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Context: Patients with type 2 diabetes (T2DM) have low bone turnover, poor bone quality, and
circulating levels of sclerostin significantly higher than non-T2DM controls. There are no data on
the possible association of sclerostin with �-catenin, a key component of the Wnt/�-catenin ca-
nonical signaling.

Objectives: The aim of the study was to evaluate the circulating �-catenin levels in T2DM patients
and to analyze their relationship with sclerostin and bone turnover markers.

Design: This was a cross-sectional study.

Setting and Patients: The study was conducted at a clinical research center. Forty T2DM post-
menopausal women were studied and compared with 40 healthy controls. Bone status was assessed
by dual-energy x-ray absorptiometry measurements (bone mineral density) and by measuring bone
alkaline phosphatase and carboxy-terminal telopeptide of type 1 collagen. Sclerostin and �-catenin
were evaluated by an immunoenzymetric assay.

Results: Consistent with previous reports in T2DM subjects, we found sclerostin levels higher and
bone turnover markers lower than controls. In our cohort of T2DM patients, �-catenin levels are
significantly lower than in controls (median 1.22 pg/ml, 25th to 75th percentiles 0.50–2.80; and
median 4.25 pg/ml, 25th to 75th percentiles 2.20–7.62, respectively; P � 0.0002). �-Catenin cor-
related negatively with sclerostin (P � 0.0001) and positively with bone alkaline phosphatase (P �

0.0030) only in T2DM patients and negatively with age in both groups. Eight of the 40 T2DM
patients had vertebral fractures.

Conclusions: These results show for the first time that T2DM patients have serum concentrations
of �-catenin lower than controls. The negative association of �-catenin with sclerostin suggests a
biological effect of increased sclerostin on the Wnt signaling, which appears impaired in T2DM.
(J Clin Endocrinol Metab 97: 3744–3750, 2012)

The relationship between diabetes mellitus and osteo-
porosis is currently under intense investigation due to

the increasing prevalence of both diseases and to the evi-
dence that type 2 diabetes mellitus (T2DM) is associated
with an increased risk of fractures (1–3) that is higher than

general population at a given bone mineral density (BMD)
(4, 5). Recent reports propose that the Wnt signaling path-
way may be implicated in this association (6). The Wnt/
�-catenin (canonical) Wnt signaling is one of the three
known pathways of Wnt signaling, and is also the most
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well characterized (7). The Wnt/�-catenin pathway is essen-
tial for normal osteogenesis (8–10). Activation of this path-
way requires binding of Wnt ligands to the frizzled receptor
and its coreceptors, the low-density lipoprotein receptor-re-
lated proteins (LRP)-5 and -6, leading to the down-regula-
tion of glycogen synthase-3 (GSK-3) activity (11) and inhi-
bition of �-catenin phosphorylation and proteosomal
degradation, resulting in its accumulation in the cytoplasm
and its translocation into the nucleus, in which it promotes
the transcriptional response of Wnt target genes (12).

TheinterestofWntsignalingindiabeteshadrisenafter the
observation by Kanazawa et al. (13), who showed that a
single polymorphism locus in the WNT5B gene caused sus-
ceptibility to type 2 diabetes in a Japanese population. More
recent studies have shown that Wnt signaling impacts pan-
creatic �-cell function by regulating insulin secretion and vi-
ability (7). The Wnt/�-catenin canonical pathway is modu-
lated by a number of factors that include, among others,
soluble extracellular proteins such as the inhibitory factor 1
and secreted frizzled related proteins, which bind directly to
Wnt proteins, preventing their interaction with receptors,
and other secreted proteins, such as Dickkopf (Dkk-1) and
sclerostin, which compete with the Wnt/�-catenin for bind-
ing to LRP5/6, disrupting (Dkk-1) or antagonizing (scleros-
tin) LRP5/6 mediated Wnt signaling (14). In humans,
García-Martín et al. (6), van Lierop et al. (15), and Gennari
et al. (16) have recently reported that, in patients with
T2DM, circulating levels of sclerostin are increased, posi-
tively associated with duration of T2DM and glycated he-
moglobin, and inversely related to bone turnover markers,
suggesting that the Wnt signaling pathway may be impaired
in these patients. This gives support to the hypothesis that
osteocytes (whichproducealmostall theavailable sclerostin)
may play a role also in glucose metabolism. Recent evidence
has also implicated osteocytes as a major source of the oste-
oclastogenic cytokine receptoractivatorofnuclear factor-�B
ligand, a cytokine that stimulates osteoclast maturation and
activity, whose expression is also stimulated by sclerostin
(17, 18). In this context, given the complexity of the inter-
relationships among all these factors, we reasoned that more
information on changes in the Wnt system in diabetic pa-
tients could come from the measure of more than a single
component of the Wnt-signaling pathway.

The objectives of this cross-sectional study were to eval-
uate the behavior of serum sclerostin, �-catenin, and
Dkk-1 in a cohort of T2DM patients. In addition, we an-
alyzed the relations of these products with bone turnover
markers, BMD, and morphometric vertebral fractures.

Subjects and Methods

Study population
Our cross-sectional study included 40 postmenopausal

women with T2DM and 40 healthy subjects as a control group.

Diabetes was defined according to American Diabetes Associa-
tion criteria (19). T2DM patients presenting to our community
clinic for treatment of diabetes were recruited from June to Sep-
tember 2011. Controls were age- and sex-matched subjects re-
cruited from the general population during the same period. All
participants were Caucasian, free-living, aged 50–85 yr. Exclu-
sion criteria were the following: 1) chronic diseases apart from
T2DM, 2) known diseases affecting bone (Paget’s disease, rheu-
matoid arthritis, hyperparathyroidism, hypercortisolism, malig-
nant tumors, renal bone disease, chronic liver disease, and
postransplantation bone disease), 3) use in the last 12 months of
drugs affecting bone metabolism, including bisphosphonates, 4)
chronic glucocorticoid use for more than 3 months, or 5) use in
the last 12 months of thiazolidinediones. Ethical approval was
obtained by the hospital ethical committee. All subjects gave
informed consent before entering the study, which was per-
formed in accordance with the Declaration of Helsinki.

Clinical evaluation
In all subjects we measured height and weight and calculated

body mass index (BMI) using the Quetelet formula (weight in
kilograms divided by the square of height in meters). Moreover,
all patients and controls were asked to fill in the Italian version
(20) of the 36-Item Short Form Health Survey (SF-36), which
yields physical and mental health component scores and has been
previously validated in patients with type 2 diabetes (21). Based
on the results of the physical functioning domain, the study sub-
jects were divided into two groups: sedentary (�80) and nonsed-
entary (�80) according to a previous study (22).

Laboratory data
Biochemistries were measured in serum samples obtained in

the morning after an overnight fast and stored at �30 C until the
examination. Serum concentrations of total calcium (corrected
for albumin concentration), phosphorus, creatinine, fasting
plasma glucose (FPG), and glycated hemoglobin (HbA1c) were
measured using standard laboratory techniques. 25-Hydroxyvi-
tamin D (25OHD) was measured by chemiluminescence immu-
noassay (Liaison 25 OH Vitamin D Total; DiaSorin Inc., Still-
water, MN; intra- and interassay variability were less than 5 and
10%, respectively). Bone-specific alkaline phosphatase (B-ALP)
was measured by immunoenzymetric assay (Ostase BAP; Immu-
nodiagnostic Systems Ltd., Boldon, UK; intra- and interassay
variability were less than 10%). Serum carboxy-terminal cross-
linked telopeptide of type I collagen (CTX) was measured by an
ELISA (Serum Crosslaps; Immunodiagnostic Systems; intra- and
interassay variation was 2.5 and 1.8%, respectively). Sclerostin
and Dkk-1 were measured by enzyme immunoassays using re-
agents provided by Biomedica Medizinprodukte (Wien, Aus-
tria). Intra- and interassay coefficients of variation for sclerostin
were 5 and 4%, respectively. The detection limit was 2.6 pmol/
liter. Mean concentration in normal subjects aged older than 50
yr for our laboratory is 43 pmol/liter. The detection limit for
Dkk-1 is 0.38 pmol/liter. Intra- and interassay coefficients of
variation are 7 and 9%, respectively. �-Catenin was measured
using an immunoenzymatic assay developed by Cusabio Biotech
Co.Ltd. (Newark,DE).Themicrotiterplateprovided in thiskitwas
precoated with an antibody specific to �-catenin. The �-catenin
assay uses a biotin-conjugate antibody/horseradish peroxidase-avi-
din for detection of the analyte. This assay recognizes human
�-catenin. No significant cross-reactivity or interference was ob-
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served. The minimum detectable amount of human �-catenin is
0.39 pg/ml. The detection range is 0.62–40 pg/ml. The commercial
kit does not provide samples with known concentration, so we had
to assess our own intra- and interassay variability, which were both
less than 10%. In this �-catenin assay, 100% of samples of healthy
subjects showed detectable values. In our healthy controls,
�-catenin serum range was 4.2–8.6 pg/ml.

Bone density and vertebral fracture evaluation
Areal BMD at lumbar spine (LS) L2-L4 and the proximal

femur [femoral neck (FN) and total hip (TH)] was measured in
all subjects by dual-energy x-ray absorptiometry using a Lunar
Prodigy DPX densitometer (GE Healthcare, Madison, WI). The
coefficient of variation is less than 1.5% for all sites. BMD mea-
surements were performed by the same operator. Lateral stan-
dardized spinal x-ray films of the thoracic and lumbar spine were
taken in the same week as the serum collection for morphometric
analysis and interpreted according to the semiquantitative
method by Genant et al. (23).

Statistical analysis
Descriptive statistics and significance levels were analyzed

using the GraphPad InStat version 4 for Windows (GraphPad,
San Diego, CA). Power analysis was performed by GraphPad
StatMate2 (GraphPad). The analysis indicates that a sample size
of 40 in each group has a 80% power to detect a difference
between means of 4.49 with a significance level (�) of 0.05 (two
tailed). Data for continuous variables are expressed as means �
SD. The normal distribution of values for different parameters
was verified with the Kolmogorov-Smirnov test. Pearson linear
regression analysis (normal distribution) or Spearman test (non-
normal distribution) was used for association studies. Compar-

isons of continuous variables between groups were carried out
using a Student’s t test or Wilcoxon test, as appropriate. Com-
parisons of categorical variables between groups were per-
formed using the �2 test. A multiple regression analysis was used
to determine the influence of one independent variable after cor-
recting for others. All models were adjusted for age. P � 0.05 was
considered as statistically significant.

Results

Table 1 shows the general characteristics, clinical, bio-
chemical, and densitometric data of patients and controls.
T2DM patients and controls were comparable for age,
calcium, phosphate, and creatinine. The average of dura-
tion of T2DM was 10.05 � 5.36 yr. T2DM patients were
treated with oral antidiabetic agents alone (n � 31) or with
insulin (n � 9). As expected, T2DM patients had signifi-
cantly higher levels of FPG and HbA1c (P � 0.001 vs.
controls). Diabetic patients also had a BMI (kilograms per
square meter) higher than controls (31.16 � 5.06 vs.
26.55 � 4.77; P � 0.001). According to the physical func-
tioning domain of the SF-36 questionnaire, 33 patients
and 31 control subjects were considered sedentary (less than
80 on the scale). All markers of bone turnover, as well as
lumbar and femoral BMD, were within the normal range in
controls. 25OHDserumlevels inT2DMpatientswere lower
than in controls (17.14 � 7.11 vs. 24.34 � 7.56 ng/ml; P �

TABLE 1. General characteristics and clinical, biochemical, and densitometric data of patients and controls

T2DM patients Controls P
n 40 40
Age (yr) 63.68 � 8.39 62.12 � 7.99 ns
BMI 31.16 � 5.06 26.55 � 4.77 �0.001
Sedentary (n/%) 33/82.5 31/77.5 ns
Smoking habit (n/%) 1/2.5 2/5 ns
Menopausal age (yr) 49.26 � 5.05 48.45 � 4.98 ns
Parity (n) 4.06 � 2.13 3.98 � 2.01 ns
Diabetes duration (yr) 10.05 � 5.36
HbA1c (%) 7.27 � 0.51 4.94 � 0.48 �0.001
Vertebral fractures (n/%) 8/20 3/7.5 ns
BMD LS (g/cm2) 1.110 � 0.185 1.099 � 0.156 ns
T-score LS �0.52 � 1.54 �0.61 � 1.43 ns
BMD FN (g/cm2) 0.881 � 0.140 0.819 � 0.111 �0.05
T-score FN �0.72 � 1.14 �1.32 � 1.17 �0.05
BMD TH (g/cm2) 0.977 � 0.130 0.943 � 0.120 ns
T-score TH �0.14 � 1.07 �0.50 � 1.23 ns
Calcium corrected for albumin (mg/dl) 9.47 � 0.36 9.68 � 0.44 ns
Phosphorus (mg/dl) 3.89 � 0.44 3.74 � 0.38 ns
Creatinine (mg/dl) 0.92 � 0.18 0.90 � 0.13 ns
FPG (mg/dl) 149.11 � 38.35 93.32 � 10.25 �0.001
25OHD (ng/ml) 17.14 � 7.11 24.34 � 7.56 �0.001
B-ALP (�g/liter) 15.48 � 5.69 19.72 � 9.66 0.0261
CTX (ng/ml) 0.40 � 0.25 0.64 � 0.43 0.0032
Sclerostin (pmol/liter) 53.18 � 10.94 47.50 � 12.62 �0.05
Dkk-1 (pmol/liter) 12.90 � 10.27 9.07 � 5.68 �0.05
�-Catenin (pg/ml) 2.43 � 2.82 5.94 � 5.53 0.0002

Data for continuous variables are presented as mean � SD. FPG, Fasting plasma glucose; ns, not significant.
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0.001). T2DM patients had femoral neck BMD significantly
higher than controls (P � 0.01). Sclerostin serum levels in
T2DM patients were 53.18 � 10.94 pmol/liter (median
52.50; 25th to 75th percentiles 45–60).

Sclerostin serum levels in controls were 47.50 � 12.62
pmol/liter (median 47.5; 25th to 75th percentiles 40–58).
The difference was significant, with P � 0.05. �-Catenin
serum concentrations in diabetic patients were 2.43 �
2.82 pg/ml (median 1.22; 25th to 75th percentiles 0.50–
2.80). �-Catenin serum levels in controls were 5.94 � 5.53
pg/ml (median 4.25; 25th to 75th percentiles 2.20–7.62).
The difference was significant (P � 0.0002). T2DM had
serum concentrations of Dkk-1 of 12.90 � 10.27 pmol/
liter (median 8.45; 25th to 75th percentiles 7.0–12.23),
significantly higher than controls (9.07 � 5.68 pmol/liter;
median 7.5; 25th to 75th percentiles 6.57–9.45, P � 0.05).
Both B-ALP and CTX levels were reduced in diabetic pa-
tients if compared with controls. Mean B-ALP was
15.48 � 5.69 vs. 19.72 � 9.66 �g/l (P � 0.0261), and
mean CTX was 0.40 � 0.25 vs. 0.64 � 0.43 ng/ml (P �
0.0032). Tables 2 and 3 show correlations of sclerostin
and �-catenin in T2DM patients and controls. Sclerostin
serum levels were positively correlated with age in T2DM
patients (P � 0.0001) and controls (P � 0.001) and pos-

itively correlated with years since diagnosis in T2DM (P �

0.001). A significant negative correlation was observed
between sclerostin and �-catenin (r � �0.7469; P �

0.0001) (Fig. 1) and between sclerostin and CTX (P �

0.0164). Sclerostin serum levels positively correlated with
Dkk-1 in controls (P � 0.02). A significant positive cor-
relation was observed between �-catenin and B-ALP (r �

0.4658; P � 0.0030) (Fig. 1). No relationship was found
between serum sclerostin, BMI, and physical activity in the
overall cohort of subjects. �-Catenin was also negatively
associated with age (P � 0.001). Multiple regression anal-
ysis was then performed in T2DM patients with �-catenin
as the outcome. The potential determinant variables con-
sidered were sclerostin, age, HbA1c levels, and years since
diagnosis. We found that only age (�� �0.04906; P �

0.0075; SE � 0.1309) and sclerostin (�� �0.1835; P �

0.0075; SE � 0.0909) were independent predictors of
�-catenin in T2DM patients. The calculated variance in-
flation factor confirms that the x variables are indepen-
dent of each other, excluding multicollinearity problems
in the model. We were not able to find any significant
correlation between BMD at any site and the biochemical
parameters measured in the patients and in controls. No
subject had a nonvertebral fracture history; vertebral frac-
tures were found in eight of the 40 diabetic patients (20%)
and in three controls (7.5%).

Discussion

Our results confirm and extend recent studies of circulat-
ing sclerostin in patients with T2DM and show for the first
time that in T2DM the increase of serum sclerostin is as-
sociated with a significant decrease in �-catenin serum
concentration, suggesting that increased sclerostin has a
causative effect in impairing the functionality of the Wnt
canonical signaling in these patients. We also found Dkk-1
circulating levels significantly higher than in controls.
Both B-ALP and CTX were significantly reduced in our
T2DM cohort, confirming that a generalized reduction in
bone turnover takes place in this population, eventually
leading to poor bone quality and to increased skeletal fra-
gility, despite normal or even greater bone mass than ex-
pected according to sex and age (16, 24). Eight of 40
T2DM had in fact a morphometric vertebral fracture, a
figure that appears in line with the observations by García-
Martín (6) and by other authors (2, 3, 16, 25). The patho-
genesis of increased bone fragility in T2DM remains to be
clarified. Other factors, such as changes in calcium ho-
meostasis and an increase in advanced glycation end-
product or nonenzymatic cross-links within collagen fi-
bers have been proposed as possible contributors to the

TABLE 2. Correlations of sclerostin in T2DM patients
and controls

T2DM patients Controls

r P r P
�-Catenin �0.7469 �0.0001 0.1010 ns
Dkk-1 �0.1384 ns 0.3527 0.02
BMD LS �0.3965 ns �0.3246 ns
BMD FN �0.1283 ns �0.1494 ns
B-ALP 0.0086 ns �0.1511 ns
CTX 0.3773 0.0164 0.0423 ns
Age 0.8513 �0.0001 0.8258 �0.001
BMI �0.2376 ns �0.4256 ns
Diabetes duration 0.4648 �0.001

ns, Not significant.

TABLE 3. Correlations of �-catenin in T2DM patients
and controls

T2DM patients Controls

r P r P
Sclerostin �0.7469 �0.0001 0.1010 ns
Dkk-1 �0.2486 ns 0.2874 ns
BMD LS 0.3176 ns 0.2455 ns
BMD FN 0.0062 ns 0.0167 ns
B-ALP 0.4658 0.0030 0.0260 ns
CTX �0.1281 ns 0.1086 ns
Age �0.6864 �0.001 �0.5768 0.002
BMI �0.0246 ns �0.0376 ns
Diabetes duration �0.0870 ns

ns, Not significant.
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deterioration in the structural and mechanical properties
of bone and to a decrease in bone strength (25–28). The
recognition of the role of the osteocyte-produced scleros-
tin in bone metabolism has stimulated a number of studies
on the effects of this protein on bone strength. These stud-
ies have been enabled by the development of validated
commercial assays for measuring it in humans.

The recent report by Drake et al. (29), which showed a
significant correlation between bone marrow plasma and
serum concentration of sclerostin, confirmed that al-
though sclerostin is a locally active molecule, circulating
levels are of clinical relevance and can be used to explore
the association between serum sclerostin and indexes of
bone metabolism in patients with various bone disorders.
Studies in patients with disorders of parathyroid gland
function (30) and in immobilized subjects (31) as well as
in diabetic patients (6, 15, 16) have detected high circu-
lating levels of sclerostin, associated with bone turnover
markers in some studies (30–32) but not in others (15).
These previous studies, however, do not provide informa-
tion on the bioactivity of circulating sclerostin, nor do they
prove the pathophysiological significance of high levels of
sclerostin in a clinical setting.

Our finding that the increase of sclerostin in T2DM
patients is significantly associated with a reduction of cir-
culating �-catenin may provide further in vivo evidence of
how sclerostin works in the proposed model of bone mass
regulation by LRP receptors (33). Although there are

many unanswered questions regarding
the role of LRP5 in bone, it is clear that
sclerostin is a direct antagonist of Wnt
signaling. Wnt ligand binds to the
LRP5/LRP6, promoting the activation
of the intracellular protein Disheveled.
Activated Disheveled inhibits GSK-3�

with consequent disassociation of the
multiprotein degradation complex and
inhibition of �-catenin degradation.
Sclerostin is a ligand for the LRP5/
LRP6 complex and competes with Wnt,
preventing its binding. Downstream of
the LRP is the key signaling molecule
�-catenin, which has been shown to be
important in osteoblast differentiation,
proliferation, and apoptosis (34). The
unimpeded GSK-3� combines with the
multiprotein complex, phosphorylating
�-catenin and leads to its degradation
(35, 36). If this proposed pattern holds
in vivo in humans, our observation that
serum levels of B-ALP (which reflect os-
teoblast activity and bone formation)
are reduced in T2DM patients may ac-

count for a disruption of the Wnt/�-catenin signaling
pathway, with a consequent impairment of the regulation
of the transcriptional activity of several genes in the os-
teoblast, including B-ALP (37). This hypothesis is in line
with the observation by Devarajan-Ketha et al. (38), who
observed that sclerostin inhibits the bioactivity of alkaline
phosphatase in a rat bone model. Our T2DM patients also
had a serum concentration of Dkk-1 higher than controls.
Dkk-1 is a well-recognized Wnt signaling inhibitor with
direct binding affinity to LRP5. Although the LRP-medi-
ated regulation of such a major osteometabolic pathway is
expected to have a number of modulators, the role of
Dkk-1 in diabetes remains to be clarified. The lack of a
significant correlation between the Dkk-1 and �-catenin
levels in fact argues against a major contribution of this
protein to the impairment of the Wnt-signaling pathway in
this setting.

In our T2DM patients, we observed a decrease in the
bone resorption marker CTX. In patients with scleroste-
osis (a bone sclerosing dysplasia caused by loss of function
mutation in the SOST gene encoding for sclerostin), the
lack of sclerostin leads to unrestrained bone formation,
characterized by high levels of both procollagen type 1
amino-terminal propeptide (a marker of osteoblast activ-
ity) and �-CTX (a marker of bone resorption) (39). Con-
versely, it is reasonable to assume that enhanced sclerostin
production may lead to a generalized reduction in bone

FIG. 1. Univariate correlation (Pearson analysis) between �-catenin and sclerostin and
between �-catenin and B-ALP serum levels, in controls (A and B) and T2DM patients (C
and D).
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turnover. The mechanism by which T2DM is associated
with increased levels of sclerostin remains obscure. First,
it is not clear whether this increase occurs as a result of
increased synthesis rather than decreased degradation or
clearance of glycosylated or glycated molecules. Second,
because sclerostin levels are tightly regulated by mechan-
ical strain, its concentration increases during skeletal un-
loading in the mice (40) and after prolonged immobiliza-
tion in man (31). In our study we evaluated the physical
functioning by the SF-36 and observed similar values in
T2DM patients and controls, but the hypothesis that the
increase of sclerostin serum levels could be contributed to
by decreased mechanical loading of the skeleton in T2DM
patients still needs to be explored. Human and animal
studies have shown that PTH is a negative regulator of
sclerostin (29, 41). Serum sclerostin levels are higher in
hypoparathyroidism than in primary hyperparathyroid-
ism and normal controls (30). In addition, either intermit-
tent or continuous infusion of PTH 1–34 decreases serum
sclerostin levels in postmenopausal women and in healthy
subjects (29, 42). In T2DM patients, PTH serum levels are
reported either lower (24) or slightly higher than in con-
trols (16), probably due to lower 25OHD levels; however,
sclerostin levels remain paradoxically high. It would seem
reasonable to hypothesize that the catabolic actions of
PTH (not measured in the present study) predominate in
T2DM, with little or no influence on the sclerostin-medi-
ated Wnt-signaling pathway associated with its anabolic
action (32). Sclerostin serum levels are also influenced by
age (6, 16). However, as in our study, sclerostin was pos-
itively associated with age in both groups, and age does not
help explain the difference observed between patients and
age-matched control subjects.

A potential limitation in the interpretation of the results
is the lack of standardization of sclerostin assay. McNulty
et al. (43) examined the performance of two commercially
available immunoassays kits for sclerostin and found dif-
ferent concentrations of this protein in both serum and
plasma samples. However, because the same sclerostin
assay was used in our study for comparing T2DM patients
and controls, this limitation could be minimized. New ev-
idence shows that Wnt signaling has a role in endocrine
pancreas development and in regulating the function of
mature �-cells, including insulin secretion (7). A discus-
sion on this particular point is beyond the scope of the
present study, although the fact that several components
of the canonical Wnt-signaling pathway are also members
of other signaling pathways in �-cells, suggests that a
physiological regulation of glucose metabolism requires
intact Wnt-signaling pathways. Osteocytes, which are
now recognized as active regulators of almost every phase
of mineral handling by bone, may thus participate also in

glucose homeostasis by the osteocyte-secreted product,
sclerostin.

Our observational study has some limitations. First,
these analyses are cross-sectional, and can show only as-
sociation. Second, we studied a small group of subjects,
possibly resulting in reduced statistical power. Third, the
T2DM population has a mean age of 63.68 � 8.39 yr; the
pathophysiological model proposed should therefore be
confirmed in a younger population. More research is
needed to attempt to connect these preliminary observa-
tions with other established pathways of calcium and glu-
cose metabolism in a consistent unique physiological
paradigm.
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