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Abstract
Lossless positive-real systems have been widely studied in the literature. They are systems in which the energy is entirely
transferred between input and output. In this paper, new aspects related to the linear quadratic gaussian (LQG) control of
lossless positive-real systems are reported including both the continuous-time and the discrete-time cases. Direct formulas for
the calculation of the optimal gains will be introduced and the properties of the different structures of the LQG compensator
obtained for the continuous-time and the discrete-time cases will be emphasized, also in view of designing positive-real LQG
compensators. Numerical examples related to low-damped structures are also discussed to verify the possibility to design the
LQG compensator on the basis of a lossless approximation.

Keywords Lossless systems · Optimal control · Weakly-damped structures

1 Introduction

The literature on lossless positive-real systems is very rich
and, as regards the control aspects, is rooted in the papers of
Opdenacker and Johnckeere [1,2]. Themain concepts related
to lossless positive-real systems [3] derive from the classical
electric network theory [4,5], where LC circuits are modeled
by lossless positive-real systems. Roughly speaking lossless
positive-real systems are those systems where, for every tra-
jectory, the energy is exactly equal to that furnished to the
system.

Lossless models are widely adopted in several areas
of engineering, including electronic, civil, antennas and
aerospace engineering.Wemention here the design of electri-
cal filters, in particularwith the current possibility of realizing
inductors in integrated silicon electronic devices [6–8] which
makes possible to realize classical LCfilters inVLSI technol-
ogy.Moreover,where large-space flexible structures are dealt
with, such as as antennas or solar panels, the need for LQG
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control techniques is evident [9]. Under this perspective, the
approximation of weakly-damped mechanical structures by
using lossless positive-real systems has been explored in [2]
and the model order reduction of large-scale mechanical sys-
temsmodeled as lossless positive-real systems by using LQG
balancing has been reported in [4].

In [4] interesting results related to continuous-time LQG
regulators for passive systems have been discussed, even
if the aspects referred to the lossless positive-real systems
are not considered. Furthermore, the topic of LQG control
of discrete-time lossless positive-real systems [10] has not
been addressed in the previous studies. Moreover, several
contributions are dedicated to the LQG control of dissipative
systems but not to the LQG control of lossless positive-real
systems.

Recent papers have been proposed in the area of loss-
less positive-real systems. In particular in [11] it is proved a
numerically stable procedure to derive storage function for
linear time-invariant systems. A control theoretical elegant
formulation of some classical problems in statisticalmechan-
ics that take into account the lossless approximation concept
has been introduced in [12].

In the characterization of dissipative systems [13] separat-
ing high-loss and lossless components leads to an analytical
approach for the study of Lagrangian systems.

In various contributions the relationship between hyper-
stability theory [14] and the control of lossless positive-real
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systems in the continuous-time case has been dealt with [2]
leading to important results.Moreover the case of LQGprob-
lem has been discussed in [15].

In this communication, we focus on the determination of
straightforward formulas to solve the LQG problem for loss-
less systems with the aim of obtaining an approximated yet
robust solution for weakly-damped systems, thus reducing
the numerical complexity of the LQG problem solution.

The following new results are discussed. For the
continuous-time case, the expression of the optimal observer
gain will be introduced yielding a simple expression of the
LQG optimal compensator that proves to be passive [2].
These results (both those referred to the regulator gain and
the observer gain) are then demonstrated also for the discrete-
time case. However, in this case it is shown that, at variance of
what is found in continuous-time systems, the compensator
is not passive. It is also proved that the LQG compensator is
asymptotically stable, therefore it can be passified [16]. This
guarantees structural robustness of the closed-loop system,
thanks to the hyperstability theory, in spite of some degrada-
tion of the optimal performance.

The paper is organized as follows. In Sect. 2 themathemat-
ical preliminaries are presented. In Sect. 3 the main results
are discussed. A further section (Sect. 4) regarding numer-
ical examples is included and Sect. 5 concludes the paper,
highlighting the main implications of the results discussed in
the paper.

2 Mathematical preliminaries

Let us consider a linear time-invariant continuous-time sys-
tem in minimal form:

ẋ = Ax + Bu
y = Cx + Du

(1)

where x ∈ R
n , u ∈ R

m , y ∈ R
p with m = p.

Definition 1 [17] The realization (1) is said to be externally
passive if

∫ t
0 u

T ydt ≥ 0 ∀t ≥ 0 (2)

Definition 2 [18] The transfer function matrix G(s) =
C (sI − A)−1 B + D is positive-real if the following condi-
tions occur:

• G(s) is real ∀s ∈ R;
• G(s) + GT (s∗) ≥ 0;
• any s with �(s) ≥ 0 is not a pole of G(s).

Definition 3 [18] The lossless positive-real (LPR) systems
are a particular class of passive systems for which to every
input u1(t) there corresponds an input u2(t) for which

∫ ∞

−∞
uT (τ )y(τ )dτ = 0 (3)

where

u(t) =
{
u1(t) for t ≤ 0
u2(t) for t > 0

(4)

Remark 1 If (1) is a realization of a LPR system, the cor-
responding transfer function matrix is positive-real with
G( jω) + GT (− jω) = 0 ∀ω ∈ R

+ [18].

Another characterization of LPR systems in the time
domain is expressed by the following theorem.

Theorem 1 [2] Given a minimal realization (A,B,C,D), it
represents a LPR system if there exists a uniquematrixY ≥ 0
such that the Kalman-Yakubovitch lemma is satisfied:

ATY + YA = 0
CT = YB
D + DT = 0

(5)

Let us now consider a linear time-invariant discrete-time
system in minimal form:

x(k + 1) = Ax(k) + Bu(k)
y(k) = Cx(k) + Du(k)

(6)

where x ∈ R
n , u ∈ R

m , y ∈ R
p with m = p.

Definition 4 [19] The transfer function matrix G(z) =
C (zI − A)−1 B + D is positive-real if the following condi-
tions occur:

• G(z) is real ∀z ∈ R;
• G(z) + GT (z∗) ≥ 0 in |z| > 1;
• any z with |z| > 1 is not a pole of G(z).

Remark 2 If (6) is a realization of LPR system, the cor-
responding transfer function matrix is positive-real with
G(e jθ ) + GT (e− jθ ) = 0, ∀ω ∈ R

+.

Analogously to Theorem 1, a discrete-time LPR system
can be characterized in the time domain.

Theorem 2 [20] Given a minimal realization (A,B,C,D)

of a discrete-time system, it represents a LPR system if there
exists a unique matrix Y ≥ 0 such that:

Y − ATYA = 0
CT = ATYB
D + DT = BTYB

(7)
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Let us consider now the LinearQuadraticGaussian (LQG)
control problem. It consist in the designof a normalized linear
quadratic regulator that minimizes the quadratic index of the
general form

J =
∫ ∞

0

(
xTQx + uTRu

)
dt (8)

where Q = CTC and R = I + DTD are weight matrices,
and a Kalman filter with measurement noise with covari-
ance matrix Mv = I+DDT and disturbance with covariance
matrix Md = BBT [21].

The LQG control problem is solved calculating the opti-
mal gain vectors of the linear quadratic regulator Kc and of
the Kalman filter Ke. This is done by solving the Control
Algebraic Riccati Equation (CARE) [21]:

ATP +PA −
(
PB + CTD

) (
I + DTD

)−1 (
BTP + DTC

)

+CTC = 0 (9)

and the dual Filtering Algebraic Riccati Equation (FARE)
[21]:

A� + �AT −
(
�CT + BDT

) (
I + DDT

)−1

(
C� + DBT

)
+ BBT = 0 (10)

The CARE and FARE admit a unique positive definite
solution if the system is in minimal form, so that the asso-
ciated optimal control and optimal observer gain matrices
are

Kc = (
I + DTD

)−1 (
BT P̄ + DTC

)

Ke = (
�̄CT + BDT

) (
I + DDT

)−1 (11)

where P̄ and �̄ are the positive definite solutions of the two
Riccati Equations (9) and (10) [21].

Proposition 1 The transfer function matrix of the LQG com-
pensator for a continuous-time system is given by

H(s) = Kc (sI − A + BKc + KeC − KeDKc)Ke (12)

Let us consider now the discrete-time LQG normalized
compensator. The D-CARE equation with R = (

I + DTD
)

is [22]

ATPA − P −
(
ATPB + CTD

) (
BTPB + R

)−1

(
BTPA + DTC

)
+ CTC = 0 (13)

The normalized D-FARE equation [22] with R∗ =(
I + DDT

)
is

AT�A − � −
(
AT�B + CTD

) (
C�CT + R∗)−1

(
C�AT + DTBT

)
+ BBT = 0 (14)

The D-CARE and D-FARE admit a unique positive defi-
nite solution if the system is in minimal form, fromwhich the
optimal control and optimal observer gain can be determined
[22] as:

Kc = (
BT P̄B + R

)−1 (
BT P̄A + DTC

)

Ke = (
A�̄CT + BDT

) (
C�̄CT + R∗)−1 (15)

Proposition 2 The transfer function matrix of the LQG com-
pensator of a discrete-time system is given by

H(z) = Kc (zI − A + BKc + KeC − KeDKc)Ke (16)

3 The LQG compensator for lossless
positive-real system

3.1 The continuous-time case

Proposition 3 The optimal LQR gain matrix for a LPR sys-
tem in minimal form is given by

Kc = (I + D)−1 C (17)

Proof The proof is based on the uniqueness of the positive
definite solution of the Riccati equation. For this reason,
the matrix P̄ in (9) and the matrix Y in (5) are equal. Let
us then consider a state-space realization of a LPR system
(A,B,C,D). Substituting in Eq. (9) the definition of Kc as
in Eq. (11) and plugging Eqs. (5), it follows that

− CT (I + D)Kc + CTC = 0 (18)

From this, one derives that (I + D)Kc = C and, thus,
Kc = (I + D)−1 C. 	

Proposition 4 The optimal observer gain matrix for a LPR
system in minimal form is given by

Ke = B
(
I + DT

)−1
(19)

Proof The proof follows the same steps in the proof of
Prop. 3. Let us consider a state-space realization of the LPR
system (A,B,C,D) and include the relation in Eqs. (5)
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within the FARE in Eq. (10), after substituting in it the gain
as defined in Eq. (11). It follows that

− Ke

(
I + DT

)
BT + BBT = 0 (20)

It is possible to derive that Ke
(
I + DT

) = B, from which

it follows Ke = B
(
I + DT

)−1
. 	


Remark 3 The LQG compensator of a continuous-time
positive-real systemwithweightmatrices chosen as in (9) and
(10) is a strictly positive-real system [23]. Therefore, also the
LQG compensator for a continuous-time LPR system with
Kc and Ke as in Eqs. (21) and (23) is strictly positive-real.

3.2 The discrete-time case

Proposition 5 The optimal LQR gain matrix for a discrete-
time LPR system in minimal form is given by

Kc = (I + D)−1 C (21)

Proof Also for discrete-time systems, there is a unique pos-
itive definite solution of the D-CARE. This implies that the
matrix P̄ in (13) and the matrix Y in (7) are the same. Let
us consider, then, a state-space representation of a discrete-
time LPR system (A,B,C,D). Substituting Eqs. (7) in the
D-CARE (13), after including the relationship for Kc in (15),
it follows that

− CT (I + D)Kc + CTC = 0 (22)

From this, it is derived that (I + D)Kc = C from which
Kc = (I + D)−1 C. 	

Proposition 6 The optimal observer gain matrix for a dis-
crete time LPR system in minimal form is given as

Ke = B
(
I + DT

)−1
(23)

Proof Consider a state-space realization of the discrete-time
LPR system (A,B,C,D), and plug Eqs. (7) in (14) including
the relationship in (15) for the Ke to find:

− Ke

(
I + DT

)
BT + BBT = 0 (24)

This yields to Ke
(
I + DT

) = B and so Eq. (23) follows.
	


Interestingly, the property of positive-realness of the LQG
compensator discussed in Remark 3 for continuous-time
systems in general is not true in the discrete-time case.
In fact, even if the design structure in both the continu-
ous and discrete-time case is equal, we notice that both are

strictly proper systems. Taking into account the discrete-time
positive-real lemma [20] there must exist a positive definite
matrix P̄ such that

P̄ − AT
C P̄AC = LTL

CT − AT
C P̄B = LTW

DC + DT
C − BT P̄B = WTW

(25)

being (AC ,BC ,CC and DC ) a state-space representation of
the compensator transfer function matrix. Since DC = 0,
the third equation in (25) cannot be satisfied and hence the
system is not passive.

The following result, however, ensures the stability of the
LQG optimal compensator for discrete-time LPR systems.

Proposition 7 Given a minimal representation (A,B,C,D)

of a discrete-time LPR system, the optimal LQGcompensator
is asymptotically stable.

Proof The proof is based on the evaluation of the discrete-
time Lyapunov equation for the state matrix AC = A −
BKc −KeC+KeDKc of the optimal compensator, choosing
as positive definite solution the matrix P satisfying (7). It
yields

AC = A − B (I + D)−1 C − B
(
I + DT

)−1

C + B
(
I + DT

)−1
D (I + D)−1 C =

= A − B

[(
I + DT

)−1 + I

]

(I + D)−1 C (26)

and therefore, defining M =
[(
I + DT

)−1 + I
]
(I + D)−1,

we get

(A − BMC)T P (A − BMC) − P
= ATPA − ATPBMC − CTMTBTPA

+CTMTBTPBMC
= −CT

(
M + MT − MT

(
D + DT

)
M

)
C

(27)

In order to prove the thesis, we need to prove that the
matrix

(
M + MT − MT

(
D + DT

)
M

)

is positive definite.
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To show this, consider that

M + MT − MT
(
D + DT

)
M

=
[(
I + DT

)−1 + I
]
(I + D)−1

+ (
I + DT

)−1 [
(I + D)−1 + I

]

− (
I + DT

)−1 [
(I + D)−1 + I

] (
D + DT

)

×
[(
I + DT

)−1 + I
]
(I + D)−1

= (
I + DT

)−1 [
2I + DT

]
(I + D)−1

+ (
I + DT

)−1
[2I + D] (I + D)−1

− (
I + DT

)−1 [D + DT + (
D + DT

) (
I + DT

)−1

+ (I + D)−1 (
D + DT

)

+ (I + D)−1 (
D + DT

) (
I + DT

)−1] (I + D)−1

= (
I + DT

)−1 {(I + D)−1

×
[
4I + D + DT + 2DDT − D2 − DT 2

]

× (
I + DT

)−1} (I + D)−1

(28)

After some matrix manipulations, we obtain

M + MT − MT
(
D + DT

)
M

= (
I + DT

)−1 {(I + D)−1
[
2I + 2 (I + D)−1 (

I + DT
)−1

] (
I + DT

)−1} (I + D)−1
(29)

that is a positive definite matrix, from which the thesis fol-
lows. 	


4 Numerical results

Example 1 Let us consider the LPR continuous-time system

G(s) = 1

s

Given (A, B,C, D) a state-space representation,with A = 0,
B = 1, C = 1, D = 0, the optimal compensator can be
calculated as

H(s) = Kc (s − A + BKc + KeC − KeDKc) Ke

= (1 + D)−1 C(s − A + B (1 + D)−1 C

+B(1 + D)−1C

−B(1 + D)−1D(1 + D)−1C)B (1 + D)−1 =
= 1

s + 2
(30)

which is a positive-real system.

Example 2 Let us nowconsider theLPRdiscrete-time system

G(z) = z + 1

z − 1

Fig. 1 Undamped flexible structure

which admits a state-space representation (A, B,C, D)with
A = 1, B = 1, C = 2, D = 1. The optimal compensator
can be obtained as:

H(z) = Kc (z − A + BKc + KeC − KeDKc) Ke

= (1 + D)−1C(z − A + B(1 + D)−1C + B(1 + D)−1C

−B(1 + D)−1D(1 + D)−1C)B(1 + D)−1

= 1

2

1

z + 0.5
(31)

which is stable but not positive-real.

Example 3 Let us consider the mechanical system reported
in Fig. 1. It represents a mass-spring system subjected to the
two forces f1 and f2, which are the inputs of the system.
Choosing as outputs the velocity of the two masses m1 and
m2 and defining as state vector x = [q1 q2 q̇1 q̇2]T the system
is LPR and admits the folling state-space representation:

A =
[

0 I
−M−1K 0

]

; B =
[

0
M−1

]

; C = [
0 I

]
(32)

where M =
[
m1 0
0 m2

]

and K =
[
k1 + k3 −k3

− k3 k2 + k3

]

, with

k1, k2 and k3 the springs constants, and I the 2 × 2 identity
matrix.

Consider for instance the following values of the param-
eters m1 = 6, m2 = 0.4, k1 = 1, k2 = 2, and k3 = 0.3, we
get the following state space representation:

A =

⎡

⎢
⎢
⎣

0 0 1 0
0 0 0 1

− 13
60 0.05 0 0

0.75 −5.75 0 0

⎤

⎥
⎥
⎦ ; B =

⎡

⎢
⎢
⎣

0 0
0 0
1
6 0
0 2.5

⎤

⎥
⎥
⎦ ; C =

[
0 0 1 0
0 0 0 1

]

(33)

The optimal LQG compensator can be calculated as:

H(s) = Kc (sI − A + BKc + KeC − KeDKc)Ke

=
[
H11(s) H12(s)
H21(s) H22(s)

]

(34)
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Fig. 2 Spectrum of matrix H̄ = H( jω) + HT (− jω)

with

H11(s) = 0.1667s3 + 0.8333s2 + 0.9583s

s4 + 5.333s3 + 7.633s2 + 3s + 1.208

H12(s) = H21(s) = 0.125s

s4 + 5.333s3 + 7.633s2 + 3s + 1.208

and

H22(s) = 2.5s3 + 0.8333s2 + 0.5417s

s4 + 5.333s3 + 7.633s2 + 3s + 1.208

.
Let us consider now the spectrum of the matrix H̄ =

H( jω) + HT (− jω). According to Definition 2, in order to
be H(s) a passive compensator, H̄ must be a positive definite
matrix. In Fig. 2, the eigenvalues λ1 and λ2 of H̄ are reported
as a function of ω and are positive ∀ω, since they are positive
for any ω, we find that the LQG optimal compensator of the
lossless positive-real MIMO system is passive.

Example 4 Let us consider the discrete-time LPR system
characterized by the following state-space representation:

A =

⎡

⎢
⎢
⎣

0.6514 0.0122 1.6514 0.0122
0.1835 −0.7023 0.1835 0.2977

−0.3486 0.0122 0.6514 0.0122
0.1835 −1.7023 0.1835 −0.70230

⎤

⎥
⎥
⎦ ;

B =

⎡

⎢
⎢
⎣

0.2752 0.0306
0.0306 0.7441
0.2752 0.0306
0.0306 0.74410

⎤

⎥
⎥
⎦ ;

C =
[−0.1743 0.0061 0.8257 0.0061

0.0917 −0.8512 0.0917 0.1488

]

D =
[
0.1376 0.0153
0.0153 0.3721

]

(35)

Fig. 3 Spectrum of matrix H̄ = H(e jω) + HT (e− jω)

The LQG optimal compensator is calculated as:

H(z) = Kc (sI − A + BKc + KeC − KeDKc)Ke

=
[
H11(z) H12(z)
H21(z) H22(z)

]
(36)

with

H11(z) = 0.1383z3 − 0.1227z2 − 0.1482z + 0.01742

z4 − 0.3371z3 − 0.2054z2 + 0.4078z − 0.04507

H12(z)

= H21(z)

= 0.02075z3 + 0.0002172z2 − 0.02209z − 0.01448

z4 − 0.3371z3 − 0.2054z2 + 0.4078z − 0.04507

and

H22(z) = −0.2751z3 − 0.1194z2 + 0.2446z − 0.2045

z4 − 0.3371z3 − 0.2054z2 + 0.4078z − 0.04507
.

Let us evaluate the spectrum of the matrix H̄ = H(e jω)+
HT (e− jω). According to Definition 4, in order to be H(z) a
passive compensator, H̄ must be a positive definite matrix.
The eigenvalues λ1 and λ2 of H̄ are reported in Fig. 3 as a
function of ω. Since they assume negative values for some
ω, the LQG optimal compensator of the lossless positive-real
discrete-time MIMO system is not passive as expected.

Example 5 This example allows us to investigate the possi-
bility to get a positive-real LQG optimal compensator for a
discrete-time lossless positive-real system. As discussed in
Example 3., the compensator obtained therein, i.e. H(z) =
1
2

1
z+0.5 , is stable but not positive-real. Following the strategy

outlined in [16], it is possible to apply a forward action αI to
system H(z) in order to make it positive-real. The Nyquist
plot reported in Fig. 4a allows to graphically determine the
minimum value of α needed to make the system positive-
real, i.e. α = 1, as shown in the plot reported in Fig. 4b that
is related to the system H(z) + α.
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Fig. 4 Example 5: design of a
positive-real discrete-time LQG
optimal compensator. a Nyquist
plot of H(z) as in Example 3; b
Nyquist plot of H(z) + α with
α = 1

(a) (b)

We remark that including a forward actionmakes the LQG
compensator a strictly proper system, thus in this case the
value of α can be analytically derived by solving Eqs. (25)
with D = α. The condition D = α > 1 can be retrieved to
ensure the existence of a unique positive definite solution P .
In virtue of the hyperstability, the positive-real compensator
obtained with these procedures guarantees the asymptotical
stability of the closed-loop system when the plant is stable.

We now consider two examples of weakly-damped sys-
tems and study whether it is possible to use as an approx-
imation of the optimal case the gain vector obtained for
the corresponding lossless system, i.e., the system derived
assuming that the damping is exactly zero. In particular, we
will show that using this gain will yield an asymptotically
stable closed-loop systems without the need of calculating
the actual optimal gain vector solving the LQG optimal con-
trol problem, but directly adopting the formulas presented
in this paper. We remark that asymptotic stability is ensured
by the hyperstability theorem [14] as the the weakly-damped
system and the LQG compensator calculated for lossless sys-
tems are always positive-real.

Example 6 Let us consider the two transfer functions

G1(s) = s

s2 + k1s + 2

G2(s) = s

s2 + k2s + 1

(37)

and the system G(s) given by the series of G1(s) and G2(s)
as

G(s)= 2s3 + (k1 + k2)s2 + 3s

s4+(k1+k2)s3+(k1k2+3)s2+(k1+2k2)s+2
(38)

For k1 = k2 = 0, k1 = k2 = 0,G(s) is a lossless positive-
real continuous-time system. In this case, given a state-space
representation (A,B,C), the LQG optimal gain vector can
be determined as Kc = C.

Let us consider now the case k1 �= 0 and k2 �= 0 and let
us define the parameter δm as the average Euclidean distance

Fig. 5 Example 6: average distance δm between the nominal optimal
poles E and the set of poles ELL obtained for Kc = C in the space k1-k2

between the set of the nominal optimal poles E and the set of
poles ELL obtained for Kc = C. The map reported in Fig. 5
shows the trend of δm varying k1 and k2. The location of
the poles ELL is actually near to the optimal poles E of the
damped system, thus ensuring a good approximation even
for increasing values of the damping factors. It is interest-
ing to note that the trend of δm undergoes a sharp transition
which corresponds to a pair of complex poles collapsing on
the real axis. This behavior is also evident if we move along
the diagonal of Fig. 5. Consider the case k1 = k2 = k and
let k vary by in the range

[
0, 1

]
. In Fig. 6a the two sets E

(red circles) and ELL (blue circles) are reported. The corre-
sponding trend of δm is shown in Fig. 6b, where the sharp
transition is clearly observed at k = 0.2 for which we have
two coincident real poles.

Example 7 In order to verify the generality of the numeri-
cal results obtained in Example. 5, let us know consider the
model of the tetrahedral truss of the Draper Laboratory [24].
It consist in 6×6 transfer functionmatrix populated by blocks
of the form

Gi j (s) =
12∑

h=1

s

s2 + 2ξωhs + ωh2
(39)

with i = 1, . . . , 6 and j = 1, . . . , 6 and where the values of
ωh are reported in Table 1 and ξ accounts for the structure
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Fig. 6 Example 6: comparison
of the nominal optimal poles E
and the set of poles ELL
obtained for Kc = C for
k1 = k2 = k. a Location of the
poles E (red circles) and the set
of poles ELL (blue circles); b
trend of the corresponding δm .
(Color figure online)

(a) (b)

Table 1 Natural frequencies of
the model for the tetrahedral
truss of the Draper Laboratory
[2]

ω1 1.34 rad/s

ω2 1.66 rad/s

ω3 2.89 rad/s

ω4 2.95 rad/s

ω5 3.39 rad/s

ω6 4.20 rad/s

ω7 4.66 rad/s

ω8 4.76 rad/s

ω9 8.35 rad/s

ω10 9.25 rad/s

ω11 10.28rad/s

ω12 12.91 rad/s

damping. It can be verified that the model is lossless when
ξ = 0.

Let us now evaluate δm increasing the value of ξ in the
range

[
0, 1

]
. The error introduced by considering the opti-

mal gain of the lossless approximation (blue curve in Fig. 7a)
increases linearly with a sharper slope for values of ξ < 0.01
and then the slope is reduced andmaintained almost constant
up to ξ = 1, thus confirming the validity of considering as
optimal gain Kc = C as for the lossless approximation. The
poles locus reported in Fig. 7b clearly shows that the error is
mainly due to the high frequency real pole.

Suppose now to consider parameters affected by uncer-
tainty, i.e. the damping factors of the 12 modes are ξk = ξρk ,
where ρ is a stochastic variable drawn from a uniform dis-
tribution in the range

[
0, 1

]
, and let us calculate δm for

ξ ∈ [
0, 1

]
. We obtain the curve reported in red in Fig. 7a,

averaged over 100 realizations. Again the use of the opti-
mal gain for the lossless approximation ensures an effective
control.

5 Conclusions

The lossless systems assume a fundamental importance in
various areas of engineering as, in many of these cases, a

suitable lossless approximation of realweakly-damped large-
scale flexible structures strongly simplifies the numerical
procedure to solve the LQG problem. Complex engineering
structures with low damping properties as deep space net-
work antennas and solar panels for satellites power supply
are classical engineering examples in which an active com-
pensation based on the LQG problem can be formulated by
considering lossless approximate models.

In this paper, the structure of the LQG compensator for
LPRcontinuous-time anddiscrete-time systemshas beendis-
cussed. Specific relationships to determine the LQG gain
vectors have been introduced leading to the result that the
compensator cannot be passive in the discrete-time case.

The paper introduces an immediate procedure to obtain
the optimal gains, thus avoiding to solve the two Riccati
equations. The direct use of the introduced formulas has
been proved to be effective in the design of LQG opti-
mal control of real low-damping flexible structures with the
advantage of an immediate design procedure that in any case
guarantees the closed-loop stability of the system since the
feedback configurations consists of a passive system and a
passive compensator [14]. Indeed the numerical analysis car-
ried out shows that the performance decrease is marginal as
the closed-loop poles do not largely deviate from the nominal
locations.

The same considerations are also valid for the discrete-
time case. Moreover, for them a forward action in order to
make positive-real the compensator must be used in syn-
ergy with the feedback configuration. A trivial error that
can be made in the design of the optimal compensator for
discrete-time systems, in fact, is to perform the design in
the continuous-time domain and then apply a bilinear trans-
formation to obtain the compensator H(z): the compensator
obtained in this way is not the optimal compensator. We have
seen that the compensator for discrete-time LPR systems is,
in fact, not passive. However, leveraging the results of [16], it
can be made passive by the use of a forward action. Clearly,
this deteriorates the performance, yielding a control action
that is sub-optimal, but prompts for a passive realization.
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Fig. 7 Example 7: comparison
of the nominal optimal poles E
and the set of poles ELL
obtained for Kc = C. a Trend of
δm : ξ ∈ [

0, 1
]
(blue curve),

ξk = ξρk , with ρ drawn from a
uniform distribution in the range[
0, 1

]
(red curve, averaged

over 100 realizations); b
location of the poles E (red dots)
and the set of poles ELL (blue
dots). (Color figure online)

(a) (b)
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