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We study the diffusion of charm quarks in the early stage of high energy nuclear collisions at the RHIC
and the LHC. The main novelty of the present study is the introduction of the color current carried by the
heavy quarks that propagate in the evolving glasma (EG), which is responsible of the energy loss via
polarization of the medium. We compute the transverse momentum broadening, σp, of charm in the
prethermalization stage, and the impact of the diffusion on the nuclear modification factor in nucleus-
nucleus collisions. The net effect of energy loss is marginal in the prethermalization stage. The study is
completed by the calculation of coordinate spreading, σx, and by a comparison with Langevin dynamics. σp
in EG overshoots the result of standard Langevin dynamics at the end of the prehydro regime. We interpret
this as a result of memory of the color force acting on the charm quarks that implies σp ∝ t2. Moreover,

σx ∝ t2 in the prehydro stage shows that the charm quark in the EG is in the regime of ballistic diffusion.

DOI: 10.1103/PhysRevD.103.034029

I. INTRODUCTION

The study of the prethermalization stage of the system
produced in high energy nuclear collisions is one of the most
exciting research topics related to the physics of relativistic
heavy ion collisions. Within the color-glass-condensate
effective theory [1–7], the collision of two colored glasses
leads to the formation of strong gluon fields in the forward
light cone named glasma [8–18], consisting of longitudinal
color-electric and color-magnetic fields characterized by
large gluon occupation numbers, Aa

μ ≃ 1=g with g the
QCD coupling, so they can be described by classical field
theory namely the classical Yang-Mills (CYM) theory. See
also [19–33] for the next-to-leading order corrections to the
glasma. Once glasma is set up as the initial condition, its
evolution is studiedwithin theCYMequations; in this article,
we denote the evolving glasma as EG.
Heavy quarks, charm and beauty, are good probes of the

system created in high energy nuclear collisions, both for
the pre-equilibrium part and for the thermalized quark-
gluon plasma (QGP), see [34–57] and references therein.

In fact, their formation time is τform ≈ 1=ð2mÞwithm as the
quark mass which gives τform ≤ 0.07 fm=c, which is shorter
than the formation time of light quarks; thus, charm and
beauty propagate in the EG and probe its evolution. The
large mass, the early production and the low concentration
of charm and beauty makes heavy quarks the perfect probes
of the medium produced in the collisions.
The evolution of heavy quarks in the EG has attracted a

lot of interest recently [45–51]. The study of diffusion and
energy loss was started in [45], while in [46,49,51] it was
shown for the first time how the evolution of charm and
beauty in the EG can affect the nuclear modification factor,
RAA, and the elliptic flow of these quarks both in proton-
nucleus and in nucleus-nucleus collisions. More studies
have been devoted to the diffusion and momentum broad-
ening [47,48,50].
In previous studies, the energy loss of the heavy quarks

has been neglected: this is due to the polarization of
the gluon medium induced by the color current of the
heavy quarks [58–61], see also [62] for a treatment of the
problem within a classical model. Adding this current
results in a drag force acting on the heavy quarks: it is thus a
backreaction. Neglecting this sounds as a reasonable
approximation: in fact, the energy density of the EG is
much larger than that of the QGP phase, therefore the
momentum broadening due to diffusion is expected to be
more important than the energy loss due to polarization.
Nevertheless, adding the color current is a well-defined
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procedure, therefore it is possible to add it and compute its
effect on the observables. This is one of the main purpose of
the present study.
We compute the effect of the color current on the nuclear

modification factor of charm in the EG, on the momentum
broadening and on the transverse coordinates diffusion.
This is achieved by adding this current to the CYM
equations, that we solve consistently with the kinetic
equations of motion of the heavy quarks. We find that
the effect on the RAA is present but not large: this is due
both to the small magnitude of the current of charm, as well
as to the short lifetime of the prethermalization stage. The
effect of the drag force is more visible on the momentum
and transverse plane coordinates diffusion: however, even
for these quantities the net effect of the drag is to slow down
the diffusion of at most 20%.
We estimate both the diffusion coefficient in momentum

space, D, and the drag coefficient, γ: in particular, we find
that γ is quite small, certainly smaller than the value it is
usually used in the QGP phase. This means that the
equilibration time of the charm in the EG stage is much
larger than the lifetime of the EG itself. Thus, the motion of
charm in the EG is dominated by diffusion because the
equilibration time, τtherm ¼ 1=γ, is much larger than the
lifetime of the EG, as it happens for the standard Brownian
motion.
We remark that this addition solves the classical problem

completely and consistently: this procedure adds the
classical radiation produced by the moving heavy quarks
in a consistent way, and is qualitatively similar to what one
should do in classical electrodynamics for the problem
of the propagation of a classical electric charge in a
classical electromagnetic field. In fact, it is well known
that approaching this classical electrodynamics problem
leads to the production of a near and a far field, the latter
being responsible of energy loss by radiation. In solving the
classical problem for the heavy quarks, we clearly ignore
the quantum processes and in particular the hard gluon
emission by Bremsstrahlung: these processes might be
introduced by adding a random force in the equations of
motion of the heavy quarks, but it is known that these
would contribute only in a range of pT way larger than the
one that we consider here.
We also study in detail the momentum broadening,

σp ¼ hðpðtÞ − p0Þ2i, where p0 denotes the initial value
of momentum of charm. For a standard Brownian motion
with uncorrelated noise σp ¼ 2Dt for t ≪ 1=γ, while the
drag affects later evolution. For charm we find that σp ∝ t2

in the very early part of the evolution: we interpret this as
the effect of the memory in the correlator of the force
exerted by the gluon fields on the charm; in fact, for a
Brownian motion with a nontrivial memory kernel σp ∝ t2.
In the case of charm in the EG this can be interpreted
as a time correlation of the force, F, acting on the
charm, hFðxðτ1Þ; τ1ÞFðxðτ2Þ; τ2Þi ≠ Aδðτ1 − τ2Þ, where

xðτÞ denotes the position of the charm at time τ1.
Although we do not compute the correlator of the force
since it would require a different approach to the solution of
the CYM equations, we have computed the correlator of the
electric field at different times and found that this is
characterized by a finite time decay, suggesting finite time
correlation of the force. Comparison with the σp of a
standard, uncorrelated Brownian motion we find that the
effect of memory is to slow down the diffusion in the very
early stage, but after a short transient σp in the EG
overshoots the one of the uncorrelated motion.
We complete the study by computing diffusion in the

transverse coordinate space. We find that σx ¼ hðxðtÞ −
x0Þ2i follows the qualitative path of a Brownian motion
in its early stage, σx ¼ at2 þ bt3. In this stage memory
plays a less relevant role for σx because it would affect only
terms of order Oðt4Þ which are smaller than the Oðt2Þ. The
σx ∝ t2 shows that the diffusion of charm in EG is in a
ballistic regime [63,64].
The plan of the article is as follows: in Sec. II we review

the theoretical setup of the work; in Sec. III we review
briefly the solution of the Langevin equations for the
Brownian motion, emphasizing the effect of a memory
kernel on the early evolution of σp; in Sec. IV we present
our results on σp, σx, and RAA of charm; in Sec. V we
compare σp of charm in the EG and in a thermal medium
and present a qualitative comparison of the RAA in the two
cases; finally in Sec. VI we summarize our work and
discuss possible future improvements.

II. THE MODEL

A. Glasma and classical Yang-Mills equations

In this section, we review the glasma and the McLerran-
Venugopalan model [1–3,65]. In this work we scale the
gauge fields as Aμ → Aμ=gwhere g is the QCD coupling. In
the McLerran-Venugopalan model for the collision of two
nuclei labeled as A and B, the static color charge densities
ρa on A and B are assumed to be random variables that are
normally distributed with zero mean and variance given by

hρaA;BðxTÞρbA;BðyTÞi ¼ ðg2μA;BÞ2δabδð2ÞðxT − yTÞ; ð1Þ

here, a and b denote the adjoint color index; in this work we
consider the case of the SUð2Þ color group therefore a,
b ¼ 1, 2, 3. The choice of SUð2Þ rather than SUð3Þ is
done for simplicity, because it allows us to implement
easily the equations of motion and the initialization of the
gauge fields using linear representations of the exponential
operators; an upgrade of our code to the SUð3Þ case is a
work in progress and results will appear in the near future.
In Eq. (1) g2μA denotes the color charge density, g2μ ¼
OðQsÞ [66]. For protons, the dependenceofQs of the average
x ¼ hpTi=

ffiffiffi
s

p
can be estimated via the Golec-Biernat and
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Wusthoff (GBW) fit [67–70], Q2
s ¼ Q2

0ðx0=xÞλ, with
λ ¼ 0.277, Q0 ¼ 1 GeV and x0 ¼ 4.1 × 10−5. For nuclei
we borrow the modification of the GBW fit obtained within
the IP-Sat model [71], namely

Q2
s ¼ cA1=3 logAQ2

s;0

�
x0
x

�
λ

: ð2Þ

Other forms of the generalized GBW fit are possible [72,73],
but these do not lead to significant changes ofQs. Using the
numerical result Qs=g2μ ¼ 0.57 of [66] we find g2μPb ¼
3.4 GeV for the Pb nucleus for collisions at the LHC energy,
or Qs ¼ 1.9 GeV.
The static color sources fρg generate pure gauge fields

outside and on the light cone, which in the forward light
cone combine and give the initial glasma fields. In order to
determine these fields we solve the Poisson equations for
the gauge potentials generated by ρA and ρB, namely

−∂2⊥ΛðA;BÞðxTÞ ¼ ρðA;BÞðxTÞ: ð3Þ

Wilson lines are computed as V†ðxTÞ ¼ eiΛ
ðAÞðxTÞ,

W†ðxTÞ ¼ eiΛ
ðBÞðxTÞ, and the pure gauge fields of the

two colliding nuclei are given by αðAÞi ¼ iV∂iV†, αðBÞi ¼
iW∂iW†. In terms of these fields the solution of the CYM in
the forward light cone at initial time, namely the glasma

gauge potential, can be written as Ai ¼ αðAÞi þ αðBÞi for
i ¼ x, y and Az ¼ 0, and the glasma fields are [8,9]

Ez ¼ i
X
i¼x;y

½αðBÞi ; αðAÞi �; ð4Þ

Bz ¼ ið½αðBÞx ; αðAÞy � þ ½αðAÞx ; αðBÞy �Þ; ð5Þ

where z is the direction of the collision and the transverse
fields vanish.
The evolution of the initial condition is achieved via the

CYM equations, namely

dAa
i ðxÞ
dt

¼ Ea
i ðxÞ; ð6Þ

dEa
i ðxÞ
dt

¼ ∂jFa
jiðxÞ þ fabcAb

j ðxÞFc
jiðxÞ − jai ðxÞ; ð7Þ

we have put

Fa
ijðxÞ ¼ ∂iAa

j ðxÞ − ∂jAa
i ðxÞ þ fabcAb

i ðxÞAc
jðxÞ; ð8Þ

where fabc ¼ εabc with ε123 ¼ þ1, and the standard
summation convention has been used. We name the
evolving field as the EG, leaving the name glasma to the
initial condition. At variance with previous calculations
[45–51] we include the color current, jai , carried by the

heavy quarks. This is essential to describe the energy loss
of the colored particles interacting with the evolving glasma
[58–61], due to the polarization of the medium.
The lack jai in previous calculations gives a purely

diffusive motion of heavy quarks, and interaction with
the gluon fields leads merely to momentum broadening.
Instead, adding the color current and solving consistently
the field equations and the kinetic equations of the heavy
quarks, see below, we take into account both momentum
broadening and energy loss. Our solution of the problem
is purely numerical, however we do not rely on any
assumption on equilibration and thermalization of both
the gluon medium and the heavy quarks, as well as we do
not assume linear response theory and do not make any
assumption on the trajectories and velocities of the heavy
quarks. This approach solves the problem of propagation of
heavy quarks in the EG completely, as far as classical field
theory can do; this solution is similar to electrodynamics, in
which solving consistently the Maxwell equations with the
kinetic equations for the charges gives both near and far
fields produced by the charges themselves; in particular, the
far fields are responsible of electromagnetic radiation.

B. Wong equations for heavy quarks

The dynamics of charm quarks in the EG is studied by
the Wong equations [46,47,49,51,74,75], which for a single
quark can be written as

dxi
dt

¼ pi

E
; ð9Þ

E
dpi

dt
¼ QaFa

iνp
ν; ð10Þ

E
dQa

dt
¼ −Qcε

cbaAb · p; ð11Þ

where i ¼ x, y, z; these correspond to the Hamilton
equations of motion for the coordinate and its conjugate
momentum, while the third equation corresponds to a
classical description of the conservation of the color
current. Here E ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þm2

p
with m ¼ mc ¼ 1.5 GeV.

In the third Wong equations, Qa with a ¼ 1;…; N2
c − 1

corresponds to an effective color charge of quarks; this
should not be confused with the standard QCD color charge
of quarks, because quarks sit in the fundamental repre-
sentation of the color group SUðNcÞ so they carry Nc
colors, while Qa has the adjoint color index. This effective
charge can be understood as a function that allows us to
describe classically the color current carried by the heavy
quarks, namely [26,27,76]

jai ðxÞ ¼ g2Qa

Z
d3p
E

pifaðp; xÞ ð12Þ
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in the continuum limit, or

jai ¼ g2
X

Qapi=E; ð13Þ

in the discretized version, where the sum is understood over
all particles present in a given lattice cell. Notice that the
current is multiplied by the squared of the QCD coupling,
g2: this is simply due to the scaling of the gluon fields used
for the CYM equations mentioned in Sec. II and can be
verified easily starting from the QCD Lagrangian. For each
heavy quark the set of Qa is initialized with uniform
probability on the sphere Q2 ¼ Q2

1 þQ2
2 þQ2

3 ¼ 1; this is
achieved by extracting a random number, z, with uniform
probability in the range ð−1; 1Þ, which represents z ¼ cos θ
with θ the polar angle, and another random number, ϕ, with
uniform probability in the range ð0; 2πÞ representing the
azimuthal angle. Then, we put

Q1 ¼ cosϕ
ffiffiffiffiffiffiffiffiffiffiffiffi
1 − z2

p
; ð14Þ

Q2 ¼ sinϕ
ffiffiffiffiffiffiffiffiffiffiffiffi
1 − z2

p
; ð15Þ

Q3 ¼ z: ð16Þ

Note that Q2 is constant in the evolution. This can be
proved by multiplying both sides of Eq. (11) by Qa and
summing over a ¼ 1, 2, 3: on the left-hand side we would
have a term proportional to E dQ2=dt, while on the right-
hand side we would have a term proportional to εabcQcQa:
this vanishes because the antisymmetric εabc is saturated
with the symmetric tensor QaQc. Therefore, dQ2=dt ¼ 0
for each heavy quark: the interaction of the heavy quarks
with the gluon field gives kicks to the color charge vector
ðQ1; Q2; Q3Þ but does not change its magnitude. For each
heavy quark we produce an antiquark as well: for this, we
assume the same initial position of the companion quark,
opposite momentum and a random color charge. Solving
the Wong equations is equivalent to solve the Boltzmann-
Vlasov equations for a collisionless plasma made of heavy
quarks, which propagate in the EG. We enlarge the number
of heavy quarks by Np test particles to improve statistics:
this amounts to replacing g2 → g2=Np in Eq. (13).
Heavy quarks are initialized at time τform ¼ 1=ð2mÞ. In

calculations based on relativistic transport the heavy quarks
are assumed to do a free streaming between their formation
time and the initialization of the quark-gluon plasma phase,
see [77] and references therein; we do not have a free
streaming period and the heavy quarks are formed exactly
at their formation time and interact immediately with the
gluon background.

III. A QUICK REMINDER ON THE DIFFUSION
IN THE BROWNIAN MOTION

In this section, we review briefly the classical Brownian
motion in one spatial dimension: this reminder is useful to
fix a few key results, that allow to understand better those
that we obtain for the motion of the heavy quarks in the EG.
For simplicity we study only the case of a nonrelativistic
particle: results about momentum broadening are valid also
in the relativistic case. In order to highlight the most
important characteristics of the Brownian motion we make
several assumptions along the way: these assumptions have
illustrative purposes and are not done in the full solution of
the problem for charm presented in the next section.
Brownian motion is the motion of a heavy particle, with

massM, in a bath that interacts with the particle via a time-
dependent random force, ξðtÞ, plus a viscous force, fdrag
given by

fdrag ¼ −
Z

t

0

γðt − t1Þpðt1Þdt1: ð17Þ

Here γðtÞ is the dissipative kernel, that in general can
depend on time. The evolution of momentum of the heavy
particle is governed by the equation

dp
dt

¼ −
Z

t

0

γðt − t1Þpðt1Þdt1 þ ξðtÞ: ð18Þ

In this equation, fdrag is responsible of the energy loss of
the heavy particle, while ξðtÞ causes momentum broad-
ening, see also the discussion below. In particular, the
viscous force is necessary for the equilibration of the heavy
particle with the medium.
The random force ξ is assumed to satisfy hξðtÞi ¼ 0 and

hξðt1Þξðt2Þi ¼ 2Dfðt1 − t2Þ; ð19Þ

in the simplest case, the time correlations of the random
force are neglected so it is assumed that

fðt1 − t2Þ ¼ δðt1 − t2Þ; ð20Þ

namely the motion of the heavy particle is a Markov
process. On the other hand, for the very early stage of the
propagation of heavy quarks in the EG it is useful to
introduce memory effects, namely assume that the time
correlator of the random force driven by the gluon fields
vanishes only if jt1 − t2j ≫ τmem.
For the discussion we assume τmem ≪ τtherm, which we

have verified a posteriori to be satisfied by heavy quarks in
the EG fields. Under this assumption, it is legitimate to
consider Eq. (18) in three limits, namely t ≪ τmem that we
call the very early stage, τmem ≪ t ≪ τtherm that we call
the preequilibrium stage and τtherm ≪ t that we call the
equilibrium stage.
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First, we focus on the very early stage. The general
solution of Eq. (18) can be written in terms of Laplace
transforms [62] and will be presented elsewhere; for the
purpose of the present study it suffices to say that for t ≪
τmem ≪ τtherm the drag force can be neglected and, putting
σp ≡ hðpðtÞ − P0Þ2i with P0 ¼ pðt ¼ 0Þ, we have

σp ¼ 2D
Z

t

0

dt1

Z
t

0

dt2fðt1 − t2Þ≡ 2DFðtÞ; ð21Þ

where we have used hξðtÞi ¼ 0, hP0ξðtÞi ¼ 0 as well as
Eq. (19). In the very early stage we can expand the right-
hand side of the above equation in powers of t=τmem,
namely FðtÞ ≈ F0ð0Þtþ F00ð0Þt2=2 with each prime denot-
ing a derivative with respect to t, and

F0ðtÞ ¼ 2

Z
t

0

dt1fðt − t1Þ; ð22Þ

F00ðtÞ
2

¼ fð0Þ þ lim
t→0þ

Z
t

0

dt1
∂
∂t fðt − t1Þ: ð23Þ

We notice that if fðt − t1Þ has no singularities then
F0ð0Þ ¼ 0. The only case in which F0ð0Þ ≠ 0 is when
fðt − t1Þ is singular, for example for t1 ¼ t: this happens in
particular for the Markov processes. For the case of heavy
quarks in EG the random force is related to the correlators
of the electric and magnetic color fields that are not singular
[45] so it is meaningful to study this case.
For the sake of illustration we assume

fðtÞ≡ 1

2τmem
exp

�
−

jtj
τmem

�
; ð24Þ

normalized as
Rþ∞
−∞ fðtÞdt ¼ 1. Specializing to Eq. (24) we

get F0ð0Þ ¼ 0 and

σp ¼ D
t2

τmem
; t ≪ τmem: ð25Þ

We notice that σp ∝ t2 in the very early stage. Clearly,
changing Eq. (24) will not change Eq. (25) modulo an
overall constant factor as long as the correlator of the force
is a regular function. Assuming such regular correlator we
can write, in general,

σp ¼ DF00ð0Þt2:t ≪ τmem: ð26Þ

We will use the above result in Sec. IVA.
For the prethermalization and equilibrium stages the time

range is much larger than the decay time of the memory and
we can effectively assume Eq. (20) instead of Eq. (24) to
evaluate σp; moreover, in this case, assuming for simplicity
γðtÞ ¼ 2γδðtÞ, Eq. (18) is replaced by

dp
dt

¼ −γpþ ξðtÞ: ð27Þ

The solution of Eq. (18) is given by

pðtÞ ¼ P0e−γt þ e−γt
Z

t

0

dt1eγt1ξðt1Þ; ð28Þ

where P0 ¼ pðt ¼ 0Þ. After a straightforward calculation
we get

σp ¼ P2
0ðe−γt − 1Þ2 þD

γ
ð1 − e−2γtÞ; ð29Þ

which represents the standard momentum broadening of a
particle subject to a Brownian motion without memory.
From the above equation we get, in the prethermalization
and equilibrium stages,

σp ≈ 2Dtþ γðP2
0γ −DÞt2; t=τtherm ≪ 1; ð30Þ

and

σp ≍
D
γ
þ P2

0; t=τtherm ≫ 1; ð31Þ

where ≍ means that the quantity on the left tends asymp-
totically to the one on the right in the large time limit.
Notice that although we consider the nonrelativistic limit in
this section, Eqs. (30) and (31) are valid also in the
relativistic limit: in fact, no assumption has been done
on the relation between energy and momentum. In par-
ticular, Eq. (31) implies that hp2ðtÞi ≍ D=γ. It can easily be
verified that the evolution of σp at small and large times in
Eqs. (30) and (31) agrees with that obtained by the solution
of the one-dimensional Fokker-Planck equation solved
with a δ-function initial condition [52].
The physical meaning of Eqs. (26), (30), and (31) is that

for times much smaller than the memory time, momentum
spreads quadratically with time until the heavy particle
enters the prethermalization stage, with linear momentum
spreading. In both these regimes the motion is dominated
by the diffusion, while the drag force appears only to higher
orders in time and affects the later motion of the heavy
particle. On the other hand, for times much larger than the
thermalization time, the heavy particle equilibrates with the
medium, as a result of the balance of the momentum
spreading given by ξðtÞ and the energy loss driven by fdrag.
From dx=dt ¼ p=M we get, putting σx ≡ hðxðtÞ − x0Þ2i,

σx ¼
P2
0

M2

ð1 − e−γtÞ2
γ2

þ 2D
M2

4e−γt − e−2γt − 3

2γ3
þ 2D
M2γ2

t; ð32Þ
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we notice the last addendum on the right-hand side
of the above equation, that gives the characteristic
σx ∝ t at large times. Once again, it is convenient to
consider the limits of small and large times; for the former
we get

σx ≈
P2
0

M2
t2 þ 2D − 3P2

0γ

3M2
t3; t=τtherm ≪ 1; ð33Þ

and for the large times

σx ≍
2D
M2γ2

t; t=τtherm ≫ 1; ð34Þ

which is the classic result of the Brownian motion.
Considering the very early stage in which memory is
effective adds a term Oðt4Þ to Eq. (33), which is less
important than the ballistic term Oðt2Þ. In plain words,
Eqs. (33) and (34) state that for times much smaller than the
thermalization time the heavy particle experiences an
accelerated motion due to the random force; this motion
is gradually slowed down by the friction and waiting
enough time, the balance between friction and random
force will lead to the linear spreading of the position of the
particle.

IV. RESULTS

A. Diffusion in the transverse momentum space:
toy model initial condition

To begin with, we prepare a δ-like initialization in
transverse momentum, pT , and study the evolution of
the distribution function, dN=dpT , and of momentum
and energy of the charm quark. For this toy model
initialization we use nc ¼ 15 heavy quarks, which roughly
corresponds to the number of charm quarks produced in
Pb-Pb collisions at midrapidity at the LHC energies [78].
We show the results for charm quarks only, since they look
very similar for the case of beauty quarks.
In Fig. 1 we plot dN=dpT at t ¼ 0.2 fm=c (blue lines),

t ¼ 0.6 fm=c (orange lines), and at t ¼ 1 fm=c (green
lines); the solid lines correspond to calculations with the
color current while the dashed line to those without the
current. The upper panel corresponds for an initial pT ¼
0.5 GeV while in the lower panel the initial pT ¼ 5 GeV;
in all calculations we initialize the quarks with momentum
pz ¼ 0. The effect of the backreaction, due to the color
current, on the charm quark is evident in the small pT case:
in fact, the evolution of dN=dpT when the current is taken
into account is slower with respect to the case in which the
current is not considered, as expected by a drag force; this is
seen by the naked eye by examining both the evolution of
the peak value and the broadening of dN=dpT . When we
consider larger values of pT , we find that the effect of the
drag force is not strong.

In Fig. 2 we plot the momentum variance of charm
quarks, σp, versus time, for three values of the initial pT ,
where we have put

σp ¼ 1

2
hðpxðtÞ − p0xÞ2 þ ðpyðtÞ − p0yÞ2i; ð35Þ

with p0x; p0y denoting the x, y components of the initial
transverse momentum and p2

T ¼ p2
x þ p2

y. The solid lines
in Fig. 2 denote the results with current taken in to account,
dashed lines correspond to calculations without current.
Results correspond to g2μ ¼ 3.4 GeV. We notice that at
small pT the effect of the drag force is quite large, lowering
the momentum broadening of ≈40% after t ¼ 1 fm=c of
evolution in the gluon field; the effect of the current
becomes smaller for larger values of pT . However, for

FIG. 1. Distribution function, at t ¼ 0.2 fm=c (blue lines), t ¼
0.6 fm=c (orange lines), and at t ¼ 1 fm=c (green lines); the solid
lines correspond to calculations with the color current while the
dashed line to those without the current. Initial momentum is
p0 ¼ 0.5 GeV in the upper panel and p0 ¼ 5 GeV in the lower
panel. Calculations correspond to αs ¼ 0.3.
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the typical lifetime of the prehydro stage in nuclear
collisions at the LHC energy, τ ≈ 0.3 fm=c [78], we find
that even for small pT including the drag force does not
affect the σp substantially: for example, for p0 ¼ 0.5 GeV
we find that the effect of the current is to lower σp of ≈13%.
We notice that the evolution of σpðtÞ is not linear in the

whole time range considered, see in particular the early
time behavior of p0 ¼ 0.5 GeV in the lower panel of Fig. 2,
which is the one more relevant for the role of EG in the
early stage of relativistic heavy ion collisions. This non-
linearity be understood as the effect of memory in the very
early stage of the evolution of charm in the gluon field,
similarly to the early stage of the non-Markovian Brownian
motion discussed in Sec. III for which σp ∝ t2. The
calculation of the correlators of the force is beyond the
purpose of this article; however, to check the plausibility of
memory effects in the EG we have computed the correlator
of the electric field at different times and found a decay time

≈0.06 fm=c ≈ 1=g2μ. Using Eq. (21) to fit the data in the
lower panel of Fig. 2 we estimate τmem ≈ 0.07 fm=c in
agreement with the result of the correlator.
We estimate the diffusion and drag coefficients of charm

by fitting the data in Fig. 2 with Eq. (29) up to t ¼ 2 fm=c,
starting from t ¼ 0.2 fm=c to remove the early stage that
is dominated by the memory. We get D ¼ 3.37 GeV2=fm
and γ ¼ 0.026 fm−1 for p0 ¼ 0.5 GeV; we use γ to
estimate the thermalization time of the charm in the glasma,
namely τtherm ¼ 1=γ ≈ 38 fm=c.
In Fig. 2 we compare the results with those obtained by

solving the standard Langevin equations without memory
Eq. (29), with the values ofD and γ that we get for charm in
the EG; we represent the data with blue dot-dashed lines.
We notice that initially the ∝ t2 of charm in the gluon fields
makes momentum broadening slower than the correspond-
ing Markovian dynamics. On the other hand, for t≳ τmem
the broadening in the gluon fields overshoots the Langevin
results and gives a faster diffusion in momentum space. We
present more comparisons with the Langevin dynamics
in Sec. V.
We can summarize our findings by writing that if we had

to follow the diffusion of charm in the EG for times up to
≈1 fm=c, then this would appear largely as a standard
Brownian motion with drag and diffusion, however mostly
dominated by diffusion since equilibration time is quite
larger than 1 fm=c. On the other hand, limiting to consider
the timescales ≈0.3 fm=c, which are those relevant for the
relativistic heavy ion collisions, the memory is qualitatively
important as it slows down the momentum broadening of
the charm quarks in the very early stage, then gives a boost
and puts σp above the result we would measure if the
diffusion was a Markov process. Having added the drag
force by the color current, we have found that the net effect
of the drag in this short time range is quite modest.

B. Diffusion in the transverse momentum space:
realistic initial condition

Next we turn to a realistic initialization of heavy quarks
in transverse momentum space. To this end, at the for-
mation time we assume the prompt spectrum obtained
within fixed order þ next-to-leading log QCD that repro-
duces the D-mesons spectra in pp collisions after frag-
mentation [79–81]

dN
d2pT

����
prompt

¼ x0
ð1þ x3pT

x1Þx2 ; ð36Þ

the parameters that we use in the calculations are
x0 ¼ 20.2837, x1 ¼ 1.95061, x2 ¼ 3.13695, and x3 ¼
0.0751663 for charm quarks; the slope of the spectrum
has been calibrated to a collision at

ffiffiffi
s

p ¼ 5.02 TeV. We
use nc ¼ 15 charm quarks as in the δ-function initializa-
tions, corresponding to the estimated number of charm

FIG. 2. Time evolution of σp of charm quarks with different
initial momenta. Solid lines correspond to the calculations with
the color current, dashed lines stand for the results without color
current. In the lower panel we enlarge the early time region for the
case p0 ¼ 0.5 GeV to remark on the nonlinear behavior of σpðtÞ.
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quarks produced in Pb-Pb collisions at midrapidity at the
LHC energies [78]. Moreover, we assume that the initial
longitudinal momentum vanishes. In coordinate space, for
the setup of AA collisions, we simulate the most central
interaction region in which we assume that width of the
random color density fluctuations, given by g2μ, is con-
stant: as a consequence, we assume that the probability of
formation of heavy quarks in this region is also uniform.
We can quantify the effect of the propagation of charm

quarks in the EG by introducing the modification factor,
RAA, defined as

RAA ¼ ðdN=d2pTÞevolved
ðdN=d2pTÞprompt

; ð37Þ

where the prompt spectrum is given by Eq. (36) and
ðdN=d2pTÞevolved corresponds to the spectrum after the
evolution in the glasma fields: this is a time dependent
quantity so in general RAA depends on time as well. If
RAA ¼ 1 for all values of pT it means that the spectrum
after the evolution is the one computed from hard scatter-
ings in PQCD; on the other hand, RAA ≠ 1 signals the
interaction of the charm with the medium.
In Fig. 3 we plot the nuclear modification factor for c

quarks at three different times, computed with and without
the color current in the YM equations. The tilting of the
spectrum discussed above naturally results in RAA smaller
than one at low pT, as a result of the diffusion of these
charms to higher pT ; the larger the time of the evolution in
the gluon field, the larger the effect on RAA. The drag force
induced by the polarization of the medium slows down the
evolution of the spectrum, and it naturally results in a
slower evolution of RAA as well.

The results in Fig. 3 agree qualitatively with those
presented in [46,49]: the main novelty of the present work
is to upgrade those results taking into account the drag
force that results from the polarization of the medium
induced by the color current carried by the quarks.
Quantitatively, we find that at up to t ¼ 0.3 fm=c the
effect of the drag force is negligible, while it is substantial
at t ¼ 1 fm=c. The typical lifetime of the prehydro stage is
τ ≈ 0.3 fm=c for collisions at the LHC energies [78],
therefore the results of the present study suggest that the
inclusion of the color current of the charm quarks will not
affect drastically the evolution of the spectrum at the LHC
energies in comparison to the results published in [46,49].
The qualitative shape of RAA that we get at the end of the

prethermalization stage is different from the one that is
usually found after the evolution in the quark-gluon
plasma, see [38,82] and references therein: there, the
diffusion of the large pT charm quarks to lower pT states
due to energy loss is evident. It should be noted that in the
present calculation the energy density of the bulk is quite
larger than the one in the quark-gluon plasma phase;
therefore in the latter the effect of the drag force will be
larger than the one we have found here. In fact the energy
density, ε, of the EG can be guessed to be of the order of
OðQ4

sÞ: for Qs ¼ 2 GeV, that corresponds to the value of
g2μ that we use in our simulations, we get the educated
guess ε ¼ O½ð2 GeVÞ4�; this guess, and what we compute
in the actual simulation that is ε ≈ 7 GeV4, are in the same
ballpark. Moreover, the drag coefficient of charm in the
quark-gluon plasma phase is larger than the one we have
found in the EG. Both these factor make the motion of
charm in the prethermalization stage gluon fields domi-
nated by diffusion and low-pT flow to higher pT. As a final
remark, we have checked that the curves in Fig. 3 invert
their tendency already for pT ≈ 7 GeV, namely dRAA=dpT
becomes negative and RAA approaches 1. We do not show
the result in Fig. 3 because it would require much more
statistics due to the small number of charm quarks that sit in
that pT region.

C. Diffusion of charm in the transverse
coordinate space

In Fig. 4 we plot the transverse coordinate variance of
charm quarks, σx, versus time, where

σx ¼ hðxTðtÞ − x0Þ2i; ð38Þ

for the cases with and without the color current in the YM
equations. The calculation setup corresponds to that of
Fig. 4. Energy loss slows down the diffusion since σx is
bent downwards when the color current is introduced. Once
again, the effect of energy loss is quite modest for the very
early times up to t ≈ 0.3 fm=c, while it becomes more
substantial for larger times.

FIG. 3. Nuclear modification factor of charm quarks versus pT ,
computed at different times. Calculations with and without
current are represented by solid and dashed lines, respectively.
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Combining the results of this and previous subsections,
we conclude that the motion of charm in the prethermal-
ization stage is that of a ballistic diffusion. In fact,
equilibration time is much larger than the lifetime of the
prehydro stage, which gives σx ∝ t2 in the time range of
interest, and σp ∝ t2 in the same time range overshooting
the standard diffusion for which σp ∝ t.

V. COMPARISON WITH LANGEVIN
DYNAMICS

In this section, we compare the evolution of charm
quarks in the EG with that obtained by solving standard
Langevin equations without memory. To facilitate the
comparison we use the same diffusion coefficient in all
calculations, namely D ¼ 3.37 GeV2=fm, which matches
what we estimated in Secs. IVA and IV B.
In Fig. 5 we plot σp versus time for the initialization

p0 ¼ 0.5 GeV: Langevin 1 uses the same γ of EG namely
γ ¼ 0.026 fm−1, while in Langevin 2 and 3 we have used
the γ that would be required by the fluctuation-dissipation
theorem, γ ¼ D=ET, for T ¼ 1 GeV and T ¼ 1.5 GeV,
respectively: these are γ ¼ 1.72 fm−1 in Langevin 2 and
γ ¼ 2.59 fm−1 in Langevin 3. In the cases Langevin 2 and 3
it is obvious that charm quarks equilibrate with the thermal
medium within ≈1 fm=c. In the lower panel of Fig. 5 we
enlarge the very early stage of the evolution, up to
t ¼ 0.2 fm=c: we notice that σp in all cases is different
both qualitatively and quantitatively from the one in the
EG. In particular, the effect of memory is clearly visible in
the EG for σp ∝ t2 rather than ∝ t up to t ≈ τmem, and σp in
the EG overshoots that in the Langevin dynamics
for t≳ τmem.

VI. CONCLUSIONS AND OUTLOOK

We have studied the diffusion of charm quarks in the EG
produced in high energy nucleus-nucleus collisions. We
have solved consistently the Yang-Mills equations for the
evolution of the gluon field and the Wong equations for
the heavy quarks. The main novelty of this study is the
inclusion of the color current carried by heavy quarks in the
classical Yang-Mills equations of the gluon field, that is
necessary to describe the energy loss of heavy quarks due
to the polarization of the medium [58–61]. This study
concludes the one started in [46,49,51], in which the
phenomenological impact of the diffusion of heavy quarks

FIG. 4. Transverse coordinate dispersion of charm quarks
computed with and without the color current. We take
g2μ ¼ 3.4 GeV.

FIG. 5. Comparison of σp of charm quarks versus time,
between evolution in EG and in a thermal medium via Lan-
gevin equations. Initialization corresponds to p0 ¼ 0.5 GeV.
All Langevin calculations have the same D of EG, D ¼
3.37 GeV2=fm. Langevin 1 uses the same γ of EG, while in
Langevin 2 and 3 we have used the γ that would be required by
the fluctuation-dissipation theorem, γ ¼ D=ET, for T ¼ 1.5 GeV
and T ¼ 1 GeV, respectively: these are γ ¼ 1.72 in Langevin 2
and γ ¼ 2.59 in Langevin 3. Lower panel corresponds to an
enlargement to 0.2 fm=c.
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in glasma have been studied for the first time. There, the
idea that diffusion in the early stage affects the nuclear
modification factor as well as the elliptic flow of heavy
quarks, despite the short lifetime of the prehydro stage, was
investigated, but the calculations neglected the color
current carried by the heavy quarks and the subsequent
backreaction on the motion of heavy quarks themselves.
We fill this gap here.
Qualitatively, our results agree with the expectation that

the energy loss slows down the momentum broadening of
charm and beauty in the EG. This affects the evolution
of the nuclear modification factor in the prehydro stage:
however, taking into account energy loss we get RAA that is
consistent, within the 10%, with results previously com-
puted without the current. This modest effect can be
understood easily because the current carried by charm
and beauty is very tiny due to the low density of these
quarks in the initial stage. Therefore, we confirm the
previous findings [46,49,51] that the diffusion of the heavy
quarks in glasma is responsible of a tilt of their spectrum,
effectively moving low pT quarks to higher pT. We have
achieved this conclusion by studying δ-function initializa-
tions as well as realistic pT initializations, looking at both
the momentum broadening and the RAA of charm.
We have investigated more closely the motion of the

heavy quarks. We have found that overall the diffusion with
drag can be interpreted in terms of the Brownian motion at
late times, plus a motion with memory effects in the very
early stage of the evolution. We achieve this by studying the
pT broadening versus time, σpðtÞ, and identify an initial
range in which σp ∝ t2, interpreting this as an effect of
memory related to the finite time width of the correlators of
the electric and magnetic color fields. This non-Markovian
regime lasts in the very early stage of the evolution and is
dominated by diffusion, and is followed by a standard
Brownian motion regime with drag and diffusion; the net
effect of the drag is however small because the lifetime of
the prehydro stage is smaller than the thermalization time of
heavy quarks and in this case the leading contribution to
momentum broadening comes from diffusion. Significant
effects of drag have been found at later times, t ≈ 1 fm=c;
however, these times are well beyond the lifetime of the
preequilibrium stage of high energy nucleus-nucleus colli-
sions, therefore it cannot affect any observable. For the time
range in which the EG can play a role in collisions the
diffusion in the early stage is the relevant one, in which the
effect of memory is important. In the very early stage we
have found some quantitative difference with the diffusion
of a standard Brownian motion studied via Langevin
equations without a memory kernel. In particular, momen-
tum broadening in the EG proceeds slower than the linear
increase of the standard Brownian motion, then overshoots
the latter: at the end of the EG evolution, τ ≈ 0.4 fm=c, the

σp that we get from EG is larger than the one we would
obtain by Langevin dynamics with same drag and diffusion
coefficients.
We have also studied the diffusion of charm in coor-

dinate space. We have found that coordinate broadening,
σx, evolves in the early stage as σx ∝ at2 þ bt3 hence faster
than the steady state Brownian motion result σx ∝ t. This
faster diffusion in coordinate space means that the diffusion
of charm in the EG is in the ballistic regime.
In conclusion, our findings support the diffusion with no

drag advertised in [46,49,51], and allow us to understand it
easily: the time range relevant for the propagation of the
heavy quarks in the EG is much smaller than the equili-
bration time, and in this regime the motion is diffusion
dominated; a short transient where memory is important is
replaced by a standard Brownian motion at later times. The
drag, which we have computed self-consistently in this
study, does not affect in a considerable way the observables
that we have studied, in particular the nuclear modification
factor, because substantial energy loss is effective only on
timescales comparable with the thermalization time.
While this study answers the question whether energy

loss is an important ingredient to study the diffusion of
heavy quarks in the EG, it opens up other questions. The
role of fluctuations in the initial stage should be considered:
it is well known that fluctuations enhance isotropization
already in the initial condition of glasma [24,33]; therefore
it is interesting to study how a larger amount of isotropiza-
tion affects the evolution of the heavy quarks. In addition to
this, it is important to focus on phenomenological calcu-
lations aimed to compute the impact of the early stage
diffusion on observables, mostly hadron spectra, two-
bodies correlations, and collective flows, both in proton-
nucleus and nucleus-nucleus collisions. Protons can be
initialized similarly to nuclei according to the constituent
quark model, see [83–87] and references therein. We have
not included the cold nuclear matter effects [54,55,88–93]
in the initialization of the charm quarks, therefore adding
them is a further improvement of the present work. We will
report on these subjects in the near future.
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