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Abstract: Parkinson’s disease (PD) is a multisystem and multifactorial disorder and, therefore, the
application of modern genetic techniques may assist in unraveling its complex pathophysiology. We
conducted a clinical–demographic evaluation of 126 patients with PD, all of whom were Caucasian
and of Sicilian ancestry. DNA was extracted from the peripheral blood for each patient, followed
by sequencing using a Next-Generation Sequencing system. This system was based on a custom
gene panel comprising 162 genes. The sample underwent further filtering, taking into account
the allele frequencies of genetic variants, their presence in the Human Gene Mutation Database,
and their association in the literature with PD or other movement/neurodegenerative disorders.
The largest number of variants was identified in the leucine-rich repeat kinase 2 (LRRK2) gene.
However, variants in other genes, such as acid beta-glucosidase (GBA), DNA polymerase gamma
catalytic subunit (POLG), and parkin RBR E3 ubiquitin protein ligase (PRKN), were also discovered.
Interestingly, some of these variants had not been previously associated with PD. Enhancing our
understanding of the genetic basis of PD and identifying new variants possibly linked to the disease
will contribute to improved diagnostic accuracy, therapeutic developments, and prognostic insights
for affected individuals.

Keywords: Parkinson’s disease; NGS; movement disorders; gene variants

1. Introduction

Parkinson’s disease (PD) is the most common neurodegenerative disease worldwide
after Alzheimer’s dementia (AD) and is the foremost degenerative movement disorder.
Pathophysiologically, PD is a complex disorder [1,2] characterized by a heterogeneous
clinical presentation that includes both motor symptoms, which remain the gold standard
for diagnosis, and non-motor symptoms, which are, however, equally prevalent and
disabling [3,4]. The primary motor symptoms encompass bradykinesia, resting tremor,
muscular rigidity, and, later in the disease course, balance disturbances. Meanwhile, non-
motor signs include late-life depression, cognitive decline, rapid eye movement sleep
behavior disorder (RBD), hyposmia, and constipation, among others [2,5]. Notably, non-
motor symptoms can precede motor manifestations by several years, defining the so-called
prodromal phase of PD [2,6,7]. Accordingly, PD can be divided into three stages: preclinical
PD, in which neurodegeneration has begun but no clinical signs or symptoms are yet
evident; pre-motor or prodromal PD, where clinical signs and/or symptoms are present
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but they are still insufficient for a PD diagnosis; and clinical PD, where the diagnostic
criteria are fully met [6]. The main pathophysiological hallmark of PD is the presence of
Lewy Bodies, i.e., intracytoplasmic aggregates of insoluble alpha-synuclein, and the loss of
dopaminergic neurons, especially within the midbrain substantia nigra, pars compacta [2].

PD is currently diagnosed through a neurological examination and medical history,
as there are no laboratory tests or instrumental exams available for a definitive diagnosis.
However, PD is a pleomorphic disease, with the presence of both motor and non-motor
symptoms confirming its pluri-systemic and multifactorial nature [2,5], influenced by
various genetic, neurobiological, and environmental factors working synergistically [4,8].
Therefore, understanding the molecular mechanisms underlying PD is crucial for both
clinicians and researchers. In this context, the identification of the genetic basis of the disease
would greatly aid physicians in improving diagnoses and developing new drugs [9,10]. In
major neurodegenerative diseases, such as PD, AD, amyotrophic lateral sclerosis (ALS),
and frontotemporal dementia, molecular approaches have recently led to the identification
of numerous genetic mutations that significantly affect the disease development, onset,
and progression [5,9]. One of the first mutated genes identified in PD patients was the
alpha-synuclein (SNCA) gene, encoding for the alpha-synuclein protein. This was followed
by the discovery of mutations in other relevant genes, such as leucine-rich repeat kinase 2
(LRRK2), vacuolar protein sorting 35 (VPS35), PTEN-induced kinase 1 (PINK1), ATPase
13A2 (ATP13A2), phospholipase A2 group VI (PLA2G6), and acid beta-glucosidase (GBA).
However, over the years, several other loci have been highlighted, some of which are
associated with peculiar phenotypes [3,5].

Given these considerations, detecting new mutations in neurodegenerative diseases is
of paramount importance in disentangling the complex genomic and clinical manifestations
of PD, ultimately paving the way for innovative disease-modifying treatments. In this
context, the Next-Generation Sequencing (NGS) techniques have emerged as a modern
approach, enabling the examination of millions of sequences simultaneously. Consequently,
the once-unknown causes of rare molecular diagnoses can be now determined relatively
quickly and with a high accuracy and reliability. However, it Is essential to handle the vast
amount of generated data with caution, particularly in patient diagnosis and management,
since everyone possesses a unique genome. Nevertheless, NGS has revolutionized conven-
tional diagnostic and therapeutic strategies, transitioning them into modern sequencing
and individual genomic mapping [11].

Population-based studies have revealed that approximately 5–10% of PD patients have
a genetic form of the disease. Traditionally, PD has been associated with at least 13 loci and
9 genes, including autosomal dominant forms such as Parkinson disease 1 (PARK1) and
SNCA/PARK4, ubiquitin C-terminal hydrolase L1 (UCHL1/PARK5; PARK8/LRRK2; GRB10 in-
teracting GYF protein 2 (GIGYF2/PARK11), and HtrA serine peptidase 2 (HTRA2/PARK13/OMI),
as well as autosomal recessive forms like PRKN/PARK2/Parkin; PARK6/PINK1; and PARK7/DJ-
1/PARK9/ATP13A2 [12]. In recent years, our understanding of PD genetics has advanced
significantly, with the identification of five additional genes causing monogenic forms [13]
and the recognition of 11 loci as risk modifiers for common forms of PD [14].

More recently, two independent studies utilizing Whole Exome Sequencing (WES)
in Austrian and Swiss kindreds detected the same p.D620N mutation (c.1858G>A) in the
VPS35 gene as a causative of autosomal dominant PD [15,16]. As known, VPS35 plays a role
in retrograde transport from endosomes to the trans-Golgi network and, as a consequence,
the p.D620N mutation may cause a dysfunctional endosomal–lysosomal trafficking due
to impaired recycling of the membrane-associated proteins. Another recent NGS study
involving 213 PD patients revealed three novel VPS35 variations (i.e., p.P316S, p.Y507F,
and p.E787K), leading to changes in coded amino acids potentially contributing to PD
pathogenesis. Additionally, a specific mutation in the eukaryotic translation initiation
factor 4 gamma 1 (EIF4G1) (p.R1205H) was identified as a robust PD risk factor in the same
study [17]. Nonetheless, a significant proportion of inherited PD cases remain genetically
unexplained.
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Compared to typical adult-geriatric disease, early-onset PD is well suited for NGS-
based studies given its greater chances to be associated with rare multiple variants. Using
WES and homozygosity mapping, Edvardson et al. detected a deleterious mutation in the
DnaJ heat shock protein family (Hsp40) member C6 (DNAJC6) (c.801-2A>G) in two subjects
affected by juvenile parkinsonism. This mutation has been associated with abnormal tran-
scripts and a marked reduction in DNAJC6 mRNA levels [18]. Coincidentally, by mapping
the disease locus with a lod score of 5.13 to a <3.5 Mbp region at 1p31.3 in a consanguineous
family and through a subsequent WES analysis, Köroğlu et al. [19] identified a homozygous
truncating mutation (p.Q734X) in the DNAJC6 gene. These findings further confirm the
role of DNAJC6 as a gene associated with juvenile parkinsonism, expanding the spectrum
of parkinsonism phenotypes and DNAJC6 mutations [19].

Based on these considerations, in this study, we used NGS techniques to identify new
variants potentially associated with PD, as well as to assess which already known variants
are present, in a homogeneous cohort of Sicilian subjects with PD.

2. Materials and Methods
2.1. Participants

The study included a convenience sample of 126 PD patients (84 males and 42 females)
with a mean age of 73.18 years (standard deviation: 10.88 years) and an average disease
duration of 6.06 ± 4.63 years, all diagnosed according to the latest diagnostic criteria for
PD [20]. All the participants were Caucasian and of Sicilian ancestry, and were recruited
from the Oasi Research Institute—IRCCS of Troina (EN), Italy.

Additional details regarding the clinical–demographic characteristics of these PD pa-
tients, along with their primary comorbidities and medication(s) taken, are provided in the
Supplementary Table S1. Notably, 20 patients had a positive family history for PD. Among
all patients, 62 exhibited an akinetic-rigid phenotype, 21 presented with a tremor-dominant
phenotype, and the remaining 43 displayed mixed features. Furthermore, 43 patients had
clinical and video-polysomnography evidence of RBD, while other sleep disorders (includ-
ing insomnia, obstructive sleep apnea syndrome, and periodic limb movement during sleep,
with or without concurrent RBD) were detected in 91 subjects. In terms of cognitive status,
31 patients had very mild or mild cognitive impairment, while 23 exhibited various degrees
of severity of dementia. Seventeen subjects were diagnosed with a depressive disorder,
with some experiencing concomitant anxiety. Additionally, 55 patients had neuroimaging
evidence of chronic subcortical vascular disease, and most patients (90) presented one or
more conventional vascular risk factor, with hypertension being the most prevalent. At the
time of examination, 55 patients were drug-naive, while the others were being treated with
one or more anti-parkinsonian drugs (30 were on levodopa alone, 29 were on levodopa +
other drugs, and 12 were on anti-parkinsonian drugs other than levodopa).

Informed consent for study participation was obtained from all enrolled patients or, if
needed, from their relatives. The Ethics Committee of the Oasi Research Institute—IRCCS
of Troina (Italy) approved the protocol on 5 April 2022 (approval code: 2022/04/05/CE-
IRCCS-OASI/52) and the study was carried out according to the Declaration of Helsinki in
1964 and its later amendments.

2.2. DNA Extraction

DNA extraction was initiated from peripheral blood samples collected in EDTA tubes.
We followed the protocol by Lahiri and Nurnberger [21], which is a cost-effective, safe, and
efficient method for preparing DNA from whole blood.

2.3. NGS Sequencing

NGS experiments, including sample quality control, were performed by Genomix4life
S.R.L. of Baronissi (Italy). The DNA concentration was assessed using a NanoDropOne
spectrophotometer (Thermo Fisher Scientific, Waltham, MA, USA), and the quality was
evaluated with an TapeStation 4200 (Agilent Technologies, Santa Clara, CA, USA). Indexed
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libraries were created from 300 ng/µL of purified DNA using DNA Prep with Enrichment
with TruSight One Panel (Illumina, San Diego, CA, USA), which provides comprehensive
coverage of over 4800 disease-associated genes. Library quantification was performed using
the Agilent TapeStation 4200 and Qubit fluorometer (Thermo Fisher Scientific, Waltham,
MA, USA), and the libraries were subsequently pooled to ensure equimolar amounts of
each index-tagged sample, resulting in a final sample concentration of 2 nM. Sequencing
and cluster generation were performed with the Illumina NextSeq550Dx system in a
2 × 150 paired-end format, with ~100× coverage. The sequence files (.fastq files) were
subjected to a quality control analysis through the FastQC (http://www.bioinformatics.
babraham.ac.uk/projects/fastqc/ (accessed on 17 October 2023). Paired-end reads were
aligned to the NCBI reference sequence (GRCh37/hg19) and alignment and variant calling
were performed in BaseSpace using Burrows-Wheeler Aligner and Genome Analysis
Toolkit (Burrows-Wheeler Aligner enrichment application).

An NGS panel of 162 genes, selected for their known associations in the literature with
degenerative movement disorders, was applied (Supplementary Table S2).

The raw data are available at ArrayExpress (E-MTAB-13523), accessed on 14 October
2023.

2.4. Data Analysis and Annotation

Identified variants were filtered based on allele frequencies (mean frequency, MAF) < 1%,
utilizing the 1000 Genomes and ExAC as reference genomic datasets. In silico analyses
were conducted using data obtained from wANNOVAR, with input files provided in .vcf
format. Each variant was associated with the clinical profile and supported by literature
references from The Human Gene Mutation Database (HGMD). Variants classified as
“Disease Causing mutation (DM)” or “Disease-Causing mutation? (DM?)” were selected
from the analysis results.

2.5. Statistical Analysis

A statistical analysis was employed to compare the PD patients with variants classified
as “DM” and “DM?”. Specifically, the frequencies of these variants in males/females and
their association with cognitive features were assessed using the Chi-Square test, with a
significance threshold set at p < 0.05.

3. Results

Applying the filters described in the “Data analysis and annotation” section, we found
that 76 subjects did not have detected variants. Conversely, 50 samples (30 from males
and 20 from females) yielded positive results for the studied gene panel, resulting in
the identification of a total of 44 variants (with some subjects having multiple variants).
Among these 44 variants (see Table 1), 26 (as documented in the HGMD and related
literature) are associated with PD, while the remaining 18 are linked to other movement or
neuromuscular disorders. Notably, for 8 of the 162 genes included in the panel, i.e., GBA,
HTRA2, microtubule-associated protein tau (MAPT), LRRK2, DNA Polymerase Gamma
(POLG), PRKN, senataxin (SETX), and tenascin R (TNR), 2 or more variants were identified
(Table 1). On the contrary, the other 18 genes exhibited only one variant each (Table 1).

The genes with the highest number of identified variants were LRRK2, GBA, and
PRKN, with 9, 4, and 3 variants, respectively. In total, we identified 19 “DM” variants and
25 “DM?” variants (Table 1). The statistical analysis of the two groups of patients with
“DM” or “DM?” variants revealed no significant differences regarding either sex or the
presence/absence of cognitive impairment (Figure 1).

http://www.bioinformatics.babraham.ac.uk/projects/fastqc/
http://www.bioinformatics.babraham.ac.uk/projects/fastqc/
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Table 1. List of all the genetic variants, filtered according to HGMD, and the association with PD or
other degenerative movement disorders according to the literature.

ID Sex Gene NM Variant HGDM Reference Condition

9PD
3PD

F
M AP4Ml NM_004722.4 c.1117C>T; STOP CODON; Et. DM [22] SQDM

134PD M APP NM_000484 c.1795G>A (p.E599K); MISSENSE; Et. DM? [23] PD

79PD F ATP13A2 NM_022089 c.2836A>T (p.1946F); MISSENSE; Et. DM? [24] PD

102PD M FKRP NM_024301.5 c.469G>C (p.Al57P); MISSENSE; Om. DM [25] MUD

44PD
55PD

M
M FTHl NM_002032 c.161A>G (p.K54R); MISSENSE DM? [26] PD

108PD M GALC NM_000153.4 c.236G>A (p.R79H); MISSENSE; Et. DM [27] KD

128PD
57PD

M
M GBA NM_001005741 c.1226A>G (p.N409S); MISSENSE; Et. DM [28] PD

98PD
116PD

M
F GBA NM_001005741 c.1448T>C (p.L483P); MISSENSE; Et. DM [29] PD

130PD M GBA NM_001005741 c.1223C>T (p.T408M); MISSENSE; Et. DM [30] PD

llPD M GBA NM_001005741 c.882T>G (p.H294Q); MISSENSE; Et. DM [31] LBD

132PD F GCHl NM_000161 c.68C>T (p.P23L); MISSENSE; Et. DM? [32] DDR

87PD M GIGYF2 NM_001103146 c.1370A>C (p.N457T); MISSENSE; Et. DM? [33] PD

106PD F GRN NM_002087.4 c.415T>C (p.C139R); MISSENSE; Et. DM [34] CBS

54PD F HTRA2 NM_013247 c.215T>C (p.L72P); MISSENSE; Et. DM? [35] PD

101PD
121PD
137PD

M
F
M

HTRA2 NM_013247 c.1195G>A (p.G399S); MISSENSE; Et. DM? [36] PD

123PD F LAMP2 NM_002294 c.586A>T (p.T196S); MISSENSE; Et. DM? [37] DD

107PD F LRRK2 NM_198578.4 c.6055G>A (p.G2019S); MISSENSE; Et. DM [38] PD

5PD
63PD

M
F LRRK2 NM_198578 c.4541G>A (p.R1514Q); MISSENSE DM? [39] PD

89PD F LRRK2 NM_198578 c.5467C>A (p.Q1823K); MISSENSE; Et. DM? [40] PD

117PD F LRRK2 NM_198578 c.lOOOG>A (p.E334K); MISSENSE; Et. DM [41] PD

30PD F LRRK2 NM_198578 c.356T>C (p.L119P); MISSENSE; Et. DM? [42] PD

4PD M LRRK2 NM_198578 c.6929C>T (p.T2310M); MISSENSE; Et. DM? [43] PD

29PD F LRRK2 NM_198578 c.7067C>T (p.T23561); MISSENSE; Et. DM? [44] PD

31PD M LRRK2 NM_198578 c.3200G>A (p.R1067Q); MISSENSE; Et. DM? [45] PD

32PD M LRRK2 NM_198578 c.6566A>G (p.Y2189C); MISSENSE; Et. DM [46] PD

59PD M MAPT NM_005910 c.454G>A (p.A152T); MISSENSE; Et. DM [47] VND

67PD F MAPT NM_016835 c.1280C>T (p.S427F); MISSENSE; Et. DM [48] FD

2PD
74PD

M
F NPC2 NM_006432 c.88G>A (p.V30M); MISSENSE; Et. DM? [49] NPD

94PD F PARK7 NM_007262 c.293G>A (p.R98Q); MISSENSE; Et. DM? [50] PD

48PD M POLG NM_002693 c.1760C>T (p.P587L); MISSENSE; Et. DM [51] PEO

48PD M POLG NM_002693 c.752C>T (p.T2511); DM [52] PEO

lOOPD
45PD
78PD

M
M
M

PRKN NM_004562 c.1204C>T (p.R402C); MISSENSE; Et. DM? [53] PD
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Table 1. Cont.

ID Sex Gene NM Variant HGDM Reference Condition

94PD F PRKN NM_004562 c.245C>A (p.A82E); MISSENSE; Et. DM? [54] PD

68PD M PRKN NM_004562 c.lOOOC>T (p.R334C); MISSENSE; DM? [55] PD

46PD F SETX NM_015046 c.7640T>C (p.12547T); MISSENSE; Et. DM? [56] ALS

59PD M SETX NM_015046 c.3229G>A (p.D1077N); MISSENSE; Et. DM? [57] ALS

9PD
3PD

104PD

F
M
M

SGCE NM_003919.3 c.232+1G>T; SPLICING MUTATION; Et. DM [58] MDY

lPD F SMPDl NM_000543 c.1550A>C (p.E517V); MISSENSE; Et. DM [59] PD

88PD
37PD

F
M SNCAIP NM_005460 c.2125G>C (p.E709Q); MISSENSE DM? [60] PD

63PD F SPGll NM_025137 c. 2764G>A (p.V9221); MISSENSE DM? [61] ALS

106PD F TBKl NM_013254.4 c.1073G>A (p.R358H); MISSENSE; Et. DM [62] ALS

115PD
5PD

M
M TNR NM_003285 c.496A>G (p.T166A); MISSENSE; Et. DM? [63] PD

135PD
68PD

M
M TNR NM_003285 c.538A>C (p.N180H); MISSENSE; Et. DM? [63] PD

97PD M VAPB NM_004738 c.390C>T (p.D130E); MISSENSE; Et. DM [64] ALS

Legend: NM_ identifies the reference sequence of a transcript; HGMD—Human Gene Mutation Database;
Et.—heterozygosity; Om.—homozygosity; SQDM—spastic-dystonic quadriplegia, delayed myelination; MUD—
muscular dystrophy; KD—Krabbe’s disease; LBD—Lewy body dementia; DDR—dystonia dopa-responsive; CBS—
corticobasal syndrome; DD—Danon’s disease; VND—various neurodegenerative diseases; FD—Frontotemporal
dementia; NPD—Niemann–Pick’s disease, type C2; PEO—progressive external ophthalmoplegia; ALS—
amyotrophic lateral sclerosis; MDY—myoclonus dystonia; AP4M1—adaptor-related protein complex 4 sub-
unit mu 1; APP—amyloid precursor protein; FKRP—fukutin related protein; FTH1—ferritin heavy chain 1;
GALC—galactosylceramidase; GCH1—GTP cyclohydrolase 1; GRN—granulin precursor; LAMP2—lysosomal
associated membrane protein 2; NPC2—NPC intracellular cholesterol transporter 2; SGCE—sarcoglycan epsilon;
SMPD1—sphingomyelin phosphodiesterase 1; SNCAIP—synuclein alpha interacting protein; SPG11—SPG11
vesicle trafficking associated, spatacsin; TBK1—TANK binding kinase 1; VAPB—VAMP associated protein B and
C; REF.—Reference; PAT. ASSOC. REF—pathology-associated reference; M—male; and F—female.
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4. Discussion

The main finding emerging from this study is that 60% of the clinically diagnosed
PD samples (76 out of 126) did not exhibit any variant in the genes we studied, thus
suggesting that other genes may be involved. At the same time, the present study confirms
the multifactorial pathophysiology of PD, where the genetic component is not always
necessarily dominant in the development of the disease, and the role played by the complex
interaction between environmental factors and genetic susceptibility [65,66].

In the review by Karimi-Moghadam et al. (2018) and by Day and Mullin (2021) [65,66],
all major genes implicated in genetic subtypes, familial monogenic forms, and sporadic
forms were listed. These included SNCA, PARKIN, UCHL1, PINK1, DJ-1, LRRK2, ATP13A2,
GIGYF2, HTRA2, PLA2G6, VPS35, EIF4G1, DNAJC6, synaptojanin 1 (SYNJ1), DnaJ heat
shock protein family (Hsp40) member C13 (DNAJC13), coiled-coil-helix-coiled-coil-helix
domain containing 2 (CHCHD2), vacuolar protein sorting 13 homolog C (VPS13C), GBA,
spinocerebellar ataxia 2 (SCA2), transmembrane protein 230 (TMEM230), dynactin subunit
1 (DCTN1), and POLG. However, despite several Whole-Genome Association Studies
conducted on PD, heterogeneous results have been produced regarding the occurrence of
genetic variants in these patients [65,66]. It is worth mentioning that all the aforementioned
genes belong to the panel studied in this research using NGS, as shown in Table 1. Globally,
we observed variants in the LRRK2, ATP13A2, GIGYF2, GBA, HTRA2, and POLG genes,
which are all associated with PD.

Additionally (Table 1; Figure 2), we identified a variant of the SNCA gene, which was
associated with PD as “DM?”. For the GBA gene, we identified four variants: three have
been already associated with PD [28–30], while the other with Lewy-body dementia [31]; of
note, all these variants were identified as “DM.” Regarding the LRRK2 gene, we identified
three variants as “DM” associated with PD [38,41,46], whereas six variants were detected
as “DM?” associated with PD [39,40,42–45]. Also, for the HTRA2, GIGYF2, and ATP13A2
genes, we identified variants detected as “DM?” and associated with PD [24,33,35,36]. As
shown in Table 1, PARKIN, PRKN alternative title, was found with three variants [53–55]
associated with PD as “DM?”. Notably, our results showed two variants on the POLG gene,
both in the same patient, which the literature has currently associated with progressive
external ophthalmoplegia (PEO) [51,52]. However, this patient did not exhibit any clinical
manifestation of PEO, thus suggesting that even variants in genes related to mitochondrial
activity might play an important role in PD pathogenesis [67].
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All the other genes and variants listed in Table 1 and Figure 2 are not currently
associated with PD, but with other movement disorders. Interestingly, five variants in four
different genes have been reported in ALS (Table 1; Figure 2), although in the present study,
they were clinically associated with PD. These genes are the following:

• SPG11, which encodes for spatacsin, a protein with a role in neuronal axonal growth,
function, and intracellular trafficking [68];

• TBK1, required for efficient recruitment in autophagy; mutations in the TBK1 gene may
result in impaired autophagy and contribute to the accumulation of protein aggregates
in ALS [69];

• VAPB, encoding for a protein that is part of the vesicle-associated membrane protein
family, plays a role in suppressing the accumulation of unfolded proteins within the
endoplasmic reticulum [70];

• SETX, an ATP-dependent helicase required for unwinding and resolution of RNA:DNA
hybrids (R-loops) formed during transcription [71].

All of these genes are involved in protein transportation and, when mutated, can lead
to protein accumulation within neuronal cells, a crucial step commonly observed in several
neurodegenerative diseases [72–75]. Therefore, both protein accumulation and the lack of
adequate protein clearance play a key role in neurodegeneration. Translating to our study,
we cannot exclude the possibility that genes related to protein transport may be involved
not only in ALS (as previously described), but also in PD and other degenerative movement
disorders [76–78]. Moreover, it can be hypothesized that variants associated with clinical
phenotypes other than PD might a;sp play a role in PD development as genetic cofactors.
This would reinforce the concept that PD is, at least in the majority of cases, a multigenic
and multifactorial disorder within a complex environmental context.

Lastly, cognitive impairment is a relevant non-motor manifestation of PD. In the
present study, no significant difference was found regarding the association between
cognitive impairment and sex, although a trend towards an association with male sex was
noted (Figure 1): 5 out of 20 females (25%) and 12 out of 30 males (40%) had cognitive
impairment. Therefore, a higher risk of cognitive impairment in males with PD might
be hypothesized, although this was evaluated only among the variants in the genes we
studied, thus warranting further evidence. The association with cognitive impairment
occurred only in case of concomitant presence of variants in the AP4M1 gene (c.1117C>T;
stop codon) and the SGCE gene (c.232+1G>T; splicing mutation) (Table 1), which were
detected in one male and one female patient. As such, the simultaneous occurrence of these
two variants seems to confer a higher predisposition for cognitive impairment.

This study has limitations. First, the cohort size was relatively small, although it was
clinically homogeneous and was carefully screened and selected. Second, we used a panel
of genes rather than sequencing the entire exome; this imposes constraints on the ability
to identify new susceptibility genes, although it enhances the depth of sequencing for
the selected genes. Nevertheless, this study may pave the way towards more unbiased
approaches using the whole-genome sequencing contributing to the knowledge of the
multifactorial and/or environmental character of PD.

5. Conclusions

The results obtained for the LRRK2, ATP13A2, GIGYF2, GBA, HTRA2, and POLG genes
confirm the literature and underscore that some PD-causing mutations are universally
significant. Simultaneously, novel gene variants, presently associated with other movement
disorders or neurodegenerative diseases, appear to be linked to PD. Among these genes,
mutations in POLG underscore the role of mitochondrial alterations in PD, along with the
clinical and research significance of the five variants previously associated with ALS. More-
over, but no less important, cognitive impairment appears to be more closely associated
with males in PD. A deeper understanding of the genetic basis of PD, coupled with the
identification of new variants potentially linked to the disease, will enhance diagnostic



Biomedicines 2023, 11, 3118 9 of 12

accuracy, broaden therapeutic applications, and refine prognostic implications for affected
individuals.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/biomedicines11123118/s1, Table S1: clinical-demographic char-
acteristics of PD patients enrolled, along with their main comorbidities and medication(s) taken;
Table S2: the table lists all 162 genes in the NGS gene panel used to analyze all subjects.
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