirm that model (4.1) tends to the Heisenberg model

is by looking at the analytical expression for the energy derived in Section 4.1.1. For

Np = L, it is clear that the energy E0 in Equation (4.14) is vanishing and thus the only

contribution would come from Es in Equation (4.17) corresponding to the energy of a

Heisenberg spin chain.

d)

e)

Figure 4.6: Spinon creation in commensurate SU(N) fermionic systems for Np = 6, N = 2

(left column), Np = 6, N = 3 (center column) and Np = 4, N = 4 (right column). The

Bethe ansatz energies characterized by different spinon configurations needed to make up

the ground-state of the system, are considered as functions of the effective flux ϕ at U = 1

(top row) and U = 5 (bottom row). The Bethe ansatz states with X = 0 are depicted

by orange and red to indicate that the Ij quantum numbers are shifted due to being in

parabolas with different angular momenta. All the presented results are obtained with

Bethe ansatz of the Lai-Sutherland model for Np = L and exact diagonalization. Figure

adapted from [108].

The effective Heisenberg model is exactly solvable by Bethe ansatz compared to the

fermionic model (4.1), as the former meets the necessary criteria for integrability out-

lined in Chapter 2. We note that the Lai-Sutherland Bethe ansatz can reproduce the

qualitative features of the low-lying states of the model obtained by numerics even for

intermediate interactions, and as expected, for large interactions, Bethe ansatz and nu-

merics match exactly –Figure 4.6. In our analysis, we observe that for N = 2, spinon

states have energies larger than the ground-state for any value of interaction. Conversely,

for N>2 spinons can be created below a given interaction threshold U∗; above U∗ spinon

energies result in being well separated from the ground-state energy. The spinon creation

41



4.3. Commensurate fillings

process is affected substantially by the onset to a gapped phase in the charge sector that

opens up at U∗, marking the transition from a superfluid phase to the Mott insulating

phase. Accordingly, level crossings between no-spinons and spinons states are suppressed

–Figure 4.6.
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Figure 4.7: SU(N) energy gap at integer filling. Minimal energy gap Emin = minϕ(∆E)

for different N against U at comparable system sizes (N = 2 and N = 4 with L = 8 and

N = 3 with L = 9). All curves were obtained by exact diagonalization. Figure adapted

from [107].

While for N = 2, the spectral gap opens up for any repulsive interactions as reported in

the seminal paper of Lieb and Wu [179], for N > 2 it opens up at a finite value of the

interaction [101, 102, 278]. Consequently, the system enters a Mott phase for U > Uc in

the thermodynamic limit [98, 101, 124]. For our mesoscopic system, we observe the gap

indicating the onset to the Mott phase transition –Figure 4.7. The opening of the spectral

gap gets delayed with increasing N as the umklapp processes responsible for bringing it

about become less relevant at small interaction values [278].

In spite of its mesoscopic nature, the persistent current is found to be able to indicate the

onset to the Mott phase transitions. Firstly, at small interactions, the current is a nearly

perfect sawtooth that is eventually smoothed out for stronger interactions –Figure 4.8(a).

Such behavior is found to hold for all N , reflecting the opening of the spectral gap. Fur-

thermore, the maximum amplitude of the persistent current Imax = maxϕ(I) and ∆Emin

is suppressed exponentially for large U since the motion of the particles is restricted

–Figure 4.8(b). To get a better understanding, we carry out a finite-size scaling analy-

sis [279] of the persistent current for values of the interaction around the Mott instability.

In Figure 4.9(a), the persistent current displays a crossing point at a particular value

U∗ ≈ 2.9 (see also [98, 278, 280, 281]). A clear data collapse is obtained in Figure 4.9(b)

for critical indices η ≈ 0.2 and ζ ≈ 0.7.
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4.3. Commensurate fillings

Figure 4.8: (a) SU(3) persistent current I(ϕ) at integer fillings against flux ϕ for Np =

L = 9. Insets display Bethe ansatz results of the Lai-Sutherland model for different spinon

configurations X for N = 3 and Np = L = 6 compared with exact diagonalization. (b)

Maximal current Imax = maxϕ(I) for N = 3 (lower curves) and N = 4 (upper curves,

shifted by factor 20) plotted against interaction U . (c) Minimal energy gap Emin against

U for N = 3 (lower curves) and N = 4 (upper curves, shifted by 0.3). ∆Emin is around

the same specific value of interaction for larger system sizes (L ≥ 8), which depends on N

(U ≈ 2 for N = 3, U ≈ 3 for N = 4). All curves with L > 9 were calculated with DMRG,

and the rest with exact diagonalization. Figure adapted from [107].
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Figure 4.9: Finite-size scaling of the persistent current of SU(3) fermions. (a) finite-size

critical crossing of maximum current Imax at U∗ = 2.9 (b) Data collapse. The critical

indices for the scaling are η ≈ 0.2 and ζ ≈ 0.7. The results were calculated with ex-

act diagonalization for L = 6, 9, with larger L obtained with DMRG. Figure reprinted

from [107].
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4.4 Parity effects

Specific parity effects are observed for SU(N) fermions. Both for commensurate and

incommensurate fillings, the persistent current is found to be diamagnetic (paramagnetic)

for ring systems containing Np = (2n + 1)N [Np = (2n)N ] fermions, with n being an

integer. The nature of the current can be deduced by looking at the ground-state energy

of the system, whereby if the system has a minimum (maximum) at zero flux, then it is

diamagnetic (paramagnetic) –Figure 4.10. Such phenomena generalize the parity effects

of 2n/2n + 1 spinless fermions discussed in Chapter 3 and of 4n/4n + 2 two-component

fermions [282].

Figure 4.10: Parity effect for SU(N) fermions. Ground-state energy E0(ϕ) as a function

of the effective magnetic flux ϕ for different N ranging from 3 (circles) to 5 (diamonds).

Since the energy is suppressed (increased) by the effective magnetic field, systems with

an even (odd) number of particles per component are paramagnetic (diamagnetic). All

the presented results are obtained by Bethe ansatz of Gaudin-Yang-Sutherland model

for LR = 30, with Np taken to be 1 particle and 2 particles per species for each N

corresponding to n = 0, 1 respectively. Figure adapted from [107].

For incommensurate fillings, the behaviour of this parity effect holds for small and in-

termediate interactions but is washed out on going to the large repulsive limit. Indeed,

the character of the current is always diamagnetic since the fractionalization of the bare

flux quantum causes the ground-state energy to always be at a minimum at zero flux.

The washing out of the parity effect can be clearly observed in Figure 4.11, whereby a

comparison of SU(3) systems with Np = 3 and Np = 6 clearly shows the stark difference

in the nature of the persistent current for the latter case between the different interaction

regimes. For incommensurate fillings, the parity effect is still observed at large interactions
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since the opening of the spectral gap prohibits energy level crossings, thereby suppressing

fractionalization.

Figure 4.11: SU(3) persistent current I(ϕ) at incommensurate fillings for different interac-

tion strengths U . Left (right) panels correspond to the persistent current for weak (strong)

interactions for Np = 3 (Np = 6) particles in the top (bottom) row. On going to large

repulsive interactions, the persistent current goes from a paramagnetic to a diamagnetic

nature for Np = 6 as it fractionalizes. On the other hand, the parity of the current for

Np = 3 remains diamagnetic. All results are calculated with Bethe ansatz for the Gaudin-

Yang-Sutherland model for a ring size of LR = 30 with U = 0.1 and U = 10, 000. Figure

reprinted from [107].

4.5 Conclusions

In this chapter, the coherence of a quantum gas of SU(N) interacting fermions as quantified

by the persistent current, is explored. The analysis is carried out both for incommensurate

and commensurate filling ν fractions. The nature of the ground-state of the system is

highlighted by corroborating the numerical analysis (exact diagonalization and DMRG)

with Bethe ansatz, which allows access to the specific physical nature of the system’s

states.

For both incommensurate and commensurate fillings, the ground-state can have a spinon
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nature. Such a phenomenon implies that the spin correlations can lead to a re-definition

of the system’s effective flux quantum and, in the regime of incommensurate fillings, yields

the 1/Np fractional periodicity for the persistent current observed at large interactions –

see insets of Figure 4.2. The reduction of the effective flux quantum indicates that a form

of ‘attraction from repulsion’ can occur in the system, with this feature being consistent

with superconducting pairing mediated by pure repulsive electronic interactions [283].

Despite the similarities, such a phenomenon follows a very different route from the flux

quantum fractionalization occurring for electrons with pairing force interaction (that could

be compared to our study forN = 2 only) [65, 66] and for bosons with attractive interaction

(occurring as a consequence of quantum bright solitons formation) [87, 253]: For SU(N)

fermions, the persistent current and the aforementioned re-definition of the flux quantum

reflect the coupling between the spin and matter degrees of freedom. Recently, it was

demonstrated how the flux fractionalization could allow one to approach the Heisenberg

quantum limit for rotation sensing [87]. Our study indicates that SU(N) systems can

provide a platform for high-precision sensors.

The ground-state spinon creation displays a marked dependence on the number of com-

ponents N with distinctions between the N = 2 and N > 2 cases –Figures 4.3 and 4.4.

At moderate interactions, spinon production is found to be a universal function of Np/N

–see lower inset Figure 4.3. At integer fillings, spinon creation is suppressed by increasing

interactions –Figure 4.6. The characteristic sawtooth shape of the current is smoothed

out –Figure 4.8. This feature arises since the Mott gap that opens up hinders both the

motion of the particles and the creation of spinons in the ground-state. Remarkably, a

clear finite-size scaling behaviour is observed for N > 2, albeit the persistent current is a

mesoscopic quantity –Figure 4.9. Such a result provides an operative route for the detec-

tion of the Mott phase transition in SU(N) systems, a notoriously challenging problem in

the field.

A specific parity effect is demonstrated to occur whereby the current is of diamagnetic

(paramagnetic) nature for systems comprised of Np = (2n+ 1)N [Np = (2n)N ] fermions –

Figure 4.10. Indeed, for both non-integer and integer fillings fractions, we demonstrate how

the results of Byers-Yang, Onsager, and Leggett on the landscape of the system persistent

current can be generalized to SU(N) fermions [65, 66, 263]. This parity effect is found

to be washed out for incommensurate filling fractions in the large interaction regime on

account of spinon creation in the ground-state. On the other hand, in the commensurate

regime, the parity effect still holds.

Lastly, we point out that the persistent current of repulsive SU(N) fermions has been

recently studied by us through a variational quantum eigensolver (VQE) [252], a hybrid

quantum-classical algorithm [284], apt for execution on noisy intermediate-scale (NISQ)

computers [285]. By extending the Jordan-Wigner fermion-to-qubit mapping (see Ap-

pendix E), a parameterized quantum circuit for the SU(N) Hubbard model is devised to
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determine its ground-state energy and, in turn, the persistent current4. The distinctive

features of the persistent current discussed in this chapter are captured when considering

circuits with suitable depth. Thus, the employed approach highlights the highly correlated

nature of the fractionalized persistent current.

4
For the sake of homogeneity of this thesis, we did not go into too much detail of the machinery employed

in the VQE protocol. A detailed explanation can be found in [252].
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CHAPTER 5

Atomtronic circuits with attractive SU(N) fermionic matter

Mutually attracting quantum many-body systems can form bound states, with their na-

ture depending on the particles’ quantum statistics. For bosons, all particles can be bound

together, giving rise to the formation of ‘bright solitons’ [253, 286–288]. Conversely, such

states are hindered for fermions as they are subjected to the Pauli exclusion principle:

two-component fermions with opposite spins can form bound pairs [289]. However, such

restrictions are loosened when considering SU(N) fermions that have been recently engi-

neered in cold atoms systems [91, 95, 96, 126]. Due to them having N different internal

states, these multicomponent fermions satisfy the requirement necessitated by the dom-

inant s-wave interactions in cold atoms, resulting in the formation of bound states of

different types and natures.

Fueled by the recent aforementioned research activity in quantum technology, a consider-

able interest has been devoted to three-component fermions [104, 105, 138, 139, 290–295].

On one hand, this can provide paradigmatic features of the bound states that can be

formed for the general cases of N > 2. On the other, three-component fermions are of

special interest because of their potential to mimic quarks and specific aspects of quantum

chromodynamics (QCD) [104, 105, 140, 292, 296] for which it can be advantageous to

explore “low-energy” quantum analogues [106, 145, 297–299]. Specifically, SU(3) fermions

can form two types of bound states: a colour superfluid (CSF) wherein two colours are

paired, and the other is unpaired; and a trion where all colours are involved in the bound

state. Trions and CSFs are the analogues of hadrons and mesons (quark-quark pairs) in

quantum chromodynamics (QCD). As such, important aspects of the QCD phase diagram

like colour deconfinement and resonance formation in nuclear matter can be analysed in

cold atom platforms. Despite these bound states being thoroughly analysed in the liter-

ature, devising physical observables paving the way to explore the nature of the SU(3)

bound states in cold atoms systems remains a challenging problem.
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In this chapter, we demonstrate how the persistent current, an experimentally acces-

sible quantity [44, 47, 48, 249], generated in a ring-shaped gas of strongly attracting

three-component fermions, can provide the sought-after observable to study the problem.

Specifically, we explore how trion and CSF bound states correspond to specific ways in

which the persistent current frequency responds to the effective magnetic flux. By mon-

itoring the persistent current for different regimes of interactions, we demonstrate how

thermal fluctuations can lead to a specific deconfinement of the bound states. As an

experimental probe in the cold atoms quantum technology, we analyse the time-of-flight

imaging (TOF) of the momentum distribution [38, 39, 44, 233, 300].

The chapter is organized as follows. Section 5.1 is devoted to the model, with the details

for the Bethe ansatz of attractive systems provided in Section 5.1.1. Section 5.2, results for

the persistent current as a probe for SU(3) bound states are presented. Finite temperature

effects are dealt with in Section 5.4. Conclusions in Section 5.6 close out this chapter.

5.1 Model and Methods

To model Np strongly interacting fermions trapped in an L-site ring-shaped lattice pierced

by an effective magnetic flux ϕ, we employ the SU(N) Hubbard model introduced in

Chapter 4, albeit in a slightly different form:

H =

L∑
j=1

3∑
α=1

[
− t(eı

2πϕ
L c†j,αcj+1,α + h.c.) +

∑
α<β

Uαβnj,αnj,β

]
, (5.1)

where the interaction strength is now parameterised by Uαβ, which now exhibits a depen-

dence on the colours that are interacting. By choosing asymmetric values of the interaction

Uαβ, the SU(3) symmetry of the Hamiltonian is broken. This can be straightforwardly

checked through the commutation relation outlined in Equation (2.10). In what follows,

we consider attractive interactions such that Uαβ<0 and utilize U to refer to symmetric

interactions between all colours.

Just like in the repulsive case, model (5.1) with attractive symmetric interactions is exactly

solvable. However, to account for the creation of bound states in the ground-state, the

Bethe equations admit complex solutions for the quasimomenta kj via the Takahashi string

hypothesis (see Section 5.1.1). Furthermore, the integrability of the model is restricted

to the dilute lattice limit ν = Np/L≪ 1, where the physics of the system is captured

by the Gaudin-Yang-Sutherland model [137, 190]. The reason being that the strongly

attractive regime of model (5.1) cannot be recast into a Lai-Sutherland anti-ferromagnet

as the condition of one particle per site cannot be met [101, 191]. This, in turn, spoils

the integrability of the model, as the system becomes ‘diffractive’ in that the scattering

matrix no longer obeys the Yang-Baxter relation.

Bound states of different natures can arise in systems described by model (5.1): CSF

bound states, wherein two colours form a bound pair with the other colour remaining
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unpaired; trions, wherein all the three colours are bounded. One way of achieving CSFs

is by lifting the SU(3) degeneracy through unequally spaced Zeeman splittings between

the colours in the grand-canonical ensemble, leading to different phase transitions be-

tween the bound states [138, 293, 294]. Another possibility is to break the SU(3) sym-

metry [138, 139, 290, 292]. Here, SU(3) symmetry is broken explicitly in the canonical

ensemble by choosing asymmetric interactions between the components, as in Hamilto-

nian (5.1).

Recently, the SU(3) bound states of the Hubbard model have been investigated through

correlation functions [291, 292, 295]. In addition to correlation functions, we employ

the persistent currents I(ϕ) given by Equation (3.22), as the main diagnostic tool to

study our system. The reduced periodicity it experiences upon the formation of a bound

state [65, 86, 90] makes for an ideal probe to characterize the different bound states.

Relying on the experimental capability of addressing fermions of different colours sepa-

rately [96], especially to analyse the broken SU(3) cases, we utilize the species-wise per-

sistent current. At finite temperature T , this can be defined through thermodynamics

potentials as Iα(ϕ) = −∂Fα(ϕ)/∂ϕ, with F being the system’s Helmholtz free energy

in the canonical ensemble [65], or through the persistent current operator Î defined in

Equation (3.22):

I(ϕ) =
1

Z tr{Îe−βH}, (5.2)

where Z = tr(e−βH) is the partition function and β = 1/(kBT ) with kB being the Boltz-

mann constant. Note that the calculation of the species-wise persistent current, which

requires two-point correlations, is very challenging to implement in Bethe ansatz.

Our approach relies on utilising a combination of numerical methods such as exact diag-

onalization and DMRG [271, 272], as well as Bethe ansatz results whenever possible, in

order to identify and characterize the bound states of SU(3) fermions, for systems with an

equal number of particles Np per colour. In Chapter 4, we explored in great detail how

Bethe ansatz results (through the quantum numbers) can be exploited as bookkeeping

to monitor the eigenstates provided by the numerical results. For attractive interactions,

one is not able to compare numerical results with the exact solution. Despite the formal

mapping between lattice and continuous SU(N) theories works for arbitrary interaction

(see Appendix A), the case of attractive interactions requires extra care. The catch lies

in the formation of bound states that can have a correlation length comparable to or

smaller than the lattice spacing ∆. Specifically, for ∆ larger than the coherence length,

one will not be able to observe the correlation functions’ decay as the latter is overshad-

owed by the former. This is particularly evident for small-sized systems. The previously

outlined condition can be satisfied for large-sized systems and small values of the inter-

action. In order to obtain a meaningful continuous limit to be quantitatively comparable

with the lattice theory at small fillings, the vanishing lattice spacing ∆ should come with

a suitable rescaling of U . While such an aspect has been analysed for bosonic theories (see

f.i. [253, 301]), for fermions it still requires investigation. Even though one needs to rescale
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U for SU(2) fermions, this problem can be circumvented due to the Lieb-Wu Bethe ansatz,

which allows one to validate the Bethe ansatz results with numerical methods. However,

the SU(N > 2) Hubbard model is not Bethe ansatz integrable for lattice systems. As

such, one is not able to monitor the numerical results with Bethe ansatz. Nonetheless, the

continuous limit is Bethe ansatz integrable by the Gaudin-Yang-Sutherland model, and it

is vital in understanding the underlying physics of the model.

5.1.1 String hypothesis for the Gaudin-Yang-Sutherland model

Typically, the Bethe ansatz equations admit a complex solution for the spectral parameters

kj and Λα. Whilst for real solutions, it is clear that the wavefunction corresponds to

the superposition of plane waves, complex solutions are synonymous with the formation

of bound states: the wavefunction experiences an exponential decay with respect to its

relative coordinates [167, 262]. It is worth mentioning that complex solutions are present

for both repulsive and attractive interactions. However, in the former, these correspond

to highly excited states as it is more energetically favourable for particles to scatter than

forming a pair. On the other hand, for attractive interactions bound states appear in the

ground and low-lying excited states satisfying the symmetry that H(U) = −H(−U) [167].

Figure 5.1: Figure of merit for the quasimomenta string configuration in the ground-state

for N = 3, with n1 = 6 (purple), n2 = 2 (green) and n3 = 3 (orange). The bound states in

the system are represented by an oval structure, and they are present both for the charge

(circles) and spin rapidities (squares and triangles). Accompanying a charge bound state

of length m, are spin bound states of decreasing length, with m = 2 being the minimum

length one needs to form a bound state. The real part of the charge and spin bound states

of length m is given by the spin rapidity corresponding to λ(m−1). The figure above is

based on the one in [137].

To account for complex solutions for the roots of the Bethe ansatz equations, we employ

the string hypothesis [262, 302]. The string hypothesis assumes that the rapidities, denoted

by p, take the form p± = ξ ± ı|ϵ| for real ξ and ϵ. These string solutions, so-called due to
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their arrangement in the complex plane (see Figure 5.1), are pairwise complex conjugates

to ensure that observables like energy and momenta are real valued. The procedure to

determine the structure of the string is pretty straightforward [167]: one of the rapidities is

taken to be complex and inserted into the product form Bethe equations (2.21) and (2.22).

For large LR, the left-hand side of the equation corresponding to this rapidity becomes

exponentially large or goes to zero, depending on the sign of the imaginary part. Conse-

quently, to fulfil the Bethe equations, we require that the right-hand side corresponds to

either a pole or a zero, which is satisfied when ξ = λα and ϵ = c, with c corresponding

to the interaction in the Gaudin-Yang-Sutherland model (4.2). In principle, q can either

correspond to the quasimomenta resulting in what is known as a k−Λ, where two k com-

bined with one spin rapidity Λ; or it can correspond to Λ such that the strings involve

only spin rapidities giving rise to Λ strings.

In the case of SU(N) fermions with strongly attractive interactions such that LR|c|≫ 1,

there are both k−Λ and Λ strings. Let us start by considering an equal number of particles

per colour such that the quasimomenta kj form charge bound states of size N as permitted

by the Pauli exclusion principle, with the following string configuration [303]

kNq,j = Λ(N−1)
q + ı(N + 1 − 2j)c+ O(ıδ|c|), (5.3)

where j = 1, . . . , N and q = 1, . . . , Np/N . Accompanying each charge bound state are

N − 2 sets of spin strings, whose form in the ground-state reads

Λ(r)
q,α = Λ(N−1)

q + ı(m− r + 1 − 2α)c+ O(ıδ|c|), (5.4)

with α = 1, . . . , N − r for r = 1, . . . , N − 2. The term O(ıδ|c|) is included in every string

and it accounts for any deviations for the ideal string hypothesis, with δ being a very small

quantity whose order is that of exp(−LR|c|). As L→ ∞, O(ıδ|c|) vanishes and one is able

to utilise the ideal strings. Note that it is justified to take ideal strings when working in

the limit of LR|c|≫1, which what we consider unless explicitly stated.

If we consider unequal populations per species, several types of charge bound states com-

posed of m particles can arise, with the number of particles ranging from 2 to N . For

the SU(3) case, we can have n1 unpaired fermions (m = 1), n2 pairs of two-body bound

states (m = 2) and n3 three-body bound states m = 3 such that N = n1 + 2n2 + 3n3,

M1 = n2+2n3 and M2 = 2n3. Consequently through Equations (5.3) and (5.4), the quasi-

momenta and corresponding spin strings for all the different phases of SU(3) fermions, can

be written as [138]

k1α = kα k2β =

Λβ + ıc

Λβ − ıc
k3a =


λa + 2ıc

λa

λa − 2ıc

0 Λβ = Λβ Λa =

λa + ıc

λa − ıc

0 0 λa = λa (5.5)
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5.2. Probe for bound states of three-component fermions

for each case respectively where α = 1, . . . , n1, β = 1 . . . , n2 and a = 1, . . . , n3. Substitut-

ing the ideal strings into the product form Bethe ansatz equations (4.5), (4.6) and (4.7),

and subsequently taking the logarithm, we obtain

kjLR = −2

n2∑
α=1

arctan

(
kj − Λα

c

)
− 2

n3∑
a=1

arctan

(
kj − λa

2c

)
+ 2πIj + Φ, (5.6)

2ΛαLR = − 2

n1∑
j=1

arctan

(
Λα − kj

c

)
− 2

n3∑
a=1

[
arctan

(
Λα − λa

c

)
+ arctan

(
Λα − λa

3c

)]

− 2

n2∑
β=1
β ̸=α

arctan

(
Λα − Λβ

2c

)
+ 2πJα + 2Φ, (5.7)

3λaLR = − 2

n1∑
j=1

arctan

(
λa − kj

2c

)
− 2

n2∑
α=1

[
arctan

(
λa − Λα

c

)
+ arctan

(
λa − Λα

3c

)]

− 2

n3∑
b=1
b̸=a

[
arctan

(
λa − λb

2c

)
+ arctan

(
λa − λb

4c

)]
+ 2πKa + 3Φ, (5.8)

for j = 1, . . . , n1, α = 1, . . . , n2 and a = 1, . . . , n3 with Ij , Jα and Ka being the quantum

numbers associated to the charge, first and second spin rapidities respectively. These are

called Takahashi’s equations for SU(3) fermions with attractive delta interaction [137].

The total energy is given by

E =

n1∑
j=1

k2j +

n2∑
α=1

(2Λ2
α − 2c2) +

n3∑
a=1

(3λ2a − 8c2). (5.9)

From the outset, it becomes clear from the construction of the Takahashi equations that

a system with an equal number of particles per species, will consist solely of trions: the

population of the third hyperfine level given by M2, corresponds to the number of trions

n3. It immediately follows that trions are formed in the system whenever possible, with

this statement being confirmed by the expression for the energy. At any value of the

interaction |c|, a trion is more stable (lower energy) than that of a CSF (n1 = n2 = 1).

Therefore, to form an unpaired particle or a CSF in the continuous limit for LR|c|≫1, the

SU(3) symmetry needs to be broken. Alternatively, as mentioned previously, one could

consider the system in the grand-canonical ensemble with adjustable chemical potentials

allowing for multiple phase transitions between unpaired, paired, trions and a mixture

thereof through colour selective magnetic fields [293, 294].

5.2 Probe for bound states of three-component fermions

At small interactions, the persistent current is found to be a function with a period given

by the elementary flux quantum ϕ0 = ℏ/mR2 with m and R denoting the atoms’ mass

and ring radius respectively. However, on going to stronger interactions, the persistent

current displays fractionalization reducing its period.
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5.2. Probe for bound states of three-component fermions

(a) (b)

Figure 5.2: Persistent current I(ϕ) of the three colours against the effective magnetic

flux ϕ/ϕ0. The left (right) figure depicts the persistent current of a CSF (trion). The

interactions for the CSF are |UAB| = |UBC | = 0.01 and |UAC | = 3. For a trion, |U | = 3

for all colours. All presented results are obtained for Np = 9 and L = 15 using DMRG.

The lines are meant to be a guide to the eye for the reader, to aid in perceiving the

fractionalization. Figure adapted from [108].

Contrary to attractive bosons [86, 88, 253] or repulsive N -component fermions [107, 275],

the reduction of the period in attracting N -component fermions does not depend on the

total number of particles present in the system. Instead, the effective mass of the bound

state, which amounts to the number of particles constituting it, dictates the period of

the current. Starting from the CSF case, we observe a halved period ϕ0/2 for the paired

particles, whilst the unpaired particles maintain the bare periodicity ϕ0 –Figure 5.2(a). On

the other hand, in the SU(3) symmetric case, the persistent current exhibits a tri-partite

periodicity reflecting the presence of trions –Figure 5.2(b).
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Figure 5.3: (a) Three-body correlation function, Ti,j,L/2, and its decay (b) for L = 30 and

Np = 3 with a trion configuration for |UAB| = |UAC | = |UBC | = 0.5. All results were

obtained with exact diagonalization for flux ϕ = 0. Figure adapted from [108].

The nature of the bound states can be corroborated through analysis of the three-body

correlation function defined as:

Ti,j,k = ⟨c†i,Ac
†
j,Bc

†
k,Cck,Ccj,Bci,A⟩, (5.10)

where i, j, k denote the lattice sites, A,B,C correspond to the different species and c†jα is

the typical fermionic creation operator for colour α at site j. Similar correlation functions

55



5.2. Probe for bound states of three-component fermions

have been studied in [291, 292, 295]. Analysing the decay of this correlation function for

both trions and CSFs highlights the nature of the bound states in our lattice system.
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Figure 5.4: (a) Three-body correlation function, Ti,j,L/2, for L = 30 and Np = 3 with

a CSF configuration for |UAB| = |UAC | = 0.01 and |UBC | = 5. (b) The decay of the

correlation function for different values of |UBC | is depicted. All results were obtained

with exact diagonalization for flux ϕ = 0. Figure adapted from [108].

Here, we consider two instances of the three-body correlator (5.10) for a CSF and a trion

presented in Figures 5.3 and 5.4m respectively, by fixing one of the axes such that Ti,j,L/2.

In panel (b), we calculate the corresponding decay for different values of U . For a trionic

case, the decay shows us that the correlation length associated to the bound state decays

exponentially in {i, j, k}, meaning that the localization of the effective molecules increases.

This should be contrasted with the results of the CSF, which only displays an exponential

decay on j as the bound states are of a lower degree, i.e., consist of two particles.

Finally, we point out that demonstrating that the long-distance three-body correlation

length dominates over any other correlator, gives us a clear signature of the nature of the

bound state, and shows that in our exact diagonalization simulations (in the three particle

sector), trions are formed as soon as attractive interactions are present in the system.

5.2.1 Bethe ansatz analysis of SU(3) symmetric bound states

Further insight on the persistent current fractionalization of trions can be gained through

the Bethe ansatz analysis of the Gaudin-Yang-Sutherland model. Due to SU(3) symmetry

breaking, the CSF case is out of reach of Bethe ansatz.

As we discussed in Section 5.1.1, the main technical feature of attracting fermions is that

the ground-state is composed of bound states. In integrable theories, this corresponds to

complex Bethe rapidities, which we have already sketched out how such complex solutions

in the limit of LR|c|≫1 are arranged in the Takahashi string solutions. For small systems

with weak interactions, Takahashi’s equations assuming ideal string configurations of the

solution, cannot be used to solve the Bethe ansatz equations and, in turn, access the energy.

To this end, we obtain the exact solution of the original Bethe equations, i.e., in their

product form, without imposing any constraints on c and LR. Our approach is a numerical

iterative method, wherein we start close to c ≲ 0 that can be straightforwardly calculated
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5.2. Probe for bound states of three-component fermions

analytically and determine the solution at every step with increasing interactions. Note

that for a solution to be valid: it must be continuous in energy, does not display jumps

in the logarithmic form, and consists of distinct rapidities such that the solution of the

Bethe equations is well defined.
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Figure 5.5: The complex part of the rapidities against interaction c. As the interaction

increases, the imaginary part of the rapidities goes to the ideal string limit as outlined in

Equations (5.5). Note that in this case, the real part of the rapidities kj , Λα and λa is

always zero. Results were obtained using the product form of the Bethe ansatz equations

of the Gaudin-Yang-Sutherland model (4.5), (4.6) and (4.7).

Trions are observed to be formed for any arbitrary small attraction in the three-particle

sector (see [101, 295]), corroborating the results obtained from the correlation functions.

Through Figure 5.5, we can confirm that for the three-particle case considered here, a trion

appears immediately. The reason being that both kj and Λα admit complex solutions for

any c<0. If it were the case that a CSF was formed as an intermediate step, then there

would have been a critical value of the interaction up to which its imaginary part would

be null, as per the structure of the string solutions in Equation (5.5).

−0.06

−0.04

−0.02

0.0 0.2 0.4 0.6 0.8 1.0

E
(φ
)

φ/φ0

E0
E1
E2
E3

−0.41

−0.40

−0.39

−0.38

0.0 0.2 0.4 0.6 0.8 1.0

E
(φ
)

φ/φ0

E0
E1
E2
E3

(a) (b)

Figure 5.6: Results obtained from solving the product form Bethe ansatz equations of the

Gaudin-Yang-Sutherland model (4.5), (4.6) and (4.7) for (a) |c| = 0.155 and |c| = 0.45

with Np = 3 and N = 3. In (a), the energy E(ϕ) starts to fractionalize, whilst in (b)

the fractionalization is more pronounced and the tri-partite periodicity is almost reached.

The size is fixed to LR = 20 for all curves.
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5.2. Probe for bound states of three-component fermions

The energy obtained from the solution of the product form displayed in Figure 5.6, albeit

exhibiting fractionalization, does not demonstrate the perfect tri-partition of the period

ϕ0/3. This implies that there are deviations from the ideal string hypothesis. However,

on increasing interactions and accessing the regime of large LRc/t, the results coincide

with the analysis based on Takahashi’s equations corresponding to the formation of a

three-body bound state –Figure 5.7.

(a) (b)

(c) (d)

Figure 5.7: The top row (a) and (b) depict how the Bethe ansatz energies E(ϕ) need

to be characterized by the quantum numbers (X =
∑

aKa) in order to have the actual

ground-state for increasing flux ϕ/ϕ0. The bottom row (c) and (d) show the corresponding

persistent current I(ϕ) for a system consisting solely of trions with Np = 3, 9 respectively.

All the presented results were obtained with the Takahashi equations of the Gaudin-Yang-

Sutherland model for LR = 60 and |c| = 2.

The mechanism leading to fractionalization in the attractive regime can be properly un-

derstood by studying the Bethe ansatz equations as |c| → ∞. In this limit, for a system

comprised solely of trions (n1 = n2 = 0), the Bethe equations are reduced to the following

form

λa =
2π

LR

(
1

N
Ka + ϕ

)
, (5.11)

where λa is the spin rapidity associated to the three-body bound states and Ka being the

aforementioned quantum numbers. Consequently, we find an exact expression for the zero

temperature persistent current, which reads

I(ϕ) = −6

(
2π

LR

)2 n3∑
a

[
Ka

N
+ ϕ

]
. (5.12)

This expression implies that as the flux, which is taken to be positive, is increased, the

quantum numbers Ka need to shift to take on a negative values so as to counteract the

increase in flux. Here, a change in the quantum numbers create excitations in the ground-

state by having energy level crossings between the ground and excited states, that in turn
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5.3. Parity effects

cause the fractionalization –Figures 5.6 and 5.7. These excitations, being discrete in na-

ture, can only partially compensate for the increase in flux resulting in oscillations with a

reduced period of 1/N , thereby accounting for the ‘size’ of the bound state.

Although the fractionalization in both attractive and repulsive regimes shares several

qualitative features, the mechanism facilitating it, is markedly different. Remarkably, for

the trionic system, the Bethe equations are decoupled as in Equation (5.11) such that λa

is only dependent on its own quantum number. However, this does not occur for repulsive

interactions. Although a similar expression is obtained in the latter (see Equation (4.12)),

it is still dependent on the spin quantum numbers of the other particles. Thus, whilst

in the repulsive case, a single spin excitation aims to counteract the flux for the whole

system, the same does not hold true for its attractive counterpart. Indeed, the decoupling

between the “different bound” states (trions), implies that all the trions corresponding

to a rapidity λa, need to shift their quantum number Ka to counteract the increase in

flux and minimize the energy. An example on how to change the quantum numbers with

increasing flux for a system with attractive interactions is presented in Table (5.1).

Magnetic Flux Ka

0.0 – 0.1 {−1,0,1}
0.2 – 0.5 {−2,−1,0}
0.6 – 0.8 {−3,−2,−1}
0.9 – 1.0 {−4,−3,−2}

Table 5.1: Quantum number configurations with the flux for SU(3) fermions with Np = 9

for a system containing only three trions.

Immediately, one can observe that all the quantum numbers are shifted with increasing flux

as opposed to the repulsive case outlined in Table (4.1). Additionally, unlike its repulsive

counterpart, there is only one set of quantum numbers implying that the fractionalized

parabolas are not degenerate.

5.3 Parity effects

One consequence of Leggett’s theorem is related to the parity of the persistent current,

which, as we explored in Chapter 4 is diamagnetic [paramagnetic] for (2n+1)N [(2n)N ]

fermions with n being an integer number [107, 263]. These parity effects are demonstrated

to be washed out upon fractionalization for two-component fermions with attractive in-

teractions [90] and for strongly repulsive N -component fermions [107], with the persistent

current exhibiting diamagnetic behaviour irrespective of the number of particles in the

system. In the case of trions, the persistent current maintains its parity despite undergo-

ing fractionalization.

Taking a look at a system of six SU(3) symmetric fermions with equal interactions, as

depicted in Figure 5.8, we find that for larger interactions, not only does the system
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5.3. Parity effects

fractionalize, but it also retains its paramagnetic nature. Such a feature can be attributed

to the fact the bound states composed of an odd (even) number of fermions have an (anti-

)symmetric wavefunction [303]. Essentially, one can effectively treat an N -body bound

state of attractive multicomponent fermions as composite fermions or bosons, described by

spinless fermions with p-wave interactions or super Tonks Girardeau phase1 of attracting

bosons for odd and even N respectively [303]. This is in line with the fact that persistent

currents of bosons are always diamagnetic for any number of particles [86]. On going to

systems with N = 4 (N = 5), we observe that the parity effect is lost (kept), thereby

reaffirming the previous statements –Figure 5.9.

(a) (b)

Figure 5.8: (a) Ground-state energy E(ϕ) and (b) the corresponding persistent current

I(ϕ) as a function the flux ϕ/ϕ0 for a system of Np = 6 with L = 20 in a trion configuration

for |UAB| = |UAC | = |UBC | = 3. All results were obtained with exact diagonalization.

Figure adapted from [108].
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Figure 5.9: Ground-state energy E(ϕ) as a function the flux ϕ/ϕ0 for a system of (a)

Np = 8 and (b) Np = 10 fermions with SU(4) and SU(5) symmetric fermions in N -body

bound state configuration with L = 15. Results were obtained with DMRG with |U | = 3

(|U | = 1) for the N = 4 (N = 5) case.

In contrast with the trion case, a system composed solely of CSFs has a different behaviour

–Figure 5.10. For the paired colours, the persistent current is diamagnetic reflecting the

formation of composite bosons with double the mass [90, 263]. However, the remaining

1The super Tonks-Girardeau phase arises upon abruptly switching from strongly repulsive coupling

in the Tonks-Girardeau phase to strong attractive interactions. The attractive phase is more strongly

correlated than its repulsive counterpart, earning the former its moniker of super Tonks-Girardeau gas [304].
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unpaired particles display diamagnetic (paramagnetic) behaviour if they are odd (even),

indicating that they are nearly free.

(a) (b)

Figure 5.10: (a) Ground-state energy E(ϕ) and (b) the corresponding persistent current

I(ϕ) as a function the flux ϕ/ϕ0 for a system of Np = 6 with L = 20 in a CSF config-

uration for |UAB| = |UBC | = 0.01 and |UAC | = 1. All results were obtained with exact

diagonalization. The lines in the right panel are meant as a guide to the eye for the reader.

Figure adapted from [108].

5.4 Finite temperature effects

Having established the persistent current as an effective diagnostic tool to probe the various

bound states of SU(3) fermions, we turn our attention to monitor its behaviour at finite

temperature, in view of the recent experimental realization of fermionic currents [47, 48].

Increasing Temperature (Fixed Interaction U = -2)

Increasing Interaction (Fixed Temperature T = 0)

U = -0.5 T = 0

U = -2 T = 0.05

U = -2 T = 0

U = -2 T = 0.01

T = 0U = 0 (a) (b)

(e)

(c)

U = -2 T = 0.07 (f) (d)

Figure 5.11: Persistent current I(ϕ) of SU(3) symmetric fermions, defined in Equa-

tion (5.2), for various interactions U (temperatures T ) in the upper (lower) panel. Top

panels (a)-(c) for fixed T = 0 and varying U : persistent current fractionalizes with in-

creasing U with the bare period ϕ0 being reduced ϕ0/N at strong interactions. Bottom

panels (d)-(f) for fixed U = −2 and increasing T : persistent current regains the period ϕ0

upon increasing T . The results were obtained by exact diagonalization with Np = 3 and

L = 15. Lines are a guide to the eye for the reader.
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The interplay between thermal fluctuations and attractive interactions leads to remark-

able effects in the persistent current. Besides the generic smoothening of the saw-tooth

behaviour, finite temperature causes specific changes in the frequency of the persistent

current. From Figure 5.11 (bottom panel), we observe that qualitatively the effect of

thermal fluctuations mimics a reduction in interaction strength: the persistent current re-

gains its original single particle frequency on increasing temperature. Such a phenomenon

is consistent with the thermal effects on two-component fermions with repulsive inter-

actions [305], which also holds for attractive interactions, irrespective of the number of

particles in the system (see Appendix of [108]). Additionally, we point out that the ampli-

tude of the finite temperature persistent current is exponentially reduced on comparison

with its zero temperature counterpart. One possible explanation is that temperature can

activate transitions between different angular momentum states, thereby causing a decay

in the current’s amplitude [306]. Alternatively, the populated levels give rise to persistent

currents that are essentially equal in magnitude but opposite in sign, i.e., different direc-

tionalities, thereby suppressing the current.

So far, the mechanism behind the ‘de-fractionalization’ brought about by the increase in

temperature has not been addressed. Turns out that the persistent current exhibits specific

dependencies on the nature of the interactions governing present in the systems, ones that

are not subtle. Such behaviour can be properly understood by carrying out a quantitative

description of the persistent current frequency, which is presented in Section 5.4.1 for

trions.

(a) (b) (c)

(d) (e) (f)

Figure 5.12: Top (bottom) panels depict the persistent current I(ϕ) for all (each) colours

against the flux ϕ/ϕ0 for different values of the temperature T . All the results were

obtained with exact diagonalization for a system of Np = 3 with L = 20 in a CSF

configuration for |UAB| = |UBC | = 0.01 and |UAC | = 3. The lines are meant as a guide to

the eye for the reader. Figure adapted from [108].

In the case of a CSF configuration, finite temperature affects the current in a similar

manner. At a glance, the current’s frequency indicates that, compared with trions, CSFs

are less robust to thermal fluctuations. However, looking at the persistent current per

species paints a more interesting picture. The total current has a period given by the bare
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flux quantum purely because the amplitude of the two colours in the pair is smaller than

that of the unpaired colour. Interestingly enough, the temperature required to break the

interaction between the pair is higher than that required for a system of symmetric trions

with the same interaction.

5.4.1 Quantitative description of thermal effects in SU(3) symmetric

systems

To study the specific dependence of the persistent current on temperature and interaction,

we analyse its power spectrum. This is achieved by taking the Fourier transform such that

Cn =
1

P

∫
P

X(x) · e− 2ıπ
P

nxdx, (5.13)

where Cn denotes the Fourier coefficient, P is the period of the function and X is the pe-

riodic function, which in our case is the finite temperature persistent current as expressed

in Equation (5.2).
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Figure 5.13: (a) Fourier weight C3 as a function of temperature T for different values of

the interaction U . (b) depicts the corresponding maximum amplitude of the persistent

current Imax against temperature T for different U . The presented results were obtained

with exact diagonalization for Np = 3 and L = 15. Figure adapted from [108].

Specifically, we consider the Fourier weight C3, which corresponds to the formation of

trions –Figure 5.13(a), and follows its decay with increasing temperature. The coefficient

is re-scaled by the maximum amplitude |Imax| of the persistent current displayed in Fig-

ure 5.13(b). Upon plotting the normalized Fourier weight C3/|Imax|, we observe three

markedly distinct regimes: regime (I) at weak values of the interaction where C3 becomes

more robust to thermal effects on increasing U –Figure 5.14(a); regime (III) with C3 being

more susceptible to finite temperature for strong interactions–Figure 5.14(c) lastly regime

(II) for intermediate interactions –Figure 5.14(b). The existence of these three regimes

is corroborated by the energy spectrum –Figure 5.15. For small and intermediate U , the

system is characterized by a continuous band, in which, beyond a certain energy thresh-

old, the bound and scattering states are interwoven. Upon increasing U , a gap opens up,
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splitting the states in two distinct sub-bands by an increasing energy gap (linearly); the

energy levels within the states sub-band result to be separated by a level spacing that is

suppressed by the interaction –Figure 5.15(b).

(a)

(b)

(c)

(d)

(e)

(f)

Figure 5.14: Interplay between temperature T and interaction U for the persistent current

I(ϕ). The three plots demonstrate that the normalized Fourier weight C3(T
∗)/Imax(T ∗)

as a function of temperature (left panels) obeys distinct laws in the different regimes of

interaction (right panels): weak interactions (top); intermediate interactions (middle); and

strong interactions (bottom). The constant shift in C3(T
∗)/Imax(T ∗), is fixed for all curves

by A0 = 0.5. Top right insets display the temperature displacement T ∗ as a function of

interaction. T ∗ is defined by C3(T
∗)/Imax(T ∗) = 1/2. In the regime of weak U displayed

in (a) λ = −1.25 and T ∗ is an increasing function of |U |. For intermediate U depicted in

(b) λ = −0.33 and T ∗ is still increasing, but with a different algebraic law. For the strong

U regime in (c), λ = −0.1 and T ∗ is decreasing with |U |. All results were obtained with

exact diagonalization for Np = 3 and L = 15 with T ranging from 0.01 to 0.08. Figure

adapted from [108].

Our analysis shows that at small and moderate interactions, the persistent current and its
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5.4. Finite temperature effects

frequency in particular, arise from thermal fluctuations populating the scattering states

(for the band structure of the system, see [295] and Figure 5.15). Here, the relevant

parameter is the relative size between interaction U and thermal fluctuations T (measured

in units of t/kB). At moderate U the bound states can remain well-defined for large U/T ,

whilst for smaller values of U/T , the bound states’ deconfinement occurs because the

temperature makes scattering states accessible. At stronger U , the relevant contributions

to the persistent current come from the bound states’ sub-band only. For such a ‘gas of

bound states’, the periodicity of I(ϕ) changes because the temperature allows the different

frequencies of the excited states to contribute to the current. In this regime, since the

level spacing between the bound states’ energy levels decreases, the thermal effects are

increasingly relevant by increasing interaction.
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Figure 5.15: (a) Energy spectrum E as a function of the interaction U . (b) The green line

depicts the energy spacing in the bound states sub-band denoted by EL−1−E0 where E0 is

the ground-state energy. Energy gap between the two sub-bands EL −EL−1, represented

by the purple line. Results were obtained with exact diagonalization for Np = 3 and

L = 15. Figure adapted from [108].

By employing the logic of the finite-size scaling machinery [279], we are able to identify the

functional dependence of W = C3/Imax on the parameter T and U in the aforementioned

different interaction regimes. Our ansatz for W is of the following form:

(W −A0)U
λ = G(T − T ∗), (5.14)

where T ∗ is a crossover temperature defined by W (T ∗) = 1/2. The value of λ is determined

in such a way that a single functional law of the combination of U and T is obtained. We

observe that T ∗ depends non-monotonically on the interaction parameter |U |, indicating

that the change W undergoes is distinct in all three regimes –Figure 5.16.

By inspection, we adopt the following expression for T ∗

T ∗ ≈ T0,R − aR(U − U0,R)2, (5.15)

with T0,R, U0,R, aR and bR being fitting parameters in the three regimes labelled by

R = I, II, III, whose values are provided in Table 5.2. The parameter U0,R was chosen

such that it could clearly distinguish between the three regimes: U0,I lies in the region
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where the spectrum starts to splits such that nearly all excited states are scattering states

–Figure 5.15; U0,II corresponds to a clear distinction between the bound and scattering

states bands with the end of regime II being taken such that all avoided level crossings

between the two are resolved with the two bands becoming fully separate; and U0,III

was taken to be the same as U0,II since a clear distinction of the bound states from the

scattering states is already achieved. Note that despite the small temperatures considered

here, all bound states belonging to the lowest band are involved in the dynamics.

Figure 5.16: Crossover temperature T ∗ against interaction U for the three interaction

regimes for: weak, intermediate and strong denoted as I, II and III respectively. Figure

adapted from [108].

Inserting the respective values for all regimes into a Taylor expansion for the function G,

demonstrates that in the vicinity of the crossover |U − U0,II| < 2.5, no impact is made on

final form of the function G, especially near T ∗. Upon re-arrangement we have that

W −A0 = gR(U)GR

(
T − T0,R

(U − U0,R)µR

)
, (5.16)

where gR = UλR(U − U0,R)µR , with the values µR and λR are listed in Table 5.2. There-

fore, we found a functional form for the decay of the persistent current periodicity with

temperature and interaction in the aforementioned three different interaction regimes. Re-

markably, in the crossover region between the colour deconfinement region and the bound

states gas, the two regimes result to be indistinguishable –Figure 5.14 (b).

T0,R U0,R aR bR µR λR

R = I 0.040 1.61 0.044 2 2 1.25

R = II 0.056 2.56 0.013 2 2 0.33

R = III 0.056 2.56 0.0027 1.459 1.459 0.1

Table 5.2: Table containing the fitting parameters T0,R, U0,R, aR, bR, µr and λR in the

three regimes for Equations (5.15) and (5.16).
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5.5 Time-of-flight measurement

In cold atom systems, it has been demonstrated that most of the features of the persistent

current can be precisely probed through time-of-flight (TOF) imaging [34]. TOF expansion

entails the calculation of the particle density pattern, which for long expansion times

corresponds to the momentum distribution defined as

nα(k) = |w(k)|2
∑
j,l

eık·(xj−xl)⟨c†j,αcl,α⟩, (5.17)

where w(k) is the Fourier transform of the Wannier function and xj denotes the position

of the lattice sites in the plane of the ring.

(a) (b)

(c)

Figure 5.17: (a) TOF expansion of the CSF configuration. Main (top) panel displays the

TOF expansion, n(k), for all (each) colours. Interactions are set to |UAB| = |UBC | = 0.01

and |UAC | = 5. (b-c)Variance of the TOF expansion, σnk
(ϕ), against the effective mag-

netic flux ϕ. Panel (b) shows the CSF configuration with the same interaction strengths

described in the main panel for T = {0, 0.01, 0.1} displayed solid, dotted and dashed lines

respectively. Panel (c) corresponds to the trionic configuration at |U | = 5 for different

T . Insets next to the curves in (b) show the momentum distribution nk(kx, ky) of each

component at ϕ = 1, while in (c) we only show one colour due to SU(3) symmetry. The

presented results are done for Np = 3 and L = 10 using exact diagonalization. Figure

adapted from [108].

To read out the nature of the states in our system, it is important that such images arise as

an interference pattern of the gas wavefunctions. For the specific case of coherent neutral

matter circulating with a given angular momentum, a characteristic hole is displayed.

Due to the reduced coherence in the system, characterized by the exponential decay in

the three-body correlation functions (see Figures 5.3 and 5.4), no holes have been found

in TOF of bound states [87, 90, 307]. Nevertheless, current states and the corresponding

angular momentum quantization emerge as discrete steps in the variance of the width of
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the momentum distribution [73, 250, 308],

σ(α)nk
=
√
⟨n̂2α⟩ − ⟨n̂α⟩2. (5.18)

Here, trions display three steps in the variance reflecting the tri-partite periodicity of the

current. For CSF states, we find a characteristic TOF with decreased density in the cen-

ter of the interference pattern. By analysing, the different colour contributions to the

momentum distribution, we figured out that the images arise as a sum of the hole corre-

sponding to the delocalised weakly coupled species and the smeared peak corresponding to

the bound state of the paired particles. Such bound states are found to be characterized in

the TOF by just two steps in σ (reflecting the particle pairing) –Fig. 5.17. On increasing

temperature, the steps in the variance for both trions and CSFs vanish since the single

particle frequency is reinstated. Moreover, at finite temperature, the persistent current

gets suppressed owing to the occupation of levels close to the Fermi level [305]. The posi-

tive and negative contributions of these occupations to the current are quite similar, which

is reflected by a broadening of the momentum distribution and, in turn, this smoothens

out the hole corresponding to species B.

5.6 Conclusions

In this chapter, we studied the bound states of attracting three-component fermions

through the frequency of the persistent current both at zero and finite temperature. To

this end, we apply a combination of Bethe ansatz and numerical methods that, especially

for the finite temperature results, are among the very few non-perturbative approaches

that can be applied to our system. Our analysis hinges on the fact that the effective flux

quantum, defined by the frequency of the persistent current, provides information on the

nature of the particles involved [65, 107, 253, 263]. For our specific system of attractive

SU(3) fermions, such a frequency indicates that three-colour bound states are formed, ir-

respective of the number of particles. This N = 3 case is the general feature we find for

SU(N) attracting fermions whose bound states are formed by N particles; in contrast to

repulsive fermions and attractive bosons in which the frequency is fixed by the number

of particles. Our analysis can clearly distinguish between trions and CSFs: the first are

characterized by the persistent currents of the three species displaying a periodicity that is

increasingly reduced by interaction until reaching 1/3 of the original periodicity (for large

interaction); CSFs, instead, result in persistent currents having two different periodicities

for the different species –Figure 5.2.

Finite temperature induces specific changes in the persistent current frequency. We anal-

ysed the interplay between the interaction and thermal fluctuations quantitatively and

obtained specific laws describing it. For mild interactions, the frequency of the persistent

current changes as result of the population of the scattering states. Indeed, we observe

that the phenomenon occurs as a crossover from a colourless bound state to coloured multi-

plets, governed by the ratio U/T without an explicit SU(3) symmetry breaking –Figure 5.11

and Figure 5.14(a). Although specific non-perturbative effects near the QCD transition
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are missed by our analogue system (such as string breaking and colour charge screening),

the bound states’ deconfinement in this regime displays similarities with the Quark-Gluon

plasma formation at large temperatures and small baryonic density [309]. For stronger

attraction, the system defines a gas of bound states separated from the scattering states

by a finite energy gap. In this regime, a ‘single particle’ thermal persistent current arises

from the combination of the frequencies characterizing the different energy levels in the

bound state sub-band –Figure 5.14(c). In the crossover region between the ones dominated

by the scattering-states and gas of bound states, the change of the frequency of persistent

current takes place with an identical functional dependence on interaction and temper-

ature –Figure 5.14(b). On increasing the interaction, the bound states’ sub-band gets

tighter, and so, the temperature is increasingly relevant to wash out the fractionalization

of the persistent current’s periodicity.

The suggested implementation of our work is provided by cold atoms. Thus, we studied

the time-of-flight images of the system obtained by releasing the cold atoms from the

trap –Figure 5.17. Although the characteristic hole does not open up in the momentum

distribution, one can still gain insight of the persistent current periodicity through the

variance of the width of the momentum distribution: fractional values of the angular

momentum correspond to discrete steps. Naturally, on increasing temperature, the steps

disappear on account of the reinstatement of the single particle frequency.
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CHAPTER 6

Interference dynamics of matter-waves of SU(N) fermions

The physics of the SU(N) Hubbard model has been explored in great detail in both the

repulsive (Chapter 4) and attractive (Chapter 5) regimes by utilizing the persistent cur-

rent as a diagnostic tool. In the same spirit as current-voltage characteristics, we have

observed how the fractional quantization of the angular momentum gives crucial infor-

mation about the physical nature of the system. Such results reaffirm the notion that

persistent currents can be used to define an instance of current-based quantum simulators

to probe the correlations of interacting quantum many-particle systems [38, 39, 86, 90, 253].

In the cold atoms infrastructure, the experimental read-out of persistent currents is done

through interference dynamics. There are two commonly applied approaches, homodyne

and heterodyne protocols. For homodyne protocols, the system of interest interferes with

itself. Such logic has been widely employed in ultracold atoms experiments in time-of-

flight (TOF) images of the atoms’ density for both bosons and fermions [38, 39, 44, 45,

47, 233, 300]. Through this measurement technique, the angular momentum quantization

of a circulating current state can be monitored [34, 73]. With heterodyne phase detection

protocols, the phase portrait of the system flowing along the ring is acquired through its ad-

ditional interference with a non-rotating quantum degenerate system placed at the center

of the ring. Such a protocol has been experimentally realized both for bosons [46, 310–312]

and very recently for fermions [48]. The emerging fringe pattern is a spiral interferogram

whose topological features (number of arms and dislocations) reflect the properties of a

circulating current state [46, 48, 62, 307].

Here, we investigate the fractionalization of the persistent current flowing in an SU(N)

atomtronic circuit, modeled by the Hubbard model in Chapter 4, by analyzing the inter-

ference dynamics of matter-waves of SU(N) fermions generated through homodyne and

heterodyne protocols. Additionally, we demonstrate how the resulting interference pat-

terns reflect important features of the system, including the specific angular momentum
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6.1. Homodyne protocol for SU(N) fermions

fractionalization and parity effects characterizing the system. Particularly, we highlight

how our approach may be utilized to detect the number of particles Np and components

N , both of which are notoriously hard to extract from an experimental setting [313].

6.1 Homodyne protocol for SU(N ) fermions

In homodyne protocols, characteristic phase portraits arise when the atoms residing in

the ring interfere during time-of-flight expansion. The basic idea behind this commonly

employed measurement technique is as follows: the confinement potential is switched off,

releasing the trapped gas, enabling it to expand freely in space owing to its internal

momentum. After some time, generally 10-20ms after release, the spatial distribution of

the gas n(r, t) is measured through absorption imaging techniques such as CCD contrast

images. For sufficiently long times, the atom density distribution corresponds to the

momentum distribution. This statement holds as long as the expansion is free, i.e., the

interaction between the particles is negligible, which is typically the case for dilute gases.

The momentum distribution n(k) is defined as the Fourier transform of the one-body

correlator,

⟨n(k)⟩ =

∫
eık(r−r′)⟨Ψ†(r)Ψ(r′)⟩drdr′, (6.1)

where k is the momentum and r, r′ correspond to two positions on the ring’s circumference.

Expanding the field operators in the basis set of the single-band Wannier functions w(r−rj)

localised at the j-th lattice site, we have that Ψ(r) =
∑L

j w(r − rj)cj with L being the

number of lattice sites and rj denoting their position in the ring’s plane. In turn, the

expression for n(k) in Equation (6.1) can be adapted to a lattice system and re-cast into

nα(k) = |w(k)|2
∑
j,l

eık(rl−rj)⟨c†l,αcj,α⟩, (6.2)

where w(k) is the Fourier transform of Wannier function and α corresponds to the colour

of the fermionic particle. Note that we are taking the harmonic approximation for the

lattice sites corresponding to a adopting a Gaussian form for the Wannier functions.

The momentum distribution of particles on a ring is one of the few observables related to

momenta that can be experimentally probed [314] and is of particular interest in the field of

atomtronics since the persistent current is visible in experiments by studying the particles’

momentum distribution [34, 38, 39, 44, 73, 249]. In the case of coherent neutral matter

circulating in a ring with a given angular momentum quantization, a characteristic hole is

observed in the momentum distribution [34, 315]. On the other hand, no hole is observed

when there is a reduced coherence, e.g., for attractive interactions [87, 90, 108, 307].

Nonetheless, looking at the variance of the momentum distribution width σ
(α)
nk , given by

σ
(α)
nk =

√
⟨n2α⟩ − ⟨nα⟩2, one is still able to observe the corresponding angular momentum

quantization through the appearance of discrete steps [73, 87]. In what follows, we make

an in-depth analysis of the momentum distribution of SU(N) fermions for both attractive

and repulsive regimes. As we shall see, the distinct physical features and characteristics
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of these two regimes can be aptly captured through homodyne interference images.

(a) (b)

(c) (d)

Figure 6.1: Density distribution n(r, t) at an intermediate time expansion t = 3, for various

flux values ϕ. On increasing ϕ, the sharply peaked Gaussian (top left) goes a characteristic

hole with spirals radiating from it. As the size of the hole increases, so does the intensity

of the spirals. Results were calculated with exact diagonalization for Np = 4 with N = 2

and L = 15 sites at interaction U = 0 for ϕ = 0, 1, 2, 4. Figure reprinted from [109].

(a) (b)

Figure 6.2: Density distribution n(r, t) at an intermediate time t = 3. The right (left)

panel corresponds to ϕ = 4 (ϕ = −4) with the direction of the protruding spirals being

clockwise (anti-clockwise). Consequently, the direction of the rotation by the artificial

gauge field is reflected in the quantum shuriken.The results were calculated with exact

diagonalization for Np = 3 with N = 3 and L = 15 at U = 0. Figure adapted from [109].

Before doing this, we remark that the intermediate time expansion of the atomic density

distribution n(r, t) is particularly interesting. Initially when the trap is opened at time

t = 0, one observes the Wannier functions localized on each site. Upon release and

expanding for intermediate times, the ring displays a characteristic hole with protruding
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spirals, giving rise to a peculiar shape resembling a ‘shuriken’–Figure 6.1. The direction

of the spirals, be they clockwise or anti-clockwise, gives an indication of the directional

flow of the current –Figure 6.2. Eventually, at longer times, one recovers the momentum

distribution.

6.1.1 Free particles

The momentum distribution of spinless fermions at zero interactions is a sum of discrete

Bessel functions
∑

{n} Jn(k) of order n, with k denoting the momentum and n being the

quantum numbers of the levels the particles occupy [56, 307]. From this expression, it is

clear that the momentum distribution is dependent on the sets of n, with the ground-state

configuration being such that they are distributed symmetrically around zero. Apart from

the zeroth order Bessel function, all other orders are zero-valued at k = 0 –see Figure 6.3.

Consequently, when the particles inhabit the n = 0 level corresponding to the zeroth order

Bessel function, the momentum distribution is always peaked at the origin. Such is the

case for ℓ = 0 in Figure 6.3. When threaded by an effective magnetic flux, the ground-state

energy displays periodic oscillations characterized by a given angular momentum ℓ. As

the flux increases and we move from one energy parabola with a given ℓ to the next, the

quantum numbers n need to be changed to counteract the increase in flux and minimize

the energy (see Figure 6.4).

Figure 6.3: Main figure depicts the momentum distribution
∑

{n} |Jn(k)|2 re-scaled by

the number of components N against kx. For the ℓ = 0 configuration, the momentum

distribution has a finite value at the origin. However for ℓ > 0, the function collapses

to zero at the origin. Insets depict the ground-state configuration ℓ = 0 for spinless,

SU(2) and SU(3) fermions containing 2,4,6 particles respectively at U = 0. Figure taken

from [109].

Eventually, the set of {n} is such that no spinless particles inhabit the n = 0 level at a

given value of ℓ. Being a sum of discrete Bessel functions, the momentum distribution

becomes zero-valued at the origin and a hole opens up [307]. The value of the angular

momentum ℓ needs to be such that Fermi sphere of spinless fermions is displaced by the

ceiling function ⌈Np

2 ⌉ [34, 307] (see Figure 6.4 for a schematic diagram). Therefore, there

74



6.1. Homodyne protocol for SU(N) fermions

is a ‘delay’ in the flux values to observe the hole for increasing Np. This needs to be

contrasted with bosons in a Bose-Einstein condensate, which due to the different statistics

all reside in the n = 0 level at ℓ = 0. In turn, there is no ‘delay’ for the characteristic hole,

which opens up at ℓ = 1 irregardless of Np.

Figure 6.4: SU(2) particle occupation energy levels for Np = 2, 4, 6, 8 particles and their

displacement with angular momentum quantization ℓ at zero interaction. It is clear that

with increasing Np a higher value of ℓ is required for the particles to vacate the n = 0 level.

As the effective magnetic flux increases, we pass from the first to the second parabola with

ℓ = 0 and ℓ = 1 respectively (see Figure 3.2). The Fermi sphere is displaced accordingly

to counteract the increase in flux. In the case of Np = 2 (Np = 4), no particles occupy

the n = 0 level such that the angular momentum ℓH for a hole to open up corresponds

to ℓ = 1, with ϕH = 0.5 (ϕH = 1.0) respectively. The value of ϕH denotes the flux value

where we traverse to the energy parabola with angular momentum ℓH . In contrast to the

two previously discussed cases, one needs to go to ℓ = 3 for systems with Np = 6, 8 to

clear the n = 0 level. As such, the hole opening in the momentum distribution is delayed

to a larger value of ϕ. Figure adapted from [109].

The same logic used can be applied to SU(N) fermions. With increasing N , the restriction

imposed on the system by the Pauli exclusion principle relaxes: N particles can occupy a

given level –see Figure 6.3. Accordingly, the Fermi sphere needs to be displaced less with

increasing N . We find that for a system with Np SU(N)-symmetric fermions, the momen-

tum distribution collapses at the origin when the Fermi sphere is displaced by ⌈Np

2N ⌉. In

other words, the angular momentum required for a hole to open up is ℓH = ⌈Np

2N ⌉ and ϕH
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is the flux at which one transitions to the energy parabola with this corresponding angular

momentum. For Np < N , all particles will reside in the n = 0 level. Indeed, as N → ∞,

SU(N) fermions behave as bosons with regards to the level occupation.

Systems with an equal and commensurate value of W =
Np

N display similar features. The

persistent current’s parity is one such feature whereby it is diamagnetic [paramagnetic] if

Np = (2m + 1)N [Np = (2m)N ] with m being an integer [107, 263]. Likewise, we have

that the momentum distribution re-scaled by N , is the same for equal and commensurate

W –Figure 6.3. Clearly, this is not the case when W is commensurate but not equal for

different SU(N). Owing to the different particle occupations, the momentum distribution

and consequently the shifts in the sets of {n} and angular momentum ℓH for a hole to

appear is different.

6.1.2 Interacting particles

Having established the basis for the momentum distribution of SU(N) fermions at zero

interactions, we turn our attention to the repulsive and attractive regimes. At small values

of the interaction, the same features as in the free fermion case are observed (see also [307]

for SU(2)). Here, we focus on the regimes of intermediate and infinite interactions.

Repulsive interactions

For strong repulsive interactions, the persistent current fractionalizes with a reduced period

dependent on the number of particles Np (see Chapter 4). Originating from level crossings

between the ground and excited states to counterbalance the increase in flux, the initial

parabola observed at U = 0 evolves into Np piece-wise parabolas/peaks –Figure 6.5.

Figure 6.5: Schematic figure of the energy E against effective magnetic flux ϕ for diamag-

netic (left) and paramagnetic (right) cases. Top panel depicts the cases at zero interaction

for SU(2) fermions (holds for any N). Middle and bottom panels correspond to having

infinite repulsive interactions U for different number of particles. In all cases, we observe

that there is an additional delay to the one at U = 0. Figure reprinted from [109].
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The fractionalization phenomenon results in a momentum distribution depression at infi-

nite repulsion. In contrast with the characteristic hole observed at zero and weak interac-

tions, the depression is not zero-valued at the origin but a local minimum: i.e., a dip in

the momentum distribution –Figure 6.6(a). Apart from cases like the one depicted in Fig-

ure 6.6(a), we generally find a non-monotonous behaviour in the peak of the momentum

distribution.
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Figure 6.6: (a) Cross-section of the momentum distribution n(kx, 0) at strong repulsive

interactions U = 10, 000 for various values of the effective magnetic flux ϕ. When the

threshold imposed by the fractionalization is surpassed, the momentum distribution col-

lapses at kx = 0 and a depression is observed. For larger values of ϕ, the depth of the

depression increases. (b) Second derivative of the momentum distribution n(kx, ky) eval-

uated at kx = ky = 0, defined as ∂2n(kx,0)
∂k2x

∣∣
kx=0

, as a function of ϕ and U . A change in the

sign of the second derivative denotes going from a peak (negative) to a depression (posi-

tive) that corresponds to a change in colour from blue to green respectively. At U = 0 the

hole opens up at ϕ = 0.5. On increasing the interaction, the depression appears at larger

ϕ thereby reflecting the fractionalization in the system. As U → ∞, the system achieves

complete fractionalization and the flux at which a depression is displayed corresponds to

ϕD. Note that the y-axis is not linear in values of the interaction. Results were obtained

with exact diagonalization for Np = 3 SU(3) symmetric in L = 15 sites. Figure taken

from [109].

Interestingly enough, the depression appears at fluxes ϕD that are found to be significantly

larger than the flux values corresponding to the cases in which the angular momentum

is quantized to integer values. In other words, the fractionalization in the system causes

a specific ‘delay’ in observing the momentum distribution depression –see Figure 6.6(a).

We remark that this ‘delay’ is an add-on to the one observed at zero interactions. It is

solely dependent on Np and independent of N due to the nature of the fractionalization.

The depression in the momentum distribution occurs at ϕD = ϕH +
Np−1
2Np

where ϕH is the

flux at which a hole appears at zero interaction.

For intermediate interactions, the depression is monitored through the second derivative

of the momentum distribution as a function of the effective magnetic flux and interaction.

Indeed, a change in the derivative’s sign from negative to positive corresponds to a peak

and a depression respectively. By keeping track of the flux values at which this occurs,
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we gain insight into the degree of fractionalization in the system –Figure 6.6(b). Lastly,

we remark that for cases where W ̸= 1, there is the alternation between peak (blue) and

depression (red) at flux values preceding ϕH as is observed in Figures 6.7(c) and (e). These

red areas are small in value and correspond to plateaus in an experimental setting.
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Figure 6.7: Second derivative of the momentum distribution ∂2n(kx,0))
∂k2x

∣∣
kx=0

evaluated at

kx = ky = 0, as a function of the effective magnetic flux ϕ and interaction U . The left and

right panels correspond to the repulsive and attractive regimes respectively for Np = 2

(top), Np = 4 (middle) and Np = 6 (bottom) SU(2) fermions. In both regimes, we observe

that (i) as the number of particles increase the depression is delayed to higher flux values;

(ii) there is an extra delay for stronger interactions. However, a notable difference is that

in the attractive case the depression is smoothed out with increasing interactions. Results

were obtained with exact diagonalization for L = 15 sites. Note that the y-axis is not

linear in the values of the interaction. Figure taken from [109].

Attractive interactions

As we saw in Chapter 5, the formation of bound states is reflected by a fractionalized

current with a reduced period ϕ0/m, where m denotes the number of particles in the bound
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6.1. Homodyne protocol for SU(N) fermions

state. Even though the state acquires current, the reduced coherence from the particles’

localization, drastically reduces the visibility of the hole in the momentum distribution

–Figure 6.8(a).
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Figure 6.8: (a) Cross-section of the momentum distribution n(kx, 0) for Np = 6 fermions

with SU(3) symmetry for various values of the effective magnetic flux ϕ at U = −5. (b)

Variance of the momentum distribution σnk
(ϕ), against the effective magnetic flux ϕ for

Np = 4 (blue), Np = 6 (red) and Np = 8 (green) fermions with SU(2), SU(3) and SU(4)

symmetry respectively for attractive interactions. Results were obtained for L = 15 with

exact diagonalization for the SU(2) and SU(3) case, with DMRG being employed for the

SU(4) case for interactions strengths of U = −5 and U = −3 respectively. Figure adapted

from [109].

At intermediate interactions, where bound states are not yet fully formed, a momentum

distribution depression appears –Figure 6.7(b), (d) and (f). Just like in the repulsive

case, the depression experiences a two-fold ‘delay’ that for sufficiently strong interactions

appears at ϕD = ϕH + N−1
2N . However, in this case the ‘delay’ depends on both the parti-

cle number (through ϕH) and the number of components (second term). Eventually, on

increasing interactions, the visibility of the depression diminishes as it flattens out. For

larger flux values, beyond ϕD, a depression emerges again. However, one should keep in

mind that in an experimental setting there is a trade-off between the winding number

(magnitude of the current) and stability of the condensate [73, 316].

It has already been established that at large attractive interactions, the momentum dis-

tribution does not provide us with direct information on the persistent current fraction-

alization. Nevertheless, the variance of the width of the momentum distribution σnk
has

been demonstrated to be a figure of merit for fractional currents [73, 87, 108, 308] as

displayed in Figure 6.8(b). For one flux quantum, we observe two, three and four discrete

steps in one flux quantum (ϕ/ϕ0 = 1) corresponding to SU(2), SU(3) and SU(4) fermions

respectively.

In the repulsive case, the variance is not a good measure, which can be attributed to

the peculiar behaviour observed in Figures 6.7(c) and (e). To understand this properly,

we examine the momentum distribution cross-section depicted in Figure 6.9(c) and (d),

where it is observed that the height of the peak/depression varies non-monotonically with
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ϕ. This in turn affects variance of the width, which displays instances of expansions and

contractions. Such behaviour is in sharp contrast with its attractive counterpart, where

the behaviour of the peak is monotonically decreasing –Figures 6.9(a) and (b). In view of

this fact, it proves to be a good diagnostic tool for the persistent current fractionalization.
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Figure 6.9: Left panels depict the cross-section of the momentum distribution n(kx, 0)

for U = −5 (top) and U = 10, 000 (bottom) as a function of the effective magnetic flux

ϕ. On the right panels, there is the corresponding momentum distribution n(0, 0) for

kx = ky = 0 against flux. Results were obtained with exact diagonalization for Np = 4,

N = 2 for L = 15. Figure adapted from [109].

6.2 Self-heterodyne interferograms of SU(N ) fermions

Properties of circulating current states can also be detected through self-heterodyne phase

detection protocols [46, 48, 62, 307, 311, 312]. The mechanism behind this procedure is

the same as the homodyne protocol, with the added difference that the annular ring is

made to co-expand with an additional condensate at its center, whose role is to act as a

phase reference. Initially separated, the ring and center undergo time-of-flight expansion,

during which their combined wavefunction evolves in time and interferes with itself, giving

rise to characteristic spiral interferograms. Topological features of the spiral pattern reveal

information on the current’s orientation (clockwise or anti-clockwise) and intensity (phase

winding number).

In an experimental setting, the spiral interference patterns are obtained through in-situ

measurements of a single co-expansion. A single-shot experiment such as this one could
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be simulated from a theoretical point of view. It would require combining the eigenfunc-

tions of the Hamiltonian modeling the ring with the wavefunction of the center and then

replicating the detection protocol for all the particles involved in the expansion [317].

However, such an approach requires a large number of particles in order for spirals to be

produced, which is not viable in our case. As such, we turn to reconstructing the parti-

cle density n(r, t) through expectation values, which amounts to taking the average over

several experimental realizations of the co-expansion. Each instance of the co-expansion

is characterized by a randomly distributed relative phase between the two condensates

that averages out over multiple experimental runs. As such, no interference effects appear

when calculating the one-body density matrix, and any information about the current’s

configuration is washed out.

On account of the ring and center being initially decoupled, there are no uncertainties

about the particle’s origin, be it from the former or the latter. For this reason, the density

operator corresponding to the measurement of a single particle does not yield any informa-

tion on the relative phase pattern between the two systems [62]. According to the particle

number-phase uncertainty relation, we can acquire information about the phase by erasing

any with regards to the particles’ origin. This can be achieved by resorting to higher-order

correlators and measuring two or more particles, such that the uncertainty about their

origin, which can either be from the center or the ring, increases [62, 317]. As such, in

line with the previous protocols for bosons [62] and quite recently for fermions [307], we

focus on the density-density correlator for an expanding ring and an additional site in the

center at a fixed time t. The two-body correlator is defined in the following way

G(r, r′, t) =
N∑
α,β

⟨nα(r, t)nβ(r′, t)⟩. (6.3)

The density operator is expressed as nα(r, t) = ψ†
α(r, t)ψα(r, t) where ψ†

α = (ψ†
R,α + ψ†

C,α)

being the field operator of the whole system, ring and the center denoted by R and C

respectively. Seeing as the ring and center are intially decoupled prior to their release

from their confinement potential, at time t = 0 the ground-state can be seen as a product

state |ϕ⟩ = |ϕ⟩R ⊗ |ϕ⟩C .

Assuming free expansion for t ≥ 0, the number of terms in G(r, r′, t) can be significantly

reduced. Firstly, terms consisting of an odd number of creation or annihilation operators

have a null expectation value due to particle conservation. Likewise, terms where either

both creation or annihilation operators act on one system also vanish. As such, the only

surviving terms are those comprised of an equal number of creation-annihilation pairs, one

acting on the ring and another on the center. From the remaining terms, we focus only

on the cross-terms involving contributions from both the center and the ring [307], seeing

as they are the ones giving rise to the interference:

GR,C =
N∑
α,β

L∑
j,l=1

Ijl(r, r
′, t)
[
N0,αδα,β(δjl−⟨ϕR|c†l,αcj,α|ϕR⟩)+δα,β(1−N0,α)⟨ϕR|c†l,αcj,α|ϕR⟩

]
.

(6.4)
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In the above expression, we defined Ijl(r, r
′, t) = wc(r

′, t)w∗
c (r, t)w∗

l (r′ − r′l, t)wj(r− rj , t)

as the Wannier functions of the interfering terms and N0 = ⟨ϕC |c†0,βc0,β|ϕC⟩ corresponds

to the expectation value of the number operator center, which in the current protocol is

always equal to one. Consequently, the second term in Equation (6.4) does not contribute

to the interference pattern such that

GR,C =
∑
α

∑
j,l

Ijl(r, r
′, t)⟨c†l,αcj,α⟩, (6.5)

where the δij in the first term of Equation (6.4) is neglected in order to enhance the visi-

bility of the spirals.

Just like in the momentum distribution, the particles’ statistics are reflected in the self-

heterodyne interference patterns. As was previously mentioned, the fermionic particles

occupy distinct levels associated with different momenta owing to their anti-symmetric

nature. Hence, when the fermions start to circulate, the imparted phase gradient of the

wavefunction couples to the various momenta. Each of these momenta acquire a different

phase and correspond to individual particle orbitals. At intermediate time expansions,

the multiple phases recombine, giving rise to the spiral-like interference pattern, as well

as accounting for the emergence of dislocations (radially segmenting lines) in the interfer-

ograms. Such a phenomenon can be properly visualized in the free fermionic case. In this

regime, it is straightforward to show that the interference pattern in Equation (2.17) can

be re-cast into the following form [307]

GR,C = −N
L

∑
{n}

In(r)I∗n(r′), (6.6)

with In(r)I∗n(r′) being a spiral in the x-y plane having n arms, where {n} is the set of

quantum numbers corresponding to the levels occupation. From this expression, it is clear

that at fixed r′ the interference pattern arises as a superposition of the different contribu-

tions In(r)I∗n(r′).

In what follows, we build up on the recent work carried out on interferograms of SU(2)

fermions at zero and weak interactions [307] by generalizing to SU(N) fermions and ex-

tending the analysis to the intermediate and strongly interacting regimes. Such regimes

cannot be accessed with DMRG. Indeed, it is well known that DMRG has issues with

convergence for large interactions. Furthermore, the problem is exacerbated by multi-

degenerate ground-states present in strongly repulsive SU(N>2) systems. As a result, we

have opted to carry out the self-heterodyne analysis by considering two-component sys-

tems that can be addressed with exact diagonalization. Nonetheless, this does not hinder

our analysis since, as we shall see, interferograms with equal W = Np/N display similar

characteristics as was the case with the momentum distribution. Seeing as the features

of the interferogram depend on the particle distribution, then one would expect that sys-

tem with commensurate and equal W displays interferograms with the same qualitative

characteristics.
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6.2.1 Free Particles

At zero and weak interactions for short time expansions, one observes spiral-like patterns,

along with dislocations in these interferograms [307]. These dislocations arise from the

various momenta components that contribute to the expansion and indicate the suppres-

sion of the particle density at these positions in space. The amount of dislocations, given

to W − 1, grants us access to the number of particles present –Figure 6.10. Furthermore,

these dislocations do not depend on the flux threading the system.

Figure 6.10: The interference GR,C between ring and center for Np = 2, 4, 6 particles

with SU(2) symmetry, is shown as a function of the effective magnetic flux ϕ at zero

interaction and short time t = 0.033. For Np = 2 (top) and Np = 4 (middle), the number

of spirals corresponds to the angular momentum quantization ℓ. Note that at ϕ = 1.58, the

difference in spirals arises due to the different parity of the two systems, that correspond

to a degeneracy point of ϕ = s + 1/2 and ϕ = s respectively, with s being an integer. In

contrast to the Np = 2 case, we observe dislocations (segmenting lines) in the interference

patterns for Np = 4, 6. Lastly, by comparing Np = 2 and Np = 6 at ϕ = 1.58 we observe

that the latter displays only one spiral instead of two like its counterpart. The reason being

that at U = 0 for Np = 6, the hole opens up at ϕ = 1.5. All correlators are evaluated with

exact diagonalization for L = 15 by setting r′ = (0, R) and radius R = 1. The color bar is

non-linear by setting sgn(GR,C)
√
|GR,C|. Figure taken from [109].

For bosons, the order of the spirals gives an indication on the number of rotations, or

rather the angular momentum quantization ℓ of the current [46, 48, 62]. However, it

is not as straightforward when it comes to fermions. Owing to their different statistics,

the level occupation of fermions is broader than that of bosons. As such, in order for

spirals to emerge in the interferograms, the given system of fermions needs to displace

its Fermi sphere by
⌈Np

2N

⌉
, which corresponds to the characteristic hole in the momentum
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distribution –Figure 6.10. After clearing this threshold, the number of spirals accrues with

increasing angular momentum.

Figure 6.11: The interference GR,C between ring and center for Np = 6 particles with

N = 2, 3, 6, as a function of the effective magnetic flux ϕ at U = 1 and short time

t = 0.025. In the top panel, the number of dislocations in the interferograms is 2,1,0 for

N = 2 (left), N = 3 (middle) and N = 6 (right) respectively. The bottom panel depicts

the value of ϕ where a spiral is observed. On increasing N , the spiral appears at lower ϕ

since the displacement of the Fermi sphere is inversely proportional to N . All correlators

are evaluated with DMRG for L = 15 by setting r′ = (0, R) and radius R = 1. The color

bar is non-linear by setting sgn(GR,C)
√
|GR,C|. Figure adapted from [109].

When W = 1, 2, the number of spirals reflect the angular momentum quantization (since

these cases only require one Fermi sphere ‘shift’) –see upper and middle panels of Fig-

ure 6.10. For W > 2, the number of observed spirals is not indicative of the angular

momentum quantization –see lower panel in Figure 6.10. Fixing the number of particles

and increasing the number of components, enables more particles to inhabit a given level.

Indeed, for Np > N , SU(N) fermions behave as bosons with regards to level occupations

–Figure 6.11. Lastly, we point out that for equal and commensurate W , the interference

patterns display the same qualitative features –see Figures 6.10 and 6.11.

6.2.2 Interacting particles

Repulsive interactions

For a system with repulsive interactions, one is able to not only track but also observe the

fractionalization through the self-heterodyne phase portrait. Remarkably, the fractional

angular momentum, which corresponds to different spin excitations [107, 275], is explicitly

captured in the interferogram through the dislocations that are now dependent on the flux.

Indeed, the dislocations are able to characterize the Np fractionalized parabolas due to the

different types of spin excitations through the number and orientation of the dislocations

–Figure 6.12. Specifically, there are ⌈Np

2 ⌉ + 1 different types of interference patterns (i.e.,

different number and orientation of the dislocations).
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Figure 6.12: Interference GR,C between ring and center for Np = 6 particles with SU(2)

symmetry against the effective magnetic flux ϕ at U = 1000 and short time t = 0.025.

Middle right panel is the schematic for the fractionalized energy parabolas at infinite

repulsive interactions for the corresponding system (numbers on parabola correspond to

the spin quantum numbers X in the Bethe ansatz solution introduced in Chapter 4). The

interference pattern corresponding to the first parabola (orange), displays two dislocations

as in the zero interaction case. In the next parabola (green), where there is a generation

of a spin excitation, we observe three dislocations. Traversing the other parabolas, we find

that apart from their number, the orientation of the dislocations changes as well –see upper

left (right) panel correspond to a downward (upward) V-shape. Additionally, we note that

parabolas with the equal X display the same dislocation pattern reflecting the symmetry

of the energy around this point. Note that there is no spiral in the intereferograms since

no hole has opened up. All correlators are evaluated with exact diagonalization for L =

15 by setting r′ = (0, R) and radius R = 1. The color bar is non-linear by setting

sgn(GR,C)
√
|GR,C|. Figure re-printed from [109].

The characteristic spirals are also observed in interferograms at infinite repulsion. How-

ever, due to the presence of dislocations, it is very hard to deduce the order of the spirals.

The emergence of spirals is not as clear-cut as in the zero interaction case since multiple

spirals appear at different flux values –Figure 6.13. Firstly, we have a spiral that, for the

sake of convenience, we will call spiral A. The appearance of this spiral coincides with the

depression of the momentum distribution occurring at ϕSA
= ϕH +

Np−1
2Np

. On increas-

ing flux and going to larger angular momenta, spiral A gains more arms as in the zero

interaction case.
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Figure 6.13: The interference GR,C between ring and center for Np = 4 particles with

SU(2) symmetry, is shown as a function of the effective magnetic flux ϕ at U = 5000 and

short time t = 0.026. At ϕ = 0.92, we observe spiral B that disappears on going to the

next parabola with ϕ = 1.22. The spiral does emerge again at the next parabola with

ϕ = 1.42, which at this point exceeds the threshold imposed by fractionalization. Unlike

the previous spiral, this spiral persists on going to the next parabolas. All correlators are

evaluated with exact diagonalization for L = 15 by setting r′ = (0, R) and radius R = 1.

The color bar is non-linear by setting sgn(GR,C)
√
|GR,C|. Figure taken from [109].

The second spiral, denoted as spiral B, emerges as we traverse to a parabola with angular

momentum ℓH . To be precise, it appears at ϕSB
= ϕH + 1

2Np
+ ∆ (ϕSB

= ϕH − 1
2Np

) for

a diamagnetic (paramagnetic) system respectively, with ∆ = − 1
2Np

for an odd number of

particles and zero otherwise. So basically, we are saying that spiral B corresponds to the

one observed at zero interactions when the Fermi sphere has been displaced by
⌈Np

2N

⌉
. The

extra term 1
2Np

takes into account the change in the energy landscape brought on by the

level crossings –Figure 6.5. Furthermore, we note that spiral B only lasts for the period

of that fractionalized parabola 1
Np

(see Figure 6.13). Accordingly, at larger values of the

angular momenta, only one spiral pattern persists corresponding to spiral A. In the special

case of Np = 2 SU(2) particles, we point out that the second term of ϕSA
is 1

2Np
such that

spiral A and B are one and the same.

For the intermediate interaction regime, the interference patterns capture the partial frac-

tionalization in the system. On going from zero to strong interactions, as in Figure 6.14,

the dislocation patterns change both their number and orientation as the system undergoes

fractionalization. These alterations in the interferograms are consistent with the second

derivative of the momentum distribution, further reinforcing the symbiosis between the

two protocols.
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Increasing flux
Increasing interaction

Figure 6.14: The interferenceGR,C between ring and center forNp = 4 particles with SU(2)

symmetry against the effective magnetic flux ϕ at short time t = 0.026 as a function of

the interaction U . In this figure, one can clearly see how the number and orientation of

the dislocations change as one increases the interaction. All correlators are evaluated with

exact diagonalization for L = 15 and repulsive U = {0, 20, 5000} (panels are in descending

order) by setting r′ = (0, R) and radius R = 1. The color bar is non-linear by setting

sgn(GR,C)
√

|GR,C|. Figure adapted from [109].

Attractive interactions

In contrast to the homodyne protocol, the self-heterodyne one provides direct informa-

tion on the fractionalization of the persistent current: (i) the N fractionalized parabolas

are characterized by different dislocations, both in number and orientation; (ii) spirals

emerge in the interferogram –Figure 6.15. Coincidentally, for N -body bound states the

observation of the spiral occurs at ϕS− = ϕH + N−1
2N , which would correspond to when one

would expect momentum distribution depression. Just like in the repulsive case, there

is a ‘delay’ in visualizing the spirals. However, since the fractionalization is dependent

only on N and irrespective of Np, the ‘delay’ associated with it is uniform for different

particle systems and is given by N−1
2N . It is interesting to note that unlike the repulsive

case, here we do not observe the emergence of the second spiral (previously called spiral B).

We remark that the mentioned results pertain only to SU(2) fermions. For SU(N > 2),

an interferogram is not adequate to capture any information about the attractive system.

The self-heterodyne interference patterns rely on the use of a two-body correlator, which

is an accurate measure when one has bound pairs as in SU(2) fermionic systems. However,

bound states consisting of a larger number of particles, such as trions in the SU(3) case,

probably require an N -body correlator to adequately describe the system.
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Figure 6.15: The interference GR,C between ring and center for Np = 2 (top), Np = 4

(middle) and Np = 6 (bottom) particles with SU(2) symmetry, is shown as a function

of the flux ϕ at U = −3 and short time t = 0.025. An extra dislocation appears for ϕ

corresponding to a fractionalized parabola in comparison with Figure 6.10. For Np = 4, the

fractionalized parabolas are the outer ones as opposed to the middle ones like Np = 2 and

Np = 6 due to a difference in parity. All results are evaluated with exact diagonalization

for L = 15 by setting r′ = (0, R) and radius R = 1. The color bar is non-linear by setting

sgn(GR,C)
√
|GR,C|. Figure re-printed from [109].

6.3 Discussions and Conclusions

In this chapter, persistent currents have been utilised to analyze and characterize differ-

ent SU(N) fermionic systems. To this end, we investigate the interference dynamics via

both homodyne (momentum distribution) and heterodyne (co-expansion of two the ring

and center) protocols by applying a combination of exact diagonalization, and whenever

possible, DMRG [271, 272] and Bethe ansatz. Both of these read-out techniques can be

experimentally implemented within the cold atoms infrastructure and can be experimen-

tally traced. These protocols, which have become a staple tool in bosonic experiments,

are harder to implement for fermions on account of the lower condensate fractions and the

high chemical potential that results in rapid expansion of the condensate [47].

Free particle regime: For spinless fermions, the characteristic hole in the momentum

distribution, reflecting coherent matter-wave flow, opens up when the effective magnetic

flux displaces half of the Fermi sphere [307]. In the following, we will refer to such a feature

as a ‘delay’ in the value of the flux at which a hole occurs. For N -component fermions,

the Pauli exclusion principle relaxes and allows more particles to inhabit a given level
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–Figure 6.3. Accordingly, we find that a hole in the momentum distribution appears if the

Fermi sphere is displaced less, precisely by the ceiling function ⌈Np

2N ⌉. This is consistent

with the fact that SU(N) fermions (with Np<N) resemble bosons for N → ∞.

The features of the momentum distribution are observed to be consistent with the hetero-

dyne interference images. In particular, holes in the momentum distribution correspond

to spirals in the interferograms. Note that, in contrast with the bosonic case [46, 62, 310–

312], the order of the spirals does not reflect the angular momentum quantization of the

system. Furthermore, when the number of components N divides the number of particles

Np,
Np

N − 1 dislocations (radially segmenting lines) appear in the interferograms giving

information about the number of particles present in the system –Figure 6.10. These

observations still hold true in the case of small attractive or repulsive interactions [307].

Moreover, we note that at zero interactions, the properties displayed by the homodyne

and self-heterodyne phase portraits depend solely on
Np

N –see Figures 6.10 and 6.11.

Repulsive regime: The persistent current fractionalizes with a reduced of ϕ0/Np, as

discussed in Chapter 4. Interestingly enough, the fractional values of the angular momen-

tum are not displayed as holes in the momentum distribution as in the non-interacting

case. Furthermore, as soon as the correlations depart from the non-interacting case, the

characteristic hole becomes a small depression (finite valued local minimum) in the mo-

mentum distribution at momentum k = 0 –Figure 6.6(a). Moreover, an additional ‘delay’

characterising the specific fractionalization of the angular momentum is found. In other

words, the depression occurs at a larger flux value than the one where the hole used to

open up –Figure 6.6(b). Specifically, for a given system of Np particles, a momentum

distribution depression appears at ϕD = ϕH +
Np−1
2Np

, where ϕH is the flux at which the

hole opens up at zero interactions and the second term accounts for the fractionalization

‘delay’. Therefore, such a property makes the number of particles accessible by monitoring

the actual value of the flux at which the depression occurs. At intermediate interactions,

the system experiences only partial fractionalization. Nonetheless, this is captured by the

homodyne protocol by tracking the momentum distribution depression at zero momenta

–Figure 6.6(b).

Heterodyne interferograms embody the features of the fractionalization. Apart from ob-

serving the ‘delay’ through the emergence of the spiral as in the zero interaction case, the

angular momentum fractionalization can be tracked by monitoring the number and ori-

entation of the dislocations: the presence of the spin excitations modifies the dislocations

that are observed at zero interaction –see Figures. 6.12 and 6.14. In contrast with the zero

interaction case, the dislocations are now flux dependent, enabling us to monitor the spin

excitations in the system through interference patterns.

Attractive regime: As we explored in Chapter 5, a system with attractive interac-

tions also experiences fractionalization like its repulsive counterpart, albeit with a reduced

period dependent on the number of components N . However, the fractionalization is
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not readily observed in the momentum distribution, at least not directly. Due to the

reduced coherence that transpires from the formation of bound states, no depression is

observed –Figure 6.8(a). As such, one cannot monitor the ‘delay’ in the occurrence of

the aforementioned depression. Nonetheless, by measuring the variance of the width of

the momentum distribution, one can deduce the SU(N) nature of the system through the

number of steps depicted, but no information regarding the number of particles can be

obtained –Figure 6.8(b). In the intermediate regime of interaction, we observe that the

characteristic depression gets ‘delayed’ to larger values of the effective magnetic flux as

the current gets fractionalized –Figure 6.7 (right panels). Eventually, as the interaction

strength increases, the depression is smoothed out.

Self-heterodyne interference patterns for SU(N>2) systems calculated via density-density

correlators are found to be incapable of providing observables to monitor the persistent

current pattern. In fact, a higher order correlator may be required to capture the features

of N -body bound states. In the case of SU(2) systems, we find that the fractionaliza-

tion is characterized by a change in the number of dislocations in the interferograms

–Figure 6.15. Remarkably, the flux values where a spiral emerges correspond to the ones

that would result in a depression (that is suppressed in this regime) in the momentum

distribution. As in the repulsive case, the spirals experience a two-fold ‘delay’ originat-

ing from the combined effect of displacement of the Fermi sphere and the fractionalization.

Recently, self-heterodyne interferograms were experimentally observed for SU(2) attrac-

tive fermions in the context of the BCS-BEC crossover [48]. Specifically, the interference

fringes observed correspond to BEC side of the crossover. Our analysis, instead, pertains

to the BCS regime, where our results predict a characteristic ‘delay’ that provides infor-

mation on the structure of the Fermi surface. The interference patterns within the BCS

regime still remain to be analysed experimentally, with the main challenge lying in the

fast expansion stemming from the large momenta occupations of the fermions. One route

to address present limitations involves using dilute density systems such that the particles

do not occupy levels with high momenta. Another option would be to selectively address

particles close to the Fermi surface and perform the expansion.

In summary, we have shown how one can characterize SU(N) correlated matter-wave

through homodyne and self-heterodyne interference patterns. In particular, by monitoring

the number of dislocations at weak interactions (repulsive or attractive), we can gain

knowledge on Np/N –Figures 6.10 and 6.11 - this feature provides the generalization of

the work carried out in [307] to N -component fermions. Furthermore, going to the strongly

interacting regimes, the number and configuration of the dislocations change, reflecting the

persistent current fractionalization –Figures 6.12 and 6.14. To be specific, there are
⌈Np+1

2

⌉
interference patterns with various dislocation numbers and orientations. This feature

implies that, for repulsive interactions, we can access the number of particles Np (see [313]

for characterization of SU(N) systems through neural networks). For the repulsive case,

the experimental analysis could be carried out through quantum gas microscopy [318–321],
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which is an atom imaging technique capable of probing a quantum gas with a high degree

of spatial resolution and single-atom sensitivity.
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CHAPTER 7

Exact one-particle density matrix for SU(N) fermionic matter-waves in

the strong repulsive limit

In low-dimensional many-body systems, quantum fluctuations are particularly pronounced,

and therefore even a weak interaction can lead to dramatic correlations. Such a simple

fact makes the physics of one-dimensional many-body systems exotic and distinct from

the physics of higher-dimensional systems [322, 323]. The breakdown of the Fermi liquid

paradigm and Luttinger liquid behaviour, the spin-charge separation in fermionic systems,

elementary excitations with fractional statistics, and Haldane order are just some of the

characteristic traits addressed in the last few decades of research on the subject [262, 324–

326]. One-dimensional systems can be realized by confining the spatial degrees of freedom,

as in quantum wires [327], in chains of Josephson junctions [328], or in certain classes of

polymers [329]; in other instances, the dimensionality is constrained dynamically, as in

carbon nanotubes [330], edge states in quantum Hall effect [331] or in metals with di-

lute magnetic impurities [332]. With the advent of quantum technology seeking quantum

correlations as a resource, the impact of one-dimensional physics has been considerably

widened.

Exact solutions of one-dimensional interacting quantum many-body systems play a par-

ticularly important role since their physics is often non-perturbative, with properties that

are beyond the results obtained with approximations [322]. As such, exact results, though

rare and technically difficult to achieve, form a precious compass to get oriented in the

physics of one dimension. In this chapter, we provide the exact expression for the two-

point correlation matrix of SU(N) fermions confined in one dimension and subjected to

an external magnetic flux, determining the one-body density matrix in the limit of large

repulsive interactions. Specifically, we analyze the momentum distribution of the particles,

which despite being one of the simplest correlations, is able to reflect certain effects of the

interaction [333]. On the technical side, we point out that, despite its simple expression,

the momentum distribution can only be calculated numerically for a small number of par-

93



7.1. Model and Methods

ticles and is even less accessible when considering the strongly correlated regimes. Even for

integrable models, the momentum distribution is not managable, especially in the meso-

scopic regime of finite but sufficiently large particle systems. The case of two-component

fermions in the absence of a magnetic flux was discussed by Ogata and Shiba [276].

The one-body density matrix plays a crucial role in different schemes of time-of-flight

expansions in cold atoms settings [34, 39, 108, 109, 334], as explored in Chapter 4. The

specific persistent current pattern that arises is produced as a result of specific transi-

tions between suitable current states characterized by a different configuration in the spin

degrees of freedom of the system [107, 275]. We will show that this process brings sub-

stantial complications in computing the ground-state to access the correlation matrix of

the system for different magnetic fluxes.

7.1 Model and Methods

The system under consideration is that of Np fermions with SU(N) symmetry residing on

a mesoscopic ring-shaped lattice composed of L sites and pierced by a synthetic magnetic

field ϕ. Such a system can be modeled by the one-dimensional Hubbard Hamiltonian for

N -component fermions that reads

H = −t
L∑
j

N∑
α=1

(ei
2πϕ
L c†j,αcj+1,α + h.c.) + U

L∑
j

∑
α<β

nj,αnj,β, (7.1)

fixing the energy scale with t = 1 and setting U > 0 as the interactions between the

fermions are taken to be repulsive. Specifically, we are interested in the regime of dilute

filling fractions such that model (7.1) tends to the continuous limit, which is Bethe ansatz

solvable (see Chapter 4). Accordingly, within a given particle ordering xQ1 ≤ . . . ≤ xQNp
,

the eigenstates of the model (7.1) can be expressed as

Ψ(x1, . . . , xNp ;α1, . . . , αNp) =
∑

P∈SNp

sign(P )sign(Q)ψ[Q;P ] exp

(
i

Np∑
j=1

kPjxQj

)
, (7.2)

where P and Q are permutations introduced to account for the eigenstates’ dependence

on the relative ordering of the particle coordinates xj and quasimomenta kj , with ψ being

the spin-dependent amplitude. The latter accounts for all different components of the sys-

tem, which can be obtained by nesting the Bethe ansatz [190]. As a result, the spin-like

rapidities for each additional colour Λβl
are all housed in ψ.

Despite access to the energy spectrum being greatly simplified due to integrability, the

calculation of the exact correlation functions remains a very challenging problem [200], es-

pecially in the mesoscopic regime of large but finite number of particles and ring sizes [167].

In what follows, we will be focusing on the strong repulsive limit where the correlation

function becomes addressable. The simplification arises because the charge and spin de-

grees of freedom decouple, which occurs only for states with real quasimomenta [275, 276].

This decoupling is manifested in the Bethe equations of the system. To start, let us recall
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that kj/U goes to zero in the limit U → ∞ and can thus be neglected [275, 276]. Con-

sequently, by taking the SU(3) case as an example we have that the product form Bethe

ansatz equations (4.5)–(4.7) in this limit read

ei(kjLR−ϕ) =

M1∏
α=1

2Qα − i

2Qα + i
j = 1, . . . , Np, (7.3)

M1∏
β ̸=α

(Qα −Qβ) + i

(Qα −Qβ) − i
=

[
2Qα + i

2Qα − i

]Np M2∏
a=1

2(Qα − Pa) + i

2(Qα − Pa) − i
α = 1, . . . ,M1, (7.4)

M2∏
b ̸=a

Pa − Pa + i

Pa − Pb − i
=

M1∏
β=1

2(Pa −Qβ) + i

2(Pa −Qβ) − i
a = 1, . . . , N2, (7.5)

defining Qα = 2Λα
U and Pa = 2λa

U respectively. The Bethe ansatz equations for the charge

and spin rapidities decouple, in that Equations (7.4) and (7.5) are independent of the quasi-

momenta kj . Naturally, the same decoupling manifests itself in the wavefunction (7.2).

As an effect of the spin-charge decoupling, each wavefunction amplitude can be written

as a product between a Slater determinant of spinless fermions det[exp(ikjxQj)] and the

spin wavefunction Φ(y1, . . . , yM ) [276]

Ψ(x1, ..., xNp ;α1, ..., αNp) = sign(Q)det[exp(ikjxl)]jlΦ(y1, . . . , yM ). (7.6)

The logic in constructing the wavefunction through the nested Bethe ansatz is to re-

duce the problem into a simpler one by considering only the spin degrees of freedom (see

Chapter 2). The corresponding spin wavefunction amplitudes in the ansatz are those of

the inhomogenous XXX Heisenberg model [167, 302]. On account of the decoupling, the

inhomogeneity kj in the spin wavefunction vanishes. Indeed, Equations (7.4) and (7.5)

coincide with the Bethe ansatz equations of an isotropic SU(3) Heisenberg spin chain, up

to a normalization constant [167, 181]. Consequently, in the limit of infinite repulsion the

states of the SU(N) Hubbard model can be written as

|ψ[U ]⟩Fermi−Hubbard
U→+∞−→ |ψ [ψXXX ]⟩spinless , (7.7)

with a schematic of the decoupling occurring in the wavefunction depicted in Figure (7.1).

It is important to emphasize that this is not a tensor product but corresponds to a composi-

tion of functions. Such a result holds for all N ≥ 2 in the integrable regimes of model (7.1)

due to the nature of the nested Bethe ansatz procedure1. Even though the fermionic and

spin chain Hamiltonians share a similar wavefunction, we point out that their spectra

are markedly distinct. The energy of model (7.1) is obtained through the quasimomenta

outlined in Equation (4.12), that of the Heisenberg spin chain is provided solely by the

spin rapidities. Nevertheless, the energy correction to leading order in 1/U of the Hub-

bard model corresponds to the energy of the antiferromagnetic Heisenberg model with an

effective coupling Jeff . This energy, that we elected to call the energy spin correction in

Chapter 4, satisfies the Heisenberg Bethe ansatz equations (7.4) and (7.5).

1For N = 1 all the particles populate one colour such that M1 = M2 = 0. Therefore, it is clear to see

from the outset that there is no spin-charge decoupling, with such a case corresponding to that of a gas of

one-component hard-core bosons integrable by the Lieb-Liniger Bethe ansatz [182].
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Figure 7.1: Schematic representation of the decoupling of the SU(N) Fermi-Hubbard into

the spinless and XXX Heisenberg Hamiltonians at infinite repulsive interactions U . On

the left, the figure depicts the SU(4) Hamiltonian with one particle per colour and 4 empty

sites (white). On the right, we have the spinless Hamiltonian with 4 fermions (black) and

4 empty sites. In addition, there is the SU(4) Heisenberg Hamiltonian with one spin in

each orientation. Note that after the decoupling, the index corresponding to a given colour

in the Heisenberg Hamiltonian changes in order to accommodate the new framework, but

the arrangement of the colours in the original chain is maintained. The circle indicates

the successive operation in a mathematical sense of a composition function: f ◦ g = f(g).

Figure adapted from [110].

By splitting the problem into the spinless and Heisenberg models, the problem of obtaining

the wavefunction is greatly simplified. For starters, the calculation of the Slater determi-

nant for spinless fermions is independent of the number of components N . As such, one

only needs to evaluate the SU(N) Heisenberg for systems with fixed number of particles

and sites but different N . Additionally, diagonalizing the Heisenberg model is less com-

putationally intensive compared to the Hubbard model due to the lower dimensionality of

the Hilbert space. Consequently, systems with larger number of particles and ring sizes

can be considered.

The XXX Heisenberg model can be constructed as a sum of permutation operators HXXX =∑
i Pi,i+1 [101, 191], where Pi,i+1 can be expressed in terms of SU(N) generators (see Ap-

pendix B). These states permutes spins having the same orientation on sites i and i + 1.

As mentioned previously, this spin chain model is also Bethe ansatz integrable for any

SU(N ≥ 2). Nevertheless, as in all Bethe ansatz solvable models, accessing the explicit

expression of the antiferromagnetic Heisenberg eigenstates remains quite challenging. As

such, in our approach the quantum state is obtained by combining the Bethe ansatz anal-

ysis with the Lanczos numerical method. The procedure is described below:

(a) Finding the ground-state. Firstly, we note that for each non-degenerate ground-

state of the Hubbard model, there exists a corresponding single eigenstate of the Heisen-

berg model. In principle, such a state-to-state correspondence could be obtained by iden-

tifying the spin quantum numbers labeling the states of the Hubbard model and inserting

them into the Bethe ansatz equations of the Heisenberg model. However, as explained

earlier such a procedure is quite involved when trying to access to the quantum states.

Therefore, we employ a combination of Bethe ansatz and numerical methods:

1. The spin quantum numbers characterizing a given state in the Hubbard model are

inserted into the Heisenberg Bethe ansatz, enabling us to calculated the correct

energy. This energy is then matched with the numerically obtained spectrum of the

antiferromagnet to pinpoint the corresponding eigenstates.
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2. Through the SU(N) quadratic Casimir operators (see the Appendix B.2), we charac-

terize the total SU(N)-spin of the states. These operators commute with the whole

SU(N) group and hence are constants of the motion of both the Heisenberg Hamil-

tonian and the SU(N) Hubbard model. The square of the total spin operator is the

Casimir operator for N = 2. For zero flux, the state of the Hubbard model results

to be non-degenerate. Therefore, this approach can uniquely characterize the states.

However, for non-vanishing flux it turns out that the energy of the Heisenberg model

is degenerate as is the Casimir value.

3. In the SU(2) case, the degeneracy can be resolved by looking at the permutation

operators Pj,j−1, which do not commute with the spin chain Hamiltonian by con-

struction. For N > 2 and non-vanishing flux, we do not have a general method.

Moreover, the situation becomes more complicated due the N−1 fold degeneracy

stemming from the different sets of spin quantum numbers of the Hubbard model

(see Chapter 4), that manifests in the Heisenberg model as a consequence of the

one-to-one correspondence. However, we note that degenerate states with the same

Casimir value consist of different projections into the Heisenberg basis, which allow

us to uniquely identify the correct ground-states to be taken at increasing flux.

The states are chosen based on the parity of the species’ occupation number. This comes

around since we find that non-degenerate ground-states with odd and even number of

particles per species correspond to different values of the Casimir operators and in turn

to different representation of the SU(N) algebra2.

At zero flux, the ground-state wavefunction of the Hubbard model for systems with (2n)N

fermions with integer n, is not a singlet as opposed to that of the antiferromagnetic

Heisenberg model. In the case of two-component fermions, this issue was circumvented

by considering anti-periodic boundary conditions for the Hubbard model, which results to

be a singlet ground-state [276]. In contrast with the method presented in [276], we do not

modify the boundary conditions for model (7.1). Instead, we modify the spin quantum

numbers as outlined in Chapter 4, such that the non-degenerate triplet eigenstate of the

Heisenberg model is selected.

(b) The one-body density matrix. In what follows, we apply the factorization (7.7)

to determine the one-particle density operator through the calculation of the two-point

correlation matrix of the SU(N) Hubbard model (7.1), together with its dependence on

the flux ϕ:

⟨Ψα(x)†Ψα(x′)⟩ =
∑
l,j

w∗(x− xl)w(x′ − xj)⟨c†l,αcj,α⟩, (7.8)

where Ψ†
α(x) and Ψα(x) are the fermionic field operators satisfying {Ψ†

α(x),Ψα′(y)} =

δ(x − y)δα,α′ , and w(x) are Wannier functions that we take to be independent of the

specific N component.

2It is worth noticing that this eigenvalue may be accidentally degenerate in the Heisenberg model.
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7.2 Momentum distribution

The momentum distribution defining the occupation of fermions in the Fermi sphere is

given by

nα(k) =
1

L

L∑
j,l

eık(rl−rj)⟨c†l,αcj,α⟩, (7.9)

with rj denoting the position of the lattice sites in the ring’s plane. In the aforementioned

limit of infinite repulsion, the correlation matrix can be recast as

⟨c†l,αcj,α⟩ =
∑
{x}

sign(Q)sign(Q′)(S)∗(S)′ω(j → l, α), (7.10)

where {x} is the spinless fermion configuration, S denotes the Slater determinant of the

charge degrees of freedom Q refers to the sign of the corresponding permutation. S’ and

Q’ are the same quantities but evaluated for the wavefunction of a fermion that moved

from the j-th to the l-th site (see Figure 7.2). In the presence of flux, we note that

apart from choosing the correct Heisenberg state, one has to account for the shift in

quasimomenta kj induced by the spin quantum numbers through Equation (4.12). These

quasimomenta are different from the momenta k in the momentum distribution discussed

here. Furthermore, we would like to emphasize that instead of calculating the Slater

determinant for the continuous Gaudin-Yang-Sutherland model, we discretize it. Such an

approach is necessary in order to keep track of the mapping between the spin wavefunctions

of the Hubbard and Heisenberg models. The term ω(j → l, α) corresponds to the spin

part of the wavefunction of the Hubbard model, taking into account the sum over all the

spin configurations and any changes in Φ(y1, · · · , yM ).

Figure 7.2: Schematic representation of the effect of c†l,αcj,α on an SU(2) wavefunction.

The upper part depicts the initial state in a given configuration with the corresponding

decoupled wavefunction shown on the right. The bottom figure illustrates the final state

and its corresponding wavefunction after performing the hopping action on the initial

state. Figure reproduced from [276].

Before proceeding to evaluate Equation (7.10), we note that ω(j → l, α) is independent

of α such that ω(j → l, α) = ω(j → l). Moreover, in the limit of infinite repulsion, the

spin wavefunction of the Hubbard model can be mapped to that of the Heisenberg, such

that ω(j → l) = ω̃(j′ → l′), where the tilde indicates the spin correlation function of the

Heisenberg model. In this mapping, we associate the j′th spin of the Heisenberg model

to the fermion on the jth site of the Hubbard model, that after the hopping operation

c†l cj , becomes the l′th spin corresponding to an fermion of the lth site –Figure (7.2). We

emphasize that the expression in Equation (7.10) is of the same form as for the SU(2)

98



7.2. Momentum distribution

case [276]. The difference lies in the definition of ω̃(j′ → l′), which encodes the SU(N)

character of the system:

ω̃(j′ → l′) ≡ ⟨Pl′,l′−1Pl′−1,l′−2 · · ·Pj′+1,j′⟩HXXX
. (7.11)

This expression corresponds to the expectation value in the Heisenberg state of the SU(N)

permutation operator Pj′,j′−1 that exchanges the j′th and (j′−1)th sites. With the states

obtained as summarized in Section 7.1, we evaluate the momentum distribution n(k) in

Equation (7.9).
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Figure 7.3: Main panel: Momentum distribution function n(k) for a fixed number of

particles Np = 6 but varying SU(N) symmetry. Inset displays the momentum distribution

for SU(3) systems with different number of particles. Both panels showcase the interplay

between the occupation and the SU(N) character of the system. The integersm correspond

to the momenta 2πm/L where the system size is fixed to L = 27. Figure reprinted

from [110].

The momentum distribution in the absence of magnetic flux is presented for different

SU(N) is depicted in Figure 7.3. For a fixed Np and increasing N , the momentum dis-

tribution is observed to be less broad and to be more peaked around k = 0. This is to

be expected since as N → ∞, SU(N) fermions emulate bosons in terms of level occupa-

tions [94, 199]. Conversely, for fixed SU(N) and increasing number of particles, the mo-

mentum distribution reflects the fermionic statistics of the system, as it becomes broader

due to the occupation of different momenta (see inset of Figure 7.3).

Figure 7.4 depicts the momentum distribution for an SU(2) symmetric system in the

presence of an effective flux. In this case, the ground-state of the Hubbard model is

characterized by level crossings to counteract the flux imparted to the system [275] (see

Chapter 4). Such level crossings correspond to different Heisenberg states, which can be

obtained with the procedure introduced in Section 7.1 by an appropriate change in spin

quantum numbers. From the top row of Figure 7.4, it is clear that the effect of the magnetic

flux manifests itself as a shift in the momentum distribution: the shift gets progressively

larger with increasing flux. To capture how this happens precisely in the momentum
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Figure 7.4: Top row: The momentum distribution function n(k) for Np = 10 particles

with SU(3) symmetry and various sites L. Essentially, the effective magnetic flux ϕ shifts

the momentum distribution as expected. Bottom row: The symmetric (left) and anti-

symmetric (right) components of the momentum distribution denoted as n+(k)[n(k −
∆k/2) + n(−k − ∆k/2)]/2 and n−(k) = n(k − ∆k/2) − n(−k − ∆k)/2) respectively are

plotted as a function of the flux ϕ. These intermediate values of the flux, that correspond

to the inner fractionalized parabolas in the energy as discussed in Chapter 4, produces a

momentum distribution that is non-symmetric. The integersm correspond to the momenta

2πm/L. Figure adapted from [110].

distribution, we plot the symmetric and anti-symmetric components of the momentum

distribution denoted as n+ and n− respectively in the bottom panel of Figure 7.4.

7.2.1 The Fermi gap for U = ∞

In the thermodynamic limit at zero temperature T = 0 and zero interactions U = 0, the

Fermi function drops from a finite value to zero at the Fermi momentum kf . At finite

interaction, states with k > kf can be occupied and, compared with the free fermion case,

the gap at kf is reduced accordingly. For SU(N) symmetric particles, the maximum oc-

cupation of a single momentum level is N . For N → ∞, the Fermi-distribution function

should resemble a Bose-distribution.

Since the system under consideration deals with a finite number of particles and mesoscopic

sized rings, it is far from the thermodynamic limit. In this regime, parity effects appear

in Np/N for SU(N) fermions. Therefore, we distinguish the two cases: odd occupations

(Np/N = 2n+1) and even occupations (Np/N = 2n). Defining the gap for odd occupations

is straight forward: every single k-level up to the Fermi momentum is occupied at zero

interactions. For example, in the case of two-component fermions with Np = 6, all k ∈
{−1, 0, 1} are fully occupied (see Chapter 6). Therefore, the Fermi gap ∆ is defined as

f(kf ) − f(kf + ∆k), with ∆k = 2π/L, where f(k) corresponds to the Fermi distribution

function. The situation is different for even particles per species. In this case, the levels |kf |
are only partially filled and this is visible even for U = 0. For instance, two-component

fermions with Np = 4, one can have either k ∈ {0, 1} or k ∈ {−1, 0}. Therefore, the
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definition of the Fermi gap changes. In the case of an even number of particles per species,

we define the gap as f(kf − ∆k) − f(kf + ∆k).
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Figure 7.5: Gap in the momentum distribution ∆ as function of the number of particles

Np, in the limit of infinite repulsion. It is shown for different cases for dependencies of N

in SU(N) (main panel) and for different values of Np/N from 1 to 4 (inset) with L = 27.

It can be seen that the gap decreases with growing N . The single exception is the case of

SU(3) (see main panel). The particularities concerning the definition of the gap for finite

number of particles are described in the main text.

In agreement with the above argument, we find that the gap is generically going down with

N , but with a non-trivial dependence on Np and with parity effects for SU(2) and more

pronounced for SU(3) –Figure 7.5. The two particles per species in the SU(3) symmetric

case is clearly against the trend of decreasing gap with growing Np, that is present for the

other curves. Indeed, we point out on account of this behaviour of the SU(3) symmetric

case, it would lead one to think that the case of Np/N = 1 for N = 6, included only

in the inset of the figure, seems to go against the general trend of the gap decreasing

with increasing N . The non-monotonic behaviour displayed by the Np/N = 2 SU(3)

symmetric case is quite peculiar, but as of yet we do not have a deeper understanding of

this phenomenon. However, we note that expecting the gap to decrease for Np fixed with

growing N , would give a hint towards a parity effect of the number of components N , at

least in the case Np = 6. In principle, Fermi gap need not follow a monotonic behavior.

The expectation is that for each Np it has to eventually converge to zero as N → ∞,

since the Bose-distribution does not have one. Lastly, it is important to notice that in the

systems considered in this paper, we never come below the ratio of Np/N = 1 because we

fixed the occupation of each component to be equal.
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7.3 Interference dynamics in ultracold atoms

In this section, we present a particular scenario in which the exact one-body density matrix

can be tested in the current state-of-the-art experimental observables in ultracold atom

settings. Specifically, we consider the homodyne and self-heterodyne protocols explored

in Chapter 6. For the sake of conveniency, we provide a brief recap of both protocols.

Figure 7.6: Cross-section of the momentum distribution n(TOF )(kx, 0) in the limit of infi-

nite repulsion for various values of the effective magnetic flux ϕ. No depression is observed

in the momentum distribution as the threshold imposed by the fermionic statistics and

fractionalization has not been surpassed. Additionally, we note that the peak of the mo-

mentum distribution is non-monotonous as outlined in Chapter 6. The results are obtained

using the exact one-particle density matrix for L = 15. Figure adapted from [110].

The homodyne protocol consists in performing time-of-flight (TOF) imaging of the spatial

density distribution of the atomic cloud: upon sudden release from its confinement po-

tential, the atomic cloud expands freely, with the initially trapped atoms interfering with

each other creating specific interference patterns. At long time expansions, the result-

ing inteference pattern corresponds to calculating the momentum distribution n(k)(TOF )

defined as

n(TOF )
α (k) = |w(k)|2

L∑
j,l

eık(rl−rj)⟨c†l,αcj,α⟩, (7.12)

where w(k) is the Fourier transform of the Wannier function, rj denotes the position of

the lattice sites in the ring in the plane and k = (kx, ky) are their corresponding Fourier

momenta.

The self-heterodyne protocol follows the same procedure as the homodyne one, albeit

with an additional condensate placed in the center of the system of interest, to act as

a phase reference. Accordingly, as the center and the ring undergo free co-expansion

in TOF, characteristic spirals emerge as the two systems interfere with each other. In

order to observe the phase patterns in a second quantized setting, one needs to consider
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density-density correlators between the center and the ring

GR,C =
∑
α

∑
j,l

Ijl(r, r
′, t)⟨c†l,αcj,α⟩, (7.13)

where Ijl(r, r
′, t) = wc(r

′, t)w∗
c (r, t)w∗

l (r′ − r′l, t)wj(r− rj , t) the Wannier functions of the

interfering terms.

By exploiting the correlation matrix calculated in the previous sections, we can evaluate

the exact interference images obtained through these two expansion protocols for two-

component fermions –Figures 7.6 and 7.7. The characteristic traits of the interferograms

as discussed in Chapter 6 are readily observed. In particular, we highlight that the inter-

ference patterns in both figures correspond to Np = 10 SU(2) symmetric fermions, which

is a system that is beyond the reach of both exact diagonalization and DMRG.

Figure 7.7: Interference GR,C between ring and center for Np = 10 particles with SU(2)

symmetry against the effective magnetic flux ϕ at short time t = 0.022 in the limit of

infinite repulsion. Middle panel is the schematic for the fractionalized persistent current

for the corresponding system. The interference pattern corresponding to the first parabola

(red), displays four dislocations as in the zero interaction case. On going to the next

parabolas, that correspond to jumps in the persistent current, the number and orientation

of the dislocations changes reflecting the angular momentum fractionalization. There is no

spiral in the above interference patterns since no hole has opened up (see Figure 7.6). All

correlators are evaluated using the exact one-particle density matrix for L = 15 by setting

r′ = (0, R) and radius R = 1. The color bar is non-linear by setting sgn(GR,C)
√
|GR,C|.

Figure reprinted from [110].

103



7.4. Conclusions and Outlook

7.4 Conclusions and Outlook

In this chapter, we develop a theoretical framework to calculate the exact one-particle

density matrix of N -component fermions in the limit of strong repulsion using Bethe

ansatz analysis of the SU(N) Hubbard model. By splitting the problem into the spin-

less fermionic and SU(N) Heisenberg models, we manage to compute these observables

for number of particles, ring sizes and number of components well beyond the current

state-of-the-art tractable by numerical methods: On one hand, the number of particles

and system size are well beyond exact diagonalization schemes; on the other hand, we

remark that through Bethe ansatz the limit of infinite repulsion, a notoriously challeng-

ing limit for DMRG, could accessed. From the technical side, we note that our Bethe

ansatz scheme agrees well with the numerics of the lattice model (for system parameters

that could be accessed). Specifically, we are able to calculate the correlations of systems

composed of 38 sites and 12 particles in the spinless configuration. Depending on N , this

would correspond to a larger Hilbert space in the Hubbard model, such as 7.62 × 1012 for

N = 2. Exact diagonalization/Lanczos can only handle around 7 million. Therefore, there

is no direct comparison between the two methods possible in this respect. Furthermore,

we highlight that our system is far from being in the dilute regime of Equation (7.1). In

spite of this, there is an excellent agreement between exact diagonalization and our scheme

that is intrisically reliant on the system being Bethe ansatz integrable. Bethe ansatz inte-

grability hinges on the fact that the scattering of more than two particles does not occur

(Yang-Baxter factorization of the scattering matrix). In the infinite repulsive regime, the

multiparticle scattering is suppressed since the probability of two particles interacting is

vanishing. Therefore, despite the fact that we are not in the dilute limit condition, the

system is indeed very close to be integrable and our method is able to accurately tackle

the infinite repulsive limit of the SU(N) Hubbard model.

The Fourier transform of the correlation matrix is the momentum distribution of the sys-

tem. Despite being one of the simplest interesting correlation functions, the momentum

distribution reflects the many-body character of the quantum state. In particular, we

quantify exactly the dependence of the gap at the Fermi point on the different number

of particles and components, confirming the general expectation that for a large number

of fermionic components the Pauli exclusion principle relaxes. However, we find that the

suppression of the gap for finite systems is non-monotonous.

Furthermore, we applied this scheme to the case in which SU(N) matter can flow in ring-

shaped potentials pierced by an effective magnetic flux. An additional complication in

the calculation arises since the matter-wave states obey a complex dependence on the

flux, ultimately leading to persistent currents with fractional quantization as discussed in

Chapter 4. In particular, we read-out such a phenomenon in terms of spin-states of the

SU(N) Heisenberg model. In this context, we provide an example where the developed

theory allows us to calculate the readily available experimental observables homodyne [47]

and self-heterodyne [48] time-of-flight measurements introduced in Chapter 6.
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Our exact results can be exploited to benchmark observables related to the one-body

density matrix of SU(N) fermions in the strongly interacting limiting. Lastly, the devel-

oped theoretical framework opens the possibility to study more complicated correlation

functions.
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CHAPTER 8

Conclusions and Outlook

Atomtronics is the quantum technology of guided ultracold atoms [38, 39]. After an intense

activity devoted to atomtronic circuits operating with bosonic fluids, recent experiments

have set the scene to explore the potential of atomtronic circuits comprised of matter-waves

of fermionic nature [47, 48]. In this thesis, we considered fermionic atomtronic circuits

made by a ring-shaped quantum gas of SU(N) symmetric fermions threaded by an effec-

tive magnetic flux, starting a persistent current. Such matter-wave current is found to

display specific quantization properties depending on the attributes of the N -component

quantum fluid.

In Chapter 4, we studied a matter-wave current of SU(N) fermions subject to repulsive

interactions for different filling fractions [107]. At incommensurate fillings, we find that

the angular momentum is quantized to fractional values fixed by the number of particles

Np. This is reflected in the persistent current, which has its period reduced by 1/Np.

Although this phenomenon shares similarities with the one in attractive bosons, their

sources are markedly different. While in attracting bosons, the fractionalization arises

from the formation of an Np-body bound state, in repulsive fermions, it originates due

to the coupling between the spin and matter degrees of freedom mimicking an ‘attraction

from repulsion’. On going to commensurate filling fractions, the angular momentum re-

tains its integer quantization due to the opening of the Mott gap as the system transitions

from the superfluid to the Mott phase. This is reflected in the persistent current by the

smoothening out of its characteristic sawtooth shape. By performing finite-size scaling

analysis, we demonstrate that the persistent current, despite its mesoscopic nature, can

detect the onset to the Mott phase transition.

Next, our attention shifted to attractive SU(N) fermionic matter in Chapter 5 to study the

formation of complex bound states whose nature goes beyond the standard two-component

fermion pairing [108]. In particular, we focus on SU(3) fermions that are able to form two-
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and three-body bound states, called colour superfluids (CSFs )and trions, respectively.

These are the cold atoms analogues of mesons and hadrons in quantum chromodynamics

(QCD). We find that for attractive interactions, the angular momentum displays a frac-

tional quantization that is fixed by the number of SU(N) components instead of Np as

found in repulsive matter. The persistent current exhibits a reduced periodicity by 1/r,

indicating the formation of an r-body bound state, irrespective of the number of particles

in the system. Accordingly, we demonstrated that the persistent current can distinguish

between CSFs and trions. In addition, analysis of finite temperature effects reveals how

thermal fluctuations can lead to the deconfinement of bound states: for weak attractions,

we observe a crossover from a three-body bound state to free particles, marked by the

reinstatement of the single-particle frequency of the persistent current. Such a crossover

shares similarities with the Quark-Gluon plasma formation at large temperatures and

small baryonic densities in QCD. We note that, to our knowledge, this study provides the

first instance of a persistent current-based simulator of specific problems in QCD.

Inspired by the experimental know-how in the field, in Chapter 6, we analysed the per-

sistent current of SU(N) fermions through interference dynamics generated by homodyne

and self-heterodyne protocols [109]. The presence of circulating current states with a given

angular momentum is surveyed through the appearance of a characteristic hole/spiral in

the interferograms. In both cases, we find that the interference patterns display a distinc-

tive dependence on the structure of the Fermi distribution and the particles’ correlations.

Accordingly, this enables us to monitor the fractional values of the angular momentum ob-

served in the repulsive and attractive regimes discussed in Chapters 4 and 5. Furthermore,

our study demonstrates how the analysis of these interferograms provides information on

both the number of particles and components, two quantities that are notoriously hard to

extract experimentally.

Lastly, in Chapter 7, we worked out an exact Bethe ansatz scheme for the computation of

the one-particle density matrix of SU(N) matter in the limit of strong repulsive interac-

tions, which is rather challenging to obtain numerically despite its simple expression [110].

Through our developed framework, we are able to compute the momentum distribution,

as well as the observables that are of direct interest to the expansion protocols discussed

in Chapter 6, for a larger number of particles and system sizes that is tractable with

the current numerical infrastructure. We expect that our exact results can be exploited

to benchmark observables related to the one-body density matrix of SU(N) fermions in

the strongly interacting limit. Finally, the theoretical framework we developed opens the

possibility of studying more complicated correlation functions.

In conclusion, this thesis has laid the foundation for the blueprints of matter-wave cir-

cuits based on SU(N) fermionic platforms. Through our results, we provide support to

the notion that persistent currents can be used as diagnostic tools to probe interacting

quantum many-particle systems. Additionally, the specific quantization properties dis-

played by the persistent current in both the repulsive and attractive regimes are expected

108



to lead to enhanced performances in rotation sensing, as was recently predicted for at-

tracting bosons [87, 88]. In this direction, SU(N) fermionic matter could realize SU(N)

atomic SQUIDs. An exciting direction opened up by the work carried out in this thesis

is to explore atomtronics-enabled quantum simulators for high energy physics. Various

scenarios can be investigated in this context, ranging from QCD to lattice gauge theories

and quantum gravity. Another interesting avenue that can be considered moving forward

is that of quantum transport in fermionic systems. Although extensively studied in solid

state platforms, fermionic transport could be revisited with a new twist in the field of

atomtronics owing to the high degree of control and versatility of cold atoms.
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APPENDIX A

Mapping the SU(N) Hubbard model to the Gaudin-Yang Sutherland

model

In this Appendix, we present the derivation of the Gaudin-Yang-Sutherland model as the

continuous limit of vanishing lattice spacing of the SU(N) Hubbard model.

The density of fermions in the lattice denoted by D can be expressed as D = Np/(L∆) with

Np being the number of particles, L denoting the number of sites and ∆ corresponding to

the lattice spacing. The filling factor ν is related to the lattice spacing in the following

manner

ν =
Np

L
=

Np

∆L
∆. (A.1)

Therefore, in the continuous limit of vanishing lattice spacing ∆ → 0 and finite particle

density
Np

∆L , the filling fraction must be accordingly small. For the anti-commutation

relations to hold in the continuous limit, the fermionic operators have to be rescaled such

that

c†j,α =
√

∆Ψ†
α(xj) nj,α = ∆Ψ†

α(xj)Ψα(xj) with xj = j∆ (A.2)

where Ψ† is the creation field operator for a fermion with colour α, and obeys the standard

anti-commutation relations {Ψα(x),Ψ†
β(y)} = δα,βδ(x− y) and {Ψ†

α(x),Ψ†
β(y)} = 0.

Utilizing Equation (A.2), the SU(N) Hubbard model in Equation (2.18) is mapped onto

the Fermi gas quantum field theory in the following way

HSU(N) = t∆2HFG − 2Np, (A.3)

where the Fermi gas quantum field Hamiltonian reading

HFG =

∫ [
(∂xΨ†

α)(∂xΨα) + c

N∑
α<β

Ψ†
αΨ†

βΨβΨα

]
, (A.4)
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with α and β denoting different SU(N ) colours, Np corresponds to the number of particles

and having an interaction strength c = U
t∆ . The Fermi gas field theory is the quantum

field theory of the Gaudin-Yang-Sutherland model. This can be demonstrated through

eigenstates of HFG, which can be written as

|ψ(λ)⟩ =
N∑

α1...αNp

∫
χ(x|λ)Ψ†

α1
(x1) . . .Ψ

†
αNp

(xNp) |0⟩ dx. (A.5)

One can prove that χ(x|λ) are eigenfunctions of the Gaudin-Yang-Sutherland Hamilto-

nian [190, 273]

HGY S = −
N∑

α=1

Nα∑
i=1

∂2

∂x2i,α
+ c

∑
i<j

∑
α,β

δ(xi,α − xj,β), (A.6)

where Nα is the number of particles with colour α. The Gaudin-Yang-Sutherland model

is Bethe ansatz integrable for all N unlike its lattice counterpart, whose integrability

is preserved only for N = 2 [199]. In the case of N > 2, the lattice regularization of

model (A.6) spoils the integrability of the model for the same reasons as the Bose-Hubbard

case [335]. Nonetheless, the mapping that was sketched out enables us to compare our

numerical results obtained for the SU(N) Hubbard model having large system sizes and

small filling fractions, with the exact solution provided by the Bethe ansatz of the Gaudin-

Yang-Sutherland model.

114



APPENDIX B

SU(N) Heisenberg model

At integer filling fractions of one particle per site and large repulsive interactions, the

SU(N) Hubbard model reduces to an effective spin model, which through second order

perturbation theory is found to correspond to the SU(N) Heisenberg model [98, 101,

124]. Indeed, the low-lying excited states of the original fermionic model (2.18) result to

be captured by the spin model. The SU(2) Heisenberg model is a sum of permutation

operators

HXXX =
∑
i

Pi,i+1 =
∑
i

(1 + σ⃗i+1 · σ⃗i)/2, (B.1)

with σ⃗i corresponding to the Pauli matrices, the three generators of the SU(2) Lie algebra.

In the case of the SU(N) Heisenberg model, the Hamiltonian can be constructed in a

similar fashion [101, 191]. In general we obtain for the generators λi of the SU(N)

Pi,i+1 =
1

N
1 +

1

2
λ⃗i · λ⃗i+1, (B.2)

which acts on sites i and i+ 1 permuting the SU(N) states.

B.1 Details about the SU(N ) Generators

The generators of the Lie algebra SU(N) group are analogues of the Pauli matrices in

SU(2). Taking SU(3) as an example, we have six non-diagonal generators

λ1 =

0 1 0

1 0 0

0 0 0

 λ2 =

0 −i 0

i 0 0

0 0 0

 λ3 =

0 0 1

0 0 0

1 0 0



λ4 =

0 0 −i
0 0 0

i 0 0

 λ5 =

0 0 0

0 0 1

0 1 0

 λ6 =

0 0 0

0 0 −i
0 i 0

 , (B.3)
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that together with two diagonal generators

λ7 =

1 0 0

0 −1 0

0 0 0

 λ8 =
1√
3

1 0 0

0 1 0

0 0 −2

 , (B.4)

comprise the Gell-Mann matrices that are the matrix representation of the SU(3) Lie alge-

bra group. For generalization purposes, the generators were grouped by defining λ2p−1/2p,

p = 1, . . . , N(N−1)
2 which are analogues to the σx/y that operate between the different sub-

spaces of SU(3) which are (i, j), i < j. Here, both run from 1 to 3. We decided to group the

elements of the diagonal Cartan basis at the end as λ7 and λ8, which differs from the stan-

dard Gell-Mann matrices, but is eases the generalisation. For the extension to SU(N), one

has to consider the N(N−1)/2 elements λi, which would correspond to σx/y in some space

(i, j), where i < j ∈ {1, . . . , N}. Additionally, the corresponding diagonal Cartan elements

need to be taken into account. There are N−1 Cartan elements that can be constructed

via the following formula λN2−(N+1)+m = diag{1, . . . , 1,−(m−1), 0, . . . , 0}/
√
m(m− 1)/2

where m = 2, · · · , N ; the 1/0 occurs (m− 1)/(N −m) times, respectively.

B.2 Casimirs of SU(N ) fermions

Whereas in SU(2) we have a single Casimir operator, for SU(N) groups, we are faced with

N−1 Casimirs. Out of these Casimirs, we are only interested in the quadratic Casimir

C1 =
1

4

N2−1∑
i=1

λ2i , (B.5)

as it relates to the total spin quantum number S2, which is necessary for us to classify

the Heisenberg eigenstates. An issue that presents itself is to calculate the Casimir in

different SU(N) representations. In the following, we sketch out the procedure to write

the quadratic Casimir operator for SU(3) and SU(4) in the SU(2) representations.

We start by looking at the SU(3) case, where its representations Λ(n1, n2) are labeled by

integer numbers which correspond to the simple Cartan elements (h1, h2): Λ(n1, n2) = n⃗·h⃗.

The elements are given by

h1 = (λ3, λ8) · (1, 0)T =⇒ h1 =: (σz)1,2, (B.6)

h2 = (λ3, λ8) ·
(
− 1

2
,

√
3

2

)T

=⇒ h2 =: (σz)2,3 . (B.7)

To calculate the quadratic Casimir values for these representations Λ, we need the Cartan

matrix

Ch = 2

(
h⃗i · · · h⃗j
||hi||2

)
ij

=

(
2 −1

−1 2

)
, (B.8)
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defined by the Killing form (λj , λk) := K(λj , λk) = 1
8 trλjλk = 1

4δjk (see [336], chapter 12

for the evaluation of the Casimir). Evaluating the quadratic Casimir, we get that

3C1 = (Λ,Λ + δ) =
[
n⃗C−1

h + δ⃗
]
n⃗T =

2∑
i=1

ni(ni + 3) + n1n2, (B.9)

giving the value of 4/3 for the fundamental representations (1, 0) and (0, 1). Here, δ⃗ =
1
2

∑
h∈∆+

h = (2, 2)T ( see [336–338] for the positive roots ∆+. These are the two simple

roots together with their sum, h1+h2. If one introduces half-integer values as in the SU(2)

representation for each ni such that (ni = 2Ji), we obtain

C1(Λ) =
4

3

[∑
i

Ji

(
Ji +

3

2

)
+ J1J2

]
. (B.10)

Likewise for SU(4), the representations Λ(n1, n2, n3) of SU(4) are labeled by the Cartan

elements (h1, h2, h3): Λ(n1, n2, n3) = n⃗ · h⃗, which are given by

h1 = (λ13, λ14, λ15) · (1, 0, 0)T =⇒ h⃗1 =: (σz)1,2, (B.11)

h2 = (λ13, λ14, λ15) ·
(
− 1

2
,

√
3

2
, 0

)T

=⇒ h⃗2 =: (σz)2,3, (B.12)

h3 = (λ13, λ14, λ15) ·
(

0,− 1√
3
,

√
2

3

)T

=⇒ h⃗3 =: (σz)3,4. (B.13)

The corresponding Cartan matrix reads

Ch =

 2 −1 0

−1 2 −1

0 −1 2

 . (B.14)

Upon evaluating the quadratic Casimir as in Equation (B.10), we have that

2C1(Λ) = (n1 + 2n2 + n3)
2 + n1

(
2n1 +

3

4

)
+ n3

(
2n3 +

3

4

)
+ n2. (B.15)

with δ⃗ = 1
2

∑
h∈∆+

h = (3, 4, 3)T . These are the three simple roots together with h1 + h2,

h2 + h3, and h1 + h2 + h3. Introducing half-integer values as for SU(2), we obtain

C1(Λ) = 2J2

(
J2 +

1

4

)
+
∑
i=1,3

3Ji

(
2Ji +

1

4

)
+ 4

∑
i<j

JiJj , (B.16)

leading to the value of 15/8 for the fundamental representations (1, 0, 0) and (0, 0, 1), and

5/4 for the representation (0, 1, 0).
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APPENDIX C

Bethe ansatz of the Gaudin-Yang Hamiltonian

In this Appendix, we focus on the Bethe ansatz of the Gaudin-Yang model, which is the

continuum limit of Equation (2.18) with N = 2. Then, we present the Lieb-Wu equations

for a system consisting of Np particles with M flipped spins.

Consider Np two-component fermions with mass m residing on a one-dimensional ring of

size LR that interact via a delta interaction of strength c1. The model describing such a

system, called the Gaudin-Yang Hamiltonian, is

HGY = − ℏ2

2m

Np∑
j=1

∂2

∂x2j
+ 2c

∑
i<j

δ(xi − xj), (C.1)

with xj denoting the coordinate of the j-th particle. In what follows, the energy scale is

given by ℏ = m = 1. The corresponding stationary Schrödinger equation reads

− ℏ2

2m

Np∑
j=1

∂2Ψ

∂x2j
+ 2c

∑
i<j

δ(xi − xj)Ψ = EΨ, (C.2)

for an arbitrary many-body wavefunction ψ(x1, . . . , xNp). Bethe’s hypothesis supposes

that in a given sector Q defined by 0 < xQ1 < xQ2 < . . . < xQNp < LR, the solution to

Equation (C.2) is a combination of plane waves such that

Ψ(x1, . . . , xNp) =
∑

P∈SNp

sign(P )sign(Q)ψ[Q;P ] exp

(
ı
∑
j=1

kPjxQj

)
, (C.3)

where ψ[Q;P ] being an Np! × Np! matrix housing all the amplitude coefficients, with P

and Q being permutations of the distinct momenta kj and the position of the particles xj

respectively. The summation over P covers all the permutations of the numbers 1, . . . , Np,

forming the symmetric group SNp . The permutation Q is introduced to take into account

1Here, we take c > 0. The model is still integrable for c < 0, but one needs to do additional steps by

introducing the string solutions, which will be covered in detail in Chapter 5
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the identity of the particles, seeing as they are distinguishable2. The quantities sign(P )

and sign(Q) are the +1 (−1) for permutations with an even (odd) number of exchanges

respectively.

In order for Equation (C.2) to be satisfied, we require that at the boundary X between

two different sectors of Q, the wavefunction in both regions has to “match” such that

ψ|X=0+ = ψ|X=0− , (C.4)

where X = xQ(j+1) − xQj for j ∈ {1, . . . , Np − 1}. Additionally, because of the delta

interaction, its first derivative is discontinuous

∂ψ

∂r

∣∣∣∣
X=0+

− ∂ψ

∂r

∣∣∣∣
X=0−

= 2cψ|X=0. (C.5)

Figure C.1: Pictorial representation of the scattering process of two particles. The figure

is split into two sectors Q = (12) for x2 > x1 and Q = (21) for x1 < x2. Both the incoming

and outgoing waves are shown and are in line with Equation (C.8).

Applying the continuity boundary condition (Equation (C.4))on our wavefunction yields

ψ[Q;P ] − ψ[Q;P ′] = ψ[Q′;P ′] − ψ[Q′;P ], (C.6)

where P ′ = P (j, j+1) and Q′ = Q(j, j+1) are permutations that interchange the elements

j and j + 13. For the discontinuity condition defined in Equation (C.5), we are left with

ı(kj+1 − kj)(ψ[Q;P ] − ψ[Q′;P ] + ψ[Q;P ′] − ψ[Q′;P ′]) = 2c(ψ[Q;P ] − ψ[Q;P ′]). (C.7)

Substituting the relation from the continuity equation into the latter, we obtain

ψ[Q;P ′] = − ıc

kj+1 − kj − ıc
ψ[Q;P ] +

kj+1 − kj
kj+1 − kj − ıc

ψ[Q′;P ], (C.8)

which can be interpreted in terms of the scattering between two bodies. When two distin-

guishable particles scatter such as the spin-12 fermions with opposite spins that are under

2The order of a particle xj in a sequence is dictated by the value that Qj adopts. Here, we choose the

sector of ascending order.
3To put this into perspective, for the two-body problem the continuity equation would read as [1, 2; 1, 2]−

[1, 2; 2, 1] = [2, 1; 2, 1]− [2, 1; 1, 2]. In this manner, the boundary condition becomes very intuitive as upon

exchanging two fermions, be it their quasi-momenta or their position, a change in sign is acquired due to

their anti-symmetry.
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consideration, the wavefunction will either be transmitted or reflected. Consequently, this

leads us to define a scattering matrix S,

Sab
ji = Rji1 + TjiP̂

ab, (C.9)

where P̂ ab is the permutation operator that exchanges two particles a and b. Here, we

have opted to define the scattering matrix in the reflection representation as the reflection

coefficients lie on the diagonal. The reflection and transmission coefficients, denoted by

Rj+1,j and Tj+1,j respectively, are expressed as

Rj+1,j = − ıc

kj+1 − kj − ıc
Tj+1,j =

kj+1 − kj
kj+1 − kj − ıc

. (C.10)

Note that in the case of reflection, the particles only exchange momenta such that Q re-

mains unchanged, whilst in transmission both P and Q change (see Figure C.1). Naturally,

Rj+1,j + Tj+1,j = 1 since the scattering process is purely elastic because of integrability.

For a given Np in a fixed configuration P with permuting Q, the scattering process can

be written in the following form.
ψ[Q1;P ]

ψ[Q2;P ]
...

ψ[QNp!;P ]

 = (Rji + TjiP̂
ab)


ψ[Q1;P ′]

ψ[Q2;P ′]
...

ψ[QNp!;P ′]

 , (C.11)

where the scattering operator having a dimensionality of Np!×Np! acts on the amplitude

vector of size Np!. The permutation operator P̂ ab is an Np! × Np! matrix relating the

two fixed configurations of P = (1, . . . , a, b, · · · , Np) and P ′ = (1, . . . , b, a, · · · , Np); whilst

Qi corresponds to the permutations of the particles’ identities, with i running over all

the possible configurations. In total, there are (Np − 1)(Np!) equations having the same

form as Equation (C.11), but there are (Np!)
2 amplitude coefficients4. As such, for these

equations to be mutually consistent for any set of distinct quasi-momenta kj , we require

that this set of equations leads to a unique set of coefficients. This amounts to saying that

the scattering process should be irrespective of the two-body scattering sequence that we

adopt. To verify that this is the case, it is enough to look consider the three particle

problem.

Starting from an initial configuration ijk, there are two possible ways to reach the final

configuration kji as depicted in Figure C.2. In such a case, we see that the scattering

process does not depend on the sequence that we consider. The corresponding consistency

equation in terms of the scattering matrices

Sab
jkS

bc
ikS

ab
ij = Sbc

ij S
ab
ikS

bc
jk, (C.12)

leads to the Yang-Baxter equation, a sufficient condition for Bethe ansatz integrable sys-

tems. By the Yang-Baxter equation, the scattering happening in many-body systems is

4The factor Np − 1 comes out from having Np − 1 equations of the same form as Equation (C.8) on

account of the boundary condition defined in Equation (C.7).
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factorized in a suitable sequence of two-particles scattering. Through Equation (C.12) as

well as noting that

Sab
ji S

ab
ji = 1; SijSkl = SklSij i ̸= j ̸= k ̸= l, (C.13)

one can straightforwardly check for arbitrary Np that the scattering operator characteriz-

ing our system is consistent.

Figure C.2: Graphical representation of the Yang-Baxter equation for the three-body

problem. Starting from an arbitrary initial state, the final state is reached in both cases

irrespective of the sequence of two-body scatterings, thereby ensuring the consistency of

our approach.

The goal is to obtain the amplitude coefficients ψ[Q;P ] by solving the scattering matrix

equation (C.11), Gaudin [187] and Yang [188] figured out that the problem can be reduced

to one with a smaller dimensionality by splitting it into two: the spatial part and the spin

part. For the spatial part, the Np particles are taken to be indistinguishable. In this

manner, the problem can be treated in a similar way as bosons described by the Lieb-

Liniger model, allowing us to calculate the quasi-momenta kj associated to the spatial

wavefunction by the coordinate Bethe ansatz5. Naturally, this is justified since in the case

of same component fermions, the amplitudes of the scattering matrix are equal with a

change in sign by antisymmetry [184]. With this out of the way, we can focus on the spin

part of the wavefunction that handles the scattering between fermions in different spin

projections. By exploiting the fermions’ antisymmetric nature, we have that for a given

configuration of P , only C
Np

M coefficients need to be calculated [262]. So, it is sufficient

for us to keep track of the wavefunction amplitudes for a given set of positions of the M

down spins. Consequently, we may express the wavefunction amplitudes as

Φ(y1, y2, . . . , yM ;P ) = sign(Q)ψ[Q;P ], (C.14)

where Φ(y1, y2, . . . , yM ;P ) is the spin wavefunction; y1 < y2 < . . . < yM are the corre-

sponding coordinates of the M down spins being a subset of the particle positions xj such

5For bosons, the problem is simplified since one needs to take into account only the exchange of momenta

of the particles, which is symmetric under exchange, due to their indistinguishability. So then, after

applying the continuity and discontinuity conditions, one needs to apply periodic boundary conditions to

find that a particle acquires a phase factor after undergoing Np − 1 body scatterings as we will see later.
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that yi ⊂ {1, . . . , Np}6. Through this observation, Yang constructed a generalized Bethe

hypothesis, known as the Bethe-Yang hypothesis, which assumes the following structure

for the spin wavefunction [188]

Φ(y1, y2, . . . , yM ) =
∑

π∈SM

A(π)
M∏
n=1

FP (Λπn; yn), (C.15)

where π corresponds to the permutations of the M down spins forming the symmetric

group SM , with A(π) and FP being coefficients that need to be determined. Here, we

see the introduction of the quantity Λα, which corresponds to the spin rapidities for each

down spin yα. These rapidities adopt a similar role to the quasi-momenta in the spatial

part: they characterize the evolution of the spins throughout the scattering processes.

The form of the function FP was obtained by McGuire for both repulsive and attractive

interactions [184, 185], by looking at the scattering matrix of Np particles with one flipped

spin:

FP (y,Λ) =

y−1∏
j=1

(kPj − Λ + ıc′)

Np∏
l=y+1

(kPl − Λ − ıc′), (C.16)

which can be straightforwardly checked by looking at the two- and three-body prob-

lems with M = 1 [184, 262]. In the case of an arbitrary number of spin downs, we

start by noting the following relations between the spin wavefunction amplitudes Φ̃ =

Φ(y1, . . . , yl, . . . , yM ;P ) [262]:

Φ̃ = Φ(y1, .., yl, .., yM ;P ′) if ∀l, yl ̸= j, j + 1 or if yl = j, yl+1 = j + 1, (C.17)

Φ̃ = −Rj+1,jΦ(y1, .., yl, .., yM ;P ′) + Tj+1,jΦ(y1, .., yl + 1, .., yM ;P ) if yl = j, yl+1 ̸= j + 1,

Φ̃ = −Rj+1,jΦ(y1, .., yl, .., yM ;P ′) + Tj+1,jΦ(y1, .., yl − 1, .., yM ;P ) if yl = j + 1, yl−1 ̸= j,

where P, P ′ are elements of the symmetric group SNp with P ′ = P (j, j + 1), and j ∈
{1, . . . , Np} corresponds to the identifier of the particle. The first condition implies that

the spin wavefunction remains unchanged if none of the down spins are involved in the

interchange of momenta. This also holds if any neighbouring down spins are involved, as

this exchange is already accounted for in the scattering process of the spatial part. The

second (third) relation embodies the Pauli exclusion principle, in that for a particle to hop

right (left), its intended destination cannot be occupied by another spin-down fermion7.

By imposing these conditions on the generalized Bethe hypothesis in Equation (C.15), as

well as putting P ′ = P (yl, yl + 1) and π′ = π(l, l + 1) one obtains an expression for the

amplitudes A(π) [262]

A(π) = ϵπ
∏
j<l

(Λπj − Λπl − ıc), (C.18)

6To put this into perspective, if we have five fermions with two down spins arranged in the following

manner: ↑↑↓↑↓ with their corresponding coordinates being (x1, x2, x3, x4, x5) = (1, 3, 4, 6, 8). The position

of both down spins is y1 = 3 and y2 = 5 and it is related to the position of the particle xj .
7Note that the permutation symmetry of the particles is taken into account by the change in sign of

Rj+1,j .
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where ϵπ = ±1 depending on the parity of the permutations. With this, the complete

expression for the spin wavefunction in terms of the charge kj and spin Λα rapidities for

an arbitrary number of spin downs can be constructed.

The remaining step in determining the Bethe ansatz equations step is to apply periodic

boundary conditions ψ(x1, x2, . . . , xNp) = ψ(xNp − LR, x1, x2, . . . , xNp−1). In the more

general case of a given particle, this amounts to saying that a particle with a given kj

makes a full turn around the ring after undergoing scattering with (Np − 1) particles,

acquiring a phase factor:

ψ[Q;P ]eıkjLR = Sj+1,j . . . SNp,jS1,j . . . Sj−1,jψ[Q;P ], (C.19)

which can be re-cast in the following form for the Np-th,

Φ(y1, y2, . . . , yM ;P )eıkPNpLR = Φ(y1 + 1, y2 + 1, . . . , yM + 1;PNp, P1, P (Np − 1)).

(C.20)

There are two different situations that need to be considered: particle Np can either be

a spin up yM ̸= Np or a spin down yM = Np [184, 262]. Keeping this in mind and

substituting the complete expression for the Bethe-Yang hypothesis, gives us two sets of

coupled equations

eıkjLR =
M∏
α=1

kj − Λα + ıc′

kj − Λα − ıc′
j = 1, . . . , Np, (C.21)

M∏
β=1
β ̸=α

Λα − Λβ + ıc

Λα − Λβ − ıc
=

Np∏
β=1

Λα − kj + ıc′

Λα − kj − ıc′
α = 1, . . . ,M. (C.22)

These are the Bethe ansatz equations for the Gaudin-Yang model (C.1). Upon comparing

these equations with those of the Lieb-Liniger model for bosons, one can fully appreciate

the power of the Bethe-Yang hypothesis: only M extra equations were added in contrast

to the one-component case.

As we mentioned previously, the Gaudin-Yang model is the continuum limit of the Hub-

bard model and so it is natural to expect that the Bethe equations of the latter have a

similar structure [167]. Indeed, if we repeat the whole procedure again for the Hubbard

model (2.18) with N = 2, we observe that the scattering equation (C.8) and the spin

wavefunction (Equations (C.15), (C.16) and (C.18)) are of the same form, with the added

difference that kj is replaced by sin kj [302]. The introduction of sin kj accounts for the

different dispersion relation and it comes out from the regularisation in constructing the

lattice theory from a continuous one [167, 335]. In their logarithmic form, the Lieb-Wu

equations for the Hubbard model read as [179],

kjL−
M∑
α=1

θ(sin kj − Λα) = 2πIj j = 1, . . . , Np, (C.23)

M∑
β

θ(2Λα − 2Λβ) −
Np∑
j=1

θ(Λα − sin kj) = 2πJα α = 1, . . . ,M, (C.24)
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where θ(x − y) = −2 arctan
(x−y

u

)
with u = U/4. The equations are parameterised by

two sets of quantum numbers denoted by Ij and Jα, which are called the charge and spin

quantum numbers respectively [262]. By construction, each set of quantum numbers needs

to be mutually distinct, since the wavefunction would vanish if this was not the case [302].

Through manipulation of the quantum numbers, one gains access to the whole spectrum of

the system and as such, they are instrumental in understanding the underlying many-body

physics of the model.
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APPENDIXD

Spinon configurations in the Bethe ansatz of strongly repulsive SU(N)

fermions

In this Appendix, we present in detail how the charge and spin quantum numbers need to

be changed in order to capture the fractionalization of the energy and in turn the persis-

tent current presented in Chapter 4.

To minimize the energy at a given flux value ϕ, one requires that the summation over the

spin rapidities X satisfies the degeneracy point equation having the form [275, 277]

2w − 1

2Np
≤ ϕ+D ≤ 2w + 1

2Np
, where X = −w, (D.1)

with w only being allowed to have integer or half-integer values due to the nature of the

spin rapidities, and D =
Imax+Imin

2 .

Consider the case of Np = 3 SU(3) symmetric fermions. There are three sets of quantum

numbers: one pertaining to the charge momenta Ij and the other two belonging to the spin

momenta denoted as Jα1 and Jα2 introduced in Chapter 4. The ground-state configuration

for such a system is given as Ij = {−1, 0, 1}, Jα1 = {−0.5, 0.5} and Jα2 = {0}1. The spin

quantum numbers for all the values of the flux per Equation (D.1) is as follows

As can be seen from Table (D.1), in cases where X = 0, the spin quantum number

configuration is different from the ground-state one and ‘holes’ are introduced such that

the spin quantum number configurations are no longer consecutive, with the set of Ij

remaining unchanged. There are two notable points worthy of mention. The first is

that one could have chosen a different way to arrange the set of quantum numbers. An

alternative arrangement is given by Table (D.2). The target value X is reached via a

different configuration, which in turn leads to a degenerate state. Such a phenomenon is

1The form for these quantum numbers comes out from taking the logarithm of the product Bethe ansatz

equations. The expression for these quantum numbers can be found in [190].
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Magnetic flux Jα1 Jα2 X

0.0 − 0.1 {−0.5, 0.5} {0} 0

0.2 − 0.5 {−1.5, 0.5} {0} −1

0.6 − 0.8 {−0.5, 1.5} {0} +1

0.9 − 1.0 {−0.5, 0.5} {0} 0

Table D.1: Spin quantum number configurations with the flux for Np = 3 SU(3) symmetric

fermions.

a characteristic property of SU(N) systems that is not present for SU(2). As N increases,

the number of degenerate states that are present in the system increases due to the various

Bethe quantum number configurations that one can adopt.

Magnetic flux Jα1 Jα2 X

0.0 − 0.1 {−0.5, 0.5} {0} 0

0.2 − 0.5 {−0.5, 0.5} {−1} −1

0.6 − 0.8 {−0.5, 0.5} {+1} +1

0.9 − 1.0 {−0.5, 0.5} {0} 0

Table D.2: Alternative spin quantum number configurations with the flux for Np = 3 with

SU(3) spin with M1 = 2 and M2 = 1.

The other point concerns the value of X for ϕ = 0.6 − 0.8 and ϕ = 0.9 − 1.0. According

to Equation (D.1), X should be equal to −2 and −3 respectively. However, this is not the

case. The reason behind this is due to the fact that the degeneracy equation has to be

applied within a specific flux range that depends on the parity of the system: for a flux in

the interval of −0.5 to 0.5 for Np = N(2n+1) and in the range of ϕ = 0.0 to 1.0 in the case

of Np = N(2n). The ground-state energy of the system is given by a series of parabolas

in the absence of interactions as discussed in Chapter 3. These parabolas each have a well

defined angular momentum l. They intersect at the degeneracy points, which is parity

dependent, and are shifted with respect to each other by a Galilean translation [339].

Consequently, when the magnetic flux piercing the system falls outside the range outlined

previously, one needs to change the Ij quantum numbers in order to offset the increase

in angular momentum l that one obtains on going to the next energy parabola. Note

that in the limit of strong repulsion, the angular momentum of the system increases at

ϕ =
(
s± 1

2Np
+δ
)

with s being (half-odd) integer in the case of (diamagnetic) paramagnetic

systems, with δ = ∓ 1
2Np

for an odd number of particles.

For positive ϕ one requires that the Ij quantum numbers need to all be shifted by one to

the left. For example in the case considered above for ϕ > 0.5, the Ij go from {−1, 0, 1}
to {−2,−1, 0} for 0.5 < ϕ < 1.5. On going to the next parabola, they would need to be

shifted again by one to the left. In the case of negative ϕ, the shift occurs to the right.

Note that there are other combinations of the quantum numbers, not outlined in Tables D.1

and D.2, whose total sum reaches the target value of X. However, these configurations do
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not give the lowest value for the energy as the ones mentioned, even though the value of

X is the same. At infinite U , the system is solely dependent on the value of X and not

on the arrangement of the spin quantum number configuration. Consequently, the system

is highly degenerate. This is also observed in the SU(2) case. However, as mentioned

in Chapter 4, the degeneracy is lifted on going to large but finite U and one is left with

only one combination that gives the lowest energy in the case of SU(2) systems. On the

other hand, for SU(N) systems whilst this degeneracy is also lifted, they also benefit from

an extra ‘source’ of degeneracy due to the different configurations of the Bethe quantum

numbers as shown in Tables D.1 and D.2.
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APPENDIX E

Jordan-Wigner Transformation for SU(N) fermions

The SU(N) Hubbard Hamiltonian describing a ring of L-sites threaded by an effective

magnetic flux ϕ reads

H = −t
L∑
j

N∑
α

(
eı

2πϕ
L c†j,αcj+1,α + h.c.

)
+ U

L∑
j

∑
α<β

nj,αnj,β, (E.1)

To map the fermionic model onto spins (qubits), we need to make use of the Jordan-

Wigner transformation, which is characterised as a non-local transformation. Originally

devised to map spinless fermions onto spins [340], the Jordan-Wigner transformation was

extended for two-component fermions [341, 342] and now we apply it to the general SU(N)

case. By introducing N sets of Pauli operators, one for every colour α of the fermionic

atom, the mapping assumes the following form:

c†i,α =
∏
j<n

σzjσ
+
n , ci,α =

∏
j<n

σzjσ
−
n , (i, s) −→ n = i+ αL , (E.2)

where σ± = (σx ± ıσy)/2 are the ladder operators acting on |0⟩n and |1⟩n that represent

the absence and presence respectively, of a fermion with colour α on site j. It is straight-

forward to show that the mapping in Equation (E.2) preserves fermionic commutation

rules irrespective of the colour α. Equation (E.2) implies that a fermionic operator of

colour α acting on site j is mapped onto a spin-12 operator σ+n acting on qubit n = j+αL.

Consequently, a system of SU(N) fermions comprised of L sites is mapped onto NL qubits

–Figure E.1. In the following, without loss of generality, we adopt an increasing order for

α, such that n < n′ for fermionic operators with α < β.

Let us start by noting that σznσ
±
n = ∓σ±n and σ±n σ

z
n = ±σ±n through the commutation

rules of the Pauli matrices. For the nearest-neighbor hopping terms, we find that

c†j,αcj+1,α =
∏
m<n

σzmσ
+
n

∏
k<n+1

σzkσ
−
n+1 =⇒ c†j,αcj+1,α = σ+n σ

−
n+1. (E.3)
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Figure E.1: Mapping of a three site linear chain of the SU(3) Hubbard model (black) to

N chains of L qubits, where N = L = 3. The dashed grey lines depict the hopping term

between qubits pertaining to the same colours, whilst the black solid lines correspond to

the interactions between qubits in different colours. Figure adapted from [252].

Likewise, the Hermitian conjugate term can be expressed as

c†j+1,αcj,α =
∏

m<n+1

σzmσ
+
n+1

∏
k<n

σzkσ
−
n =⇒ c†j+1,αcj,α = −σ+n+1σ

−
n . (E.4)

Special care needs to be taken at the boundary condition when j = L and j + 1 = 1. In

this case, we have that

c†L,αc1,α =
∏

m<L+sL

σzmσ
+
L+αL

∏
k<1+αL

σzkσ
−
1+αL = σ−1+αL

(
L+αL∑

m=1+αL

σzm

)
σ+L+1+αL , (E.5)

and similarly for the Hermitian conjugate terms. The term in brackets corresponds to

exp
(
ıπN̂α + 1

)
where N̂p is the total particle number operator per colour [343]. For

an odd (even) number of particles of a given species, the exponential becomes +1 (−1)

respectively. As such, we need to impose the following parity boundary condition on the

Hamiltonian

Pi,α =

−1 , if i = L− 1 and Nα is even,

+1 , otherwise.
(E.6)

Now, since nj,α = c†j,αcj,α, then

nj,α =
∏
m<n

σzjσ
+
n

∏
k<n

σzkσ
−
n = σ+n σ

−
n , (E.7)

which can be rewritten as

nj,α =
1 − σzn

2
. (E.8)

Therefore, putting Equations (E.3) and (E.8) we find the original SU(N) Hubbard model,

after application of the Jordan-Wigner transformation, gets mapped to

H = −t
∑
j,α

Pj,α

(
eı

2πϕ
L σ+j+αLσ

−
j+1+αL + h.c.

)
+
U

4

∑
j,α<β

(
1 − σzj+αL

) (
1 − σzj+βL

)
. (E.9)
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APPENDIX F

The formation of symmetric and asymmetric trions

In this Appendix, we investigate all the different ways that a trion can be formed by tuning

the different interactions between the colours.

(a) (b) (c)

Figure F.1: Persistent current I(ϕ) against flux ϕ/ϕ0 for the three main phases of SU(3)

fermions: (a) unpaired, (b) csf and (c) trion. Results were obtained with exact diagonal-

ization for Np = 3 and L = 15. The lines are meant as a guide to the eye for the reader.

(a) (b) (c)

Figure F.2: Persistent current I(ϕ) against flux ϕ/ϕ0 for the formation of a trion with

symmetric interactions |U | = |UAB| = |UBC | = |UAC | for: (a) |U | = 0.5, (b) |U | = 1 and

(c) |U | = 3. Results were obtained with exact diagonalization for Np = 3 and L = 15.

The lines are meant as a guide to the eye for the reader.

The first path to forming a trion is displayed in Figure F.2 and it is achieved by using

symmetric interactions, i.e., equal interactions between the colours. Starting from a sys-

tem with zero interactions like the one depicted in Figure F.1(a), the persistent current

fractionalizes with increasing interaction and experiences a periodicity change from ϕ0 to
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ϕ0/N upon formation of the trion –Figure F.2 (c).

(a) (b) (c)

(d) (e) (f)

Figure F.3: Persistent current I(ϕ) against flux ϕ/ϕ0 for the formation of a trion by

forming a CSF as an intermediate step. Starting from |UAC | = 0.5 in (a), one starts

increasing the interactions between colours A and C until one forms a CSF in (c) with

|UAC | = 3. The interactions |UAB| and |UBC | are kept at a value of 0.01. In the bottom

panel, the interactions between colour B to both colours A and C are increased from

|UAB| = |UBC | = 0.5 in (d), to |UAB| = |UBC | = 3 in (f) at which a trion is formed.

Results were obtained with exact diagonalization for Np = 3 and L = 15. The lines are

meant as a guide to the eye for the reader.

Another way is to break SU(3) symmetry by forming the CSF bound state during an

intermediate step. In this case, we take one interaction between two colours, say |UAC |, to

be significantly larger than the other ones denoted by |UAB| and |UBC |. On increasing the

interaction |UAC |, the persistent current of colours A and C starts to fractionalize reflecting

the formation of the two-body bound state –Figures F.3 (a) to (c). Subsequently increasing

interactions |UAB| and |UBC | to match |UAC |, causes further the persistent current of colour

B to fractionalize such that the current obtains a reduced period of ϕ0/N for all three

species.

(a) (b) (c)

Figure F.4: Persistent current I(ϕ) against flux ϕ/ϕ0 for the formation of a trion with

asymmetric interactions. The interaction is increased between colours A and B, and

between B and C denoted by |UAB| and |UBC | respectively. At (a) the interactions

|UAB| = |UBC | = 0.5 are increased, until one forms a trion in (c) with |UAB| = |UBC | = 6.

The interaction |UAC | is kept at a constant value of 0.01 throughout. Results were obtained

with exact diagonalization for Np = 3 and L = 15. The lines are meant as a guide to the

eye for the reader.
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Lastly, a trion can be formed by choosing asymmetric interactions between the colours.

At variance with the formation of a CSF, we take two interactions |UAB| and |UBC |
to be significantly larger than |UAC | –Figure F.4. In this case, the persistent current

fractionalizes and eventually achieves the tri-partite periodicity. Interestingly enough,

one has formed a trion by breaking SU(3) symmetry. However, we remark that this

‘asymmetric’ trion can still be distinguished from an actualy trion seeing as the energy of

the former is higher (less stable) than that on an actual trion, which in turn is reflected

in the current. Furthermore, the species-wise persistent current of the ‘asymmetric’ trion

is not equivalent in all three colours. This is to be expected since one colour is interacting

twice as much as the other two.
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APPENDIX G

Time-of-flight momentum distribution in the free particle regime

In cold atoms systems, the persistent current is experimentally observed through time-

of-flight (TOF) imaging. This entails looking at the momentum distribution of the gas,

which is one of the few observables that can be experimentally probed [314]. Here, we will

give the derivation for the momentum distribution.

Starting from the expression for the one-body correlator n(r, r′, t) defined as

⟨n(r, r′)⟩ = ⟨Ψ†(r)Ψ(r′)⟩, (G.1)

where r is position, Ψ†(r) and Ψ(r) are the fermionic creation and annihilation field

operators. Expanding the field operators in the basis set of the single-band Wannier

functions wj(r) such that Ψ(r) =
∑L

j w(r−rj)cj , the two-point correlator has the following

expression

⟨n(r, r′)⟩ =

L∑
j,l

w∗(r− rl)w(r′ − r′j)⟨c†l cj⟩, (G.2)

with wj(r−rj) being the Wannier function localised at site j with position rj and L being

the number of lattice sites. If we consider the free expansion in time t of the particle density

n(r, r′, t), it is still defined as in Equation (G.2), but the time dependence is encoded in

the expansion of the Wannier function wj(r, t) that reads

w(r− rj , t) =
1√
π

ηj
η2j + ıω0t

exp

{
− (r− rj)

2

2(η2j + ıω0t)

}
. (G.3)

where ηj is the width of the center at the j-th site and ω0 = ℏ
m with ℏ and m denoting

Planck’s constant and the particles’ mass respectively, both of which are set to 1 in this

calculation. Note that we have taken the zeroth order approximation of the Wannier

function and the harmonic approximation. By letting the density distribution to expand

for large values of time, one obtains the momentum distribution n(k). The momentum

distribution is defined as the Fourier transform of the one-body correlator n(r, r′),

⟨n(k)⟩ =

∫
eık(r−r′)⟨Ψ†(r)Ψ(r′)⟩drdr′, (G.4)
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where k is the momentum. One can verify that limt→∞⟨n(r, r′, t)⟩ ≈ ⟨n(k)⟩, by taking

the limit t→ ∞ of Equation (G.3) and performing a Taylor expansion.

Substituting the expression for the field operators into Equation (G.4), the expression for

n(k) reads

⟨n(k)⟩ =

∫
eık(r−r′)

L∑
j,l

[w∗(r− rl)w(r′ − r′j)⟨c†l cj⟩]drdr′. (G.5)

Utilising the change of variables R = r− rj and R′ = r′ − r′l, we arrive to

⟨n(k)⟩ =

∫
eık(R−R′)

L∑
j,l

eık(rl−r′j)[w∗
l (R)wj(R

′)⟨c†l cj⟩]dRdR′, (G.6)

which by making use of the fact that w(k) =
∫
w(R)eık·RdR, can be further simplified to

give

⟨n(k)⟩ = |w(k)|2
L∑
j,l

eık(rl−r′j)⟨c†l cj⟩, (G.7)

with w(k) being the Fourier transform of w(R). Finally, we write our ring configuration

explicitly as

⟨n(k)⟩ = |w(k)|2
L∑
j,l

eı[kxr(cos(
2πl
L )−cos( 2πj

L ))+kyr(sin( 2πl
L )−sin( 2πj

L ))]⟨c†l cj⟩, (G.8)

where the momentum vector can be written as k = (kx, ky) and polar coordinates were

utilized r = (r cos θ, r sin θ), with θ = 2π
L l.

Now, we introduce the creation operator and its Fourier transform [167]

c†l =
1√
L

L∑
k

e−ıklc†k, (G.9)

as well as the Fourier transform of its counterpart the annihilation operator

cj =
1√
L

L∑
k′

eık
′jck′ . (G.10)

Therefore, the one-body correlator ⟨c†l cj⟩ in Fourier space reads

⟨c†l cj⟩ =
1

L

L∑
k,k′

e−ıkl+ık′j⟨c†kck′⟩. (G.11)

Furthermore, at zero interactions we have that ⟨c†kck′⟩ = δk,k′ . Consequently, the expres-

sion for the momentum distribution reads

⟨n(k)⟩ =
1

L
|w(k)|2

L∑
j,l

eı[kxr(cos(
2πl
L )−cos( 2πj

L ))+kyr(sin( 2πl
L )−sin( 2πj

L ))]
∑
{q}

e−
2πı
L

(l−j)q, (G.12)
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where we made use of the fact that for free fermions k = 2π
L q with q being the quantum

number labeling the Fermi sphere levels. At this point, by setting kx = |k| sinϕ and

ky = |k| cosϕ we have that

⟨n(k)⟩ ∝ 1

L

∑
{q}

∣∣∣∣ L∑
l

eır(B sinϕ cos θl+B cosϕ sin θl)e−
2ıπl
L

q

∣∣∣∣2, (G.13)

whereB =
√

2|k|2. Using the trigonometric identity sin(A+B) = sinA cosB+cosA sinB,

the expression is simplified even further and reads

⟨n(k)⟩ ∝ 1

L

∑
{q}

∣∣∣∣ L∑
l

eırB sin(ϕ+θl)e−
2ıπl
L

q

∣∣∣∣2. (G.14)

The expression in Equation (G.14) is a q-th order Bessel function of the first kind [307]

Jq(x) =
1

2π

π∫
−π

eı(x sin τ−qτ), (G.15)

where x = rB and τ = 2πl
L . It is important to stress here that replacing the sum by an

integral is only an approximation, which becomes valid in the thermodynamic limit. As a

result, by setting

Jq(B) ≈
L∑
l

eırB sin(ϕ+θl)e−
2ıπl
L

q, (G.16)

the momentum distribution reads as

⟨n(k)⟩ ∝ 1

L

∑
{q}

|Jq(k)|2. (G.17)

This enables us to study the momentum distribution analytically, by considering it as

a summation of different Bessel functions as was carried out in [307] and generalized to

SU(N) in the main text. It is important to note that the Equation (G.17) only holds at

zero interactions. In the case of interacting particles ⟨c†kck′⟩ ≠ δk,k′ . As such, we no longer

have an analytical expression for the momentum distribution and different behaviours are

observed in the interacting regimes as reported in this paper. The scheme developed in

Chapter 7 allows us to calculate the momentum distribution exactly in the limit of strong

repulsive interactions. Note that the derivation for the momentum distribution carried in

this section is done for spinless fermions. In the case of SU(N) fermions, which in the

free particle regime one can treat as N chains of spinless fermions, Equation (G.17) would

need to be multiplied by N .
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APPENDIXH

Self-heterodyne interference between a ring and a quantum degenerate

gas in the free particle regime

In this Appendix, we consider the density-density correlator G(r, r′, t) for a ring and

an additional site in the center that was employed in Chapter 6 to model the self-

heterodyne protocol. The two-body correlator is defined in the following way G(r, r′, t) =∑N
α,β⟨nα(r, t)nβ(r′, t)⟩ . The density operator is defined as n(r, t) = ψ†(r, t)ψ(r, t) where

ψ† = (ψ†
R + ψ†

C) being the field operator of the whole system of the ring and the center,

denoted by R and C respectively. Initially, the ring and the center are decoupled until

they are released from their confinement potential. Thus, at time t = 0 the ground-state

can be seen as a product state |ϕ⟩ = |ϕ⟩R ⊗ |ϕ⟩C .

Assuming free expansion for t ≥ 0, i.e., negligible particle-particle interactions, the density-

density correlator gets markedly simplified as the number of terms can be reduced. To

start, terms comprised of an odd number of creation or annihilation operators have an

expectation value of zero since the number of particles in the system has to be conserved.

The only remaining terms are ones consisting of an equal number of creation-annihilation

pairs. Consequently, the expression for the density-density correlator reads

N∑
α,β

⟨nα(r, t)nβ(r′, t)⟩ =
∑
α,β

⟨nα(r, t)nβ(r′, t)⟩R + ⟨nα(r, t)nβ(r′, t)⟩C

+
∑
α,β

[⟨nα(r, t)⟩R⟨nβ(r′, t)⟩C + ⟨nβ(r, t)⟩C⟨nα(r′, t)⟩R]

+
∑
α,β

⟨ϕC |ψ†
C,α(r)ψC,β(r′)|ϕC⟩[δ(r− r′)δαβ − ⟨ϕR|ψ†

R,β(r′)ψR,α(r)|ϕR⟩]

+
∑
α,β

[δ(r− r′)δα,β − ⟨ϕC |ψ†
C,α(r)ψC,β(r′)|ϕC⟩]⟨ϕR|ψ†

R,β(r′)ψR,α(r)|ϕR⟩.

(H.1)

The first four terms in Equation (H.1) do not give rise to any interference patterns. Indeed,

it is the cross-terms between the ring and the center (last two terms) that give rise to
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interference. Therefore, taking these two terms and decomposing the wavefunction into

the Wannier states yields

GR,C(r, r′, t) =
N∑
α,β

L∑
j,l=1

Ijl(r, r
′, t)
[
N0,αδα,β(δjl−⟨ϕR|c†l,αcj,α|ϕR⟩)+δα,β(1−N0,α)⟨ϕR|c†l,αcj,α|ϕR⟩

]
,

(H.2)

where we defined the Wannier functions of the interference terms as

Ijl(r, r
′, t) = wc(r

′, t)w∗
c (r, t)w∗(r′ − r′l, t)w(r− rj , t), (H.3)

and N0 = ⟨ϕC |c†0,βc0,β|ϕC⟩ defines the expectation value of the number operator in the

center, which in the current protocol is always equal to one. Consequently, the second

term in Equation (6.4) does not contribute to the interference pattern. Note that one of

the summations over the number of components is removed due to the Kronecker delta

δαβ that arises due to the colour conservation nature of the Hamiltonian describing the

system. To enhance the visibility of the spirals, we neglect the Kronecker delta in the first

term of Equation (H.2) such that

GR,C =
∑
α

∑
j,l

Ijl(r, r
′, t)⟨c†l,αcj,α⟩. (H.4)

In the non-interacting regime, the interference can be computed explicitly. First, we recast

the expression of the Wannier functions in Equation (G.3) in the following way:

w(r− rj , t) =
1√
π

ηj
η2j + ıω0t

η2j − ıω0t

η2j − ıω0t
exp

{
− (r− rj)

2

2(η2j + ıω0t)

η2j − ıω0t

η2j − ıω0t

}
, (H.5)

which can be re-written to give

w(r− rj , t) =
1√
π

ηj(η
2
j − ıω0t)

η4j + ω2
0t

2
exp

{
−

(r− rj)
2n2j

2(η4j + ω2
0t

2)

}
exp

{
(r− rj)

2ıω0t

2(η4j + ω2
0t

2)

}
. (H.6)

By setting A(τ) = 1√
π

ηj(η
2
j−ıτ)

b(τ) , b(τ) = η4j + τ2 and τ = ω0t, we have that the Wannier

functions take the following form:

w(r− rj , t) = A(τ) exp

{
−

(r− rj)
2η2j

2b(τ)

}
exp

{
(r− rj)

2ıτ

2b(τ)

}
. (H.7)

Therefore, the interference between the ring and center in Equation (H.4) can be written

explicitly as

GR,C(r, r′, t) =
1

L
|A(τ)|4 exp

{
− (r2 + r′2)η20

2b(τ)

}
exp

{
ıτ(r2 − r′2)

2b(τ)

}
×

L∑
l,j

exp

{
− (r− rl)

2η2l
2b(τ)

}
exp

{
ıτ(r− r2l )

2b(τ)

}
exp

{
− (r− rj)

2η2l
2b(τ)

}
exp

{−ıτ(r− r2j )

2b(τ)

}
×

∑
{n}

exp

{
− 2ıπ

L
n(l − j)

}
, (H.8)

142



by making use of a result obtained in Appendix G, ⟨c†l cj⟩ = 1
L

∑
{n} e

− 2ıπ
L

n(l−j) that holds

only in the non-interacting regime. After subsequent arrangement the interference term

can be expressed as

GR,C(r, r′, t) =
1

L

∑
{n}

In(r)I∗n(r′), (H.9)

where we have defined

In(r) = |A(τ)|2 exp

{
−

(r2)η2j
2b(τ)

}
exp

{
− ıτ(r2)

2b(τ)

} L∑
j=1

exp

{
−

(r− r2j )η
2
j

2b(τ)

}
exp

{
ıτ(r− r2j )

2b(τ)
−2ıπ

L
nj

}
.

(H.10)

The term In(r) corresponds to a spiral in the x-y plane, with the number of spirals it

exhibits depending on the quantum number of the level it occupies n. Note that in the

derivation sketched above, we choose the number of components α = 1. For N -component

fermions, Equation (H.9) acquires a factor of N .
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APPENDIX I

Derivation for the exact one-body correlation function in the limit of

infinite repulsion

In the Chapter 7, we outlined how the spin and charge degrees of freedom decouple yielding

a simplified form of the Bethe ansatz wavefunction, that at infinite repulsion reads

Ψ(x1, . . . , xNp ;α1, . . . , αNp) = sign(Q)det[exp(ikjxl)]jlΦ(y1, . . . , yM ). (I.1)

Here, we are going to show how to evaluate the Slater determinant of the charge degrees of

freedom and the corresponding spin wavefunction in the presence of an effective magnetic

flux.

I.1 Slater determinant

To calculate the Slater determinant of spinless fermions, we need to start by noting that

quasimomenta can be expressed as

kj = −(Np − 1 + ℓ)
π

L
+ (j − 1)∆k + k0 +

X

Np
, j = 1, . . . , Np (I.2)

where ∆k = 2π
L , X denotes the sum over the spin quantum numbers and ℓ is the angular

momentum. k0 is a constant shift can be 0 or − π
L for systems with (2n)N and (2n+ 1)N

fermions respectively, that will henceforth be termed as paramagnetic and diamagnetic1.

Through Equation (I.2), we can re-write the Slater determinant in the following form

det[exp(ikjxl)]jl = exp(ik1rcmNp)det



1 y1 y21 · · · y
Np−1
1

1 y2 y22 · · · y
Np−1
2

1 y3 y23 · · · y
Np−1
3

...
...

...
. . .

...

1 yNp y2Np
· · · y

Np−1
Np


, (I.3)

1The expression for the quasimomenta is obtained from the decoupling of the Bethe ansatz equations

outlined in Chapter 4.
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I.2. Resolving degeneracies of the spin wavefunction

with rcm denoting
∑

i xi/Np which we refer to as the center of mass. The matrix elements

of the determinant are of the form yj−l
m = exp(i(kj − kl)rm), whereby we made use of

the fact that all the quasimomenta are equidistant. By noting that the matrix in Equa-

tion (I.3) has the same structure of the Vandermonde matrix [276], we can express the

Slater determinant as

det[exp(ikjxQj)] = exp(ik1rcmNp)
∏

1≤i<j≤n

(exp(i∆krj) − exp(i∆kri)), (I.4)

which upon simplification reads

det[exp(ikjxQj)] = exp(ik1rcmNp)
∏

1≤i<j≤n

exp

(
i∆k

rj + ri
2

) ∏
1≤i<j≤n

(
2i sin

∆k(rj − ri)

2

)
.

(I.5)

This expression can be further simplified by noticing that∏
1≤i<j≤n

exp

(
i∆k

rj + ri
2

)
= exp

(
i∆k

2
[rcmN

2
p − rcmNp]

)
, (I.6)

that in conjunction with Equation (I.2) reduces Equation (I.4) into

det[exp(ikjxQj)] = exp

(
i

[
k0 +

X

Np
− ℓ∆k

]
rcmNp

) ∏
1≤i<j≤n

(
2i sin

∆k(rj − ri)

2

)
. (I.7)

In the presence of an effective magnetic flux, the variables X and ℓ need to be changed in

order to counteract the increase in flux. For the spin quantum numbers, the shift needs

to satisfy the degeneracy point equation introduced in Chapter 4

2w − 1

2Np
≤ ϕ+D ≤ 2w + 1

2Np
where X = −w, (I.8)

with ϕ ranging from 0.0 to 1.0 and D being 0
[
−1

2

]
for diamagnetic [paramagnetic] systems.

Upon increasing ϕ, the angular momentum of the system increases at ϕ =
(
s ± 1

2Np
+ δ
)

with s being (half-odd) integer in the case of (diamagnetic) paramagnetic systems, with

δ = ∓ 1
2Np

for an odd number of particles.

I.2 Resolving degeneracies of the spin wavefunction

As U → +∞, all the spin configurations of the model are degenerate. The reason is that

the energy contribution from the spin part of the wavefunction Espin is of the order of t
U .

However, there is no spin degeneracy observed in the Hubbard model: the ground-state

is non-degenerate for SU(2), except for special points in flux with an eigenstate crossing.

Hence, a single state has to be chosen properly to match with the Hubbard model. Due

to the symmetry of both models, we choose the square of the total spin, S⃗2
tot, or quadratic

Casimir operator C1 to label the eigenstates. The selected eigenstates of both models need

to have the same value for this operator. This benchmarking with the Hubbard model

was only utilized for small system sizes in order to understand what representations of the

Heisenberg model we have to choose.
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I.2. Resolving degeneracies of the spin wavefunction

The resulting composition from spinless fermionic and Heisenberg Hamiltonians results in

a translationally invariant model only in cases where these states match. To this end, we

use this as a control mechanism. As already explained in Chapter 7, the spin wavefunc-

tion Φ(y1, . . . , yM ) is obtained by performing exact diagonalization Lanczos methods of

the one-dimensional anti-ferromagnetic Heisenberg model.

a) Zero flux– The ground-state with an odd/even number of particles per species for

the Hubbard model corresponds to different values of the Casimir operator, and, there-

fore to other representations of the SU(N) algebra. For an odd number of species, the

Casimir operator corresponds to a singlet state for all SU(N). The ground-state of the

anti-ferromagnetic Heisenberg model instead is always a singlet and non-degenerate for all

SU(N). Hence, this state will be chosen for an odd number of particles per species Np/N .

However, a different state needs to be chosen for an even number of particles per species.

In the case of N = 2, the required state is the next non-degenerate excited triplet-state

(of total spin J = 1, J⃗2 = J(J + 1)). This corresponds to an n = 2J-representation (see

Appendix B.2).

For SU(N > 2), i.e., N = 3 and N = 4, the first non-degenerate state corresponds to a

Casimir eigenvalue C1 = 6. Examples are the 10-dimensional representations (n1, n2) =

(3, 0) for SU(3) and correspondingly (n1, n2, n3) = (4, 0, 0) for SU(4). The numbers ni in

the SU(3) representations correspond to the numbers p and q frequently used in SU(3)

representations in the mathematical literature and high energy physics; there, they rep-

resent the number of (anti-)quarks. The dimension of a representation (n1, n2) of SU(3)

is d(n1, n2) = (n1 + 1)(n2 + 1)(n1 + n2 + 2)/2. Both representations for SU(3) and SU(4)

have a Casimir value of C1 = 6. We assume that this representation will be (N, 0, . . . , 0)

for SU(N). This state takes the role of the non-degenerate triplet state of SU(2) in the

zero field ground-state for an even species number occupation.

b) Non-zero flux– For strong repulsive interactions, a fractionalization of the persistent

current in the model is observed, as discussed in Chapter 4. The fractionalization appears

since formerly higher excited states are bent by the field to be the ground-state. A unique

method to identify these states would be to utilize the SU(N) Heisenberg Bethe equations,

which have the same spin quantum number configurations as their Hubbard counterparts.

In this manner, we are guaranteed that the corresponding eigenstates obtained from the

Heisenberg model correspond to the ground-state of the Hubbard model. However, this

method is rather tedious to achieve the whole state. This is particularly true because

the Bethe ansatz gives direct solutions only for the highest weight states, and we work

at an equal occupation of each species: the resulting state is then obtained by applying

sufficiently often the proper lowering operators of SU(N).

In the case of paramagnetic systems, i.e., an even number of particles per species, the

central fractionalized parabola (centered around ϕ = 0.5), corresponds to a singlet state.

This parabola results to be non-degenerate for the Heisenberg and is therefore easily
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I.2. Resolving degeneracies of the spin wavefunction

distinguished. As such, one obtains the corresponding states for the outer and central

fractionalized parabolas in a straightforward manner for arbitrary SU(N). For finite field

and degenerate ground-states of the Hubbard model, we do not have a general procedure

to choose the states for SU(N > 2). Therefore to describe this method, we start by con-

sidering SU(2) and then apply it to a system with Np = 3 SU(3) symmetric fermions.

For SU(2), the remaining fractionalized parabolas (i.e., excluding the two outer parabolas

and the central one) have a common spin value of J = 1. This, in turn, results in a two-fold

degeneracy in the spin-12 Heisenberg model for a given sum of the spin quantum numbers

|X|. Hence, the relevant states for two of the parabolas of a given |X| are superpositions of

these degenerate eigenstates of the Heisenberg Hamiltonian. These states can be separated

by different eigenvalues for Pj,j−1, which is part of the Heisenberg model but not commute

with it. We choose to call both eigenstates of this permutation operator
∣∣ψ1/2

〉
. The states∣∣ψl/r

〉
corresponding to the inner branches of the fractionalization are obtained from the

two spin- and energy-degenerate states
∣∣ψ1/2

〉
as∣∣ψl/r

〉
:=

1√
2

(|ψ1⟩ ± i |ψ2⟩) . (I.9)

It is worth mentioning that these states correspond to fractionalized parabolas that are

marked with a change from a singlet state in the absence of flux to a triplet state (on

account of the fractionalization) with each of the basis elements being non-zero. This

happens here gradually via intermediate triplet states excluding certain basis states. As

an example, we take an SU(2) state with Np = 6 particles to explain this better, that goes

from one parabola at zero interactions to six parabolic-wise segments upon fractionaliza-

tion. Since this state has 3 particles per species (↑ or ↓), the parabolas at zero flux start

from a singlet and arrive to a triplet state in the center parabola. The singlet state is made

of three distinct configurations: a) |111000⟩± cyclic permutations, b) |101010⟩−|010101⟩,
and c) the possible remaining configurations with alternating sign (singlet state). This is

mediated via fractionalized states where component a) is missing in the first inner parabola

and additionally component b) vanishes for the second parabola. The triplet has the same

components as the singlet state but without alternating signs.

For SU(2) the corresponding states that belong to the fractionalized parabolas are the

triplet representation, as well. However, this changes for N > 2. The representations are

modified for the intermediate parabolas. In the case of SU(3), we obtain (n1, n2) = (1, 1)

as the 8-dimensional representation (instead of (n1, n2) = (3, 0)), which governs the inter-

mediate parabola. For SU(4), it is (1, 2, 0) instead of (4, 0, 0) (see Appendix B.2). The

Casimir C1 has values 3 and 4, respectively. These representations take the role of the

(degenerate) triplet state of SU(2).

In the case of non-vanishing flux threading a ring of SU(N > 2) symmetric fermions, the

ground-states of the Hubbard Hamiltonian (4.1) belonging to a given |X|, is N−1-fold

degenerate coming from the N−1 sets of spin quantum numbers. This degeneracy holds

for the inner fractionalized parabolas. As a consequence of its one-to-one correspondence
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I.2. Resolving degeneracies of the spin wavefunction

with the Hubbard model, these degeneracies are manifested in the Heisenberg model, in

addition to the two-fold degeneracy mentioned previously for both parabolas with equal

values for |X|. In order for this extra degeneracy to be resolved, we make certain coeffi-

cients of the wavefunction in the Heisenberg basis vanish by corresponding superpositions

of the degenerate states. This has been motivated by former observations in SU(2) (see

discussion above).

To get a better idea of the method, here we exemplify the case of 3 particles in SU(3).

There are only two possible values for |X| in this case, and each parabola is two-fold

degenerate in the Hubbard model. The degeneracy of the Heisenberg model is hence 4-

fold. So, the distinct states have to be selected from a remaining two-fold degeneracy. The

zeroth parabola is in the singlet state of SU(3) that belongs to C1 = 0, for which every

component of the wavefunction is non-zero. Both two-fold degenerate inner parabolas

have C1 = 3 and correspond in one case to the positive or negative permutation of the

species number only; in the second degenerate case, they correspond to configurations

{|021⟩ , |102⟩} and {|120⟩ , |201⟩} as the only non-zero component. These are the states

{|ψ1⟩ , |ψ2⟩} that are to be superposed by formula (I.9). The direct way to obtain the

corresponding state of the Heisenberg model is via the Bethe ansatz wavefunction for the

same spin quantum numbers of the Hubbard model. The degeneracies amount to 2(N−1)-

fold for the SU(N) Heisenberg model. These are distinguished by the eigenstates of the

permutation operator Pj,j+1 up to a remaining (N−1)-fold degeneracy.
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[14] A. Aćın, I. Bloch, H. Buhrman, T. Calarco, C. Eichler, J. Eisert, et al., “The quan-

tum technologies roadmap: a European community view,” New Journal of Physics,

vol. 20, no. 8, p. 080201, (2018).

[15] M. H. Anderson, J. R. Ensher, M. R. Matthews, C. E. Wieman, and E. A. Cornell,

“Observation of Bose-Einstein Condensation in a Dilute Atomic Vapor,” Science,

vol. 269, no. 5221, pp. 198–201, (1995).

[16] K. B. Davis, M. O. Mewes, M. R. Andrews, N. J. van Druten, D. S. Durfee, D. M.

Kurn, and W. Ketterle, “Bose-einstein condensation in a gas of sodium atoms,”

Physical Review Letters, vol. 75, pp. 3969–3973, (1995).

[17] B. DeMarco and D. S. Jin, “Onset of Fermi Degeneracy in a Trapped Atomic Gas,”

Science, vol. 285, no. 5434, pp. 1703–1706, (1999).

[18] S. Chu, “Nobel Lecture: The manipulation of neutral particles,” Reviews of Modern

Physics, vol. 70, pp. 685–706, (1998).

[19] C. N. Cohen-Tannoudji, “Nobel Lecture: Manipulating atoms with photons,” Re-

views of Modern Physics, vol. 70, pp. 707–719, (1998).

[20] W. D. Phillips, “Nobel Lecture: Laser cooling and trapping of neutral atoms,”

Reviews of Modern Physics, vol. 70, pp. 721–741, (1998).

[21] S. Inouye, M. R. Andrews, J. Stenger, H.-J. Miesner, D. M. Stamper-Kurn, and

W. Ketterle, “Observation of Feshbach resonances in a Bose–Einstein condensate,”

Nature, vol. 392, no. 6672, pp. 151–154, (1998).

[22] G. Gauthier, I. Lenton, N. M. Parry, M. Baker, M. J. Davis, H. Rubinsztein-Dunlop,

and T. W. Neely, “Direct imaging of a digital-micromirror device for configurable

microscopic optical potentials,” Optica, vol. 3, no. 10, pp. 1136–1143, (2016).

[23] H. Rubinsztein-Dunlop, A. Forbes, M. V. Berry, M. R. Dennis, D. L. Andrews,

M. Mansuripur, C. Denz, et al., “Roadmap on structured light,” Journal of Optics,

vol. 19, no. 1, p. 013001, (2016).

[24] I. M. Georgescu, S. Ashhab, and F. Nori, “Quantum simulation,” Reviews of Modern

Physics, vol. 86, pp. 153–185, (2014).

152

https://link.aps.org/doi/10.1103/RevModPhys.82.1209
https://doi.org/10.1038/nphys2259
https://link.aps.org/doi/10.1103/RevModPhys.80.885
https://dx.doi.org/10.1088/1367-2630/aad1ea
https://www.science.org/doi/pdf/10.1126/science.269.5221.198
https://link.aps.org/doi/10.1103/PhysRevLett.75.3969
https://www.science.org/doi/pdf/10.1126/science.285.5434.1703
https://link.aps.org/doi/10.1103/RevModPhys.70.685
https://link.aps.org/doi/10.1103/RevModPhys.70.685
https://link.aps.org/doi/10.1103/RevModPhys.70.707
https://link.aps.org/doi/10.1103/RevModPhys.70.707
https://link.aps.org/doi/10.1103/RevModPhys.70.721
https://www.nature.com/articles/32354
https://opg.optica.org/optica/abstract.cfm?URI=optica-3-10-1136
https://doi.org/10.1088/2040-8978/19/1/013001
https://link.aps.org/doi/10.1103/RevModPhys.86.153
https://link.aps.org/doi/10.1103/RevModPhys.86.153


Bibliography

[25] A. D. Cronin, J. Schmiedmayer, and D. E. Pritchard, “Optics and interferometry

with atoms and molecules,” Reviews of Modern Physics, vol. 81, pp. 1051–1129,

(2009).

[26] J. Kitching, S. Knappe, and E. A. Donley, “Atomic Sensors – A Review,” IEEE

Sensors Journal, vol. 11, no. 9, pp. 1749–1758, (2011).

[27] S.-K. Yip and T.-L. Ho, “Zero sound modes of dilute Fermi gases with arbitrary

spin,” Physical Review A, vol. 59, pp. 4653–4656, (1999).

[28] D. Jaksch and P. Zoller, “The cold atom Hubbard toolbox,” Annals of Physics,

vol. 315, no. 1, pp. 52–79, (2005).
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