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Abstract
The phase diagram of QCD, the gauge theory that describes the strong in-
teraction, is actually under exploration both theoretically and experimentally
searching for the phase transition from ordinary matter to a deconfined phase
of quarks and gluons, namely the Quark-Gluon Plasma. Being a remarably
complex theory, such a task is very difficult however there are several indications
that the phase transition occurs as indicated by Lattice QCD calculations,
in the low baryon density region, at a critical temperature of Tc ∼ 155MeV .
Phenomenological models predict also a phase transition at high density and
low temperature, like in the interior of neutron stars. On the experimental
side, the only way to access the QGP in a laboratory is to collide heavy ion
collision at ultra-relativistic energies as actually carry out at LHC at CERN
and at RHIC at BNL.

One of the most amazing discovery was that the system created in these
collisions behaves like a perfect fluid. Indeed hydrodynamics calculations
show that the large anisotropic flows measured are in agreement with a shear
viscosity to entropy density ration η/s close to the minimum value predicted
by AdS/CFT η/s = 1/4π.

In this thesis we discuss about two main subjects of Quark-Gluon Plasma
(QGP) produced in ultra-relativistic heavy ion collisions. The first one is a
sistematic study of transport coefficients, in particular shear viscosity and
electric conductivity of QGP. The second one regards a modeling of initial fields
and their early time dynamics of the system produced in such collisions.

Our challenge is to develop a very precise transport based approach with a
fixed value of η/s, being the physical quantity that describes a fluid in strong
coupling, instead of dealing with all the specific amplitudes scattering one has to
consider in the collision integral of the Boltzmann equation. In order to achieve
such a task, we compute the shear viscosity solving the Relativistic Boltzmann
Transport equation and using the Green-Kubo relation that, being not affected
by any kind of approximation, gives us the possibility to find the correct formula
among the analytical derivations in Relaxation Time Approximation and in
Chapman-Enskog scheme.

Using our numerical solution to the Relativistic Boltzmann Transport equation
we also compute the electric conductivity σel of the QGP. This transport
coefficient, the inverse of the electric resistence, represents the response of
the system to an applied external electric field and only very recently has
captured the attention in the field of QGP due to the strong electric and
magnetic fields present in the early stage of the collision. Our focus was to
characterize the relation between the σel and the relaxation time τ . Moreover we



study the relationship between the shear viscosity and the electric conductivity
investigating the ratio between η/s and σel/T , taking into account the QCD
thermodynamics, and predicting that the ratio supplies a measure of the quark
to gluon scattering rates.

Once we have developed a transport based approach describing a fluid with a
given η/s, our interest moved into describing, using a single consistent approach,
the fireball created in ultra-relativistic heavy ion collisions starting from the
initial time. According to the understanding of the early time dynamics of the
collisons, at t = 0+ strong longitudinal color electric and color magnetic flux
tubes, known as Glasma, are produced which then decay to a plasma as the
system expands. We modelled the early time dynamics considering only a color
electric field which decays to pair particles thanks to the Schwinger mechanism.
We extended our code in order to couple the dynamical evolution of the initial
color field and the many particles system produced by the decay.

Our studies focused on the isotropization and thermalization of the system in
the early stage in order to quantify the isotropization time, which is assumed
to be τiso = 0.6 ÷ 0.8 fm/c in hydrodynamics calculations. We investigate in a
sistematic way different systems: the static box, the longitudinal expanding
system and the 3+1D expanding case. We compute the ratio PL/PT , with PL

(PT ) the longitudinal (transverse) pressure, finding that for the relevant cases
of 1+1D and 3+1D the system reaches PL/PT ≃ 1, which characterizes the
isotropization of the system, in about 1 fm/c for η/s = 1/4π while for higher
value of shear viscosity the ratio PL/PT is quite smaller than 1, meaning that
the system does not isotropize.
Moreover, using our approach, we study also the effects of η/s on the elliptic
flow v2 and the impact of the non-equilibrium initial condition on the formation
time of v2. The first studies show that the final v2 developed by the system
is not significantly affected by the strong early non-equilibrium dynamics.
Hence, such a result provides a justification of the assumptions exploited in
hydrodynamical approach.
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Introduction and

motivations
Quantum Chromodynamics (QCD) is the gauge theory that, within the Stan-
dard Model, describes the strong interaction. The elementary constituents of
QCD, quarks and gluons that carry the color charge field, have all been ob-
served in deep inelastic electron-proton scattering or jet production in electron-
positron annihilation and proton-antiproton collisions, at up to TeV center of
mass energies. At high energies, providing a very high momentum transfer, the
asymptotic freedom of the theory, i.e. the decreasing of the running coupling
constant, allows to treat partonic interactions in a perturbative QCD frame-
work. On the contrary, QCD at lower energies remains one of the open sectors
of the Standard Model. In particular, the confinement-deconfinement transition
between hadrons and partons. These are of fundamental importance toward the
understanding of the primordial cosmological expansion that passed through
the QCD color phase transition to hadrons at about 10 ÷ 20 microseconds after
the Big-Bang, creating all the matter in the present universe. In addition to
the QCD confinement-deconfinement phase transition, a further characteristic
of QCD phase transition is involved in hadronic matter close to the critical
energy density: the restoration of chiral symmetry in QCD matter. This is an
invariance of the QCD Lagrangian, at least for the near-massless light quarks
that constitute all matter in the universe. It is spontaneously broken in the
transition from partons to massive hadrons, this breaking being the origin of
allmost the entire hadron mass. Chiral symmetry is expected to be restored at
high temperature indicating a phase transition being the order parameter the
quark condensate 〈q̄q〉.
The phase diagram of strongly interacting matter is actually under scrutiny
both theoretically and experimentally searching for the phase transition from
ordinary matter to the deconfined phase of quarks and gluons, namely the
Quark-Gluon Plasma (QGP). The most important non-perturbative approach
that shed light on the low density and high temperature region of the phase dia-
gram is Lattice QCD which consists in solving numerically QCD in a discretized
spacetime grid. Lattice calulations have shown that the phase transition is
located at a critical temperature of Tc ∼ 155MeV ∼ 1012 K for vanishing
baryon density. Phenomenological models show that there is also a phase
transition for small temperature and very high density, conditions that are
reached in astrophysical objects like neutron stars.

The only way to study the QGP in laboratory is to perform ultra-relativistic
heavy ions collisions. Such kind of experiments are actually carried out at Large
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Hadron Collider (LHC) at CERN (European Organization for Nuclear Research)
and at Relativistic Heavy Ion Collider (RHIC) at BNL (Brookhaven National
Laboratory). Experiments at RHIC with energies up to 200AGeV have given
clear indications of the formation of the QGP. Further confirmations as well
as new measurements are currently undergoing at LHC experiments, that,
started in 2010, can reach energies up to 5.5ATeV and an initial temperature
T ∼ 3 ÷ 4Tc.
However, the observables experimentally accesible are hadrons and consequently
the study of the partonic behaviour is partially shadowed by the hadronization
process that is yet not completely understood. Nevertheless there are a lot of
observables, such as particle spectra, particle multiplicity and collective flows,
that permit to identify the formation and the properties of the QGP. Such
observables are ideally influenced by different phases of the evolution of the
QGP, therefore it is important to identify observables that are able to probe one
particular phase of the system without being influenced by the other phases,
having in this way the possibility to extract information about a particular
phase of the evolution.

One of the most amazing discovery was that the system created under such
extreme conditions exhibits a nearly perfect fluid behaviour. This statement is
a consequence of the observation of large anisotropic flows developed in the
collision, in particular the large value of the elliptic flow v2, which is a measure
of the azimuthal asymmetry in momentum space. This observable encodes
informations in particular about the properties of the matter created in heavy
ion collision, the equation of state and the shear viscosity to entropy density
ratio η/s.
The value measured of v2 in ultra-relativistic heavy ion collisions is the largest
ever seen and can be described by ideal hydrodynamics suggesting the idea
of an almost perfect fluid with the smallest shear viscosity to entropy density
ratio η/s ever observed in nature. In fact, the η/s evaluated from the collective
flows is close to the lower bound η/s = 1/4π predicted by supersymmetric
Yang-Mills theory in the infinite coupling limit.
First developments of relativistic viscous hydrodynamics have shown that a
value of η/s ∼ 0.1 ÷ 0.2 is sufficient to produce a sizable effect on the v2, in
particular on its dependence on transverse momentum pT and also it has been
possible to provide a first estimate for the shear viscosity to entropy density
ratio η/s ≤ 0.4. However viscous hydrodynamics has a limited range of validity
in momentum space in particular as the viscosity increases like the one that
could be present in the cross-over region of the transition or at very large
temperatures.

Another natural approach is based on Relativistic Boltzmann Transport equa-
tion where the system is described in terms of a one body distribution function
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f(x, p). The Boltzmann equation is a space-time evolution equation for the
distribution function and accounts in a natural way non-equilibrium states and
relaxation toward the equilibrium.
At variance with hydrodynamics this is a microscopic approach to study the
dynamics of the system and the dissipative dynamics produced by a finite
viscosity is taken into account within a finite cross sections. However usually
kinetic theory is applied to the study of heavy ion collisions starting from the
microscopic details of fields and cross sections and it is not discussed directly in
terms of viscosity of the system, which is a key transport coefficient as shown
by hydrodynamics. This has lead more recently to develop a transport theory
based approach at fixed η/s that allows to have a direct link to the viscous
hydrodynamic language. Moreover kinetic theory can allow to investigate the
non-equilibrium and dissipative effect in a wider range of validity respect to
hydrodynamics for both η/s and the momenta of the particles. First attempts
in this direction have been already developed and applied to the study of the
QGP dynamics however such an approach asks for a knowledge of the exact
relation between the shear viscosity η and temperature, cross section, mass
and density.

The first part of the thesis is dedicated to a study of the shear viscosity solving
numericaly the Relativistic Boltzmann Transport equation in order to find the
correct shear viscosity dependence on physical details such as cross section,
temperature, density. The result obtained allow us to describe the QGP dy-
namics in a more precise transport approach developing a numerical code to
solve the relativistic Boltzmann equation for the parton distribution function
using a fixed shear viscosity to entropy density ratio η/s.
In literature there are several method for computing the shear viscosity, the
most employed being the Relaxation Time Approximation and the Chapman-
Enskog scheme. The first is based on an ansatz for the collision integral in the
Boltzmann equation and it does not allow to have under control the precision
of the approximation. The second one is instead based on a linearization of the
collision integral that in principle allows to obtain solutions with an arbitrary
accuracy which depends on the order of approximation used.
On the other hand Green-Kubo relation, in the framework of Linear Response
Theory, give us an exact formula to estimate the transport coefficients. We com-
pare the two main analytical approximation schemes with the results obtained
evaluating the Green-Kubo correlator solving numerically the Relativistic Boltz-
mann Transport equation. This approach gives us the opportunity of quantify
the validity of each approximation scheme.
We will show that for all the case of interest the Chapman-Enskog formula
is a pretty good approximation to the exact viscosity providing the correct
analytical relation between η ↔ T, σ(θ), ρ,M . Such analytical relation supplies
a way to construct a kinetic theory at fixed η/s(T ) with a very large accuracy
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especially for the case of non-isotropic cross section and massive quasi-particles
both of interest for a realistic description of quark-gluon plasma and hadronic
matter.

Within the same framework used for computing the shear viscosity, we calculate
also the electric conductivity of the QGP. Only very recently the electric
conductivity has captured a significative importance in the field of strongly
interacting matter on the theoretical side as well as on the experimental one.
The electric conductivity, the inverse of the electric resistence, represents the
response of a system to the applied electric field. On the experimental side,
Heavy Ion Collisions are able to produce very strong electric and magnetic
fields (eE ≃ eB ≃ m2

π, with mπ the pion mass) which are produced by the
charge carried by the two nuclei and decay in about 1 fm/c, however the decay
time depends on the value of the electric conductivity of the QGP.
The value of σel would be of fundamental importance for the strength of the
Chiral-Magnetic Effect, a signature of the CP violation of the strong interaction.
It has also been shown that in mass asymmetric collision the electric field has
a privileged direction generating a current whose effects can be observed in
collective flow and are directly related to σel. Moreover σel can be related to
the emission rate of soft photons accounting for their raising spectra. The
electric conductivity σel can be computed from first principles on the Lattice
from correlation function.
We will evaluate the electric conductivity solving the Transport Boltzmann
Equation and, in details, study the relationship between σel and the relaxation
time τ . In particular we will show that for a generic anisotropic cross section,
the Drude relaxation time τ = 1/ρσ, with ρ the density and σ the cross section,
underestimates the correct value of relaxation time. We will also compare
our numerical results to the analytical formula derived in Relaxation Time
Approximation in order to quantify how good is such a crude approximation.
Being interested in a more realistic case and in having an approach also able
to account for the Lattice QCD results, we employed a quasi-particle model to
take into account the thermodynamics of strongly interacting matter.
We discuss the relation between the shear viscosity and electric conductivity
investigating for the first time the ratio between η/s and σel/T taking into
account the Lattice QCD equation of state. We predict that the ratio supplies
a measure of the quark to gluon scattering rates whose knowledge would allow
to significantly advance in the understanding of the QGP phase.

Our calculations of transport coefficients can be extendend to the bulk viscosity
as well as to the color-conductivity which are of fundamental importance in ultra-
relativistic heavy ion collisions. The bulk viscosity, which represents the friction
of the system to a rapid expansion, only very recently has been included in
hydrodynamic calculations while the color conductivity is of particular interest
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in the early time dynamics of the QGP when are present strong chromoelectric
and chromomagnetic fields.
Our interest, after the shear viscosity and electric conductivity studies, moved
into applying our very precise transport approach at fixed η/s to the early
time dynamics of ultra-relativistic heavy ion collision. In particular using our
transport approach we want to study, in a quantitative way, how the system,
starting from the non-equilibrium initial condition, reaches a state characterized
by thermalization and isotropization in order to quantify the isotropization
time, usually assumed τ = 0.6 ÷ 0.8 fm/c in hydrodynamics calculations.
The understanding of early times dynamics is one of the most interesting
problems of heavy ion collisions at ultrarelativistic energy actually under
investigation. According to the standard picture of such collision processes,
immediately after the collision, strong longitudinal color electric and color
magnetic flux tubes, known as Glasma, are produced. Such fields, due to
quantum fluctuations, decay to a plasma as the system expands reaching, in
a very short time, a state characterized by thermalization and isotropization
which is the initial state for hydrodynamics description. Our main interest is to
investigate the problem of isotropization and thermalization of such a system
using our transport approach toghether with the effects of shear viscosity.

One mechanism responsible for the initial fields decay might be the one in-
troduced by Schwinger in the context of Quantum Electrodynamics, known
as the Schwinger effect, which consists in a vacuum instability towards the
creation of particle pairs by a strong electric field. We develop a code that
couple the dynamical evolution of the initial color electric field to the dynamics
of the many particles system produced by the decay within the Relativistic
Boltzmann Transport equation.
Besides being the first study in which a Monte Carlo method is used to simulate
the Schwinger effect in the context of early times dynamics of high energy
collisions, we improve previous studies which mainly rely on Relaxation Time
Approximation (RTA) or on a linearization of the conductive electric current,
by avoiding any ansatz both on the electric current and on the collision integral
in the Boltzmann equation which permits to go beyond the RTA. Moreover, in
our simulations we are able to fix the ratio η/s thanks to the study of shear
viscosity discussed in the first part of this thesis.

Our study focuses on computing quantities which serve as indicators of ther-
malization and isotropization of the plasma and evaluate how these processes
are affected by the η/s. We investigate in a sistematic study different systems
starting from the static box case. On one hand such a case can be viewed as
only of achademic interest however, on the other, it represents the guideline
for interpreting the physical results obtained like for example the decay of the
color electric field on about 1 fm/c and the isotropization of the longitudinal
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pressure PL over the transverse pressure PT in 1 fm/c for η/s = 1/4π. The
cases with higher value of η/s show plasma oscillations and require a larger
time to isotropize.
Then we consider a system with a longitudinal expansion which has a greater
physical interest than the static box because it is closer to the picture of
the early times dynamics of relativistic heavy ion collisions. In this case we
will show that the electric field exhibits a rapid decay for small η/s while for
intermediate and high value of shear viscosity strong oscillations during the
time evolution. The ratio PL/PT shows that the system reaches a state of
isotropization in about 1 fm/c for η/s = 1/4π. For η/s = 3/4π, 10/4π the
ratio experiences several oscillations and the aymptotic value of PL/PT is quite
smaller than 1 indicating that the system does not isotropize.
Finally we extend the longitudinal expansion study to a the three dimensional
case which is of great interest being more realistic. In particular, within
this framework, we study the isotropization and thermalization of the fireball
showing that the transverse expansion affects both plasma oscillations and
istropization. Moreover using our approach we are ablo to describe the fireball
evolution starting from the initial time t = 0+, when only fields are present, to
the develop of collective flows in only one consistent scheme. We will compute
the elliptic flow and in particular we will show the effects of η/s on v2 and how
the initial non-equilibrium condition affects the formation time of v2.

The thesis is structured as follows. In Chapter 1 we discuss about the general
properties of QCD and the phase transition from ordinary matter to quark-
gluon plasma by mean of ultra-relativistic heavy ion collisions. In Chapter
2 we present Transport Boltzmann equation from the classical case to the
quantum-relativistic generalization discussing its numerical implementation. In
Chapter 3 the reader can find Linear Response Theory, Green-Kubo relations
and analytical approximation to the Boltzmann equation for the shear viscosity
and electric conductivity. In Chapter 4 we show our results about shear
viscosity dependence on microscopic physical quantities and the more realistic
case of shear viscosity of a quark-gluon plasma using the equation of state of
Lattice QCD. In Chapter 5 we present similar results for the electric conductivity
studying furthermore the ratio between shear viscosity and electric conductivity
and pointing out that their relation is determined by the relative interaction
between quarks and gluons. In Chapter 6 we study early times dynamics by
an initial color electric field which decays to a plasma by the Schwinger effect
showing different case of interest: static box, 1+1D expansion and also the
realistic case of 3+1D expansion.
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8 1. Quantum-Chromo Dynamics and Quark-Gluon Plasma

In this chapter we discuss about the general properties of Quantum-Chromo
Dynamics (QCD), namely the Standard Model sector describing the strong
interactions. The asymptotic freedom at high energy makes the theory weakly
coupled; on the other hand at low energy the coupling becomes large and no
perturbative calculation can be reliable. Color confinement, acting in normal
conditions of temperature and density, is the phenomenon hindering color
charged particles to be isolated singularly, and therefore directly observed.
The most important theoretical tool to investigate the QCD properties is to
solve the QCD in a space-time lattice, Lattice QCD. Lattice calculations show
that there is a phase transition from ordinary matter to a quark-gluon plasma
(QGP) phase where quarks and gluons are no longer confined. These new
state of matter is reached for extremely high temperature, T ≃ 1012 K, like
in the early stage of the universe, or at very high density like the ones that
can be found in compact stellar objects (e.g. neutron stars). The only way
to produce this state of matter on Earth is to perform ultra-relativistic heavy
ions collisions. In such kind of experiments the high multiplicity of particles
produced, as their average energy, shows that a temperature higher than the
critical one is reached. Such a statement is corroborated by the study of their
momentum spectra and collective flows in hydrodynamical framework. Then
other several observables probe that the QGP is formed. Moreover, collective
flows, in particular the elliptic flow, indicate that the QGP behaves like a fluid
with the lowest value of shear viscosity ever observed in nature, close to the
lower bound predicted by AdS/CFT η/s = 1/4π.

1.1 Quantum-Chromo Dynamics

The fundamental interaction governing nuclear physics is the strong force. It is
one of the four fundamental forces in nature, along with electromagnetism, weak
interaction and gravitation. Theoretically strong interactions are described
by a non-abelian gauge theory called quantum chromodynamics (QCD). The
charge associated with this gauge theory is referred to as color and can take
three different values as the underlying symmetry group is SU(3), a special
unitary group of degree three. It is the invariance under local SU(3) symmetry
transformations in the color space whose gauging leads to QCD. The color
charge is carried by spin−1/2 fermions called quarks, subatomic particles
that, to the best of our current knowledge, have no substructure and are the
fundamental particles of QCD. The strong force between the quarks is mediated
by gluons, the exchange particles of QCD. Due to the non-abelian nature of
the theory, the gluons carry color charge and are thus subject to interactions
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via the strong force themselves. This is a feature quite distinct from quantum
electrodynamics (QED), where the exchange photons do not couple to each
other directly, and leads to wide consequences. Gluons are spin-1 vector bosons
and come in eight types, corresponding to the color octet generated by SU(3).
In general, for a SU(N) symmetry there are N2 − 1 force carriers. The QCD
Lagrangian has the following form:

L =
1
4

∑

a

F a
µνF

µν
a +

Nf
∑

f

Ψ̄f

(

iγµ∂µ − gγµ
∑

a

Aa
µ

λa

2
−mf

)

Ψf (1.1)

where Ψf are the quarks fields, being f = u, d, s, c, b, t the quark flavour index,
and Aa

µ are the gluon fields with a = 1, . . . , 8 the color index. In Eq. (1.1)
g is the strong coupling constant, γµ are the Dirac matrices, and λa are the
Gell-Mann matrices:

λ1 =





0 1 0
1 0 0
0 0 0



 λ2 =





0 −i 0
i 0 0
0 0 0



, λ3 =





1 0 0
0 −1 0
0 0 0



,

λ4 =





0 0 1
0 0 0
1 0 0



, λ5 =





0 0 −i
0 0 0
i 0 0



,

λ6 =





0 0 0
0 0 1
0 1 0



, λ7 =





0 0 0
0 0 −i
0 i 0



,

√
3λ8 =





1 0 0
0 1 0
0 0 −2





The generators of SU(3) group, satisfy the commutation relations:

[

λa

2
,
λb

2

]

= ifabc
λc

2
(1.2)

which defines the Lie algebra of the SU(3) group. The coefficients fabc are the
structure constants of the Lie Algebra and they are totally antisymmetric with
respect to the permutation of a, b, c being different from zero the list in Table
1.1.
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f123 = 1, f147 = 1
2 , f156 = − 1

2 , f246 = 1
2 , f257 = 1

2

f345 = 1
2 , f367 = − 1

2 , f458 =
√

3
2 , f678 =

√
3

2

Table 1.1: Structure constant of the Lie Algebra of SU(3) group.

The non-linear gluon field strength in the QCD Lagrangian is defined by:

Fµν
a = ∂µAν

a − ∂νAµ
a − gfabcA

µ
bA

ν
c . (1.3)

For each flavour the quark wave function has three components Ψ = (ψred, ψgreen, ψblue),
being each of them a Dirac spinor, and the local SU(3) gauge transformation
is:

Ψ → Ψ′ = U(x)Ψ, U(x) ∈ SU(3). (1.4)

The QCD Lagrangian is invariant under the above local transformation if the
gluon fields change according to:

Aµ = Aµ
a

λa

2
→ A′µ = U(x)AµU−1(x) − i

g
U(x)∂µU−1(x). (1.5)

Only T 3 ≡ λ3/2 and T 8 ≡ λ8/2 commute so they can be viewed as the
operators of the color charge carried by quarks: they are called color isotopic

charge and color hypercharge. The values of the quark charges are obtained as
the eigenvalues ε(3)

i and ε
(8)
i

T 3Ψi = ε
(3)
i Ψi, T 8Ψi = ε

(8)
i Ψi (1.6)

where Ψi represents the normal basis in the color space Ψ1 = (Ψred, 0, 0),
Ψ2 = (0,Ψgreen, 0) and Ψ3 = (0, 0,Ψblue). The solution to the eigenvalue
equation above is:

ε1 =
1
2

(

1,

√

1
3

)

, ε2 =
1
2

(

−1,

√

1
3

)

, ε3 =

(

0,−
√

1
3

)

(1.7)

that are two-dimensional vectors in the space of color isotopic charge and
color hypercharge. The vectors εi are the mathematical representation of three
different color charges.

The color charges are also carried by gluons. The gluon field represented by
Aµ ≡ Aµ

aλa/2 form the basis for the adjoint representation. Charge operators
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for gluons can be defined as follows:1

AdT 3 =
[

T 3, ·
]

, Ad T 8 =
[

T 8, ·
]

. (1.8)

Only the generators τ3 = T 3 and τ8 = T 8 are the eigenstates of the new
operators AdT 3 and AdT 8 with zero eigenvalues. Other eigenstates are:

τ12 = 1√
2
(T1 + iT2) = 1√

2





0 1 0
0 0 0
0 0 0



, τ12 = 1√
2
(T1 − iT2) = τ †

12

τ13 = 1√
2
(T4 + iT5) = 1√

2





0 0 1
0 0 0
0 0 0



, τ31 = 1√
2
(T4 − iT5) = τ †

13

τ23 = 1√
2
(T6 + iT7) = 1√

2





0 0 0
0 0 1
0 0 0



, τ32 = 1√
2
(T6 − iT7) = τ †

23

In a more compact view:

[

T 3, τij

]

= η
(3)
ij τij ,

[

T 8, τij

]

= η
(8)
ij τij (1.9)

where the charges ηij have the form

ηij = εi − εj (1.10)

The three charges, that will be used in the flux tube model in Chapter 6, are:

η12 = (1, 0), η13 =
(

1
2
,

1√
3

)

, η23 =
(

−1
2
,

1√
3

)

(1.11)

while the remaining three charges are obtained by ηji = −ηij . The gluon field
in the basis of τ generators has the form:

A =
1
2
Aaλa = A3τ3 +A8τ8 +
[

A1 − iA2

√
2

τ12 +
A4 − iA5

√
2

τ13 +
A6 − iA7

√
2

τ23 + h.c.

]

(1.12)

or

A = G3τ3 +G8τ8 +G12τ12 +G13τ13

+ G23τ23 +G21τ21 +G31τ31 +G32τ32 (1.13)
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G3 and G8 are neutral since they commute with T 3 and T 8 while the fields
Gij carriy the color charge ηij . In the new basis the quark-gluon interaction
term in the QCD Lagrangian is written as:

Lint = −gΨ̄ (τ3γµG
µ
3 + τ8γµG

µ
8 ) Ψ

−g
[

Ψ̄ (τ21γµG
µ
21 + τ31γµG

µ
31 + τ32γµG

µ
32) Ψ + h.c.

]

(1.14)

Last equation shows that the color charge of a quark does not change during the
interaction with gluon fields G3 and G8, so these types of gluons can be treated
in a similar way as photons in QED; on the other hand interaction between
quarks and gluon field Gij changes the color state of quarks: absorption of
gluon Gij by a quark with charge εj produces a quark with charge εi. The
separation of the gluon field into charged and neutral part is gauge dependent,
however, fixing the gauge, this method can be applied and it is very useful for
the physical interpretation of many processes.

1.1.1 Asymptotic freedom

One particular feature of QCD, not present in QED, is the asymptotic freedom,
that is a general property of non-Abelian gauge theory.2, 3 The strength of the
interaction decreases as the transfer momentum increases, or equivalently as
the distance decreases.

In field theories, the quantum corrections calculated in perturbation theory
have ultraviolet divergences with high momenta. For renormalizable field
theories, like QED and QCD, these divergences can be absorbed in renormalized
parameters. The energy scale where this happens is the renormalization point.
The physical observables do not depend on the renormalization point but the
coupling αs = g2/4π depends on it. In the case of QCD, with Nf = 6, the
coupling α at leading order is:

αs(Q2) =
4π

(

11 − 2
3Nf

)

log (Q2/Λ2)
(1.15)

where ΛQCD is the energy scale of the strong interaction. In Fig. 1.1 from
Ref.4 it is shown αs as a function of Q: symbols represent experimental
measurements while lins are QCD predictions. The asymptotic freedom of the
strong interaction allows to set up the perturbation theory for high transfered
momentum (pQCD) while for energy comparable with Λ = 200MeV the
coupling is too large to apply any perturbative calculation.
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Figure 1.1: Summary of measurements of αs as a function of the respective energy
scale Q from Ref.4

1.1.2 Confinement

One of the most peculiar feature of the QCD is the colour confinement: hadrons
can exist only in colorless states and quarks can only exist as confined in hadrons.
Wheter the QCD vacuum leads to quark confinement can be tested by studying
the expectation value of the Wilson loop:

〈W (C)〉 ≡
〈

trPeig

∮

C

dzµAµ

〉

(1.16)

∝ e−V (R)T ≃ exp
[

−
(

KR+ b+
c

R
+ . . .

)

T
]

(1.17)

where the path C has been chosen as rectangular. V (R) represents the potential
between a heavy quark Q and anti-quark Q̄, K 6= 0 implies the existence of
a strong-like linear confining potential and also the area law of the Wilson
loop 〈W (C)〉 ∼ exp(−KA) with A = R× T the area inside the path C. The
previous equation is valid only if one has heavy colour sources in the medium
(the so called quenched approximation): indeed in the case of full QCD with
light quarks, the linear rising potential becomes flat because of qq̄ virtual pairs
which break the string QQ̄ → (Qq̄)(qQ̄). In general the QQ̄ potential as a



14 1. Quantum-Chromo Dynamics and Quark-Gluon Plasma

function or R is defined as

V (R) = − lim
T →∞

(

log〈W (C)〉
T

)

T ≫R

. (1.18)

Non-perturbative numerical simulation on the lattice give us a clear evidence
of the linear rising V (R) at zero temperature as shown by black line in Fig. 1.2
from Ref.5 In Fig. 1.2 are shown quark anti-quark free energy as a function of
distance for different value of temperatures: at large distances the free energy
approaches a constant temperature dependent value while, in the opposite
limit, tends to the potential V (r). In Fig. 1.3 the screening radius as a function
of temperature from Ref.:5 as the temperature increases, the screening radius
becomes shorter meaning that the quark anti-quark bound states is influenced
by the medium indicating a transition temperature.

-500
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0 0.5 1 1.5 2 2.5 3
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F1 [MeV]

0.76Tc
0.81Tc
0.90Tc
0.96Tc
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1.23Tc
1.50Tc
1.98Tc
4.01Tc

Figure 1.2: The colour singlet quark
anti-quark free energies, F1(r, T ), at
several temperatures as function of dis-
tance in physical units from Ref.5 The
solid line represents the T = 0 heavy
quark potential, V (r).
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Figure 1.3: The screening radius as
function of T/Tc from Ref.5 estimated
from the inverse Debye mass, rD ≡
1/mD (Nf = 0: open squares, Nf = 2
filled squares). The horizontal lines
give the mean squared charge radii of
some charmonium states, J/ψ, χc and
ψ′.

1.1.3 Further symmetries of QCD

In this subsection we discuss further simmetries of QCD; namely chiral and
dilatational simmetries.

• Chiral symmetry In the limit of vanishing masses the left- and right-
handed quarks become decoupled from each other and QCD becomes
invariant under their interchange so that left and right-handed quark
current are separately conserved. From a mathematical point of view, the
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lagrangian of a system has the chiral symmetry if it is invariant under
the global SU(Nf )L × SU(Nf )R transformation:

SU(Nf )L : qL → eiθa
L

λa
2 qL, SU(Nf )R : qR → eiθa

R
λa
2 qR (1.19)

where λa are the generators and qL = 1
2 (1 − γ5)q, qR = 1

2 (1 − γ5)q
are respectively the left-handed and right handed fields. The symmetry
implies that also each state of the theory should have a degenerate partner
of the opposite parity. However hadrons have well defined parity. This
is the case of a spontaneous breakdown of chiral symmetry: the chiral
symmetry of the interaction is broken by the true ground state of the
theory. According to Goldstone theorem, spontaneous breaking of any
continuous symmetry is connected with the existence of soft modes which,
in the case of QCD, correspond to pions. In reality, pions have small
mass (so they are called pseudo-Goldstone bosons): this is due to the
non-zero mass of up and down quark so chiral symmetry is approximate.
Chiral symmetry is expected to be restored in the quark-gluon plasma.

• Dilatation symmetry The QCD Lagrangian, for massless quarks, is in-
variant under the following scale transformation:

xµ → ε−1xµ, q(x) → ε3/2q(ε−1x), Aa
µ(x) → εAa

µ(ε−1x) (1.20)

that is the dilatation symmetry, while the current associated is

〈Tµ
µ 〉 = ε− 3P =

αs

12π
〈FµνFµν〉 +m〈Ψ̄Ψ〉 (1.21)

which is the trace of energy momentum tensor. The expectation value
〈FµνFµν〉, considering the quantum corrections, is different from zero
leading to the trace anomaly.

1.2 Lattice QCD

The most important theoretical non-perturbative approach, used to extract
information about the phase transition and also, as we will see in Chapter 3,
about transport coefficients like shear viscosity and electric conductivity, is
the numerical study of QCD on a discretized space time, namely the Lattice
QCD. In Lattice QCD approach the partition function is computed by Monte-
Carlo methods. In order to define the gauge field on the lattice and maintain
gauge invariance on the discretized space-time, it is necessary to introduce link
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variable that is the discretized version of Wilson line defined as follows:

Up(x, y;A) = P exp
(

ig

∫

p

dzµ Aµ

)

(1.22)

where P is the path-ordered symbol. The shortest Wilson line on the lattice is
the one connecting the site n with site n+ µ̂:

Uµ(n) = exp (igaAµ(n)) (1.23)

The smallest closed loop is:

Uµν(n) = U†
ν (n)U†

µ(n+ ν̂)Uν(n+ µ̂)Uµ(n) (1.24)

which transforms covariantly under a local gauge transformation and, in the
continuum limit a → 0, it approaches to the field strength tensor Uµν(n) − 1 →
ia2gFµν(n). The trace tr Uµν(n) is a minimal gauge-invariant called plaquette
is used to construct a gauge invariant gluon action:

Sg =
2Nc

g2

∑

p

(

1 − 1
Nc

ℜ tr Uµν(n)
)

→ 1
4

∫

d4xF a
µν(x)Fµν

a (x) (1.25)

In analogous way one can write the Wilson fermion action

SW = a4
∑

n

[

mq̄(n)q(n) − 1
2a

∑

µ

q̄(n+ µ̂)ΓµUµ(n)q(n)

− r

2a

∑

µ

(q̄(n+ µ̂)Uµ(n)q(n) − q̄(n)q(n))

]

→
∫

d4x q̄(x)
(

m− iγ ·D − ar

2
D2
)

q(x) (1.26)

where Γµ are the hermitian γ-matrices satistying {Γµ,Γν} = 2δµν . The pa-
rameter r vanishes in the continuum limit and avoids the fermion-doubling
problem on the lattice.

Once the actions have been set up the theory can be quantized by functional
integral over quarks and gluons. The partition function is given by:

Z =
∫

d[U ][dΨ̄][dΨ] e−Sg(U)−Sq(Ψ̄,Ψ,U)

=
∫

d[U ]DetF [U ]e−Sg(U) (1.27)
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where the general form Sq =
∑

n,n′ Ψ̄(n′)F (n′, n)Ψ(n) has been used. The
determinant is computed for all indices of F . Setting DetF [U ] = const

is the quenched approximation which ignores the virtual quark-anti-quark
excitations.

1.2.1 Polyakov loop

The study of the phase transitions is facilitated by comparing the symmetry
of the phases and introducing appropriate order parameters. The step which
started the systematic investigation of the deconfinement phase transition was
the construction of an order parameter for confinement called Polyakov loop at
finite temperature:

L(x) = P exp

[

i

∫ β

0

dτ A4(x, τ)

]

(1.28)

The Polyakov loop can be thought of as representing a static fermion test charge
which probes the screening properties of the surrounding gluonic medium. Its
expectation value is related to the free energy Fq(T ):

e−Fq(T )/T ≃ 〈L〉 (1.29)

induced by the presence of the source in the gluonic heath bath. In absence of
dynamical quarks, a single colored charge cannot be screened in the confined
phase so its free energy Fq is infinite and 〈L〉 = 0. In the confined phase,
however, Fq is finite and 〈L〉 6= 0. The expectation value 〈L〉 is thus an order
parameter for the deconfinement phase transition in the pure SU(3) gauge
theory. The discretized version of the Polyakov loop in lattice calculations is

L(x) =
1
Nc

tr

Nt−1
∏

n4=0

U4(n4,x). (1.30)

The existence of the deconfinement transition at high temperature was discussed
in the context of lattice gauge theory.6, 7 It was later proved that for SU(Nc)
lattice gauge theory there exists a phase transition to the deconfinement phase
at high temperature.8 In particular for Nc = 2 the transition is of second order
while for Nc = 3 the transition is of first order, so that the expecation value
of Polyakov loop has a discontinuity at the critical temperature and there is
the coexistence of the two phases. However in presence of light quarks the
expectation value of L exihibits a cross-over as shown in Fig. 1.4 from Ref.9
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The other quantity that plays the role of an order parameter is the chiral
condensate 〈Ψ̄Ψ〉. In the limit of vanishing quark masses the chiral condensate
is different from zero if the chiral symmetry is spontaneously broken and
becomes zero when the symmetry is restored. In the case of finite quark masses
the chiral symmetry is only approximate and therefore 〈Ψ̄Ψ〉 does not vanishes
at high temperature but still manifest a critical behaviour as shown in Fig. 1.5
from Ref.9

1.2.2 Mass spectrum of light hadrons

On the lattice, the masses of mesons and baryons can be calculated directly.
Hadron masses in the quenched approximation are calculated from the operator
calM = q̄(x)γq(x) with γ an arbitrary γ-matrix. The correlation function of
such operators in Euclidean space is given by

D(τ) =
∫

d3x 〈M(τ,x)M†(0)〉 −→
τ→∞

|Z|2e−mτ (1.31)

where m is the mass of the lightest bound state with the same quantum number
as the operator M and Z is the pole residue. If the temporal extent of the lattice
is infinite, the hadron mass can be extracted using m = −(1/τ) logD(τ)|τ→∞.
In Fig. 1.6 the mass spectrum for mesons and baryons composed of u, d
and s quarks are shown: black circles are the lattice data with s quark mass
fixed by the experimental kaon mass while white circles with the φ-meson
mass. Simulation data and the experiments agree at 11% even in the quenched
approximation.
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1.2.3 Equation of state

Once the partition function is known, it is possible to compute thermodynamical
quantities like the energy density, the pressure and entropy density thanks to
the standard thermodynamical relations:

ε =
T

V

(

∂ log Z
∂ log T

∣

∣

∣

∣

V

)

, P = T
∂ log Z
∂V

∣

∣

∣

∣

T

(1.32)

s =
1
V

(

1 +
∂

∂ log T

)

log Z
∣

∣

∣

∣

V

(1.33)

In Fig. 1.7 we show recent lattice results11 for the pressure p/T 4 as a function
of the temperature T . In Fig. 1.8 we report recent lattice results continuum
extrapolated of entropy density rescaled by T 3 and energy density ε rescaled
by T 4 as a function of temperature. In the inset of Fig. 1.8 the speed of
sound c2

s = dp/dε is shown. These results are computed with 2 + 1Nf . One
can observe that near a critical temperature Tc the energy density grows up
indicating an increasing of the effective number of degrees of freedom, signal
of a transition from hadronic matter to a deconfined system of quarks and
gluons. Both pressure and energy density are quite below the Stefan-Boltzmann
limit for an ideal gas meaning that also for high temperature there is strong
interaction among quarks and gluons. These deviation from the ideal gas
behaviour can be expressed in terms of effective thermal masses of quarks and
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Figure 1.9: Phase diagram of QCD from https://www.bnl.gov/rhic

1.4 Quark-Gluon Plasma in heavy ion collision

The first experiments with the ultra-relativistic heavy ions, with energy of
10GeV per nucleon, took place at the Brookhaven National Laboratory (BNL)
and at the European Organization for Nuclear Research (CERN) in 1986.
The Alternating Gradient Synchroton (AGS) at BNL accelerated beams up
to 28Si at 14GeV per nucleon while at CERN the Super Proton Synchroton
(SPS) accelerated 16O at 60 − 200GeV per nucleon. In 1995 completely new
experiments took place at CERN with 208Pb at 158GeV per nucleon. These
were really ultra-relativistic heavy ions collisions producing large volumes and
lifetime of the reaction zone. In 2000 the first data from Relativistic Heavy Ion
Collider (RHIC) at BNL were collected accelerating fully stripped Au ions to a
collision energy of 200GeV . There are four experiments at RHIC: BRAHMS
(particles identification over a broad range of rapidity), PHOBOS (total charged
particle multiplicity and particle correlations), PHENIX (electrons, muons,
hadrons and photons) and STAR (hadron production over a large solid angle).
The first proton run at the Large Hadron Collider (LHC) at CERN ended
on 4 November 2010. A run with lead ions started on 8 November 2010,
and ended on 6 December 2010 allowing the ALICE experiment to study
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matter under extreme conditions similar to those shortly after the Big Bang.
Seven detectors have been constructed at the LHC, located underground
in large caverns excavated at the LHC’s intersection points: ATLAS (signs
of new physics, including the origins of mass and extra dimensions), CMS
(same purpouse as ATLAS), ALICE (quark-gluon plasma), LHCb (antimatter),
TOTEM (yotal cross section, elastic scattering and diffraction dissociation at
the LHC), MoEDAL (Monopole and exotic particle detector at the LHC) and
LHCf (measurement of neutral π0 meson production, in order to understand
ultra high energy cosmic rays). At full design energy the protons will each have
an energy of 7 TeV, giving a total collision energy of 14 TeV. At this energy the
protons have a Lorentz factor of about 7,460 and move at about 0.999999991 c,
or about 2.7 metres per second slower than the speed of light. It will take less
than 90 µs for a proton to travel once around the main ring of 27Km

The main challenge of the ultra-relativistic heavy ion collision is the observation
of the two phase transitions predicted by QCD, the deconfinement and the
chiral phase transitions. Increasing temperature or increasing baryon density,
a phase transition may occur to the state where quarks and gluons become the
correct degrees of freedom.

The present experimental evidence indicates that in such experiments an
extended and very dense system of strongly interacting matter is formed.
Moreover, such system shows high level of thermalization and also collective
behaviour.

1.4.1 Collision dynamics

At ultra-relativistic energy, the energy per nucleon in the center of mass frame
is much larger than the nucleon mass, so they are Lorentz contracted along the
beam direction. In the center of mass frame they appear as two tiny disk of
tickness 2R/γCM , being R the nuclear radius and γCM = 1/

√

(1 − p2
z/E

2
CM ).

At such energies simple geometric concepts are often used. Assuming that
all nucleons of each incoming nucleus propagate along straight line then the
nucleons that do not meet any other nucleons are called spectator while the
nucleons that interact are called partecipants. Only the spatial distribution of
nucleons in the nuclei and the nucleon-nucleon cross section have relevance for
the nucleus-nucleus collision. The vector connecting the centers of colliding
nuclei is called impact vector b and its modulus is the impact parameter b.
The coordinate system used has the z-axis parallel to the beam axis and the
impact vector b points the x−direction. The reaction plane is individuated by
the x and z axes. The value of impact parameter determines the number of the
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Figure 1.10: Schematic representation of the Glauber model geometry.

partecipants, Npart, and also the number of spectators Nspec. Experimentally,
the value of Nspec can be extracted from the measurement of the energy
deposited in the zero-degree calorimeter (ZDC) and coincidens between the
ZDC counters play the role of the trigger for the collision events.

The number of of partecipant nucleons can be evaluated by the Glauber Model
which has been succesfully applied in the description in the description of
high-energy nuclear reactions. It is a semi-classical model treating the nucleus-
nucleus collision as a multiple nucleos-nucleon interactions: a nucleon of incident
nucleus interacts with target nucleons with a given density distribution. The
nucleon-nucleon inelastic cross-section σin

NN is assumed to be the same as the
one in vacuum. It is usefull to introduce the nuclear overlap function TAB(b)
with impact parameter b:

TAB(b) =
∫

d2sTA(s)TB(s − b) (1.34)

where the thickness function is defined as

TA(s) =
∫

dz ρA(z, s). (1.35)

in the last equation ρA is the nuclear mass number density normalized to mass
number A:

∫

d2sTA(s) = A,

∫

d2bTAB(b) = AB. (1.36)

In the case of interest such as gold and lead nuclei, the Wood-Saxon parametriza-
tion is used fro the nuclear density:

ρA(r) =
ρnm

1 + exp((r −RA)/a)
. (1.37)
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The number of partecipant nucleons, Npart, and the number of nucleon-nucleon
collisions, Nbinary, in the Glauber model are defined as

Npart(b) =
∫

d2sTA(s)
(

1 − e−σin
NN TB(s)

)

+
∫

d2sTB(s − b)
(

1 − e−σin
NN TA(s

)

, (1.38)

Nbinary(b) =
∫

d2sσin
NNTA(s)TB(s − b). (1.39)

Monte-Carlo calculations of the Glauber Model are often employed: nucleons
of both nuclei are randomly distributed according to the nuclear density profile;
at given impact parameter b, each nucleons pairs will interact if the nucleon-
nucleon impact parameter s is less than

√

(σin
NN/π).

Figure 1.11: Qualitative behavior of the correlation of the final state observable
Nch with Glauber calculated quantities (b,Npart).
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1.4.2 QGP space-time evolution

The result of the multiple nucleon-nucleon collisions is that the two colliding
nuclei evolve into an hot and dense system of quarks and gluons. There exists
several models to describe this transition: QCD string breaking, QCD parton
cascades, color-glass condensate evolving into glasma and later into quark-gluon
plasma.

In string breaking model, the nuclei pass through each other and the collisions
of the nucleons produce color strings. In a similar way to the quark-antiquark
static potential, the strings in nucleon-nucleon collisions can be viewed as quark-
diquark pairs connected by the color field: such a system may be treated as the
excited nucleons. Then strings decay or fragment forming quarks, antiquarks
or hadrons.

Parton cascade models are based on perturbative QCD. The colliding nuclei
are treated as clouds of quarks and gluons which penetrate through each other.
Multiple hard scatterings between partons and gluons radiation produce large
energy and entropy density. The initial state is viewed as an ensemble of quarks
and gluons determined by the quark and gluon distribution functions qf (x,Q2)
and g(x,Q2), with x is the Bjorken variable. The time evolution of parton
phase-space distributions is governed by the relativistic Boltzmann equation
with a collision term that contains dominant perturbative QCD interactions.
Our approach is close to parton model, however, instead of considering the
dominant perturbative QCD interactions, we are able to fix the shear viscosity
of the system: this procedure corresponds to a resummation of all relevant
channels that produce the η/s, which represents the most important physical
quantity of a fluid and determines the space-time evolution of the system.

z 

t

strong fields classical dynamics

gluons & quarks out of eq.
viscous hydro

gluons & quarks in eq.

hadrons kinetic theory

freeze out

Figure 1.12: The space-time diagram of ultra-relativistic nuclear collisions.15
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• Color Glass Condensate - The color-glass condesate16–21 is considered
the universal form of matter that controls the high-energy scattering
of strongly interacting matter. The idea of color-glass condensate was
motivated by the rapidly rising of the gluon density as a function of x
for large Q2 as shown in Fig. 1.13 from Ref.22 This small x behaviour
of gluon density needs to be improved since a continuous increase would
violate unitarity. As a matter of fact, gluons with typical transverse size
of 1/Q may eventually overlap each other and saturate. In other words,
the gluons form a classical coherent field configuration called color glass
condensate (CGC). The saturation scale Qs is defined as

Q2
s ∼ αs(Q2

s)
xg(x,Q2

s)
πR2

(1.40)

being R the radius of the nucleon. The term color refers to the gluons

-3
10

-210

-110

1

10

-4
10

-3
10

-2
10

-1
10 1

-3
10

-210

-110

1

10

 HERAPDF1.0

 exp. uncert.

 model uncert.

 parametrization uncert.

 

x

x
f

2 = 10 GeV2Q

vxu

vxd

xS 

xg 

                H1 and ZEUS

-3
10

-210

-110

1

10

Figure 1.13: Parton distributions of a proton, at the resolution scale Q2 = 10GeV 2

from Ref.22

that are colored, glass describes the property of the low x gluons whose
evolution is slow compared to other time scales present in the problem,
condensate reflects the large gluon occupation numbers.

The fast gluons are Lorentz contracted and redistributed on the two very
this sheets representing the two colliding nuclei. The fast gluons produce
the color electric and color magnetic fields which also exist only in the
sheets and are mutually orthogonal, as shown qualitatively in Fig. 1.14.
Just after the collision of the two gluonic sheets, the longitudinal color
electric and color magnetic fields are produced. This form of matter is
called glasma. The glasma fields decay due to the classical rearrangment
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of the fields into radiation of gluons with pT ∼ Qs. Also the decaye
due to quantum pair creation are possible. In this way the quark-gluon
plasma is produced. In Chapter 6 we will study a color flux tube model

Figure 1.14: Color electric and color magnetic fields after the collision of the two
nuclei.23

in the framework of the Relativistic Boltzmann Transport equation: we
start with a single color longitudinal electric field which decays to pairs
particle thanks to the Schwinger mechanism. We couple the dynamical
evolution of the initial color field to the dynamics of the many particles
system produced by the decay. We will focus on pressure isotropization
and thermalization starting from the achademic case of a static box, to
a 1+1D expanding flux tube, to the more realistic situation of a 3+1D
expanding geometry. In the last case we compute also the elliptic flow

• Thermalization - The data observed in experiments suggest a very short
thermalization time τthermalization < 1 fm/c supported by the hydrody-
namical simulations with an early starting time. The most common view
is that the equilibration of the system is an effect of parton rescattering.
An interesting phenomenon could be that the equilibration is speeded-up
by plasma instabilities:24 instabilities are much faster than the colli-
sions in the weak coupling regime. Another physical scenario could be
that thermalization is a consequence of the chaotic dynamics of the non-
Abelian classical color fields.25 Different approaches to the early-time
thermalization problem are agree with a τthermalization ≃ 1 fm/c.

We will show our results on this problem in Chapter 6.

• Hydrodynamics expansion - If the thermalization rate is sufficiently fast,
a locally thermalized quark-gluon plasma is created and the evolution
of the system can be described by the relativistic hydrodynamics equa-
tions. These equations are energy momentum and current conservations
togheter with the equation of state, taken by Lattice QCD. In this way
hydrodynamics represent a link between first principle QCD calculations
and dynamical properties of the expanding fireball.
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• Chemical freeze-out - As the hadronic system cools down the inelastic
collisions between its constituents stop before the elastic collisions. The
moment when the inelastic collisions stop is defined as the chemical

freeze-out and the temperature Tchem is greater then the thermal freeze-
out Ttherm. As the system evolves from chemical to thermal freeze-out
the dominant process are elastic collisions and strong decays of heavier
resonances. With this scenario on can describe the measured ratios of
hadron abundances by few parameter characterizing the matter at the
chemical freeze-out.

• Thermal freeze-out - Thermal or kinetic freez-out is the stage when
hadrons stop to interact. It is a transition from a strongly coupled system
to a weakly coupled one. The expansion of the system causes a rapid
growth of the mean free path λmfp of particles. The thermal freez-out
happens when the timescale connected with the collisions becomes larger
than the expansion timescale. Particles with different cross section may
have different freeze-out points so they decouple from the rest of the
system at different times. The momentum distributions of particles are
frozen and do not change in time: in this case the measurement of the
transverse-momentum spectra reveals information about the state of
matter just before the thermal freeze-out.

• Hadronization - When the energy density reaches the critical value εc =
1GeV/fm3 partons hadronize. There are two different mechanism of
hadronization: the fragmentation and the coalescence. In the first one
each parton fragment into a jet of hadrons which carries a fraction
of momenta of the initial parton. The other mechanism consists of
recombination of two or three quarks that respectively form mesons
and baryons. In the hadronic phase the hadrons rescatter until the
distance between them is larger than the range of strong interaction
dR ∼ 1 fm. Therefore at densities ρ < d−3

R all scattering stop and the
hadrons decouple and free stream to the detector (kinetic freeze-out). In
the hydrodynamic description the hadronization is introduced through a
freeze-out algorithm (Cooper Frye formula) which stop the hydrodynamic
evolution and translates the hydrodynami output into hadron spectra,
making use of the statistical model. Many efforts have being done in last
years in the transport theory developing in order to describe both the
QGP phase and the hadronization.
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1.5 Physical Observables

In this section we resume a list of the principal physical observables that give
a signature of the formation of the QGP. Each observables are affected, or
can tell us information about, by different stage of the evolution of the QGP.
Therefore it is important to identify which observable can shed light on a
particulare phase without being influenced by other stages in such a way to
have information about a particular phase of the evolution.

• Global observables - The rapidity distribution of particles dN/dy and
transverse energy density dET /dy allow for the determination of temper-
ature, entropy and energy density of the system created in a heavy ion
collision, comparing experimental observations to hydrodynamics model.
The transverse energy density dET /dy is related to the energy density ε
by the formula:

ε =
1
τfS

dET

dy
≃ 3

2
〈mT 〉
τfS

dNch

dy
(1.41)

where τf is the formation time, conventionally taken as τf ≃ 1 fm/c, S
is the transverse overlap area of the colliding nuclei (for a centra collision
of two identical nuclei of radius R this is simply S = πR2) and 〈mT 〉 is
the mean value of the transverse mass of secondary particles, and Nch/dy

is the measured density of charged particles per unit of rapidity.

The net-proton rapidity distribution of particles dN/dy in Fig. 1.15 from
Ref.26 In details Fig. 1.15 shows the net-proton rapidity distribution for
different experiment at different energies. AGS experiments with Au−Au
at 11.4GeV per nucleon measures a gaussian net-proton distribution
indicating a large stopping power, i.e. baryons are stopped in the middle
of the reaction plane and a dense baryon-rich matter is produced at
midrapidity. On the other hand, in transparent collisions, such as RHIC
experiments at 200GeV per nucleon, the two baryon-rich regions are
separated from each other as in the case of RHIC. In transparent collision
the system produced in the central region has a very small net baryon
number and practically zero baryon chemical potential.

• Electromagnetic probes - During the evolution of a nuclear collision are
created photons and dileptons that can be used to probe the QGP. The
importance of such probes is due to the fact that they do not interact
through strong interactions so they could give informations relative to
the phase of the evolution when they are originated. However there are so
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many sources which can produce photons and dileptons that the analysis
of such kind of observables is quite difficult.

• Strangeness enhancement - This phenomenon refers to the increased
production of strange particles (Λ, Ξ, Ω) in heavy ion collisions respect
to those produces in proton-proton collisions. This signal was predicted
in Ref.28 as a consequence of partons interaction in the QGP.

• J/ψ suppression - J/ψ are particles bound states of charm and anti-
charm quark (cc̄). They are produced moslty by the hard scatterings in
the first stage of the collision. They are also created in p+ p collisions
where they can freely escape from the collision region. Instead, in the
case of nucleus-nucleus collisions, the J/ψ are produced in the QGP
phase and feel the screening effects of the medium. Even if the J/ψ is
a thightly bound particle, in the QGP environment the cc̄ potential is
screened (Debye screening). As a consequence, the interaction between
the c̄ and c quarks becomes weaker when rcc̄ > λD, being λD the Debye
screening lenght. For sufficiently high density λD is so small that the
J/ψ dissociates leading to a suppression of the observed yield compared
to the proton-proton or proton-nucleus collisions.29

• Jet quenching - In the first stage of ultra-relativistic heavy ion colli-
sion are produced particles with high transverse momentum that prop-
agate through the plasma interacting with the bulk and loosing their
energy via elastic scatterings and radiating gluons in a similar way to
the bremsstrahlung photons emitted in QED. The main difference with
QED is the non-Abelian nature of QCD, so the emitted gluons carries
color charges and again interaact with the color charges of the medium.
For high parton energy, the radiative mechanism is the main process
for the parton energy loss. The energy loss of high pT partons causes
an attenuation or disappearance of the hadrons jet resulting from the
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fragmentation of these high partons. This phenomenon of suppression
is called jet quenching and is one of the most important probe of the
formation of the QGP. The suppression is quantified by the nuclear mod-
ification factor RAA which is given by the ratio between the spectrum of
partons produced in nucleus-nucleus (AA) collision and the one relative
to proton-proton collisions multiplied by the scaling factor Ncoll

RAA(pT ) ≡ d2NAA/dpT dη

Ncolld2Npp/dpT dη
. (1.42)

A RAA = 1 means that AA collision is only a superposition of pp collisions.
One of the open challenge regarding the jet quenching is to explain the
difference in the suppression between the different hadron species.

1.5.1 Collective Flows

For non-central collision, the overlap region between the two nuclei is strongly
deformed in the transverse plane as qualitatively shown in Fig. 1.17. A measure
of such deformation is given by the spatial eccentricity:

εx(b) =
〈y2 − x2〉
〈y2 + x2〉 (1.43)

which depends on the impact parameter b. The interactions inside the plasma
transfer the spatial deformation into an anisotropy in momentum space. Hence
the initial eccentricity influences the azimuthal momentum distribution of
the emitted particles. Experimentally, the azimuthal distribution of particle
emission is analyzed with respect to the reaction plane in terms of a Fourier
expansion as:

E
d3N

d3p
=

d2N

2πpT dpT dy

(

1 +
∞
∑

n=1

2vn cos [n(φ− ΨR)]

)

(1.44)

where φ is the azimuthal angle of the particle and ΨR is the azimuthal angle
of the reaction plane in the laboratory frame. The first two coefficients in the
Fourier decompositions above are called directed and elliptic flow.

• Direct Flow - At low energies, the directed flow is manifested by the
reflection of incoming matter by the first produced regions of highly
compressed nuclear matter. The nucleons moving with positive rapidities
are deflected towards positive x values, while those moving with negative
rapidities are deflected towards negative x values. The magnitude of
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deflection probes the compressibility of the nuclear matter. It also carries
information of the system at early time because the deflection takes
place during the passing time of colliding nuclei. At RHIC energies the
directed flow of charged particles is negative while the v1 of spectators is
positive: this trend suggests different behaviour of the matter created in
the central region and in the target fragmentation regions. At midrapidity
the directed flow measured by RHIC is very small, of the order of 1%.
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Figure 1.17: Initial space eccentricity, almond shape, in non-central collisions.30

• Elliptic flow - The elliptic flow v2 characterizes the azimuthal asymmetry
of the momentum distributions. At low energies v2 is negative showing
that more momentum is transferred in the direction perpendicular to
the reaction plane. At higher energies the elliptic flow becomes positive,
hence an excess of momentum is observed in the reaction plane. The
enrgy dependence of v2 can be interpreted in the following way: at low
energy the spectators block the expansion of matter in the reaction plane
so the matter is squeezed out of the reaction plane; at high energies the
spectators move sufficiently fast to leave free space for in-plane expansion
of matter.

The first measurements of v2 at RHIC showed that v2 is quite large
and very close to the perfect hydrodynamics predictions. The origin of
non-zero elliptic flow is the interaction between particles produced in the
initially asymmetric region of space (almond-like shape formed by the
two overlapping nuclei in non-central collisions) which lead to momentum
anisotropy. From the hydrodynamic approach largest pressure gradient
acts in the reaction plane.

Both hydrodynamical and parton cascade calculations have shown that
the generation of the elliptic flow saturates in the first 4 − 5 fm/c making
this observable sensitive on the QGP phase without any contaminations
by the subsequent hadronic phase. In Fig. 1.18 are shown results of v2

measured at RHIC as a function of transverse momentum for different
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hadrons compared to hydrodynamical calculations. In the region of
low transverse momenta pT ≤ 2GeV the v2 is in agreement with ideal
hydrodynamical description: this evidence gave the name of perfect fluid

to the QGP meaning that a very low viscosity fluid was created in ultra-
relativistic heavy ions collisions. The fall of the hydrodynamic predictions
for pT > 2GeV indicates a break-down of the local thermal equilibrium
for particles with high momenta and, on the other hand, the inclusion of
a dissipative term in hydrodynamics equations.

There is another important information: baryons have larger v2 with
respect to mesons. This difference can be explained by the coalescence
model for hadronization which predicts that the v2 of any hadron species
follows the partonic flow scaled by the number nq of constituent quarks
in the hadron under consideration, i.e. vhadron

2 (pT ) ≃ nqv
quark
2 (pT /nq)

with nq = 2 for mesons and nq = 3 for baryons.36, 37 Such a scaling
indicates that the flow is developed at the quark level, thus quarks are
the true degrees of freedom of the created matter.
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36 2. Boltzmann Transport Equation

In this chapter we discuss about the Transport Boltzmann equation starting
from the classical equation to the quantum-relativistic generalization. We also
show the numerical implementation of the transport equation. The Transport
Theory is useful because, being constructed on a one-body distribution function,
allows for a direct tratment of hadronization at variance with the hydrodynamics
framework. Moreover the transport approach can describe non-equilibrium
states treating in a unified way short range interactions, due to collisions
between particles, and long range interactions, associated to mean field effects
responsible for the equation of state. Using the Transport Boltzmann equation
it is also possible to take into account particles production due to the decay
of color flux tubes in the early stage of the collisions, as we will show in
Chap. 6., treating in a self-consistent way the fields and the particles dynamics.
This means that we can follow the space-time evolution of the system created
in heavy ion collisions at ultra-relativistic energy using a single framework.
Moreover, as discussed in Chapter 4, we have developed a scheme to fix the shear
viscosity to entropy density ratio η/s in our transport simulations overlooking
the microscopic details and employing the same language of hydrodynamics.

2.1 Classical Boltzmann Equation

In classical kinetic theory the system under study is a set of N particles in a
box of volume V . Particles interacts through collisions whose nature is defined
in the cross section σ. The purpose of the theory is not to solve the equation of
motion for each particle but to find the distribution function f(x,p, t). Being
d3xd3p the phase space volume element, f(x,p, t)d3xd3p represents the number
of particles that at time t have coordinates in the volume d3x around x and
momenta in the volume d3p around p. It has to be noticed that the volume
elements d3x and d3p are finite volume elements, wide enough to contain a
large number of particles and at the same time small enough to be considered as
infinitesimal with respect to the macroscopic dimension of the system. Under
these assumptions the distribution function f(x,p) is a continuos function of
its arguments.38, 39

The normalization condition is:
∫

f(x,p)d3xd3p = N. (2.1)
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In the case of uniform distribution in space coordinate we have:
∫

f(x,p) d3p =
N

V
. (2.2)

Tha spatial density ρ(x) is obtained integrating the distribution function f(x,p)
over momenta:

ρ(x) =
∫

d3p f(x,p). (2.3)

Average value of a physical observable O(x,p) is computed as follows:

〈O(x)〉 =
1

ρ(x)

∫

d3pO(x,p)f(x,p) (2.4)

where, in general, 〈O〉 can be time-dependent.

The aim of kinetic theory is to describe the space-time evolution of the distribu-
tion function f(x, p), so the first step is to obtain the equation of motion for f .
Let us consider for simplicity the case of no collisions (σ = 0): a particle having
coordinates (x,p) at time t will be in (x+vδt,p+Fδt) at time t+ δt, being F

an external force applied to particles and v = p/m the particles velocity. In
this way, all particles in the volume element d3x d3p around (x,p) at time t,
will be in d3x′d3p′ around (x+vδt,p+Fδt) al tempo t + δt. Hence, if there
are no collisions, we have:

f(x+vδt,p+Fδt, t+ δt) d3x′d3p′ = f(x,p) d3xd3p (2.5)

that can be written as

f(x+vδt,p+Fδt, t+ δt) = f(x,p). (2.6)

Expanding the left hand side to the first ordet in δt, we obtain the equation of
motion for the distribution function:

(

∂

∂t
+

p

m
· ∇x + F · ∇p

)

f(x,p) = 0 (2.7)

Considering also collisions between particles (σ > 0), Eq. (2.6) has to be
modified as:

f(x+vδt,p+Fδt, t+ δt) = f(x,p) + C[f ] (2.8)

where C[f ] is the collision integral and it is a functional of the distribution
function. The collision integral takes into account the change of f in time
due to collisions. Expanding the left hand side to first order in δt, as in the
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previous case without collisions, we obtain:
(

∂

∂t
+

p

m
· ∇x + F · ∇p

)

f(x,p) = C[f ]. (2.9)

In order to write an explicit form for the collision integral C we have to consider
the number of particles that go in or outside the volume element d3xd3p in
the unit of time. Denoting with Rδtd3xd3p the number of collisions that take
place during t+ δt and t when one of the initial particle is in d3xd3p around
(x,p), and with R̄ δtd3xd3p the one with one of the final particle is in d3xd3p

around (x,p), collision integral can be written in this way:

C[f ]δt =
(

R̄−R
)

δt. (2.10)

As we can see from the last equation, the collision integral is a balance term for
the transport equation: it takes into account the change of phace-space density
due to collisions.

2.1.1 Collision integral derivation

In order to obtain an explicit form for the collision integral, let us assume
that particles interact through binary collisions and there are no external
forces. A collision is a transition from an intial state to a set of final states.
The probability transition to final states in the infinitesimal momenta volume
d3p′

1d
3p′

2 can be written as:

dP12→1′2′ = d3p′
1d

3p′
2δ

4(Pf − Pi) |Mfi|2

δ4(Pf − Pi) ≡ δ3(P − P′)δ(E − E′) (2.11)

where Mfi is the transition amplitude for the scattering process and δ4(Pf −Pi)
is the energy-momentum conservation, because we are considering elastic
scattering. The number of transitions 12 → 1′2′ in the volume d3p around x

due to collisions during δt is

dN12dP12→1′2′δt (2.12)

where dN12 is the initial number of colliding pairs (p1,p2). The two-particle
correlation function is defined as:

dN12 = f̂(x,p1,p2, t)d
3xd3p1d

3p2. (2.13)
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Using Eq. (2.11), R can be written as

R =
∫

d3p2d
3p′

1d
3p′

2δ
4(Pf − Pi)|Mfi|2f̂(x,p1,p2, t) (2.14)

similarly R̄

R̄ =
∫

d3p2d
3p′

1d
3p′

2δ
4(Pf − Pi)|Mif |2 f̂(x,p′

1,p
′
2, t). (2.15)

Finally Eq. (2.10), considering |Mif | = |Mfi|, assume the following form:

C[f ] =
(

R̄−R
)

=
∫

d3p2d
3p′

1d
3p′

2 δ
4(Pf − Pi) |Mif |2

(

f̂1′2′ − f̂12

)

(2.16)

where f̂12 = f̂(x,p1,p2, t). The last equation is exact but it contains the
correlation function f̂ . Boltzmann postulated there are no correlations between
particles before each collision (molecular chaos assumption), so Eq. (2.16)
becomes:

f̂(x,p1,p2, t) ≈ f(x,p1, t) f(x,p2, t). (2.17)

Eq. (2.17) means that the probability to find two particle momenta in d3x

is equal to the product of probability to find them individually. Under this
assumption, the transport Boltzmann equation is written in a closed form as:

(

∂

∂t
+

p1

m
· ∇x + F · ∇p1

)

f1 =
∫

d3p2d
3p′

1d
3p′

2 δ
4(Pf − Pi) |Mfi|2 (f ′

2f
′
1 − f2f1) (2.18)

which is a non linear integro-differential equation for the distribution function.

2.2 Relativistic Transport Theory

In relativistic kinetic theory, macroscopic quantities are defined thanks to a
scalar distribution function f(x, p) which depends on space-time coordinates
x = xµ = (t,x) and four momentum p = pµ = (p0,p) which satisfies the
mass-shell relation p0 =

√

p2 +m2.40, 41 The spatial density of Eq. (2.3) is
not a Lorentz scalar but it transforms as the time component (µ = 0) of the
following four-vector:

Nµ(x) =
∫

d3p

p0
pµ f(x, p). (2.19)
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while µ = 1, 2, 3 are the components of the current j The transport equation
derivation in the relativistic case is similar to the classical case except for
appropriate formal changes. In the following we will derive the transport
equation for a system of N relativistic particles non interacting. In this case
the distribution function can be written as:

f(x, p) =
N
∑

i=1

δ4(xi(t) − x)δ4(pi(t) − p) (2.20)

where xi(t) and pi(t) denotes coordinates and momenta of the i-th particle
at time t. The time evolution of the phase space density is described by the
Liouville Theorem: if there are no dissipative forces, the phase space density is
a conserved quantity, i.e. df(x, p)/dt = 0. Using the Liouville theorem, it is
possible to obtain the equation of motion for f(x, p):

d

dt
f(x, p) =

N
∑

i=1

[

dxµ
i

dt

∂

∂xµ
+
dpµ

i

dt

∂

∂pµ

]

δ4(xi(t) − x)δ4(pi(t) − p)

=
(

1
m
pµ ∂

∂xµ
+ Fµ(x)

∂

∂pµ

)

f(x, p) (2.21)

where Fµ(x) represents an external force. In this way df(x, p)/dt = 0 becomes

(

1
m
pµ ∂

∂xµ
+ Fµ(x)

∂

∂pµ

)

f(x, p) = 0. (2.22)

Eq. (2.22) is the relativistic Vlasov equation which in the classical limit gives
the Boltzmann transport equation:

(

∂f

∂t
+

p

m
· ∇x + F · ∇p

)

f(x,p) = 0. (2.23)

The Vlasov equation can describe systems with conservative forces while it does
not permit to take into account dissipative effects. In presence of two body
scatterings in fact the phase space density is no more a conserved quantity
(df(x, p)/dτ 6= 0) but changes as a consequence of the collisions. It is possible
to derive the equation of motion for f(x, p) adding the collision term C[f ] on
the right hand side of Eq. (2.22):

(

1
m
pµ ∂

∂xµ
+ Fµ(x)

∂

∂pµ

)

f(x, p) = C[f ](x, p) (2.24)

where C[f ] has to be specified. Eq. (2.24) with no external forces is written as
follows:

pµ∂µf(x, p) = C[f ](x, p) (2.25)
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which is the equation that we solve numerically for the determination of shear
viscosity and electric conductivity of the Quark-Gluon Plasma taking into
account only two body collisions. In this case the collision integral is denoted
by C22[f ].

Collision term in Eq. (2.25), as well as in Eq. (2.18), can be approximated
as:

C[f ] ≃ f − f0

τr
(2.26)

where τr is the relaxation time of the system, i.e. the time scale required to
the system to approach the equilibrium state described by f0. This scheme of
approximation is the so famous relaxation time approximation (RTA) which is
very useful to obtain analytical results which otherwise are impossible due to
the complexity of the Boltzmann equation. In this thesis we will show also how
good is the relaxation time approximation for the calculation of shear viscosity
and electric conductivity comparing the analytical formula to the numerical
results evaluated using Green-Kubo relations which give an exact estimation
for transport coefficients.

As shown previously, in order to take into account the dissipative effects that
arise from the collisions, it is necessary to add the collision term C to the
Vlasov equation. Let us consider a system of relativistic particles interacting
via two body collision and assume there are no correlation before each collisions
(molecular chaos), the collision integral C22 is written in terms of distributions
functions as follows:42

C22 =
1

2E1

∫

d3p2

(2π)32E2

1
ν

∫

d3p′
1

(2π)32E′
1

d3p′
2

(2π)32E′
2

f ′
1f

′
2

×|M1′2′→12|2(2π)4δ(4)(p′
1 + p′

2 − p1 − p2) − 1
2E1

×
∫

d3p2

(2π)32E2

1
ν

∫

d3p′
1

(2π)32E′
1

d3p′
2

(2π)32E′
2

f1f2

×|M12→1′2′ |2(2π)4δ(4)(p1 + p2 − p′
1 − p′

2) (2.27)

where ν = 2 if we are considering indistinguishable particles, otherwise ν = 1.
Mf→i is the transition amplitude scattering.
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2.3 Quantum Transport Theory

As shown in the previous section, the fundamental element of kinetic theory
is the phase space distribution function whose evolution is described by the
Vlasov or by the Boltzmann equation if dissipative phenomena are present. In
order to find the analogous equations in quantum mechanics it is necessary to
define a quantity that can play the same role of f(x, p). Such a quantity is the
Wigner function defined as follow:

fw(r, p, t) =
1

(2π~)3

∫

dse−ip · s/~
〈

r +
s

2

∣

∣

∣ ρ̂
∣

∣

∣r − s

2

〉

(2.28)

and Fourier transforming:

fw(r, p, t) =
1

(2π~)3

∫

dqe+iq · r/~
〈

p+
q

2

∣

∣

∣ ρ̂
∣

∣

∣p− q

2

〉

(2.29)

where ρ̂ is the density operator ρ̂ = |Ψ〉 〈Ψ|. It can be seen as a change of
variables from 〈r| ρ̂ |r′〉 = ρ(r, r′) → fw(r, p, t). Using the explicit expression
for the density operator the above equation becomes:

fw(r, p) =
1

(2π~)2

∫

dse−ip · s/~Ψ∗
(

r +
s

2

)

Ψ
(

r − s

2

)

. (2.30)

The Wigner function, in analogous way to the classical distribution function,
allows to calculate the probability distribution in x and p, integrating over x
and p respectively one obtains:

ρ(r) =
∫

fw(r, p) dp ; ρ(p) =
∫

fw(r, p) dr (2.31)

and also average value of physical observable O

〈O(r)〉 =
∫

drdp

2π~
O(r)fw(r, p) (2.32)

e.g. the average value of kinetic energy

∫

dpfw(r, p)
p2

2m
= 〈ψ|T |ψ〉 (2.33)

Once the Wigner function has been defined, one can obtain the quantum version
of Vlasov equation performing a Wigner transformation of the Scröedinger
equation or, equivalently, of the Heisenberg equation as will be shown below.
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Let us start from the equation of motion for the density operator ρ̂:

∂ρ̂

∂t
=
[

ρ̂, Ĥ
]

(2.34)

where Ĥ = T̂+Û = p̂2/2m+Û . Let us write explicitely the folowing derivatives
of the Wigner function :

∂fw

∂p
= − is

~
fw,

∂fw

∂r
=
iq

~
fw (2.35)

while, using Eq. (2.34) the time derivative can be written as follows:

ḟw(r, p, t) =
1

(2π~)3

∫

dqeiq · r/~
〈

q +
p

2

∣

∣

∣

1
i~

[

Ĥ, ρ̂
] ∣

∣

∣p− q

2

〉

(2.36)

Let us now compute the kinetic part
〈

q + p
2

∣

∣

1
i~

[

T̂ , ρ̂
]

∣

∣p− q
2

〉

:

=
1

(2π~)3

∫

dqeiq · r/~
〈

q +
p

2

∣

∣

∣

1
i~

(T̂ ρ̂− ρ̂T̂ )
∣

∣

∣
p− q

2

〉

=

=
1

(2π~)3

∫

dqeiq · r/~

(

(p+ q/2)2

2m
− (p− q/2)2

2m

)

〈

p+
q

2

∣

∣

∣ ρ̂
∣

∣

∣p− q

2

〉

(2.37)

So finally we get the kinetic part of the time derivative of the Wigner function:

ḟT
w (r, p, t) =

1
(2π~)3

1
~

∫

dqeiq · r/~
(p · q
m

)〈

p+
q

2

∣

∣

∣ ρ̂
∣

∣

∣p− q

2

〉

= − p

m

∂fw

∂r
.

(2.38)
Let us evaluate the Û part in Eq. (2.36) in the coordinate space representa-
tion:

ḟU
w =

1
(2π~)3

1
i~

∫

ds e−ip · s/~
〈

r +
s

2

∣

∣

∣

[

Û , ρ̂
] ∣

∣

∣r − s

2

〉

=

=
1

(2π~)3

1
i~

∫

dse−ip · s/~
[

U
(

r +
s

2

)

− U
(

r − s

2

)]〈

r +
s

2

∣

∣

∣ ρ̂
∣

∣

∣r − s

2

〉

(2.39)

Expanding U in r:

U
(

r +
s

2

)

= U(r) +
s

2
∂U

∂r
+

1
2

(s

2

)2 ∂2U

∂r2
+ · · · =

(

e
s
2

∇)U

U
(

r − s

2

)

= U(r) − s

2
∂U

∂r
+

1
2

(s

2

)2 ∂2U

∂r2
+ · · · =

(

e− s
2

∇)U (2.40)
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Using the above expansion the U term of the time derivative of fw can be
written as:

ḟU
w =

1
(2π~)3

∫

ds e−ip · s 1
2i

(

ei ~

2
∇r∇p − e−i ~

2
∇r∇p

)

U
〈

r +
s

2

∣

∣

∣ ρ̂
∣

∣

∣r − s

2

〉

=

2
~

sin
(

~

2
∇r∇p

)

Uf (2.41)

where ∇r acts on U while ∇p has to be applied to fw. Finally, using all the
terms evaluated, we obtain the following equation:

∂fw

∂t
+
∂fw

∂r

p

m
− 2

~

∞
∑

k=0

(−1)k

(2k + 1)!

(

~

2
∇r∇p

)2k+1

Ufw = 0 (2.42)

where sin(ax) =
∑∞

k=0(−1)k(ax)2k+1/(2k + 1)! No approximation has been
made to find this equation and it is exactly equivalent to the Heisenberg
equation or to the Schroedinger equation. If the gradient of the potential is
not too strong, the summation over k index can be truncated at the first term,
that does not contain any ~ terms, and the previous equation can be written
as:

∂fw

∂t
+

p

m

∂fw

∂r
+ ~∇rU · ~∇pfw = 0 (2.43)

which has the same form of the classical transport equation but for the Wigner
function. We notice also that Eq. (2.43) remains exact for linear or quadratic
potential.

2.4 Transport Theory in Quantum Field Theory

In relativistic field theory, the Wigner function corresponds to the ensemble
average of the Wigner operator:

Ŵαβ ≡
∫

d4y

(2π)4
e−ip · yψ̄β(x)e

1

2
y · ∂†

e− 1

2
y · ∂ψα(x) (2.44)

where ∂† (∂) play the role of translation generator acting to the left (right).
The spinors are Heisenberg operators. Ŵαβ is a 4 × 4 matrix whose indices are
spinor indices. The Wigner function is then:

W (x, p) ≡ 〈: Ŵ (x, p) :〉. (2.45)
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The brackets indicate ensemble averaging and the colons normal ordering
with respect to the vacuum state. The physical interpretation of the Wigner
function is made clear if we note that in terms of the four momentum operator
p̂µ = 1

2 i(∂µ − ∂†
µ) the integration over y gives formally

Wαβ(x, p) = 〈: ψ̄β(x)δ4(p− p̂)ψ(x)α :〉. (2.46)

In this way trW (x, p) measures the scalar density at space-time point xµ with
momentum pµ.

In general the Wigner function can be expanded in terms of 16 indepen-
dent generators of the Clifford algebra whose basis consists of the matrices
1, iγ5, γµ, γ5γµ,

1
2σµν , so it can be decomposed as:

Ŵ = F + iγ5P + γµVµ + γµγ5Aµ +
1
2
σµνSµν . (2.47)

The pseudo-scalar P and axial-vector Aµ parts vanishes in the case of locally
spin-saturated system43 and in classical limit the tensor part can be neglected44

so the Wigner function in this case can be written as:

Ŵ (x, p) = F(x, p) + γµVµ(x, p). (2.48)

The procedure to derive the transport equation i.e. the equation of motion for
the Wigner function is similar to that used in the previous section in order to
derive the transport equation in quantum mechanics. Thus one has to do a
Wigner transformation of the field’s equation of motion. For the purpose of
our work we are interested to a system described by a fermionic field which
interacts trough a scalar field and hence we will derive the transport equation
in this simplified case. The Lagrangian of such a system is

L = ψ̄(x)[iγµ∂
µ − gsσ]ψ(x) − 1

2
m2

sσ
2. (2.49)

from the lagrangian we derive the equation of motion for the fermionic fields:

[iγµ∂
µ − (m− gsσ)]ψ(x) = 0. (2.50)

At this point one makes the Wigner transformation of the equation of motion
obtaining

∫

d4y

(2πℏ)4
e− ipy

ℏ Ψ̄β(x+)[iγµ∂
µ − (m− gsσ)]Ψα(x−) = 0 (2.51)
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where x± = x± y
2 and after some operations one gets

(γ · p− i

2
γ · ∂−m)βρ Ŵρα(x, p)+

∫

d4y

(2πℏ)4
e− ipy

ℏ 〈: Ψ̄β(x+)Ψα(x−)σ(x−) :〉 = 0.

(2.52)
Eq. (2.52) is equivalent to the equation of motion (2.50). Considering the scalar
field as a classical function, i.e. ignoring the quantum fluctuations (mean field
approximation), one can compute the expectation value. Moreover, using the
semi-classical approximation, the field can be Taylor expanded to first order, if
gradients are not too large, obtaining:

σ(x−) = σ(x) − yµ

2
∂x

µσ(x). (2.53)

Using the last equation in Eq. (2.52) we have:

{ i
2
γ · ∂ + γ · p−m∗(x) +

i

2
∂µ

xσ(x)∂p
µ}Ŵ (x, p) = 0 (2.54)

where m∗ = m− σ(x) is the effective mass. The real part of Eq. (2.54) is

[γ · p−m∗(x)]Ŵ (x, p) = 0 (2.55)

while the imaginary part

[γµ∂
µ −m∗(x)∂x

µm
∗(x)∂µ

p ]Ŵ (x, p) = 0. (2.56)

Being the one body distribution function f(x, p) = Ws(x, p)/m(x) one ob-
tains:

(

pµ∂µ +m∗(x)∂µm
∗(x)∂µ

p

)

f(x, p) = 0 (2.57)

which is the Vlasov equation that describes the space time evolution of f(x, p)
for fermions interacting through the scalar field σ.
In order to take into account dissipative effects that arise from collisions, one
has to include also the collision integral C[f ] on the right hand side of Vlasov
equation:

(

pµ∂µ +m∗(x)∂µm
∗(x)∂µ

p

)

f(x, p) = C[f ](x, p). (2.58)

The above equation describes the motion of particles considering collisions, i.e.
short range physics, and mean field, i.e. long range effects.
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2.5 Numerical implementation

In this section we discuss about the numerical implementation of the Transport
equation. In details we discuss about the test-particles method, in order to
sample the distribution function, and the stochastic method, in order to solve
the collision integral.

2.5.1 Test-particles method

In order to solve the transport equation we use the test particle method,
introduced by Wong45 and used in almost all transport calculations.46–48 The
test particle method consists in sampling the phase space distribution function
by a large number of test particles. Usually the test particles are chosen
point-like, i.e. δ function in coordinate and momentum space, hence the phase
space distribution can be written as a sum of the δ test particle distribution:

f(x,p, t) = A

Ntest
∑

i=1

δ3(x − xi(t))δ3(p − pi(t)) (2.59)

where xi(t) and pi(t) are respectively the position and the momentum of
the i-th test particle; Ntest is the total number of test particles while A is a
normalization factor that is related to the total number of particles in a way
that the integral over the phase space of the distribution function is equal to
the total number of particles:

∫

d3x

∫

d3p

(2π)3
f(x,p, t) =

A

(2π)3
Ntest = Nparticles (2.60)

where (2π)3/A is equal to the number of test particles per real particles. Once
the test particles have been introduced, the solution of the transport equation
reduces to solve the classical equation of motion for the test particles. The
i−th test particles in momentum space belongs to the mass-shell hypersurface
pµp

µ = m2. It can be shown, using the Liouville theorem, that the phase space
distribution given as a collection of point-like test particles is a solution of the
Boltzmann-Vlasov equation (2.58) if the positions and momenta of test particle
obey the relativistic Hamilton equations:

ẋi =
pi

Ei
; ṗi = −∇xEi + coll (2.61)
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where the term coll indicates the effect of the collision integral, whose numerical
implementation will be described in the next subsection. The equation of motion
that are solved numerically are:

pi(t+ ∆t) = pi(t− ∆t) − ∇xEi + coll

xi(t+ ∆t) = xi(t− ∆t) − 2∆t
pi(t)
Ei(t)

(2.62)

where index i refers to i-th test particle and ∆t is the time discretization.

2.5.2 Stochastic Method

In this subsection we will discuss the numerical implementation of the collision
integral based on the stochastic method implemented by Ref.49 and Ref.42 In
this method a probability collision P22 is associated to particles: if probability
is grater than a random number between 0 and 1 the collision takes place. The
P22 can be derived from the collision term of the Boltzmann-Vlasov equation
Eq. (2.27). The probability in unit volum ∆3x and unit time ∆t can be defined
as the ratio between the number of collisions that happen in such volume ∆3x

during the time ∆t and the total number of pairs present in the same unit
volume:

P22 =
∆N2→2

coll

∆N1∆N2
(2.63)

where ∆N2→2
coll is simply derived from the collision integral in Eq. (2.27), that

in discretized form can be written as:

∆N2→2
coll

∆t 1
(2π)3 ∆3x∆3p1

=
1

2E1

∆3p2

(2π)32E2
f1f2 ×

× 1
ν

∫

d3p′
1

(2π)32E′
1

d3p′
2

(2π)32E′
2

|M12→1′2′ |2 (2π)4δ4(p1 + p2 − p′
1 − p′

2). (2.64)

Let us introduce the definition of cross section for a particle of mass mi

σ22 =
1

4F
1
ν

∫

d3p′
1

(2π)32E′
1

d3p′
2

(2π)32E′
2

|M12→1′2′ |2 (2π)4δ4(p1 + p2 − p′
1 − p′

2)

(2.65)
where F =

√

(p1 · p2)2 −m2
1m

2
2 is the so called invariant flux. Using the

definition of cross section, ∆N2→2
coll becomes:

∆N2→2
coll =

1
(2π)3

f1∆3p1
1

(2π)3
∆3p2∆3x∆t σ22

F

E1E2
. (2.66)
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The total number of pair present in a unit volum is given by:

∆N1∆N2 =
1

(2π)3
f1∆3p1∆3x

1
(2π)3

f2∆3p2∆x. (2.67)

The relative velocity is defined as:

vrel =
F

E1E2
=

√

[s− (m1 +m2)2] [s− (m1 −m2)2]
2E1E2

(2.68)

where s = (p1 + p2)2 is the Mandelstam variable. Combining Eqs. (2.66) (2.67)
(2.68) in the definition of probability P22 Eq. (2.63) we finally obtain:

P22 = vrelσ22
∆t

∆3x
. (2.69)

If one uses the test particle method the probability has to be multiplied by
1/Ntest. In the limit ∆t → 0 and ∆3x → 0, P22 is a Lorentz invariant and the
stochastic method converges to the exact solution of the Boltzmann equation.
The space-time discretization has to be choosen smaller than the typical scales
of spatial and temporal inhomogeneities of particles densities. Only particles
being in the same cell can collide each other, and the collision probability has
to be calculated for each pair inside the cell and compared with a random
number. Strickly speaking, such collisions have not to be considered as real
collisions but as a way to map the evolution of the phase space induced by the
matrix element Mi→f (sampled stochastically).

2.6 The code in the box

Once the code has been developed, it is necessary to test the code with some
cases whose solution is known analytically. Hence we performed simulations in
a static box of volume V with periodic boundary conditions.

2.6.1 Relaxation toward equilibrium

The first check represents the relaxation toward the equilibrium state: the
transport equation is a space-time evolution equation for the distribution
function having as fixed point the equilibrium distribution function. The
equilibrium distribution function is the Boltzmann-Jüttner function in our case,
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but the relativistic Boltzmann integral can be easily extendend to have as a
fixed point the Fermi-Dirac or the Bose-Einstein distribution function.
If the system is in a non-equilibrium state then in the limit t → ∞ it will
evolve to the equilibrium denoted by f0. In this case we considered a system
of massless particles so the transport equation to be solved is:

pµ∂µ = C[f ](x, p) (2.70)

which we solved using the stochastic algorithm and the test particle method
previously described. For such a system in a volume V the particle number
can be computed as:

N = ρV = V
γ

(2π)3

∫

dp 4πp2e−p/T = γV
T 3

π2
(2.71)

where γ is the degeneracy factor and T is the temperature. Using the previous
equation and considering a box of V = 3 × 3 × 3 fm3 one obtains N = 365
particles. Particles are distributed uniformly in coordinate space while in
momentum space we choose the following distribution:

dN

NdpT dpz
= δ(pxy − pinit

xy )δ(pz) (2.72)

in such a way to be far from the equilibrium state described by the Maxwell-
Boltzmann distribution function. Eq. (2.72) means that at initial time particles

have no momentum along the z direction (pz = 0) while pxy =
√

p2
x + p2

y = pinit
xy ,

so all particles have finite momentum only in the xy plane. At the equilibrium
state the energy per particle is E = 3T : choosing pinit

xy = 1.2GeV for each
particle the equilibrium temperature will be T = 0.4GeV . The equilibrium
distribution function is the Boltzmann distribution:

dN

NE2dE
=

1
2T 3

e−E/T . (2.73)

In Fig. 2.1 we show a simulation performed using a total cross section σtot =
10mb constant and isotropic, Ntest = 1000, ∆t = 0.01 fm/c and ∆x ≃ 0.1 fm:
as we can see such a system approaches the equilibrium state for t > 0.8 fm/c.

2.6.2 Equation of State

Another test to be performed in order to check the validity of the code is the
reproducibility of thermodynamical quantities such as pressure and energy
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Figure 2.1: Evolution of the distribution function as a function of energy at
different time. Dashed line is the Boltzmann equilibrium distribution. For details of
the simulation see the text.

density of the system under consideration. In this case we consider a system of
particles in a volume V .

The partition function for a relativistic ideal gas of particles with finite mass
m is given by:

Z(N,T, V ) =
1
N !

(

γ
V

2π2

(

Tm2
)

K2

(m

T

)

em/T

)N

(2.74)

where γ is the degeneracy factor and K2(m/T ) is the modified Bessel function.
The free energy is F = −T lnZ:

F (N,T, V ) = −N
[

T ln
(

γ

2π2

V Tm2

N
K2

(m

T

)

)

+m+ T

]

. (2.75)

Once F is known the pressure is simply given by:

P = ρT (2.76)

with ρ = N/V the particle density, while the energy density is

ε = ρm

(

K1(m/T )
K2(m/T )

+ 3
T

m

)

(2.77)
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Figure 2.2: Equation of state P/ε as a function of m/T . Red circles represent
numerical results while the black line is the analytical prediction of Eqs. (2.76-2.77)

.

In tranport theory the energy-momentum tensor can be written as:

Tµν =
∫

d3p

(2π)3

pµpν

p0
f(p) =

1
V

∑

i

pµ
i p

ν
i

p0
i

(2.78)

where on the right hand side we have used the distribution function for point-
like particle Eq. (2.59). Using the last equation it is possible to compute the
energy density as ε = 〈T 00〉 and the pressure P = 〈T 11 + T 22 + T 33〉/3. In Fig.
2.2 we show the equation of state P/ε as a function of m/T computed in the
box: red circles are the numerical results evaluating the energy-momentum
tensor Eq. (2.78) that are in excellent agreement for all the cases of m/T
explored with the black line that represent the analytical prediction of Eqs.
(2.76-2.77).

Once we know energy density and pressure, the entropy density is given by the
Gibbs relation:

s =
ε+ P

T
(2.79)

which will be useful in order to compute the ratio of shear viscosity to entropy
density ratio.

2.6.3 Collision Rate

One of the most important quantity to keep under control in solving the
transport equation is the collision rate. The stochastic method, used to solve
the transport equation, as discussed in previous section, is based on the
probability collision P22 so it is obvious that a fundamental quantity that
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Figure 2.3: Collision rate W as a function of m/T . Green circles are numerical
results while the black line is the analytical prediction of Eq. (2.81)

determines the validity of the algorithm is just the collision rate, i.e. the
number of collisions in the unit of time. Moreover the collision rate controls
the time scale of relaxation that drives the thermalization of the system. Being
interested in all these aspects with the aim to compute transport coefficients
and thermalization, isotropization of the QGP created in relativistic heavy ion
collisions, it is mandatory to compute the collision rate in order to validate our
simulations and results.

The collision rate per unit volume W, Lorentz invariant, is defined as follows:

W =
∆Ncoll

V∆t
(2.80)

which means the number of collisions per unit of time ∆t and volume V . The
collision rate can be computed analitically50

W =
8T 6

π4
σtot

∫ ∞

2m/T

dx

(

x2

(

2m
T

)2
)

K1(x) (2.81)

In FIg. 2.3 we show collision rate W as a function of m/T : circles are numerical
results while solid line is the analytical formula Eq. (2.81). As we can see there
is a very good agreement in all the range of temperature and masses explored:
this means that the numerical implementation of the sthocastic method is
under control and validate our simulations presented in this works.
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In this Chapter we discuss about the Linear Response Theory which allows
us to compute the change of physical observables due to an external small
perturbation. The theory predicts that the response of the system can be
computed using equilibrium correlation functions not dependent on the external
source. For instance, if the perturbation is an external electric field, the system
respond generating an electric current proportional to the electric field via the
electric conductivity coefficients while if the perturbation is a stress to the
fluid, the system will respond generating a velocity flow proportional to the
shear viscosity coefficients. Both transport coefficients can be computed using
the Green-Kubo formulas in the framework of Linear Response Theory. We
also discuss other analytical derivations in Transport Theory like for example
Relaxation Time Approximation and Chapman-Enskog method. Finally we
briefly report Lattice QCD shear viscosity and electric conductivity results
along with a brief primer of AdS/CFT calculations.

3.1 Linear Response Theory

Suppose to apply an external field to a system which is in equilibrium. The aim
of Linear Response Theory is to compute the change of the ensemble average
value of an operator Y (x, t) caused by the external field.51 Let the Hamiltonian
be:

H ′(t) = H +Hext(t) (3.1)

where H is the unperturbed Hamiltonian, which can contain also interactions,
and Hext(t) is the perturbation. The exact equation of motion for Y is

∂Y (x, t)
∂t

= i [H ′(t), Y (x, t)] . (3.2)

The expectation value of Y in a eigenvector |j〉 of H is

∂ 〈j|Y (x, t) |j〉
∂t

= i 〈j| [H ′(t), Y (x, t)] |j〉
= i 〈j| [Hext(t), Y (x, t)] |j〉 . (3.3)

Assuming that Hext will cause only a small perturbation, it is possible to
integrate the previous equation to first order in Hext:

δ 〈j|Y (x, t) |j〉 = 〈j|Y (x, t) |j〉 − 〈j|Y (x, t0) |j〉

= i

∫ t

t0

dt′ 〈j| [Hext(t′), Y (x, t)] |j〉 . (3.4)
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Taking the ensemble average

δ〈Y (x, t)〉 =

∑

j e
−βHδ 〈j|Y (x, t) |j〉
∑

j e
−βH

(3.5)

and using Eq. (3.3) one obtains

δ〈Y (x, t)〉 = i

∫ t

t0

dt′ Tr {ρ̂ [Hext(t′), Y (x, t)]} (3.6)

which expresses the change in the ensemble average value of Y in terms of the
commutator Hext and Y computed in the unperturbed ensemble represented
by ρ̂. Let suppose to consider a real scalar field φ that is coupled to an external
source J(x, t) via

Hext(t) =
∫

d3xJ(x, t)φ̂(x, t). (3.7)

The ensemble average of φ̂ is

δ〈φ̂(x, t)〉 = −i
∫ t

t0

dt′
∫

d3x′ J(x′, t′)Tr
{

ρ̂
[

φ̂(x, t), φ̂(x′, t′)
]}

. (3.8)

Recalling that the retarded Green’s function is

iDR(x, t; x′, t′) = Tr
{

ρ̂
[

φ̂(x, t), φ̂(x′, t′)
]}

θ(t− t′) (3.9)

it is possible to rewrite Eq. (3.8) as

δ〈φ̂(x, t)〉 =
∫ ∞

−∞
dt′
∫

d3x′ J(x′, t′)DR(x, t; x′, t′). (3.10)

For a system in thermal equilibrium, DR depends only on x − x’ and t − t′

so one can fourier transform the corrispondent Green’s function and current
obtaining:

δ〈φ(ω,k)〉 = J(ω,k)DR(ω,k) (3.11)

which is the equivalent of Eq. (3.10) in frequency-momentum space.

Real time Green’s function required in linear response approach are related to
the imaginary time propagators:

D(x, τ) = 〈φ̂(x, τ)φ̂(0)〉

=
1
Z

∑

n

e−βEn 〈n| φ̂(x, τ)φ̂(0) |n〉

=
1
Z

∑

m,n

e−βEn 〈n| φ̂(x, τ) |m〉 〈m| φ̂(0) |n〉 . (3.12)
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Using the time evolution of the field in imaginary time φ̂(x, τ) = eHτ φ̂(x, 0)e−Hτ

and Fourier transforming the previous equation, one obtains

D(ωn,k) =
∫ β

0

dτ

∫

d3x e−i(k · x+ωnτ)D(x, τ)

=
1
Z

∑

m,n

(2π)3δ(k − pm + pn) 〈n| φ̂(0) |m〉 〈m| φ̂(0) |n〉

× e−βEm − e−βEn

En − Em − iωn
(3.13)

where ωn are the Matsubara frequencies ωn = 2πnT for bosons (ωn = (2n+1)πT
for fermions). The above equaiton can be written in terms of spectral density
as

D(ωn,k) =
∫ ∞

−∞

dω

ω + iωn
ρ(ω,k). (3.14)

In this way the propagators can be computed from the finite-temperature
propagator by analytical continuation and the spectral density determines both
real time and imaginary time propagators.

3.1.1 Green-Kubo formulas

Many physical systems, from the universe to high energy nuclear collisions,
can be described using fluid dynamics. The state of the fluid can be described
in terms of temperature and chemical potentials with an equation of state
relating the pressure and energy density. When variations of temperature and
chemical potential become appreciable over length scales that are not large
compared with thermal wavelengths or correlation lengths then gradients in
thermodynamic variable must be taken into account leading to viscous fluid
dynamics where the dissipative terms added to energy momentum tensor or to
currents are written in terms of gradients and transport coefficients, namely
shear and bulk viscosity, thermal and electric conductivity. It is possible to
derive these dissipative coefficients from the microscopic theory in particular
using linear response theory and the formulas obtained are the Green-Kubo
formula, derived indipendently by R. Kubo52 and M. S. Green53 In the following
we will briefly derive the Green-Kubo formula for shear viscosity and electric
conductivity.

In order to compute the shear viscosity, one has to set up a shear flow. Suppose
to stress a fluid with a tangential force in order to develop a velocity flow
only in the x direction ux(y) which depends only on y, i.e. on the transverse
coordinate to the direction of the perturbation. In this case two layers of fluid



3.1. Linear Response Theory 59

at y and y + ∆y have different fluid velocities because the velocity flow will be
damped by dissipative effects of the fluid. For such a system the perturbing
Hamiltonian is:

δĤ(t) = −
∫

d3xeεtT̂ x0(t,x)βx(y) (3.15)

where T̂ x0 is the x0 component of the energy momentum tensor, βx(y) rep-
resents the perturbed flow of the fluid. The corresponding linear response
is

δ〈T x0(t, ky)〉 = βx(ky)
∫ ∞

−∞
dt′ θ(−t′)eεt′

Gx0,x0
R (t− t′, ky) (3.16)

where the retarded Green’s function is computed at the equilibrium. It can be
shown that the retarded Green’s function can be parametrized as54

Gxy,xy
R (ω, ky) =

ω2(ε+ gT (ky) + iωAT (ω, ky))
k2

y − iω/DT (ω, ky) − ω2BT (ω, ky)
− P (3.17)

and

Gx0,x0
R =

k2
y(ε+ gT (ky) + iωAT (ω, ky))

k2
y − iω/DT (ω, ky) − ω2BT (ω, ky)

− ε (3.18)

where P and ε respectively the pressure and energy density, gT (ky) = Gx0,x0
R (0, ky)

and the functions AT , BT and DT have the the form DT (ω, ky) = DR
T (ω, ky) −

iωDI
T (ω, ky). For small ω and ky, the evolution of T x0 is determined by

iω = DT k
2
y, or, in configuration space:

(

∂t −DT∂
2
y

)

T x0(t, y) = 0 (3.19)

where the momentum diffusion constant is defined as DT = DR
T (0, 0). The last

equation combined with the conservation law implies

T xy(t, y) = DT∂
yT x0(t, y) = η∂yux (3.20)

where η = DT (ε+P ) is the shear viscosity. The last equation can be generalized
to

πij
NS(t,x) = η

(

∂iuj + ∂jui − 2
3
gij∂lu

l

)

(3.21)

where NS indicates the Navier-Stokes shear tensor. The πij
NS tensor can be

derived from simple physical considerations. Taylor expanding the flow velocity
of a fluid u(x) around x:

u(x + dx) = u(x) +
du

dx
dx + . . . (3.22)

where du/dx is the Jacobian having ∂ui/∂uj as elements. Considering only
the linear term in the expansion, it follows that viscous forces are functions of
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∂jui. The term ∂jui can be decomposed in a symmetric and antisymmetric
term obtaining:

uj(x + dx) = uj(x) +
1
2

(∂iuj − ∂jui) dxi +
1
2

(∂iuj + ∂jui) dxi. (3.23)

The second term on the r.h.s of the last equation is the antisymmetric part
and represents the rigid rotation of the fluid around x with angular velocity
ω = 1

2 ∇ ∧ u, being a rigid rotation does not produce any viscous effects. The
symmetric part of the expansion Eq. (3.23) is responsible for the viscosity and
can be decomposed as:

1
2

(∂iuj + ∂jui) =
1
3
δij∂kuk +

[

1
2

(∂iuj + ∂jui) − 1
3
δij∂kuk

]

(3.24)

where the first term represents the expansion of the fluid while the term in
parenthesis represents the effects of shear, i.e. a transverse dissipation respect
with to each component of the flow velocity. The stress tensor, indicating
the i-th component of the force that acts in the unit area with j unit vector
dFi = πijdAj , has the form of Eq. (3.21), where in general there is also an
extra term ζδij∂kuk for the bulk viscosity.

Finally the Kubo formula for shear viscosity is

η = lim
ω→0

lim
ky→0

1
ω
Gxy,xy

R (ω, ky) (3.25)

or in terms of the full shear tensor correlation function

η = lim
ω→0

lim
k→0

1
10ω

G
πij ,πij

R (ω,k). (3.26)

In a similar manner one can obtain an expression for the electric conductivity.
Perturbing the system with an external electric field Ex = iωAx which couples
via δH =

∫

d3xAxJ
x, being Jx the x-component of the electric current, the

response of the system is

δ〈Jx(ω,k)〉 = GJJ
R (ω,k)

Ex

iω
. (3.27)

with GJJ
R the retarded Green’s function

GJJ
R (ω,k) = −i

∫

d4x e−ik · xθ(t)〈Jx(t,x)Jx(0,0)〉. (3.28)
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Using the Ohm’s law Jx = σelEx, one obtains51

σ(ω,k) =
GJJ

R (ω,k)
iω

. (3.29)

Finaly the electric conductivity σel is obtained as:

σel = lim
ω→0

GJJ
R (ω,k = 0)

iω
(3.30)

3.1.2 Green-Kubo formula for shear viscosity

In this subsection we will derive the Green-Kubo formula for shear viscosity
for a system of N particles starting from the classical case. The equation of
motion for each particle under a shear flow along the x, v(y) = γyê1 direction
are:

ẋi =
pi

m
+ γyiê1

ṗi = Fi − γpyi
ê1 (3.31)

where γ is the shear rate. The applied stress will create an asymmetry in the
internal pressure. The pressure tensor pαβ can be written in general as

pαβ =
1
V

N
∑

i=1

[

(pi · êα)(pi · êβ)
m

+ (xi · êα)(Fi · êβ)
]

(3.32)

being êα the unit vector in the α direction, α = x, y, z. The isotropic pressure
can be computed via P = 1

3

∑

α Pαα. As already shown, Pxy is related to
the velocity flow by Pxy = −η∂vx/∂y = −γη. Solving for η one has η =
− limt→∞〈pxy(t)〉/γ. According to the classical linear response theory, the
change of 〈pxy〉 can be computed via:

〈pxy(t)〉 = 〈pxy〉0 − βγV

∫ t

0

ds〈pxy(0)pxy(t− s)〉0 (3.33)

where the underscript 0 means evaluated at the equilibrium state. The shear
viscosity is

η =
V

kT

∫ ∞

0

dt 〈pxy(0)pxy(t)〉 (3.34)

where the average 〈. . . 〉 is computed at the equilibrium state. The last equation
is formally the same used in our calculation for shear viscosity in Chapter 4
the only difference being the pressure tensor which has to be replaced by the
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relativistic energy momentum tensor:

Tµν =
∫

d3p

(2π)3

pµpν

p0
f(x, p) =

1
V

∑

i

pµ
i p

ν
i

p0
i

. (3.35)

3.1.3 Green-Kubo formula for electric conductivity

In this subsection we will briefly derive the Green-Kubo formula for electric
conductivity that will be used in Chapter 5.

The electric conductivity is definded as

~j = σ ~E (3.36)

where ~j is the electric current and ~E is the external applied electric field. The
electric current density can be written as

jµ =
∫

d3p

(2π)3

pµ

p0
q(x)f(x,p) = q

1
V

N
∑

i=1

pµ
i

p0
i

(3.37)

where q(x) is the electric charge density at space point x and in the final
expression we refer to a discrete system of N particles. Therefore, using the
language of the previous section, the electric current density plays the role of the
dynamical quantity we are interested to observe. The interaction Hamiltonian
for this system is:

H′(t) = −q
N
∑

i=1

x · ~E(t). (3.38)

Assuming ~E = Eẑ, the electric current density can be written as

jz = Ez

∫

dtφBA (3.39)

with φBA = βV 〈j(0)j(t)〉, obtaining for the electric conductivity

σel =
V

T

∫ ∞

0

dt 〈jz(t)jz(0)〉. (3.40)

The last equation is the Green-Kubo formula we use in our simulations in order
to compute the electric conductivity as we will see in Chapter 5.
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3.1.4 Time-correlation functions

In the following we will discuss about the computation of transport coefficients
developed on the base of time-correlations function of the pertinent physical
quantities. Let consider a physical quantity B which characterize the system
in thermal equilibrium. The average value 〈B〉 is defined as

〈B〉 =
∫

dpdq Bρ(p, q). (3.41)

However each member of the statistical ensemble fluctuates around the mean
value and the fluctuations are distributed as a gaussian with mean value equals
to 〈B〉. The time correlation function C(t, t′) is defined as the product of B(t)
times B(t′) averaged at the equilibrium:

C(t, t′) = 〈B(t)B(t′)〉. (3.42)

In the followig some general properties of time correlation function are re-
ported:

• computing the correlation function at fixed time t one obtains:

C(t, t) = 〈B(t)B(t)〉 = 〈B2〉 (3.43)

• the long time behavior of the time correlation function is:

lim
t→∞

C(t, t′) = 〈B2〉 (3.44)

• for a system in equilibrium, the time-correlation functions does not
depends on the value t and t′ but only on the difference:

C(t, t′) = C(t− t′, 0) ≡ C(t) (3.45)

The average of B, for a system at thermal equilibrium, can be written as a
temporal average

Bi = lim
t→∞

1
t

∫ t

0

dt′ Bi(t′) (3.46)

where the index i refers to each member of the ensemble. It is possible to
define the autocorrelation function as the temporal average over a trajectory,
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i.e. over the temporal evolution of B:

Bi(t)Bi(0) = lim
t→∞

1
t

∫ t

0

dt′ Bi(t+ t′)Bi(t′) (3.47)

and then one has to perform the ensemble average

C(t) = 〈B(t)B(0)〉 =
〈

lim
t→∞

1
t

∫ t

0

dt′ Bi(t+ t′)Bi(t′)
〉

. (3.48)

In numerical simulations, in order to perform the ensemble average, a set of N
events are generated so that the previous equation becomes a mathematical
average. If the system is slightly far from the equilibrium value, one can
consider to expand B to the first order obtaining a linear equation of motion:

dB

dt
= −λB (3.49)

with λ constant and positive. The previous equation describes the relaxation
to equilibrium of the quantity B, being the relaxation time 1/λ. One can
calculate the correlation function in this case:

C(t) = 〈B2〉e−λt = C(0)e−t/τ . (3.50)

The last equation will be verified in our cases of interest for shear viscosity in
Chapter 4 and for electric conductivity in Chapter 5.

3.2 Shear Viscosity

Viscosity is a key property of a fluid, representing a measure of its dissipative
behaviour. A liquid, for example, flows in layers so that a force applied on the
upper layer is transferred to the next with a small defect due to friction. In
this setup shear viscosity η is defined in terms of the friction force F per unit
area A created by a shear flow with transverse flow gradient ∇yvx:

F

A
= η∇yvx. (3.51)

In the field of QGP shear viscosity is one of the most important and much
studied transport coefficients. As already discussed in the first Chapter, shear
viscosity of strongly interacting matter is expected to be very close to the
conjectured lower bound η/s = 1/4π as predicted by AdS/CFT or extracted
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which consist of 5 independent equations while the equation of state relating ε
and P provides an extra equation. Solving these 6 equations, given an initial
condition, one can determine the space time evolution of the 6 variables: ε,
P , n and vx, vy, vz. Using the thermodynamic relations one also obtains
∂µ(suµ) = 0 that is the entropy current conservation. The relativistic Euler
equations are:

∂v

∂t
+ (v · ∇)v = −1 − v2

ε+ P

(

∇P + v
∂P

∂t

)

(3.55)

where in the non-relativistic case the right hand side is −∇P/ρ with ρ the
mass density.

If the fluid is dissipative, the energy momentum tensor, the current and the
entropy must be modified in order to include terms containing the derivatives
of the flow velocity:

Tµν = (ε+ P )uµ − Pgµν + πµν

jµ = nuµ + νµ (3.56)

sµ = suµ + σµ

where πµν , νµ and σµ are the dissipative parts and hydrodynamical equations
are derived from energy momentum and current conservations. There are two
main definitions of the flow: the Landau-Lifshitz frame where uµ is defined as
the energy flow from Tµν while the Eckart frame defined from the particle flow
jµ.

It is known that considering only linear order of the dissipative quantities one
violates causality and acasual propagation takes place. Therefore in order to
build up a consistent relativistic and dissipative hydrodynamics one needs to
go beyond the linear order.56, 57

However, it is possible to find the physical meaning of the dissipative part
looking at linear order. Let us define the projector:

∆µν = gµν − uµuν (3.57)

with uµ∆µν = 0, that is perpendicular to the flow uµ. Using the energy
momentum conservation and the thermodynamical relations one obtains the
following dissipative part of Tµν :

πµν = η

(

Dµuν +Dνuµ − 2
3

∆µν∂ρu
ρ

)

+ ζ∆µν∂ρu
ρ (3.58)

where η is the shear viscosity and ζ is the bulk viscosity, Dµ = ∂µ − uµu
β∂β
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is a derivative normal to uµ. In the local rest frame ∆0ν = 0, ∆ij = δij and
D0 = 0, Di = ∂i. In this frame the divergency of entropy current is:

∂µs
µ =

η

2T

(

∂iu
j + ∂ju

i − 2
3
δij∇ · u

)2

+
ζ

T
(∇ · u)2 (3.59)

the non decreasing behaviour of entropy requires that both viscosities are non
negative. The transport coefficients η and ζ can be derived by mean of a
microscopic description. The energy-momentum tensor in kinetic theory can
be written as

Tµν(x) =
∑

a

∫

d3p

(2π)3

pµ
ap

ν
a

Ea
fa(x, p) (3.60)

where the sum runs over all species in the system. Assuming that the system
is slightly out of equilibrium then we can write

fa(x, p) = feq
a

(

uαp
α

T

)

[1 + φa(x, p)] (3.61)

and the deviation from equilibrium for Tµν is given by

∆Tµν =
∑

a

∫

d3p

(2π)3

pµ
ap

ν
a

Ea
feq

a

(

uαp
α

T

)

φa(x, p) (3.62)

where |φa| ≪ 1. Using the same temporal decomposition of Eq. (3.58) for φa

as a function of space-time and momentum:58

φa = −Aa∂ρu
ρ + Ca

µν

(

Dµuν +Dνuµ +
2
3

∆µν∂ρu
ρ

)

(3.63)

where Aa in general will depend on the scalar uαp
α and Ca

µν = Capµpν with
Ca depending on the same scalar. Now, equating Eq. (3.58) with Eq. (3.62),
using the decomposition of φa of Eq. (3.63), one obtains:58

η =
2
15

∑

a

∫

d3p

(2π)3

|p|4
Ea

feq
a

(

Ea

T

)

Ca(Ea) (3.64)

ζ =
1
3

∑

∫

d3p

(2π)3

|p|2
Ea

feq
a

(

Ea

T

)

Aa(Ea) (3.65)

where we have used the local rest frame. In order to evaluate Aa and Ca

it is necessary to use the Boltzmann equation as we will show in the next
subsection.
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3.2.2 Shear Viscosity from Relaxation Time Approximation

Let us suppose that the system is slightly out of equilibrium and consider a
system of one species of particles so we can write:

f = feq + δf (3.66)

suppressing the a index. We can approxiamte the Boltzmann equation as:

∂

∂t
f + v · ∇f = C[f ] ≃ −ω(E)δf (3.67)

where ω(E) is the frequency of interaction and ω−1(E) = τ(E) being τ(E) the
equilibration time. As written explicitely, the frequency of interaction is energy
and momentum dependent so the approximation made inEq. (3.67) is called
momentum dependent Relaxation Time Approximation. The deviation δf is
related to the function φ:

δf(x, p) = feqφ(x, p). (3.68)

The relaxation time τ(E) = ω(E)−1 is given by

τ−1(E) = ω(E) =
∑

bcd

1
2

∫

d3pb

(2π)3

d3pc

(2π)3

d3pd

(2π)3
W (a, b|c, d) feq , (3.69)

where the quantity W (a, b|c, d) is defined as

W (a, b|c, d) =
(2π)4δ4 (pa + pb − pc − pd)

2Ea2Eb2Ec2Ed
|M|2 . (3.70)

|M|2 is the squared transition amplitude for the 2-body reaction a+ b → c+ d.
The collision frequency Eq.(3.69) can easily be expressed in terms of the total
cross section σtot:

ω(E) =
∫

d3pb

(2π)3

√

s(s− 4m2)
2Ea 2Eb

feq σtot. (3.71)

After some calculations it can be found the expression for the shear and bulk
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viscosities58, 59

η =
1

15T

∫

d3p

(2π3)
|p|4
E2

τ(E)feq(E/T ) (3.72)

ζ =
1

9T

∫

d3p

(2π3)
τ(E)
E2

[

(1 − 3v2
s)E2 −m2

]2
feq(E/T ) (3.73)

where vs is the sound velocity and when considering different species of particles
a sum has to be performed. Depending on the dynamics, the relaxation time
may be highly momentum dependent: it is clear that the particles with the
longest relaxation time dominate the viscosity since these particles can transport
energy and momentum over greater distances before interacting. However one
has also to consider that the impact of the relaxation time of high energy
particles is exponentially damped by the feq(E/T ). Eq. (3.71) for a constant
(energy independent) total cross section becomes energy independent and
coincides with the standard mean relaxation time

τ−1 = ρ σtot 〈vrel〉 (3.74)

where 〈vrel〉 is the thermal average of the relative velocity and for massless
particles 〈vrel〉 = 1.

3.2.3 Shear viscosity from Chapman-Enskog method

In this section we will derive the shear viscosity using the Chapman-Enskog
method and we will follow the derivation given in Refs.41, 60–62 Let us begin
with the relativistic transport equation

pµ∂
µf =

∫

(f ′f ′
1 − ff1)σFdΩ′ d

3p1

p0
1

(3.75)

where we used the abbreviation f ≡ f(x, p), f ′ ≡ f(x, p′), f1 ≡ f(x, p1) and
f ′

1 ≡ f ′
1(x, p′

1). The differential cross section σ = σ(P,Θ) is defined in the
center of mass frame with P = [−(pα + pα

1 )(pα + p1α)]1/2 while the invariant

flux F =
[

(p1αp
α
1 )2 − (mc)4

]1/2
. dΩ′ refers to the angle of p′ in the center of

mass frame. When the system is not too far from equilibrium one can write

f = feq(1 + φ). (3.76)

The above equation does not define the rules for the approximation. In order
to define the method in a closed way we must assume that the mean free path
l is small compared to the typical length L over which the particle number
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density, velocity flow and temperature vary in a significant way. Then φ is
assumed to be of the order of l/L.

In the Chapman-Enskog method the deviation feqφ is determined from the
Boltzmann integro-differential equation: inserting Eq. (3.76) in Eq. (3.75)
and keeping only the leading terms in both sides of the resulting equation one
obtains

pµ∂
µfeq = −feqL[φ] (3.77)

where L[φ] is the linearized collision integral and is given by

L[φ] =
∫

f0
1 (φ+ φ1 − φ′ − φ′

1)σFdΩ′ d
3p1

p0
1

. (3.78)

and Eq. (3.77) is no more an integro-differential equation but an inhomogeneous
integral equation for φ. The solution of the above equation is of fundamental
importance in kinetic theory because it leads to the evaluation of transport
coefficients. The solution has the general structure

φ = A∂αu
α −B∆αβp

β∆αβ

(

1
T
∂βT +

1
c2
Duβ

)

+ C〈pαpβ〉〈∂αuβ〉 (3.79)

with D ≡ uα∂α, ∆αβ = gαβ + 1
c2u

αuβ , 〈tαβ〉 = ∆αβγδt
γδ, ∆αβγδ = 1

2 (∆αγ∆βδ +
∆αδ∆βγ)− 1

3 ∆αβ∆γδ. The scalar functions A, B and C which depend on pαu
α,

ρ and T obey the integral equation41, 60–62

L[A] = − 1
kT

Q (3.80)

L[B∆αβp
β ] =

1
kT

(pγu
γ +mh)∆pβ

αβ (3.81)

L[C〈pαpβ〉] = − 1
kT

〈pαpβ〉 (3.82)

where Q = − (mc)2

3 + 1
c2 pαu

α[(1 − γ)mh+ γkT ] + 1
c2

[

4
3 − γ

]

(pαuα), γ = cp/cv

is the ratio of specific heats, h = c2K3(z)/K2(z) is the hentalpy. The energy
momentum tensor can now be calculated with f = feq(1 + φ) and the shear
viscosity reads as

η = − c

10

∫

C〈pαpβ〉〈pαpβ〉feq d
3p

p0
. (3.83)

The above inhomogeneous integral equation for the transport coefficient can
be reduced to sets of algebraic equations by expanding the unknown scalar
function C(τ) (τ = −(pαu

α +mc2)/kT ) in terms of orthogonal polynomials,
e. g. Laguerre functions Lα

n(τ) with α half integer for massive particles
and α = 0 for massless particles. Multiplying both sides of Eq. (3.82) by
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(

p0f0L
5/2
n (τ)

)−1

〈pαpβ〉 and integrating over momentum one obtains

[

C〈pαpβ〉, L5/2
n (τ)〈pαpβ〉

]

=
m2kT

ρ
γn (n = 0, 1, . . . ) (3.84)

where γn has been defined as:

γn ≡ c

ρk2T 2

∫

f0L5/2
n (τ)〈pαpβ〉〈pαpβ〉d

3p

p0
. (3.85)

Expanding C(τ) =
∑∞

m=0 cmL
5/2
m (τ), Eq. (3.84) can be written as

∞
∑

m=0

cmcnm =
1
ρkT

γn (n = 0, 1, . . . ) (3.86)

and

cmn =
1

(mkT )2

[

L5/2
m (τ)〈pαpβ〉, L5/2

n (τ)〈pαpβ〉
]

(m,n = 0, 1, . . . ). (3.87)

The shear viscosity can be written as

η =
kT 2

10

∞
∑

m=0

cmγm. (3.88)

The first and second order approximations are:

η1st

=
1
10
kT

γ2
0

c00
(3.89)

η2nd

=
1
10
kT

γ2
0c00 − 2γ0γ1c01 + γ2

1c00

c00c11 − c2
01

(3.90)
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where

γ0 = −10ĥ (3.91)

γ1 = −
[

ĥ(10z − 25) − 10z
]

(3.92)

c00 = 16
(

w
(2)
2 − 1

z
w

(2)
1 +

1
3z2

w
(2)
0

)

(3.93)

c01 = 8
(

2z
(

w
(2)
2 − w

(2)
3

)

+
(

−2w(2)
1 + 3w(2)

2

)

+z−1

(

2
3
w

(2)
0 − 9w(2)

1

)

− 11
3z2

w
(2)
0

)

(3.94)

c11 = 4
(

4z2
(

w
(2)
2 − 2w(2)

3 + w
(2)
4

)

+2z
(

−2w(2)
1 + 6w(2)

2 − 9w(2)
3

)

+
(

4
3
w

(2)
0 − 36w(2)

1 + 41w(2)
2

)

+z−1

(

−44
3
w

(2)
0 − 35w(2)

1

)

+
175
3z2

w
(2)
0

)

(3.95)

with

z =
mc2

kT
and ĥ =

K3(z)
K2(z)

(3.96)

and the quantity w(s)
i is so-called the relativistic omega integral which is defined

as

w
(s)
i =

2πz3c

K2(z)2

∫ ∞

0

dψ sinh7 ψ coshi ψKj(2z coshψ)

×
∫ π

0

dΘ sin Θσ(ψ,Θ)(1 − coss Θ) . (3.97)

3.3 Electric Conductivity

Being the QGP created in HICs a system far from equilibrium, the study
of its transport coefficients is attracting a great interest. The η has been
studied extensively.58, 59, 62–69 Only very recently the electric conductivity, that
represents the response of a system to the applied electric field, has captured a
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significative importance in the field of strongly interacting matter for several
motivations. Electric conductivity σel is a computable quantity on the Lattice
from the correlation function. On the experimental side, Heavy Ion Collisions
are generate very strong electric and magnetic fields (eE ≃ eB ≃ m2

π, with mπ

the pion mass) in the first 1 fm/c from the collision.70–73 The value of σel would
be of fundamental importance for the strength of the Chiral-Magnetic Effect,74

a signature of the CP violation of the strong interaction. It has also been shown
that in mass asymmetric collision the electric field has a privileged direction
generating a current whose effects can be observed in collective flow and are
directly related to σel.71 Moreover σel can be related to the emission rate of
soft photons51 accounting for the measured raising spectra at low pT .75, 76

3.3.1 Electric conductivity from Relaxation Time Approximation

The starting point of our calculation is the Relativistic Boltzmann Transport
(RBT) equation that in the presence of an external field can be written as:55, 77

pµ∂µf(x, p) + qFαβpβ
∂

∂pα
f(x, p) = C[f ] (3.98)

where f(x, p) is the distribution function, Fαβ is the electromagnetic field
strength tensor, C[f ] is the collision integral which, considering only 2 → 2
scatterings, can be written as follows

C(x, p) =
∫

2

∫

1′

∫

2′

(f1′f2′ − f1f2) |M1′2′→12|δ4(p1 + p2 − p′
1p

′
2) (3.99)

where M is the transition matrix for the elastic process linked to the differ-
ential cross-section |M|2 = 16πs(s − 4M2)dσ/dt and by

∫

j
we mean

∫

j
=

∫

d3pj/(2π)3p0
j . The possible extension to 2 ↔ 3 processes has been thoroughly

discussed in Ref.67

In order to obtain an analytical solution for the Boltzmann equation, it is
necessary to approximate the Collision integral. The most simple scheme is
the Relaxation Time Approximation which, noticing that C[f ] is a ∆f/∆t,
assumes the following form:

C[f ] ≃ −pµuµ

τ
(f − feq) (3.100)

where uµ is the velocity flow that in local rest frame is (1,0), τ is the so-called
relaxation time which determines the time scale for the system to relax toward
the equilibrium state characterized by feq. Assuming that the distribution
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function f is near the equilibrium one feq, one can write:

f(x, p, t) = feq(x, p)(1 + φ). (3.101)

If we consider a uniform system and only an electric field ~E, from Eq. (3.98)
and Eq. (3.100) we obtain:

−q
(

p0
~E · ∂feq

∂~p
− ~E · ~p∂feq

∂p0

)

= −p0

τ
feqφ (3.102)

and solving for φ, assuming φ ≪ feq, one obtains:

φ =
1
T
qτ ~E · ~p

p0
(3.103)

The electric current is:

jµ = q

∫

d3p

(2π)3

pµ

p0
f = q

∫

d3p

(2π)3

pµ

p0
feq(1 + φ) (3.104)

Using φ of the previous equation, considering the definition of electric conductiv-
ity and generalizing to a system of different charged particles one obtains:78, 79

σel =
e2

3T

∑

j=q,q̄

q2
j

∫

d3p

(2π)3

~p2

E2
τjfeq =

e2
⋆

3T

〈

~p2

E2

〉

τqρq (3.105)

where qj is the quarks charge (±1/3,±2/3), τj is the relaxation time for quarks,
ρq is the quark density, e2

⋆ = e2
∑

j=q̄,q q
2
j = 4e2/3. We notice that in the

classical limit Eq. (3.105) simplifies formally to the well known Drude formula
τe2ρ/m while in the ultrarelativistic limit becomes τe2/3T . However it has
to be noticed that τ = 1/ρσ in the Drude model while our expression is more
general. We will see that indeed τ is quite larger than (ρσ)−1. Chapter 5 is
dedicated to analyze the deviations from the Drude relaxation time.

3.4 Lattice calculations

In this section we report briefly the evaluation of shear viscosity and electric
conductivity on Lattice QCD scheme and the latest results regarding this two
transport coefficients.
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Figure 3.3: A collection of Lattice QCD calculations of shear viscosity over entropy
density ratio: full squares,81 diamonds and triangles,82 open and full circles,83 yellow
circles.80

The Lattice calculations provide the Euclidean correlator but not the spectral
functions so one has to apply inverse problem methods which usually give large
systematic errors. The inversion is an ill-posed problem on the lattice because
the Euclidean correlation function is only known at discrete number of space
and time, while the spectral function is a continuous function. To solve this
problem, one possibility is to use an ansatz for spectral function with a small
number of fitting parameters and a constrained fitting procedure. For example,
in Ref.80 the following spectral functions have been chosed:

ρ13,13(ω,q)
ω

ω,q→0−→ η

π

ω2

ω2 + (ηq2/(ε+ p))2

ρ33,33(ω,q)
ω

ω,q→0−→ Γs

π

(ε+ p)ω4

(ω2 − νs(q)2q2)2 + (Γsωq2)2
(3.111)

with the sound attenuation length Γs = ( 4
3η + ζ)/(ε + p) and the speed of

sound νs(q).

In Fig. 3.2, taken from Ref.80 it is shown the correlation function as a function
of τT for different values of lattice spacing.
In Fig. 3.3 we show a collection of Lattice QCD calculations of η/s as a
function of temperature: full squares,81 diamonds and triangles,82 open and
full circles,83 yellow circles.80
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Figure 3.5: Figure adapted from Ref.84 Temperature dependence of C−1
emσ/T , where

Cem = 5/9e2 for two light flavours. Previously obtained results85–87 are indicated as
well: the Nf = 0 results are inserted matching the values of T/Tc.

In Fig. 3.4 from Ref.84 are shown spectral functions for three different
temperatures where the thickness represents the statistical error. In this work
the problem of inverting the integral equation relating the correlator and the
spectral function is solved using the Maximum Entropy Method (MEM) which
aims to construct the most probable spectral function without requiring any
assumptions of its functional form.

In Fig. 3.5 from Ref.84 is shown a collection of Lattice results for the electric
conductivity as a function of temperature.

3.5 AdS/CFT calculations

In this section we will briefly discuss the Anti-de-Sitter Conformal Field Theory
(AdS/CFT) framework which is a powerful non-perturbative tool that can be
used also to investigate the transport properties of strongly coupled gauge
theories with a large number of colors Nc.

The AdS/CFT duality is an idea that originated from superstring theory
and claims the equivalence between stronlgy coupled 4-D gauge theory and
gravitational theory in 5-D AdS spacetime. It is also called holographic theory

because encodes a five dimensional theory by a four dimensional theory.88
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More explicitely AdS/CFT claims that the generating functionals (or partition
functions) of the two theories are equivalent:89

Zgauge = ZAdS . (3.115)

Therefore AdS/CFT enables one to analyze a strongly coupled gauge theory
using AdS spacetime. In particular the last correspondance is for a gauge
theory at finite temperature while on the gravitaional side one has to consider
a AdS black hole. The black hole in this case helps to have the notion of
temperature, because of Hawking radiation, and also the notion of entropy
which is known to be equal to the area of the black hole horizon.

There are several differences between the realistic SU(3) gauge theory and the
gauge theory studied in AdS/CFT. First AdS/CFT typically considers a SU(Nc)
gauge theory where Nc plays the role of a parameter and the strong coupling
is the so called large Nc limit. Second, AdS/CFT considers a supersymmetric
gauge theory, in particularly N = 4 Super-Yang-Mills (SYM) provides the
simplest example of AdS/CFT.

Also in this framework transport coefficients are computed in Linear Response
Theory by Green-Kubo formulae.

The hydrodynamic equations can be thought of as an effective theory describing
the dynamics of the system at large lengths and time scales. Therefore one
should be able to use these equations to extract information about the low
momentum behaviour of Green’s function in the original theory.90 Coupling
the sourcJa(x) to a set of operators Oa(x) so that the new action can be written
as

S = S0 +
∫

x

Ja(x)Oa(x) (3.116)

that the source will introduce a perturbation of the system. In particular
the average value of Oa will differ from the equilibrium values, which can be
assumed to be zero. If Ja are small, the perturbations are given by the linear
response theory as

〈Oa(x)〉 = −
∫

y

GR
ab(x− y)Jb(y) (3.117)

where GR
ab is the retarded Green’s function

iGR
ab(x− y) = θ(x0 − y0)〈[θa(x), θb(y)]〉. (3.118)

The fact that the linear response is determined by the retarded Green’s function
comes from causality: the source can influence the system only after it has been
turned on. Thus, in order to determine the correlation functions of Tµν , we
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need to couple a weak source to the energy momentum tensor and determine
the average value. One must generalize hydrodynamic equations to curved
space time, treat the metric gµν as the source for Tµν and then determine
the response of the thermal medium to a weak perturbation of the metric.
Recalling that the dissipative part of energy momentum tensor can be written
as

σµν = PµαP νβ

[

η

(

∂αuβ + ∂βuα − 2
3
gαβ∂λu

λ

)

+ ζgαβ∂λu
λ

]

(3.119)

with Pµν = gµν +uµuν . The previous equation has to be generalized to curved
space-time as

σµν = PµαPµβ

[

η (∇αuβ + ∇βuα) +
(

ζ − 2
3
η

)

gαβ∇ ·u
]

. (3.120)

where ∇α is the covariant derivative ∇αuβ = ∂αuβ + Γγ
βαuγ . Using uµ =

(1, 0, 0, 0) and gµν , one obtains contributions only to the traceless spatial
components and these contributions come from the Christoffel symbols in the
covariant derivatives:

σxy = 2ηΓ0
xy = η∂0hxy. (3.121)

By comparison with the expectation from linear response theory

GR
xy,xy(ω,0) =

∫

dtd3x eiωtθ(t)〈[Txy(t,x), Txy(0,0)]〉 = −iηω (3.122)

that is the Kubo formula for shear viscosity

η = − lim
ω→0

1
ω
ImGR

xy,xy(ω,0). (3.123)

In order to compute holographically the retarded correlator of T xy one can
consider a general d+ 1 dimensional diagonal metric and perturb the metric
by adding a non-diagonal element as:91

ds2 = gttdt
2 + gzzdz

2 + gxx(δijdxidxj + 2φdx1dx2) (3.124)

where φ is a small perturbation. The action fot the perturbation φ is

Sφ = −1
2

∫

dd+1x
√−g 1

q(z)
gMN∂Mφ∂Nφ. (3.125)

where q(z) can be considered as a space time dependent coupling constant.
Transport coefficients are given by the Green-Kubo formula

χ = − lim
kµ→0

lim
z→0

Im

{

Π(z, kµ)
ωφ(z, kµ)

}

(3.126)
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where Π is the canonical momentum of the field φ

Π =
δS

δ∂zφ
= −

√−g
q(z)

gzz∂zφ (3.127)

and the equation of motion for Π is

∂zΠ = −
√−g
q(z)

gµνkµkνφ. (3.128)

In the vicinity of the horizon z → z0 one has

gtt = −c0(z0 − z) gzz =
cz

z0 − z
. (3.129)

Solving the equation of motion and using Green-Kubo relation Eq. (3.126) one
obtains:

χ =
1

q(z0)

√ −g
−gzzgtt

∣

∣

∣

∣

z0

(3.130)

which can be written as

χ =
1

q(z0)
A

V
(3.131)

where A is the area of the horizon and V the spatial volume of the boundary
theory. The area of the horizon is related to the entropy of the boundary theory
via

s =
A

V

1
4GN

. (3.132)

Therefore for any theory with a gravity dual, the ratio of any transport
coefficient to the entropy density depends only on the properties of the dual
fields at the horizon:

χ

s
=

4GN

q(z0)
. (3.133)

In the case of infinite coupling limit λ → ∞, q(z) = 16πGN = const, one gets
the famous result

ηλ=∞
sλ=∞

=
1

4π
(3.134)

that was first derived in Ref.92 The result is universal because the derivation
applies to any gauge theory with a gravity dual given by Einstein gravity
coupled to matter fields. In particular, if large Nc QCD has a gravity dual, its
η/s should also be given by 1/4π up to corrections due to the finiteness of the
coupling. These corrections in N = 4 SYM theory are given by

η

s
=

1
4π

(

1 +
15ζ(3)
λ3/2

+ . . .

)

. (3.135)

However, in recent years, the conjecture that η/s = 1/4π is a lower bound has
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been questioned. When higher order corrections to Einstein gravity are taken
into account, which corresponds to 1/Nc or 1/

√
λ corrections in the boundary

gauge theory, η/s = 1/4π will no longer be universal. In particular generic
higher order derivatives corrections to Einstein gravity can violate the proposed
bound.93 Gauss-Bonnet gravity is an example in which this occurs leading to

η

s
=

(1 − 4λGB)
4π

(3.136)

where λGB is the coupling for the Gauss-Bonnet higher derivative term. Thus
for λGB > 0, η/s is smaller than 1/4π.

Let us conclude this section with the Green-Kubo formula for electric conduc-
tivity

GR
µν(k) =

∫

d4x e−ik · x〈JEM
µ (0)JEM

ν (x)〉 (3.137)

σel = lim
k0→0

e2

6T
gµνGR

µν(k0,k = 0) (3.138)

and finally

σel =
e2N2

c T

16π
(3.139)

showing that the electric conductivity is finite and coupling independent in the
limit of large coupling.94

We note that far both η/s and σel/T predictions are temperature independent
while Lattice QCD calculations have shown a sizable T dependence. This
appears quite large in particular for σel/T . The understanding of these aspects
in a kinetic theory framework constitutes a part of the results of the present
thesis and is discussed in Chapter 5.
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Shear Viscosity Results

“When analytic thought, the knife, is applied to experience, something is always

killed in the process.”

Robert M. Pirsig, Zen and the Art of Motorcycle Maintenance
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This chapter is dedicated to the computation of shear viscosity η using Green-
Kubo relation which gives us an exact formula for calculating transport coef-
ficients. After checking numerical convergency of the method, we study the
microscopic details dependence of shear viscosity, i. e. cross section depen-
dence, and compare Green-Kubo results with the analytical formulas derived
in Relaxation Time Approximation and in Chapman-Enskog scheme described
in the previous Chapter. We will show that, in the general case of anisotropic
cross section, Chapman-Enskog formula is in quite good agreement with the
Green-Kubo results. This allows to implement a scheme in which C[f ] in the
transport equation is gauged to a fixed η/s. In such a way one can employ the
transport theory to study the dynamics of a fluid with the the same language
of hydrodynamics. We also study the shear viscosity of Quark-Gluon Plasma
in a quasi-particle model.

4.1 Green-Kubo method at work

In this section we describe the Green-Kubo method for computing the shear
viscosity. As shown in the previous chapter, Green-Kubo formula for shear
viscosity can be written as follows:

η =
V

T

∫ ∞

0

dt〈πxy(t)πxy(0)〉 (4.1)

where V is the volume of the system, T the temperature, πxy are the xy

component of energy-momentum tensor, 〈. . . 〉 denotes the thermal average at
the equilibrium state. We note that in order to compute η from Eq. (4.1), we
need to evaluate the time correlation function πxy(t)πxy(0):

C(t) = πxy(t)πxy(0) = lim
Tmax→∞

1
Tmax

∫ Tmax

0

dt′πxy(t+ t′)πxy(t′) (4.2)

where Tmax is the maximum time of evolution of the system that has to be
determined.

In order to apply the Green-Kubo method Eq. (4.1), we choose a system
of relativistic particles in a static box with periodic boundary conditions in
thermal equilibrium. The xy component of energy momentum tensor, in this
case, can be written as:

πxy(t) =
1
V

N
∑

i=1

px
i p

y
i

p0
i

(t) (4.3)



4.1. Green-Kubo method at work 85

where p0
i is the energy and px,y are the x, y component of momentum of the i−th

particle. As the sum in Eq. (4.3) runs over all test-particles, it is mandatory
to determine also the number of test-particles that guarantees the convergency
of the time correlation function.

4.1.1 Fluctuations and time-correlation functions

In Fig. 4.1 we plot pxy as a function of time. As we can see, pxy(t) fluctuates
around the mean value (red dashed line) that for a system in thermal equilibrium
is zero being the energy momentum tensor diagonal Tµν = diag(ε, P, P, P ).
Studying the time correlations of these kind of fluctuations one obtains an
exponential decreasing function:95

〈πxy(t)πxy(0)〉 = 〈πxy(0)πxy(0)〉e−t/τ (4.4)

where 〈πxy(0)πxy(0)〉 is the initial value of the correlator and τ is the decay
time. Using the functional form of Eq. (4.4), Green-Kubo formula for shear
viscosity η Eq. (4.1) simplifies to:

η =
V

T
〈πxy(0)πxy(0)〉τ (4.5)

In Fig. 4.2 we show Green-Kubo correlator as a function of time: each black
line represents an event of the ensemble, red line is the thermal average over
all the events generated numerically. As we can see from the plot, the time
correlation function is an exponential decreasing function as we expected for
a system in thermal equilibrium whose fluctuations are gaussian.95 Once
the Green-Kubo correlator has been computed, one can perform a fit to the
exponential decreasing function in order to obtain the decay time τ . In Fig.
4.3 it is shown an exponential fit (red line) to the time correlation function.
Finally, using the initial value of the correlator πxy(0)πxy(0) and the decay
time τ , we can evaluate the shear viscosity using Eq. (4.5).

The decay time τ is calculated performing a fit on the temporal range where
the correlation function assumes the exponential form, because at t ≫ τ the
correlation becomes too weak and the fluctuations starts to dominate. A key
point is the evaluation of the error on the value of the viscosity as coming from
the error on the initial value of the correlator and the error on the relaxation
time τ extracted from the fit of the correlation function. Therefore possible
deviations from the exponential law are evaluated through the error bars
themselves.
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Figure 4.1: Time fluctuations of πxy.
Green dashed line is the thermal av-
erage. In this simulation we set to-
tal cross-section σtot = 3mb black line
and σtot = 9mb red line, T = 0.4GeV .
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a function of time: black line is the
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Figure 4.3: Gree-Kubo correlators as a function of time: black line is the fit for
σtot = 3mb while red line for σtot = 9mb. We set the temperature T = 0.4GeV .

4.1.2 Numerical Convergency

Being interested in a more quantitative and sistematic study about the micro-
scopic details dependence of the shear viscosity, we have to check the numerical
convergency of numerical implementation of Green-Kubo correlator in order to
find the correct maximum time of evolution Tmax and the correct number of
test-particles.The maximum time Tmax enters in the integral of Eq. (4.2) while
the number of test-particles Ntest are responsible for fluctuations of πxy. In the
following discussion, Ntest is the number of test-particles per real particle.
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Figure 4.4: Left panel: convergency of decay time τ as a function of Tmax. Right
panel: convergency of initial value 〈πxy(0)πxy(0)〉 as a function of Tmax

In Fig. (4.4) it is shown an example of study of the numerical convergence of
the decay time τ and of the initial value of the correlator 〈πxy(0)πxy(0)〉 as a
function of the maximum time of the simulation Tmax for the case of isotropic
and constant total cross section of σtot = 0.1 fm2 and for a temperature of
T = 0.4 GeV. We have performed such analysis using a large number of test
particles Ntest = 1000, the convergency with Ntest will be described soon after.
As shown in Fig. 4.4 (b) 〈πxy(0)πxy(0)〉 converges to the analytical value given
by:

〈πxy(0)πxy(0)〉 =
4
15
εT

V
(4.6)

where ε is the energy density, T the temperature and V the volume. This
result is obtained analytically only for the case of massless particles. Eq. (4.6)
is represented by red line in Fig: 4.4 showing that a very good accuracy is
reached only at Tmax ≈ 100 fm/c , which is a very large time scale compared
to the decay time for this case, τ ∼ 1 fm/c. The τ itself is instead always
quite close to the exact value, but for small Tmax, however, the evaluated error
bars show that there is a large uncertainty on the exponential fit that again is
reduced increasing the maximum time over which the temporal correlations
are computed. The large error bars are essentially indicating that for small
Tmax it is not possible to have a defined exponential decay behavior according
to Eq.(4.4).

We have checked also the numerical convergence as a function of the number
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Figure 4.5: Left panel: convergency of decay time τ as a function of Ntest. Right
panel: convergency of initial value 〈πxy(0)πxy(0)〉 as a function of Ntest

of test particles. In Fig.(4.5) we see that regarding τ it is very important to
have a large number of test particle Ntest ≥ 500 to reduce the uncertainty on
τ at the level of 2%. On the right panel of Fig.4.5 the 〈πxy(0)πxy(0)〉 is shown
to be nearly indipendent on Ntest, as one can expect considering that it is
the initial value of the correlation hence less affected by the accuracy of the
system evolution. At variance with the dependence of τ on Tmax, the Ntest

is of crucial importance. This can be understood because a small number of
Ntest does not allow to properly map the phase space and consequently the
dynamical evolution of the system.

A similar study have been performed for all the numerical calculations shown
in this thesis both for shear viscosity and electric conductivity.

Once the numerical solution of both Transport Equation and Green-Kubo
method are under control, one can study the microscopic details dependence of
shear viscosity. In Fig. 4.6 we show an example of Green-Kubo correlators as a
function of time for different values of total cross section. As the cross section
increases, scatterings destroy time correlations and the decay time decreases.
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Figure 4.6: Green-Kubo correlator as a function of time for different value of two
body cross-section σtot. The temperature is fixed to T = 0.4GeV . These results are
for massless particles and for isotropic cross section.

4.2 Shear Viscosity: anisotropic scatterings

In this section our aim is to study the more realistic case of angular dependent
cross section in the context of a gluon plasma. We choose a typical elastic
pQCD inspired cross section with the infrared singularity regularized by Debye
thermal mass mD:

dσ

dt
=

9πα2
s

2
1

(t−m2
D)2

(

1 +
m2

D

s

)

(4.7)

where s, t are the Mandelstam variables. Such kind of cross sections are
those typically used in parton cascade approaches.42, 96–101 The total cross
section corresponding to Eq. (4.7) is σtot = 9πα2

s/(2m
2
D) which is energy and

temperature independent. Here our objective is not to estimate the value of η
but only to explore the impact of non-isotropic cross section on the comparison
among Relaxation Time Approximation (RTA), Chapman-Enskog (CE) and
Green-Kubo (GK) methods. In Eq.(4.7) the Debye mass mD is a parameter
that regulates the anisotropy of the scattering cross section. We will vary
it to regulate the anisotropy, but fixing the total cross section by keeping
constant the α2

s/m
2
D ratio, i.e. the total cross section. We note that for a

plasma at temperature T the average momentum transfer q2 ≈ (3T )2, hence
for mD ≫ 3T Eq. (4.7) acts as an almost isotropic cross section and we should
recover the results of the previous Section. On the other hand, we notice that
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the well known HTL estimate of a gluon plasma viscosity102 is valid only in
the limit of g = mD/T ≪ 1, i.e. for very anisotropic cross section.

We have seen that the modified Relaxation Time Approximation gives the same
result of the first order Chapman-Enskog for isotropic cross section. In order
to perform the same analysis for the non-isotropic case we have to calculate
the transport cross section σtr:

σtr(s) =
∫

dσ

dt
sin2 Θ dt = σtot h(a) (4.8)

where h(a) = 4a(1 + a)
[

(2a+ 1)ln(1 + 1/a) − 2
]

and a = m2
D/s. For mD → ∞

the function h(a) → 2/3 and we recover the isotropic limit, σtr = (2/3)σtot,
while for finite value of mD the function h(a) < 2/3. One can generalize the
concept of transport relaxation time τ−1

tr = 〈ρ σtr vrel〉 that for isotropic cross
section is equal to (2/3)〈ρ σtot vrel〉 writing

τ−1
tr = 〈ρ σtr vrel〉 = ρ σtot 〈vrel h(a)〉 (4.9)

The shear viscosity η∗
RT A in the modified RTA is therefore given by

η∗
RT A = 0.8

1
〈vrel h(a)〉

T

σtot
(4.10)

This is the same formula used in several transport calculation to fix the
viscosity,98, 103, 104 but also the formula used to evaluate the viscosity in effective
lagrangian approaches.64 The thermal average,〈h(a) vrel〉, can be written more
explicitely, see also,105 as:

〈h(a) vrel〉 =
8z

K2
2 (z)

∫ ∞

1

dy y2 (y2 − 1)h(2zy a)K1(2zy) = f(z, a) (4.11)

where in the function h we have re-written the argument as a = 2zya, with
a = T/mD, just to make explicit the integration over the y variable. This leads
to a compact formula for the viscosity in the RTA approximation:

η∗
RT A = 0.8

1
f(z, T

mD
)
T

σtot
(4.12)

with the function f , defined by Eq.(4.11), that essentially accounts for the ratio
between the total and the transport cross section and therefore it is a function
of value smaller than 2/3. Furthermore we notice that for massless particles it
will be a function only of the T/mD ratio.

In the CE approximation the situation is more complex, but for our case it
is possible to write down the viscosity in a similar way obtaining, after some
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Figure 4.7: Left: Shear viscosity η as a function of the Debye mass mD for two
different values of the temperature T = 0.3GeV (blue thick lines) and T = 0.4GeV
(red thin lines). The dotted line is the isotropic limit when mD ≫ 1GeV , the solid
line is the relaxation time approximation with τ−1 = 〈ρ σtr vrel〉 and dashed line
is the Chapman-Enskog approximation at firt order. Right: Dashed line represent
Chapman-Enskog approximation at the first order for three different temperature
(T = 0.3, 0.4, 0.5 GeV) while the open circles are the results obtained using the
Green-Kubo relation.

manipulation of Eq. (3.89), the following form:

[ηs]ICE = 0.8
1

g(z, a)
T

σtot
(4.13)

with

g(z, a) =
32
25

z

K2
3 (z)

∫ ∞

1

dy(y2 − 1)3h(2zya)

×
[

(z2y2 + 1/3)K3(2zy) − zyK2(2zy)
]

(4.14)

it is clear that the function g(z, T/mD) is quite different from the thermal
average of the transport cross section as in the modified RTA, Eq. (4.11). From
the results shown in Fig.4.7 comparing the lines on the left panel, evaluated
from Eq. (4.12), and the lines on the right, evaluated from Eq.(4.13), we
see that the g(z, T/mD) is generally smaller that the thermal average of the
transport cross section.

In the left panel of Fig.(4.7) it is shown the shear viscosity η as a function of the
Debye mass at fixed total cross section at σtot = 3 mb and for three different
temperatures T = 0.3 GeV, T = 0.4 GeV and T = 0.5 GeV. The solid, dashed
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and dot-dashed lines are the behavior of η in the modified RTA approximation,
Eq.(4.10), while the symbols are the result with the Green-Kubo formula. It is
evident that there is a strong disagreement between the two as soon as mD

is such to move from the isotropic limit indicated to guide the eye by dotted
lines (which corresponds to the standard RTA). Therefore, we see in general
that even if the total cross section is kept constant, the anisotropy of the cross
section cause a strong enhancement of the viscosity η. However the increase
is very strong and the difference between transport and total cross section
is not able to account fully for such an increase. On the right panel of Fig.
(4.7) we compare the Green-Kubo results (symbols) with the prediction of
CE at first order (solid, dashed and dot-dashed lines). In this case we find
a very good agreement between the two, hence the CE already at first order
is able to account for the correct value of η even if the cross section is so
forward-backward peaked to cause an increase of about an order of magnitude
respect to the same total cross section but isotropic. The RTA approximation
severely underestimate the viscosity. We can also see that for mD ∼ 8−10T the
isotropic limit is recovered and both CE and RTA coincide but this is essentially
the limit discussed in the previous Section. We note that the calculation have
been performed down to a quite low value of the screening mass, mD = 0.1 GeV.
This for T = 0.5 GeV would correspond to anisotropic cross section that in the
HTL approach corresponds to g = mD/T = 0.2. Nonetheless within a precision
of about 5% the first order CE is able to account for the correct value of η even
for such forward-bacward peaked cross section. This result further validates
the approach in Ref.102

4.3 Shear Viscosity: gluon plasma

In this section we want to apply the analysis performed for quite general case:
the shear viscosity to entropy density ratio for a gluon plasma. Therefore
we consider massless gluons in thermal equilibrium interacting via two-body
collisions corresponding to direct u− and t− channel:

dσgg→gg

dq2
= 9πα2

s

1
(q2 +m2

D)2
. (4.15)

where mD is the Debye mass, mD = T
√

4παs according to HTL calculations
and

αs(T ) =
4π

11 ln
(

2πT
Λ

)2 , Λ = 200MeV (4.16)
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where Λ is the pQCD running coupling costant. A full pQCD calculation
with HTL dressed propagator would include also the s−channel and all the
interference terms, however it has been shown that the u− and t− channels
are the dominant ones.102 On the other a full HTL calculation as in Ref.102

would require an energy dependent propagator with both longitudinal and
transverse components, however our objective here it is not to have the best
evaluation of η/s, but to discuss the comparison between CE, RTA and the
numerical Green-Kubo method for a quite realistic case and also under the
same condition of previous work based on the Green-Kubo method.65

The total cross section in this scheme is energy and temperature dependent:

σtot =
9πα2

s

m2
D

s

s+m2
D

. (4.17)

For this realistic case we have calculated the η/s as a function of the temperature
for different temperatures in the range 0.2 ≤ T ≤ 1.0 GeV by mean of the
numerical Green-Kubo method. The results shown by black symbols in Fig.
4.8 are compared to the CE (orange dashed line), the modified RTA (black
dot-dashed line) described above and the simple RTA (green dotted line) with
the relaxation time proportional to the total cross section and not to the
transport one. We find again that the CE again is in excellent agreement
with the Green-Kubo result at the level of accuracy of 4%, while the modified
RTA significantly underestimates the η/s by about a 20% at T ∼ 0.2 GeV. At
increasing temperature the discrepancy tends to increase up to about a 50%; we
can understand this result on the base of the discussion in the previous section
because the m2

D/T
2 ∝ αs(T ) ratio becomes smaller at increasing temperature

and therefore the cross section appear effectively less anisotropic.

We notice, as shown in Fig. 4.8, that for T ∼ 0.4GeV we predict a η/s ∼ 1 in
approximate agreement with the extrapolation of calculations in Ref.,102 even
if however we have not used the full HTL propagator.
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Figure 4.8: Shear viscosity to entropy density ratio η/s of a gluon plasma interacting
through the differential cross section in Eq. (4.15) as a function of temperature T :
black circles are the results obtained using Green-Kubo correlator, orange dashed line
represents Chapman-Enskog first order approximation. The black dot-dashed line is
the prediction with the modified RTA approximation and the green dotted lines is
the standard RTA. Red solid line is the next to leading log order (NLL) from Ref.102

4.4 Impact of η/s on elliptic flow

Once we have found that the correct formula for shear viscosity is the one
derived in Chapman-Enskog scheme, we are able to develope a Relativistic
Boltzmann Transport (RBT) approach that, instead of focusing on specific
microscopic calculations or modelings for the scattering matrix, fixes the cross
section in order to have the wanted η/s. This is not the usual approach to
transport theory that is generally employed by starting from cross sections and
mean fields derived in microscopic models. The motivation for our approach is
inspired by the success of the hydrodynamical approach that has shown the
key role played by the η/s. Therefore on one hand we use the RBT equation as
an approach converging to hydrodynamics for small scattering relaxation time
τ ∼ σρ (small η/s). On the other hand the RBT equation is naturally valid also
at large η/s or pT ≫ T in contrast to hydrodynamics and avoids uncertainties
in the determination of the viscous correction, δf , to the distribution function
f(x, p), that usually becomes quite large at pT > 1.5 GeV.106

The knowledge of the analytical relation between the shear viscosity η and the
microscopic and macroscopic quantities T, σ(θ), ρ,M plays a role in building up
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Figure 4.9: Differential elliptic flow v2(pT ) at mid rapidity for 20% − 30% collision
centrality. Left panel: Au+ Au at

√
s = 200GeV at RHIC. Right panel: Pb+ Pb

at
√
s = 2.76TeV at LHC. Red line is our simulation results keeping constant

η/s = 1/4π in the case of anisotropic cross section mD = 0.7GeV while black line is
obtained with fixed η/s = 1/4π and isotropic cross section.

a transport code that follows the evolution of a fluid at fixed η/s. First tentatives
to develop such a transport approach were based on Eq. (4.12),98–100, 103, 107 i.e.
on the RTA approximation. Our work shows that for realistic case where the
screening mass mD ∼ 0.3÷1GeV for the temperature range T ∼ 0.15÷0.6GeV
explored at RHIC and LHC energies, Eq. (4.13) provides a sufficiently correct
expression within a 5%. Instead the use of Eq. (4.12) leads to underestimate
the needed local cross section by about a factor 1.5 − 2, because as we have
seen from our study f(a) > g(a) except for the isotropic cross section case
where they are equal.

Therefore, in order to study the expansion dynamics with a certain η/s(T ), we
determine locally in space and time the total cross section σtot according to
the Chapman-Enskog scheme:

η/s =
1
15

〈p〉 τη =
1
15

〈p〉
g(a)σtotρ

. (4.18)

We notice that in the regime where viscous hydrodynamics applies the specific
microscopic details of the cross section are irrelevant, and ours is the only
effective way to employ transport theory to simulate a fluid at a given η/s.
In Fig. 4.9 we show the results of the elliptic flow for a realistic simulation

3+1D of the expanding fireball starting with a typical initial condition from
Glauber model and keeping constant the value η/s during the evolution. We
can see that v2 does not depend on the microscopic details of the cross section
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for pT < 1 ÷ 1.5GeV , being η/s the physical quantity that determines the
elliptic flow. However, at higher transverse momenta, microscopic details
becomes relevant as we can see from Fig. 4.9 comparing red line (anisotropic
cross section using mD = 0.7GeV ) with black line (isotropic cross section).

4.5 Shear Viscosity: Quark-Gluon Plasma

In this section we study the more realistic case of a plasma of quarks and gluons
considering also the thermodynamics results from Lattice QCD calculations.
Before entering the details of how to fix the equation of state, we briefly report
general formulas for shear viscosity for a multi component sysyem. As shown
in the previous sections, the shear viscosity η from the Green-Kubo relation
is given by η = V/T 〈π2

xy(t = 0)〉 · τ , where the initial value of the correlator
of the transverse components of the energy-momentum tensor can be written
as ρ

15T 〈p4/E2〉.65, 67, 68 For a system with different species η can be written
as:58, 59

η =
1

15T

(

∑

q

∫

d3p

(2π)3

p4

E2
τqf(p) +

∫

d3p

(2π)3

p4

E2
τgf(p)

)

(4.19)

where T is the temperature, the sum runs over all quark flavours, τq,g are quarks
and gluons transport relaxation times. For a mixture, transport relaxation
times can be generalized as a sum over all the components of the system
weighted with cross-sections and densities, i.e.:

τ−1
j,tr =

∑

i=q,q̄,g

〈ρiv
ij
relσ

ij
tr〉 (4.20)

where σij
tr is the transport cross-section, vij

rel the relative velocity, ρi the density
respectively of particles species i, j. Considering relaxation times momentum
independent, the previous equation can be written as:

η =
1

15T

〈

p4

E2

〉

(

τqρ
tot
q + τgρg

)

(4.21)

where we implicitely assumed
〈

p4

E2

〉

q
≃
〈

p4

E2

〉

g
, we will explain this approxi-

mation soon after.

As done within the Hard-Thermal-Loop (HTL) approach, we will consider the
total transport cross section regulated by a screening Debye mass mD = g(T )T ,
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with g(T ) being the strong coupling:

σij
tr(s) =

∫

dσ

dt
sin2 Θ dt = βij πα

2
s

m2
D

s

s+m2
D

h(a) (4.22)

where αs = g2/4π, the differential cross section is dσ
dt = dσ

dq2 ≃ α2
s/(q

2 +
m2

D)2 where q2 = s
2 (1 − cos θ), the coefficient βij depends on the pair of

interacting particles: βqq = 16/9, βqq′

= 8/9, βqg = 2, βgg = 9. The function
h(a) = 4a(1 + a)[(2a + 1) ln(1 + 1/a) − 2], where a = m2

D/s, regulates the
anisotropy of the scatterings: for mD → ∞, h(a) → 2/3 and one recovers the
isotropic limit while h(a) < 2/3 for finite value of mD. We notice that these
factors are directly related to the quark and gluon Casimir factor, for example
βqq/βgg = (CF /CA)2 = (4/9)2.

The thermodynamical averages entering Eq. (4.21), will be fixed employing a
quasi-particle (QP) model tuned to reproduce the lattice QCD thermodynam-
ics,108 similarly to.109–112

The quasi-particle approach represents a successful way to account for non-
perturbative dynamics, encoding the interaction in quasiparticle masses. The
mass of the particles can be viewed as arising from the energy contained in a
strongly coupled volume determined by the correlation range of the interaction.
Once the interaction is accounted for in this way, the quasiparticles behave
like a free gas of massive constituents. The model is usually completed by
introducing a finite bag pressure that can account for further nonperturbative
effects. In order to be able to describe the main features of Lattice QCD
thermodynamics, a temperature-dependent mass has to be considered. This
also implies that the bag constant B has to be temperature-dependent in order
to ensure thermodynamic consistency. In fact, when a temperature dependent
mass is included in the pressure, its derivative with respect to the temperature
will produce an extra term in the energy density, which does not have the ideal
gas form. Therefore pressure and energy density contain additional medium
contribution that is B(T ).
The pressure of the system can be written as:

Pqp(T ) =
∑

i=q,g

di

∫

d3p

(2π)3

~p2

3Ei(p)
fi(p) −B(T ) (4.23)

where di is the degeneracy factor, the quark and gluon masses are given
by m2

g = 3/4 g2T 2 and m2
q = 1/3 g2T 2. In oder to have thermodynamic

consistency, the following relationship has to be satisfied:
(

∂Pqp

∂mi

)

T

= 0, i = u, d, . . . (4.24)
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which gives rise to a set of equations of the form

∂B

∂mi
+ di

∫

d3p

(2π)3

mi

Ei
fi(Ei) = 0. (4.25)

Only one of the above equations is independent, since the masses of constituents
depend on the coupling g.
The energy density of the system is then obtained from the pressure through
the thermodynamic relationship ε(T ) = TdP/dT −P and will have the form

εqp(T ) =
∑

i

di

∫

d3p

(2π)3
Eif(p) +B(T ). (4.26)

In the model there are therefore teo unknown functions, g(T ) and B(T ),
but they are not independent: they are related through the thermodynamic
consistency Eq. (4.24). Therefore, only one function needs to be determined,
which we do by imposing the condition

εqp(T ) = εlattice(T ). (4.27)

Performing a fit to the lattice energy density, as shown in Fig. 4.10 and 4.11,
one obtains the following parametrization:108

g2
QP (T ) =

48π2

(11Nc − 2Nf ) ln
[

λ
(

T
Tc

− Ts

Tc

)]2 (4.28)

with λ = 2.6, Ts/Tc = 0.57. We warn that the previous equation is a good
parametrization only for T > 1.1Tc. We notice that a self-consistent dynamical
model (DQPM), that includes also the pertinent spectral function, has been
developed in113 and leads to nearly the same behavior of the strong coupling
g(T ). However, the simple QP model has the advantage to handle simpler
analytical expression to pin down the core physics. We will consider the DQPM
explicitly, showing that the considerations elaborated are quite general and
can be only marginally affected by particle width. We notice that the correct
thermal averages entering the transport coefficients, Eq. (4.21), have been
determined fitting g(T ) to lQCD thermodynamics, but this does not imply
that with the same g(T ) one has the correct description also of the scattering
dynamics, unless one believes in QP model as a solid microscopic description of
the correct one, which is not necessarily our point of view. We notice that the
only approximation made in deriving Eq.(4.21) is to consider 〈p4/E2〉 equal
for quarks and gluons. We have verified that 〈p4/E2〉g ≃ 〈p4/E2〉q within
a 5% in the QP model but also more generally even when mq and mg are
largely different but mq,g . 3T , which means that Eq. (4.21) is valid also for
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Figure 4.11: Running coupling g(T )
as a function of temperature deriverd
in the quasiparticle model.

light and strange current quark masses and massless gluons. The 〈p4/E2〉 in
a massless approximation is simply 4ε T/ρ, we have checked that the validity
of this expression is kept using the QP model (i.e. massive excitation) with a
discrepancy of about 2%. Hence the first term in Eq. (4.21) is determined by
the lQCD thermodynamics and does not rely on the detailed mq,g(T ) in the
QP model. We note that even if the QP model is able to correctly describe
the thermodynamics it is not obvious that it correctly describes dynamical
quantities like the relaxation times with the same coupling g(T ) employed to
fit the thermodynamics.

For its general interest and asymptotic validity for T → ∞, we also consider the
behavior of the pQCD running coupling constant for the evaluation of transport
relaxation time: gpQCD(T ) = 8π2

9 ln−1
(

2πT
ΛQCD

)

. On one hand, close to Tc, such
a case misses the dynamics of the phase transition, on the other hand it allows
to see explicitly what is the impact of a different running coupling.

In Fig. 4.12 it is shown the temperature dependence of η/s: dashed line
is the result for the QP model using gQP (T ) (see Fig. 4.11) for relaxation
times and transport coefficient, blue dot-dashed line labeled as gpQCD, means
that we used the pQCD running coupling for evaluating the relaxation time,
green circles are our Green-Kubo results, green stars are the DQPM115 and
by symbols several lQCD results. We warn that the different lQCD data are
obtained with different methods and actions. The main difference between our
QP model and DQPM comes from the fact that the latter assumes isotropic
scatterings which decrease the relaxation time by about 30 − 40%. Anyway,
the η/s predicted is toward higher value with respect to the conjectured lower
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Figure 4.12: Shear viscosity to entropy density ratio η/s: dashed line represents QP
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blue thin solid line are obtained rescaling g(T ). Blue dotted line is AdS/CFT result
from.92 Symbols are lattice date: full squares,81 diamonds and triangles,82 open and
full circles.83 Green full circles are Green-Kubo results for the Quasi-Particle model
under study.

bound of η/s = 1/4π shown by dotted line in Fig. 4.12, supported also by
several phenomenological estimates.98, 116–119 However within the QP model
it has been discussed in the literature also another approach for τ where
the relaxation times are τq,g = Cq,g g

4T ln(a/g2)120 with Cq,g and a fixed to
reproduce both the pQCD estimate asymptotically102 and a minimum for
η/s(T ) = 1/4π.108, 111 In the T region of interest, the result is quite similar to
upscaling the coupling g(T ) by a k-factor in such a way to have the minimum
of η/s(T ) = 1/4π. Therefore we do not employ the above parametrization
but compute the transport coefficients using the definition of τ of Eq. (4.20),
where enters the cross section in Eq. (4.22) with the coupling upscaled. The
corresponding curves are shown in Fig. 4.12 by red thick solid line for the
gQP (T ) coupling (rescaled by k = 1.59) and by blue thin solid line for the
gpQCD(T ) (rescaled by k = 2.08). One obtains τg ≃ τq/2 ∼ 0.2 fm/c and
also η/s(T ) roughly linearly rising with T in agreement with quenched lQCD
estimates, full black circles.83

In the next chapter we will discuss also the relation between shear viscosity
and electric conductivity employing the quasiparticle model.
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Several processes occurring in ultra-relativistic heavy ion collisions as well as
in the Early Universe are regulated by the electric conductivity σel. Indeed
heavy ion collisions are expected to generate very high electric and magnetic
field (eE ≃ eB ≃ m2

π, with mπ the pion mass) in the very early stage of the
collisions.70, 71 A large value of σel would determines a relaxation time for
the electromagnetic field of the order of ∼ 1 − 2 fm/c,72, 73 which would be of
fundamental importance for the strength of the Chiral-Magnetic Effect,74 a
signature of the CP violation of the strong interaction. Also in mass asymmetric
collisions, like Cu+Au, the electric field directed from Au to Cu induces a
current resulting in charge asymmetric collective flow directly related to σel.71

Furthermore the emission rate of soft photons should be directly proportional
to σel.51, 75, 76 Despite its relevance there is yet only a poor theoretical and
phenomenological knowledge of σel and its temperature dependence. First
preliminary studies in lQCD has extracted only few estimates with large
uncertainties85, 121 and only recently more safe extrapolation from the current
correlator has been developed.84, 86, 87

In this chapter we present results about electric conductivity. In particular,
as already done about shear viscosity, we study the electric conductivity
dependence on microscopic details, i.e. mass, cross section and its angular
dependence, using two methods: Green-Kubo correlator and the E-field method.
The E-field method is based on the operative definition of the ratio between
the xternal electric field applied and the induced electric current.
This study will allow us to discuss the relation of σel and shear viscosity
discussed in the previous chapter.

5.1 Green-Kubo vs. E-field methods

The definition of electric conductivity J = σelE suggests the experimental
method for evaluating the electric conductivity simply inverting the relation
σel = J/E: taking the ratio between the electric current measured and the
electric field applied one obtains σel. Of course one needs also to verify that
J/E is independent on E itself. In the following discussion we will call this
method the E-field method.79, 122 We notice that recently such a method has
been employed to evaluate σel in the parton-hadron-string dynamics (PHSD)
transport approach123

To simulate a constant electric field ~E in the box, it is sufficient to modify the
equation of motion of each particle as follows:

d

dt
pi

z = qieEz (5.1)
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where qj is the charge of the particle and we have chosen the electric field along
the z−direction. The electric current in the z direction for a discrete system of
particles has the following form:

jz(t) =
1
V

∑

i

eqip
i
z(t)
pi

0

(5.2)

where the sum is over particles, p0 is the particle energy and V is the volume
of the system.

We performed simulations in a uniform box of volume V = 53 fm3 with periodic
boundary conditions using time step ∆t = 0.01 fm/c, spatial discretization
∆Vcell = 0.13 fm3 and Ntest ×Nreal ∼ 5 105 that ensures the numerical conver-
gency; we have checked that results are independent on volume size. Particles
are distributed uniformly in space and according to Boltzmann distribution
function, f(p) = e−E/T , in momentum.

In Fig. 5.1 we show an example of x, y, z components of the electric current
j(t) as a function of time. In this simulation we consider a system of mas-
sive quarks, antiquarks and gluons (m = 0.4GeV ) at thermal and chemical
equilibrium interacting with isotropic cross-section σtot = 10mb and we have
applied an electric field eE = 0.05GeV/fm in the z direction. As we can see
the z component (black solid line) reaches a saturation value while x and y

components fluctuate around the equilibrium value zero.

In Fig. 5.2 is shown the ratio σel/T as a function of the applied electric field
eE for two different temperatures T = 0.2GeV (dark circles) and T = 0.4GeV
(green squares) for a system of massive particles with m = 0.4GeV interacting
via isotropic cross-section with σtot = 10mb. As shown σel/T is independent
on the applied electric field which confirms the validity of its definition. Dashed
lines are RTA predictions of Eq. (3.105). As we can see from Fig. 5.2 thermal
fluctuations affect the uncertainties on electric conductivity because a greater
temperature produces greater fluctuations in the saturation value of electric
current. The increasing of the electric field has the effect of developing a
more stable electric current that is easily noticeable in the decreasing of error
bars. However, the electric field cannot be increased arbitrarily because one
has to guarantee the linear response of the system: with a very high value of
eE the system could not reach any equilibrium value of electric current and
the definition itself of σel becomes meaningless. We have checked the correct
behaviour of electric current for several value of electric field, temperature and
cross-section presented in this work.79, 122

The other method we used to compute σel is the evaluation of Green-Kubo
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formula Eq. (3.40) where the electric conductivity can be written as:

σel =
V

T

∫ ∞

0

dt 〈jz(t)jz(0)〉. (5.3)

The correlation function 〈jz(t)j(0)〉 can be written as follows:

〈jz(t)jz(0)〉 =

〈

lim
Tmax→∞

1
Tmax

∫ Tmax

0

dt′ jz(t+ t′)j(t′)

〉

= (5.4)

=

〈

1
NTmax

NTmax
∑

j=1

jz(i∆t+ j∆t)jz(j∆t)

〉

(5.5)

where Tmax is the maximum time chosen in our simulations, NTmax
= Tmax/∆t

represents the maximum number of time-steps and i∆t = t, while 〈· · · 〉 denotes
the average over events generated numerically. In Fig. 5.3 we plot an example
of Green-Kubo correlation functions normalized to the initial value 〈jz(0)jz(0)〉
for a system of massless quarks and gluons interacting via isotropic cross-
section (σtot = 3mb) for several temperatures in the range T = 0.1 − 0.6GeV .
Correlation functions 〈jz(t)jz(0)〉 behave like decreasing exponential exp(−t/τ)
as it should be for a system in thermal equilibrium. Therefore the electric
conductivity is given by

σel =
V

T
〈jz(0)jz(0)〉τ (5.6)

and this is the formula used to evaluate the electric conductivity. As shown inf
Fig. 5.3 as one increases the temperature, the slope τ decreases as expected
from kinetic theory τ ∼ 1/(ρ(T )σ).

We recall that for the calculation of σel and η using Green-Kubo relation the
setup of the box is simply in thermal equilibrium, i.e. without any external
electric field.
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Figure 5.1: x, y, z components of electric current j as a function of time for electric
field eE = 0.05GeV/fm in the z direction. We fixed T = 0.2GeV , m = 0.4GeV
and σtot = 10mb for all particles in this simulation. jz reaches a saturation value
proportional to E while x and y components fluctuate around 0.
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σtot = 10mb isotropic for all particles in these simulations. Results are compatible
with a constant ratio σel/T in the range of electric field explored. Dashed lines are
RTA predictions.
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5.2 Electric conductivity: isotropic scattering

In this section we consider the simplest case of a system of massless par-
ticles (quarks, anti-quarks and gluons) interacting via isotropic and elastic
scatterings.79, 122 In this case the transport relaxation time has the following
form:

τ−1
tr,i =

∑

j=q,q̄,g

〈ρjv
ij
relσ

ij
tr〉 =

2
3
σtot(ρq + ρq̄ + ρg) (5.7)

where vrel is the relative velocity of the two incoming particles and for massless
particles vrel = 1, σtr is the transport cross-section that for isotropic scatterings
is equal to 2

3σtot, ρq,q̄,g is respectively quarks, antiquarks and gluons density.
Assuming that all particles interact with the same cross-section, Eq. (3.105)
simplifies as follows:

σel

T
=

e2
⋆

3T 2

γq

6γq + γg

1
2
3σtot

. (5.8)

where the factor 6 comes from the sum over quarks flavour (u, d, s, ū, d̄, s̄) and
we used ρq,g = γq,gT

3/π2, being γ the degeneracy factor.

In Fig. 5.4 we show electric conductivity σel/T as a function of temperature
for a system of massless quarks, antiquarks and gluons interacting via the same
isotropic cross-section σtot = 3mb: open circles are computed using Green-
Kubo relation Eq. (5.3) while blue open squares are obtained with the E-field
method (eE = 0.01 − 1.0GeV/fm for T = 0.1 − 0.6GeV ). Red dashed line
represents Eq (5.8). We can see a very good agreement between Green-Kubo
and E-field method as it should be in the framework of Linear Response Theory:
both definition of σel are meaningful according to our results. However RTA
tends to overestimate numerical results in particular for high temperatures, e.g.
at T = 0.6GeV there is a 30% of discrepancy. This shows that the relaxation
time τσel

for the electric conductivity is only approximatively determined by the
transport cross-section σtr. We will show in the following that the discrepancy
between τtr and τσel

becomes more drastic in the more general case of non
isotropic scatterings.
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Figure 5.4: Electric conductivity σel/T as a function of Temperature T for a system
of massless particles interacting via isotropic scatterings (σtot = 3mb). Circles are
Green-Kubo results while blue squares represent the E-field method results. Red
dashed line is Relaxation Time Approximation Eq. (5.8).

5.3 Electric Conductivity: anisotropic scatterings

In this section we consider a quark-gluon plasma of massive quarks, antiquarks
and gluons interacting via anisotropic cross-section. In particular, we use the
elastic pQCD inspired cross section with the infrared singularity regularized by
Debye thermal mass mD:96

dσ

dt
=

9πα2
s

2
1

(t−m2
D)2

(

1 +
m2

D

s

)

(5.9)

where s, t are the Mandelstam variables. This kind of cross-section is typically
used in transport codes.96, 98, 99, 101 In our calculations the Debye mass mD

and the strong coupling constant αs are both constant parameters. The total
cross-section σtot = 9πα2

s/(m
2
D) with the above prescription is energy and

temperature independent. The Debye mass is a parameter that establishes the
anisotropy of the collision, for small values of mD we have that the distribution
of the collision angle has a peak at small angles while in the opposite limit
mD ≫ T , we recover the isotropic case. For a fixed total cross-section, the
transport cross-section σtr can be written as

σtr(s) =
∫

dσ

dt
sin2 Θ dt = σtot h(a) (5.10)
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Figure 5.5: Electric conductivity as
a function of Debye mass mD. In
this simulations we set T = 0.4GeV ,
σtot = 10mb and m = 0.4GeV for
all particles. Circles are Green-Kubo
results. Red dashed line is RTA Eq.
(3.105) with τtr from Eq. (5.11). Dot-
ted line represents the isotropic limit.
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Figure 5.6: Shear viscosity as a func-
tion of Debye mass mD. In this simula-
tion we consider T = 0.4GeV , σtot =
10mb and m = 0.4GeV for all parti-
cles. Open circles are obtained using
Green-Kubo correlator. Dashed line
represents RTA while dotted line is
the isotropic limit.

where h(a) = 4a(1 + a)
[

(2a+ 1)ln(1 + 1/a) − 2
]

and a = m2
D/s. For mD → ∞

the function h(a) → 2/3 and σtr = (2/3)σtot we recover the isotropic limit, see
the previous Sec., while for finite value of mD the function h(a) < 2/3. The
transport relaxation time in this case can be written as:

τ−1
tr,i =

∑

j

〈ρjσ
ijtrvij

rel〉 = σtot〈vrelh(a)〉 (ρq + ρq̄ + ρg) (5.11)

where for massive particles ρ = γ
2π2T

3
(

m
T

)2
K2

(

m
T

)

, being K2 the modified
Bessel function. We performed simulations of a system of quarks, antiquarks
and gluons with m = 0.4GeV , that is the same value obtained in quasi-particle
model in the range of temperature T = 0.2 ÷ 0.4GeV . However at this point
it represents only a systematic study: in the next section we will present quasi-
particle model results with temperature dependent masses for quarks and gluons.
In Fig. 5.5 we show σel/T as a function of mD for a system of quarks and gluons
interacting via the same cross-section described Eq. (5.9) with σtot = 10mb
and T = 0.4GeV : open circles represent Green-Kubo results while blue squares
are obtained using the E-field method (eE = 0.05GeV/fm); red dashed line is
RTA using Eq. (5.11) for the relaxation time; dotted line represent the isotropic
limit, i.e. σtr = 2

3σtot. We can see that RTA underestimates numerical results
of σel by a factor of about 40% already at mD = 1GeV while in the isotropic
limit mD > 5GeV it slightly overestimates numerical estimations as we know
from the simple case of massless particles of the previous section.

The behaviour of σel/T as a function of mD is similar to the one already
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Figure 5.7: Green-Kubo results for shear viscosity η and electric conductivity (from
results of Fig. 5.5 and Fig. 5.6) over RTA formulas as a function of Debye mass
mD. RTA is a quite good approximation for isotropic scatterings while for very
anisotropic cross-section mD < 1GeV we can see that RTA underestimates in a more
prominently way σel/T than η.

observed for shear viscosity in the case of massless gluons in Chapter 4 and
Ref.68 We show for η the corresponding plot in Fig. 5.6 where we show results
for the same system studied for electric conductivity.79, 122 We compute shear
viscosity η using Green-Kubo relation η = V/T 〈πxy(0)2〉τ , as already done
for single component system.65, 67, 68 In Fig. 5.6 open circles are Green-Kubo
results, dashed line is RTA and dotted line represents the isotropic limit. As
found in68 and in Chapter 5, RTA is a good approximation for η only for
isotropic scatterings while for mD < 1GeV it underestimates Green-Kubo
results by a factor of 25%.

If we look in details RTA estimations for both transport coefficients we find that
σel is underestimated by RTA more considerably than η as the cross-section
becomes more forward peaked. In Fig. 5.7 we plot the ratio of numerical
results of both transport coefficients over the analytical predictions of RTA:
black circles are Green-Kubo results for η, red squares are Green-Kubo results
for σel/T . For mD < 1GeV we can see that RTA is a better approximation
for η than for σel. From Fig. 5.7 we can say that relaxation time of σel is
different from relaxation time of η in the sense that transport relaxation time
τtr in Eq. (5.11) works better for η than for σel. It would be interesting to
study the influence of 2 → 3 inelastic scatterings to relaxation time of electric
conductivity as already done for η in.67 This study is currently pursued within
the BAMPS transport approach.122 The effect of considering also 2 → 3
scatterings is to decrease η of about a factor 3.
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Figure 5.8: Electric conductivity σel/T as a function of T/Tc. Dark open circles are
Green-Kubo results for QP model, red open squares are QP model results computed
with the E-field method, violet open diamonds are pQCD results calculated with the
E-field method; red line and violet line are RTA predictions respectively for the QP
model and pQCD case. Symbols are Lattice data: grey squares,121 violet triangles,86

green circle,87 yellow diamonds,85 red diamonds84 and orange square.124

5.4 Electric Conductivity: Quark-Gluon Plasma

In this section we investigate the more realistic case of quarks, antiquarks and
gluons interacting via different anisotropic and energy dependent cross-section
according to the pQCD-like scheme with a screening mass mD as arising from
HTL approach: mD ∼ g(T )T . The total cross-section used has the following
form:

σij
tot = βijσ(s) = βij πα

2
s

m2
D

s

s+m2
D

(5.12)

where αs = g2/4π and the coefficient βij depends on the species of interacting
particles: βqq = 16/9, βqq′

= 8/9, βqg = 2, βgg = 9.

We remind the formula for electric conductivity derived from Relaxation Time
Approximation Eq. (3.105) from Chapter 3:

σel =
e2

3T

∑

j=q,q̄

q2
j

∫

d3p

(2π)3

~p2

E2
τjfeq =

e2
⋆

3T

〈

~p2

E2

〉

τqρq (5.13)

where qj is the quarks charge (±1/3,±2/3), τj is the relaxation time for quarks,
ρq is the quark density, e2

⋆ = e2
∑

j=q̄,q q
2
j = 4e2/3.
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Figure 5.9: Ratio between numerical results of σel/T and RTA predictions as a
function of T/Tc: red squares are obtained using Green-Kubo results for QP model,
dark circles with E-field method for QP model, blue diamonds with E-field method
for the pQCD case.

Furthermore, in order to take into account the thermodynamics from lQCD
calculation, we employ the quasi-particle (QP) model as in the last section
of Chapter 4 and Ref.108 similarly to.109–112 We recall that the aim of a
quasi-particle model is to describe a strongly interacting systems in terms
of quasi-particles weakly interacting whose masses are generated by the non-
perturbative effects. The QP model, as a phenomenological way to describe
microscopically the QGP, has become a quite solid approach for T > 2 − 3Tc

specifically using NNLO HTLpt.125, 126 As shown in the last section of Chapter
4 and in Ref.,108 we remind the parametrization of the running coupling
constant:

g2(T ) =
48π2

(11Nc − 2Nf ) ln
[

λ
(

T
Tc

− Ts

Tc

)]2 (5.14)

with λ = 2.6 and Ts/Tc = 0.57. We notice that such a fit reproduce the exact
result with a very good precision only for T > 1.1Tc. Quarks and gluons
masses are given by m2

g = 3/4g2T 2 and m2
q = 1/3g2T 2.

We also study the behaviour of electric conductivity using the pQCD running
coupling gpQCD = 8π

9 ln−1
(

2πT
ΛQCD

)

considering massless particles: even if this
case is not able to describe the phase transition, it is interesting to study
the σel dependence on a different running coupling and also to consider an
asymptotic limit valid for T ≫ Tc. In Fig. 5.8, we show electric conductivity
σel/T as a function of T/Tc.79, 122 Open circles are computed using Green-
Kubo correlator, red open squares with the E-field method (applying an
eE = 0.02 ÷ 0.05GeV/fm to guarantee the saturation of electric current) for
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the quasi-particle model, blue open diamonds represent result for the massless
pQCD case that we have computed only with the E-field method. Red line
is RTA for QP model, blue dot-dashed line RTA for the massless pQCD
case. Symbols denotes Lattice data: grey squares,121 violet triangles,86 green
circle,87 yellow diamonds,85 red diamonds84 and orange square.124 As shown,
Green-Kubo results are in good agreement with E-field method in the range of
temperature explored. Numerical results predicted by the QP model are about
a factor of 4 greater then recent Lattice QCD calculations.84 As we discussed
in,127 also η/s predicted by the QP model is about a factor 4 − 5 greater than
the minimum value 1/4π near Tc. This means that rescaling η/s, in order to
reproduce the minimum value, one should obtain an electric conductivity σel

very close to recent Lattice data.84

We note again that RTA underestimates σel/T for both QP model and pQCD
case, as we could expect qualitatively from the previous section of anisotropic
scattering considering that in the QP model mD ≃ 0.8 − 1.2GeV and in the
pQCD case mD ≃ 0.4 − 1GeV for temperature T = 0.2 − 0.6GeV . We can see
in details in Fig. 5.9 the ratio between numerical results of electric conductivity
σel/T and RTA predictions as a function of T/Tc. Red squares are calculated
taking the ratio between Green-Kubo results and RTA estimation for the QP
model, black circles with the E-field method for QP model while blue diamonds
with the E-field method for the pQCD case. We notice that QP results are
underestimated by an average factor of 1.8 and pQCD results by 1.6 in the
range of temperature explored.

5.5 Shear viscosity to electric conductivity ratio

As shown in the last section of Chapter 4, the η/s predicted is larger with
respect to the conjectured minimum value of η/s ∼ 0.08, supported also by
several phenomenological estimates.98, 116–119 However within the QP model
it has been discussed in the literature also another approach for τ where
the relaxation times are τq,g = Cq,g g

4T ln(a/g2)120 with Cq,g and a fixed to
reproduce both the pQCD estimate asymptotically102 and a minimum for
η/s(T ) = 1/4π.108, 111 In the T region of interest, the result is quite similar to
upscaling the coupling g(T ) by a k-factor in such a way to have the minimum
of η/s(T ) = 1/4π. Therefore we do not employ the above parametrization
but compute the transport coefficients using the definition of τ of Eq. (5.16),
where enters the cross section of Eq. (4.22) with the coupling upscaled. The
corresponding curves were showed in Fig. 4.12 of Chapter 4 by red thick solid
line for the gQP (T ) coupling (rescaled by k = 1.59) and by blue thin solid line
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Figure 5.10: Electric conductivity σel/T as a function of T/Tc: red dashed line
represents QP model results using the rescaled gQP (T ), blue dot-dashed line is pQCD,
red thick solid line and blue thin solid line are respectively QP and pQCD considering
the rescaled g(T ) in order to reproduce the minimum of η/s. Green line are AdS/CFT
results from.94 Green stars represent DQPM.115 Green circles are Green-Kubo results
for the rescaled gQP (T ). Symbols are Lattice data: grey squares,121 violet triangles,86

green circle,87 yellow diamond,85 orange square124 and red diamonds.84

for the gpQCD(T ) (rescaled by k = 2.08). One obtains τg ≃ τq/2 ∼ 0.2 fm/c
and also η/s(T ) roughly linearly rising with T in agreement with quenched
lQCD estimates, full circles.83

A main point we want to stress is that, once the relaxation time is set to give
an η/s(T ) = 0.08, the σel/T predicted by Green-Kubo results (green circles),
with the same τq as for η/s, is in quite good agreement with most of the lQCD
data, shown by symbols in Fig. 5.10 (see caption for details). Therefore a
low σel/T is obtained at variance with the early lQCD estimate, Ref.,121 as a
consequence of the small τq,g entailed by η/s ≃ 0.08.127

In Fig. 5.10, we show also the predictions of DQPM (green stars).115, 123 We
also plot by green dotted line the N = 4 Super Yang Mills electric conductivity94

that predicts a constant behavior for σel/T = e2N2
c /(16π). We note that in

our framework one instead expects that, even if the η/s is independent on the
temperature, the σel should still have a strong T-dependence. This can be
seen noticing that, from Eq. (4.21), one can write approximately η/s ≃ T−2τρ,
being 〈p4/E2〉 ≃ εT/ρ, and, from Eq. (5.13) σel/T ≃ T/m(T )η/s, being
〈p2/E2〉 ≃ T/m(T ), which means an extra T dependence for σel leading to a
steep decrease of σel/T close to Tc. We notice that m(T ) increases as T → Tc

because it is fitted to reproduce the decrease of energy density ε and the
non-vanishing Tµ

µ = ε − 3P in Lattice QCD. For a gas of massless particles,
one has ε = 3P and σel/T ∼ η/s like found in AdS/CFT. It seems that the
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large interaction measure is the origin of such extra T dependence of σel/T

with respect to η/s. This indication is corroborated also by the recent result
in AdS/QCD128 that from one hand is able to reproduce the peak in ε− 3P
and from the other presents a similar strong T dependence for σel/T in the
region T > Tc at variance with AdS/CFT.

The σel of recent Lattice QCD calculations appears to be self-consistent with a
minimal η/s, but the specific T dependence of both are largely dependent on
the modeling of τq,g, we point out that the ratio (η/s)/(σel/T ) can be written,
from Eq. (3.105) and Eq. (4.21), as:

η/s

σel/T
=

6
5
T 〈p2/E2〉−1

s e2
⋆

〈

p4

E2

〉(

1 +
τg

τq

ρg

ρtot
q

)

. (5.15)

in terms of generic relaxation times. Eq.(5.15) is quite general and does not
rely on specific features or validity of the quasi-particle model. A main feature
of such a ratio is its independence on the k-factor introduced above, and, more
importantly, even on the g(T ) coupling as we can see writing explicitly the
transport relaxation time for quarks and gluons:

τ−1
q = 〈σ(s)trvrel〉(ρq

ū,d̄,s̄
∑

i=u,d,s

βqi + ρgβ
qg)

τ−1
g = 〈σ(s)trvrel〉

(

ρtot
q βqg + ρgβ

gg
)

(5.16)

where the βij were defined above. Hence the ratio of transport relaxation times
appearing in Eq. (5.15) can be written as:

τg

τq
=

Cq + ρg

ρq

6 + ρg

ρq
Cg

(5.17)

where the coefficients Cq = (βqq+βqq̄+2βqq̄′

+2βqq′

)/βqg and Cg = βgg/βqg are
the relative magnitude between quark-(anti-)quark and gg with respect to q(q̄)g
scatterings. Using the standard pQCD factors for βij , Cq|pQCD = 28

9 ≃ 3.1
and Cg|pQCD = 9

2 .

In Fig. 5.11 we show (η/s)/(σel/T ) as a function of T/Tc: the red thick
solid line is the prediction for the ratio using gQP (T ), but it is clear from the
Eq. (5.15) that the ratio is completely independent on the running coupling
itself; the result for gpQCD(T ) is shown by blue dashed line; green circles
are Green-Kubo results which are overestimated by RTA (red line) due to
underestimation of σel as we know from the previous section; green stars are
the DQPM from Ref.115 The ratio is instead sensitive just to the relative
strength of the quark (anti-quark) scatterings with respect to the gluonic ones



116 5. Electric Conductivity Results

1 10
T/T

c

1

10

100

(η
/s

) 
/ 
(σ

e
l 
/ 
T

)

Green-Kubo QP

g
pQCD

(T)

g
QP

(T)

g
QP

(T) -  C
q
=10 C

pQCD

q

g
QP

(T) - C
g

=10 C
pQCD

g

DQPM

AdS/CFT

Figure 5.11: Shear viscosity η/s to σ/T ratio as a function of T/Tc: red solid line is
the QP model, blue dashed line pQCD, green stars DQPM.115 Orange line is obtained
using Cq = 10Cq

pQCD, black thin line Cg = 10Cg

pQCD. Green circles are Green-Kubo

results. Green dotted line represent AdS/CFT results.92, 94 Symbols are obtained
using available lattice data (see text for details).

suggesting that a measurement in lQCD can shed light on the relative scattering
rates of quarks and gluons, providing an insight into their relative role.127 It
is not known if such ratios, linked to the Casimir factors of SU(3)c, are kept
also in the non-perturbative regime, which may be not so unlikely.129 We
remark that we have computed the ratio in a very large temperature range
1 − 10Tc: at large temperatures (T > 5 − 10Tc) deviation from the obtained
value, (η/s)/(σel/T ) ≃ 6, would be quite surprising, on the other hand for
T < 1.2 − 1.5Tc one may cast doubts on the validity of the Casimir coefficients.
In the following we discuss also the impact of modified Casimir Coefficients. As
T → Tc a steep increase is predicted that is essentially regulated by 〈p2/E2〉.
It is interesting to notice that in the massless limit (conformal theory) the
factor before the parenthesis in Eq.(5.15) becomes a temperature independent
constant and hence also the ratio. This is in quite close agreement with the
AdS/CFT prediction shown by dotted line in Fig. 5.11.

We also briefly want to mention that one possible scenario could be that when
the QGP approaches the phase transition, the confinement dynamics becomes
dominant and the qq̄ scattering, precursors of mesonic states, and di-quark
qq states, precursor of baryonic states, are strongly enhanced by a resonant
scattering with respect to other channels, as found in a T-matrix approach in
the heavy quark sector.130 For this reason, we explore the sensitivity of the ratio
(η/s)/(σel/T ) on the magnitude of Cq and Cg. The orange solid line shows
the behavior for an enhancement of the quark scatterings, Cq = 10Cq

pQCD.
We can see in Fig. 5.11 that this would lead to an enhancement of the ratio
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by about a 40%. We also see that instead the ratio is not very sensitive to a
possible enhancement of only the gg scattering with respect to the qq̄, qq, qg;
in fact even for Cg = 10Cg

pQCD one obtains the thin black solid line. This is
due to the fact that already in the pQCD case τg/τq ∼ 0.3 − 0.4. Furthermore
already in the massless limit ρg/ρ

tot
q ≃ dg/dq+q̄ = 4/9 even not dwelling on

the details of the QP model where the larger gluon mass further decreases
this ratio. Therefore the second term in parenthesis in Eq. (5.15) is of the
order of 10−1 and further decrease of its value would not be visible because the
ratio is anyway dominated by the first term equal to one. We reported in Fig.
5.11 also the ratio from the DQPM model, as deduced from Ref.115 and we
can see that, even if it is not evaluated through Eq. (5.15), it is in very good
agreement with our general prediction. In Fig. 5.11 we also display by symbols
the ratio evaluated from the available lQCD data, considering for 4πη/s . 4
while for σel/T we choose red diamonds84 as a lower limit (filled symbols) and
the others in Fig. 5.10 as an upper limit (open symbols), excluding only the
grey squares being the only set more then one order of magnitude above all the
other lQCD data. To compute (η/s)/(σel/T ) we do an interpolation between
the data point of σel. We warn to consider these estimates only as a first rough
indications, in fact the lattice data collected are obtained with different actions
among them and have quite different Tc with respect to the most realistic one,
Tc ∼ 160MeV ,131, 132 that we employed to tune the QP model.108

Finally, we point out the direct relation between the shear viscosity η and the
electric conductivity σel. In particular, we have discussed why most recent lQCD
data84, 86, 87 predicting an electric conductivity σel ≃ 10−2T (for T < 2Tc)
, appears to be consistent with a fluid at the minimal conjectured viscosity
4πη/s ≃ 1, while the data of Ref.121 appear to be hardly reconcilable with
it. Also a steep rise of σel/T , in agreement with lQCD data, appears quite
naturally in the quasi-particle approach as inverse of the self-energy determining
the effective masses needed to correctly reproduce the lQCD thermodynamics.
This result is at variance with the AdS/CFT,94 but our analysis suggests that
it is due to the conformal thermodynamics that does not reflect the QCD
one. It is quite interesting that an AdS/QCD approach,128 able to correctly
describe the interaction measure of lQCD, also modify the AdS/CFT result
predicting a strong T dependence of σel/T for T < 2 − 3Tc. We note that the
extra T dependence predicted for σel/T with respect to η/s is determined by
the 〈p2/E2〉 constrained to reproduce the lQCD thermodynamics. If instead
one imposes conformality with m = 0, this leads to 〈p2/E2〉 = 1 and the
T dependence of η/s becomes quite similar to the one of σel/T apart from
differences that can arise between quark and gluon relaxation times.

We identify the dimensionless ratio (η/s)/(σel/T ) as not affected by the uncer-
tainties in the running coupling g(T ).127 Moreover due to the fact that gluons
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do not carry an electric charge, the ratio is regulated by the relative strength
and chemical composition of the QGP through the term (1 + τgρg/τqρ

tot
q ). Our

analysis provides the baseline of such a ratio that in this decade will most likely
be more safely evaluated thanks to the developments of lQCD techniques. This
will provide a first and pivotal insight into the understanding of the relative
role of quarks and gluons in the QGP. Deviations from our predictions for
(η/s)/(σel/T ) especially at high temperature T & 2 − 3Tc, where a quasi-
particle picture can be derived from QCD within the HTL scheme,125 would
be quite compelling.



6
Early Time Dynamics and

Schwinger Mechanism
“The Answer to the Great Question. . .

Of Life, the Universe and Everything. . .

Is. . . 42”

Deep Thought

Contents

6.1 Motivations . . . . . . . . . . . . . . . . . . . . . . . . . 120

6.2 Schwinger mechanism . . . . . . . . . . . . . . . . . . . 121

6.3 Abelian dominance approximation . . . . . . . . . . . 123

6.4 Abelian Flux Tube Model . . . . . . . . . . . . . . . . 125

6.5 Transport Theory coupled to Maxwell Equations . . 127

6.6 Static box . . . . . . . . . . . . . . . . . . . . . . . . . . 129

6.6.1 Energy conservation . . . . . . . . . . . . . . . . . . . 134

6.7 Boost-invariant longitudinal expansion . . . . . . . . 135

6.7.1 Field decay, particle production and spectra . . . . . . 136

6.7.2 Pressure isotropization . . . . . . . . . . . . . . . . . . 140

6.7.3 Anisotropic cross sections . . . . . . . . . . . . . . . . 143

6.7.4 Chapman-Enskog vs. Relaxation Time Approximation 144

6.8 3+1D expanding system . . . . . . . . . . . . . . . . . 145

6.8.1 Initial condition . . . . . . . . . . . . . . . . . . . . . 147

6.8.2 Field decay, particles production and spectra . . . . . 147

6.8.3 Pressure isotropization . . . . . . . . . . . . . . . . . . 149

6.8.4 Elliptic flow . . . . . . . . . . . . . . . . . . . . . . . . 150



120 6. Early Time Dynamics and Schwinger Mechanism

In this chapter we focus on the early time dynamics of heavy ion collisions.
In particular we study the isotropization and thermalization of the system
produced by the decay of a color electric flux tube.We couple the dynamical
evolution of the initial color field to the dynamics of the many particles system,
described by relativistic kinetic theory, produced by the decay thanks to the
Schwinger mechanism. In details, we will show a systematic investigation
starting from a static box calculation, to a 1+1D longitudinal expanding
system to the more realistic case of a 3+1D expanding system. Using the
results of Chapter 4 about shear viscosity, we focus on the effects that shear
viscosity produces to the pressure isotropization and thermalization for all
cases explored. Moreover, in the case of 3+1D expanding system, we will show
also the impact of η/s on the elliptic flow.

6.1 Motivations

The understanding of early times dynamics is one of the most interesting and
compelling problems of heavy ion collisions at ultrarelativistic energy. The
common picture os such collisions goes as follows: at t = 0− the two high
energy colliding nuclei are described as two sheets of Color Glass Condensate
(CGC), as discussed in Chapter 1, which after the collision turns at t = 0+ into
an ensemble of strong longitudinal color electric and color magnetic coherent
fields flux tubes, known as Glasma, on the top of which quantum fluctuations
are produced and cause the decay of the glasma to a parton liquid as the
system expands.16–21 Quantum fluctuations in the glasma, which appear as
inhomogeneities, are amplified by plasma instabilities, which eventually lead to
loss of coherence of the color fields and to a locally partly isotropized particle
plasma.24, 133–139 Besides standard field theoretical methods used to study
early time dynamics of classical color fields, the problem has been recently
investigated also by means of AdS/CFT methods.140–144

Besides plasma instabilities, a mechanism responsible for the initial field decays
might be the one introduced by Schwinger in the context of Quantum Elec-
trodynamics,145, 146 known as the Schwinger effect which consists in a vacuum
instability towards the creation of particle pairs by a strong electric field, and it
is related to the existence of an imaginary part in the quantum effective action
of a pure electric field. The problem of pair formation in strong electric fields
has been considered recently by means of real time lattice simulations.147–149

Moreover non abelian generalizations of the Schwinger production rate has
been found for the case of both static and time dependent field.150–155 In the
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context of quark-gluon plasma physics it has been considered as a mechanism
for the color field decays.?, 156–175

The purpose of the present study is to model early times dynamics of the system
produced in relativistic heavy ion collisions by an initial color electric field
which then decays to a plasma by the Schwinger mechanism. The focus of our
study is to compute quantities which serve as indicators of thermalization and
isotropization of the plasma. In particular, we couple the dynamical evolution
of the initial color field to the dynamics of the many particles system produced
by the decay, the latter being described by relativistic kinetic theory.68, 176–178

As in the previous studies on this subject we assume that the dynamics of the
color field is abelian, hence it satisfies the classical field Maxwell equations.?

Moreover in the present approach we neglect for simplicity initial longitudinal
color magnetic fields which are present in the more complete description of the
Glasma state. We consider three cases: the first one is a system evolving in
a static box; then we consider a system with a longitudinal expansion which
has a greater physical interest than the static box because it is closer to the
picture of the early times dynamics of relativistic heavy ion collisions. Finally
we extend our model to the more realistic case of a 3+1D expanding system
allowing us the to study of collective flows.

Besides being the first study in which a Monte Carlo method is used to simulate
the Schwinger effect in the context of early times dynamics of high energy
collisions, we improve previous studies which mainly rely on Relaxation Time
Approximation (RTA)171, 172 and/or on a linearization of the conductive electric
current,162 by avoiding any ansatz both on the electric current and on the
collision integral in the Boltzmann equation which permits to go beyond the
RTA. Even if we will discuss more details along this chapter, it is useful to
mention since the very beginning that our approach has, among other things, the
advantage to consider quantitatively the back-reaction of the plasma dynamics
onto classical field evolution. On the one hand this back-reaction demands for
tough numerical calculations; on the other hand, since we consistently study
the interplay between the fields and the plasma, we can study quantitatively
the effects of the initial field dynamics on observables relevant for experiments,
like particle spectra and elliptic flow.

6.2 Schwinger mechanism

The problem of a quantum Dirac field interacting with an external uniform
classical electric field was solved exactly by Schwinger.146 The result of vacuum
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persistence probability can be used to read off the probability of the e+e− pair
creation in an external constant electric field

dN

dtdV
=
e2E2

4π3

∞
∑

n=1

1
n2

exp
(

−πm2n

eE

)

(6.1)

where m is the electron mass and e the elementary charge. Later Eq. (6.1) was
investigated further in the context of strong interactions interpreting E as the
chromoelectric field and m as the quark mass arguing that confinement may
be implemented by the generation of chromoelectric flux tubes with uniform
energy density.156 Moreover tunneling of quark pairs in such tubes represents
the mechanism responsible for multiple hadron production.

As already mentioned, a simple way to understand Schwinger’s formula Eq.
(6.1) lies on the interpretation of vacuum decay as a quantum tunneling process.
It is well known that quantum tunneling is equivalent to a propagation in
imaginary time. The energy conservation gives:

√

p2
‖(z) + p2

⊥ +m2 = Fz (6.2)

where F > 0 is the force acting on the particle and z is the distance from the
point of its first appearence. The longitudinal momentum is therefore

p‖(z) = i
√

m2
⊥ − (Fz)2 (6.3)

where m2
⊥ = p2

⊥ +m2 The action of one particle, integrated from the initial
point to the point where it materializes with longitudinal momentum zero, is

S = i

∫ m⊥/F

0

dz
∣

∣p‖(z)
∣

∣ =
iπm2

⊥
4F

. (6.4)

The probability for the tunneling of a virtual pair to a real state having
transverse momentum p⊥ is

P (p⊥) =
∣

∣e2iS
∣

∣

2
= exp

(

−π(m2 + p2
⊥)

F

)

. (6.5)

The probability that no such tunneling process takes place is

|〈0+|0−|〉 |2 =
∏

flavour

∏

spin

∏

p⊥

∏

z

∏

t

[1 − P (p⊥)] =

= exp

{

∑

flavour

∑

spin

∑

p⊥

∑

z

∑

t

ln [1 − P (p⊥)]

}

. (6.6)

Supposing that the spacetime volume available for tunneling is LxLyLzT ,
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∆z = 2m⊥/F being the length required for materialization of the pair and
∆t = π/m⊥ the time interval for tunneling, we have

|〈0+|0−|〉 |2 = exp

{

2
T

∆t
Lz

∆z

∑

flavour

LxLy

∫

d2p⊥
(2π)2

ln [1 − P (p⊥)]

}

=

= exp(−LxLyLzTp) (6.7)

being p the pair creation rate per unit volume

p = − F

4π2

∑

flavour

∫ ∞

m2

f

dm2
⊥ ln [1 − P (p⊥)] =

F 2

4π3

∑

flavour

∞
∑

n=1

1
n2

exp

(

−
πm2

fn

F

)

.

(6.8)
Eq. (6.8) can be written in the form

dNf

d4xd2p⊥
=

F

4π3

∣

∣

∣

∣

∣

ln

(

1 − exp

(

−
πm2

f⊥
F

))∣

∣

∣

∣

∣

. (6.9)

Taking into account that particles are produced with vanishing longitudinal
momentum we can write the above equation as:

dNf

dΓinv
=

F

4π3

∣

∣

∣

∣

∣

ln

(

1 − exp

(

−
πm2

f⊥
F

))∣

∣

∣

∣

∣

δ(p‖)p0 (6.10)

where dΓinv is the Lorentz invariant elemente of the phase space.

6.3 Abelian dominance approximation

Being the treatment of tunneling in the framework of QCD very complicated,
several approximation are to be taken. In agreement with the glasma picture
of the initial stage and following Ref.,171 we assume that the gluon field can be
separated in coherent part which can be interpreted as the classical mean field
and an incoherent part:

Fµν = 〈Fµν〉 + δFµν . (6.11)

Let assume that the mean-field part can be diagonalized in color space, i.e.
there is a gauge transformation U which rotates 〈Fµν〉 into the abelian subgroup
of the SU(3) gauge group

Fµν → UFµνU
−1 = F ′

µν = 〈F ′3
µν〉λ3

2
+ 〈F ′8

µν〉λ8

2
+ δF ′

µν . (6.12)
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One can see that 〈F ′
µν〉 has two independent components which can be repre-

sented by a two-component vector

Fµν = (〈F ′3
µν〉, 〈F ′8

µν〉). (6.13)

The fluctuating part δF ′
µν contains only non-diagonal terms while the diagonal

components are smaller than Fµν and neglected. The mean-field part and
the fluctuating part describe neutral and charged gluons respectively. Quarks
couple to the field Fµν through the charges εi and the charged gluons couple to
Fµν through the charges ηij , which we have introduced in Chapter 1. Moreover
it is assumed that the color field configuration formed at the initial stage of
a collision corresponds to the chromoelectric field E = F30. The Gauss law
applied to the flux tubes gives

EA = kgq (6.14)

where A = πr2 denotes the area of the transverse cross section of the tube, k
is the number of color charges at the end of the tube and gq = g(q3, q8) is the
color charge of a quark or a gluon. The energy of an elementary tube per unit
length, the string tension, is

σ =
1
2

AE · E =
g2

2Aq · q (6.15)

and considering the quark and gluon charges one obtains

σq =
g2

6A , σg =
g2

2A . (6.16)

The Gauss law can be rewritten as

E =

√

2σg

πr2
kq =

√

6σq

πr2
kq (6.17)

which determines the value of initial chromoelectric field spanned by the two
receding nuclei. For standard value σq = 1GeV/fm one obtains

g2 = 6 A GeV/fm ≈ 30π
r2

fm2 (6.18)

which, supposing the tube radius of the order of 1 fm, gives a coupling constant
g = 5.48, excluding any perturbative treatment of the process. The number of
color charges k may be obtained from the hypothesis of the random walk in
color space179

k =

√

dν

d2s
πr2 (6.19)
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where dν/d2s is the number of collisions per unit transverse area.For example,
for the cases which are relavant for simulations of initial stage of uRHICs one
expects k ≈ 3 for lead-lead collisions.

6.4 Abelian Flux Tube Model

In this Section we briefly summarize the abelian flux tube model (AFTm)?, 156–172

which we implement in our simulations of the initial stage of relativistic heavy
ion collisions. In our studies we do not insist on implementing the most realistic
geometrical condition relevant for heavy ion collisions experiments, in which
one should take into account several flux tubes in the transverse plane similar
to the glasma configuration; rather we consider a simpler situation in which
there is only one flux tube of a given transverse area, and study its dynamical
evolution by coupling the field equations to relativistic kinetic theory for the
particle quanta produced by the decay of the field itself, leaving to upcoming
works the study of more realistic initial conditions.

The main assumptions of the AFTm are:

• In the initial condition a color electric field is present, which is produced
by color charges in the colliding nuclei;

• The color electric field decays into particle quanta by the Schwinger
mechanism;

• The particle quanta propagate in the medium colliding and interacting
with the background of the color field;

• Particle creation as well as particle currents affect in a self-consistent way
the color electric field;

• The field dynamics is abelian, namely it satisfies the abelian Maxwell
equations.

The last assumption is quite strong because initial gauge fields are quite
large, nevertheless it permits the easiest implementation of the coupling of
classical field equations to relativistic kinetic theory in presence of the Schwinger
mechanism, hence we will limit ourselves to consider abelian dynamics of the
classical fields leaving the introduction of non abelian field dynamics to future
works. We stress here that the name "abelian" just means that in the evolution
equation for the classical part of the field, we neglect the classical Yang-Mills
self-interaction terms; we still have quantum interactions of the classical gluon
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field with gluon quanta arising both from the Schwinger effect and from the
color currents produced by gluons.

In this Section we closely follow Ref.171 at the same time adopting a slightly
different notation which is more convenient for our case. Moreover we assume
the initial color field to be polarized along the 3rd direction of adjoint color
space, meaning that only one particular color charge is present in the two
colliding nuclei.171 Moreover we assume only one component of the electric
field is present, namely the one in the longitudinal direction, which we denote
by E in the following. The latter is a consequence of the fact that in the initial
condition we assume the field is purely longitudinal, and transverse currents
are not produced during time evolution of the system if transverse expansion
does not take place implying a vanishing transverse field. The number of pairs
per unit of spacetime and invariant momentum space produced by the decay
of the color field is obtained as a generalization of Eq. (6.10) to the QCD
case:171, 180

dNjc

dΓ
≡ p0

dNjc

d4xd2pT dpz
= Rjc(pT )δ(pz)p0 , (6.20)

with

Rjc(pT ) =
Ejc

4π3

∣

∣

∣ln
(

1 ± e−πp2

T /Ejc

)∣

∣

∣ , (6.21)

the plus (minus) sign corresponding to the creation of a boson (fermion-
antifermion) pair. In this equation j and c denote flavor and color indices
respectively, pT , pz refer to each of the two particles created by the tunneling
process; Ejc is the effective force which acts on the tunneling pair and it depends
on color and flavor; it can be written as

Ejc = (g|QjcE| − σj) θ (g|QjcE| − σj) , (6.22)

where σj denotes the string tension depending on the kind of flavor considered.
Moreover p0 =

√

p2
T + p2

z corresponds to the single particle kinetic energy.

The Qjc are color-flavor charges which, in the case of quarks, correspond to
the eigenvalues of the T3 operator:

Qj1 =
1
2
, Qj2 = −1

2
, Qj3 = 0 , j = 1, Nf ; (6.23)

for antiquarks, corresponding to negative values of j, the color-flavor charges
are just minus the corresponding charges for quarks; finally for gluons (which
in our notation correspond to j = 0) the charges are obtained by building
gluons up as the octet of the 3 ⊗ 3̄ in color space,

Q01 = 1 , Q02 =
1
2
, Q03 = −1

2
, (6.24)
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and Q04 = −Q01, Q05 = −Q02, Q06 = −Q03. We notice that we have only
six gluons out of eight, corresponding to the non-diagonal color generators;
the gluon fields corresponding to the diagonal color generators have vanishing
coupling with the background field, hence they cannot be produced by the
Schwinger effect.

6.5 Transport Theory coupled to Maxwell Equations

Our calculation scheme is based on the Relativistic Transport Boltzmann
equation which, in the presence of a gauge field Fµν , can be written as follows:

(

pµ∂µ + gQjcF
µνpν∂

p
µ

)

fjc(x, p) =
dNjc

dΓ
+ Cjc[f ] (6.25)

where fjc(x, p) is the distribution function for flavour j and color c, Fµν is
the electromagnetic tensor. On the right hand side we have the source term
dN/dΓ which describes the creation of quarks, antiquarks and gluons due to
the decay of the color electric field and C[f ] which represents the collision
integral. Considering only 2 → 2 body elastic scatterings, the collision integral
can be written as (see Chapter 2):

C[f ] =
∫

d3p2

2E2(2π)3

d3p1′

2E1′(2π)3

d3p′
2

2E′
2(2π)3

(f1′f2′ − f1f2)

×|M|2δ4(p1 + p2 − p1′ − p2′) , (6.26)

where we omit flavour and color indices for simplicity, M is the transition
matrix for the elastic process linked to the differential cross section through
|M|2 = 16πs2dσ/dt, being s the Mandelstam variable.

In our simulations we solve numerically Eq. (6.25) using the test particles
method and the collision integral is computed using Monte Carlo methods based
on the stochastic interpretation of transition amplitude98, 101, 104, 176–178, 181, 182

as discussed in Chapter 2.

The evolution of the electric field is given by the Maxwell equations:

∂E

∂z
= ρ ,

∂E

∂t
= −j , (6.27)

where ρ corresponds to the color charge density,

ρ = g
∑

j,c

Qjc

∫

d3pfjc(p) (6.28)
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where the sum runs over quarks, antiquarks and gluons. On the other hand
j corresponds to the color electric current which is given by the sum of two
contributions: in fact the Schwinger effect can be described as a dielectric
breakdown in which dipoles are produced by quantum tunneling hence changing
the local dipole moment of the vacuum, and the charges move in the medium
due to the residual electric field giving rise to a conductive current. Following
Ref.171 we name displacement current, jD, and matter current, jM :

j = jM + jD . (6.29)

Here jM is a colored generalization of the usual electric current density which
in a continuum notation is given by

jµ
M = g

∑

j,c

Qjc

∫

d3p

p0
pµfjc(p) . (6.30)

The displacement current arises from the polarization of the vacuum due to
the decay of the electric field by the Schwinger mechanism: more precisely
it is given by the time derivative of the local dipole moment induced by the
particles pop-up, in the same way a time variation of the local dipole moment
in a medium gives rise to a change in the local electric field.183 According
to the quantum tunneling interpretation of the Schwinger effect156 the dipole
moment can be computed as 2p0/E where p0 corresponds to the kinetic energy
of the particles coming out from the vacuum; taking into account Eq. (6.20)
jD can be written, in the reference frame where particles are produced with
vanishing longitudinal momentum, as

jD =
Nf
∑

j=0

3
∑

c=1

∫

d3p

p0

dNjc

dΓ
2pT

E
, (6.31)

where Nf corresponds to the number of flavors in the calculation. The color
charge and current densities depend on the particle distribution function: hence
they link the Maxwell equations Eq. (6.27) to the kinetic equation (6.25).

We use the CE approach to relate shear viscosity to temperature, cross section
and density which is in agreement with Green-Kubo correlator results as already
shown in Chapter 4 and Ref.68 Therefore, we fix η/s and compute the pertinent
total cross section by mean of the relation

σtot =
1
5

T

ρ g(a)
1
η/s

, (6.32)

which is valid for a generic differential cross section dσ/dt ∼ α2
s/(t−m2

D)2 as
proved in Chapter 4 and in Ref.68 In the above equation a = mD/2T , with
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mD the screening mass regulating the angular dependence of the cross section,
while

g(a) =
1
50

∫

dyy6

[

(y2+
1
3

)K3(2y)−yK2(2y)
]

h

(

a2

y2

)

(6.33)

We refer to Chapter 4 for the details of the previous formula reminding that
Eq.(6.32) reduces to the relaxation time approximation with τ−1

η = τ−1
tr = σtrρ,

while for finite value of mD, which means anisotropic scatterings, g(a) < 2/3.

We notice that, in the regime where viscous hydrodynamics applies, the specific
microscopic details of the cross section are irrelevant, and our approach is
an effective way to employ transport theory to simulate a fluid at a given
η/s.178, 184

6.6 Static box

In this Section we study the chromoelectric flux tube decay in a static box.
We assume the box is a cube with side of 5 fm. Moreover we assume periodic
boundary conditions for particles propagating in the box. This case is of
academic interest, nevertheless it is useful because it allows us to introduce
concepts which will be useful when we will consider more interesting case of a
longitudinally expanding background, as well as it provides a further test of
the numerical solution of Eq. (6.25).

Given the symmetry of the problem, assuming at initial time a homogeneous
electric field along the z direction, then the system will remain homogeneous
along the whole dynamical evolution: the electric field at later times as well
as the currents and the invariant distribution functions will depend only on
time and not on space coordinates. Moreover it is easy to verify by Maxwell
equations that neither magnetic fields nor transverse components of the electric
field can develop during the evolution. Within these assumptions the evolution
equation for the classical field relevant for our problem is given by

dE

dt
= −j(t) . (6.34)

In our simulations in the static box case we use Eq. (6.20) to create particle
pairs from the color electric field: at each time step, the value of E and of the
volume box being given, we compute the expected pair number, N , integrating
Eq. (6.20) over the volume box, then we distribute the N pairs uniformly in
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the box and with transverse momentum pT according to the distribution in
Eq. (6.20); since the pairs have to pop out from the vacuum with vanishing
total and longitudinal momenta, given pT we extract randomly the azimuthal
angle φ which uniquely determines py = pT sinφ and px = pT cosφ of one of
the particles in the pair; finally the momentum direction of the second particle
is given by π − φ.

In Fig. 6.1 we show the time evolution of electric field Ez, current jM and
displacement current jD for the case of 4πη/s = 3. While the initial field,
Ez = 2.2GeV 2, decays the current jM developes due to the decay of the
displacement current, meaning that particles were created. We also notice
the presence of plasma oscillations, which are due to the continuous exchange
among field and particles throughout the conduction current, as we discuss
below in more details. Plasma oscillations will be discussed also later in the
case of the expanding system and which characterize the evolution of the color
field in the cases of intermediate to large values of η/s.
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Figure 6.1: Time evolution of electric field Ez, current jM and displacement current
jD for the case of a static box. In this calculation we have fixed shear viscosity over
entropy density ratio as 4pieta/s=3.

In Fig. 6.2 we plot the early time evolution of the color-electric field for the
cases of calculations at fixed total cross section while in Fig. 6.3 tha case of
fixed η/s. The line labelled as ideal gas means a calculation with zero cross
section.

From the results in Fig. 6.2 we notice that for small coupling among the
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Figure 6.2: Early time evolution of
the color-electric field for the cases of
calculations at fixed total cross section.
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Figure 6.3: Early time evolution of
the color-electric field for the cases of
calculations at fixed η/s.

particles, the electric field rapidly decays through the Schwinger mechanism
then it evolves with damped oscillations: the smaller the coupling is, the less
efficient the damping is. Eventually for strong enough coupling the oscillations
disappear and the color-electric fields just decays according to a power law.
This dependence on the coupling strength is very easy to understand and is in
last analysis due to the dependence of the electric conductivity of the plasma
on the particle interaction strength as shown in Chapter 5 and in Ref.79 In fact
at initial times the particles are produced by the Schwinger effect with zero
longitudinal momentum, then in case the coupling is small they are accelerated
by the electric field thus generating an electric current jM which at first gains
energy from the field thus lowering its magnitude; because of the small coupling
particles’s momenta is not randomized thus currents are efficiently produced
by the field. At some point of time the field is zero but the current jM is
still nonvanishing and positive hence causing a sign flip of the electric field
and a negative acceleration of the charges, resulting eventually in jM < 0 and
an increase of the electric field. This process causes the field oscillations we
observe in Fig. 6.2. On the other hand, for large values of the coupling the
scattering processes among the particles randomize momenta hence causing
jM ≈ 0 and the time evolution of the field is a pure decay by the Schwinger
effect. To consider this point more closely we write down the analytical form
of Eq. (6.31), namely

jD =
ζ(5/2)
4π3E





4 −
√

2
4

3
∑

c=1

E5/2
0c +

Nf
∑

j=1

3
∑

c=1

E5/2
jc



 (6.35)

For example in the case one considers only the decay into gluons and assuming
for simplicity σg = 0 in Eq. (6.22) one has for jM = 0 the equation

dE

dt
= −σDE

3/2 , (6.36)
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where we have introduced the quantity

σD =
ζ(5/2)

4π3

4 −
√

2
4

3
∑

c=1

|gQ0c|5/2 , (6.37)

which is related to the Schwinger effect and is independent on the coupling
among the particles. The solution of Eq. (6.36) can be found as

E =
E(0)

(1 + σD

√
E0t)2

, (6.38)

showing that in absence of a conductive current the decay of the chromoelectric
field is purely power law.

In Fig. 6.3 we plot the early time evolution of the color electric field keeping
η/s fixed. The calculations have been performed assuming an isotropic cross
section, and the relation among the total cross section and η/s is computed
by the CE method, results of Chapter 4 and Ref.,68 which is in agreement
with the relaxation time approximation for the case of an isotropic differential
cross section. From the qualitative point of view these results do not differ
from those we obtain for calculations at fixed cross section, and they can be
understood in the same way the results we obtained in the case of a fixed cross
section.
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Figure 6.4: Time evolution of electric field Ez rescaled to the initial value E0 for
different values of E0.

In Fig. 6.4 we plot time evolution of electric field for different intial value of
E0 keeping η/s = 3/4π: as we can see the decay time of E decreases for high
value of E0 causing also a faster damping of plasma oscillations. This picture
figures out a possible interference among flux tubes with different electric field
strength in a realistic collisions.
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Figure 6.5: Time evolution of the ratio PL/PT for the static box, for several values
of η/s.

We remind that one of the assumption of hydrodynamics calculations regards
the fact that the system is isotropized at about t = 0.6 fm/c, meaning that
PL/PT = 1. It is mandatory to quantify how the system reaches dynamically
such a state. In Fig. 6.5 we plot the time evolution of the ratio PL/PT for the
case of the static box, for several values of η/s. As expected we find that for
small values of η/s the system is very efficient in removing the initial anisotropy.
We notice that the initial longitudinal pressure is negative and PL/ε = −1;
indeed at initial time the system is made of pure color electric field for which
Tµν = diag (ε, PT , PT , PL) with ε = E2/2, PT = ε and PL = −ε. On the
other hand as soon as particles are produced by the Schwinger effect, they give
a positive contribution to the longitudinal pressure and the field magnitude
decreases, eventually leading to a positive pressure. Moreover because of the
strong interactions among the particles produced, PL and PT tend to the same
value within a very short time range, τiso ≈ 1 fm/c.

We notice that regardless of the value of η/s the system tends to remove the
initial pressure anisotropy, which is quite natural in the case of the static box
since collisions always lead to the equilibrium state. However isotropization
times are different and indeed in the case of a weakly coupled system, see for
example the case 4πη/s = 10 in Fig. 6.5, the equilibrium state is reached in
a much larger time than in the case of 4πη/s = 1. Moreover the oscillations
of the electric field strength in Fig. 6.3 lead to many oscillations of PL/PT in
the case 4πη/s = 10, such oscilations being damped effectively within the first
fm/c in the case 4πη/s = 1.
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6.6.1 Energy conservation

In this subsection we check the energy conservation in our box calculations.
Being the system initialized with a longitudinal electric field, the amount of total
energy density is εtot = E2/2. As the system evolves in time, the field energy
decays due to particles creations while the particles energy increases because
more particles account in the energy contribution of matter and because are
accelerated by the electric field. In Fig. 6.6 we show the energy conservation as
a function of time for three different value of η/s = 1, 3, 10. In each panel blue
line is the energy density of the field, red line the energy density of particles
while the green line is the total energy. As we can see, the method developed
guaranties a excellent energy conservation also in the early time dynamics with
only a 5% of discrepancy.
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Figure 6.6: Energy density of the electric field, kinetic energy density of particles
and the total kinetic energy as a function of time for three different values of shear
viscosity η/s = 1, 3, 10.
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6.7 Boost-invariant longitudinal expansion

In this Section we study the effect of a boost invariant longitudinal expansion
on pair production from the decay of a chromoelectric flux tube. This case is
interesting because a longitudinal expansion characterizes the very early stage
of an ultra-relativistic collision process. We assume the expansion takes place
along the direction of the electric field; moreover the dynamics is invariant
for boosts along the longitudinal direction. For this case we will discuss more
results because it is closer to the description of the central rapidity region in
the early stages of a relativistic heavy ion collision.180

We remind very quickly the relevant equations in this case. The evolution
equations for the color electric field are given by the pair of Maxwell equations

∂E

∂z
= ρ ,

∂E

∂t
= −j , (6.39)

where both current and charge densities are computed in the laboratory frame.
Assuming boost invariance along the longitudinal direction implies that Ez

depends only on proper time τ =
√
t2 − z2. We can combine the two Eqs.

(6.39) to form a boost invariant equation, namely

τ
dE

dτ
= zρ− tj , (6.40)

which can be rewritten as

dE

dτ
= ρ sinh η − j cosh η , (6.41)

where the right hand side corresponds to the (minus) electric current computed
in the reference frame where the time is the proper time, namely the local rest
frame of the fluid. Eq. (6.41) is in agreement with the boost invariant form of
Maxwell equation used in Ref.171

To solve Eq. (6.41) we adopt a finite difference scheme and prepare a box with
a square cross section in the transverse direction, with −xmax ≤ x ≤ xmax and
−ymax ≤ y ≤ ymax, and with cells in space-time rapidity, fixing the range of
η in which we distribute the produced particles by −ηmax ≤ η ≤ ηmax with
ηmax = 2.5. This implementation corresponds to have a box with a longitudinal
expansion since from the well known equations of relativistic kinematics one
gets zmax = t tanh ηmax which, for ηmax sufficiently large, corresponds to a
wall moving at ultrarelativistic speed along the longitudinal direction. We
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therefore distribute the pairs created by the decay of the flux tube with uniform
probability in each of the cells in (x, y, η).

To take into account the longitudinal expansion Eq. (6.20) has to be modifed
as171, 180

dN

d4xd2pT dy
= R(pT )δ(w)v , (6.42)

where y denotes the momentum rapidity; R(pT ) depends only on transverse
momentum and it is not affected formally by the expanding geometry; moreover
we have introduced the two boost-invariant variables

w = tpz − zp0 , v = p0t− zpz , (6.43)

and δ(w) affects the longitudinal momentum distribution by forcing the condi-
tion

pz =
z

t
p0 = pT sinh η (6.44)

for the produced pairs, with p0 =
√

p2
T + p2

z; such a condition is equivalent to
assume that momentum rapidity of the produced pair is equal to space-time
rapidity. The procedure we implement to create pairs in the case of the boost
invariant longitudinal expansion is very similar to the one we have described in
the case of the static box, the only difference being that in the present case we
iterate the static box procedure for each rapidity cell.

6.7.1 Field decay, particle production and spectra

In Fig. 6.7 we plot the color electric field strength averaged in the central
rapidity region |η| < 0.5 (main panel) and particle number produced per unit of
transverse area and rapidity (inset panel) as a function of time. The calculations
are shown for three different values of η/s (calculations at fixed total cross
section give similar results); the relation among the total cross section and
η/s we have used in the simulation is the CE relation with an isotropic cross
section, see Eqs. (6.32) and (6.33). The electric field is averaged in the central
rapidity region |y| < 0.5. The initial value we have used in the simulations
is E(t = 0) = 2.2GeV 2 but we obtain similar results by changing this value
within the range 0.5 ÷ 4GeV 2. The initial value of the electric field is chosen in
order to have a particle multiplicity in agreement with the expected multiplicity
at a central RHIC collision, namely dN/dy = 1040 at midrapidity.

As for the case of the static box we find that for the case of boost invariant
longitudinal expansion the chromoelectric field experiences a rapid decay for
small values of η/s. Once again this is due to the fact that in this case
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Figure 6.7: Chromoelectric field strength (main panel) and particle number produced
per unit of transverse area and rapidity (inset panel) as a function of time. The
electric field is averaged in the central rapidity region |η| < 0.5.

the coupling among particles is large, meaning collisions are very effective in
randomizing particle momenta in each cell hence damping conductive currents
that might sustain the field. On the other hand for intermediate and large
values of η/s the electric field experiences stronger fluctuations during time
evolution.

In the inset of Fig. 6.7 we plot the number of produced gluons per unit of
transverse area and rapidity versus time. We find that regardless of the value
of η/s we use in the simulation, the particles are produced at very early times,
approximately within 0.5 fm/c, with the only expection of very few particles
produced at later times in the case 4πη/s = 10. We have checked that changing
the initial value E0 of the electric field does not modify the production time in
a considerable way unless E0 is very small, namely E0 ≪ 1 GeV2. Moreover
the value of η/s affects the conversion of the initial classical field to gluons
only within a few percent: for example comparing the results for 4πη/s = 1
and 4πη/s = 3 we find in the latter case a lowering of less than 10% on the
number of particles produced. We conclude that the Schwinger effect is a very
efficient mechanism to produce a plasma from a classical color field.

In Fig. 6.8 we plot the proper kinetic energy density, εkin, at central rapidity
(|η| < 0.5), versus laboratory time for three different values of η/s (calculations
at fixed total cross section give similar results). The relation among η/s and
cross section is fixed by the CE relation with an isotropic cross section. We
find that in the case of small η/s, which corresponds to the case of a strongly
coupled system, the energy density decays asymptotically as εkin ∝ t−4/3

which is what is expected in the ideal hydrodynamic limit in the case of a
one-dimensional expansion, in agreement with Ref.162 For the cases of larger



138 6. Early Time Dynamics and Schwinger Mechanism

0.1 1
t [fm/c]

1

10

100

ε
k
in
 [

G
e

V
/f

m
3
]

4πη/s = 1

4πη/s = 3

4πη/s = 10

4πη/s = ∞
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Figure 6.9: Local temperature as a
function of time averaged in the central
rapidity region |η| < 0.5 and viscosity
has been fixed using an isotropic cross
section.

η/s we find that a power law decay with a superimposed oscillation pattern is
present. The thin dashed line in the figure corresponds to t−4/3. These results
are in good agreement with those of Ref.171

In Fig. 6.9 we plot the plasma temperature as a function of time; it is obtained
by data shown in Fig. 6.8 by assuming a perfect gas equation of state which
gives T ∝ ε

1/4
kin with proportionality constant being inversely proportional to

the number of active degrees of freedom in the plasma. Our temperature is
somehow larger than the one quoted in Ref.171 because in the latter study
both quarks and gluons have been considered in the plasma, while in our case
we only include gluons. The thin dashed line corresponds to t−1/3 which is the
power law decay expected in the case of a one dimensional expansion of a non
viscous fluid.

In Figs. 6.10, 6.11 and 6.12 we plot the gluon spectra at midrapidity |y| < 0.5,
for three different values of η/s. For each value of η/s the spectrum at three
different times is shown. The thin solid black line corresponds to a thermal
spectrum, namely

dN

pT dpT dy
∝ pT e

−βpT . (6.45)

The above relation describes a thermalized system in three spatial dimensions
at the temperature T = 1/β. In the figure the thermal spectrum is computed
by taking the temperature at t = 1 fm/c from data plot in Fig. 6.9 . We find
that for 4πη/s = 1 the system efficiently thermalizes: in fact the spectrum at
t = 1 fm/c is of the form Eq. (6.45) with temperature given (within a 2%)
by the result in Fig. 6.9, as it is evident by comparing the thermal spectrum
(black line) with simulation data (dot-dashed thin green line). For 4πη/s = 3
and 4πη/s = 10 the spectrum we obtain in the numerical calculation is in some
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Figure 6.10: Gluon spectra at midrapidity |y| < 0.5, for η/s = 1/4π. The spectrum
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Figure 6.11: Gluon spectra at midrapidity |y| < 0.5, for η/s = 3/4π. The spectrum
at three different times is shown. Black thin solid line corresponds to the thermal
spectrum in Eq. (6.45) at t = 1 fm/c with temperature from data in Fig. 6.9.

disagreement with the thermal spectrum at the temperature plot in Fig. 6.9
at t = 1 fm/c, meaning the system is not completely thermalized in three
dimensions. Moreover the very mild change in the slope of the spectrum we
measure from t = 1 fm/c to t = 5 fm/c shows that the system does not cool
down efficiently in this case, as it is expected because the large viscosity implies
that a large part of energy dissipates into heat and the system cools down more
slowly than the case of small viscosity.
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Figure 6.12: Gluon spectra at midrapidity |y| < 0.5, for η/s = 10/4π. The spectrum
at three different times is shown. Black thin solid line corresponds to the thermal
spectrum in Eq. (6.45) at t = 1 fm/c with temperature from data in Fig. 6.9.

6.7.2 Pressure isotropization

In this subsection we discuss pressure isotropization in the case with a lon-
gitudinal expanding geometry, which has a greater physical interest because
it is closer to the picture of the early times dynamics of relativistic heavy
ion collisions. Pressure isotropization is relevant to justify the initial time
τ = 0.6 fm/c in hydrodynamics calculations which assume that the system has
reached PL/PT = 1. In Fig. 6.13 we plot the ratio PL/PT where once again
PL and PT correspond to the longitudinal and transverse pressure respectively.
These quantities are computed cell by cell in the local rest frame of the fluid,
then averaged in the rapidity range |η| < 0.5. The initial longitudinal pressure
at initial time is negative and PL/PT = −1 because at initial time the system
is made of pure longitudinal chromoelectric field. On the other hand as soon
as particles are produced, they give a positive contribution to the longitudinal
pressure and the field magnitude decreases, eventually leading to a positive
pressure. For all the value of η/s we consider in our simulations we find that
the time needed to the total longitudinal pressure to be positive is about 0.2
fm/c. Moreover in the case 4πη/s = 1 the strong interactions among the
particles remove the initial pressure anisotropy quite efficiently and quickly:
in this case PL/PT = 0.7 within 0.6 fm/c, then the ratio tends to increase
towards 1 within the time evolution of the system. This would justify the use
of viscous hydrodynamics with τ0 ≈ 0.6 fm/c as commonly done.

On the other hand the larger the η/s of the fluid the larger the oscillations
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Figure 6.13: Proper kinetic energy density (upper panel), local temperature (middle
panel) and the ratio PL/PT (lower panel) as a function of time. All the quantities are
averaged in the central rapidity region |η| < 0.5 and viscosity has been fixed using an
isotropic cross section.

of PL/PT , compare for example the cases 4πη/s = 1 and 4πη/s = 10 in
Fig. 6.13: in the latter case PL/PT experiences several oscillations which follow
the alternation of maxima of |E| (corresponding to minima of PL since the field
gives a negative contribution to PL) and zeros of E (corresponding to maxima of
PL); also, at large times PL/PT is quite smaller than 1. For intermediate values
of η/s we still find some oscillation which become less important for smaller
viscosities. On the same footing the asymptotic value of PL/PT approaches 1
when the viscosity becomes small.
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Figure 6.14: Ratios PL/ε, PT /ε against time for 4πη/s = 1. All the quantities are
averaged in the central rapidity region |η| < 0.5 and viscosity has been fixed using an
isotropic cross section.
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Figure 6.15: Ratios PL/ε, PT /ε against time for 4πη/s = 3. All the quantities are
averaged in the central rapidity region |η| < 0.5 and viscosity has been fixed using an
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Figure 6.16: Ratios PL/ε, PT /ε against time for 4πη/s = 10. All the quantities
are averaged in the central rapidity region |η| < 0.5 and viscosity has been fixed using
an isotropic cross section.

In Figs. 6.14, 6.15 and 6.16 we plot the ratios PL/ε and PT /ε as a function of
time. Here ε corresponds to the total energy density, which takes into account
energy density of both particles and field. We have shown results obtained
for 4πη/s = 1, 4πη/s = 3 and 4πη/s = 10. In Figs. 6.14, 6.15 and 6.16
the red solid line corresponds to PL/ε and the thin green line to PT /ε. The
thin black dashed line corresponds to the conformal isotropic limit ε = 3P .
One can compare the results of Figs. 6.14, 6.15 and 6.16 with those of,135

where a classical Yang-Mills simulation with a 3 + 1D expanding geometry is
considered; in the weakest coupling case considered in Ref.,135 namely g = 0.1,
PL asymptotically relaxes towards zero, which we might obtain if we introduce
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a larger viscosity than the one we consider in the present study. On the other
hand the case g = 0.5 from Ref.135 produces PL/ε and PT /ε which lie in
between our results for 4πη/s = 3 and 4πη/s = 10.

6.7.3 Anisotropic cross sections
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Figure 6.17: Ratio PL/PT versus time for several values of mD for η/s = 1/4π.
All the quantities are averaged in the central rapidity region |η| < 0.5.
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Figure 6.18: Ratio PL/PT versus time for several values of mD for η/s = 3/4π.
All the quantities are averaged in the central rapidity region |η| < 0.5.

In this subsection we study the effect of changing the microscopic cross section
from isotropic to anisotropic. In our collision integral we achieve this by tuning
the Debye screening mass in the two body cross section, leaving the value of
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Figure 6.19: Ratio PL/PT versus time for several values of mD for η/s = 10/4π.
All the quantities are averaged in the central rapidity region |η| < 0.5.

η/s fixed. In Figs. 6.17, 6.18 and 6.19 we plot the time evolution of PL/PT

for four different values of mD for the case of 4πη/s = 1, 4πη/s = 3 and
4πη/s = 10, and four different values of the Debye screening mass mD. We
remind that in our calculation the Debye mass is used as an infrared regulator of
the differential cross section, and as a parameter which controls the anisotropy
of the cross section: for very large values of mD the differential cross section is
isotropic, while for small values of mD we get a forward peaked cross section.
We find that lowering mD for a given value of η/s the plasma oscillations tend
to be damped. This can be understood because according to the study of
Chapter 4 and Ref.68 lowering mD while keeping fixed η/s amounts to increase
isotropization of the distribution function; as a consequence the conductive
currents, which would sustain plasma oscillations in the late times evolution
of the plasma, are damped. Nevertheless the effect on late time evolution of
PL/PT is quite mild.

6.7.4 Chapman-Enskog vs. Relaxation Time Approximation

In this subsection we study the effect of shifting from the CE to RTA when we
relate η/s to the total cross section. It has to be noticed that our RTA does
not correspond to the RTA used in Ref.:171 in fact in Ref.171 RTA corresponds
to an ansatz for the collision integral in the Boltzmann equation; on the other
hand in our calculations, where we always solve the full collision integral in the
Boltzmann equation, RTA refers only to an analytical equation which connects
shear viscosity to microscopic cross section as in Chapter 4 and Ref.68 We
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limit ourselves to a particular value of η/s, namely 4πη/s = 3 which is the
intermediate case we have considered in the previous subsections. In Fig. 6.20
and Fig. 6.21 we plot PL/PT as a function of time for two values of mD: on
the left panel we consider mD = 0.5 GeV and in the right panel mD = 2 GeV.
In each panel, the red dashed line corresponds to the CE formula while the
dot dashed blue line to the RTA formula. In the case of mD = 0.5 GeV the
oscillations of PL/PT with CE are quite damped with respect to those of the
RTA. This behaviour is easily understood by the results obtained in Chapter 4
and Ref.:68 as a matter of fact a given η/s corresponds to a lower cross section
for RTA, implying larger conductive currents which sustain plasma oscillations.
In the case of mD = 2.0 GeV the behaviour of PL/PT in RTA is similar to that
in CE; in fact in this case the cross section is mostly isotropic, and it is known
that RTA cross section is quite close to the CE one.
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Figure 6.20: Ratio PL/PT versus
time for 4πη/s = 3 and for mD =
0.5 GeV. We compare the Chapman-
Enskog result (dashed red line) with
the Relaxation time result (dot-dashed
blue line).
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Figure 6.21: Ratio PL/PT versus
time for 4πη/s = 3 and for mD =
2.0 GeV. We compare the Chapman-
Enskog result (dashed red line) with
the Relaxation time result (dot-dashed
blue line).

6.8 3+1D expanding system

In this section we extend our previous results to the more realistic case of a
3+1D expanding system. While in the 1+1D geometry, due to the periodic
boundary conditions in the transverse plane, no transverse components of the
electric field develope since jx and jy are zero, in the 3+1D expansion we have
to consider also transverse components of currents and electric field. We still
neglect magnetic component of the color field. The evolution equations for the
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color electric field are given by the following Maxwell equations:

∇ · E = ρ (6.46)
∂E

∂t
= −j (6.47)

where the current and charge density depend also on the transverse coordinate
x and y. We still implement an initial condition in which only the longitudinal
component of the field is non zero; transverse components will be generated by
transverse currents in agreement with Eq. (6.47).

Assuming for sake of simplicity the boost invariance along the longitudinal
direction implies that Ez depends on the proper time τ =

√
t2 − z2. Combining

Eqs. (6.46) and (6.47), one obtains the following equation for the z-component
of the electric field:

∂Ez

∂τ
= ρ sinh η − jz cosh η − sinh η

(

∂Ex

∂x
+
∂Ey

∂y

)

(6.48)

where the electric current and the charge density are computed in the local
rest frame of the fluid. The equations for the transverse component electric
field are:

∂Ex

∂t
= −jx (6.49)

∂Ey

∂t
= −jy. (6.50)

To solve Eqs. (6.48), (6.49) and (6.50), we use a finite difference scheme and
a discretized spacetime using (x, y, η) coordinates. We choose the following
cell dimensions in the transverse plane: ∆x = 0.5 fm and ∆y = 0.5 fm. The
time step is chosen as dt = 0.01 fm/c. Regarding the space-time rapidity
range, we choose −ηmax ≤ η ≤ ηmax with ηmax = 2.5. This implementation
corresponds to the 1+1D expanding system of the previous section apart the
fact that in this case there are no boundary conditions on the (x, y) plane. The
procedure implemented in order to create pairs is equivalent to the one used
for the longitudinal expansion, however Eq. (6.42) has to be evaluated in each
∆x× ∆y × ∆η volume.

We checked that the present implementation, restricted with the same boundary
conditions of the 1+1D system, reproduces exactly the same results for the
electric field time dependence, number of particles produced, particle spectra
and isotropization for different values of shear viscosity.
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6.8.1 Initial condition

In this subsection we discuss about the initial conditions for the color electric
field. In our calculations we choose an initial condition that mimics the
eccentricity obtained in the Glauber model at a given impact parameter. In
details, the almond shape of the overlap region between the two colliding nuclei
in the transverse plane gives the domain for the electric field: we assume a
uniform electric field on the transverse plane, inside the overlap region, and also
in the space-time rapidity region |η| < 2.5. We checked that the eccentricity of
such a configuration is equal to the one obtained in the Glauber model. The
only parameter to be fixed is the value of the initial color electric field which
we fix in order to reproduce the particle multiplicity dN/dy from experimental
results. In such a way we reproduce a system with a given initial eccentricity,
which corresponds to a given impact parameter, and a given multiplicity due
to the decay of the initial color electric field to a plasma.

6.8.2 Field decay, particles production and spectra

In FIg. 6.22 we plot the color electric field strength averaged in the central
rapidity region |η| < 0.5 and in |x|, |y| < 0.5 fm. Three different cases are
shown which correspond to fixing 4πη/s = 1 for the blue line, 4πη/s = 3
maroon dashed line and 4πη/s = 10 red dot-dashed line. Shear viscosity is
fixed using our results of Chapter 4 as already done in the case of 1+1D
expanding system of the previous section. As we can see in Fig. 6.22 the
color electric field Ez has a rapid decay of about 1 fm/c indipendently of the
value of viscosity. The plasma oscillations that we see in Fig. 6.7 for high
value of shear viscosity, in the present case are damped due to the transverse
expansion of particles, or in other words due to the missing electric current
which can sustain the electric field. In the inset of Fig. 6.22 we show the
transverse component of the color electric field for the case 4πη/s = 1: orange
line represents Ex while green line Ey. As we can see such components do not
have effects on the dynamic of the system since no electric currents develop in
the transverse plane.

In Fig. 6.23 we show the total number of particles produced for the correspond-
ing case of an impact parameter b = 7.5 fm/c using an initial color electric
field Ez = 2.2GeV 2. Independently of the value of η/s, particles are produced
in the first 0.5 fm/c. As in the 1+1D case (see Fig. 6.7), η/s affects in a small
way the conversion of the initial color electric field to particles: comparing
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Figure 6.22: Color electric field z
component as a function of time in
the central region η < 0.5 and x, y <
0.5 fm, for different value of η/s. Blue
line corresponds to η/s = 1, maroon
dashed line to η/s = 3 and red dot-
dashed line to η/s = 10. In the inset x
and y component for the case η/s = 1.
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Figure 6.23: Total number of parti-
cles produced as a function of time for
different values of η/s. In this simu-
lations we set the initial color electric
field Ez = 2.2GeV 2 and the impact
parameter b = 7.5 fm.

results for 4πη/s = 1 with 4πη/s = 3 there is a lowering of 6% in number of
produced particles.

In Fig. 6.24 we plot the temperature as a function of time averaged in the
central rapidity region |η| < 0.5 and |x|, |y| < 0.5 fm. It has been computed in
the local rest of the fluid assuming a perfect gas equation of state using T ∝ ε

1/4
kin

with proportionality constant being inversely proportional to the degrees of
freedom of the plasma. The temperature scales as t−1/3 for t < 6 fm/c because
the longitudinal expansion is the dominant one while at later times there is
a change in the slope meaning that the transverse expansion begins having
effects.

In Fig. 6.25 we show particles spectra in the midrapidity region |y| < 0.5 for the
case of two different centralities corresponding to impact parameters b = 2.5 fm
on the left panel and b = 7.5 fm. In both simulations we fixed 4πη/s = 1. The
red line corresponds to the spectrum at t = 0.1 fm/c. The system thermalizes
in 4 ÷ 6 fm/c as we can see comparing the maroon double-dot-dashed line with
orange squares, which correspond to the spectrum at final time t = 10 fm/c.
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panel: results are obtained for an impact parameter b = 2.5 fm. Right panel: results
are obtained for an impact parameter b = 7.5. In these simulation η/s was fixed to
1/4π.

6.8.3 Pressure isotropization

In Fig. 6.26 we plot the ratio of longitudinal pressure PL over the transverse
pressure PT . Such quantities are computed in the local rest frame of the
fluid cell by cell and averaged in the central rapidity region |η| < 0.5 and
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|x|, |y| < 0.5 fm. The initial PL/PT = −1 since the initial electric field Ez is
purely longitudinal. As particles are produced, they contribute with a positive
longitudinal pressure while the field strength decreases giving a positive pressure.
Independently of η/s, PL/PT becomes positive in 0.2 fm/c. Comparing results
of Fig. 6.26 with those of the 1+1D case in Fig. 6.14, we see that qualitatively
PL/PT shows the same behaviour as the η/s is increased: large oscillations are
obtained for η/s = 10 while, decreasing η/s oscillations are damped. However,
as shown in the field decay in Fig. 6.22,oscillations of PL/PT are damped in the
3+1D case in the first 3 fm/c for 4πη/s = 10 down to 1 fm/c for 4πη/s = 1.
The case 4πη/s = 1 reaches PL/PT = 0.6 ÷ 0.7 in about 1 fm/c, within the
same time scale of the 1+1D case while the other cases with higher value
of viscosity mantain a greater state of non-isotropization respect with to the
previous study.
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Figure 6.26: Longitudinal pressure PL over transverse pressure PT as a function
of time for different values of η/s. The values calculated are average in the central
rapidity region and |x|, |y| < 0.5 fm.

6.8.4 Elliptic flow

In this subsection we discuss about the elliptic flow of the plasma produced by
the decay of the initial color electric field with the aim of study the effects of
initial non-equilibrium condition into the developing of momentum anisotropy.
As already discussed in Chapter 1, the origin of the elliptic flow is the initial
eccentricity in space coordinate

εx =
〈y2 − x2〉
〈x2 + y2〉 (6.51)
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Figure 6.27: Left panel: averaged elliptic flow v2 as a function of time for differen
values of η/s. Right panel: eccentricity ε2 as a function of time for different value of
η/s. In these simulations the impact parameter is b = 7.5 fm.

given by the overlap region of the two colliding nuclei in non-central collision.
The eccentricity is responsible for different pressure gradients in the transverse
plane favoring the flow along the x direction rather than the y direction.
The eccentricity is converted into an anisotropy in momentum space which is
measured by the elliptic flow v2 defined as:

v2 =

〈

p2
x − p2

y

p2
x + p2

y

〉

. (6.52)

In the left panel of Fig. 6.27 we show the averaged elliptic flow 〈v2〉 as a
function of time for different value of η/s: blue line represents the system wiith
η/s = 1/4π, maroon dashed line with η/s = 3/4π and red dot-dashed line
η/s = 10. The effect of a small η/s is to make the system more efficient in
converting the initial eccentricity into the momentum anisotropy. Indeed as we
can see from Fig. 6.27 as η/s is increased, the system produce less 〈v2〉. On
the right panel of Fig. 6.27 we plot the eccentricity ε2 as a function of time for
three different values of viscosity corresponding to the simulations of the left
panel in the same figure. The initial ε2 ≃ 0.28 is equal to the ε2 obtained in
the Glauber model considering an impact parameter b = 7.5 fm, as it has to
be in according of our initial condition discussed in Subsection 6.8.1. Initial
eccentricity decreases as the system evolves in time independently of the value
of shear viscosity.
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In Fig. 6.28 we show our results for the differential elliptic flow for the
case of Au − Au at

√
s = 200AGeV with an impact parameter b = 7.5 fm,

corresponding to the 20−30% centrality class at RHIC. The blue line represents
the simulations using η/s = 1/4π, maroon dashed line η/s = 3/4π and red
dot-dashed line η/s = 10/4π. We plot also experimental data for v2 from the
STAR Collaboration.185

We remind that in our simulations there is no hadronization process: to make
a comparison we assume quark-hadron duality which implies that for each
parton a single hadron is produced. So the agreement/disagreement with data
is to be taken with caution nevertheless we see that the azimuthal asymmetries
produced go in the right direction. Moreover, the initial condition for the
color electric field, assumed in this work uniform in transverse plane, is a
very rough description of the intial configuration of the fields in the overlap
region. A more accurate description should include at least a Glauber-like
profile in the transverse plane as one can figure out considering that in the
central overlap region more color sources are present respect with the margins
of the almond shape. Nonetheless we have set a space distribution that have the
same eccentricity of the Glauber initial condition along with a similar average
size R. This can allow a direct comparison for understanding the impact of the
initial non-equilibrium field configuration. In Fig. 6.29 we show the evolution
of the differential elliptic flow at fixed transverse momentum pT = 1.5GeV
as a function of time. We compare our results to a study on the effects of
non-equilibrium initial conditions on the elliptic flow.178 In particular we show
by green dashed line the factorized KLN, according to a modelization of the
color Glass Condensate, which corresponds to an initial distribution far from
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thermalized Glauber model,178 green-dashed line is a far from equilibrium initial
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the thermalized one, black line in the figure denoting a thermalized Glauber
model. The non-equilibrium initial condition has the effect of slowing the
building up of the v2 in the early stage of evolution (t < 1 fm/c) while as the
system evolves the v2 of fKLN reaches the same momentum anisotropy of the
Th-Glauber initial condition whose v2 is larger then the previous case in the
early stage, being the system already thermalized.
Our results, blue line, behaves in a similar way of the non-equilibrium initial
condition fKLN: in the early stage the elliptic flow is built up very slowly however
the system reaches a momentum anisotropy very close to the thermalized initial
condition (black line).

We want to stress that, in order to have a more quantitative comparison with
data, a more realistic initial configuration for the color electric field has to be
taken into account exploring also other impact parameter. Nevertheless, the
results in our explorative study are encouraging because they show that we
are able to obtain the correct anisotropic flow even with a simplified initial
configuration for the classical field, thus paving the way to more refined and
realistic calculations.
Furthermore this first exploratory study shows that even if the initial-non
equilibrium can slow down the build of the v2 somehow the system is able to
reach an almost identical elliptic flow with respect to the case of equilibrium
initial conditions at a typical time of 0.5÷1 fm/c as done in the hydrodynamical
approach.





Conclusions and outlooks
In this thesis two main subjects directly related with the Quark-Gluon Plasma
(QGP) and the ultra-relativistic heavy ions collisions were presented in the
framework of Relativistic Boltzmann Transport equation. A study of transport
coefficients, in particular shear viscosity η and electric conductivity σel with
their dependence on microscopic details. A model on early time dynamics of
the system produced in heavy ion collisions by an initial color electric field
which then decays to a plasma by the Schwinger mechanism, with the aim of
quantify the isotropization, thermalization and also the effects of the initial
non-equilibrium condition on the elliptic flow.

The relevance of the study of transport coefficients resides in the importance
of the shear viscosity and electric conductivity of the QGP.
Being η/s the most important physical quantity in the description of a fluid,
our transport based approach focuses on keeping fixed η/s instead on dealing
with all the specific amplitude scatterings one has to consider in the collision
integral of the Boltzmann equation. Having this outlook in mind, the first task
is to find the correct formula for shear viscosity which allows us to develop a
very precise transport code simulating a fluid with a given η/s.
We compute the shear viscosity solving numerically the Relativistic Boltzmann
Transport equation using the Green-Kubo relations. In Linear Response
Theory Green-Kubo relations give us an exact formula for evaluate transport
coefficients in terms of correlation functions of currents evaluated at the thermal
equilibrium. After a convergency study of the numerical calculation of Gree-
Kubo correlator, we compute shear viscosity for a generic anisotropic two body
elastic cross section and compare our numerical results to analytical formulas
derived in Relaxation Time Approxiamtion (RTA) and in Chapman-Enskog
(CE) scheme. RTA is based on a crude approximation of the collision integral
in the Boltzmann equation encoding all the informations in a relaxation time
τ which represents the typical time scale to relax toward the equilibrium state.
The CE scheme is based on a linearization of the collision integral.
We find that RTA is a good approximation only in the isotropic limit while
the CE is in very good agreement with Green-Kubo results for all the range of
temperature and anisotropy explored, in the range of interest for heavy ions
collisions. Once the correct formula for shear viscosity has been selected, we
are able to fix η/s in our transport code with very good accuracy and simulate
the fireball evolution with the same language of hydrodynamics but in a wider
range of transverse momentum of particles and also in out-of-equilibrium initial
conditions.

The other transport coefficient under our investigation is the electric conduc-
tivity σel of the QGP. We compute σel using our numerical solution of the
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Boltzmann equation and also in this case we study the microscopic dependence
of σel on the particular scattering, isotropic or anisotropic cross section, explor-
ing also massless and massive particles showing a very similar behavior of shear
viscosity η. In general we discuss the relation between σel and the relaxation
time τ which is underestimated by the Drude relaxation time τ = 1/ρσ, being
ρ the density and σ the cross section. Being interested in a more realistic case
and in a comparison with Lattice QCD results, we employed a quasi-particle
model in order to take into account the thermodynamics of strongly interacting
matter. We find that in this general case the Relaxation Time Approximation
underestimates the electric conductivity Gree-Kubo results of about a factor
2. Moreover, for the first time, we investigated the connection between the
shear viscosity to entropy density ratio and the electric conductivity fixing the
thermodynamics using the Lattice QCD equation of state. We predicted that
the recent Lattice QCD data of σel are compatible with the minimum value of
η/s.
We discussed why the ratio of (η/s)/(σel/T ) supplies a measure of the quark
to gluon scattering rates. We predicted that the ratio is independent of the
running coupling αs(T ), is sensitive only on the quark scattering rates, increases
near the critical temperature up to ≃ 20 while it goes down to a nearly flat
behaviour around ≃ 6 for T ≥ 4Tc. Moreover we in general found a stronger
T dependence of σel/T with respect to η/s: in a our approach this extra
temperature dependence is constrained by Lattice QCD thermodynamics while
AdS/CFT calculations, instead, predicts a flat behaviour of both η/s and σel/T .

Employing our numerical solution of the Relativistic Boltzmann Transport
equation we are able to calculate also the color conductivity which is very im-
portant in the early time dynamics of the QGP as it characterizes the response
of the system to the strong chromoelectric and chromomagnetic fields present
in the first stage of the collision. Our attention was captured by the early time
dynamics of the QGP and in particular our challenge was to describe the QGP
evolution starting from t = 0+, when only color fields are present, to the final
time, when collective flows are produced, using a single consistent scheme. The
knowledge about the shear viscosity and the electric conductivity has allowed
to pursue a key development of the partonic dynamics that incorporates the
initial color electric fields following the dynamics of the color electric currents
in the intial state of the collisions for a fluid with the scattering rates that
merge into a fluid at η/s ∼ 0.1. At the collision time t = 0+ the Glasma is
produced: it consists of an ensemble of strong longitudinal color electric and
color magnetic coherent fields.
A mechanism responsible for the initial field decays is the one introduced by
Schwinger in the context of Quantum Electrodynamics, known as the Schwinger
effect which consists in a vacuum instability towards the creation of particle
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pairs by a strong electric field.
We modelled early times dynamics of the system produced in relativistic heavy
ion collisions by an initial color electric field which then decays to a plasma by
the Schwinger effect studying the effects of η/s on the isotropization, thermal-
ization and also on collective flows. According to the general understanding of
high energy collision processes, this work is relevant both for heavy ion colli-
sions, where a large number of flux tubes is expected, and for proton-nucleus
and proton-proton collisions.

We extended our transport code in order to couple the dynamical evolution of
the initial color field to the dynamics of the many particles system produced
by the decay. Moreover, using our numerical solution of the Boltzmann
equation, we improved previous studies which mainly rely on Relaxation Time
Approximation (RTA) or on a linearization of the conductive electric current.
We assume that the dynamics of the color field is abelian, hence it satisfies the
classical field Maxwell equations and we neglect the longitudinal color magnetic
field.
We have focused on the calculation of PL/PT , being PL the longitudinal pressure
and PT the transverse one, in order to quantify the isotropization time, that in
hydrodynamic calculation is assumed to be equal to 0.6 ÷ 0.8 fm/c. Thanks
to the study of the shear viscosity in the first part of the thesis, we are able
to study the effects of η/s on PL/PT . We have studied in a systematic way
different cases starting from the static box with periodic boundary contitions.
Such a case represents not only an achademic interest but also the guideline
for interpreting the physical results obtained like for example the decay of the
color electric field in about 1 fm/c and the isotropization of the longitudinal
pressure PL over the transverse pressure PT in 1 fm/c for η/s = 1/4π. The
cases with higher value of η/s show plasma oscillations and require a larger
time to isotropize.
Then we considered a system with a longitudinal expansion which has a greater
physical interest than the static box as it is closer to the picture of the early
times dynamics of relativistic heavy ion collisions. In this case we found that
the electric field exhibits a rapid decay for small η/s while for intermediate
and high value of shear viscosity strong oscillations during the time evolution.
The results obtained for the PL/PT show that the system reaches a state of
isotropization in about 1 fm/c for η/s = 1/4π. For η/s = 3/4π, 10/4π the
ratio experiences several oscillations and the aymptotic value of PL/PT is quite
smaller than 1 indicating that the system does not isotropize. This would
justify the use of viscous hydrodynamics with initial times τ0 ≃ 0.6 ÷ 0.8 fm/c
for 4πη/s = 1 ÷ 3. It remains to be understood if the oscillations of PL/PT

for t ≤ 1 fm/c affect some observables in ultrarelativistic heavy ion collisions.
Our results imply that for a fluid with 4πη/s ≤ 3 isotropization time is less
than 1 fm/c.
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Finally we extend the longitudinal expansion case to a more realistic 3+1D
expanding system. In this case we obtained that the oscillation of both color
electric field and PL/PT are damped respect to the previous case because of
transverse expansion. The ratio PL/PT saturates close to the isotropic limit
within 1.5 ÷ 2 fm/c for η/s = 1/4π while for higher value of viscosity PL/PT

is quite smaller than 1 meaning that the system does not isotropize. We found
that indipendently of the value of shear viscosity the particles are produced in
the first 0.5 fm/c.
Using our 3+1D code we also investigated the effects of the non-equilibrium
initial condition and η/s on the building up of the elliptic flow. We calculated
the elliptic flow for a case of interest of Au−Au collision at 200GeV,A at RHIC
for an impact parameter of b = 7.5 fm. In order to fix the initial eccentricity
in our simulations, we assumed a uniform electric field on the transverse plane
inside the overlap region of the two colliding nuclei. Such an initial condition
is only a rough model however it gave us the possibility of investigating the
elliptic flow and its dependence on shear viscosity. We found that the model
predicts the decreasing of the differential elliptic flow with the increasing of
the shear viscosity in agreement with hydrodynamics simulations. Moreover
we found that the v2 time evolution is compatible with other non-equilibrium
initial conditions, namely fKLN. In details the v2 in the early time evolution
increases slowly with respect to a thermalized Glauber model however, at later
time, the v2 predicted in our model saturates to a value very close to the
thermalized model one.

The results of the present work can be a starting point for further investigations
both on the transport coefficients and early time dynamics sides. On one
hand it would be very interesting to investigate the bulk viscosity of the QGP.
The bulk viscosity represents the internal friction of a fluid when it rapidly
expands as the QGP in heavy ion collisions. Furthermore, the study of electric
conductivity can be extended to the case of color conductivity which is of great
interest in the early time dynamics of ultra-relativistic heavy ion collisions.
On the other hand, our early time dynamics model needs improvements in
particular on the initial condition of the color electric field in order to develop
a more realistic framework devoted to study in a quantitative way collective
flows. In addition the inclusion of fluctuations both in transverse plane and
longitudinal direction would provide a systematic study on the higher harmonics
vn.
Furthermore isotropization and thermalization should be studied within the
inclusion of the initial longitudinal color magnetic fields which in the present
work was neglected.
In addition, using the approach developed in this thesis, it will be possible to
investigate other observables such as the photon production. Photons represent
one of the most important observables to understand the early time dynamics
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since, even if produced in the early stage of the fireball evolution, they do not
strongly interact with the QGP medium allowing a better access to the initial
dynamics.





Appendix

.1 Natural units

Natural units are defined as ~ = c = 1:

~ ≡ h

2π
= 6.5821 × 10−25 GeV s = 1 (.53)

c = 2.9979 × 108m

s
= 1. (.54)

These units have the following consequences: [c] = [L][T ]−1, i.e. [L] = [T ];
E2 = p2c2 + m2c4 leads to [E] = [m] = [p]. Furthermore [~] = [E][T ] gives
[E] = [m] = [L]−1 = [T ]−1. Therefore [m], or equivalently [E], can be chosen
as a single independent dimension in natural units. From Eq. (.53) one obtains
the following useful numerical relation:

~c = 197.33MeV fm ≃ 200MeV fm. (.55)

Moreover, we set also kB = 1, with kB the Boltzmann constant:

kB = 8.6173 × 10−14 GeV K−1 = 1 (.56)

Thus a temperature of 1GeV is equal to

1GeV = 1.1605 × 1013 K. (.57)

.2 Rapidity and pseudorapidity

At relativistic energies, it is useful to use the rapidity instead of the standard
velocity. It is defined as:

y =
1
2

log
E + p‖
E − p‖

= arctanh
(p‖
E

)

= arctanh(v‖) (.58)

where E is the energy of a particle, E =
√

p2 +m2, and v‖ = p‖/E is the
longitudinal component of velocity. Rapidity is additive under Lorentz boosts
along the longitudinal axis.
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Using the rapidity and the transverse mass, one can calculate the energy and
the longitudinal momentuma of a particle:

E = p0 = m⊥ cosh y (.59)

p‖ = m⊥ sinh y. (.60)

In a similar way one defines the pseudorapidity variable η:

η =
1
2

log
|p| + p‖
|p| − p‖

= log
(

cot
θ

2

)

= − log
(

tan
θ

2

)

. (.61)

One has:

|p| = p⊥ cosh η (.62)

p‖ = p⊥ sinh η. (.63)

.3 Modified Bessel functions Kn(x)

The second-order ordinary differential equation

x2 d
2y(x)
dx2

+ x
dy(x)
dx

− (x2 + n2)y(x) = 0 (.64)

has a solution which is a linear combination of the modified Bessel functions of
the first kind In(x) and the second kind Kn(x):

y(x) = c1In(x) + c2Kn(x). (.65)

The modified Bessel function Kn(x) has the following integral representation

Kn(x) =
√
πxn

2nΓ
(

n+ 1
2

)

∫ ∞

1

dt e−xt(t2 − 1)n− 1

2 . (.66)

The importance of the functions Kn(x) in relativistic thermodynamics comes
from the fact that many relativistic phase space integral are reduced to the
integral of the previous form.

The derivative of the Bessel function Kn(x) can be expressed as:

∂Kn(x)
∂x

= −1
2

(Kn−1(x) +Kn+1(x)) (.67)
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which can also be expressed as

∂Kn(x)
∂x

= −Kn−1(x) − n

x
Kn(x). (.68)

The series expansions of Kn(x) for x → 0 and for n = 1, 2, 3 are given by

K1(x) =
1
x

+O(x1) (.69)

K2(x) =
2
x2

− 1
2

+O(x2) (.70)

K3(x) =
8
x3

− 1
x

+
x

8
+O(x3). (.71)

The asymptotic expansion for x → ∞ has the following form:

Kn(x) = e−x

(
√

π

2x
+O

(

x− 3

2

)

)

. (.72)
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