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Abstract 

It is now estimated that over than 300 million people of all ages and races, suffer from 

asthma. The burden of this disease for governments, families, and patients is increasing 

globally. Asthma is a heterogeneous and complex condition caused by a combination 

of genetic and environmental factors that result in recurrent, reversible bronchial 

obstruction.  Asthma is characterized by recurrent cough, wheeze, chest tightness, and 

responsive to bronchodilators.
1  

Airway hyper-responsiveness, chronic airway 

inflammation, remodelling, and mucus hyper-secretion are important features of asthma. 

Oxidative stress is thought to play a central role in asthma. It occurs when the 

production of oxidative species overcomes the ability of the biological systems to 

readily detoxify them or repair the resulting cellular damage. Oxidative stress and a 

disturbed anti-oxidant status are well established in asthmatics. However, no systematic 

examination of protein oxidation and anti-oxidant defenses in asthmatics has been 

performed.  

This thesis has been focused on the evaluation of oxidative stress and anti-oxidant 

response in asthma and during its exacerbation (worsening of symptoms). Specifically, 

the current thesis was aimed to assess the oxidative consequences of an asthma 

exacerbation on cellular proteins and to identify anti-oxidant pathways mainly involved 

in the protective response. The thesis also has had as object the relation between 

oxidative stress, anti-oxidant status, and asthma symptoms in adult patients. A 

comprehensive bio-chemical evaluation of oxidative status and anti-oxidant defenses is 

needed to identify the nature and extent of any possible anti-oxidant deficience or 

oxidative abnormality during asthma and its exacerbation. A full understanding of the 

redox control of asthma exacerbation could support the development of safe and 

effective therapeutic interventions. The current thesis also aims to highlight gaps in 

knowledge and potential avenues for further investigation. 

The population that participated in the studies included in this thesis consists of 4 

groups of asthmatics. The first group of nine mild asthmatics was challenged with 

Rhinovirus-16 in order to cause a virus-induced asthma exacerbation. The second group 

included twenty allergic asthmatics exposed to House Dust Mite (HDM) in order to 

provoke an allergen-induced asthma. The third group was composed of thirty-seven 

http://en.wikipedia.org/wiki/Genetics
http://en.wikipedia.org/wiki/Environmental_factor
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laboratory animal workers exposed to occupational allergens from rodents over a period 

of two years; some of them did become allergic. The fourth group included twenty-three 

asthmatics under corticosteroids treatment whose withdrawal caused the asthma 

exacrbation on-set. In vivo, ex-vivo, and in-vitro experiments have been performed in 

different settings and with different purposes in order to elucidate the relation of 

oxidative status and asthma exacerbation. Protein oxidation has been evaluated as stable 

bio-marker of oxidative stress and the expression level was measured for several anti-

oxidant and cyto-protective proteins in plasma and induced sputum from asthmatics. 

Pro-inflammatory mediator production has been also determined. 

Patients during asthma exacerbation, as expected, showed higher level of oxidative 

stress. Interestingly, patients during an exacerbation were also more susceptible to 

oxidative protein damage; this was associated with a reduced anti-oxidant capacity, 

reduced nuclear translocation of the main anti-oxidant transcription factor, and 

enhanced pro-inflammatory mediator production. Furthermore, baseline levels of 

oxidative stress were able to predict which patients were more prone to develop 

exacerbation symptoms. Taken together these results suggest that enhancing local anti-

oxidant mechanisms in asthmatics may attenuate airway inflammation and the 

exacerbation. 

Keywords: Oxidative stress; Anti-oxidant response; Virus-induced asthma exacerbation; 

Allergen induced asthma exacerbation; Corticosteroids-induced asthma exacerbation; 

Induced sputum; Allergy; Sensitization; Rhinovirus-16; House Dust Mites 

(HDM);.Sirtuins; Carbonylation; Lipid peroxidation; Heat Shock Proteins; Acetylation. 
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Chapter 1 

1. Asthma 

Asthma is one of the most prevalent chronic diseases worldwide. This condition is 

characterized by a complex inter-relation of airflow obstruction, bronchial 

hyperresponsiveness and airway inflammation.
1
 Several aetiological risk factors have 

been identified for this disease, including genetic and environmental causes. Due to the 

rapid increase in the prevalence of asthma observed over the past three decades, it can 

be hypothesized that biological, life style and environmental factors play a role in the 

susceptibility of individuals. In this first chapter the main pathophysiological and 

aetiological factors thought to play a role in asthma will be described, as well as its 

epidemiological, diagnosis and prognosis. 

1.1. History 

The term Asthma comes from the Greek verb aazein, meaning to pant, exhale with open 

mouth, and sharp breath. Asthma has been already known from ancient Egyptian times. 

Indeed, the Georg Ebers Papyrus encompasses prescriptions for over 700 remedies for 

asthma as to heat a mixture of herbs and inhale their fumes.  

Hundred years ago it was common in China to treat a person with asthma using herbs 

containing ephedrine.  

It was in the Iliad, a Greek epic poem attributed to Homer, that the expression asthma 

appeared for the first time. However, the Corpus Hippocraticum is the first manuscript 

where the term is used as a medical term. Hippocrates assumed that spasms associated 

to asthma were more expected to occur amongst anglers, tailors and metal-workers. 

Aretaeus of Cappadocia (100 AD) composed a clinical description of asthma.  

Galen (130-200 AD) defined asthma as bronchial obstructions and treated it with owl's 

blood in wine. Moses Maimonides (1135-1204 AD), the philosopher from Andalucia 

(Spain), wrote Treatise of Asthma for Prince Al-Afdal. Maimonides showed that his 
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patient's symptoms often started as a common cold. Eventually the patient gasped for air 

and coughed until mucus was expelled. Maimonides recommended avoidance of strong 

medication, plenty of rest, fluids, moderation of sexual activity, and warm soups.  

Jean Baptiste Van Helmont (1579-1644 AD), a physician from Belgium, assumed that 

asthma initiates in the pipes of the lungs. Bernardino Ramazzini (1633-1714 AD), the 

predecessor of sports medicine, identified a link between asthma and organic dust. He, 

moreover, recognized and defined the exercise-induced asthma. 

At the beginning of the 20th century asthma was considered as a psychosomatic illness 

with management frequently involving psychoanalysis and 'talking cures'. This 

psychiatric model was disproved and asthma became recognized as a physical condition. 

Asthma, as an inflammatory disease, was not really accepted until the 1960s. 

1.2.  Pathophysiology 

Asthma can be considered the result of chronic inflammation of the airways which 

causes an increase in the contractibility of the surrounding smooth muscles and 

narrowing of the airway. The constriction is normally reversible. Changes in the 

airways include an increase in eosinophils and thickening of the lamina reticularis. The 

airways' smooth muscle can increase in size together with an increase of mucous glands. 

Cell types involved include: T lymphocytes, macrophages, and neutrophils. There is 

also the contribution of cytokines, chemokines, histamine, and leukotrienes .
2
The next 

paragraphs will describe in detail the mechanisms of inflammation, cellular and soluble 

mediators involved in the pathophysiology of asthma.  

1.2.1. Inflammation 

The pathophysiology of asthma is characterized by airway inflammation. Indeed, 

patients with acute asthma have extensively inflamed airways often reddened and 

swollen. The lumen is obstructed by mucus composed of proteins exuded from airway 

vessels and secreted from epithelial cells. The airway wall is infiltrated with 

inflammatory cells, mainly eosinophils and lymphocytes. Broncho Alveolar Lavage 

http://en.wikipedia.org/wiki/Inflammation
http://en.wikipedia.org/wiki/Smooth_muscle
http://en.wikipedia.org/wiki/Eosinophils
http://en.wikipedia.org/wiki/Lamina_reticularis
http://en.wikipedia.org/wiki/T_lymphocytes
http://en.wikipedia.org/wiki/Macrophages
http://en.wikipedia.org/wiki/Neutrophils
http://en.wikipedia.org/wiki/Cytokines
http://en.wikipedia.org/wiki/Chemokines
http://en.wikipedia.org/wiki/Histamine
http://en.wikipedia.org/wiki/Leukotrienes
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(BAL) from asthmatics has shown an increase in lymphocytes, mast cells, eosinophils 

and activated macrophages. Biopsies have shown augmented stimulated mast cells, 

macrophages, eosinophils and T-lymphocytes.
3
 These changes are found even in mild 

asthma. The inflammation in allergic asthma is determined by exposure to allergens 

through immunoglobulin E (IgE)-dependent mechanisms and is mainly characterized by 

eosinophils infiltration. Acute inflammatory response is converted into a chronic 

inflammation which structural consequences. The degree of inflammation is related to 

airway hyper-responsiveness (AHR), as measured by histamine or methacholine 

challenge. The severity of AHR in turn is related to asthma
 
symptoms and to the 

necessity for treatment. Inflammation may increase AHR by stimulation of airway 

sensory nerve endings (Fig. 1.1). 

 

Fig. 1.1 Inflammation in the airways of asthmatic patients leads to airway hyperresponsiveness and 

symptoms. Th2: T-helper 2 cells; SO2: sulphur dioxide. Source: Pathophysiology of asthma P.J. Barnes. 
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1.2.1.1. Inflammatory cells involved in asthma  

In the inflammatory pathophysiology of asthma are involved different cell types among 

which the most important are: mast cells, airway T cells, CD (+) (T helper) cells, 

basophils, macrophages, and eosinophils. In the next paragraphs the role of these cells 

in asthma pathophysiology will be briefly described. 

Mast cells are derived from the myeloid stem cells and contain granules rich 

in histamine and heparin.
4
 Mast cells are important in initiating the acute broncho-

constrictor responses to allergens, exercise, hyperventilation, etc. These cells release 

neurotrophins, pro-inflammatory cytokines, chemokines and growth factors.
5
Asthmatics 

are characterized by a marked increase in mast cells in airway smooth muscle (ASM).
6
 

Treatment with prednisone results in a decrease in mast cells.
7
 Furthermore, mast cells 

stimulate human lung fibroblast proliferation.
8
 Mast cells secrete interleukin (IL)-4 and 

tumor necrosis factor (TNF)-α.
9

These cells are activated by an IgE-dependent 

mechanism. Humanized anti-IgE antibodies inhibit IgE-mediated effects. 
10,11

 Although 

this treatment shows marginal improvements in severe steroid-dependent asthma.
12,13

  

Macrophages are activated by allergen via low affinity IgE receptors (FceRII).
14 ,15 

Alveolar macrophages have a suppressive effect on lymphocyte function which appears 

to be reduced after allergen exposure.
16

 In asthma the secretion of the anti-inflammatory 

protein IL-10 is reduced in alveolar macrophages.
17

 Macrophages also inhibit the 

secretion of IL-5 but this is defective in allergic asthmatics.
18

 These cells act as antigen-

presenting cells to T-lymphocytes.
19

 No changes in the macrophage sub-populations in 

induced sputum of allergic asthmatic have been identified.
20

 

Dendritic cells induce a T-lymphocyte mediated immune response
21

 acting as antigen-

presenting effectors.
22,23

 Myeloid dendritic cells promote the differentiation of T-helper 

(Th) 2 cells
24

 and eosinophilia.
25

Immature dendritic cells require cytokines such as IL-

12 and TNF-α to promote the normally preponderant Th1 response.
26

  

Eosinophils play a cardinal role in asthma. Indeed, allergen inhalation results in a 

marked increase in eosinophils and there is a correlation between blood eosinophil or 

http://en.wikipedia.org/wiki/Granule_(cell_biology)
http://en.wikipedia.org/wiki/Histamine
http://en.wikipedia.org/wiki/Heparin
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bronchial lavage and AHR. Eosinophils release basic proteins and oxygen-derived free 

radicals.
27,28

 Activated eosinophils induce airway epithelial damage.
29

 

Neutrophils are prominent in severe asthma.
30 ,31 , 32 ,33

 High doses of corticosteroids 

inhibit neutrophils’ apoptosis.
34,35

 When neutrophils are recruited an increase of IL-8 in 

induced sputum occurs possibly due to the increased oxidative stress. Neutrophilia is 

also associated with a reduced responsiveness to corticosteroids and acute asthma. 

T-lymphocytes release cytokines promoting the recruitment of eosinophils and mast 

cells.
36,37

 The balance between Th1 cells and Th2 cells is determined by locally released 

cytokines. IL-12 promotes Th1 cells whereas IL-4 or IL-13 favour Th2 cells (Fig. 1.2). 

Steroids effect the balance between IL-12 and IL-13.
38 , 39

 Regulatory T (Tr) cells 

suppress the immune response through the secretion of IL-10 and transforming growth 

factor (TGF)-β. 
40,41 

 

Fig. 1.2 Asthmatic inflammation is characterised by a preponderance of T-helper (Th) 2 lymphocytes. 

The transcription factors T-beta and GATA-3 may regulate the balance between Th1 and Th2 cells. 

Regulatory T-cells (Tr) have an inhibitory effect. Source: Pathophysiology of asthma P.J. Barnes. 
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B-lymphocytes secrete IgE.
42

 IL-4 is crucial in switching B-cells to IgE production, and 

CD40 on T-cells is an important signal through interaction with CD40-ligand on B-cells.  

Basophils have uncertain role in asthma.
43

An increase in basophils has been 

documented in the airways of asthmatics after allergen challenge. 
44,45

  

Platelets fall in circulating after allergen challenge with increased release of the 

chemokine RANTES. 
46 , 47

 Chemokines associated with Th2-mediated inflammation 

activate and aggregate platelets.
48

  

Epithelial cells, endothelial cells, fibroblasts and airway smooth muscle cells are also an 

important source of inflammatory mediators. 
49,50 ,51 ,52

 Epithelial cells are important 

target of inhaled glucocorticoids (Fig. 1.3). 

 

Fig. 1.3 Airway epithelial cells and inflammatory mediators’release. O2: oxygen; NO2: nitrogen dioxide; 

TNF: tumour necrosis factor; IL: interleukin; GM-CSF: granulocyte-macrophage colony-stimulating 

factor; RANTES: regulated on activation T-cell expressed and secreted; MCP: monocyte chemotactic 

protein; TARC: thymus and activation regulated chemokine; PDGF: platelet-derived growth factor; EGF: 

endothelial growth factor; FGF: fibroblast growth factor; IGF: insulin-like growth factor. Source: 

Pathophysiology of asthma P.J. Barnes. 
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1.2.1.2. Inflammatory mediators 

Different mediators are implicated in asthma showing a variety of effects (Fig. 1.4).
53

  

 

Fig. 1.4 Cells and mediators involved in asthma. Source: Pathophysiology of asthma P.J. Barnes. 

Histamine, prostaglandine, leukotrienes and kinins contract airway smooth muscle, 

increase microvascular leakage and airway mucus secretion, and attract other 

inflammatory cells.  

The cysteinyl-leukotrienes, LTC4, LTD4 and LTE4, are potent constrictors of human 

airways.
54

 Potent LTD4 antagonists protect against exercise- and allergen-induced 

broncho-constriction. Chronic treatment with anti-leukotrienes improves lung function 

and asthma symptoms.
55

 Cys-LTs increase in eosinophils in induced sputum.
56

 
,57

  

Platelet-activating factor (PAF) is a potent inflammatory mediator.
58

 A genetic mutation 

of the PAF metabolising enzyme is associated with severe asthma.
59

 However PAF 

antagonists, such as modipafant, do not control asthma symptoms.
60

  

Prostaglandins (PG) have potent effects on airway function.
61

 Nevertheless, the 

inhibition of their synthesis with COX inhibitors does not have any effect in most 

patients. Aspirin-sensitive asthmais associated with increased formation of cys-LTs.
62,63

 

PGD2 stimulates the chemo-attractant receptor of Th2 cells (CRTH2), which is 
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expressed on Th2 cells, eosinophils and basophils. Deletion of the PGD2 receptors in 

mice significantly inhibits inflammatory responses to allergen and AHR.
64

  

Cytokines play a critical role in orchestrating the inflammatory response (Fig. 1.5).
65

 

IL-3 is important for the survival of mast cells. IL-4 is critical in switching B 

lymphocytes to produce IgE and for expression of VCAM-1 on endothelial cells.
66

  

IL-5 is important in the differentiation, survival and priming of eosinophils.
67

The 

administration of an anti-IL-5 antibody (mepolizumab) is associated with a significant 

decrease in eosinophil.  

IL-9 may play a critical role in sensitising responses to the cytokines IL-4 and IL-5.
68

 

IL-1β, IL-6, TNF-α and GM-CSF are released from a variety of cells. TNF-α is 

increased in asthmatic airways.
69

 Inhalation of TNF-α increased airway 

responsiveness.
70

 TNF-α and IL-1β activate the pro-inflammatory transcription factors, 

nuclear factor-kB (NF-kB) and activator protein-1 (AP-1). Interferon (IFN)-ɤ, IL-10, 

IL-12 and IL-18, play a regulatory role and inhibit the allergic inflammatory process. 

 

Fig. 1.5 The cytokine network in asthma. TNF: tumour necrosis factor; IL: interleukin; GM-CSF: 

granulocyte-macrophage colony-stimulating factor; RANTES: regulated on activation T-cell expressed 

and secreted; MCP: monocyte chemotactic protein; TARC: thymus and activation regulated chemokine; 

PDGF: platelet-derived growth factor; EGF: endothelial growth factor; FGF: fibroblast growth factor; 

IGF: insulin-like growth factor; Th: T-helper. Source: Pathophysiology of asthma P.J. Barnes. 
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Chemokines are a large superfamily of mostly small, secreted chemotactic cytokines 

that function in leukocyte trafficking, recruitment and activation. The actions of 

chemokines are important for a wide range of processes such as allergic responses, 

infectious and autoimmune diseases. Over 50 different chemokines are now 

recognised.
71

 There is increased expression of eotaxin, eotaxin-2, MCP- 3, and MCP-4 

in the airways of asthmatics.
 72,73,74 

These molecules activate a common receptor on 

eosinophils termed CCR3.
 75 , 76

 A neutralising antibody against eotaxin reduces 

eosinophil recruitment in to the lung after allergen.
77

 RANTES also activates CCR3.
78

 

MCP-1 activates CCR2 on monocytes and T-lymphocytes. MCP-1 levels are increased 

in BAL fluid of asthmatics. Blocking MCP-1 results in a marked reduction of AHR.
79

 

CCR4 are selectively expressed on Th2 cells and are activated by the chemokines 

monocyte-derived chemokine (MDC) and thymus activation regulated chemokine 

(TARC).
80

 Epithelial cells of patients with asthma express TARC.
81

 Increased 

concentrations of TARC are found in BAL fluid of asthmatic.
82

  

Endothelins are potent peptide mediators that are vaso-constrictors and broncho-

constrictors.
83

 Endothelin-1 levels are increased in the sputum of asthmatics depending 

on allergen exposure and steroid treatment.
84 , 85

 Endothelins induce ASM cell 

proliferation promoting a pro-fibrotic phenotype. 

NO is produced by several cells in the airway by NO synthases.
86,87,88

 The level of NO 

in the exhaled air of asthmatics is increased especially during an acute exacerbations.
89 

90,91
 Measurement of exhaled NO in asthma is increasingly used as a noninvasive way 

of monitoring the inflammatory process.
92,93 

Under oxidative stress the formation of the 

potent radical peroxynitrite may result in nitrosylation of proteins in the airways.
94

  

  



19 

 

1.2.1.3. Effects of inflammation 

The acute and chronic allergic inflammatory responses have several effects (Fig. 1.6 A 

and B). The structural changes that occur in the airways are named "remodelling".
95

   

 

Fig. 1.6 A Acute and chronic inflammatory effects on the airway in asthma. Barnes. Source: 

Pathophysiology of asthma P.J. Barnes. 

 

 

Fig. 1.6 B Acute and chronic inflammatory effects on the airway in asthma. A: location of lungs in the 

body and airways in the lungs. B: a normal, non-asthmatic airway. C: an airway during asthmatic 

symptoms. The airway is narrowed, limiting air flow. Tightened muscles constrict air flow, as do 

inflamed and thickened airways. Excess mucus clogs the airway. Image: 

http://www.nhlbi.nih.gov/health/dci/Diseases/Asthma/Asthma_WhatIs.html 
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Airway epithelial shedding is a characteristic feature of asthma. Ozone-exposure, 

viruses, chemicals and allergens can lead to its development as a consequence of 

inflammatory mediator’s production. Epithelial damage results in loss of its barrier 

function to allow penetration of allergens, loss of enzymes which normally degrade 

inflammatory mediators, loss of a relaxant factor, and exposure of sensory nerves. 

Several inhaled allergens activate protease-activated receptor (PAR)-2, which shows 

increased expression in airway epithelial cells of asthmatics.
96

 Epithelial cells may also 

release growth factors that stimulate structural changes in the airways.
97

 

A thickened bronchial epithelial basement membrane has long been regarded as a histo-

pathologic characteristic of asthma.  Sub-epithelial fibrosis has been observed even in 

mild asthmatics.
98

 The basement membrane appears thickened due to the deposition of 

Type III and V collagen.
99 , 100

 TGF-β, platelet-derived growth factor (PDGF), and 

endothelin-1 can be produced by epithelial cells or macrophages in the inflamed 

airway.
101

 There is also evidence for fibrosis in ASM.
102

 

ASM contraction has a key role in the symptomatology of asthma. Many inflammatory 

mediators have broncho-constrictor effects.
103

. Reduced responsiveness to β-adrenergic 

agonists has been reported in post mortem bronchi from asthmatics.
104

 Chronic 

exposure to inflammatory cytokines, such as IL-1β, down-regulates the response of 

ASM to β2-adrenergic agonists.
105 , 106 , 107

 In asthmatics has been documented a 

characteristic hypertrophy and hyperplasia of ASM.
108,109

  

Allergic inflammation has several effects on blood vessels in the respiratory tract. 

Recent studies have revealed an increased airway mucosal blood flow in asthma.
110

 An 

increase in the vascular volume contributes to airway narrowing and exercise-induced 

asthma.
111

 The increase in blood vessels in asthmatics may also be due to the release of 

VEGF and TNF-α.
112 , 113

 Microvascular leakage is an essential component of the 

inflammatory response in asthma.
114,115

 

In asthmatics has been reported hyperplasia of sub-mucosal glands.
116,117

 Th2 cytokines 

IL-4, IL-13 and IL-9 induce mucus hypersecretion.
118

 The epithelial growth factor (EGF) 

stimulates the expression of the mucin gene MUC5AC.
 119,120

 This is associated with the 
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expression of a specific calcium-activated chloride channel in goblet cells designated 

gob-5.
121

 

Inflammatory products sensitize sensory nerve to become hyperalgesic. Neurotrophins, 

such as nerve growth factor (NGF), may be released from inflammatory and structural 

cells in asthmatic airways. 
122,123,124 

Neurotrophins cause proliferation and sensitisation 

of airway sensory nerves.
125

 Bronchodilator nerves have been shown to be defective in 

asthma.
126

 Lack of vasoactive intestinal peptide (VIP)-immuno-reactive nerves has been 

reported in severe asthma.
127

 Airway nerves release also neurotransmitters which have 

inflammatory effects (Fig. 1.7).128
 An increase in SP-immuno-reactive nerves has been 

described in severe asthma.
129

 A reduction in the activity of enzymes which degrade 

neuropeptides 
130

 and an increased gene expression of the receptors which mediate the 

inflammatory effects and bronchoconstrictor effects of SP have been descibed.
131

  

 

 

Fig. 1.7 Possible neurogenic inflammation in asthmatic airways. Substance P (SP) causes vasodilatation, 

plasma exudation and mucus secretion, whereas neurokinin A (NKA) causes bronchoconstriction and 

enhanced cholinergic reflexes and calcitonin generelated peptide (CGRP) vasodilatation. Source: 

Pathophysiology of asthma P.J. Barnes. 
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A number of transcription factors are involved in the regulation of the expression of 

inflammatory proteins in asthma (Fig. 1.8).
132

  

NF-Kb is triggered by multiple stimuli including protein kinase C activators, oxidants 

and proinflammatory cytokines.
133

 Activation of NF-kB has been shown increased in 

asthmatic airways.
134

 NF-kB regulates the expression of several pro-inflammatory 

cytokines (IL-1β, TNF-α, GM-CSF), chemokines (RANTES, MIP-1a, eotaxin), 

adhesion molecules (ICAM-1, VCAM-1) and inflammatory enzymes (cyclooxygenase-

2 and iNOS).  

The c-Fos component of AP-1 is also activated in asthmatic airways.
135

  

GATA-3 determines the differentiation of Th2 cells and is increased expression in 

asthmatics.
 136,137

 The differentiation of Th1 cells is regulated by the transcription factor 

T-bet.
138

 In a murine model the deletion of the T-bet gene is associated with asthma-like 

phenotypes.
139

 

 

Fig. 1.8 Transcription factors activated by inflammatory stimuli and responsible for increase the 

expression of multiple inflammatory genes. Nuclear factor kappa-B (NF-kB), activator protein-1 (AP-1), 

signal transduction-activated transcription factors (STATs), messenger ribonucleic acid (mRNA). Source: 

Pathophysioloof gy of asthma P.J. Barnes. 
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1.2.1.4. Anti-inflammatory mechanisms 

A numbr of anti-inflammatory mechanisms have been shown defective in asthma.
140

  

Cortisol regulates the allergic inflammatory response. Inhibition of endogenous cortisol 

secretion by metyrapone results in an increase in the late response to allergen in the 

skin.
141

 Cortisol is converted to the inactive cortisone by the enzyme 11-β-

hydroxysteroid dehydrogenase.
142

 This enzyme seems to function abnormally in 

asthma.
143

  

IL-1 receptor antagonist (IL-1ra) inhibits the binding of IL-1 to its receptors and 

therefore has a potential anti-inflammatory potential. It is reported to be effective in an 

animal model of asthma.
144

  

IL-12 and IFN-ɤ enhance Th1 cells and inhibit Th2 cells. IL-12 infusions in patients 

with asthma inhibit peripheral blood eosinophilia.
145

 The IL-12 expression seems 

impaired in asthma.  

IL-10 inhibits the expression of multiple inflammatory mediators. IL-10 secretion and 

gene transcription are defective in macrophages and monocytes from asthmatics (Fig. 

1.9).
146 , 147 , 148

 PGE2 has inhibitory effects on macrophages, epithelial cells and 

eosinophils. 15-hydroxyeicosatetraenoic (15-HETE) and lipoxins inhibit cysteinyl-

leukotriene effects on the airways.
149

 Lipoxins have also strong anti-inflammatory 

effects.
150

 

The peptide adrenomedullin, which is expressed in high concentrations in the lung, has 

bronchodilator activity
151

 and inhibit the secretion of cytokines from macrophages.
152

 

Plasma concentrations are no different in patients with asthma.
153
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Fig. 1.9 Transcription factors play a key role in amplifying and perpetuating the inflammatory response 

in asthma. IL-10 secretion is deficient in macrophages from patients with asthma, resulting in increased 

release of inflammatory mediators. NF-kB: nuclear factor kappa-B; LPS: lipopolysaccharide; inducible 

nitric oxide synthase; COX: cyclooxygenase; TNF: tumour necrosis factor; GM-CSF: granulocyte-

macrophage colony-stimulating factor; RANTES: regulated on activation T-cell expressed and secreted; 

MIP: macrophage inflammatory protein. Source: Pathophysiology of asthma P.J. Barnes. 
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1.3. Epidemiology of asthma 

In 2011 ~235 million people worldwide were affected by asthma, and approximately 

250,000 people die per year from the disease.
 154

 To date, most of the epidemiological 

evidence on the burden of asthma comes from developed populations. In the next 

paragraphs epidemiological data from a study on asthma prevalence in the United States 

from 2001 to 2010 will be shown. This study has shown an increase from 7.3% in 2001 

to 8.4% in 2010 (Fig. 1.10).
155

 In the United States in 2010, an estimated 25.7 million 

people had asthma: 18.7 million adults aged 18 and over, and 7.0 million children aged 

0–17 years.
155

 

 

Fig. 1.10 Asthma prevalence in the United States, 2001-2010. Source: CDC/NCHS, National Health 

Interview Survey.  

 

The study showed that children aged 0–17 years had higher asthma prevalence (9.5%) 

than adults aged 18 and over (7.7%) for the period 2008–2010. Females had higher 

asthma prevalence than males (9.2% compared with 7.0%).
155

 Persons of multiple race 

had the highest asthma prevalence (14.1%), while Asian persons had the lowest rates 

(5.2%). Persons of black (11.2%) and American Indian or Alaska Native (9.4%) races 

had higher asthma prevalence compared with white persons (7.7%). Among Hispanic 

groups, asthma prevalence was higher among persons of Puerto Rican (16.1%) than 

Mexican (5.4%) descent (Fig. 1.11).
155

 

http://en.wikipedia.org/wiki/Asthma
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Fig. 1.11 Asthma prevalence, by selected demographic characteristics: Sources: CDC/NCHS, Health 

Data Interactive and National Health Interview Survey.
155

  

 

In the United States asthma prevalence from 2001 to 2010 was higher for groups with 

lower income-to-poverty level ratios. While 11.2% of those with incomes less than 100% 

of the poverty level had asthma, asthma prevalence was 8.7% for persons with incomes 

100% to less than 200% of the poverty level, and 7.3% for persons with incomes at least 

200% of the poverty level.
155 

Asthma death rates per 1,000 persons with asthma 

declined from 2001 to 2009 (Fig. 1.12). 
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Fig. 1.12 Asthma health care encounters per 100 persons with asthma, and asthma deaths per 1,000 

persons with asthma:United States, 2001–2009. Access at: http://www.cdc.gov/nchs/data/databriefs/db94  

 

The rates of health care encounters per 100 persons with asthma across all health care 

settings (Fig. 1.13) were similar for males and females, and for black and white persons, 

but the rate for children was higher than that for adults.
155 

 

Fig. 1.13. Asthma health care encounters per 100 persons with asthma: United States, 2001–2009. NOTE: 

Access data table for at: http://www.cdc.gov/nchs/data/databriefs/db94_tables.pdf#4  

 

Children aged 0–17 years with asthma had a higher asthma visit rate for primary care 

and a higher ED visit rate than adults aged 18 and over.
155

  

http://www.cdc.gov/nchs/data/databriefs/db94
http://www.cdc.gov/nchs/data/databriefs/db94_tables.pdf#4
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In the United States the asthma death rate per 1,000 persons with asthma was 0.15 for 

the period 2007–2009. The highest rate was for adults aged 65 and over (0.58 per 1,000 

persons with asthma) (Fig. 1.14).
155

 

 

Fig. 1.14 Asthma deaths per 1,000 persons with asthma, by selected demographic characteristics: United 

States, average annual 2007–2009.
155

  

 

Asthma prevalence also differs between populations of the same ethnicity. U.S.-born 

Mexican populations, for example, have higher asthma rates than non-U.S. born 

Mexican populations that are living in the U.S.
156

 

Asthma affects approximately 5% of the United Kingdom’s population.
157

 In England, 

an estimated 261,400 people were newly diagnosed with asthma in 2005; 5.7 million 

people had an asthma diagnosis and were prescribed 32.6 million asthma-related 

prescriptions.
158

  

In Italy from 1990 to 2010 the national median prevalenceof asthma and allergic rhinitis 

increased from 4.6% to 6.6% and from 19.4% to 25.8%, respectively.
159

 Antonicelli et 

al in 2014 illustrated the overall costs of asthma in Italy with highest values for severe 

persistent asthma, Fig. 1.15. 
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Fig. 1.15 Overall costs of asthma Italy. Adapted from Antonicelli L. et al. Eur Respir J 2004. GINA 2002 

classification. 

 

In spite of the epidemiological suggestion for an increase in the prevalence of asthma in 

several countries, the bases of the increase are still debated. While the exact cause of 

asthma is not known, it is thought that a variety of factors interacting with one another, 

early in life, result in the development of asthma. It has been hypothesized that 

asthmatic subjects may have a genetic predisposition to develop the disease. Elements 

of the pathogenesis of asthma, including the immune response and the regulation of pro-

inflammatory cytokines, are also under genetic control and are activated under 

environmental factors in genetically predisposed subjects. 

The fast increase detected in asthma prevalence cannot be explained on the basis of 

genetic predisposition only. Therefore, attention has been centred on a number of 

environmental factors. Indoor and outdoor allergens, such as domestic mites, animal 

allergens, pollens, fungi and molds, have been suggested to have a role in the 

manifestation and persistence of asthma. Environmental pollutants, mainly industrial 

smog and those derived from ozone and nitrogen oxides, may intensify clinical 

manifestations of asthmatic subjects. 

As seen previously developed countries with a higher socio-economic level have the 

highest prevalence of asthma. It has been proposed that better hygienic conditions 
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derived from this affluent status may be in part related to the increase in allergic 

diseases. One of the underlying mechanisms hypothesized for the rise of atopy and 

asthma in industrialised countries, is the reduction in the incidence of early childhood 

infections and the consequent expansion of T helper type 2 lymphocytes, which would 

lead to an imbalance in the regulatory mechanisms of the inflammatory response later 

on in life. 

Children with siblings are more likely to acquire infections during their childhood and 

consequently they would be protected against allergic diseases later on in life. This has 

contributed to the hypothesis that family size and, specifically number of older siblings 

may be related to asthma. Nevertheless, changes in family size over the past 30 years do 

not explain the growth in asthma observed in the same period in the United Kingdom or 

New Zealand, two of the countries with highest prevalence. 
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1.4. Diagnosis 

The diagnosis of asthma typically is based on family history, the pattern of symptoms 

and response to therapy (Fig. 1.17). 
160

 A diagnosis of asthma should be supposed if 

there is a history of recurrent wheezing, coughing or difficulty breathing and these 

symptoms worsen due to exercise, viral infections, allergens or air pollution.
161

 

Spirometry is used to confirm the diagnosis.
 162

 Spirometry measures the lung function 

and specifically the amount (volume) and/or speed (flow) of air that can be inhaled and 

exhaled. In children under the age of six the diagnosis is more difficult as they are too 

young for spirometry. If the Forced Expiratory Volume in 1 second (FEV1) measured by 

this technique improves more than 12% following administration of a bronchodilator 

such as salbutamol, this is supportive of the diagnosis (Fig 1.16).
163

 As caffeine is a 

bronchodilator its use before a lung function test may interfere with the results.
164

 

Diffusing capacity of the lung (DL) measures the transfer of gas from air in the lung, to 

the red blood cells in lung blood vessels. Single-breath diffusing capacity helps to 

differentiate asthma from Chronic Obstructive Pulmonary Diseases (COPD). 

 

Fig. 1.16 Typical spirometric tracings in asthma. 

 

http://en.wikipedia.org/wiki/Lung
http://en.wikipedia.org/wiki/Red_blood_cell
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Bronchial hyper-responsiveness (BHR) can be defined as the tendency for the airways 

of asthmatic subjects to broncho-constrict when exposed to various chemical and 

physical stimuli. Exposure to stimuli, such as allergens, which are specific for an 

individual, produce a different effect, in that the non-specific stimuli generally cause a 

short-lived period of broncho-constriction without inducing significant airway 

inflammation whilst antigenic stimuli cause more prolonged bronchoconstriction with 

an immediate response lasting for 1-2 hours that may follow a late response at 4-8 hours, 

which is characterized by inflammatory cell recruitment to the airways. Many broncho-

constrictor stimuli can be used to measure the degree of BHR, including inhaled 

histamine or methacholine, inhaled hypertonic saline or distilled water, exercise or cold 

air. During obstructive processes, the reduction of FEV1 is bigger than the reduction of 

FVC and the FEV1/FVC ratio is reduced; contrariwise, in restrictive lung disease the 

reduction in FVC is greater than in FEV1 and the ratio is augmented or normal.  The 

assessmenot f BHR has been done mainly through challenge with histamine and more 

recently methacholine. The methacholine challenge consist of the inhalation of 

increasing concentrations of a methacholine that causes airway narrowing in those 

predisposed. If negative a person does not have asthma; if positive, however, it is not 

specific for the disease.  

Other supportive indications for asthma includes: a ≥20% difference in peak expiratory 

flow (PEF) rate on at least three days in a week for at least two weeks, a ≥20% 

improvement of PEF following treatment with either salbutamol, inhaled corticosteroids 

or prednisone, or a ≥20% decrease in PEF following exposure to a trigger. Testing PEF 

may be useful for daily self-monitoring of asthma and in guiding treatment in those with 

acute exacerbations. 

1.4.1. Classification 

Although asthma is a chronic obstructive condition, it is not considered as a part of 

chronic obstructive pulmonary diseases.
165

 Unlike to these diseases, the airway 

obstruction in asthma is usually reversible.
166

 Two main factors, severity and control, 

determine asthma classification, which in turn affect the type of therapy initiated 

(depending on the severity) and how therapy should be adjusted over time (based on the 

http://en.wikipedia.org/wiki/Methacholine_challenge_test
http://en.wikipedia.org/wiki/Peak_expiratory_flow_rate
http://en.wikipedia.org/wiki/Peak_expiratory_flow_rate
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control level). Severity and control should be assessed separately. Asthma is clinically 

classified according to the frequency and severity of symptoms, FEV1, and PEF 

rate.
167,168 

Asthma may also be classified as atopic (extrinsic) or non-atopic (intrinsic), 

when symptoms are precipitated by allergens.
169

 Based on severity level, asthma can be 

classified as intermittent or persistent. Patients with intermittent asthma usually have 

minimal asthma symptoms and no interference with normal activity, whereas patients 

with persistent asthma have more severe symptoms and limitations in normal activity 

due to reduced lung function 

In acute asthma exacerbation is commonly referred to asthma attacks with worsening of 

the classic symptoms are shortness of breath, wheezing, and chest tightness.
170

 In severe 

cases, air motion may be significantly impaired.
171

 During an attack can occur the use of 

accessory muscles of respiration, a paradoxical pulse, and over-inflation of the chest.  

172
 A blue color of the skin and nails may occur from lack of oxygen.

173
 In a mild 

exacerbation the peak expiratory flow rate (PEFR) is ≥200 L/min or ≥50% of the 

predicted best.
174

 Moderate is defined as between 80 and 200 L/min or 25% and 50% of 

the predicted best while severe is defined as ≤ 80 L/min or ≤25% of the predicted best. 

Acute severe asthma is an acute exacerbation of asthma that does not respond to 

standard treatments. Risk factors for exacerbations include: 

• Ever intubated for asthma, 

• Uncontrolled asthma symptoms; 

• Having ≥1 exacerbation in last 12 months; 

• Low FEV1 (measure lung function at start of treatment, at 3-6 months to assess 

personal best, and periodically thereafter); 

• Incorrect inhaler technique and/or poor adherence; 

• Smoking; 

• Obesity, pregnancy, blood eosinophilia. 
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Brittle asthma is distinguishable by recurrent, severe attacks. Type 1 brittle asthma is a 

disease with wide peak flow variability, despite intense medication. Type 2 brittle 

asthma is background well-controlled asthma with sudden severe exacerbations.  

Exercise can trigger bronchoconstriction.
175

 It occurs in most people with asthma and up 

to 20% of people without asthma.
 
It is more common when it is dry and cold. Inhaled 

β2-agonists do not improve athletic performance among those without asthma.
176

 

However oral doses may improve endurance and strength.
177

 

Asthma when is a result of workplace exposures is commonly reported as occupational 

disease. It is estimated that 5–25% of asthma cases in adults are work–related. 

Isocyanates, grain and wood dust, colophony, soldering flux, latex, animals, and 

aldehydes have been implicated as most common agents.
178 

Many other conditions can cause symptoms analogous to those of asthma. In children 

allergic rhinitis and sinusitis should be considered as well as foreign body aspiration, 

tracheal stenosis, vascular rings, enlarged lymph nodes, etc. In adults, COPD, 

congestive heart failure, airway masses, as well as drug-induced coughing due to ACE 

inhibitors should be considered. COPD can coexist with asthma and can occur as a 

complication of chronic asthma. When older than 65 years most people with obstructive 

airway disease develop also asthma. A deep level of investigation is not performed due 

to COPD and asthma sharing similar principles. 
179,180,181 
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1.5. Prevention 

The evidence for the effectiveness prevention of asthma is not strong.
182

 Limiting 

smoke exposure both in utero and after delivery, breastfeeding, and increased exposure 

to daycare are not well supported. Early pet exposure may be useful. Dietary restrictions 

during pregnancy or breast feeding have not been found to be effective. Removing 

compounds known to sensitive people from the work place may be effective. Annual 

influenza vaccinations may affect the risk of exacerbations.
183

 Immunization, however, 

is recommended by the World Health Organization.
184

 Smoking prohibition is effective 

in decreasing exacerbations of asthma.
185

 

The Global Initiative for asthma recommends:
1 

- Provide skills and support for guided asthma self-management: 

This comprises self-monitoring of symptoms and/or PEF, a written asthma action plan 

and regular medical review 

- Prescribe medications or regimen that minimize exacerbations: 

ICS-containing controller medications reduce risk of exacerbations 

For patients with ≥1 exacerbations in previous year, consider low-dose ICS/formoterol 

maintenance and reliever regimen 

- Encourage avoidance of tobacco smoke: 

Provide smoking cessation advice and resources at every visit 

- For patients with severe asthma 

Refer to a specialist center, if available, for consideration of add-on medications and/or 

sputum-guided treatment 

- For patients with confirmed food allergy: 

Appropriate food avoidance 

Ensure availability of injectable epinephrine for anaphylaxis 
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1.6. Management and therapy  

Despite the fact there is no cure for asthma, symptoms can usually be improved (Fig. 

1.17 and 1.18). 
186

 

 

Fig. 1.17 GINA 2014, Box 1-1 

 

Ineffective management of asthma significantly influences morbidity, mortality and 

health care utilization, resulting in increased health care costs. A precise, detailed, and 

customized plan for monitoring and managing of the symptoms is firmly necessary. 

This should comprise the reduction of exposure to allergens, testing the severity of 

symptoms, and the usage of medications. The treatment should be adjusted according to 
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changes in symptoms. The effective management for asthma should include identifying 

and eliminating triggers, such as cigarette smoke, pets, or aspirin. 
187

 Exercise is 

beneficial in people with stable asthma.
188

 Medications are selected based on the 

severity of illness and the frequency of symptoms (Fig. 1.17).
189

 

  

Fig.1.18 Stepwise approach to control asthma symptoms and reduce risk. GINA 2014, Box 3-5 

 

Short-acting beta-2-adrenoceptor agonists (SABA), such as salbutamol (albuterol 

USAN) represent the the most effective agents for quick symptom relief as they rapidly 

reverse airflow obstruction for all patients with asthma. Bronchodilation occurs due to 

blocking β2-adrenergic receptors, which antagonize bronchoconstriction. The most 

commonly used SABAs are albuterol, levalbuterol, and pirbuterol. It is recommended 

using SABAs only as needed for symptom relief, but not for regular use. Tachycardia, 
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tremor, and anxiety are the most common dose-dependent side effects. They are 

recommended before exercise in those with exercise induced symptoms.
190

 No-selective 

adrenergic agonists
191

 are not recommended due to their excessive cardiac stimulation. 

Anticholinergic medications, such as ipratropium bromide, provide additional benefit 

when used in combination with SABA in those with moderate or severe symptoms.
192

 

Ipratropium bromide is used to overcome acute bronchospasms by blocking muscarinic 

cholinergic receptors. Common side effects associated with ipratropium bromide use are 

dry mouth, increased wheezing, and blurred vision.  

Corticosteroids are generally considered the most effective treatment available for long-

term control. OCSs are used for exacerbation management. These medications reverse 

inflammation and decrease relapse occurrences. Systematic corticosteroids have a 

potent anti-inflammatory effect, but should be used with caution due to complex 

adverse effects such as abnormalities in glucose metabolism, fluid retention, weight 

gain and hypertension. Methylprednisolone, prednisolone and prednisone are oral 

corticosteroids used for asthma exacerbations management and severe persistent asthma 

Inhaled corticosterois (ICS) such as beclomethasone are generally used except in severe 

persistent disease, in which oral corticosteroids are required.  

Long-acting beta-adrenoceptor agonists (LABA) such as salmeterol and formoterol can 

improve asthma control, once given in combination with inhaled corticosteroids.
193

 

LABAs have a bronchodilator effect, but do not affect airway inflammation. LABAs 

activate adenylate cyclase and produce functional antagonism of bronchoconstriction 

providing a bronchodilator effect When used without steroids they increase the risk of 

severe side-effects.
194

 Available combinations of ICS/LABA inhalers are 

fluticasone/salmeterol, budesonide/formoterol and mometasone/formoterol. Potential 

life-threatening exacerbations associated with LABA use include tachycardia, skeletal 

muscle tremor and hypokalemia. 

Leukotriene antagonists (such as montelukast and zafirlukast) are used in addition to 

inhaled corticosteroids, usually also in conjunction with LABA.
195

 In children they 

appear to be of little advantage when added to ICS.
196

  Leukotriene modifiers include 
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two groups of agents: leukotriene receptor antagonists (LTRAs) (i.e., montelukast, 

zafirlukast) and leukotriene synthesis inhibitors (LTSIs) (i.e., zileuton). 

Mast cell stabilizers (such as cromolyn sodium) are another non-preferred alternative to 

corticosteroids. The mechanism of anti-inflammatory action is determined by blocking 

early and late reactions to allergens and by stabilizing mast cells membranes. The anti-

inflammatory effect and excellent safety profile of these agents provide symptom 

control, along with a decrease in the number of exacerbations compared to placebo. 

Potential side effects are cough and throat irritation. 

Emergency management of asthma includes oxygen to alleviate hypoxia.
197

 Oral 

corticosteroids are recommended with five days of prednisone.
198

 Magnesium sulfate 

intravenous provide a bronchodilating effect in severe acute asthma attacks.
199

 Heliox, a 

mixture of helium and oxygen, may also be considered in severe unresponsive cases. 

The use of Methylxanthines (such as theophylline) in acute exacerbations is 

controversial. It has bronchodilator and mild anti-inflammatory effects. Theophylline 

provides muscle relaxation by inhibition of phosphodiesterase. It is not preferred 

therapy since it can lead to frequent adverse events (e.g., severe headache, tachycardia, 

nausea, vomiting) and it is not as effective in asthma as low dose ICSs. Theophylline is 

used when asthma is not well-controlled with ICS, LABAs or LTRAs  

Ketamine is theoretically useful when intubation and mechanical ventilation is 

needed.
200

 In severe not controlled and persistent asthma bronchial thermo-plasty 

represent an option.
201

 Sublingual immuno-therapy in allergic rhinitis and asthma 

improve outcomes. 

Many asthmatics use alternative treatments and approaches. 
202,203,204

 Complementary 

and alternative medicine (CAM) asthma treatment ranges from breathing exercises to 

herbal remedies. Unfortunately, a lack of well-designed clinical trials makes it difficult 

to assess the safety and efficacy of these treatments. There is insufficient evidence to 

support the use of acupuncture, osteopathic, chiropractic, physiotherapeutic and 

respiratory therapeutic maneuvers in asthma. 
205,206,207

 Air-ionisers show no evidence 

that they improve asthma symptoms or benefit lung function.
208
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1.7. Prognosis 

The prognosis for asthma is usually good, especially for children with mild disease.
209

 

Mortality has decreased over the last few decades due to better recognition and 

improvement in therapeutic intervention.
210

 Globally it causes moderate or severe 

disability in 19.4 million people.
211

 Of asthma diagnosed during childhood, half of cases 

will no longer carry the diagnosis after a decade.
212

 Airway remodeling is observed, but 

it is unknown whether these represent harmful or beneficial changes.
213

 Early treatment 

with corticosteroids seems to prevent the decline in lung function.
214
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Chapter 2  

2. Asthma and oxidative stress  

2.1. Introduction 

Oxidative stress is the condition characterize by an overproduction of Reactive Oxygen 

Species (ROS) and/or antioxidant decreases. At physiological levels, ROS function as 

“redox messengers” in intracellular signaling. Excess ROS induce oxidative 

modification of cellular macromolecules, inhibit protein function and promote cell death. 

The alteration of intracellular redox homeostasis, and irreversible oxidative 

modifications of lipid, protein or DNA accompanies a wide spectrum of clinical 

disorders including asthma. As described in Chapter 1 asthma is a chronic 

inflammatory disorder of the airways involving interaction of cells and mediators. The 

increase of inflammatory processes in asthma ultimately result in high levels of reactive 

oxygen and nitrogen species (ROS, RNS).
215,216,217,218

 In asthma the increased oxidative 

species and the deficiency of anti-oxidant capacity lead to modifications of proteins and 

alterations in their function that are biologically relevant to the initiation and 

maintenance of inflammation. This chapter will first explain the process of oxidative 

stress, then focus on the redox abnormalities in asthma and finally elucidate the 

consequences on molecular processes. 

2.2. Oxidative stress and redox systems in the lungs 

The lungs show a vast mucosal epithelial surface directly exposed to inhaled oxygen 

and airborne reactive pollutants and microorganisms. This makes the lungs particularly 

susceptible to oxidant-mediated damage. Also endogenously are generated high levels 

of RNS and ROS to maintain a sterile internal environmental. Altogether, endogenous 

RNS and ROS produce an oxidizing lung environment (Fig. 2.1). However, because of 

the abundance of antioxidant systems available to the lung the redox state in the healthy 

lung is reducing.
219
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Fig. 2.1 Sources of exogenous inhalational and endogenous reactive oxygen species (ROS) and reactive 

nitrogen species (RNS) in the lung. Environmental sources are ozone, air pollutants, particulates 

containing metals, and cigarette smoke. Endogenous ROS are produced as byproducts of mitochondrial 

respiration. Inflammatory cells can produce high levels of ROS and RNS in response to allergens and 

microbial infections. Source: Redox Control of Asthma: Molecular Mechanisms and Therapeutic 

Opportunities Suzy A.A. Comhair and Serpil C. Erzurum. Antioxidants & redox signaling volume 12, 

number 1, 2010 

2.2.1. Endogenous reactive oxygen species.  

The tetravalent reduction of oxygen during mitochondrial electron transport can result 

in formation of the radical superoxide (O2·).
220  

Another source for intracellular 

generation of O2 is the NADPH oxidase found in neutrophils, monocytes, and 

macrophages.
221 , 222 , 223 , 224

 O2· can be also produced by molybdenum hydroxylase 

reactions and arachidonic acid metabolism.
225

 O2
.
 does not easily cross cell membranes 
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and react with proteins that contain transitionmetal prosthetic groups, such as heme or 

iron/sulfur groups.
 226,227,228

  The main reaction of superoxide is to react with itself to 

produce hydrogen peroxide and oxygen (Reaction 1).
229

 Superoxide dismutation can be 

spontaneous or can be catalyzed by the enzymes (SOD). 

 

Once formed, the oxidizing potential of H2O2 may be amplified by eosinophil and 

neutrophil derived peroxidases eosinophil peroxidase (EPO) and myeloperoxidase 

(MPO), respectively (Reaction 2). 
230,231,232,233

 MPO is the most abundant protein stored 

in neutrophil granules, and secreted during cell activation.
234

  

 

Kinnula et al. has shown that alveolar macrophages and Type II cells produce high 

levels of H2O2.
235

  

Onother extremely reactive oxidizing is the hydroxyl radical (
.
OH).

236
 The 

.
OH can be 

formed by Haber–Weiss Reaction followed by the Fenton Reaction.
237

 

 

An alternative pathway for OH formation in vivo may involve MPO and EPO. Under 

physiological concentrations of halides, MPO produces hypochlorous acid (HOCl) and 

EPO produces hypobromous acid (HOBr). Hypohalous acids can generate 
.
OH after 

reacting with O2
.
 (Reaction 3). 

.
OH can react with different molecules such as protein, 

DNA, and lipids.
 238,239,240,241

 

 

 



44 

 

In the lung is widely produced nitric oxide (
.
NO) by nitric oxide synthases (NOS).

242
 All 

NOS convert L-arginine to NO and L-citrulline. There are three forms of NOS, the 

inducible NOS (iNOS or NOS2), neuronal NOS (nNOS or NOS1), and endothelial NOS 

(eNOS or NOS3).
243

 nNOS and eNOS are constitutively expressed in neuronal and 

endothelial cells.
244

 In the airway NOS3 is primarily localized in pulmonary endothelial 

cells, and NOS1 in non-adrenergic, non-cholinergic inhibitory neurons.
245246

 NOS2 is 

continuously expressed in normal human airway epithelium.
247 ,248 .249 .250

NO is also 

produced by the upper respiratory tract epithelium within the nasopharynx and 

paranasal sinuses.
251

 Epithelial NOS2 activity is a major determinant of NO present in 

exhaled breath.
252

 The iNOS is regulated at the level of transcription and mRNA 

stability, is calcium independent, and produces nanomolar levels of NO. Regulation of 

iNOS expression is increased by cytokines and proinflammatory factors, interferon 

gamma, TNF-α, and IL1-β.
253

 iNOS is also regulated by availability of arginine and 

cofactor tetrahydrobiopterin. Conditions that decrease arginine will lead to greater 

superoxide formation.
254

 Auto-oxidation of 
.
NO with O2 results in the formation of 

nitrite (NO2
-
). NO2

- 
is also a substrate for hemeperoxidases such as MPO and EPO. 

Peroxidase-catalyzed oxidation of NO2
- 

results in the formation of nitrogen dioxide 

radical (NO2·).
255

 NO reacts with superoxide to form peroxynitrite (ONOO
.
). ONOO

. 

can nitrate tyrosine residues and alter levels or function of enzymes, structural and 

signaling proteins.
256

  

2.2.1.1. Environmental exposures.  

Because the lung interfaces with the external environment, it is frequently exposed to 

airborne oxidants. Ozone, particulate matter and cigarette smoke represent the most 

common air pollution problems. 

Ozone is formed from volatile hydrocarbons, halogenated organics, and oxides of 

nitrogen in the presence of sunlight.
257

 Ambient ozone levels usually vary between 20 

and 40 parts per billion (ppb).
258

 High concentrations of ozone can be harmful to the 

lung.
259,260,261,262,263,264

 Ozone reacts with unsaturated fatty acids and cell membranes to 

produce lipid ozonation products.
265,266
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Particulate matter pollution is one of the most serious air pollution problems in urban 

environments. One of the most dangerous forms of particulate matter pollution is diesel 

exhaust particle. Diesel exhaust particles are a polyaromatic hydrocarbon, a 

hydrophobic molecule that can diffuse easily through cell membranes. Diesel exhaust 

particles may therefore modify cell growth and differentiation. 

Environmental tobacco smoke is a complex mixture of gases and particles. Cigarette 

smoke contains >4,000 chemicals including 50 that are known to cause cancer. Some of 

them are carbon monoxide, cyanide, arsenic, mercury, and NO. Furthermore, cigarette 

smoke generates or contains*10
14

 oxidative molecules per puff such as hydrogen 

peroxide and superoxide. Tobacco smoke leads to activation of phagocytes augmenting 

release of free radicals.
267

 

2.2.2. Biological oxidative processes in the lungs and anti-oxidant 

 

The formation of ROS and RNS is an essential for neutrophils, monocytes, 

macrophages, and eosinophils in order to kill bacteria. These phagocytic cells use 

NADPH oxidase enzymatic systems to generate O2
·-
.
268

 They can also form HOCl 

through myeloperoxidase-catalyzed oxidation of the Cl
- 

ion by H2O2. 
.
NO is also 

involved in mononuclear cell-mediated killing of Mycobacterium tuberculosis and other 

pathogens in rodents and is toxic to tumor cell lines in vitro.
269

 Cytochrome P450 also 

exploits the reactivity of the iron–oxygen complex to catalyze oxidation of a number of 

endogenous compounds and xenobiotics.
270

  

The balance between physiologic functions and damage is determined by the relative 

rates of formation and the removal of free radicals. The lungs have developed several 

endogenous antioxidant systems. These systems may be divided into enzymatic and 

nonenzymatic groups.  
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2.2.2.1. Non-Enzymatic lung antioxidants  

The most well-researched nonenzymatic antioxidants include lipid-soluble vitamin E 

(tocopherol), vitamin A, and carotenoids (including beta-carotene), and water-soluble 

vitamin C and glutathione (GSH).  

Vitamin E is an important hydrophilic antioxidant. It protects the cell membrane from 

oxidation by reacting with lipid radicals, such as lipid peroxyl radicals (LOO·) that are 

produced during lipid peroxidation reactions.
271

  

Vitamin C is a hydrophilic vitamin that can directly scavenge O2 
·-
 and ·OH by forming 

the semidehydroascorbate free radical that subsequently is reduced by GSH.
272

 Vitamin 

C, however, is usually not considered a major antioxidant because it also has pro-

oxidant properties.
273

 

Glutathione (GSH) is the predominant protein for maintenance of the cellular redox.
274

 

GSH is a cysteine-containing peptide found in most forms of aerobic life, and is present 

in high concentration in blood and lung.
275

 Lung epithelial lining fluid contains up to 

300 micromolar concentration of GSH,
276

 and >90% of the GSH is maintained in the 

reduced form. ROS increase GSH through induction of g-glutamyl cysteine synthetase, 

the ratelimiting enzyme of GSH biosynthesis.
277

  

Other non-enzymatic antioxidants include β-carotene, uric acid, bilirubin, taurine, 

albumin, cysteine and cysteamine. 

2.2.2.2. Enzymatic lung antioxidants.  

The enzymatic antioxidants include superoxide dismutases (SOD), catalase, glutathione 

peroxidases, heme oxygenase, glutaredoxin, thioredoxin, and peroxiredoxin. These 

antioxidant enzymes usually require trace metal cofactors. SOD, for example, consists 

of proteins co-factored with copper, zinc, or manganese.
278

 Iron is required as a co-

factor for catalase.
279

  

Superoxide dismutases (SOD) are ubiquitous enzymes with an essential function in 

protecting aerobic cells against oxidative stress. They catalyze the reaction of 
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superoxide radicals to hydrogen peroxide. Human lung epithelium expresses three 

forms of eukaryotic SODs.
280

 The copper/zinc superoxide dismutase (CuZnSOD) is 

expressed in bronchial epithelium, alveolar epithelium, mesenchymal cells, fibroblasts, 

arterioles, and capillary endothelilal cells.
281

 The Mn superoxide dismutase (MnSOD) is 

expressed in the airways, especially in the alveolar duct and arterioles.
282

 Furthermore, 

MnSOD is also moderately or highly expressed in respiratory epithelium, alveolar type 

II epithelial cells, and alveolar macrophages.
283

 The extracellular superoxide dismutase  

(EC-SOD) is found in bronchial epithelium, alveolar epithelium, epithelial cells lining 

intrapulmonary airways, alveolar macrophages, and endothelial cells lining both arteries 

and veins. The CuZnSOD is mainly found in the cytosol, although it also is present at 

low levels in lysosomes, peroxisomes, nucleus, and intermembrane space of the 

mitochondria.
284

 CuZnSOD is expressed in lung cells, such as bronchial epithelial, 

alveolar macrophages, and capillary endothelium of the lung.
285

  

 

The MnSOD protein constitutes up to 10% of the intracellular SOD activity and is 

mainly expressed in the matrix of the mitochondria.
286

 Superoxide dismutation by 

MnSOD proceeds through the following reactions: 

 

Oxidative stress can upregulate MnSOD gene expression
287

 via Nrf-2.
288

 Genetic 

deletion of this critical enzyme in mice is inconsistent with life.
289

 The EC-SOD is the 

major extracellular SOD in the interstitial spaces of the lungs.
290

 EC-SOD contains a 

heparin/matrix binding domain consisting of positively charged arginines and lysines.
291

 

The heparin/matrix-binding domain is sensitive to proteolysis, which can lead to release 

of EC-SOD from tissue matrix. EC-SOD protects the oxidative fragmentation of 

heparin/heparan suflate/ syndecan-1.
292

 The localization of EC-SOD in the lungs is 

primarily within the smooth muscle region surrounding blood vessels and airways. 

Polymorphisms are associated with patient outcomes in COPD and lung injury.  
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Catalase is the principal scavenger of H2O2 when is present at high concentrations. 

Catalase is relatively limited in cellular distribution.
293

 Under prolonged oxidative stress 

with oxidation of NADPH, catalase activity drops.
294

 This enzyme is not generally 

inducible by oxidative stress.
295

 Enzyme activity can be regulated by post-translational 

processes. 
296,297

 

The reducing capacity of glutathione peroxidase enzymes are based on high levels of 

GSH (L-g-glutamyl-L-cysteinylglycine). Glutathione peroxidases reduce hydrogen 

peroxide to water by oxidizing glutathione to oxidized/disulfide form (GSSG). The 

glutathione disulfide (GSSG) that is formed in the course of the reaction is subsequently 

reduced back to GSH by glutathione reductase. The capacity to recycle GSH makes the 

glutathione system crucial for the antioxidant mechanisms.  

Thioredoxins (Trx-) are oxidoreductase enzymes containing a dithiol–disulfide active 

site (-Cys-Gly-Pro-Cys-), (see Chapter 3).
298

 The cysteine residues reverse from a 

dithiol (-SH HS-) group to a disulfide bridge (-S-S-). Trxs are kept in the reduced state 

by flavoenzyme thioredoxin reductase, via an NADPH-dependent reaction. There are 

two thioredoxins, 1 and 2, with different cellular locations, and there are two 

thioredoxin reductases, with locations corresponding to the intracellular thioredoxins 1 

and 2. Thioredoxin 1 is found in the cytoplasm and Thioredoxin 2 in the 

mitochondria.
299

 Overall, Trxs can reduce protein disulfides and protein sulfenic acid 

intermediates by cysteine thiol–disulfide exchanges.
300

. Thioredoxin 1 augments gene 

expression of other antioxidants, such as MnSOD.
301

 Specific protein disulfide targets 

for reduction by thioreoxin are ribonucleotide reductase,
302

 protein disulfide 

isomerase,
303

 and several transcription factors including p53, NF-kB, and AP-1.
304

 

Thioredoxins are expressed in bronchial epithelial cells and alveolar macrophages, 

metaplastic alveolar epithelial cells, and bronchial chondrocytes.
305

 

Glutaredoxins (GRX) are thiol–disulfide oxidoreductases that use glutathione as a 

cofactor and catalyze the reversible exchange of GSH with protein thiol groups. The 

human cell contains four GRXs, two dithiol (GRX1 and GRX2), one multiple 

monothiol (GRX3), and one monothiol (GRX4).
306

 The formation of protein–SG mixed 

disulfide (glutathionylation) by glutaredoxin through a monothiol mechanism may play 
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an important role in protecting against more drastic irreversible modifications of protein 

thiols.
307

 

Peroxidredoxins is a new family of non-seleno peroxidases. Prxs modulate cytokine 

induced hydrogen peroxide levels. Six different types of Prxs have been characterized in 

human lung. The bronchial epithelium showed moderate to high expression of Prxs I, III, 

V, and VI, the alveolar epithelium expressed mainly Prxs V and VI, and alveolar 

macrophages expressed mainly Prxs I and III. 

Heme oxygenases (HO-) are members of the heat-shock family of proteins that play a 

protective role in inflammation and oxidative stress (See Chapter 3). There are three 

forms of heme oxygenases. Heme oxygenase-1 is inducible, whereas heme oxygenase-2 

and – 3 are constitutive. These enzymes catalyze the degradation of heme molecules 

into biliverdin, bile pigments, and generate carbon monoxide and iron. Carbon 

monoxide and biliverdin have been attributed antioxidant properties. HO-1 knockout 

mice are more susceptible to oxidative stress.
308

 Furthermore, induction of HO- by 

administration of hemin suppresses inflammation in the airway in ovalbumin-

challenged guinea pigs.
309

 Heme oxygenases are expressed in lung inflammatory cells 

of rats exposed to hypoxia. HO-1 has been reported in human airways during asthma; 

levels in sputum of asthma patients are higher than in controls. Carbon monoxide 

concentrations are higher in exhaled breath of asthmatics as compared to healthy 

controls. Heme oxygenase is expressed in airway epithelial cells, alveolar macrophages, 

bronchial epithelial cells, and inflammatory cells of the lungs.
310

  

2.2.3. Redox imbalance in asthma 

Enhanced levels of oxidant production are abundantly documented in asthma. 

Inflammatory cells are increased in asthmatics and produce more ROS as compared to 

control subjects. Asthma attacks and experimental Ag challenge are both associated 

with immediate formation of O2·
-
.
311

 Spontaneous and experimental allergen-induced 

asthma attacks lead to leukocyte (eosinophil, neutrophil) activation, during which ROS 

are rapidly formed. ROS production by asthmatics’neutrophils correlates with severity 

of reactivity of airways. Oxidative modifications are characteristics of asthma.
312

 

Increased levels of eosinophil peroxidase and myeloperoxidase are found at higher than 
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normal levels in asthmatic peripheral blood, induced sputum, and bronchoalveolar 

lavage fluid. Biomarkers of eosinophil activation include release of granule proteins 

including EPO 
313

and major basic protein (MBP). 3- bromotyrosine is a unique product 

of EPO and eosinophils. Increased levels of 3-bromotyrosine are found in asthmatics 

bronchoalveolar lavage as compared to controls subjects. The levels of 3-bromotyrosine 

are increased further when asthmatics are exposed to antigen challenge.
314 , 315

 The 

urinary 3-bromotyrosine is elevated in asthmatics as compared to healthy controls, and 

may increase during exacerbations. MPO-mediated oxidant modifications also 

contribute to the pathophysiology of severe asthma. Malondialdehyde and thiobarbituric 

acid reactive products have also been detected in urine, plasma, sputum, and 

bronchoalveolar lavage fluid that relate to the severity of asthma. 8-isoprostane, a 

biomarker of lipid peroxidation, is also elevated in exhaled breath condensate in adults 

and children with asthma. Tyrosine nitration increases following allergen exposure.
 316

  

Eosinophils may contribute to the generation of large number of oxidant products in 

asthma.
318

 

Ozone and diesel exhaust particles have an additive effect on airway hyperreactivity and 

inflammation in asthma.
317

 Ozone increases hyperreactivity, induces IL-5 and 

granulocyte-macrophage-colony stimulating factor (GM-CSF) in bronchoalveolar 

lavage, which recruits and enhances the longevity of eosinophils.
318

 Ozone also leads to 

oxidative modification of surfactant proteins.
319

 Exposure of human airway epithelial 

cells to lipid ozonation products in vitro leads to activation of eicosanoid metabolism.  

Evidence supporting increased ·NO in asthma is substantial. ·NO is increased in the 

lower airway and in the exhaled breath of asthmatics. Exhaled ·NO in asthmatics 

increases after allergen challenge during the late asthmatic response. Individuals with 

asthma have 3-fold higher than normal NO concentrations, and increased NOS2 mRNA 

and protein in airway epithelial cells.
320

 NO synthesis under oxidative and acidic 

conditions causes injury.  Increased nitration is found during an asthma exacerbation 

and S-nitrosothiols concentrations are elevated in EBC in patients with asthma.  

 

 



51 

 

2.2.4. Antioxidant deficiency in asthma.  

In asthma, SOD activity is significantly lower in epithelial lining fluid and airway 

epithelial cells.
321

Murine models of asthma also provide evidence of a link between 

antioxidants and airway hyper-responsiveness. For example, transgenic mice that 

overexpress SOD have decreased allergen-induced physiologic changes in the airway in 

comparison to controls.
322

 Studies indicate that the lower SOD activity in asthma is a 

consequence of the increased oxidative and nitrative stress in the asthmatic airway. 

Oxidatively modified and nitrated MnSOD is present in epithelial cells recovered during 

bronchoscopy from asthmatic. Red blood cells of asthmatic children were shown to 

have lower catalase activity than healthy children.
323

 Tyrosine oxidant modifications of 

catalase occur in asthma.
324,325

  

In contrast extracelluluar GPx (eGPx) is present at higher than normal levels in lungs of 

individuals with asthma. The increase is due to induction of eGPx mRNA.
326

  

Glutathione in exhaled breath of children with asthma during acute asthma exacerbation 

is reduced than control subjects, and the glutathione levels in exhaled breath of subjects 

with asthma increase after oral steroid treatment.
327

 Minutes after challenge, GSH levels 

drop and GSSG increases in the lung epithelial lining fluid. GSH depletion in vivo 

and/or in vitro leads to inhibition of Th1-associated cytokine production and/or favors 

Th2-associated response. Thus, GSH facilitates a Th2 phenotype, and reduction in GSH 

levels supports the maintenance of Th2 response in asthma.
328

  

Reynaert et al. demonstrate that glutaredoxin 1 is upregulated in a mouse model of 

asthma.  

During asthma exacerbation in humans, the levels of serum Trx-1 increase and are 

inversely correlated with airflow.
329

 This suggests that Trx-1 may have a protective 

effect in asthma. In vitro studies have shown that exogenous Trx-1 can prevent Th2 

development by upregulating the expression of Th1-like cytokines.
330

 The protective 

effects of Trx-1 in asthma are thought to be partly dependent on its antioxidant effect.
334

 

NF-kB and activation protein-1 (AP1) are regulated by the redox status and are 

implicated in the transcriptional regulation of a wide range of genes involved in 
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oxidative stress.
331

 Evidence suggest signaling pathways such as the family of mitogen-

activated protein kinases (MAPKs) are also altered by redox changes.
332

Redox-sensitive 

molecular targets usually contain highly conserved cysteine residues, and oxidation, 

nitrosylation, or the formation of disulfide links are crucial events in oxidant-redox 

signal. There is evidence of activation of NF-kB in biopsies and sputum inflammatory 

cells such as macrophages and neutrophils of asthmatics.
333

 Nitrosation of NF-kB 

subunits is an important mechanism for the redox sensing of NF-kB.
334

 Activator 

protein-1 (AP-1) is a protein dimer, composed of a heterodimer of Fos and Jun proteins. 

AP1 regulates many of the inflammatory and immune genes in oxidant-mediated 

diseases. 

Gene expression of g-GCS, the rate-limiting enzyme for the GSH synthesis, is induced 

by the activation of AP1.
335

 Asthmatic epithelial cells have increased expression of c-

Fos. Cigarette smoke increases AP-1 DNA binding in human epithelial cells in vivo. 

High levels of NO and hydrogen peroxide cause increases in c-fos and c-junmRNAof 

epithelial cells. The process of acetylation and deacetylation of histone is also 

influenced by redox changes (See Chapter 9).
336

 In biopsies and peripheral blood 

mononuclear cells from asthmatics, there is an increase in acetylation and a reduction in 

deacetylation activity, which upregulates some inflammatory gene expression and 

downregulates others.
337

 Redox changes also can activate members of the mitogen-

activated protein kinase signaling (MAPK), such as extracellular signalregulated kinase 

(ERK), c-jun N-terminal kinase (JNK), p38 kinase, and phosphoinositol-3 kinase, all of 

which may ultimately promote inflammation.
338

 

Binding of cytokines, including IL-4 and INF, to their specific receptors leads to 

transphosphorylation of tyrosine residues on Janus kinases (JAK), which then recruit 

and phosphorylate the signal transducers and activators of transcription (STAT) family 

of transcription factors on tyrosine residues and result in gene expression of pro-

inflammatory genes such as NOS2.  

STAT1 and STAT3 activation is redox regulated. Although STAT3 has not been 

evaluated in asthma, STAT1 is activated at high levels in asthmatic airway epithelium 

but not in healthy controls.
339

 Simon et al. showed that members of the STAT family of 

transcription factors, including STAT1 and STAT3, are activated in response to H2O2 or 
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GSH-depletion.Wang et al. showed that vanadium leads to STAT-1 activation.
340

 

Recently, the detailed redox mechanisms that regulate STAT activation by IL-4 have 

been identified.
341

 Hom1eostatic control of cytokine-receptor activation and signal 

transduction occurs through ROS generation via activation of NOX enzymes.
 342

  

 

2.2.5. Genetics of redox in asthma 

Genetic variability of SODs may play a role in the development of asthma. A 

polymorphism (R213G) of EC-SOD causes more than nine fold higher levels of EC-

SOD in plasma due loss of anchoring to heparin in the interstitium.
343

 Two novel 

polymorphisms occur in the noncoding 5’ untranslated region (Exon 1) and first intron 

(Intron 1) of the SOD3 gene. A recent report by Dahl et al. found that ECSOD 

homozygous for the Exon1/Intron1 polymorphism associates with reduced lung 

functions in individuals with COPD. This supports a role for EC-SOD in oxidant-

mediated events influencing airway diseases and lung function.
344

 The deletion allele of 

glutathione S-transferase M1, GSTM 1, (null-genotype) has been associated with 

increased risk of asthma and lower lung function. Islam et al.
345

, report that children 

with a Val105 mutation in GSTP1 variant allele may have a lower risk of asthma. 

2.3. Consequences of oxidative stress in asthma 

Oxidative stress can have many detrimental effects on airway function, including airway 

smooth muscle contraction,
346

 induction of airway hyperresponsiveness,
347

 mucus 

hypersecretion,
348

 epithelial shedding 
349

 and vascular exudatio.
350

 Furthermore, ROS 

can induce cytokine and chemokine production through induction of the oxidative 

stress-sensitive transcription of nuclear factor-kB in bronchial epithelial cells.
351
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2.4. Exacerbations of asthma and oxidative stress 

Most of the studies on oxidative stress in asthma have concentrated on the 

oxidant/antioxidant imbalance that occurs in stable asthma. The overlaid effects of 

exacerbations have received much less attention. Episodic worsening of asthma is 

associated with increased airway inflammation. There is also indication of enhanced 

oxidative stress during exacerbations, both systemically and locally. However, a direct 

correlation between increased oxidative burden and changes in pulmonary function and/ 

or airway inflammation described during exacerbations remains speculative.
352

 A 

hypothesis that relates exacerbations of asthma to dietary antioxidant deficiency has 

been proposed.
353

 Many indirect markers of oxidative stress such as H2O2 and 

isoprostanes are increased in exhaled air, sputum, and BAL fluid during exacerbations 

and after allergen exposure.
354

 Respiratory viruses represent the most important causes 

of asthma exacerbations. Rhinoviruses are the virus type most frequently identified in 

respiratory tract specimens during exacerbations of asthma, both in children and in 

adults.
355

 Experimental rhinovirus infection of asthmatic patients can induce an 

inflammatory response in the airways associated with variable airflow obstruction and 

increased airway hyperresponsiveness. Rhinovirus induced airway inflammatory 

responses involve eosinophils and neutrophils, possibly recruited via cytokines or 

chemokines released by bronchial epithelial cells or T cells.
356

 Rhinovirus infection of 

respiratory epithelial cells causes intracellular oxidant generation which is a crucial step 

in the activation of NF-kB and in the following production of pro-inflammatory 

adhesion molecules and cytokines.
357

 Reducing agents inhibit both rhinovirus induced 

oxidant generation and inflammatory mediator production and release. These 

observations provide evidence of an increased oxidative burden in asthma exacerbations.  
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Chapter 3  

3. Definition and classification of oxidative and anti-oxidative 

biomarkers used for the study of asthma 

Direct measurement of oxidants is difficult since they are highly reactive, short-lived 

species. Thus, oxidative stress is often measured by observing the damage inflicted by 

oxygen radicals upon various biomolecules, such as lipids, proteins or deoxyribonucleic 

acid. Aspects of the antioxidant defence system are also often examined as an indirect 

marker of oxidative stress. Before moving to the experimental part of this thesis, this 

chapter will briefly introduce the bio-markers of oxidative stress and anti-oxidant 

response that have been chosen to investigate the oxidative unbalance during asthma 

exacerbation. 

3.1. Markers of oxidative stress and protein oxidative damage  

Protein oxidation is defined as the covalent modification of protein, either directly by 

ROS or indirectly by a reaction with secondary by-products of oxidative stress. 

Oxidative damages to proteins can lead to diverse functional consequences, such as 

inhibition of enzymatic and binding activities, protein aggregation and enhanced 

susceptibility to proteolysis. Protein oxidation serves as a useful marker for assessing 

oxidative stress. In the studies included in the current thesis 4-Hydroxy-2-nonenal and 

protein carbonylation have been investigated in asthma exacerbation as stable and 

reliable bio-markers of oxidative damage on proteins. 

3.1.1. Lipid peroxidation and 4-Hydroxy-2-nonenal 

4-HNE (4-Hydroxy-2-nonenal) is an α,β-unsaturated hydroxyalkenal which is formed 

during lipid peroxidation (LP).
358

 LP is an autocatalytic process initiated by free radical 

attack on the unsaturated (double) bonds of membrane fatty acids. Superoxide anion 

radical (O2
-.
), hydrogen peroxide, (H2O2), hydroxyl radical (OH

.
), nitric oxide (NO

.
) and 

peroxynitrite (ONOO
.
) are most commonly involved in the initiation of LP. The major 
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source of superoxide in most cells is that produced in mitochondria as “by-product” of 

oxidative phosphorylation in the electron transport chain. Much of the superoxide is 

rapidly converted to hydrogen peroxide by mitochondrial superoxide dismutase (SOD2) 

and cytoplasmic superoxide dismutase (SOD1). Hydroxyl radical can then be produced 

by a process called the Fenton reaction in which Fe
2+

 or Cu
+
 interact with hydrogen 

peroxide. Nitric oxide is generated in response to elevations of intracellular Ca
2+

 levels; 

Ca
2+

 binds calmodulin, which then activates nitric oxide synthase which catalyzes the 

conversion of arginine to citrulline and nitric oxide. Nitric oxide may then interact with 

superoxide to generate peroxynitrite. Among the different ROS, hydroxyl radical and 

peroxynitrite are particularly aggressive inducers of LP. The process of lipid 

peroxidation is initiated by interaction of hydroxyl radical or peroxynitrite with 

unsaturated lipids which triggers chain peroxidation by abstracting allylic hydrogens. 

The resulting lipid radicals rapidly interact with oxygen, thereby propagating the 

reaction via peroxyl radical intermediates; this process simultaneously generates lipid 

hydroperoxides and aldehydes of various chain lengths. Lipid peroxidation can be 

terminated by so-called chain-breaking antioxidants such as vitamin E. 4-HNE is one 

specific aldehydic product of LP increasingly recognized as a particularly important 

mediator and marker of cellular dysfunction and degeneration in a range of disorders 

including asthma.  

Fig. 3.1 explains how exposure to allergens, gaseous pollutants, chemicals, drugs, 

bacteria and viruses leads to the recruitment and activation of inflammatory cells in 

asthmatic airways, including mast cells, eosinophils, neutrophils, lymphocytes, 

macrophages and platelets. Allergen-specific reactions involving the acquired immune 

system are characterised by the production of IL-5 and the subsequent recruitment and 

activation of eosinophils. In contrast, stimuli that act via the innate immune system lead 

to the production of IL-8 and the subsequent recruitment and activation of neutrophils. 

However, both of these pathways lead to the production of ROS, primarily due to the 

respiratory burst of activated inflammatory cells. Activated inflammatory cells respond 

with a "respiratory burst", which involves the uptake of oxygen and subsequent release 

of ROS into surrounding cells. 
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Fig. 3.1 Mechanisms leading to lipid peroxidation in asthma. IL: interleukin; Th2: T-helper type-2 cells; 

NO2: nitrogen dioxide; ROS: reactive oxygen species; O2?-: superoxide; H2O2: hydrogen peroxide; OH: 

hydroxyl radical; NADPH: reduced nicotinamide-adenine, dinucleotide phosphate; NADP: nicotinamide-

adenine dinucleotide phosphate; SOD: superoxide dismutase; EPO: eosinophil peroxidase; MPO: 

myeloperoxidase; NF: nuclear transcription factor. Source: L.G. Wood, P.G. Gibson, M.L. Garg. 

Biomarkers of lipid peroxidation, airway inflammation and asthma. Eur Respir J 2003; 21: 177–186 
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HNE is a 9-carbon amphiphilic lipid formed when n-6-polyunsaturated fatty acids such 

as arachidonic acid and linoleic acid are attacked by peroxidative free radicals .4-HNE 

acts as a key mediator of oxidant-induced cell signaling and apoptosis. For his high 

affinity toward cysteine, histidine, and lysine groups numerous proteins have been 

shown to be modified by HNE (Fig. 3.2). In many cases the function of the protein will 

be impaired. While lower levels of intacellular 4-HNE are beneficial to cells, possibly 

promoting cellular proliferation, higher levels can cause a toxic response in the cell and 

may lead to cell death. Thus 4-HNE is recognized as a particularly important marker of 

cellular degeneration in a range of disorders including asthma. 4-HNE has also been 

reported to activate GSH synthesis via induction of the glutamate cysteine ligase gene 

and a variety of pro-inflammatory genes, such as IL-8, monocyte chemoattractant 

protein (MCP)-1, cyclooxygenase-2, epidermal growth factor receptor, and of mucin 

5AC. 4-HNE has been shown to induce expression of the protective antioxidant gene λ-

gluta-mylcysteine synthetase (λ -GCS) mRNA in alveolar epithelial cells.   

 

 

Fig. 3.2 The process of lipid peroxidation and 4-HNE. The process of lipid peroxidation is initiated by 

interaction of hydroxyl radical with unsaturated lipids. The resulting lipid radicals rapidly interact with 

oxygen, thereby propagating the reaction via peroxyl radical intermediates; this process simultaneously 

generates lipid hydroperoxides and aldehydes. One specific aldehydic product of LP called 4-

hydroxynonenal (HNE) is increasingly recognized as a particularly important mediator and marker of 

cellular dysfunction When HNE encounters proteins, it can interact with thiol (SH) and amino (NH2) groups 

of cysteine, lysine and histidine residues via a process called Michael addition resulting in a covalent bond 

between HNE and the amino acid. Numerous proteins have been shown to be modified by HNE including: 

lasma membrane ion and nutrient transporters; receptors for growth factors and neurotransmitters; 

mitochondrial electron transport chain proteins;protein chaperones; proteasomal proteins; and cytoskeletal 

proteins. C. Folisi 
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3.1.2. Proteins carbonylation  

A common biochemical marker of oxidative stress is the formation of protein carbonyl 

groups (aldehydes and ketones) on protein side chains particularly of prolines, arginines, 

lysines and threonines.
359,367

Carbonyl groups are composed of a carbon atom double-

bonded to an oxygen atom, and are formed primarily from lipid electrophiles generated 

under conditions of oxidative stress. Electrophile adduction and other oxidative 

reactions can irreversibly alter protein structure and function.  

The use of the marker of severe protein oxidation (carbonylated proteins), involve 

derivatization of the carbonyl group with 2,4-di-nitrophenylhydrazine (DNPH), which 

leads to formation of a stable dinitrophenyl hydrazone product. Carbonylation reflects 

the oxidation of Lys, Arg or Pro residues in proteins and is the most commonly used 

marker for protein oxidation in body fluids (Fig. 3.3 and 3.4). 
360,361,362

  

 

Fig. 3.3 Carbonyls derivatization with DNPH. Under oxidative stess carbonyls groups are formed on the 

side chain of proteins. Carbonylated proteins are relatively stable thereby allowing the derivatization of 

carbonyl groups with 2,4-dinitrophenylhydrazine (DNPH) which leads to the formation of a stable 

dinitrophenyl (DNP) hydrazone product. Using the Western blot technology and anti-DNP antibodies 

allows for the rapid and highly sensitive determination of protein carbonyl formation. C. Folisi. 
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Fig. 3.4 Representative Westen Blot for carbonylated protein without (-) and after (+) derivatization to 

DNP. The DNPH derivatization allows the immuno-detection of carbonylated proteins, without 

derivatization was not possible to detect carbonylated proteins. Cells were untreated (-) or treated (+) with 

H2O2. The treated cells showed higher proteins carbonylation. C. Folisi.   

 

Protein carbonylation has been studied in asthma. Nadeem et al. showed an increase in 

plasma protein carbonyls in asthmatics.
363

 Foreman et al. found increased levels of 

carbonylated proteins among BALF proteins in atopic asthmatic adults 18 h after 

allergen challenge.
364

 In asthmatic children, the number of inflammatory cells in 

bronchoalveolar lavage fluid (BALF) has been showed significantly correlated with the 

concentration of protein carbonyls.
365

 By contrary, some studies have shown no increase 

in carbonylated proteins in sputum from patients with mild asthma or in BALF from 

asthmatic children respect to healthy subjects.
366
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3.2. Markers of anti-oxidant response  

The balance between physiologic functions and damage is determined by the relative 

rates of formation and the removal of free radicals. The lungs have developed several 

endogenous antioxidant systems to deal with the production of free radicals. Many 

controlled studies suggest that there is a deficiency of antioxidants in the lungs or 

circulation of asthmatic subjects. Given the critical role of anti-oxidant response in the 

pathogenesis of asthma, we tested whether different expression of cyto-protective and 

anti-oxidant proteins might serve as biomarkers during evolving acute exacerbation. In 

the next paragraphs will be described the important markers of anti-oxiant response that 

have been assayed for the study i.e. Heme-oxygenase-1 (HO-1), Heat shock protein-70, 

Thioredoxin reductase (Trx-R), Thioredoxin-2 (Trx-2), Sirtuin-1 and -2, and NF-E2-

related nuclear factor 2 (Nrf-2). 

3.2.1. Sirtuins 

The silent information regulator (SIR) proteins mediate transcriptional silencing.
367

 

Sir2p encodes an NAD-dependent histone deacetylase and is thought to mediate 

silencing by regulating histone acetylation
368

 The SIR2 gene family is conserved from 

archaebacteria to eukaryotes.
369

 Humans have seven proteins with homology to Sir2p, 

which have been named sirtuins (SIRTs). In mammals three of the seven sirtuins are 

associated with mitochondria.
 370 , 371

 There are several evidences which show that 

Sirtuins are implicated in stress resistance. In particular, Sirt-1 is a metabolic NAD+-

dependent belonging to class III histone/protein deacetylases that regulates 

proinflammatory mediators playing an important role in stress resistance, metabolism, 

apoptosis, senescence, differentiation, and aging (Fig. 3.5). SIRT1 deacetylates the 

tumor suppressor p53 to inhibit its transcriptional activity, resulting in reduced 

apoptosis in response to various genotoxic stimuli. 
372,373

 On the other hand, in cultured 

primary cells, SIRT1 is required for the expression of the tumor suppressor p19ARF, 

which promotes p53 stability.
374

 MEFs (mouse embryonic fibroblasts) lacking SIRT1 

have an increased resistance to senescence induced by chronic oxidative stress, a 

phenomenon associated with decreased levels of the tumor suppressor p19ARF and thus 

p53 levels. 
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Fig. 3.5. Interacting partners, substrates, and downstream effectors of Sirt-1. Source: Dimitrios 

Anastasiou and Wilhelm Krek. Physiology 21:404-410, 2006. doi:10.1152/physiol.00031.2006. 

 

The role of Sirtuins in asthma has been increasingly studied. In recent times, Yeung and 

colleagues demonstrated that Sirt-1 interacts with the RelA/p65 subunit of NF-kB and 

inhibits gene transcription by deacetylation at the lysine 310. Lung cells from COPD 

patients and from rats exposed to cigarette smoke display reduced expression of Sirt1 

associated with increased NF-kB activity and matrix metalloproteinase-9 expressions 

compared with lung cells from healthy controls. Lee and collaborators reported that 

treatment with sirtinol, an inhibitor of Sirt-1 and Sirt-2, reduces airway inflammation 

and hyperreactivity in a mouse model of atopic asthma likely due to the impairment of 

the activation by Sirt1 of hypoxia-inducible factor (HIF)-1a. Sirt-1 represses the activity 

of the nuclear receptor peroxisome proliferator-activated receptor-g in dendritic cells, 

thereby favoring their maturation toward a pro-Th2 phenotype. Sirt-1 inhibition impairs 

the optimal reactivation of Th2 responses upon allergen challenge of the airways 

through PPAR-g–dependent mechanisms. Other studies have shown that the activity of 

Sirt-1 is reduced in peripheral blood mononucleocytes (PBMCs) from patients with 

severe asthma compared to mild asthma and healthy volunteers. In addition, treatment 
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of healthy PBMCs with the sirtuin inhibitor sirtinol has been shown to increased 

expression of the Th2 cytokines IL-4 and IL-13 (but no alteration in expression of the 

Th1 cytokine IFNγ. Incubation of HUT78 cells with sirtinol, followed by 

immunoprecipitation of GATA3, has been shown to increase lysine acetylation and a 

subsequent increase in activity and accumulation of Th2 cytokines. 

Sirtuin type 2 (Sirt-2), is a predominantly cytoplasmic protein that colocalizes with 

microtubules. The microtubule network is formed by the polymerization of α and β-

tubulin heterodimers and plays an important role in the regulation of cell shape, 

intracellular transport, cell motility, and cell division. -α and β-tubulin subunits are 

subject to numerous post-translational modifications, including tyrosination, 

phophorylation, polyglutamylation, polyglycylation, and acetylation.
375

 Sirt-2 

deacetylates lysine-40 of α-tubulin both in vitro and in vivo. Sirt-2 colocalizes and 

interacts in vivo with HDAC-6, another tubulin deacetylase. 

3.2.2. Heat shock proteins  

Heat shock proteins (Hsp) are a class of functionally related proteins involved in the 

folding and unfolding of other proteins. Their expression is increased when cells are 

exposed to elevated temperatures or other stress. Thus, in response to a wide variety of 

stressful stimuli, there is a marked increase in total Hsp synthesis, known as the cellular 

stress response. The stress response is designed to enhance the ability of the cell to cope 

with increasing concentrations of unfolded or denatured proteins.  

Of all heat shock proteins, the Hsp-70 family constitutes the most conserved and best 

studied class. This family consists of the constitutively expressed Hsp-70 (Hsc-70; 73 

kDa), the stress inducible Hsp-70 (Hsp-70; 72 kDa), the mitochondrial Hsp-70 (Hsp75; 

75 kDa), and the endoplasmic reticulum Hsp-70 (Grp78; 78 kDa). The function of 

Hsp70 is exquisitely related to its structure. The Hsp-70 family members all contain two 

major functional domains, including a N-terminal domain, also referred to as the 

ATPase domain which is composed of 45 kDa amino acids, and a C-terminal domain 

composed of a 15–18 kDa substrate-binding domain (SBD), and a 10 kDa carboxy-

terminal domain of largely unknown function .  



64 

 

HSPs are also induced by ROS produced by granulocytes or macrophages and 

providing autoprotective functions in these cells. HSPs may also amplify the immune 

response by modulating antigen processing and/ or by acting as autoantigens.
376

 After 

admixing eHsp-70 to APCs, specific signal transduction pathways are activated that 

result in the stimulation of an immune response. Early as 2-4 hours post exposure of 

APC to exogenous eHsp-70, there is significant release of cytokines including TNF-α, 

IL-1β, IL-6 and IL-12
377

 and GM-CSF;
378

 nitric oxide, a potent apotogenic mediator;
379

 

chemokines including MIP-1, MCP-1 and RANTES
380

 (Fig. 3.6). Peptide-bearing and 

non-peptide-bearing eHsp-70 is capable of inducing pro-inflammatory cytokine 

production by APCs.
381

 eHsp-72 induces the DC maturation by augmenting the surface 

expression of CD40, CD83, CD86 and MHC class II molecules on DC
382,383,384,385

 and 

migration of DC
386

and NK cells (Fig.3.6).  

 

Fig.3.6  Schematic representation of stress-induced release of eHsp-72. Stress activates three pathways 

that result in the release of Hsp-72. First, the death pathway either by necrosis or apoptosis. Second, the 

trimerization and nuclear translocation of cytoplasmic HSF-1 (brown rods) to the heat shock element 

(HSE) and subsequent transcription of Hsp-72 (stars). The increased intracellular Hsp-72 chaperones 

peptides (Hsp-72-peptide complex) and protects the cell from cell death under certain conditions. The 

Hsp72-peptide complex is expressed on the cell surface and released into the extracellular milieu within 

exosomes; Hsp-72-exosomes. Hsp-72-peptide complexes (Hsp-72-pc) and Hsp-72-exosomes (Hsp-72-ex) 

make their way into the circulation. Antigen presenting cells bind and internalize Hsp72-pc and Hsp72-ex. 

Internalization of Hsp-72-pc and Hsp-72-ex allows the peptides to be processed and presented in the 

context of MHC class I to cytotoxic T lymphocytes (CTL). CTL's become activated and will recognize 

and destroy cells presenting the specific peptide. Circulating Hsp72-ex induces NK cells migration and 

the expression of Hsp72-pc on the surface of stressed cells activates NK lytic functions. Thirdly, stress in 

form of physical of psychological stress will stimulate the release of Hsp72-pc and Hsp72-ex into the 

circulation by a hitherto unknown mechanism and by a yet to be discovered tissue/organ. Alexzander 

Asea. Stress Proteins and Initiation of Immune Response: Chaperokine activity of Hsp72. Exerc Immunol 

Rev. 2005; 11: 34–45. 
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Extracellular Hsps are likely to act as indicators of the stress conditions. Some 

extracellular Hsp, are associated with export vesicles, displaying a robust activation of 

macrophages. For instance, during the response to stress or injury like temperature, 

exercise, and infection, Hsp-70 may be released from dying cells that have lysed, as 

well as from live cells via receptor-mediated exocytosis. 

In asthmatics, differences in the expression and localization of some Hsp have been 

found. The percentage of alveolar macrophages expressing Hsp-70 is significantly 

increased in comparison with that of chronic bronchitis patients and control subjects.
 387 

 

Hsp-60 may be involved in alveolar macrophages functions in a context of allergic. In 

biopsies from asthmatic patients, the staining with anti-Hsp-70 mAb is intense and 

localized on ciliated epithelial cells, epithelial goblet cells and basal cells, mononuclear 

cells, smooth muscle cells, and cells of mucous glands and the basal membrane.  

Sputum and plasma concentrations of Hsp-70 in asthmatics patients has been shown 

significantly higher than that in control subjects.  

3.2.3.  Thioredoxin-2 and Thioredoxin Reductase  

The Trx- system contains many antioxidative proteins such as Trx, mitochondrial TRX-

2, their reductases (Trx-Rs), and peroxiredoxins. Thioredoxin is a 12-kD oxidoreductase 

enzyme containing a dithiol-disulfide active site. Thioredoxin is known to possess 

antioxidant activity that regulates redox-sensitive molecules such as nuclear factor-кB 

and glucocorticoid receptors (See Chapter 2, Fig. 3.7). Plays a role in the reversible S-

nitrosylation of cysteine residues in target proteins, and thereby contributes to the 

response to intracellular nitric oxide. Nitrosylates the active site Cys of CASP3 in 

response to nitric oxide (NO), and thereby inhibits caspase-3 activity. Induces the 

FOS/JUN AP-1 DNA-binding activity in ionizing radiation cells through its 

oxidation/reduction status and stimulates AP-1 transcriptional activity. The system 

controls the activation of a number of transcription factors through sulphydryl transfer 

and, through its activity on HIF-1α, it is able to regulate vascular endothelial growth 

factor levels and hence angiogenesis. Trx-R is an important selenoenzyme and has been 

implicated in selenium metabolism and protection against oxidative stress. 
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Fig. 3.7 Biological functions of thioredoxin (TRX). TRX is a redox-acting protein that exchanges disulfide 

with dithiol to maintain the reducing status of various molecules. The TRX system (TRX, TRX reductase, 

and NADPH) reduces peroxiredoxin or oxidized proteins. In the cytoplasm, TRX interacts with 

intracellular signal transduction. Oxidative stress induces TRX expression. In the nucleus, TRX has 

interactions with transcription factors or TRX-binding protein-2 (TBP-2)/vitamin D3-upregulated protein-

1 (VDUP-1). Oxidized TRX or truncated TRX was released from cells. S, oxidized cysteine residue (S-S, 

disulfide bond); SH, reduced cysteine residue; ASK-1, apoptosis signal-regulating kinase 1; AP-1, 

activator protein-1; CRE, AMP responsive element; ARE, antioxidant responsive element; SP-1, 

specificity protein-1 binding site; Ref-1, redox factor-1. Source:M. Kobayashi-Miura, K. Shioji, Y. 

Hoshino, H. Masutani, H. Nakamura and J. Yodoi Oxygen sensing and redox signaling: the role of 

thioredoxin in embryonic development and cardiac diseases Am J Physiol Heart Circ Physiol 292:H2040-

H2050, 2007.  

 

Thioredoxin has been shown slightly increased in asthmatics. Yamada et al first 

reported that the serum levels of Trx-R positively correlated with the severity of asthma.
 

388
 

3.2.4. Heme oxygenase  

Heme oxygenase (HO-) is an enzyme that catalyzes the degradation of heme in 

biliverdin e iron. Biliverdin is subsequently converted to bilirubin by biliverdin 

reductase, and carbon monoxide which inhibit both inflammation and apoptosis. The 
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bile pigments biliverdin IXα and bilirubin IXα have demonstrated antioxidant properties. 

Until now, relatively few studies have addressed the role of HO-1 in pulmonary 

medicine (Fig 3.8). Several investigators have focused on the diagnostic application of 

the HO-1/CO system, by measuring exhaled CO (E-CO) in various pathological 

pulmonary conditions, such as asthma or COPD.
389

 In another experimental approach, 

investigators have examined the expression of HO-1 in lung tissue from healthy or 

diseased subjects.
390,391

 

 

Fig. 3.8 Role of heme oxygenase and carbon monoxide in lung diseases. Heme oxygenase (HO-) generates 

biliverdin IXα, ferrous iron, and carbon monoxide (CO) from the oxidation of heme. Exhaled CO reflects 

active heme metabolism. Inflammation, oxidative stress, and apoptosis represent an axis of disease, 

against which both endogenous HO activity and exogenous CO exert protective effects. CO may inhibit 

both inflammation and apoptosis. The toxicological properties of CO imply increased pro-oxidant activity; 

however, the pro-oxidant/and antioxidant consequences of CO in the physiological range remain unclear. 

The bile pigments biliverdin IXα and bilirubin IXα have demonstrated antioxidant properties, though 

their prospective roles in modulation of inflammation and apoptosis are currently under investigation. 

Iron (Fe) released from HO activity returns to a transient chelatable pool, where it may potentially 

promote oxidative stress and apoptosis. Induction of ferritin synthesis and sequestration of the released 

iron into ferritin may represent one possible detoxification pathway that limits the potential of iron in pro-

apoptotic and pro-oxidative processes. Source: Dirk-Jan Slebos, Stefan W Ryter and Augustine MK Choi. 

Heme oxygenase-1 and carbon monoxide in pulmonary medicine. Respiratory Research 2003, 4:7. 

 

In lung tissue, HO-1 expression may occur in respiratory epithelial cells, fibroblasts, 

endothelial cells, and to a large extent in alveolar macrophages. HO-1 induction 

responds to common causes of oxidative stress to the airways, including hyperoxia, 

hypoxia, endotoxemia, heavy metal exposure, bleomycin, diesel exhaust particles, and 



68 

 

allergen exposure. 392 In a mouse model of asthma, HO-1 expression increased in lung 

tissue in response to ovalbumin aerosol challenge. In a similar model of aeroallergen-

induced asthma in ovalbumin-sensitized mice, exposure to a CO atmosphere resulted in 

a marked attenuation of eosinophil content in BALF and downregulation of the 

proinflammatory cytokine. Recent human studies have revealed higher HO-1 expression 

in the alveolar macrophages and higher E-CO in untreated asthmatic patients than in 

healthy non-smoking controls.393  HO-1 has been reported to be elevated in alveolar 

macrophages recovered from sputum of individuals with uncontrolled asthma, as 

compared with cells from control subjects without asthma, individuals with well 

controlled asthma, and individuals with asthma treated with systemic corticosteroids.  

Macrophages of induced sputum show prominent but transient HO-1 immunoreactivity, 

in untreated asthmatics, but not in asthmatics treated with corticosteroids.   

3.2.5. Nuclear factor E2-related factor 2  

Nuclear factor erythroid 2–related factor 2 (Nrf-2) is a central transcription factor that 

regulates the antioxidant defense. The Nrf-2 transcription factor is activated to 

counteract accumulating reactive oxygen species and electrophiles.
394

 Under basal 

conditions, Nrf-2 is sequestered in the cytoplasm by the repressor protein Keap1 

(Kelch-like ECH-associated protein 1) and targeted for proteasomal degradation (Fig. 

3.9).
395

 Exposure to pharmacological activators, such as oltipraz or CDDO-Im (2-cyano-

3,12-dioxooleana-1,9-dien-28-oic imidazolide) or generation of oxidative stress, 

triggers Nrf-2 to translocate to the nucleus where it transactivates a battery of genes by 

binding to antioxidant-response elements (ARE) in upstream promoter regions. 
396,397

 

Targets of Nrf-2 transcription include proteins involved in drug metabolism, efflux 

transporters (such as multidrug resistanceassociated proteins, Mrps), antioxidant 

enzymes, heat shock responses, and proteasomal degradation.  
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Fig. 3.9. Nrf-2 binds to the Antioxidant Response Element (ARE) and promotes transcription of 

antioxidant genes. In the activation process seems to be involved a protein kinase (an enzyme that 

transfers phosphate groups from high-energy donor molecules, such as ATP, to specific target molecules 

called substrates). The transfer of a phosphate group ‘activate’ the molecule with subsequent release and 

nuclear translocation. C. Folisi. 

 

The role of Nrf-2 has been investigated in pulmonary medicine. Nrf-2 deletion provided 

the first evidence of a direct link between the regulation of antioxidant genes and 

alveolar destruction in the cigarette smoke– induced emphysema in a murine model.
398

 

Nrf-2 has shown a predominant protective role in a number of lung inflammatory 

diseases because it increases sensitivity of Nrf-2-disrupted mice to allergen-induced 

asthma,
399 , 400

 bacterial lipopolysaccharideinduced sepsis,
401

 hyperoxia-induced acute 

injury,
402

 ventilation- induced acute lung injury,
403

 and diesel exhaust–induced DNA 

damage.
404

 Recent evidence suggests that selective inactivating mutations in the Nrf-2 

inhibitor, Keap-1, enhances Nrf-2 directed constitutive expression of multiple 

antioxidants and xenobiotic-detoxification genes that endows non–small cell lung 

cancer (NSCLC) tumors with selective survival advantage and chemoresistance.
405
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Experimental part 
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Chapter 4  

4. Oxidative stress and Rhinovirus-induced asthma exacerbation 

This chapter is based on the submitted manuscript: “Rhinovirus infection in 

asthma attenuates the anti-oxidant capacity of airway macrophages” 
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Abstract 

Rhinoviruses (RVs) are responsible for 60 to 80% of all respiratory virus-induced 

asthma exacerbations. The mechanism that leads to the exacerbation is unknown. RVs 

have been able shown able to modify the oxidative cellular balance by produce 

superoxide and depleting anti-oxidant defence. Hence, oxidative response is thought to 

play a central pathogenetic role in RVs-induced airway disease. 

The aim of this study was to investigate the local oxidative stress
 
due to a rhinovirus 

infection in asthma patients and its effect on the anti-oxidant capacity of airway 

macrophages.  

We purified macrophages from induced sputum (IS) and bronchoalveolar lavage (BAL) 

from mild asthmatics (n=9) before and a week after rhinovirus infection when patients 

showed exacerbation simptoms. First, we assessed the basal oxidative stress on the basis 

of the amount of oxidized proteins (carbonyls protein formation) and lipids-proteins 

adducts, 4-Hydrossyl-2-nonenal Protein Adducts (4-HNE PAs). We also evaluated the 

expression of Heme Oxygenase-1 (HO-1), Heat shock protein 70 (Hsp-70), Thioredoxin 

(Trx-2), Thioredoxin Reductase (Trx-R) and the cyto-protective proteins Sirt-1 and 2. 

Next, we exposed macrophages to oxidative stress by supplementing superoxide by 

mean of the redox system Xanthine/Xanthine Oxidase. In these stimulated macrophages 

the oxidative susceptibility was assayed in terms of oxidative demage on proteins 

whereas the anti-oxidant capacity was evaluated according the increase in cyto-

protective and anti-oxidant proteins expression under oxidative exposure. 

We found that after rhinovirus infection the basaline oxidative proteins damage was 

increased (4-HNE PAs Relative Optical Density (Rel. O.D.) shifted from 69.0±7.1 to 

108.6±13.8 p=0.02 and that of Carbonyls proteins from 23.8±3.5 to 43.4±2.5 p=0.0004). 

In IS macrophages HO-1, Trx-2, Trx-R levels were higher after rhinovirus infection 

(Rel. O.D. 0.28±0.03 vs 0.05±0.02 p<0.0001, 0.66±0.06 vs 0.46±0.05 p=0.02 and 

0.43±0.07 vs 0.20±0.04 p=0.01, respectively). Whereas, Sirt-1 and 2 levels were lower 

(0.50±0.06 vs 0.31±0.04 p=0.021; 0.43±0.05 vs 0.63±0.10 p=0.03 respectively). After 

rhinovirus infection IS macrophages exposed to superoxide showed a higher oxidative 

susceptibility and a reduced anti-oxidant capacity. Macrophages after rhinovirus 
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infection showed a reduced translocation of Nrf-2 into the nuclei and enhanced pro-

inflammatory mediator production. Taken together these resuls suggest that RV16 

infection is accompanied by an increased oxidative stress in macrophages, associated 

with a reduced activation of Nrf-2. Therefore, enhancing local anti-oxidant mechanisms 

may attenuate airway inflammation and an asthma exacerbation. 
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4.1. Introduction  

Asthma is an inflammatory disorder of the airways characterized by episodic and 

reversible airflow limitation and airway hyperresponsiveness to endogenous or 

exogenous stimuli.
406

 These episodes of acute worsening of asthma symptoms, referred 

to as exacerbations, are paralleled by more severe local inflammation.
 
ROS such as 

hydroxyl radicals, superoxide and hydrogen peroxide, are generated during 

inflammation and so during an exacerbation more ROS are generated.
407

 ROS can 

trigger the production of pro-inflammatory mediators
 
and can also lead to post-

translational modifications of cellular constituents
 
that affect cell functions. The overall 

effect of ROS, however, depends on the capacity of cyto-protective mechanisms that 

scavenge ROS and repair ROS-induced post-translational modifications. Several studies
 

have shown that during an asthma exacerbation the ROS production and the cyto-

protective mechanisms are not in balance as reflected by more post-translationally 

modified proteins. Restoration of such an imbalance was shown to attenuate 

experimental exacerbations in murine studies, highlighting the relevance of ROS in 

driving an exacerbation. We hypothesized that the capacity to raise cyto-protective 

mechanisms during an exacerbation in asthma patients may be reduced. 

Respiratory viral infections are a major cause of exacerbations and rhinoviruses (RVs) 

are responsible for about 70% of all respiratory virus-induced asthma exacerbations.
408

 

Therefore we employed a low dose experimental RV16 infection model to trigger a mild 

exacerbation in mild asthma patients.
 409

 We studied airway macrophages as these are 

the most abundant leukocytes in the airway lumen, have a wide range of 

immunoregulatory functions and have the capacity to produce and counteract 

ROS.
410 , 411 , 412 , 413 , 414 , 415 , 416  

We assessed the ROS-induced carbonyl proteins and 

formation of lipid peroxidation protein adducts and the expression of cyto-protective 

proteins in macrophages collected before and one week after RV16 challenge (Fig. 4.1). 

For the latter we determined the expression of heme-oxygenase 1 (HO-1), heat shock 

protein 70 (Hsp-70), thioredoxin (Trx-2), thioredoxin reductase (Trx-R) and the cyto-

protective proteins Sirt-1 and 2. Ex vivo, we challenged these macrophages to oxidative 

stress by the xanthine-xanthine oxidase system and assessed their cyto-protective 

response.  
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Fig. 4.1 Study synopsis and rational. Rhinovirus has been shown able to increase the generation of 

reactive oxygen species (ROS). ROS can react with susceptible proteins and lipids and generate 

products of oxidation as carbonylated proteins and lipid-protein conjugation as 4-HNE protein adducts. 

An increase in ROS and electrophilic compound s also promote the activation of the transcription factor 

Nrf-2 which is considered  the master regulator of the anti-oxidant response. Nrf-2 after activation 

translocate  into the nucleus where bound the antioxidant response elements inducing the expression of 

a set of cito-protective proteins and antioxidant enzymes. ROS down-regulate Sirtuins, a class of NAD-

dependent deacetylase involved in oxidative stress resistance. C. Folisi 
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4.2. Material and Methods 

Study population. Nine non-smoking patients with allergic asthma, using only short-

acting inhaled β2-agonist on demand, participated in the study (demographic and 

baseline data in Table 1). Patients were atopic, as defined by positive skin tests in 

response to common airborne allergens, had a forced expiratory volume in 1 s (FEV1) 

of at least 80% of the predicted value and responded to a metacholine provocation dose 

causing 20% decrease in FEV1 (PC20) <8 mg/mL. Patients were excluded if they had a 

respiratory infection in the preceeding 6 weeks or had neutralising antibodies against 

RV16 (titre >6).
413

 The study was conducted in accordance with the Declaration of 

Helsinki and was approved by a local ethics committee and the national regulatory 

agency. Written informed consent was obtained from each subject before study entry. 

Study set up. Patients participated in a randomised double-blind placebo-controlled 

parallel trial to investigate the efficacy of mepolizumab on Rhinovirus-Induced Asthma 

exacerbations (MATERIAL) study (NCT01520051). Patients received a single 

intravenous dose of mepolizumab (750 mg) or placebo on day 0. Two weeks later the 

patients were infected with RV16 (dose of 10 TCID50). Induced sputum was obtained 

four days before and four days after and a bronchoalveolar lavage (BAL) was 

performed one day before RV16 infection. With respect to the oxidative stress 

measurements all samples were analysed irrespective of the treatment 

(mepolizumab/placebo).  

Asthma Control Questionnaire (ACQ). The ACQ has 7 questions (5 asthma symptoms, 

FEV1% pred. and daily rescue bronchodilator use). Patients were asked to recall how 

their asthma has been during the previous week and to respond to the symptom on a 7-

point scale (0=no impairment, 6= maximum impairment). The FEV1% predicted on a 7-

point scale was scored. The questions were equally weighted and the ACQ score was 

considered as the mean of the 7 questions and therefore between 0 (totally controlled) 

and 6 (severely uncontrolled). The ACQ has strong discriminative and evaluative 

properties it can detect small differences between patients with different levels of 

asthma control and it is very sensitive to within-patient change in asthma control over 

time. Patients with a score below 1.0 have adequately controlled asthma and above 1.0 

not controlled. Between 0.75 and 1.25 patients are on the borderline of adequate control. 
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On the 7-point scale of the ACQ, a change or difference in score of 0.5 is the smallest 

that can be considered clinically important. Changes of 0.5 or greater would justify a 

change in the patient’s treatment.  

Wisconsin Upper Respiratory Symptom Survey (WURSS). The WURSS is an 

evaluative illness-specific quality of life instrument, designed to assess the negative 

impact of acute upper respiratory infection. Influenza-like illness symptoms of headache, 

body aches and fever were included on the WURSS used for this study.  

Sputum induction and bronchoalveolar lavage. Sputum induction was performed as 

described earlier.
417

 In short, patients received pre-treatment with 400 µg salbutamol 

before undergoing three episodes of 5 minutes inhalation of aerosolised 4.5% 

hypertonic saline solution generated by an ultrasonic nebulizer (KLAVAmed, Bielefeld, 

Germany). BAL fluid was collected by a standardised bronchoscopic procedure as 

described previously.
418

 Sputum and BAL fluid were collected in a sterile container and 

transported on ice to the lab for immediate processing.  

Sputum processing. Sputum was processed, with dithiotreitol (DTT) to liquefy the 

whole sample as described before but with minor modifications.
419

 After addition of 

DTT, samples were placed on a shaker at 4°C for 15 minutes to prevent activation of 

cells. When necessary, remaining lumps were removed by treatment with DNase IV by 

shaking for 15 minutes at 4°C. BAL cells were processed as described before.
420

 

Differential cell counts were expressed as number and percentage of cells excluding 

squamous epithelial cells. 

Collection and culturing of airway macrophages. Macrophages were obtained from 

sputum and BAL fluid (BALF) by negative selection using RosetteSep reagent 

(RosetteSep monocytes enrichment reagent, #15068, Stem Cell Technologies via Cell 

Systems). Cells were collected by centrifugation (10 min at 400g) of DTT-liquified 

sputum and BAL fluid and resuspended in 3 ml phosphate-buffered saline (PBS) with 2% 

Fetal Bovine Serum (FBS) and 1 mM EDTA. Thirty μl packed erythrocytes (obtained 

following centrifugation over LymphoPrep gradient) and 50 μl RosetteSep Human 

Monocyte Enrichment Cocktail were added to sputum or BAL cells. After 20 min 

incubation at room temperature, the sputum or BAL cells were layered on top of a 
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density gradient (3ml medium LymphoPrep) and centrifuged for 22 min at 1355g. The 

mononuclear layer remained at the interphase of the density gradient and was aspirated 

followed by 3 washes with ice-cold IMDM/1%FCS/Penicillin/Streptomycin (4 mM). 

Cells were counted, and viability was evaluated using 0.2% trypan blue. Purity was 

assessed by Quick diff staining on cytospin and was higher than 98%. Macrophages 

were processed for analyses by Western blotting or exposed to oxidative stress.  

Exposure to oxidative stress. Macrophages were resuspended at 0.5x10
6 

cells/ml in 

IMDM/1%FCS/Penicillin/Streptomycin and 2 ml suspensions were transferred to 6-well 

plates. After overnight incubation at 37°C with 5% CO2 under humidified conditions, 

macrophages were pre-treated with 20 mM N-Acetyl Cysteine for 1 h to maximize their 

anti-oxidant capacity of cells.
421

 Subsequently, cells were exposed for 12 h to the 

superoxide-generating system xanthine (X) (0.2 mM) and xanthine oxidase (XO) 

(10mU/ml; Sigma-Aldrich, St. Louis, MO, USA). The X/XO system allows for 

generation of controlled superoxide production, mimicking the chemical environment of 

oxidants exposure in tissues. Cell viability after superoxide exposure was determined by 

trypan blue exclusion.  

Western blot analysis. Whole-cell lysates were prepared from freshly purified 

macrophages. Macrophages were washed twice in PBS and subsequently lysed on ice 

using Laemmli buffer (4% Sodium Dodecyl Sulphate (SDS), 10% 2-mercaptoethanol, 

20% glycerol, 0.004% bromophenol blue in 0.125 M Tris-HCl pH 6.8) with complete 

protease inhibitor cocktail (Roche, city, country). Fifty microgram of protein (see assay 

below) per lane of whole cell proteins were separated by 12% SDS-PAGE gel 

electrophoresis, and transferred to polyvinylidene difluoride (PVDF) membranes for 

immunodetection. After this step, membranes were washed and reversible red ponceau 

(Sigma Aldrich) staining was performed to check for adequate transfer. Then, 

membranes were blocked for 30 min at room temperature in PBS with 3% non-fat dry 

milk. Membranes were then probed with 1:500 diluted polyclonal rabbit antibodies to 

Sirt-1, Sirt-2, Trx-R and Trx-2, and goat antibodies to HO-1 and Hsp-70 (Santa Cruz 

Biotech. Inc., Santa Cruz, CA, USA), overnight at 4°C in 0.05% Tween-20 PBS (TPBS) 

with 0.5% non-fat dry milk. As a loading control we used goat anti-β-actin 1:5,000 in 

TPBS (Santa Cruz Biotech. Inc., Santa Cruz, CA, USA). As positive control we used 
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Hela cells whole lysates for HO-1 and Hsp-70, K293 cells whole lysates for Trx-R and 

Trx-2 and K562 cells for Sirt-1 and 2. Parallel blots incubated with only secondary 

antibody were used in order to evaluate aspecific binding. Membranes were washed 

three times in TPBS and incubated for 60 min at room temperature with IRDye 680LT 

and IRDye 800CW conjugates secondary antibodies (LI-COR Biosciences, Lincoln, 

NE, USA) 1:15,000 diluted in TPBS with 0.5% non-fat milk. After three further washes 

in TPBS, bound antibodies were visualized using infrared fluorescence detection using 

the Odyssey Imager and software as recommended by the manufacturer (LI-COR 

Biosciences, Lincoln, NE, USA). The bands of Sirt-1 (≈120 kDa), Sirt-2 (≈42 kDa), 

HO-1 (≈32 kDa), Hsp-70 (≈70 kDa), Trx-2 (≈12 kDa), and Trx-R (≈52 kDa) were 

quantified using densitometry and expressed relative to that of the corresponding β-actin 

(≈37kDa).  

Protein Assay. The amount of protein was determined using the bicinchoninic acid 

(BCA) kit (Bio-Rad Laboratories Inc., Hercules, California, USA). Protein standards 

were obtained by dilution of a stock solution of Bovine Serum Albumin (BSA).  

Carbonyls protein detection: OxyBlot Procedure. Carbonyl groups of oxidized proteins 

were detected after derivatization with 2,4-dinitrophenylhydrazine (DNPH) to a stable 

dinitrophenyl (DNP) hydrazone product using OxyBlot Protein Oxidation Detection Kit 

(Merck Millipore) View All ».
422

 In brief, two aliquots (15-20 μg/5 μL of protein 

sample) of each specimen to be analyzed were prepared. Proteins were denatured by 

adding 5 μL of 12% SDS. One aliquot was subjected to the derivatization reaction by 

adding 10 μL of 1x 2,4-dinitrophenylhydrazine (DNPH) followed by 15 min of 

incubation at room temperature, after which 7.5 μL of Neutralization Solution provided 

in the kit was added. The negative control was treated in parallel but with 

derivatization-control solution instead of DNPH. Equal volumes of both samples were 

loaded onto a SDS-PAGE gel (10%) without prior heating of the samples. After 

electrophoresis and blotting to PVDF membranes in transfer buffer (12 mM Tris, 96 

mM Glycine, 20% Methanol) reversible red ponceau staining was performed to check 

for adequate transfer and then blots were washed and blocked by placing the membrane 

into 3% non-fat dry milk for 1 h with gentle shaking. Subsequently, 15 mL of Rabbit 

Anti-DNP primary antibody 1:150 diluted in TPBS with 0.5% non-fat dry milk was 

http://www.millipore.com/catalogue/item/s7150
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added and left overnight at 4ºC while shaking on an orbital shaker. The membrane was 

washed with multiple changes of TPBS for a total of 30 min before adding 15 ml of 

Goat Anti-Rabbit IgG Horse Radish Peroxidase (HRP) conjugated secondary antibody 

(1:300 dilution) in 0.5 non-fat dry milk TPBS and left for 1 h at room temperature on an 

orbital shaker. Next, the membrane was washed using multiple changes of TPBS for a 

total of 30 min before adding the chemiluminescent reagent (luminol and enhancer, Bio-

Rad Laboratories Inc., Hercules, California, USA) according to manufacturer’s 

specifications. The membranes were exposed for 1-3 min. Derivatized bands were 

quantified by measuring the optical density of the bands in comparison to the signal 

from the negative control using Image J 1.46r software Values were expressed relative 

to that of β-Actin. 

Immunochemical detection of 4-Hydroxynonenal Protein adducts (HNE-Pas) in 

macrophages. Thirty to 50 µg of total proteins were diluted in Laemmli sample buffer 

till a final volume of 35 µL, and boiled for 5 minutes at 95°C before separation on 12 % 

SDS PAGE gels. Then, proteins were transferred onto PVDF membranes. After this 

step, reversible red ponceau staining was performed. Then, membranes were washed 

and blocked for 60 min at room temperature in 3% non-fat dry milk in PBS. Next, blots 

were washed and probed against the HNE moiety of proteins by using polyclonal goat 

anti 4-HNE (Santa Cruz Biotech. Inc., Santa Cruz, CA, USA) 1:500 diluted in 0.05% 

TPBS with 0.5% not-fat dry milk overnight at 4°C. Membranes were washed three 

times in TPBS and incubated for 60 min at room temperature with IRDye 680LT 

conjugates secondary antibodies (LI-COR Biosciences, Lincoln, NE, USA) 1:15,000 

diluted in TPBS with 0.5% non-fat milk. Blots incubated with only secondary anti-body 

were used to evaluate aspecific secondary antibody binding. After three further washes 

in TPBS, bound antibodies were visualized using infrared fluorescence detection using 

the Odyssey Imager and software as recommended by the manufacturer (LI-COR 

Biosciences, Lincoln, NE, USA). After stripping the blot was re-probed for β-Actin in 

order to normalize for variable protein loading. Optical density was obtained by using 

Odyssey LICOR software, in which the values are expressed relative to β-Actin.  
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Nuclear protein extraction. To prepare nuclear protein extracts, macrophages were 

washed with ice-cold PBS and then removed by scraping in detachment buffer (150 mM 

NaCl, 1 mM EDTA, and 40 mM Tris; pH 7.6). After centrifugation of the cell 

suspension at 2,000 rpm in a table centrifuge, the cell pellets were resuspended in a cold 

buffer containing KCl (10 mM), EDTA (0.1 mM), dithiothreitol (1 mM), and 

phenylmethylsulfonyl fluoride (1 mM) for 15 min. The cells were lysed by adding 10% 

Nonidet P-40 and then centrifuged at 6,000 rpm in a table centrifuge to obtain nuclei. 

The pelleted nuclei were resuspended in cold Laemmli buffer, and then vigorously 

agitated from time to time, followed by centrifugation. The supernatant containing the 

nuclear proteins was used for Western blot analysis. Equal loading of nuclear proteins 

was confirmed relative to that of Histone 3 (H3).  

Cigarettes smoke condensate (CSC) stimulation. Macrophages were resuspended at 

0.5x106 cells/ml in IMDM/1%FCS/4 mM Penicillin/ 4mM Streptomycin and 2 ml 

suspensions were transferred to 6-well plates. After overnight incubation at 37°C with 

5% CO2 under humidified conditions, macrophages were exposed for 4, 12 and 24 h to 

40 μg/mL CSC from Kentucky reference (3R4F).
423

 Twenty-four hours CSC exposure 

was performed with and without pre-treatment with 20 mM N-Acetyl Cysteine for 1 h. 

Cell viability after superoxide exposure was determined by trypan blue exclusion. 

Inflammatory response. The amount of a small panel of inflammatory mediators 

released in the supernatant by macrophages after exposure to the xanthine – xanthine 

oxidase system was determined by multiplex fluorescent bead assay for  IL-1β, IL-6, 

IL-8Aand TNF-α Luminex, R&D systems, Minneapolis, MN, USA).  

Statistics. Results are presented as mean ± SEM of at least two replicate experiments. 

Statistical analyses was performed utilizing GraphPad Prism 5. Analysis of significance 

was calculated by unpaired Student’s t-test and was used to assess between- and within-

study group differences. A p value <0.05 was considered significant.  
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4.3. Results 

Subjects and RV16 infection. Demographic and baseline characteristics of participating 

mild asthma patients are provided in Table 1. All 9 patients were clinically stable 

before exposure to RV16 and developed common cold and asthma complaints between 

2 to 6 days after RV16 infection and had increased RV16-neutralising antibodies in 

serum, 6 weeks after infection (Table 1, Fig. 4.2). 

 

TABLE 1. PATIENT CHARACTERISTICS AND THEIR RESPONSE TO RV16  

Age (years) 23.9 (19-33) 

Sex (male/female) 2/7 

FEV
1
 (% predicted) 107 (85-114) 

PC
20

 (mg/L) 1.8 (0.7-2.5) 

Maximum fall FEV1 (%) 9.6 (5-26) 

Increase in ACQ 0.57 (0-1) 

RV16 titer post-infection 51 (23-76) 

 

Data are presented as mean values and range. ACQ: Asthma Control Questionnaire. FEV1: forced 

expiratory volume in 1 second; %pred: percentage of predicted; PC20: dose of methacholine required to 

cause a 20% drop in FEV1; 
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4.2. Average ACQ scores and total WURSS-21 scores for all nine patients over time. Dotted lines indicate 

time of RV16 infection. On the middle top of the graphs is indicated the identification number per patient.  

ACQ: Asthma Control Questionnaire.  WURSS: Wisconsin Upper Respiratory Symptom Survey. 
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Oxidative stress-induced modifications of proteins in sputum macrophages before and 

after RV16 infection. Sputum macrophages were collected before and 4 days after RV16 

exposure and oxidative stress-induced post-translational modifications of proteins, 

carbonylation and 4-HNE protein adducts, were assessed in total whole cell lysates. Fig. 

4.3 A, B and E1 show typical western blots and histograms of combined data from all 9 

patients, for carbonylated proteins and for 4-HNE protein adducts in sputum 

macrophages. Carbonylation was 23.81 ± 3.46 before and 43.43 ± 2.53 (p=0.0004) after 

RV16 infection and for 4-HNE protein adducts 69 ± 7.13 and 108.57 ± 13.83 (p= 0.02), 

respectively (Table 2). These increases indicate that RV16 infection results in the 

production of local reactive oxygen species, leading to post-translational modifications 

of cellular proteins. 
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Fig. 4.3 ROS-induced modifications of proteins and cyto-protective response in sputum macrophages 

obtained before and after RV16 infection. Protein carbonyl formation (A), 4-HNE protein adducts (B) and 

cyto-protective protein expression (C) in induced sputum macrophages before (ISS) and after RV16 

infection (ISE). Representative blots (left figures) are shown and data, expressed as mean ± SEM, is 

relative to β-Actin, for nine patients (right figures). * p<0.05, ** p<0.01, *** p<0.001.  
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TABLE 2. OXIDATIVE STRESS-INDUCED MODIFICATIONS OF PROTEINS AND 

CYTO-PROTECTIVE RESPONSE BEFORE AND AFTER RV16 INFECTION 

 

 
ISS ISE P value 

Carbonylation  23.81±3.46 43.43±2.53 0.0004 

4-HNE Pas 69.00±7.13 108.57±13.83 0.02 

Sirt-1 0.50±0.01 0.31±0.04 0.02 

Sirt-2 0.62±0.10 0.43±0.06 0.03 

Hsp-70 0.35±0.05 0.38±0.10 0.76 

HO-1 0.05±0.02 0.30±0.04 < 0.0001 

Trx-R 0.46±0.05 0.66±0.06 0.02 

Trx-2 0.20±0.04 0.43±0.07 0.01 

 

Relative Optical densities are expressed as mean ± SEM. P values refer to inter-group comparison. ISS: 

Induced sputum macrophages before rhinovirus infection.  ISE: Induced sputum macrophages after 

rhinovirus infection. 

 

Cyto-protective protein response in sputum macrophages before and after RV16 

infection. Next, we determined whether the RV16-induced increase in oxidative stress 

was paralleled by an enhanced expression of anti-oxidant and cyto-protective proteins in 

sputum macrophages. Fig. 4.3 C shows typical western blots and, in the histogram, the 

analyses for all 9 patients. Sirt-1 and Sirt-2 were downregulated after RV16 infections 

whereas the anti-oxidant proteins HO-1, Trx-R and Trx-2 were significantly upregulated. 

Hsp-70 remained unaffected (Table 2). Together these data show that sputum 

macrophages respond to oxidative stress generated during a RV16 challenge by 

enhancing the expression of major anti-oxidant proteins whereas that of the sirtuins, 

which can reverse the oxidative stress-induced acetylation, was reduced.  
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Anti-oxidative capacity of sputum macrophages before and after RV16 infection. 

Despite the enhanced cyto-protective response, sputum macrophages showed more 

oxidative stress after RV16 exposure (Fig. 4.3 A and B). To test whether sputum 

macrophages after RV16 exposure, as opposed to those before RV16 exposure, have a 

reduced capacity to counteract oxidative stress we purified macrophages from sputum 

and left them overnight to recuperate. Subsequently, macrophages were exposed to the 

superoxide-generating system xanthine/xanthine oxidase (X/XO), in the presence or 

absence of the anti-oxidant NAC, to control for ROS-induced changes. Carbonylation 

(Fig. 4.4 A and Table 3) in sputum macrophages collected before RV16 exposure 

increased 1.74-fold (p=0.03) and for macrophages collected after RV16 exposure this 

increased 1.88-fold (p<0.0001). Similarly, 4-HNE adduct formation in sputum 

macrophages collected before RV16 exposure increased, though non-significantly, 1.27-

fold and for macrophages collected after RV16 exposure 1.61-fold (p<0.009; Fig. 4.4 B, 

Table 3). NAC treatment was able to completely block the formation of these 

superoxide-induced post-translational modifications. Together the relative amounts of 

modified proteins in sputum macrophages collected after RV16 exposure were 

markedly higher, both at baseline and after exposure to the xanthine oxidase system, as 

compared to those in sputum macrophages collected before RV16 exposure. This shows 

that sputum macrophages that were collected after RV16 are more vulnerable to 

exposure to ROS. In line herewith, sputum macrophages collected after RV16 exposure 

showed maximal 4-HNE adduct formation within 3 h after exposure to superoxide, 

whereas 4-HNE adduct formation in sputum macrophages from before the RV16 

challenge were maximal after 12 h of exposure to superoxide (Fig. 4.4 C and Table 4).  

We also purified macrophages from BALF collected before RV16 exposure to 

determine whether sputum (ISS) and BALF macrophages (BS) behave similarly (Fig. 

4.3 B and C). The results for BS and ISS are comparable throughout the study.  
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Fig. 4.4. Anti-oxidative capacity of sputum macrophages obtained before and after RV16 infection. Effect 

of the X/XO superoxide-generating system on protein carbonyl formation (A) and 4-HNE protein adducts 

(B) in induced sputum macrophages before and after rhinovirus infection. C. Kinetics of 4-HNE protein 

adducts. Representative blots (left figures) are shown and data, expressed as mean ± SEM, is relative to β-

Actin, for nine patients (righ figures). Induced sputum macrophages before (ISS) and after (ISE) RV16 

exposure. BALF macrophages before RV16 exposure (BS). * p<0.05, ** p<0.01, *** p<0.001.  
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TABLE 3. OXIDATIVE INDUCED PROTEIN MODIFICATIONS IN MACROPHAGES 

BEFORE AND AFTER RV16 INFECTION UNDER OXIDATIVE EXPOSURE 

 

 Carbonylation  4-HNE Pas 

 ISS ISE BS ISS ISE 

Control 24.93±3.88 39.43±4.35 19.43±1.82 71.13±7.12 88.15±6.61 

X\XO 

 

47.68±2.86 

p=0.03 

87.69±3.59 

p<0.0001 

22.32±4.48 

p=0.03 

110.70±14.7 

p= 0.10 

163.10±9.25 

p<0.009 

NAC\X\XO 

 

21.13±2.36 

p=0.22 

32.45±2.05 

p=0.0003 

9.97±2.16 

p=0.03 

48.46±5.18 

p=0.02 

96.44±5.18 

p=0.004 

 

Relative Optical densities are expressed as mean ± SEM. P values refer to comparison to control.ISS: 

Induced sputum macrophages before rhinovirus infection. ISE: Induced sputum macrophages after 

rhinovirus infection. BS: BALF macrophages before rhinovirus infection. X\XO: Xanthine\xanthine 

oxidase. NAC\X\XO: N-Acetyl cysteine\Xanthine\Xanthine oxidase. 

 

TABLE 4. KINETICS OF 4-HNE PROTEIN ADDUCTS FORMATION IN 

MACROPHAGES BEFORE AND AFTER RV16 INFECTION UNDER EXPOSURE 

 

 4-HNE Pas  

ISS ISE P value 

Control 64.21±10.38 91.60±8.62 0.08 

X\XO 3h 82.58±9.23 150.99±17.9 0.01 

X\XO 6h 68.04±14.80 157.13±9.99 0.002 

X\XO 12h 93.75±4.3 164.86±20.60 0.01 

 

Relative Optical densities expressed as mean ± SEM. P values refer to inter-group comparison. ISS: 

Induced sputum macrophages before rhinovirus infection. ISE: Induced sputum macrophages after 

rhinovirus infection. X\XO: Xanthine\Xanthine oxidase. 
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Cyto-protective response to oxidative stress by sputum macrophages before and after 

RV16 challenge. Next, we assessed the X/XO system-induced expression of cyto-

protective proteins in sputum macrophages collected before and after RV16 exposure 

(Fig. 4.5 and Table 5). The top panels show typical examples of the expression of the 

six cyto-protective proteins before and after exposure to oxidative stress. Comparable to 

the data for the ex vivo analyses (cf. Fig.4.3 C), in particular HO-1, Trx-R and Trx-2 

were markedly upregulated in sputum macrophages exposed to oxidative stress in vitro. 

Strikingly, the increase of these cyto-protective proteins in sputum macrophages 

isolated after the viral challenge is far less (maximally around two-fold), whereas the 

increase of these cyto-protective proteins in sputum and indeed BALF macrophages 

obtained before the viral challenge was around four-fold (Fig. 4.5 A and B). In all cases 

the presence of NAC eradicated the effect of superoxide. There were no differences in 

the expression of the sirtuins and Hsp-70 between sputum macrophages collected before 

or after the viral challenge. Together this indicates that macrophages after the viral 

infection could deal less well with oxidative stress than macrophages collected before a 

viral challenge. This is in line with the enhanced oxidative damage in the macrophages 

collected after viral challenge. 
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Fig. 4.5 Cyto-protective response to oxidative stress by sputum macrophages obtained before and after 

RV16 challenge. X/XO superoxide-induced expression of cyto-protective proteins in sputum 

macrophages collected before (A) and after RV16 exposure (B) and in BAL macrophages collected 

before RV16 exposure (C). Representative blots (top figures) are shown and data, expressed as mean ± 

SEM, is relative to β-Actin, for nine patients (bottom figures). Induced sputum macrophages before (ISS) 

and after (ISE) RV16 exposure. BALF macrophages before RV16 exposure (BS).  
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TABLE 5. CYTO-PROTECTIVE RESPONSE IN MACROPHAGES BEFORE AND AFTER RV16 

INFECTION UNDER  EX-VIVO  OXIDATIVE EXPOSURE  

ISS    

 Control X\XO N\X\XO  

Sirt-1 

 

1.48±0.17 

 

1.01±0.20 

p=0.10 

1.41±0.22 

p=0.84 

Sirt-2 

 

1.81±0.27 

 

2.63±0.56 

p=0.20 

1.88±0.24 

p=0.71 

Hsp-70 

 

1.10±0.15 

 

1.41±0.14 

p=0.15 

1.14±0.18 

p=0.17 

HO-1 

 

0.14±0.05 

 

1.73±0.7 

p=0.02 

0.21±0.07 

p=0.10 

Trx-R 

 

1.43±0.15 

 

5.90±0.93 

p=0.0002 

2.08±0.31 

p=0.02 

Trx-2 

 

0.62±0.11 

 

2.22±0.41 

p=0.002 

1.11±0.21 

p=0.15 

ISE    

 Control X\XO N\X\XO  

Sirt-1 

 

1.01±0.11 

 

0.54±0.12 

p=0.01 

0.70±0.10 

p=0.06 

Sirt-2 

 

1.35±0.16 

 

1.50±0.34 

p=0.75 

1.69±0.31 

p=0.35 

Hsp-70 

 

1.10±0.25 

 

1.24±0.28 

p=0.71 

1.02±0.24 

p=0.82 

HO-1 

 

2.10±0.20 

 

3.48±0.38 

p=0.006 

2.12±0.21 

p=0.94 

Trx-R 

 

1.22±0.21 

 

2.29±0.66 

p=0.14 

1.43±0.29 

p=0.54 

Trx-2 

 

0.97±0.17 

 

2.18±0.57 

p=0.05 

1.25±0.18 

p=0.27 

BS    

 Control X\XO N\X\XO  

Sirt-1 

 

1.77±0.18 

 

1.26±0.17 

p=0.09 

1.92±0.15 

p=0.63 

Sirt-2 

 

1.40±0.19 

 

1.80±0.30 

p=0.28 

1.41±0.18 

p=0.95 

Hsp-70 

 

1.29±0.18 

 

2.54±0.38 

p=0.009 

1.70±0.33 

p=0.29 

HO-1 

 

0.32±0.06 

 

1.60±0.42 

p=0.008 

0.77±0.15 

p=0.016 

Trx-R 

 

1.35±0.18 

 

6.75±0.94 

p=0.0001 

2.75±0.45 

p=0.01 

Trx-2 

 

1.15±0.16 

 

5.64±1.08 

p=0.001 

2.39±0.53 

p=0.04 

Relative Optical densities are expressed as mean ±SEM. P values refer to comparison to control. ISS: 

Induced sputum macrophages before rhinovirus infection. ISE: Induced sputum macrophages after 

rhinovirus infection. BS: Bronchoalveolar lavage fluid macrophages before rhinovirus infection. X\XO: 

Xanthine\xanthine oxidase. NAC\X\XO: N-Acetyl cysteine\Xanthine\Xanthine oxidase. 
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No Nrf-2 nuclear translocation in macrophages after RV16 infection. Nrf-2 drives 

protection against oxidative stress. In the absence of oxidative stress, Nrf-2 is 

sequestered in the cytoplasm by Kelch-like ECH-associated protein 1 (Keap1).
424

 ROS 

result in the release of Nrf-2 from Keap-1 and its translocation into the nucleus, 

facilitating transcriptional activation of anti-oxidant and cyto-protective genes. 

Macrophages collected before and after RV16 exposure were exposed to the X/XO 

system for 0, 4, 8 and 12 h, after which the nuclear and cytoplasmic fractions were 

collected and subjected to analyses by western blot (Fig. 4.6 and Table 6). Sputum and 

BALF macrophages, collected before RV16 exposure responded to oxidative stress by 

enhancing the amount of Nrf-2 in the nucleus, whereas the amount of Nrf-2 in the 

cytoplasm apparently was reduced. In fact, the rapid nuclear increment of Nrf-2 fits 

with the prevention of oxidative stress-induced post-translational modifications of 

proteins in sputum macrophages collected before RV16 exposure (Fig. 4.4 C). Sputum 

macrophages collected after RV16 exposure were not able to respond with an enhanced 

nuclear translocation of Nrf-2 in response to oxidative stress, not even after 12 h. The 

enhanced nuclear localization of Nrf-2 in sputum macrophages was paralleled by an 

enhanced cytoplasmic expression of HO-1, which is one of the enzymes under control 

of Nrf-2. So, this indicates that macrophages during an RV16-induced exacerbation lose 

their capacity to enhance nuclear Nrf-2 thereby failing to raise expression of anti-

oxidant and cyto-protective proteins to counteract the effect of ROS. 
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Fig. 4.6. Reduced Nrf-2 nuclear translocation parallels the attenuated anti-oxidant capacity after RV16 

infection. X/XO-induced expression of cytoplasmic and nuclear Nrf-2, and cytoplasmic HO-1 in sputum 

macrophages collected before (ISS) and after RV16 exposure (ISE) and in BAL macrophages collected 

before RV16 exposure (BS). Representative blots (top) are shown and optical densities are relative to that 

of β-Actin for the cytosolic fraction and that of H3 for the nuclear fraction. Data represent the mean ± 

SEM of four experiments done in duplicate. * p<0.05, ** p<0.01, *** p<0.001.  
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TABLE 6. Nrf-2 NUCLEAR TRANSLOCATION AND CYTO-PROTECTIVE 

RESPONSE  IN MACROPHAGES BEFORE AND AFTER RV16 INFECTION UNDER  

EX-VIVO OXIDATIVE EXPOSURE  

 

Nrf-2 Cytoplasm  

 ISS ISE BS 

Control 2.41±0.17 1.60±0.10 3.05±0.26 

X\XO 4h 

 

2.39±0.15 

p=0.92 

1.74±0.10 

p=0.33 

2.71±0.14 

p=0.28 

X\XO 8h 

 

1.82±0.24 

p=0.1 

1.88±0.05 

p=0.04 

2.96±0.14 

p=0.76 

X\XO 12h 

 

1.74±0.22 

p=0.05 

1.49±0.26 

p=0.71 

2.91±0.05 

p=0.61 

Nrf-2 Nuclear 

 ISS ISE BS 

Control 2.17±0.28 1.41±0.18 2.60±0.17 

X\XO 4h 

 

2.39±0.27 

p=0.6 

1.37±0.11 

p=0.86 

2.89±0.1 

p=0.21 

X\XO 8h 

 

3.05±0.39 

p=0.12 

1.72±0.07 

p=0.16 

3.48±0.23 

p=0.02 

X\XO 12h 

 

3.39±0.19 

p=0.01 

1.43±0.18 

p=0.96 

3.83±0.21 

p=0.004 

HO-1 

 ISS ISE BS 

Control 0.14±0.05 0.58±0.12 0.15±0.03 

X\XO 4h 

 

0.22±0.08 

p=0.4 

0.61±0.11 

p=0.87 

0.21±0.06 

p=0.24 

X\XO 8h 

 

0.62±0.10 

p=0.005 

0.66±0.11 

p=0.64 

0.63±0.09 

p=0.003 

X\XO 12h 

 

0.82±0.11 

p=0.001 

0.77±0.14 

p=0.35 

0.83±0.07 

p=0.0001 

 

Relative Optical densities are expressed as mean ±SEM. P values refer to comparison to baseline.ISS: 

Induced sputum macrophages before rhinovirus infection. ISE: Induced sputum macrophages after 

rhinovirus infection. BS: Bronchoalveolar lavage fluid macrophages before rhinovirus infection. X\XO: 

Xanthine\Xanthine oxidase. 
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4-HNE Protein Adducts formation and HO-1 expression after Cigarette Smoke 

Condensate (CSC) exposure. Instead of using the X/XO superoxide-generating system 

we also wanted to see whether the more patho-physiologically relevant CSC, resulted in 

similar findings for 4-HNE protein adduct formation.
425

 Sputum macrophages collected 

before RV16 exposure were not affected by CSC, but macrophages collected after 

RV16 exposure were (Fig. 4.7A and Table 7). Interestingly, sputum macrophages 

collected before RV16 exposure responded by an increased expression of the cyto-

protective HO-1 (Fig. 4.7 B and Table 7), whereas macrophages collected after RV16 

showed a smaller response in line with the enhanced 4-HNE protein adducts seen in 

these cells. Also here the addition of NAC inhibited the effects of CSC. Taken together, 

these findings parallel those obtained with the X/XO system. 
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Fig. 4.7 4-HNE protein adducts formation and HO-1 expression after Cigarette Smoke Condensate (CSC) 

exposure. Effect of Cigarette Smoke Condensate on 4-HNE protein adducts formation (A) and HO-1 

expression (B) in induced sputum macrophages before (ISS) and after (ISE) rhinovirus infection.  
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TABLE 7. 4-HNE PROTEIN ADDUCTS AND HO-1 IN MACROPHAGES BEFORE AND AFTER 

RV16 UNDER CIGARETTE SMOKE CONDENSATE EXPOSURE 

 

 4-HNE Pas HO-1  

 ISS ISE P value ISS ISE P value  

Control 25.64±4.28 54.14±6.54 0.01 0.26±0.12 0.63±0.14 0.09 

CSC 4h 27.13±3.34 57.96±6.71 0.006 0.77±0.10 0.92±0.08 0.06 

CSC 12h 26.54±2.99 95.52±5.34 <0.0001 1.79±0.3 1.11±0.09 0.07 

CSC 24h 27.75±3.29 79.23±8.73 0.01 1.69±0.15 0.92±0.1 0.005 

NAC/CSC 24h 20.25±3.99 58.99±5.95 0.002 0.75±0.15 0.82±0.13 0.71 

Relative Optical densities are expressed as mean ±SEM. P values refer to inter-group comparison. ISS: 

Induced sputum macrophages before rhinovirus infection. ISE: Induced sputum macrophages after 

rhinovirus infection. CSC: Cigarette Smoke Condensate. NAC/CSC: N-Acetyl cysteine/ Cigarette Smoke 

Condensate 

 

Pro-inflammatory mediator responses by macrophages subjected to oxidative stress. 

From 8 patients we were able to collect supernatants from sputum macrophages 

exposed to X/XO, NAC/X/XO and no stimulus for determining the release of 

inflammatory mediators. Evidently, macrophages collected after RV16 exposure 

responded to superoxide with an enhanced release of IL-1β and IL-8 and not 

significantly TNF-α and IL-6 (Fig. 4.8, Table 8). These increases were not observed 

with macrophages collected before RV16 exposure, indicating that macrophages 

become primed to respond to oxidative stress by RV16 exposure. 
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Fig. 4.8 Enhanced pro-inflammatory mediator responses to ROS in macrophages obtained after RV16 

exposure. 24 h-culture supernatants from macrophages obtained before and after RV16 exposure from 8 

patients and tested in duplicate were analysed for IL-1β, IL-6, IL-8 and TNF-α. Data are expressed as 

fold-increase (mean ± SEM) as compared to medium only. ISS: sputum macrophages before and (ISE) 

after rhinovirus infection. * p<0.05 
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TABLE 8. PRO-INFLAMMATORY MEDIATOR RESPONSES BY MACROPHAGES BEFORE 

AND AFTER RHINOVIRUS INFECTION SUBJECTED TO OXIDATIVE STRESS 

 

ISS 

 Control X\XO N\X\XO  

IL-1β 

 

3.12±1.03 

  

3.83±1.97 

p=0.74 

5.74±1.51 

p=0.45 

IL-6 

 

25.34±4.68 

  

60.87±42.56 

p=0.42 

31.49±5.63 

p=0.50 

IL-8 

 

3213.0.5±524.58 

 

2344.29±223.4 

p=0.15 

3533.44±335.62 

p=0.01 

TNF-α  

  

224.190±41.70 

  

147.61±33.60 

p=0.69 

194.63±48.63 

p=0.07 

 ISE 

 Control X\XO N\X\XO  

IL-1β 

 

1.27±0.44 

 

14.76±7.57 

p=0.13 

10.38±4.13 

p=0.59 

IL-6 

 

12.63±4.79 

  

21.89±4.66 

p=0.20 

24.65±7.34 

p=0.75 

IL-8 

 

5848.75±4125.19 

 

14304.05±9988.64 

p=0.44 

7750.81±5024.40 

p=0.56 

TNF-α  

  

132.06±42.39 

 

275.19±56.21 

p=0.11 

242.9±33.01 

p=0.64 
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4.4. Discussion   

During inflammation ROS are generated intentionally to cause damage to the evoking 

stimulus, but the reactivity of ROS implicates that also host components are targeted. 

Whether ROS cause post-translational modifications to cellular proteins, reflecting 

oxidative stress, depends on the capacity to counter ROS and to repair these post-

translational modifications. We have shown here that a low-dose RV16 infection of 

mild asthma patients results in a pronounced oxidative stress in airway macrophages, 

which relates to a markedly reduced capacity of macrophages to raise an adequate anti-

oxidant response to ROS. As a consequence of this reduced anti-oxidant capacity, 

macrophages in response to ROS release pro-inflammatory mediators that may drive 

inflammation during an exacerbation. 

Although viral infections have been shown to induce ROS in epithelial cells,
426,427

 this 

is the first in vivo study on ROS in virus-induced asthma exacerbations. Despite using 

RV16, which is considered a mild virulent rhinovirus species and causes a moderate 

exacerbation only, we noticed a pronounced oxidative stress in macrophages as 

reflected by an enhanced expression of two oxidative stress-induced post-translational 

modifications of proteins. Recently we showed, also with a low-dose RV16 exposure, 

that tryptophan catabolites generated by indoleamine 2,3-dioxygenase (IDO) were 

reduced in airways of asthma patients as opposed to that of healthy individuals.
16

 IDO 

degrades tryptophan at the expense of superoxide and thus is also considered an anti-

oxidant protein.
428

 Therefore, both findings indicate that there is a reduced anti-oxidant 

capacity in the airways from asthma patients after RV16 exposure.  

Cells are equipped with robust cellular anti-oxidant defence mechanisms that protect 

and restore damaging effects of ROS. Among these, HO-1 cleaves heme to produce the 

anti-oxidant biliverdin, inorganic iron and carbon monoxide (CO).
429

 Hsp-70 is a 

chaperone of naïve, aberrantly folded, or mutated proteins involved in cyto-

protection.
430

 Trx-2 and its reductase (Trx-R) participate in various redox reactions 

through dithioldisulphide exchange reaction and have an essential role in limiting 

oxidative stress.
431

 Sirt-1 and Sirt-2 deacetylate histone and non-histone protein 

substrates and thus have been implicated in protecting cells from stress.
432

 Surprisingly, 

the expression of anti-oxidant and cyto-protective proteins HO-1, Trx-R and Trx-2 in 
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macrophages obtained after RV16 exposure were enhanced, which contrasts with the 

observed enhanced oxidative stress (Fig. 4.3). It is unclear whether HO-1, Trx-2 and 

Trx-R in macrophages purified after RV16 infection were not functional, or whether 

other anti-oxidant and cyto-protective proteins, like the sirtuins, failed to counter 

oxidative stress. That is why macrophages were obtained and subjected ex vivo to 

oxidative stress. Macrophages purified after RV16 infection were less capable of 

counteracting oxidative stress, despite their enhanced baseline expression of HO-1, Trx-

2 and Trx-R. In addition, we showed that the kinetics of the HO-1 response in 

macrophages obtained before RV16 infection was rapid and this response was disabled 

in macrophages obtained after RV16 infection. This was also reflected by a reduced 

nuclear translocation of Nrf-2 in these macrophages, which is one of the master 

regulators of the anti-oxidant and cyto-protective response. Macrophages express, in a 

Nrf-2-dependent manner, several other anti-oxidant enzymes including MnSOD, 

ECSOD, catalase and eGRX,
433,434,435,436 

and these too may have been affected after 

RV16 infection.
 
Also we found that Sirt-1 was reduced which may further explain a 

reduced capacity to counteract oxidative stress. Together these findings indicate that an 

enhanced level of expression of anti-oxidant and cyto-protective proteins should not be 

taken as a measure of an enhanced anti-oxidant capacity. Clearly, macrophages that 

have been subjected to RV16-induced oxidative stress have a reduced capacity to fight 

oxidative stress. 
 

These findings are important for a number of reasons. First of all it shows that oxidative 

stress is manifest even during a low dose RV16-induced mild asthma exacerbation. 

Oxidative stress has also been implicated in allergen and air pollution-induced 

exacerbations, and thus oxidative stress is a common denominator in exacerbations. 

Secondly, it shows that macrophages are more vulnerable to oxidative stress after an 

exacerbation. In support, we showed that CSC, a known source of ROS,
437

 caused 

similar differential responses as shown with X/XO. It is unknown whether other local 

cells are also more vulnerable to oxidative stress, but given that cells employ similar 

mechanisms to counteract oxidative stress, we consider this likely. Thirdly, 

macrophages are among the most abundant leukocytes in the airways and exert a range 

of immune-regulatory functions, which are affected by oxidative stress.
438 

Strikingly 

oxidative and carbonyl stress inhibits activity of the transcriptional co-repressor HDAC-
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2 (histone deacetylase 2), which under normoxic conditions helps to suppress pro-

inflammatory gene expression.
439

 In line herewith, macrophages with a reduced capacity 

to counteract ROS showed a ROS-enhanced release of pro-inflammatory mediators. 

Other local cells like bronchial epithelial cells may display a similar enhanced pro-

inflammatory response and thus also contribute to RV16-induced inflammation.   

There are a couple of limitations to this study. Macrophages were obtained from 

patients that were either treated with placebo or anti-IL-5. We cannot exclude that anti-

IL-5 has an impact on ROS production and therefore oxidative stress. The results for the 

macrophages obtained from the 9 patients, however, were very similar, indicating that 

anti-IL-5 has no impact on the oxidative stress. It is not clear whether the observed 

reduced capacity to counteract oxidative stress is specific for asthma, or that a similar 

effect occurs in healthy individuals exposed to RV16. It is known that basal oxidative 

stress in healthy individuals compared to that in asthma patients is low, and therefore 

we predict that RV16-induced ROS are better countered in healthy individuals, which 

however remains to be studied. 

The combination of measuring oxidative stress, the anti-oxidant and cyto-protective 

protein responses and the anti-oxidant capacity in relation to sequential sampling, 

before and after RV16 infection, of macrophages obtained by negative selection, 

strongly support the conclusion that RV16 infection attenuates the anti-oxidant capacity 

of macrophages. The redox network is complex, but our findings indicate that 

improving the anti-oxidant capacity may attenuate an exacerbation. Whether this can be 

achieved by N-Acetyl cysteine or requires more advanced redox interventions remains 

to be determined. 
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Abstract 

Oxidative stress has been implicated in asthma exacerbations. We hypothesized that 

oxidative stress determines allergen-induced fall in FEV1 during late asthmatic response 

(FEV1-LAR).  

The aim of this study was to assess reactive oxygen species-induced post-translational 

modifications of proteins and anti-oxidant and cyto-protective responses in relation to 

fall in FEV1-LAR upon inhaled house dust mite (HDM). 

Induced sputum (supernatant and cells) was collected from 27 HDM-allergic asthmatics 

before and 6 and 24h after HDM challenge, and plasma before, 1, 6 and 24h after. 

Oxidative stress was assessed by expression of 4-HNE PAs and protein carbonylation, 

and anti-oxidant responses by HO-1, Hsp-70, Trx-R, Trx-2, Sirt-1 and Sirt-2 and Nrf-2, 

all by western blotting.  

Strong correlations were found for baseline 4-HNE-PAs and carbonylated proteins in 

sputum supernatant and cells with fall in FEV1-LAR (r≥0.8, p<0.0001). Patients with a 

large fall in FEV1-LAR had significantly higher 4-HNE PAs and carbonylated proteins, 

even at baseline. 4-HNE PAs in sputum and even plasma increased more rapidly after 

HDM challenge in patients with a large fall in FEV1-LAR. Only patients with a small fall 

in FEV1-LAR showed significant up-regulation for Trx-2, HO-1 and Trx-R to HDM 

challenge, paralleled by an enhanced expression of Nrf-2.  

The fall in FEV1-LAR to HDM challenge in allergic asthma correlates with oxidative 

stress and an inadequate anti-oxidant response that is even reflected at baseline. Raising 

the anti-oxidant capacity in these patients may attenuate allergen-induced exacerbations.  
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Capsule summary: HDM allergic asthmatics were challenged with HDM to cause a 20% 

fall in FEV1 during the early asthmatic response. The allergen challenge caused 

oxidative stress, which was positively associated with the fall in FEV1 in the late 

allergic response. Even baseline oxidative stress strongly correlated with the fall in 

FEV1. An enhanced oxidative stress correlated with an inadequate anti-oxidant response, 

indicating that the extent by which the anti-oxidant capacity can counter oxidative stress 

determines the clinical response to allergen in allergic asthma patients. These findings 

indicate that an enhanced anti-oxidant capacity may attenuate the severity of allergen-

induced exacerbations.  
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5.1. Introduction 

Asthma is an inflammatory disease of the airways characterized by recurrent and 

variable symptoms such as wheezing, coughing, chest tightness, and shortness of 

breath.
440 

The episodic nature of asthma
441,442

 relates to variable exposure to provocative 

stimuli such as allergens in allergic asthma patients, infections by respiratory viruses or 

exposure to air pollution. These periods with sudden worsening of asthma symptoms, i.e. 

exacerbations, severely impact the patient’s quality of life, may contribute to an 

accelerated decline of lung function and in severe asthma may even be life-threatening. 

Prevention and control of exacerbations would be major steps forward in the 

management of asthma, but the mechanisms that underlie the development of an 

exacerbation are still far from clear. 

A common underlying feature of exacerbations, irrespective of the triggering event, is 

enhanced airway inflammation. Inflammatory processes result in the generation of 

reactive oxygen species (ROS), which may lead to oxidative stress when ROS and its 

effects are not adequately balanced by the anti-oxidant and cyto-protective 

responses.
443 , 444

 Oxidative stress is reflected among others by ROS-induced post-

translational modifications of proteins, which may lose their biological function.
445

 In 

addition, oxidative stress in itself is considered a pro-inflammatory trigger and thus may 

aggravate inflammation.
446

  

There are several studies that have implicated ROS in asthma exacerbations, which is 

supported further by murine studies.
447 - 448

 We hypothesized that oxidative stress 

determines the allergen-induced fall in FEV1 in the late asthmatic response (LAR). This 

was addressed by detailed analyses of the kinetics of oxidative stress and that of the 

anti-oxidant defense in relation to the clinical response to an allergen challenge. To that 

end, we analyzed induced sputum and plasma that were collected over time in an earlier 

study, in which house dust mite (HDM)-allergic asthma patients were subjected to a 

HDM challenge.
449 , 450

 The amount of HDM for the challenge was titrated so that 

patients had a 20% fall in FEV1 in the early asthmatic response, suggestive of a similar 

mast cell-driven response in all patients. The LAR in these patients varied largely with 

respect to neutrophilic and eosinophilic inflammation and the fall in the FEV1.  
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Oxidative stress was assessed on basis of two independent markers. ROS attack n-6-

polyunsaturated fatty acids, such as arachidonic acid and linoleic acid, generating 4-

hydroxyl-2-nonenal (4-HNE).
451

 When 4-HNE encounters proteins, it can interact with 

thiol and amino groups of cysteine, lysine and histidine residues via Michael addition 

resulting in a covalent bond between 4-HNE and the amino acid (4-HNE protein 

adducts; 4-HNE PAs), and therefore is a relatively stable marker of oxidative stress.452 

ROS also generate lipid electrophiles that may lead to the formation of carbonyl groups 

on protein side chains (carbonylation), particularly of prolines, arginines, lysines and 

threonines.453 Anti-oxidant and cyto-protective proteins to counteract oxidative stress 

were assessed by quantifying heme-oxygenase-1 (HO-1), Heat shock protein-70 (Hsp-

70), Thioredoxin Reductase (Trx-R), Thioredoxin-2 (Trx-2) and Sirtuin-1 and -2 (Sirt-1 

and -2)454 and nuclear factor erythroid 2–related factor 2 (Nrf-2) expression. Nrf-2 is a 

primary master transcription factor directing anti-oxidant and cyto-protective 

responses.455 

  

Fig. 5.1 Study Synopsis and rational. Induced sputum (supernatant and cells) was collected 

from 27 HDM-allergic asthmatics before and 6 and 24h after HDM challenge, and plasma 

before, 1, 6 and 24h after. Oxidative stress was assessed by expression of 4-hydroxyl-2-

nonenal protein adducts (4-HNE PAs) and protein carbonylation, and the anti-oxidant 

response by heme-oxygenase-1 (HO-1), heat shock protein-70 (Hsp-70), thioredoxin 

reductase (Trx-R), thioredoxin-2 (Trx-2), sirtuin-1 and -2 (Sirt-1 and -2) and NF-E2-related 

nuclear factor 2 (Nrf-2) all by western blot analysis. C. Folisi. 
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5.2. Material and Methods 

Study population and study design. The original study, the study population and related 

procedures have been described before in detail.
452

 In short, house dust mite (HDM)-

allergic patients with intermittent to mild persistent asthma were included. At baseline 

(T0), blood and induced sputum were collected and lung function was determined by 

spirometry. Subsequently patients were challenged with HDM and blood was collected 

at 1h (T1), 6h (T6) and 24h (T24) after challenge. Induced sputum was collected at T6 

and T24. All samples were stored at -80°C in aliquots till analyses. The HDM challenge 

procedure has been described in detail.
10

 In short, doubling doses of HDM were inhaled 

with 10 min interval until a fall of ≥ 20% relative to baseline FEV1 occurred 10 or 20 

min after inhalation, so that patients all had a similar early asthmatic response. After the 

final dose of HDM the FEV1 was measured every 10 min up to 1 h, at 90 min and after 

that, to follow up the late asthmatic response (LAR), hourly until 6 h after HDM 

inhalation. The LAR was defined as the maximal fall from baseline in FEV1 between 2 

to 6 hours post challenge. The study was approved by the AMC Medical Ethics 

Committee and all patients provided written informed consent. 

Measurements. 4-hydroxynonenal protein adducts (4-HNE PAs), carbonylated proteins, 

anti-oxidant and cyto-protective proteins were analysed by Western blotting as 

described in detail in the previous chapter. The protein determination is also described 

in the chapter 3. 

Exosomes isolation and western blot analysis. Plasma and sputum supernatant were 

centrifuged in a table centrifuge at 300 x g for 10 minutes at 4°C to remove cells. Then 

samples were centrifuged at 16,500 x g for 20 minutes at 4°C to further remove cell 

debris and the supernatant was filtered through a 0.2 μm filter to remove particles larger 

than 200 nm. The filtered supernatant was ultracentrifuged at 120,000 x g for 90 

minutes at 4°C to pellet extracellular vesicles such as exosomes. The low-density 

membrane pellets were solubilized in 5μl Laemmli sample buffer, separated on 

SDS/PAGE, blotted and HO-1 was detected as described in the Supplemental 

information.  
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Statistical analysis. The fall in FEV1 during the LAR was correlated with post-

translational modifications in sputum and plasma proteins for all patients. To be able to 

determine whether patients with a large fall in FEV1 differ from patients with a small 

fall in FEV1 with respect to oxidative stress and the anti-oxidant response, patients were 

subdivided in two equal-sized groups on the basis of the fall in FEV1 during the LAR.  

Results are presented as mean ± SEM of at least two replicate experiments. Statistical 

analyses were performed utilizing GraphPad Prism 5. Correlations between parameters 

were determined with Pearson’s correlation coefficient with two-tailed p values and a 

confidence interval of 95 %. Analysis of significance was calculated by unpaired 

Student’s t-test and was used to assess between- and within-study group differences. A p 

value <0.05 was considered significant.  
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5.3. Results  

Subjects and HDM bronchial challenge. Complete sample sets were available for 27 out 

of 29 patients participating in the study. Demographic and clinical characteristics of the 

27 mild asthma patients are provided in Table 9, whereas those for all 29 patients were 

published before.
 
Patients were clinically stable before exposure to HDM.  

 

TABLE 9. PATIENTS AND LUNG FUNCTION CHARACTERISTICS 

   

All patients  

  

Group A 

  

Group B 

 

 

 P value 

Male/female (6/21)  (3/11)  (3/10)  

Age
†
 28.3 (20-51) 25.3 (20-42)  31.2 (21-51) 0.1 

FEV1, baseline 3.5±0.1 3.7±0.2 3.3±0.1 0.1 

FEV1 % pred, baseline 95.4±1.9 97.6±1.8 93.1±3.4 0.3 

PC20 methacholine, 

(mg/ml)
††

 

1.9 (0.1-7.7) 2.2 (0.2-7.7) 1.6 (0.1-7.6) 0.9 

Total doses allergen (BU) 574.0±91.8 490.3±103.6 657.7±152.3 0.4 

PD20 HDM
††

 384.5 (15-1115) 305.5 (15-666) 458 (25-1115) 0.3 

Δ FEV1, max (%) EAR -31.2±1.5 -32.9±2.7 -29.5±1.5 0.3 

AUC EAR (ΔFEV1 0-

60min) 

20.0±1.2 21.0±2.0 18.9±1.4 0.4 

Δ FEV1, max (%) LAR -20.9±2.5 -29.4±3.5 -11.8±0.9 <0.0001 

AUC LAR (Δ FEV1 2-6hr)  43.5±4.1 54.3±5.6 31.9±4.0 0.004 

Values are expressed as mean ±SEM, unless indicated otherwise. Abbrevations: FEV1: forced 

expiratory volume in 1 second; %pred: percentage of predicted; PC20: dose of methacholine 

required to cause a 20% drop in FEV1;  BU: Biological Units; PD20: dose of HDM required to 

cause a 20% drop in FEV1; EAR: early allergic response; LAR: Late allergic response. EAR and 

LAR are defined by maximal drop in FEV1 (max) and area under the curve (AUC) over 

indicated period. † mean (Range). †† median (Range). 
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Oxidative damage of proteins in sputum supernatant before and after HDM bronchial 

challenge. 4-HNE PAs and carbonylated sputum proteins increased with time after the 

HDM challenge (Fig. 5.2 A), which was 1.3 times higher for 4-HNE PAs at 24h 

(p=0.001). Both post-translational modifications of sputum proteins correlated strongly 

with the fall in the FEV1 at 6 and 24h (4-HNE PAs: t=6: r=-0.72 p<0.0001 and t=24: r=-

0.73 p<0.0001; carbonylated proteins: t=6: r=-0.79 p<0.0001 and t=24: r=-0.75 

p<0.0001), and interestingly even stronger at baseline (Fig. 5.2 B). At each time point, 

4-HNE PAs and carbonylated proteins correlated significantly (Fig. 5.2 B). To reveal 

whether patients with a large fall in FEV1 in the LAR as opposed to patients with a 

limited fall in FEV1 differ with respect to the generation of 4-HNE PAs and 

carbonylated proteins, patients were subdivided in two equal-sized groups; group A 

(n=14) with a fall in FEV1 of ≥19% and group B (n=13) with a decline of <19% (Table 

9). Baseline characteristics for group A and B are comparable (Table 9) and so are 

sputum and blood relative cell counts and inflammatory markers, apart from increased 

systemic amounts of IL-5 at T6 (Tables 10 and 11). Patients from group A showed 

significantly higher levels of 4-HNE PAs and carbonylated sputum proteins at baseline 

(Fig. 5.2 C and D). Also, the increase in these post-translational modifications after the 

HDM challenge was significantly higher for group A as compared to group B (Fig. 5.2 

C and D; Table 12). The enhanced oxidative stress in group A did not relate to 

exposure to more allergen. In fact, patients in group B were exposed to more allergen.  
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Fig. 5.2 Oxidative damage on proteins in sputum supernatant before and after HDM bronchial challenge. 

Quantitative data for 4-HNE PAs and carbonylated proteins (A); correlation between 4-HNE PAs (on the 

left), carbonylated proteins (center) and maximal drop in FEV1 during the late asthmatic response; 

correlation between baseline 4-HNE PAs and carbonylated proteins (on the right) (B); representative 

western blot for 4-HNE PAs and quantitative data (on the right) (C); representative western blot for 

carbonylated proteins and quantitative data (on the right)  (D). Group A= asthmatics showing a severe 

Late Asthmatic Response (FEV1 drop ≥19%) after HDM bronchial challenge. Group B= asthmatics 

showing a moderate Late Asthmatic Response (FEV1 drop <19%) after HDM bronchial challenge. T0= 

before HDM bronchial challenge. T1= 1 hour after HDM bronchial challenge. T6= 6 hours after HDM 

bronchial challenge. T24= 24 hours after HDM bronchial challenge. (N=27, 14 Group A, 13 Group B). 

*P <0.05, **P <0.01, ***P <0.001.  
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TABLE 10. RELATIVE SPUTUM CELL COUNTS AND INFLAMMATORY MARKERS  

   

All patients  
  

Group A 
  

Group B 
 

 P values 

T0     

% neutrophils  34.70±3.79 35.20±5.58 34.15±5.31 0.89 

% eosinophils 5.83±1.44 5.57±1.22 6.12±2.76 0.85 

% lymphocytes 3.45±0.45 2.82±0.45 4.13±0.77 0.15 

% basophils 0.14±0.07 0.05±0.03 0.25±0.15 0.18 

% macrophages  55.86±3.78 56.36±5.28 55.32±5.62 0.89 

% epithelial 31.74±5.20 28.36±5.07 35.38±9.48 0.51 

     

MPO (ng/ml) 1275.33±274.54 1364.29±428.75 1179.54±351.04 0.74 

ECP (ng/ml)  46.78±11.41 52.58±18.76 40.52±12.99 0.61 

IL-8 (pg/ml)  765.37±227.33 713.50±350.90 821.23±297.32 0.81 

 

T6 

    

% neutrophils  44.75±2.76 42.44±4.27 47.23±3.49 0.40 

% eosinophils 21.93±2.89 22.07±3.81 21.78±4.53 0.96 

% lymphocytes 4.79±0.42 5.14±0.56 4.40±0.63 0.38 

% basophils 0.03±0.02 0.00±0.00 0.06±0.03 0.1 

% macrophages  28.50±2.71 30.34±3.54 26.52±4.22 0.49 

% epithelial 22.62±4.13 25.15±5.25 19.90±6.58 0.54 

 

MPO (ng/ml)  

 

2083.33±405.60 

 

1344.57±241.30 

 

2878.92±755.42 

 

0.06 

ECP (ng/ml) 565.13±244.66 313.77±135.63 835.84±485.94 0.29 

IL-8 (pg/ml) 1918.63±821.35 716.21±210.70 3213.54±1647.56 0.13 

 

T24 

    

% neutrophils  42.51±3.79 41.62±6.05 43.40±4.81 0.82 

% eosinophils 15.62±2.12 15.15±3.02 16.08±3.09 0.81 

% lymphocytes 5.04±0.54 4.85±0.82 5.24±0.71 0.72 

% basophils 0.06±0.03 0.03±0.02 0.09±0.06 0.36 

% macrophages  36.76±3.53 38.35±4.47 35.16±5.60 0.66 

% epithelial 27.38±4.82 34.23±7.28 20.52±6.00 0.16 

 

MPO (ng/ml) 

 

3283.00±1105.77 

 

1678.92±595.42 

 

4887.08±2076.37 

 

0.15 

ECP (ng/ml) 1063.56±434.00 618.97±412.27 1508.15±762.82 0.32 

IL-8 (pg/ml) 3552.69±1653.23 1276.54±498.75 5828.85±3205.62 0.17 

Values presented as mean±SEM. P values refer to the comparison between Group A and B. N=27, Group A=14, Group B=13 

Abbreviations: eo: eosinophil number; ECP: eosinophil cationic protein; MPO: myeloperoxidase; IL-8: interleukin-8. 
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TABLE 11. BLOOD CELLS AND MARKERS OF INFLAMMATION AND ALLERGY  
   

All patients  

  

Group A 

  

Group B 

 

P values 

T0     

% neutrophils 50.82±1.88 51.51±3.10 50.13±2.26 0.72 

% eosinophils 6.17±0.65 7.06±1.03 5.28±0.75 0.17 

% lymphocytes 35.00±1.73 33.18±2.68 36.83±2.19 0.30 

% basophils 0.46±0.06 0.45±0.09 0.48±0.08 0.80 

% monocytes 7.55±0.36 7.82±0.61 7.28±0.40 0.47 

Total leukocytes (10E9/L) 5.87±0.25 5.72±0.41 6.01±0.31 0.58 

Total eosinophils (10E6/L)  350.96±32.76 386.08±48.50 315.85±43.75 0.30 

IL-5 (pg/ml)  3.86±1.24 5.43±2.25 2.29±0.96 0.21 

 

IgE total (kU/l)  

 
304.67±45.80 

 
343.09±62.01 

 
266.25±68.18 

 
0.41 

IgE HDM (kUA/l)  48.04±9.72 61.52±16.80 34.55±8.99 0.17 

IgE Der p1 (kUA/l)  17.93±3.66 23.58±6.03 12.29±3.76 0.13 

IgE Der p2 (kUA/l)  28.49±5.51 34.32±9.16 22.66±6.06 0.31 

 

T1 

    

% neutrophils 59.50±1.77 58.69±2.83 60.32±2.20 0.65 

% eosinophils 4.09±0.47 4.60±0.64 3.58±0.68 0.28 

% lymphocytes 29.04±1.43 29.17±2.53 28.91±1.46 0.93 

% basophils 0.46±0.06 0.36±0.05 0.56±0.11 0.11 

% monocytes 6.92±0.33 7.18±0.50 6.65±0.44 0.44 

Total leukocytes (10E9/L) 6.90±0.39 6.38±0.46 7.42±0.63 0.2 

Total eosinophils (10E6/L)  256.27±25.72 278.31±37.61 234.23±35.50 0.40 

IL-5 (pg/ml) 3.49±1.19 4.97±2.22 2.01±0.78 0.22 

 

T6 

    

% neutrophils 58.65±1.55 59.97±2.65 57.34±1.66 0.41 

% eosinophils 3.81±0.43 3.99±0.64 3.62±0.60 0.68 

% lymphocytes 30.05±1.29 28.55±2.15 31.55±1.37 0.25 

% basophils 0.35±0.04 0.33±0.06 0.38±0.07 0.60 

% monocytes 7.16±0.32 7.18±0.52 7.14±0.38 0.94 

Total leukocytes (10E9/L) 7.75±0.31 7.71±0.45 7.79±0.46 0.87 

Total eosinophils (10E6/L)  271.85±25.16 287.08±40.15 256.62±31.41 0.56 

IL-5 (pg/ml)  

 

T24 

11.91±2.71 17.46±4.52 6.35±2.22 0.03 

% neutrophils 58.10±2.17 61.06±3.71 55.37±2.26 0.2 

% eosinophils 7.66±0.90 7.67±1.28 7.65±1.31 0.99 

% lymphocytes 27.02±1.70 24.15±2.99 29.66±1.52 0.11 

% basophils 0.48±0.07 0.43±0.10 0.52±0.09 0.48 

% monocytes 6.76±0.24 6.69±0.28 6.82±0.39 0.80 

Total leukocytes (10E9/L) 7.16±0.39 7.76±0.60 6.62±0.48 0.15 

Total eosinophils (10E6/L)  510.20±56.69 555.58±95.89 468.31±65.38 0.45 

IL-5 (pg/ml) 46.36±15.18 70.71±27.84 23.89±11.96 0.13 

     

Values are presented as mean±SEM. P values refer to the comparison between Group A and B. N=27, Group A=14, Group B=13. 

IL-5: interleukin-5 
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TABLE 12. MARKERS OF OXIDATIVE DAMAGE ON PROTEINS IN INDUCED 

SPUTUM CELLS  AND SUPERNATANT BEFORE AND AFTER HDM BRONCHIAL 

CHALLENGE 

 

4-HNE Pas 

 
  T0  T6 T24 

 

Sputum supernatant 

 

All patients  

 

32.11±3.12 

 

42.09±4.01 

P=0.05 

47.59±3.41 

P=0.001 

Group A 

 

43.25±3.58 

 

56.90±4.63 

P=0.03 

60.71±3.57 

P=0.002 

Group B 

 

20.11±2.39 

 

26.15±2.55 

P=0.09 

33.47±2.3 

 P=0.005 

Sputum cells 

All patients  

 

59.31±5.43 

 

72.64±6.29 

P=0.11 

94.01±7.19 

P=0.0003 

Group A 

 

79.98±5.73 

 

95.99±7.7 

P=0.10 

121.54±7.55 

P=0.0002  

Group B 

 

37.04±3.85 
 

47.49±2.68 
P=0.04 

64.36±4.99 
P=0.0002 

 

 

Protein carbonylation  

 

  T0  T6 T24 

 

Sputum supernatant 

 

All patients  

 

36.72±3.56 
 

43.07±3.65 
P=0.22 

46.43±4.47 
P=0.09 

Group A 

 

48.06±4.62 

 

56.97±3.33 

P=0.13 

60.80±5.62 

P=0.09 

Group B 

 

24.50±2.87 

 

30.88±4.13 

P=0.42 

30.95±3.80 

P=0.19 

 

Sputum cells 

 

 All patients  

 

76.16±7.55 
 

87.87±8.19 
P=0.3 

104.71±7.64 
P=0.01 

Group A 

 

100.65±9.39 
 

117.88±8.96 
P=0.53 

126.45±8.77 
P=0.01 

Group B 

 

49.07±5.78 

 

62.71±8.86 

P=0.20 

83.27±6.94 

P=0.05  

 

Rel. O.D. presented as mean±SEM. P values compare to T0. N=27, Group A=14, Group B=13 
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Oxidative damage on proteins in sputum cells before and after HDM bronchial 

challenge. Like for sputum proteins, 4-HNE PAs and carbonylated sputum cellular 

proteins increased with time after the HDM challenge (Fig. 5.3 A; Table 12). Strong 

correlations between the fall in FEV1 during the LAR and modifications of the cellular 

proteins were observed at baseline (Fig. 5.2 B: r≥0.8, p<0.0001) and at 6 and 24h (Fig. 

E3: 4-HNE PAs: t=6: r=0.83 p<0.0001 and t=24: r=0.76 p<0.0001; carbonylated 

proteins: t=6: r=0.79 p<0.0001 and t=24: r=0.56 p<0.0001). 4-HNE PAs and 

carbonylated cellular proteins correlated significantly (Fig. 5.3 C). Following 4-HNE 

PAs (Fig. 5.3 D) and carbonylated proteins (Fig. 5.3 E) for group A and B over time, 

the highest baseline values (for both 4-HNE PAs and carbonylated proteins) and the 

earliest changes in 4-HNE PAs (no clear differences for carbonylated proteins) were 

observed in group A. Finally, 4-HNE PAs and carbonylated proteins from sputum cells 

and supernatant strongly correlated.  
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Fig. 5.3 Oxidative damage on proteins in sputum cells before and after HDM bronchial challenge. 

Quantitative data for 4-HNE PAs and carbonylated proteins (A); correlation between 4-HNE PAs, 

carbonylated proteins and FEV1-LAR (B); correlation between 4-HNE PAs and carbonylated proteins (C); 

representative western blot for 4-HNE PAs and quantitative data (D); representative western blot for 

carbonylated proteins and quantitative data (E). See legends Fig. 5.2 for further explanation. 
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Cyto-protective and anti-oxidant proteins in sputum cells before and after HDM 

bronchial challenge. The expression of only Trx-2 and HO-1 in sputum cells were 

enhanced in response to HDM (Fig. 5.4 A, E5 and Table 13). The expression of Trx-2, 

HO-1 and Trx-R (enhanced in group B, see below) were strongly correlated with the fall 

in FEV1 during the LAR at baseline (Fig. 5.4 B) and at 6 and 24h (Fig. E6 Trx-2: t=6: 

r=0.78 p<0.0001 and t=24: r=0.73 p<0.0001; Trx-R: t=6: r=0.72 p<0.0001 and t=24: 

r=0.76 p<0.0001; less so for HO-1: t=6: r=0.56 p=0.002 and t=24: r=-0.11 p=0.56). 

Comparison within group A and B, however, shows marked up-regulation for Trx-2, 

HO-1 and, although slightly less, for Trx-R in sputum cells from group B over time in 

response to the HDM challenge (Fig. 5.4 C). In contrast, for group A there was a slight, 

but significant, up-regulation for HO-1 and Hsp-70 only. These results indicate that 

sputum cells from group A with the largest fall in FEV1 have a reduced capacity to 

enhance the expression of cyto-protective proteins. Interestingly, the baseline 

expression of the cyto-protective Hsp-70, Trx-R, Trx-2 and HO-1 in group A were 

significantly higher and that for Sirt-1 significantly lower compared to those in group B 

(Fig. 5.4 C and E6). Therefore, we assessed the expression of Nrf-2 in sputum cells. 

Strikingly the expression of Nrf-2 remained stable in both group A and B upon allergen 

exposure, but its expression was significantly higher in sputum cells from group B (Fig. 

5.4 D).  
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Fig. 5.4 Cyto-protective proteins in sputum cells before and after HDM bronchial challenge. Quantitative 

data for Sirt-1, Hsp-70, Sirt-2, Trx-2, Trx-R and HO-1 (A); correlation betweenTrx-R, Trx-2, HO-1 and 

FEV1-LAR (B); representative western blot for Sirt-1, Sirt-2, Hsp-70, Trx-R, Trx-2, HO-1 and quantitative 

data for group A and B (C); western blot for Nrf-2 and quantitative data (D); Rel. Optical Density (Rel. 

O.D.). See legends Fig. 5.2 for further explanation. C+ = HeLa cells lysate used as positive control. 
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TABLE 13. CYTO-PROTECTIVE PROTEINS IN SPUTUM CELLS AND 

SUPERNATANT BEFORE AND AFTER HDM  CHALLENGE  
 

Sputum Cells 
 

All Patients T0 T6 T24 P value T0/T6 P value T0/T24 

Sirt-1 1.25±0.05 1.22±0.06 1.34±0.05 0.77 0.21 

Sirt-2 2.12±0.13 2.05±0.12 2.07±0.12 0.72 0.78 

Hsp-70 1.81±0.07 1.99±0.09 1.99±0.09 0.12 0.13 

Trx-R 2.32±0.14 2.66±0.13 2.57±0.12 0.07 0.20 

Trx-2 2.53±0.2 2.86±0.20 3.25±0.18 0.30 0.01 

HO-1 0.30±0.04 0.35±0.03 0.61±0.04 0.36 <0.0001 

 

Group A 

Sirt-1 1.05±0.04 0.98±0.05 1.11±0,03 0.35 0.23 

Sirt-2 2.17±0.22 2.09±0.2 2.07±0.20 0.79 0.74 

Hsp-70 2.06±0.05 2.23±0.07 2.24±0.13 0.05 0.19 

Trx-R 2.79±0.18 3.06±0.16 2.99±0.16 0.27 0.39 

Trx-2 3.45±0.20 3.65±0.19 3.75±0.21 0.48 0.30 

HO-1 0.37±0.02 0.39±0.02 0.46±0.03 0.56 0.03 

 

Group B 

Sirt-1 1.45±0.06 1.32±0,05 1.50±0.07 0.107 0.66 

Sirt-2 2.05±0.14 2.02±0.14 2.05±0.13 0.88 0.99 

Hsp-70 1.53±0.08 1.68±0.08 1.70±0.09 0.26 0.19 

Trx-R 1.81±0.08 2.98±0.11 2.09±0.08 0.01 0.02 

Trx-2 1.53±0.17 2.14±0.12 2.67±0.19 0.09 0.0002 

HO-1 0.11±0.01 0.28±0.02 0.69±0.04 <0.0001 <0.0001 

      

Sputum supernatant 
 

All Patients T0 T6 T24 P value T0/T6 P value T0/T24 

Sirt-1 0.99±0.06 1.05±0.05 0.98±0.07 0.47 0.88 

Sirt-2 1.30±0.10 1.29±0.09 1.56±0.12 0.95 0.44 

Hsp-70 1.63±0.08 1.63±0.09 1.68±0.08 0.98 0.71 

Trx-R 2.26±0.16 2.20±0.13 2.40±0.21 0.77 0.59 

Trx-2 0.86±0.06 1.01±0.06 1.27±0.19 0.05 <0.0001 

HO-1 0.03±0.01 0.11±0.02 0.37±0.04 0.002 <0.0001 

 

Group A 

      

Sirt-1 0.77±0.05 0.88±0.05 0.69±0.05 0.14 0.21 

Sirt-2 1.15±0.16 1.17±0.14 1.03±0.15 0.90 0.57 

Hsp-70 1.94±0.09 1.90±0.08 1.69±0.14 0.76 0.14 

Trx-R 2.73±0.19 2.26±0.22 1.67±0.14 0.11 0.0001 

Trx-2 1.03±0.08 0.93±0.10 0.64±0.04 0.45 0.004 

HO-1 0.02±0.01 0.06±0.03 0.28±0.04 0.25 <0.0001 

 

Group B 

      

Sirt-1 1.24±0.05 1.24±0.04 1.31±0.04 0.96 0.29 

Sirt-2 1.45±0.10 1.41±0.10 1.3±0.10 0.75 0.25 

Hsp-70 1.31±0.07 1.34±0.07 1.66±0.08 0.70 0.002 

Trx-R 1.75±0.18 2.13±0.15 3.18±0.29 0.11 0.0003 

Trx-2 0.68±0.04 1.11±0.04 1.97±0.26 <0.0001 <0.001 

HO-1 0.04±0.02 0.15±0.02 0.45±0.08 0.002 <0.0001 
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Cyto-protective proteins in induced sputum supernatant before and after HDM 

bronchial challenge. Several cyto-protective proteins are released actively by cells in 

response to oxidative stress, either free or packed within vesicles.
19-22

 Over time 

extracellular Hsp-70, Trx-2 and Trx-R increase in sputum supernatant from group B, 

whereas it was reduced in sputum supernatants from group A (Fig. 5.5 A, Fig. E7, 

Table 13). HO-1 enhances in both group A and B, although values for HO-1 are higher 

in group B (Fig. 5.5 A). In fact, baseline levels and changes over time resemble those 

observed for cyto-protective proteins within sputum cells (Fig. 5.4 A and C; cf. Fig.5.5 

C) and even are relatively more pronounced. HO-1 and Trx-2 (Fig. 5.5 B) were 

contained in extracellular vesicles, but some HO-1 and Trx-2 remained in the 

supernatant after centrifugation. 
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Fig. 5.5 Cyto-protective proteins in sputum supernatant before and after HDM bronchial challenge. 

Representative western blot for Sirt-1, Sirt-2, Hsp-70, Trx-R, Trx-2, HO-1 and quantitative data for all 

patients (on the right) and for group A and B (below) (A); western blot for Trx-2 and HO-1 in exosome-

containing fraction and cleared supernatant (B); quantitative data for Sirt-1, Hsp-70, Sirt-2, Trx-2, Trx-R 

and HO-1 in group A and B (C). C+ = HeLa cells lysate used as positive control 1= sputum supernatant 

after ultracentrifugation 2= pellet after ultracentrifugation. See legends Fig. 5.2 for further explanation. 
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Plasma 4-HNE protein adducts before and after HDM bronchial challenge. 4-HNE PAs 

in plasma increased in both groups, but more in group A and already 1h after HDM 

challenge (Fig. 5.6 A, Table 14). Despite the fast increase in 4-HNE PAs in plasma, 

only at 1 and 24h we found significant correlations with the fall in FEV1 (T1: r=0.44. 

p=0.03; T24: r=0.50, p=0.01). HO-1 in plasma increased in both groups, but more in 

group B and here too a significant difference was obtained 1h after HDM challenge (Fig. 

5.6 B, Table E5). HO-1 and 4-HNE-PAs in plasma correlated (T24: r=-0.42, p=0.04). 

HO-1 plasma levels correlated with fall of FEV1 (r=-0.53, p=0.006 at 6h; r=-0.46, 

p=0.02 at 24h). Interestingly, extracellular HO-1 in plasma was associated with 

extracellular vesicles, similar to that found for sputum.  
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Fig. 5.6 Plasma 4-HNE protein adducts before and after HDM bronchial challenge.  Representative 

western blot for HNE PAs and quantitative data (A); western blot for HO-1 and quantitative data (B); 

western blot for HO-1 of the exosome-containing fraction and cleared supernatant (C). C+= HeLa cells 

lysate used as positive control; 1= plasma supernatant after ultra-centrifugation; 2= pellet after ultra-

centrifugation. See legends Fig. 5.2 for further explanation. 
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TABLE 14. MARKERS OF OXIDATIVE STRESS AND OXIDATIVE RESPONSE IN 

PLASMA BEFORE AND AFTER HDM BRONCHIAL CHALLENGE.  
 

 

4-HNE PAs T0 T1 T6 T24 

All patients  

 

37.10±3.60 

 

59.78±6.38 

P=0.003 

61.71±4.99 

P=0.0002 

78.28±8.99 

P< 0.0001 

Group A 

 

41.95±5.38 

 

78.96±8.97 

P= 0.22 

80.29±6.11 

P=0.05 

104.34±14.83 

P=0.004  

Group B  

 

32.62±4.67 

 

42.08±5,83 

P=0.002 

39.18±4.22 

P=0.0001 

54.22±4.76 

P=0.007  

HO-1  T0 T1 T6 T24 

All patients  

 

1.38±0.09 

 

1.62±0.08 

P=0.06 

1.86±0.11 

P=0.002 

2.16±0.08 

P<0.0001 

Group A 

 

1.24±0.11 

 

1.42±0.12 

P=0.3 

1.46±0.10 

P=0.15 

1.88±0.10 

P=0.003  

Group B  

 

1.51±0.13 

 

1.81±0.10 

P=0.08 

2.22±0.13 

P=0.0008 

2.43±0.09 

P < 0.0001 

 

Rel. O.D. are presented as mean±SEM. P values compare to T0. N=27, Group A=14, Group B=13 

Correlations between oxidative stress and anti-oxidant response with cells producing 

reactive oxygen species. The ROS-induced post-translational modifications of proteins 

in response to the HDM challenge depend on the anti-oxidative response, as shown 

above, and the amount of ROS generated. Neutrophils and eosinophils are an important 

source of ROS and therefore we have taken the number and activation status of sputum 

neutrophils and eosinophils at 24h after the HDM challenge as an approximation of 

ROS production. Interestingly, we found no correlations for neutrophils and eosinophils 

and their activation products with carbonylated proteins and 4-HNE PAs in sputum cells 

and proteins (Fig. 5.7). In contrast, carbonylated proteins and 4-HNE PAs correlated 

strongly with cyto-protective proteins (Fig. 5.7), indicating that cyto-protective 

responses are key determinants in oxidative stress.   
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Fig. 5.7 Oxidative damage on proteins and cyto-protective proteins in sputum cells. Correlation between 

MPO, ECP, Trx-R, Trx-2, HO-1 and 4-HNE PAs (A), carbonylated proteins (B) in sputum cells 6 hours 

after HDM challenge. 
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5.4. Discussion  

HDM challenges, as expected, enhanced ROS-induced post-translational modifications 

of proteins. In patients with a low baseline oxidative stress, however, the ROS-induced 

post-translational modifications resulting from the HDM challenge were delayed and 

remained relatively low, paralleled by a marked anti-oxidant and cyto-protective 

response. In patients with a high baseline oxidative stress, ROS-induced post-

translational modifications increased markedly and rapidly after the HDM challenge and 

the anti-oxidant and cyto-protective responses were almost non-existing. The oxidative 

stress at t=6 and t=24 correlated strongly with the fall in FEV1. The most striking 

finding in this study was the strong positive correlation between baseline oxidative 

stress and the fall in FEV1. Taken together these findings indicate that the fall in FEV1 

in the late asthmatic response depends on the capacity to counter ROS. Patients with a 

reduced capacity to counter ROS experienced larger falls in FEV1. Interestingly, ROS-

induced post-translational modifications did not correlate with inflammatory markers, 

but showed strong correlations with the anti-oxidant and cyto-protective responses. This 

further confirms that the anti-oxidant and cyto-protective responses are predominantly 

influencing the ROS-induced post-translational modifications.  

To the best of our knowledge this is the first study in which oxidative stress, anti-

oxidant and cyto-protective responses have been analyzed in parallel in HDM-sensitized 

mild asthma patients, before and after allergen challenges. In addition, these parameters 

were followed over time and studied both locally and systemically. The provocative 

dose of HDM was titrated to cause a 20% drop of the FEV1 in the early asthmatic 

response, which suggests that mast cell responses were similar between patients. The 

late asthmatic response, which reflects the recruitment and activation of inflammatory 

and immune cells, varied considerably between patients. Interestingly, for group B 

apparently higher amounts of allergen were employed (Table 9) and more activation of 

inflammatory cells (Table E1) was found, which indicates that more ROS may have 

been generated. Nevertheless, the ROS-induced post-translational modifications were 

less, in accordance with a potent anti-oxidant capacity in these patients.  
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It is not clear how the reduced anti-oxidant capacity and thus enhanced oxidative stress 

for group A is linked to marked fall of the FEV1 during the late asthmatic response. 

Recent reports suggest that ROS-induced damage leads to an enhanced contractility of 

airway smooth muscle cells.
456,457 

Therefore, we propose that the ROS-induced damage 

in sputum supernatant and cells, may also reflect that of airway smooth muscle cells and 

relate to the fall of the FEV1 during the late asthmatic response.   

There are multiple stressors of cells and proteins. Since both 4-HNE-PAs and carbonyl 

groups were strongly correlated and paralleled by anti-oxidant and cyto-protective 

responses, it is likely that ROS and no other stress drove the HDM-induced responses. 

The most marked anti-oxidant and cyto-protective responses were found for Trx-2, Trx-

R, HO-1 and Nrf-2. Trx-2 is a 12-kD oxidoreductase containing a dithiol-disulfide 

active site with anti-oxidant activity, although it also reverses nitrosylation of cysteine 

residues.458
 Trx-2 is kept functionally active by Trx reductase (Trx-R) and NADPH. 

Serum Trx-2 is increased in asthmatics and correlates positively with the severity of 

asthma. HO-1 catalyzes the degradation of heme in biliverdin, carbon monoxide and 

free iron, by which it exerts anti-oxidant and cyto-protective properties.
459

 HO-1 

expression in alveolar macrophages and exhaled CO are higher in untreated asthmatics 

than in healthy controls and well-controlled asthma patients.
460,461

 Nrf-2 is sequestered 

in the cytoplasm by the repressor protein Keap 1 (Kelch-like ECH-associated protein 1), 

but when exposed to oxidative stress, Nrf-2 goes to the nucleus where it triggers the 

transcription of anti-oxidative genes. It has been reported that disruption of the Nrf-2 

gene leads to severe allergen-driven airway inflammation and hyper-responsiveness in 

mice.
462

 These anti-oxidant responses were found predominantly in sputum proteins, in 

proteins from sputum cells and, to a lesser extent, in proteins in the circulation, which is 

in line with allergen-induced airway inflammation as the source of ROS.  

This study also provides novel insight into several other aspects. First, the high 

expression of most anti-oxidant and cyto-protective proteins in patients with high basal 

oxidative stress suggest a high anti-oxidative capacity, but from the response to HDM it 

is clear that this was not the case. Hence, this indicates that the level of expression of 

anti-oxidant and cyto-protective proteins does not necessarily reflect the anti-oxidative 

capacity. Secondly, we found that HO-1 and Trx-2 were released in vesicular fractions, 
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likely to be exosomes, in both sputum and circulation and particularly by patients who 

responded well to oxidative stress. Lasser et al. showed that exosomes derived from 

cells grown under oxidative stress can mediate tolerance to oxidative stress in recipient 

cells.463 Therefore, these vesicular fractions may reflect a means to counter oxidative 

stress over a larger area. There are no other reports showing vesicular fractions 

containing these enzymes. Kim et al.
464

, however, showed an association of HO-1 with 

plasma membrane caveolae in endothelial cells, which could lead to exosome formation. 

Further characterization of these bodies that contain HO-1 and Trx-2 is warranted. 

There are a couple of limitations to this study. The storage conditions prevented us from 

assessing the actual anti-oxidative capacity of sputum cells ex vivo. Nevertheless, the 

analyses of sequential samples of both the ROS-induced post-translational 

modifications and the anti-oxidant and cyto-protective responses provide a clear insight 

into the responses to the HDM challenge over time. Furthermore, this is an 

observational study and therefore a causal relationship between ROS-induced post-

translational modifications, the anti-oxidant capacity and the drop in FEV1 to an HDM 

challenge is not proven. This awaits an intervention study for example by treating 

allergic patients with N-Acetyl Cysteine or similar anti-oxidant agents.  

Asthma exacerbations continue to be a major cause of morbidity, disability and 

healthcare costs. The current findings indicate that baseline oxidative stress may 

identify patients at risk of a marked fall in lung function upon exposure to the relevant 

allergen. To verify this, a prospective study has to be carried out. Furthermore, our study 

indicates that enhancing the anti-oxidant and cyto-protective capacity may attenuate the 

allergen-induced late drop in FEV1. Whether similar considerations apply to other 

triggers of asthma exacerbations, such as respiratory virus infections and air pollution is 

not unlikely, but remains to be determined. 
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5.5. Supplementary material 

 

 

 

 

 



138 

 

 

 

 

 

 



139 

 

 

 

 



140 

 

 

 



141 

 

 

  
 



142 

 

Chapter 6 

6. Oxidative stress and allergic sensitization 

This chapter is based on the submitted manuscript: “Inadequate anti-oxidant 

responses promote allergic sensitization”  
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Abstract 

Allergies are aberrant Th2 responses to allergens. The processes initiating allergic Th2 

responses remain elusive. Mite allergens have proteolytic activity which can induce 

oxidative stress in vivo. We showed that by reducing mite protease capacity to generate 

oxidative stress, allergic sensitization and inflammation were also reduced. 

Susceptibility to mite allergy was highly dependent on host genetic background. 

Comparing two strains of mice, high baseline oxidative stress and poor anti-oxidant 

responses were prerequisites for allergic sensitization. We showed that in human 

subjects, the same condition was a decisive host factor for the development of 

occupational allergy to rodent urinary proteins. Our results indicate that oxidative stress 

generated by inadequate anti-oxidant responses, determines allergic sensitization and 

provides an opportunity for prevention. 

mailto:lara.utsch@gmail.com
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6.1.  Introduction 

Allergies are mediated by IL-4, IL-5, IL-13 and IgE, and arise from aberrant immune 

responses by T helper type 2 cells to allergens.
465

The processes that underlie these 

aberrant responses and that lead to allergic sensitization largely have remained elusive. 

Pattern recognition receptors (PRRs) like Toll-like receptors, expressed by antigen-

presenting cells and non-immune cells like epithelial cells, are important regulators of 

immune response to microbial components such as bacterial lipopolysaccharides 

(LPS).
466

 TLR4 triggering by LPS has been found crucial for the initiation of allergen-

specific Th2 responses to HDM in mice.
467 , 468

However, this is disputed as Th2 

responses to inhaled HDM can also be induced in the absence of TLR4 

signalling.
469 , 470

These contradictory findings argue strongly for an additional 

mechanism independent of the LPS-TLR4 pathway.  

LPS is a major contaminant of HDM and is able to induce oxidative stress.
471

HDM 

however, also contains various allergens which are proteins with distinct biological 

functions among which proteases (Der p 1, Der p 3, Der p 6).
472

 Proteases can induce 

oxidative stress in vivo
473

 and therefore we hypothesized that sensitization to HDM can 

also depend on oxidative stress induced by its proteolytic activity. Oxidative stress 

condition happens when reactive oxygen species (ROS) from local and/or 

environmental sources can overwhelm anti-oxidant responses. ROS, during oxidative 

stress condition, can activate the immune system
474

 and in the context of allergen 

exposure, may facilitate allergic sensitization. This has not been clarified, although 

several studies are in support for a role of oxidative stress in sensitization to HDM.  

Murine studies show that, birch pollen-induced oxidative stress mediated IL-4 and IgE 

production;
475

 and ROS generation by papain was responsible for its adjuvant effect in 

an ovalbumin-induced allergic sensitization. In human experimental studies, allergic 

sensitization was induced when intranasal exposure to allergens was accompanied by 

exposure to diesel exhaust particles (an oxidizing agent).
476

  

We set off to determine whether sensitization to HDM depends on its capacity to induce 

oxidative stress. We addressed our hypothesis in a murine model of HDM-induced 

allergic inflammation. We showed that the proteolytic activity in HDM in itself is 
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sufficient to promote sensitization to HDM. Interestingly, mice with a marked anti-

oxidant response after inhalation of HDM low in endotoxin were resistant to allergic 

sensitization. In contrast, mice having a small anti-oxidant response and in parallel 

higher baseline oxidative stress were susceptible to allergic sensitization. To extend our 

murine data, we analysed serum and PBMC from a cohort of allergic individuals, who 

were or were not de novo sensitized to murine and rat urinary proteins upon 

occupational exposure. The individuals that became allergic sensitized displayed high 

baseline oxidative stress and low anti-oxidant protein expression. Contrary, non-

sensitized subjects, displayed low baseline oxidative stress and high anti-oxidant protein 

expression. Our study indicates that an adequate anti-oxidant response is the major 

denominator in preventing allergic sensitization.  
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6.2. Methods 

Reagents. HDM (HT): Greer; HDM (LT): LoTox (Lot no. 33019), INDOOR 

biotechnologies; Periodic Acid Schiff’s, N-acetyl-L-cystein (NAC), Xanthine, Xanthine 

oxidase and Propidium iodide, Sigma-Aldrich; rGM-CSF, Thermo scientific; MHCII-

FITC, CD11c-APC, CD86-PE, CD80-PE, CD40-PE,  Rat IgG2a, Ham IgG antibodies 

and ELISA kit Ready-set-go! IL4, IL5, IL13 and IFNγ, eBioscience Inc; Antibody to 

FcRγII/III 2.4G2, provided by Louis Boon, Bioceros, Utrecht, The Netherlands; 

Bicinchoninic acid (BCA) kit, Bio-Rad Laboratories Inc.; BlueSepharose, Amersham; 

Antibodies to 4-HNE, Nrf-2, HO-1, Santa Cruz; Antibody to β-actin, GeneTex; IgE, 

IgG1 and IgG2a, ELISA kit Opteia, BD; Trizol, Invitrogen; First strand cDNA Synthesis 

Kit, Fermentas; SYBR Green PCR Master Mix, Applied Biosystems.  

6.2.1. Murine studies 

Mice. Female C3H/HeJ, -HeN from (Harlan, Bicester Oxon, UK) and Balb/c (Harlan, 

Horst, The Netherlands) mice, were housed under specific pathogen-free conditions at 

AMC animal facility. All experiments were approved by the AMC animal ethics 

committee, The Netherlands.  

Sensitization. Mice were anaesthetized with isoflurane and 30 µ of HDM extracts (1 µg 

Der p 1 per mice) or Phosphate Buffered Saline (PBS) were administrated as described 

in 
39

. Briefly, mice were exposed intranasally for 3 cycles of five consecutive days and 

two days’ rest. Four weeks after the last cycle, mice were re -challenged three times and 

sacrificed two days later. 

Bronchoalveolar lavage fluid. Cells from the airway lumen were obtained by three 

subsequent washes with 1 ml PBS 0.1 mM EDTA, after intratracheal cannulation. Cell 

differentiation was determined by FACS as described elsewhere.
477

 

Lymph node restimulation. Cells were plated in 96-well round bottom plates at 2x10
5 

cells per well and restimulated for 4 days with 100 µg ml
-1

 HDM extract. Cytokines in 

supernatants were analysed by ELISA.  
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Immunoglobulins. Serum total or HDM-specific IgE, IgG1 and IgG2a were analysed by 

ELISA. Standard curve of murine immunoglobulin were used as qualitative reference. 

Histology. Frozen lung sections (6 µm) were stained with Periodic Acid Schiff’s. 

Inflammation and mucus-producing goblet cells were semi-quantified as described in
478

.  

Bone-Marrow derived dendritic cells (BMDCs). BMDCs from C3H/HeJ were obtained 

as described in 
42

. On day 9 of culture, cells were incubated with or without NAC 5 mM 

at 37 
o
C in 5% CO2 prior to incubation with LT HDM extract (1 µg Der p 1/ml). At day 

10, CD40, CD80 and CD86 expression were determined by FACS. Propidium iodide 

was used for cell viability.  

Western blots (WB). Proteins from lung homogenates and BMDCs were extracted with 

Laemmli buffer: 20% wt/vol sodium dodecyl sulfate (SDS), 30% vol/vol glycerol, 30% 

vol/vol deionized water in 1 M Tris-base pH 6.8. Proteins were next diluted in 4% 

wt/vol SDS, 10% vol/vol 2-mercaptoethanol, 20% vol/vol glycerol, and 0.004% vol/vol 

bromophenol blue in 125 mM Tris-HCl pH 6.8 and separated on 13% SDS/PAGE. 

After transferred to polyvinylidene difluoride membranes and blocked with 5% wt/vol 

skim milk, blots were incubated with primary antibodies to Nrf-2 or 4-HNE. 

Subsequently, they were incubated with IRDye 680LT-conjugated secondary antibodies. 

Blots were visualized using infrared fluorescence detection Odyssey Imager and 

software (LI-COR Biosciences). Loading was normalized per -actin.  

Real-time PCR. Total lung RNA was extracted with Trizol according to the 

manufacturer’s instructions. Complementary DNA (cDNA) was synthesized using First 

strand cDNA Synthesis Kit. PCR was performed in a 10 ml reaction volume including 5 

ml of SYBR Green, 200 nM of each FW and RV primers, 2 µl of cDNA and nuclease 

free water. For each gene, reaction was performed in duplicates. Duplicate standard 

curves were constructed by serial dilution (1:5) from a concentrated pool of cDNA. All 

reactions were performed in optical 96-well reaction plates using the ABI Prism 7500 

system (Applied Biosystems). mRNA concentrations was calculated based on the 

standard curve method 
479

 and normalized to the housekeeping gene HPRT.  
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Cysteine, Trypsin, and Chymotrypsin activity assay. Heated LT HDM was serially 

diluted (1:2) in reaction buffer (0.2 M sodium phosphate, 1 mM EDTA, pH 7.0) and 

mixed with 20% vol/vol 20 mM cysteine substrate OR reaction buffer (50 mM TRIS, 20 

mM CaCl2, pH 8.2) and mixed with 50% vol/vol 2 mM trypsin substrate OR reaction 

buffer (0.1 M TRIS, 0.96 M NaCl, 10 mM CaCl2, pH 8) and mixed with 50% vol/vol 

chymotrypsin substrate in 96-well NUNC plates. For the standard curves, enzymes were 

serially diluted (1:2) and mixed with respective substrates. Starting enzymes dilutions: 

papain, 700 μg ml 
-1

; trypsin, 2 μg ml
-1

, and chymotrypsin, 200 μg ml
-1

. Absorbance 

was measured at 415 nm after the development of colour. 

Cap-inhibition assay. ImmunoCAP component (ThermoFisher Scientific) was 

performed according the manufacturer’s instructions. Prior to incubation in 

ImmunoCAP, human serum was inhibited for 1 hour with heated LT HDM. After 

inhibition, residual IgE binding was measured using CAPs coated with mite extract, Der 

p 1 or Der p 2. Results were expressed in % inhibition. 

6.2.2. Human studies 

Study design. Study population consisted of 37 temporary laboratory animal workers 

from a previous study
17

. Briefly, participants were followed for 2 years and 

occupational allergic sensitization to rodent urinary proteins was monitored. They were 

seen at the start of their application as animal workers (T0), after 4 months (T4), 1 year 

(T12) and 2 years (T24) for blood collection and clinical evaluations. Herein, we 

compared 21 workers who did not develop sensitization to rodents with 16 animal 

workers who did. 4-HNE modified proteins and HO-1 were accessed in serum and Nrf-

2 was accessed in Peripheral Blood Mononuclear Cells (PBMC) by WB. 

Western blots. Serum samples were treated with BlueSepharose 6B CL to reduce the 

albumin content. Proteins were treated and blotted as described in the murine section. 

Antibodies to Nrf-2, HO-1 or 4-HNE were used. Total protein was determined by BCA. 

Samples were normalized per 50 µg of protein. 

PBMC. Cells were cultured overnight with Xanthine (0.5 mM): Xanthine oxidase (50 

mU). Nrf-2 protein expression was analysed by WB in total cell lysate. 
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Statistical analysis. Statistical significance was tested with Mann-Whitney U test. 

Experiments were repeated at least twice unless stated otherwise in Fig. legends. For 

correlation analysis, Pearson correlation coefficient was calculated. Significance was 

established at P < 0.05. 
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6.3. Results 

Low endotoxin HDM (LT) extract induced a full-blown allergic Th2-type response in 

C3H but not in Balb/c mice. To determine whether inhaled HDM was able to induce 

allergic sensitization and inflammation in a TLR4-independent manner, TLR4-mutant 

C3H/HeJ mice and as controls Balb/c mice were intranasally exposed to two HDM 

extracts that differed in endotoxin level: a crushed whole body HDM extract referred to 

as high endotoxin (HT; 153 EU mg
-1

) and a mite spent medium extract referred to as 

low endotoxin (LT; < 3 EU mg
-1

). HT HDM inhalation by Balb/c mice resulted in a 

strong Th2-type inflammatory response, as reflected by eosinophil recruitment in the 

airway lumen, local Th2 cytokine production, peri-bronchial inflammatory infiltrates, 

goblet cell hyperplasia, total IgE and specific IgG1. In addition, IFNγ and HDM-specific 

IgG2a were also increased (Fig. 6.1 a-e). LT HDM failed to induce any significant 

immune response in Balb/c mice, except for a small increase in mucus production (Fig. 

6.1 e). Despite the non-functional TLR4 in C3H/HeJ mice, HT HDM exposure induced 

all hallmarks of a robust Th2 inflammation, similar to that in Balb/c mice, although the 

magnitude of the influx of eosinophils was less pronounced. Also here, IFNγ and IgG2a 

were increased. However, in contrast to Balb/c mice, C3H/HeJ mice also developed a 

full-blown Th2-type immune response upon intranasal exposure to LT HDM (Fig. 6.2 

a-e). This was not accompanied by an increase in IFNγ and IgG2a. 
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Fig. 6.1  LT HDM extract does not trigger immune response in Balb/c. Balb/c mice (five mice per group) 

were intranasally exposed to LT HDM or HT HDM or PBS as a control as described in methods. (a) 

Absolut number of inflammatory cells in bronchoalveolar lavage (BALF). (b) Production of Th2 

cytokines IL4, IL5, IL13 and IFNγ in supernatants of ex-vivo HDM restimulated lung draining lymph 

node cells. (c) Total IgE, HDM-IgG1 and HDM-IgG2a in serum. (d) Peri-bronchial inflammatory 

infiltrates and mucus production in lung slides stained with PAS and (e) quantification of peri-bronchial 

infiltrates and mucus production. Scale bars in d represents 200 µm. Data are presented as means ± SD, 

*P<0.05. 
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Fig. 6.2 LT and HT HDM extracts triggers inflammation in TLR4-mutant mice. C3H/HeJ mice (five mice 

per group) were intranasally exposed to LT HDM or HT HDM or PBS as a control as described in 

methods. (a) Absolut number of inflammatory cells in bronchoalveolar lavage (BALF). (b) Production of 

Th2 cytokines IL4, IL5, IL13 and IFNγ in supernatants of ex-vivo HDM restimulated lung draining 

lymph node cells. (c) Total IgE, HDM-IgG1 and HDM-IgG2a in serum. (d) Peri-bronchial inflammatory 

infiltrates and mucus production in lung slides stained with PAS and (e) quantification of peri-bronchial 

infiltrates and mucus production. Scale bars in d represents 200 µm. Data are presented as means ± SD, 

*P<0.05. 
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To clarify whether the differential responsiveness to LT-HDM between C3H/HeJ and 

Balb/c mice was due the different genetic background rather than to the mutation, we 

studied C3H/HeN mice with the same background as C3H/HeJ mice, but with a 

functional tlr4 gene. Similar to the mutant C3H/HeJ mice, C3H/HeN developed a full-

blown Th2 mediated airway inflammation in response to LT-HDM without the 

induction of IFNγ and IgG2a (Fig. 6.3 a-e). HT HDM extract induced an inflammatory 

response in HeN mice, which was accompanied by the induction of IFNγ and IgG2a 

similarly to C3H/HeJ mice. Together this indicates that sensitization to HDM depends 

on the genetic background of the mice and is not strictly dependent on TLR4. 
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Fig. 6.3 LT and HT HDM extracts triggers inflammation in non-mutant mice. C3H/HeN mice were 

intranasally exposed to LT HDM or HT HDM or PBS as a control as described in methods. (a) Absolut 

number of inflammatory cells in bronchoalveolar lavage (BALF). (b) Production of Th2 cytokines IL4, 

IL5, IL13 and IFNγ in supernatants of ex-vivo HDM restimulated lung draining lymph node cells. (c) 

HDM-IgE, HDM-IgG1 and HDM-IgG2a in serum. (d) Peri-bronchial inflammatory infiltrates and mucus 

production in lung slides stained with PAS and (e) quantification of peri-bronchial infiltrates and mucus 

production. Scale bars in d represents 200 µm. Experiment performed once with five mice per group. 

Data are presented as means ± SD, *P<0.05. 
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HDM-induced oxidative stress was followed by rapid up-regulation of anti-oxidant 

proteins in Balb/c but not in C3H/HeJ mice. To evaluate the possible contribution of 

oxidative stress in sensitization to HDM and the related Th2 inflammation, we 

compared the level of oxidative stress at baseline and after a single exposure to LT 

HDM in Balb/c and C3H/HeJ mice, resistant and susceptible to LT HDM sensitization, 

respectively. At baseline, the concentration 4-HNE modified proteins, a marker for 

oxidative stress 
13

, was markedly lower in lungs of Balb/c mice than in those of 

C3H/HeJ mice. LT HDM induced an increase of 4-HNE-modified proteins in both 

Balb/c and C3H/HeJ mice. This increase was significant in Balb/c but not in C3H/HeJ 

mice, which may relate to its high baseline level (Fig. 6.4 a, b). Levels of mRNA for 

anti-oxidant enzymes GPx-1 and HO-1 were increased in response to LT HDM in lungs 

of Balb/c mice, but not in those of C3H/HeJ mice (Fig. 6.4 c). The levels of 4-HNE 

modified proteins inversely correlated with the levels of HO-1 mRNA (Fig. 6.4 d).  
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Fig. 6.4 LT-induced oxidative stress is followed by up-regulation of anti-oxidant proteins in resistant 

mice. Balb/c and C3H/HeJ (five mice per group) were intranasally exposed to LT HDM or PBS as a 

control and lungs were removed 24h later for analysis. (a) Immunoblotting of 4-HNE modified proteins 

in lung homogenate and (b) quantification of protein expression. (c) mRNA expression of anti-oxidant 

enzymes Hemoxigenase-1 (HO-1) and Glutathione Peroxidase-1 (GPx-1) determined by qPCR in lung 

tissue. (d) Correlation of 4-HNE modified proteins with GPx-1 and HO-1 mRNA expression. (e) 

Immunoblotting of Nrf-2 in total bone-marrow derived dendritic cell lysates (representative of two 

independent experiments) and (f) quantification of protein expression (ctrl= medium control). (g) 

Expression of co-stimulatory molecules CD40, CD80 and CD86 on bone-marrow derived dendritic cells 

from C3H/HeJ mice in the absence or presence of ROS scavenger N-acetyl-L-cysteine (NAC). Data are 

presented as means ± SD, *P<0.05 

 

In this study we compared the capacity to up-regulate nuclear factor erythroid 2-related 

factor 2 (Nrf-2), a master regulator of the anti-oxidant response among which that of 

HO-1,
480

 in response to LT HDM in bone marrow-derived dendritic cells (BMDCs) 

from C3H/HeJ and Balb/c mice. As early as 2 h after LT HDM exposure, Nrf-2 

expression was increased in Balb/c but not in C3H/HeJ mice (Fig. 6.5 e, f). Taken 

together this shows that LT HDM induces oxidative stress and that C3H/HeJ mice are 

unable to respond adequately to LT HDM-induced oxidative stress whereas Balb/c mice 

can.  

As DC activation and subsequent migration to lymph nodes is an important step in the 

initiation of an adaptive response 
481

 and subsequent induction of specific-allergen Type 

2 cell differentiation,
482

 we examined whether LT HDM-induced activation of DC from 

C3H/HeJ mice was dependent on oxidative stress. In LT HDM-exposed bone marrow-

derived DCs (BMDCs), CD40, CD80 and CD86 were up-regulated compared to 

unexposed cells. Treatment of DCs with anti-oxidant N-acetyl-L-cysteine (NAC), a 

potent ROS scavenger, inhibited up-regulation of these molecules (Fig. 6.5 g).   
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Fig. 6.5 Inhibition of protease activity decreases HDM capacity to induce allergic inflammation. 

C3H/HeJ mice were intranasally exposed to LT HDM or Heat-Treated LT HDM (ht-LT) or PBS as a 

control as described in methods. (a) Absolut number of inflammatory cells in bronchoalveolar lavage 

(BALF). (b) Production of Th2 cytokines IL4, IL5, IL13 and IFNγ in supernatants of ex-vivo HDM 

restimulated lung draining lymph node cells. (c) Total IgE and HDM-IgG1 in serum. (d) Peri-bronchial 

inflammatory infiltrates and mucus production in lung slides stained with PAS and (e) quantification of 

peri-bronchial infiltrates and mucus production. Scale bars in d represents 200 µm. Experiment 

performed once with five mice per group. Data are presented as means ± SD, *P<0.05. 
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Heat-inactivation of HDM proteases decreased oxidative stress and Th2 inflammatory 

response in C3H/HeJ mice. Next, we verified whether the induction of oxidative stress 

was dependent on the protease activity in LT HDM. The protease activity was 

attenuated by moderate heating (30 minutes at 65
o 
C; ht LT HDM). In ht-LT HDM there 

was significant inhibition of its trypsin and chymo-trypsin protease activity while its 

cysteine protease activity was not affected (Supplementary Fig. F1). Importantly, 

moderate heating did not compromise the allergenic potency as expressed by unaltered 

IgE recognition of heated mite allergens (Supplementary Fig. F2 and 3). Ht-LT HDM 

induced markedly less 4-HNE-modified proteins in C3H/HeJ BMDCs, compared to 

control LT HDM (Supplementary Fig. F4). Next, we examined the effect of the 

reduced oxidative capacity of ht-LT HDM in-vivo. Allergic characteristics were 

significantly decreased in mice exposed to ht LT HDM in comparison to LT HDM. 

Heat-treatment significantly reduced the recruitment of eosinophils, dendritic cells, and 

T and B lymphocytes to the airways, IL4, total IgE and HDM-specific IgG1 production 

(Fig. 6.5 a-e). Although peri-bronchial inflammatory infiltrates, goblet cell hyperplasia, 

IL5 and IL13 showed a small decrease that however, did not reach statistical 

significance. Thus even the protease activity in an HDM extract is sufficient to promote 

sensitization via oxidative stress. 

Increased oxidative stress markers and decreased anti-oxidant proteins expression are 

associated with allergic sensitization in humans. Sensitization to HDM depends on its 

ability to induced oxidative stress in recipients. Whether oxidative stress is induced 

depends on the amount of reactive oxygen species generated and the anti-oxidant 

capacity. LT HDM caused sensitization in C3H mice with a reduced anti-oxidant 

capacity, but failed to do so in Balb/c mice with a high anti-oxidant capacity. Previously 

we have determined sensitization to murine and rat urinary proteins in a cohort of atopic 

individuals up to 2 years after de novo occupational exposure.
483

 To extend the murine 

data and clarify whether an insufficient capacity to cope with oxidative stress also 

correlates to allergic sensitization in humans, we analysed PBMC and serum from this 

cohort of animal workers. Sixteen out of 37 atopic individuals became sensitized to 

murine proteins during this period as determined by allergic symptoms, the 

development of allergen-specific IgE and allergen-induced IL4 production. We accessed 

4-HNE-modified proteins in serum collected before exposure (T0) and after four 
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months (T4), one year (T12) and two years (T24). Those who became sensitized to 

laboratory animals showed significantly higher levels of 4-HNE-modified proteins in 

serum at baseline (T0), similar to what we found in mice, and all subsequent time points 

(Fig. 6.6 a, b). Expression of HO-1 in serum was significantly lower in these 

individuals, indicative of a reduced anti-oxidant capacity (Fig 6.6 c, d). At T0, T4 and 

T12, a significant inverse correlation was observed between 4-HNE modified proteins 

and HO-1 expression (Fig. 6.6 e), although surprisingly this correlation attenuated over 

time and was lost after two years. In order to analyse the capacity to respond to acute 

oxidative stress, we evaluated PBMCs collected at T0 from individuals who became 

sensitized (n=5) and from individuals who did not (n=4), for the up-regulation of Nrf-2 

upon exposure to xanthine/xanthine oxidase, which induces the ROS superoxide. Nrf-2 

expression in PBMCs from individuals who developed sensitization (S) was lower than 

in those who did not (NS). Although this did not reach significance due to limited 

number of available PBMC samples (Fig. 6.6 f, g) the relevance of the differences in 

Nrf-2 expression between both sensitized and non-sensitized subjects was reflected by 

the strong negative correlation with the level of oxidative stress (4-HNE modified 

proteins) (Fig. 6.6 h). Overall, these human data are in support of the concept 

established with our murine studies in which an inadequate anti-oxidant response 

predisposes to allergic sensitization.  
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Fig. 6.6 Increased oxidative stress and decreased anti-oxidant proteins expression in de novo sensitized 

subjects. Human serum samples from 16 de novo sensitized (S) and 21 non-de novo sensitized (NS) 

individuals were analyzed for 4-HNE modified proteins and Hemoxigenase-1 expression in different time 

points (T0=before occupational exposure and T4, T12 and T24=4, 12 and 24 months respectively after 

occupational exposure). (a) Representative immunoblotting of 4-HNE modified proteins from one 

individual per group and (b) quantification of protein expression. (c) Immunoblotting of Hemoxigenase-1 

and (d) quantification of protein expression. (e) Correlation of 4-HNE modified proteins and 

Hemoxigenase-1 expression in different time points (Pearson r:  T0=-0.5844***, T4= -0.7193***, T12= -

0.3731* and T24=-0.2478). (f) Immunoblotting of Nrf-2 in PBMCs from S (n=4) and NS (n=5) 

individuals and (g) quantification of protein expression. (h) Correlation of 4-HNE modified proteins and 

Nrf-2 expression (Pearson r: -0.6920*). Data are presented as means ± SD, *P<0.05.  
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6.4. Discussion 

What makes individuals more susceptible than others to allergic sensitization is 

considered a multifactorial process that involves genetic predisposition, gene-

environment interactions, lifestyle, environmental exposures and types of allergens. In 

the present study we show that inadequate anti-oxidant responses are strongly 

associated with sensitization to allergens. 

Recently, it was elegantly demonstrated by Hammad et al.  that the process of 

sensitization to HDM is TLR4-dependent and requires endotoxin. In concordance, 

intranasal exposure to HDM extract low in endotoxin (LT HDM) was indeed not 

sufficient to sensitize Balb/c mice, whereas exposure to HDM extract high in endotoxin 

(HT HDM) did. Nevertheless, the fact that C3H/HeJ and –HeN mice developed allergic 

inflammation to LT HDM extract indicated that an alternative TLR4 independent 

pathway related to host genetic background was playing a role. We showed that LT 

HDM caused HDM sensitization via the induction of oxidative stress in the lungs of 

both resistant Balb/c and susceptible C3H/HeJ mice. However, adequate anti-oxidant 

responses were induced only in Balb/c mice, limiting oxidative stress and preventing 

allergic sensitization. As a reflection of its inadequate anti-oxidant responses, in 

C3H/HeJ mice the baseline level of oxidative stress was already higher than in Balb/c 

mice. Oxidative stress is known to lead to the induction of type 2 cytokines (IL4, IL13) 

in CD4
+
 T cells and not that of type 1 cytokines (IFNγ).

484
 In line herewith, LT HDM 

induced a polarized type 2 response in both HeJ and HeN mice, but when LPS is present, 

such as in the HT HDM extract, this results in mixed Th1/Th2 responses. Taken 

together this indicates that oxidative stress promotes susceptibility to allergic 

sensitization.  

To address whether protease activity of HDM allergens was involved in the induction of 

oxidative stress and allergic inflammation we modified HDM allergens rather than 

systemic use of anti-oxidants or the addition of protease inhibitors to HDM. This has the 

advantage of specific intervention whereas systemic use of anti-oxidants and protease 

inhibitors can affect processes other than that induced by allergen. We chose controlled 

mild heating of HDM, reducing proteolytic activity and leaving the IgE-binding potency 
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intact. This led to a clear inhibition of oxidative stress in dendritic cells in-vitro and 

significant attenuation of allergen sensitization and Th2 inflammation in-vivo. This 

suggests that the proteolytic activity in HDM extract is in itself sufficient to induce 

HDM sensitization such as in C3H/HeJ mice. When however the anti-oxidant capacity 

is sufficient to counter that induced by the HDM proteases this will not lead to 

sensitization such as in Balb/c mice. Contamination of the HDM extract with LPS may 

be sufficient to out-compete the anti-oxidant capacity in Balb/c mice resulting in HDM 

sensitization.  

Occupational sensitization provides an unique opportunity to study de-novo 

sensitization in man. To study whether a reduced anti-oxidant capacity is associated 

with allergic sensitization to murine urinary proteins in human subjects, we further 

analysed a prospective occupational cohort study. Murine urinary proteins are potent 

allergens to humans.
485 , 486

and the mechanisms by which these proteins exert its 

immunogenicity is not completely known. We found that, anti-oxidant capacity strongly 

correlated with oxidative stress and allergic sensitization to urinary proteins in humans. 

This together with the findings from the murine studies indicate that exposure to 

allergenic proteins combined with host inadequate anti-oxidant response, dramatically 

increases the likelihood for the development of allergic sensitization. The inverse 

correlation between oxidative stress and anti-oxidant responses indicate that the anti-

oxidant response is the major denominator in preventing allergic sensitization.  

There is increasing evidence indicating that a deficient anti-oxidant system may 

contribute to allergy development. Nrf-2 and HO-1 deficiency predisposes mice to more 

severe allergic inflammatory responses.
487,488,489

 In humans, polymorphisms in genes 

coding for enzymes that play a role in scavenging ROS have been associated with an 

increased risk for the development of atopic disorders.
490,491

 Anti-oxidant proteins not 

only provide protection against oxidant injury but are also involved in immune 

modulation. For example, HO-1 suppresses T cell function and proliferation in-vitro and 

in-vivo
492

 and its expression in DCs is involved in the induction of CD4
+
CD25

+
 T  

regulatory cells.
493

Antioxidant mechanisms are crucial in the regulation of cellular 

redox homeostasis. Deficiency of key antioxidant components (such as Nrf-2) perturbs 
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intracellular redox status, increasing the basal levels of intracellular ROS
494

 affecting 

cell phenotype and function.
495,496

 

The exact mechanism by which ROS, in the context of oxidative stress, can initiate 

adaptive immune responses to an allergen is not known. ROS at relatively low 

concentration serve as essential second messenger mediating cellular responses to many 

physiological stimuli for example, by regulating the redox status of transcription 

factors.
497

 However, excessive ROS production can contribute to an enhanced immune 

response.
498

 ROS are known stimulate Th2 like responses and to induce maturation of 

DCs, which is an important step in the initiation of adaptive immunity including allergy. 

ROS can also facilitate adaptive responses by enhancing the antigen-presentation 

capacity of DCs,
499

 and decreasing the triggering thresholds of CD28 activation on T 

cells enhancing IL-2 and IL-2R expression.
500,501

 ROS can affect DCs directly but also 

indirectly. Under oxidative stress condition, damaged, dead or activated structural cells, 

can release Danger-Associated Molecular Patterns (DAMPs) and cytokines,  able to 

promote DC maturation.
502,503,504

 

In conclusion, although TLR4 activation by LPS has been held responsible for HDM 

induced allergic inflammation, our study suggests an alternative (complementary) 

mechanism for the initiation of Th2 allergic responses mediated by oxidative stress. The 

inability to cope with oxidative stress determines allergic sensitization and provides an 

opportunity for prevention.  
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Western blots for 4HNE-PAs in plasma samples from Group A subjects (n = 14) and 

Group B (n = 14). Legends: C- = Only secondary antibody. Group A= allergics who did 

become allergic to rodents (rats/mice). Group B= allergics who did not  become allergic 

to rodents. T0= before occupational exposure to rodents. T6= 6 months  after 

occupational exposure to rodents. T12= 12 months after occupational exposure to 

rodents.T24= 24 months after occupational exposure to rodents . 
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Abstract 

Oxiditively modified proteins levels are raised in asthma as a result of an increase of 

oxidative stress. The relationship between oxidized proteins formation and airway 

inflammation has not been extensively investigated in asthmatic patients treated with 

corticosteroids. 

The aim of this study was to determine the role of the oxidative damage on proteins and 

anti-oxidant response in corticosteroids withdrawal-induced asthma exacerbation. 

Twenty-three patients with asthma were admitted at the study. Lung function test,  

collection of blood and sputum were performed when patients were in stable condition 

under corticosteroids treatment (stable), after corticosteroids withdrawal when they 

showed clear symptoms of exacerbation (exacerbation) and when they did recovery 

from the exacerbation (recovery). 4-HNE PAs, carbonylated proteins were assessed as 

bio-marker of oxidative stress where as Sirt-1, Trx-2, and HO-1 levels were measured  

as bio-markers of anti-oxidant response in serum by western blot analysis after albumin 

removal.  

We found higher levels of 4-HNE PAs, carbonylated proteins, HO-1 and Trx-2 during a 

corticosteroids withdrawal-induced exacerbation. Whereas the level of Sirt-1 was lower.  

Oxidative damage and anti-oxidant capacity are two important features of 

corticosteroids withdrawal-induced asthma exacerbation. 
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7.1. Introduction 

Asthma is the most common chronic disease in westernized countries. Patients with 

asthma have an underlying chronic inflammation of the airways characterized by 

activated mast cells, eosinophils, and T-helper 2 lymphocytes. This chronic 

inflammation underlies the typical symptoms of asthma, which include intermittent 

wheezing, coughing, shortness of breath, and chest tightness.  

Corticosteroids are the most effective treatment for asthma, and inhaled corticosteroids 

have become first-line treatment for children and adults with persistent symptoms. 

Corticosteroids suppress the chronic airway inflammation in patients with asthma. Ad 

described earlier inflammation in asthma is characterized by the increased expression of 

multiple inflammatory genes, including those encoding for cytokines, chemokines, 

adhesion molecules, and inflammatory enzymes and receptors. Increased expression of 

inflammatory genes is regulated by proinflammatory transcription factors, such as 

nuclear factor-B and activator protein-1. These bind to and activate coactivator 

molecules, which then acetylate core histones and switch on gene transcription. 

Corticosteroids suppress the multiple inflammatory genes that are activated in asthmatic 

airways by reversing histone acetylation. This mechanism acts by binding of the 

activated glucocorticoid receptors to coactivators and recruitment of histone 

deacetylases to the activated transcription complex. Understanding how corticosteroids 

work in asthma may help in designing corticosteroids with less systemic effects, as well 

as novel anti-inflammatory approaches. The decrease of suspension of the dose can 

cause exacerbation of asthma symptoms which can occurs with still unknown 

mechanisms.  

Earlier studies in adults have indicated that increased oxidative stress may occur in the 

circulation and airways of asthmatic subjects.
505 , 506

So far studies to evaluate the 

oxidative status during corticosteroids treatment in animal or humans have used 

BALF
507,508,509,510

 In certain patient groups, such as asthmatic children, it would be best 

to develop protocols to monitor the oxidative stress before and during corticosteroids 

treatment using peripheral blood samples rather than collecting BALF or tissues, or to 

analyze exhaled breath condensate.
511,512,513
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Here, we analized the relation between cortisteroids treatment and change in oxidant 

status by measuring 4HNE PAs, carbonylated proteins, HO-1, Trx-2 and Sirt-1 in serum 

from asthmatic who had been undergone to corticosteroids withdrawal. 

7.2.  Material and Methods 

Study population and set up. We included 23 adult asthamatics with mild persistent 

asthma, according to American Thoracic Society criteria.
514

 Subjects were recruited via 

advertisement in the Academic Medical Center (AMC) in Amsterdam and gave written 

informed consent. The study was approved by the AMC Medical Ethics Committee. 

The study started with a baseline visit: on day one, blood samples were collected and 

baseline lung function was determined by spirometry (Stable); then corticosteroids were 

withdrawal and blood was collected when patients showed exacerbation symptoms 

(Exacerbation) and when they did recovery from the exacerbation (Recovery).  

Lung function. Spirometry, and bronchial allergen challenge were performed according 

to standardized procedures.
515

 Forced expiratory volume in 1 second (FEV1) and forced 

vital capacity (FVC) were measured with a Vmax 22 spirometer (SensorMedics) and 

with a portable spirometer (Micromedical diarycard, Sensor Medics).  

Processing and analysis of blood. Total and differential leukocyte counts were 

determined in EDTA-blood. Serum samples were stored at -80°C until analysis.  

Carbonyls protein detection OxyBlot Procedure. In serum samples the total amount of 

proteins was determined using the bicinchoninic acid (BCA) kit (Bio-Rad Laboratories 

Inc., Hercules, California, USA). After BCA, carbonyl groups of oxidized proteins were 

detected after derivatization with 2,4-dinitrophenylhydrazine (DNPH) to a stable 

dinitrophenyl (DNP) hydrazone product using OxyBlot Protein Oxidation Detection Kit 

(Merk Millepore). In brief, two aliquots (15-20 μg/μL of protein sample) of each 

specimen to be analyzed were prepared. Proteins were denatured by adding 5 μL of 12% 

Sodium Dodecyl Sulphate (SDS). One aliquot was subjected to the derivatization 

reaction by adding 10 μl of 1x 2,4-dinitrophenylhydrazine (DNPH) followed by 15 min 

of incubation at room temperature, after which 7.5 μL of Neutralization Solution 

provided in the kit was added. The negative control was treated in parallel but with 
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derivatization-control solution instead of DNPH. Equal volumes of both samples were 

loaded onto a SDS-PAGE gel (10%) without prior heating of the samples. After 

electrophoresis and blotting to polyvinylidene difluoride (PVDF) membranes for 90 

minutes at 125 V in transfer buffer (12 mM Tris, 96 mM Glycine, 20% Methanol), blots 

were blocked by placing the membrane into 5% non-fat dry milk for 1 hour with gentle 

shaking. Subsequently, 15 ml of rabbit anti-DNP primary antibody 1:150 diluted in 

0.05% Tween 20 Phosphate Buffer (TPBS) with 0.5% non-fat dry milk was added and 

left overnight at 4ºC while shaking on an orbital shaker. The membrane was washed 

with multiple changes of TPBS for a total of 30 min before adding 15 ml of goat anti-

rabbit IgG HorseRadish Peroxidase (HRP) conjugated secondary antibody (1:300 

dilution) in 0.5% non-fat dry milk TPBS and left for 1hr at room temperature on an 

orbital shaker. Next, the membrane was washed using multiple changes of TPBS for a 

total of 30 min before adding the chemiluminescent reagent (luminol and enhancer) 

according to manufacturer’s specifications. Blots were developed by using a 

chemiluminescence detection system under the same conditions. Densitometry was 

performed on scanned gels by using the ImageJ software. Derivatized bands were 

quantified by measuring the optical density of the bands in comparison to the signal 

form the negative control.  

Serum immunochemical detection of 4-hydroxy-2-nonenal Protein Adducts (4-HNE 

PAs). After BCA, for the estimation of HNE-PAs, 50 µg of total proteins were diluted 

Laemmli sample (4% SDS, 10% 2-mercaptoethanol, 20% glycerol, 0.004% 

bromophenol blue in 0.125 M Tris-HCl ) till a final volume of 35µL, and boiled for 5 

minutes at 95°C before to be separated on 13% SDS PAGE gels. Then, proteins were 

transferred onto PVDF membranes. After this step, membranes were washed and 

reversible red ponceau staining was used as protein loading control. Following, 

membranes were blocked for 60 min at room temperature in 5% non-fat dry milk in 

Phosphate Buffer Saline (PBS). Next, blots were washed and probed against the HNE 

moiety of proteins by using goat anti 4-HNE (Santa Cruz Biotechnology, Santa Cruz, 

CA, USA) 1:500 diluted in 0.05% TPBS with 0.5% not-fat dry milk overnight at 4°C. 

Membranes were washed three times in TPBS and incubated for 60 min at room 

temperature with IRDye 680LT conjugates secondary antibodies (1:15.000 diluted in 

TPBS  with 0.5% non-fat milk). Blots incubated with only secondary antibody were 
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used as negative control. After three further washes in TPBS, bound antibodies were 

visualized using infrared fluorescence detection using the Odyssey Imager and software 

as recommended by the manufacturer (LI-COR Biosciences, Lincoln, NE, USA). 

Serum immunochemical detection of Heme oxygenase-1 (HO-1), Situin-1(Sirt-1) and 

Thioredoxin-2 Trx-2 ). Western blot analysis. Serum samples were treated with 

BlueSepharose 6B CL in order to reduce the albumin content which could interfere with 

the proteins detection. In brief, to 0.3 mL of serum were added 0.3 mg of dry 

BlueSepharose, and left incubated for 30 minutes at 4°C under soft shaking. After 10 

minutes of centrifugation at 3.200 rpm the supernatant was collected and the amount of 

total proteins was determined using BCA kit. Next, 50 μg/lane of proteins were 

separated by 13% SDS-PAGE gel electrophoresis, and transferred to PVDF membranes 

for the immuno-detection. All samples were normalized per protein (50μg). Membranes 

were blocked for 60 min at room temperature in PBS with and 5% non-fat dry milk. 

After this step, membranes were washed and reversible red ponceau staining was used 

as protein loading control. Membranes were then washed and probed with 1:200 diluted 

polyclonal goat anti HO-1 antibody, rabbit anti Sirt-1 and Trx-2 (Santa Cruz Biotech. 

Inc., Santa Cruz, CA, USA) in TPBS with 0.5% non-fat dry milk overnight at 4°C. As 

positive control we used Hela cells whole lysates for HO-1, 293T cells whole lysates for 

Trx-2 and K562 cells for Sirt-1. Parallel blots incubated with only secondary antibody 

where used as negative control. Membranes were washed three times in TPBS and 

incubated for 60 min at room temperature with IRDye 680LT and IRDye 800CW 

conjugates secondary antibodies 1:15.000 diluted in TPBS with 0.5% non-fat milk. 

After three further washes in TPBS, bound antibodies were visualized using infrared 

fluorescence detection using the Odyssey Imager and software as recommended by the 

manufacturer (LI-COR Biosciences, Lincoln, NE, USA).  

Exosomes isolation and western blot analysis. Serum was centrifuged at 300 x g for 10 

minutes at 4°C. The supernatant was transferred into a ultracentrifuge tube. Volumes 

were adjusted by adding PBS. Then samples were centrifuged at 17 000 x g for 15 

minutes at 4°C to further remove cell debris and the supernatant was filtered through a 

0.2 μm filter to remove particles larger than 200 nm. The filtered supernatant was  

ultracentrifuged at 200 000 x g for 120 minutes at 4°C to obtain a low-density 
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membrane pellet. The low-density membrane pellets were solubilized in 5μl Laemmli 

sample buffer to a final concentration of 1.5% SDS, 6% glycerol, and 10 mM Tris·HCl 

(pH 6.8) and the proteins separated by SDS/PAGE separated with 10% polyacrylamide 

and transferred to PVDF membranes. The blot was probed against HO-1 (goat anti HO-

1), Trx-2 (rabbit anti Trx-2) and, Sirt-1 (rabbit anti Sirt-1) 1:200 diluted in TPBS with 

0.5 not fat dry milk. Membranes were washed three times in TPBS and then incubated 

for 60 min at room temperature with IRDye conjugates secondary antibodies (1:15.000 

in TPBS with 0.5% non-fat milk). After three further washes in TPBS, bound antibodies 

were visualized using infrared fluorescence detection using the Odyssey Imager and 

software as recommended by the manufacturer (LI-COR Biosciences, Lincoln, NE, 

USA). Hela cells whole lysate was used as positive control for HO-1, 293T cells whole 

lysates for Trx-2 and K562 cells for Sirt.1. 

Statistical analysis. Results are presented as mean±SEM of at least two replicate 

experiments. Statistical analysis was performed by utilizing GraphPad prisma 5. 

Analysis of significance was calculated by unpaired Student’s t-test was used to assess 

between- and within-study group differences. A p value <0.05 was considered.  
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7.3.  Discussion of results  

Oxidative damage on proteins in serum before, during and after corticosteroids 

withdrawal-induced asthma exacerbation. Generation of adducts with lipids and 

carbonyls formation are considered reliable markers ox oxidative damage on protein. In 

our study we collected serum samples before, during and after corticosteroids 

withdrawal in asthmatics. Serum samples were analyzed for the detection of 4-HNE 

APs and carbonylated protein. Firstly, we found a significant increase in 4-HNE PAs 

detention of 2.2 times during corticosteroids withdrawal induced asthma exacerbation 

(P<0.0001) if compared to stable conditions(Fig 7.1). Whereas 4-HNE PAs detention 

does not seem to change significantly during the recovery phase if compare to stable 

condition (Fig. 7.1 A, Table 15). Notably, we observed similar findings by analyzing 

the carbonylated proteins levels. In fact, we found a significant increase of 2 times in 

carbonylated proteins during exacerbation (P<0.0001) and no significant change during 

the recovery (P=0.11) (Fig. 7.1 B, Table 15). Furthermore, we found a strong positive 

correlation between 4-HNE proteins adducts and carbonylated proteins in serum in each 

condition of the patients (Fig. 7.1 C). Being 4-HNE PAs and carbonylated protein two 

reliable markers of oxidative stress, our results might indicate that an increase in 

oxidative damage on proteins is associated with a corticosteroids withdrawal asthma 

induced exacerbation. 
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Fig. 7.1 Oxidative damage on proteins in serum before, during and after a corticosteroids withdrawal 

induced asthma exacerbation. A) Immunochemical detection of 4HNE-Protein Adducts (4HNE-PAs). 

The picture illustrates a western blot analysis of 4-HNE PAs in serum samples from three patients. The 

signals of 4HNE-PAs level were determined by densitometry of the scanned images. All samples were 

normalized per proteins content (50μg). Blots were developed under the same conditions.  Shown is a 

representative of two replicate experiments.  On right side quantitative data for all individuals (n=23). B) 

Immunochemical detection of carbonylated proteins. Panel B illustrates a representative oxyblot for the 

detention of carbonylated protein in serum from three asthmatics. Each western blot included all the 

conditions, so that in all experiments, samples were developed under same conditions. Densitometry was 

performed on scanned gels by using the ImageJ software.  Derivatized bands were quantified by 

measuring the optical density of the bands in comparison to the signal form the negative control. The 

graph (on the right) shows the Rel. O.D. of carbonylated protein in all the individuals (n=23). C) 

Correlation between 4HNE PAs and carbonylated proteins. The graphs show a positive correlation 

between level of 4-HNE PAs and carbonylated protein in all the conditions. Legends:  S= Stable, 

E=Exacerbation, R= Recovery. 
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TABLE 15. SERUM OXIDATIVE DAMAGE ON  PROTEINS AND CYTOPROTECTIVE 

RESPONSE BEFORE, DURING AND AFTER CORTICOSTEROIDS WITHDRAWAL 

INDUCED EXACERBATION 

 
Stable  Exacerbation Recovery 

4-HNE PAs 16.43±1.15 32.37±1.90 19.22±1.56 

Carbonylated proteins 32.21±2.71 60.11±3.8 38.57±2.71 

HO-1 0.83±0.15 3.20±0.48 2.41±0.60 

Trx-2 0.22±0.04 0.42±0.08 1.24±0.15 

Sirt-1  2.82±0.23 0.94±0.12 2.38±0.19 

 

Cyto-protective proteins in serum before, during and after corticosteroids withdrawal-

induced asthma exacerbation. Serum HO-1 was significantly increased during 

exacerbation. In particular, 3.8 fold higher if compared to stable condition P<0.0001. 

No significant difference between the HO-1 levels measured during the recovery and 

stable condition (Fig. 7.2 A, Table 15). HO-1 is a recognized marker of oxidative stress 

its increase in serum demonstrates an increase of oxidative stress during the 

corticosteroids withdrawal which is in line with that observed for oxidative markers. 

We found significantly 3 times lower levels of Sirt-1 during corticosteroids withdrawal 

induced exacerbation if compared to stable condition P<0.0001. The level of Sirt-1 

during the recovery was not significantly different from stable condition P=0.15 (Fig. 

7.2 B, Table 15). 

We found significantly higher levels of Trx-2 during exacerbation and recovery if 

compared to stable condition. Specifically, 1.9 times and 5.6 times higher P=0.03 and 

P<0.0001, respectively (Fig. 7.2 C, Table 15).  
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Fig. 7.2 Cyto-protective proteins in serum before, during and after a corticosteroids withdrawal induced 

asthma exacerbation. A) Immunochemical detection of HO-1. Panel A illustrates a representative 

Western blots for HO-1 in serum samples from three subjects. The signals of HO-1 level were determined 

by densitometry of the scanned images. All samples were normalized per protein (50μg). Red ponceau 

was used as loading protein control. Blots incubated only with secondary antibody were used as negative 

control. B) Immunochemical detection of Sirt-1. Panel B illustrates a representative Western blots for 

Sirt-1 in serum samples from three subjects. C) Immunochemical detection of Trx-2. Panel C illustrates a 

representative Western blots for Trx-2 in serum samples from three subjects. D) Westerblot for HO-1 and 

Trx-2 of microvescicle from plasma samples. As positive control (C+) for HO-1 was used whole Hela 

cells lysates for HO-1, 293T cells for Trx-2 and K-562 for Sirt-1. Shown a rapresentative blot of replicate 

experiments. Legends: S= Stable, E=Exacerbation, R= Recovery. 
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HO-1 and Trx-2 Exosomial release in serum. Cyto-protective proteins expressed in 

response to oxidative stress are normally expressed inside the cells. However, is 

possible find these in extracellular environment potentially due to a mechanism of 

release. We confirmed the presence of HO-1, Trx-2, Sirt-1 in low density membrane 

pellet obtained after ultracentrifugation of serum samples by western blot analysis (Fig. 

7.2 D). 

 

To our knowledge, this report is the first to describe the involvement of oxidative 

damage on proteins and antioxidant response in corticosteroid withdrawal-induced 

asthma exacerbation.  

  



181 

 

Chapter 8 

8. Oxidative stress and asthma: clinical implication, conclusion and 

future directions 

8.1. Clinical implication 

In all the 4 studies described it has been shown an increase in oxidative modified 

proteins parallel a decrease in the anti-oxidant response during asthma exacerbation. In 

the previous introductive chapters we have seen that there is wide evidence of redox 

unbalance in asthma. In particular, protein bromination, lipid peroxidation, and NO 

production have all been related with the pathophysiology of asthma.
516

 Stable end-

products of distinct oxidation pathways may be used as dependable indices of oxidative 

stress. Elevated levels of 3-bromotyrosine and F2-IsoPs have been detected in urine and 

exhaled breath condensates of asthmatics. Increased NO production in the airways 

seems due to the upregulation of inducible nitric oxide synthase (iNOS) and the release 

from storage pools of GSNO.
517

 Exhaled breath condensate pH assays may be of 

significance in monitoring the airway redox status.  

Anti-oxidant treatment may represent a safe and effective alternative. Several 

therapeutic strategies have been used to develop small antioxidant molecule inhibitors 

of redox-regulated transcription factors. PNRI-299 selectively inhibits AP1 transcription 

but not NF-kB or thioredoxin. 
518

 PNRI-299 effectively reduces airway eosinophil 

infiltration, mucus hypersecretion, and IL-4 levels. MOL 294 inhibits both NF-kB and 

AP1 via inhibition of thioredoxin. Intranasal administration of MOL 294 markedly 

reduces airway eosinophilia and mucus hypersecretion.
519

  

SOD therapy provides a connection between antioxidants and airway hyper-

responsiveness. Transgenic mice that overexpress SOD have decreased allergen-

induced physiologic alterations in the airway in comparison to controls.
520

 SOD 

mimetics reduce PARP immunofluorescence, providing evidence of a role for SOD in 

inhibition of apoptosis and inflammation.
521

 Also, SOD mimetics lessen the ovalbumin-
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induced airway hyper-responsiveness to methacholine.
522

 Exogenous EC-SOD given 

intratracheally to mice treated with asbestos, decreases neutrophil influx and oxidative 

matrix degradation.
523

 Moreover, SOD mimics attenuate allergen-induced asthmatic 

bronchospasm.
524

 However, clinical trials on the effects of SOD mimetics in patients 

with asthma have not been performed. 

Other potential strategies comprise the glutathione peroxidase mimetic. Ebselen is a 

nontoxic seleno-organic drug and an effective reductant of hydroperoxides. Ebselen 

inhibits airway inflammation by reducing neutrophil recruitment and chemokine 

expression. Resveratrol, a phytoalexin that is found in seeds of grapes, has been 

reported to have antioxidant, anti-inflammatory, and anticarcinogenic properties.
525

 

Resveratrol effectively inhibits oxidative damage and scavenges free radicals. 

Resveratrol induces GSH synthesis. In primary lung epithelial cells, resveratrol (10 mM) 

attenuates cigarette smoke-mediated GSH depletion.  

Epidemiological studies suggest associations between low dietary antioxidant intake, 

reduced lung function, and increased respiratory symptoms in asthmatics. A large cross-

sectional study in Third National Health and Nutrition Examination Survey (NHANES 

III) shows that selenium and serum vitamin C is lower in young asthmatics.
526

 

Asthmatics have lower levels of coenzyme Q(CoQ).
527

 CoQ increases SOD activity and 

thus therapy with CoQ may benefit in asthma.
528

 In a study asthmatics who received 

corticosteroids, supplementation with CoQ [Q-Gel_ (120 mg), 32 weeks] improved 

asthma control and enabled reduction of corticosteroid dose.
529

 These studies all support 

the concept that antioxidant supplementation and/or reduction in oxidant production or 

exposures will be beneficial in the treatment of asthma. 

8.2. Conclusion and future directions 

Asthma is a chronic inflammatory airway disease, and it is clear from multiple lines of 

evidence that the airway inflammation is defined by alterations of the airway redox. The 

studies described in this thesis show that redox mediated post-transcriptional 

modifications lead to protein structure–function changes that are present even in mild 

asthmatics and in larger extent during an exacerbation. Here it has been shown that the 
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abnormalities in redox are magnified in the asthmatic airway in response to 

exacerbating factors, including microbial infection, exposure to inhaled oxidizing 

pollutants, or allergen triggers in atopic individuals. During leukocyte activation, such 

as following allergen exposure, a respiratory burst occurs, generating O2
·-
 and its 

dismutation product H2O2. Fenton/Haber–Weiss reactions affect endogenous proteins. 

Oxidative modifications of MnSOD intensify the oxidative milieu in the mitochondria, 

with potential adverse consequences on cellular respiration. As eosinophils and/or 

neutrophils enter the inflamed airway, H2O2 is used in eosinophil peroxidase and/or 

myeloperoxidase-mediated reactions that oxidatively modify susceptible proteins. 

Among those proteins is catalase. This allows more H2O2 to accumulate at the site of 

inflammation and further promotes peroxidase systems to produce high levels of 

nitrating, halogenating, and oxidizing injurious species. The greater toxic nitrogen 

oxides and airway acidity is accompanied by loss of beneficial nitrogen oxides, in 

particular nitrosothiols, which have adverse effects on smooth muscle relaxation and 

airway reactivity. In addition to injury of macromolecules, RNS and ROS amplify 

specific cytokine signal transduction by processes that include inhibition of deactivating 

signals. The loss of downregulatory signal transduction measures further amplifies the 

inflammatory milieu and contribute to Th2 lymphocyte polarization. Thus, alteration of 

redox participates in the pathophysiology of asthma. Future therapy targeting redox will 

require the definition of the clinical pharmacology of antioxidant compounds. 

Furthermore, identification of noninvasive biomarkers of oxidative stress in patients 

with asthma will be critical for enabling assessment of treatment outcomes. In line with 

this, the data described in this thesis provide a compelling rationale to develop 

therapeutic strategies for asthma that aim to correct the redox abnormalities. 
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Chapter 9 

9. Proteomic investigation of N-Lysin Acetilation and Carbonlylation 

9.1. Introduction  

This chapter will show preliminary data obtained at the centre of proteomics research in 

Southampton (UK) while studying the relation within oxidative stress and protein 

acetylation.  

Lysine acetylation is a reversible post-translational modification (PTM) that occurs on 

proteins involved in the regulation of various cellular processes.
530,531

Acetylation is 

dynamically controlled by lysine acetyltransferases (KATs, also known as histone 

acetyltransferases or HATs), and by lysine deacetylases (KDACs, also known as histone 

deacetylases or HDACs), Fig. 9.1.
532

  

 

 

  

Fig. 9.1 Acetylation and deacetylation at the ε-amino group of a lysine residue. A KAT is responsible 

for transfer of an acetyl moiety (in yellow) from acetyl-CoA to the ε-group of a lysine residue, whereas 

an HDAC removes the acetyl group from acetyl lysine, releasing acetate. 
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The human and mouse genomes each encodes 18 different KDACs, of which 11 are 

classified as zinc-dependent deacetylases.
533

 The remaining seven are NAD+-dependent 

deacetylases, known as Sirtuin 1–7 (Sirt1–7).
534

 Sirtuins are localized to specific sub-

cellular compartments: Sirt3, 4, and 5 in the mitochondria, Sirt6 and 7 in the nucleus, 

and Sirt1 and 2 in both the cytoplasm and nucleus. Sirtuins are important regulators of 

mammalian physiology whose functional roles are believed to be conserved from yeast 

to mammals (See Chapter 3).
535

 

Despite important regulatory functions of acetylation, until recently only a limited 

number of endogenous acetylation sites were known. Owing to the extreme complexity 

of mammalian proteomes, and possibly low stoichiometry of modified sites, mapping 

endogenous acetylation sites has been a challenging task. Using antibody-based affinity 

enrichment, a proteomic survey discovered nearly 300 acetylation sites on 

mitochondrial proteins.
536

  

Oxidative stress and redox status of the cells can regulate nuclear chromatin remodeling 

(histone acetylation/deacetylation) leading to gene expression. Oxidative stress also 

altered histone acetylation/deacetylation which increased the activation of NF-κB and 

AP-1, leading to the release of the pro-inflammatory cytokine IL-8 in human alveolar 

epithelial cells. ROS generation has been reported to regulate histone acetylation 

differentially in different cell types. However, the relationship between induced 

oxidative stress, inflammation and acetylation remains unknown and was therefore 

investigated.We applied high resolution mass spectrometry (MS) for evaluating 

endogenous acetylation proteins targets in human fetal lung fibroblasts exposed to 

oxidative, deacetylating and inflammatory conditions. Our preliminary data show that 

47 acetylation proteins are identified as differently regulated in fibroblasts. A majority 

of these proteins are enzymes that participate in the regulation of metabolic pathways, 

cellular clcle, and transcription.  
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9.2. Methods and Results 

Experimental Procedure. To identify substrates of acetylation we used Human Fetal 

Lung Fibroblast Cells (MRC-5 Line). MRC-5 cells were treated with 0.1 mM H2O2, 10 

ng/ml TGF-β, and 2nM Fk228 for 48h (Fig. 9.2). FK228 (Romidepsin, depsipeptide) is 

a potent and selective inhibitor of class I histone deacetylases (HDACs) with IC50 

values of 36, 47, 510 and 14,000 nM for HDAC1, HDAC2, HDAC4 and HDAC6, 

respectively. Romidepsin was dissolved to 5 mg/mL in 4:1 propylene glycol and ethanol 

and then diluted to 100 µg/mL in dimethyl sulfoxide (DMSO) and stored at -20°C.  

After lysis cells undergone western blot. For MS analysis proteins obtained from cell 

lysates were digested into peptides using trypsin. Acetylated peptides were enriched 

from the resulting complex peptide mixture with an anti-acetyllysine antibody. 

Immunoprecipitation and immunoblotting. Immunoprecipitation of N-Acetylated 

Proteins was performed according to standard procedure with an anti-acetyllysine 

antibody conjugated to beaded agarose (Immunechem). Immune complexes were 

washed five times in ice-cold PBS and eluted with 40 µl SDS sample buffer. Eluates 

were resolved by 4–12% gradient SDS-PAGE and transferred onto PVDF membrane. 

The membrane was blocked using 3% BSA in PBS for 1hr and then incubated with 

After electrophoresis and 2h blotting onto a PVDF membrane, the blot was incubated 

with: Rabbit Anti Acetyl-Lysine Histon 1:2000 in TPBS, Mouse Anti α-actin smooth 

muscle 1:500 in TPBS, Rabbit Anti β-actin smooth muscle 1:1000 in TPBS. After the 

membranes were washed three times in TPBS and incubated for 60 min at room 

temperature with IRDye 680LT conjugates secondary antibodies (LI-COR Biosciences, 

Lincoln, NE, USA) 1:15,000 diluted in TPBS with 0.5% BSA. Blots incubated with 

only secondary antibody were used to evaluate aspecific secondary antibody binding. 

After three further washes in TPBS, bound antibodies were visualized using infrared 

fluorescence detection using the Odyssey Imager and software as recommended by the 

manufacturer (LI-COR Biosciences, Lincoln, NE, USA). After stripping the blot was re-

probed for β-Actin in order to normalize for variable protein loading. Optical density 

was obtained by using Odyssey LICOR software, in which the values are expressed 

relative to β-Actin.  
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MS sample preparation. MRC-5 treated and untreated cells were cultured for 48 hours. 

MRC-5 lysates were incubated for 15 minutes on ice, and were cleared by sonication 

followed by centrifugation (17,000 g, 20 minutes at 4 degrees). Protein concentration of 

the cleared lysates was measured with Direct Detect Spectrometer (Mille Pore). Proteins 

were acetone precipitated and re-dissolved in 6M urea/2M thiourea/10 mM HEPES (pH 

8), reduced with 1 mM dithiothreitol (DTT), alkylated with 5.5 mM chloroacetamide 

(CAA) and subsequently digested with trypsin. Peptides were purified using reversed-

phase Sep-Pak C18 cartridges (Waters). The peptides were re-dissolved in 

immunoprecipitation (IAP) buffer and incubated with an anti-acetyllysine antibody 

overnight at 4°C on a rotation wheel. The immunoprecipitates were washed three times 

with IAP-buffer followed by additional 3 washes with distilled water. Residual water 

was removed and acetylated peptides bound to antibodies were eluted by 0.1% TFA in 

water. 

Fractionation of peptides and mass spectrometric analysis. Peptides from 

immunoaffinity purification were fractionated with isoelectric focusing
537

 using the 

Agilent 3100 OFFGEL Fractionator (Agilent). Peptides were purified using reversed 

phase C18 micro StageTips. The peptides were eluted from stage tips with 40 µl of 40% 

acetonitrile, 0.5% acetic acid into a 96 well plate. Acetonitrile was removed by speed-

vac Concentrator Plus (Eppendorf) and the volume was reduced to ~5 µl. Peptide 

fractions were analyzed on a Synapt G2-S QuanTof mass spectrometer (Waters) 

equipped with a nanoflow UPLC system system (Waters) as described. The MS analyss 

was operated as MSE. MSE is an approach that acquires MS1 and MS2 mass spectra in 

an unbiased and parallel manner. It increases both the number of peptides detected and 

the reproducibility of the peptides sampling during an LC-MS experiment. During data 

acquisition, the energy of the gas-filled travelling-wave collision cell is dynamically 

switched between a low-energy and an elevated-energy status. The MSE raw data files 

are then processed by three different algorithms in ProteinLynx Global SERVER 

(PLGS).  
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Peptide identification and computational analysis. Peptide identification and 

computational analysis. Raw data files were processed and analyzed using ProteinLynx 

Global Server (PLGS) (Waters) version 3.0. Data were searched against the Human 

Uniprot protein database using an Ion Accounting algorithm. Spectra were searched 

with strict trypsin specificity, and allowing up to 1 missed cleavage sites. Minimum 

required peptide length was 6 amino acids. Cysteine carbamidomethylation was 

searched as a fixed modification, whereas N-acetyl protein, oxidized methionine and 

acetylation of lysine were searched as variable modifications. The false discovery rate 

(FDR) for peptides and sites was estimated using a target-decoy approach. Statistical 

analysis was performed using the R software environment. Annotation enrichment 

analysis was performed using the String.db database. 
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Fig. 9.2. Experimental procedure synopsys.  C. Folisi. 
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9.3.  Results  

Immunoblotting for N- Lysin Acetylated proteins. For this experiment we used lysates 

from different cell lines and we immuno-blotted against N-Lysin Acetylated Proteins 

(Acetylated Lysine Rabbit Cell Signaling #9814P). As positive control we used 

Fibroblasts treated with deacetylases inibitor FK228. We could appreciate only 6 main 

immuno-reactive bands of which the more intense were those from histones (10-20 

kDa), Fig. 9.3. 

 

Fig. 9.3  Western Blot for N-Lysin Acetylated Proteins of lysates from MRC-5 treated with FK228 (C+), 

Hela Cells,He 293 Cells Line, MRC-5 treated  and untreated with  TGF-β (2T and 2N),  A375, A431 and 

HaCat . Wb conditions: 24µg proteins/Lane. Primary Antibody: Acetylated Lysine Rabbit Cell Signaling 

#9814P 1:500 TPBS 5% BSA, Overnight 4
◦
C Secondary Antibody: Biotin 1:2000 2hrs/Avidin 1:5000 1hr. 

Nitrocellulose membrane. M= molecular weight standards marker 

 

Immunoprecipitation and immunoblotting. In order to confirm that the immuno-

precipitation of acetylated proteins procedure functioned effectively and in order to 

obtain a greater number of immune-reactive bands we immunoblotted protein lysates 

before and after the immuno-precipitation of N-Lysin Acetylated proteins. For these 
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experiments we used He 293 and MRC-5 cell lines. In the third lines of the blot showed 

in Fig. 9.4 we can clearly appreciate an increased immuno-reactivity after IP. This 

confirmed that the IP procedure used was functioning properly.  

 

Fig. 9.4 Western Blot for N-Lysin Acetylated Proteins of lysates from He 293 Cells Line and MRC-5 

before  and after IP of Acetylated Proteins. Conditions: Overnight incubation with Anti-acetyl Lysine 

Agarose (Immunechem ICP0388 (2 mg proteins/50μL beads). WB Conditions: 15µg proteins/lane, 2hs 

blotting in CAPS buffer, 1hr blocking with BSA 3% Primary Antibody: Acetylated Lysine Rabbit Cell 

Signaling #9814P 1:500 TBST 5% BSA, Overnight 4
◦
C. Secondary Antibody: Biotin 1:2000 2hs/Avidin 

1:2000 1hr. Legend: 1= whole cell lysate before IP, 2= whole cell lysate after IP, 3= enriched IP eluted 

fration after N- Lysin Acetylated Proteins IP. 

 

Immunoblotting for N-Lysin Acetylated Histones, α-Actin Smoot Muscle (ASM), and 

Carbonylated Protein. For this experiment we used MRC-5 treated with 1 mM H2O2, 10 

ng/ml TGF-β, and 2nM Fk228 for 48h  (Fig. 9.5 and 9.6).We could appreciate that 

FK228 was able to increase the acetylation status of the Histones, TGF-β increased the 

ASM expression and Hydrogen Peroxide increased the Carbonylated proteins 

detenction after their derivatization with DNPH. 
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Fig.9.5. N-Acetyl Lysine Histones and α-Actin in un-treated and treated MRC-5. Western blot of 50 μg 

proteins from MRC-5 whole cells lysates in Tetraethylammonium bromide (TEAB) buffer. MRC-5 were 

treated with 0.1 mM H2O2, 10 ng/ml TGF-β, and 2nM Fk228 for 48h. Lysates from untreated MRC5  

were used as a control (-). After electrophoresis and 2h blotting onto a PVDF membrane, the blot was 

incubated with Anti-Acetyl-Lysine Histon, Anti-α-Actin smooth muscle and Anti-β-actin smooth muscle.  

 

 

Fig. 9.6 Protein carbonylation, Acetyl Lysine H3, and α-Actin Smoot Muscle in un-treated and treated 

MRC-5. Western blot of 30 μg proteins from MRC5 whole cells lysates in TEAB buffer. MRC-5 were 

treated with 0.1 mM H2O2, 10 ng/ml TGF-β, and 2nM Fk228  for 48h. Untreated MRC-5 were used as a 

control (-).  

 

MS analysis of acetylated proteins in whole untreated MRC-5 cells lysates. 

Raw data files were processed and analyzed using ProteinLynx Global Server (PLGS) 

(Waters) version 3.0. Data were analysed by using http://string-db.org/ 

http://string-db.org/
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STRING is a database of known and predicted protein interactions. The interactions 

include direct (physical) and indirect (functional) associations; they are derived from 

four sources:  Genomic Context High-throughput Experiments (Conserved) 

Coexpression Previous KnowledgeSTRING quantitatively integrates interaction data 

from these sources for a large number of organisms, and transfers information between 

these organisms where applicable. The database currently covers 5.214.234 proteins 

from 1133 organisms.  In Fig 9.7 is illustrated the string interface. Fig. 9.8 and Table 

16 show the result obtained for N-Lysine Acetylated Proteins in untreated MRC-5. 

 

Fig. 9.7.  String Data Base Search for proteins interection interface. 
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Fig. 9.8 N-Lysine Acetylated Proteins in MRC-5 whole Lysate and their interections. 
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TABLE 16 LIST OF ACETYLATED PROTEINS IN MRC-5 

 

RPL6 

 

 

 

 

60S ribosomal protein L6 (TAX-responsive enhancer 

element-binding protein 107)(TAXREB107)(Neoplasm-

related protein C140); Specifically binds to domain C of 

the Tax-responsive enhancer element in the long terminal 

repeat of HTLV-I (288 aa) 

LGALS1 

 

 

 

 

 

Lectin, galactoside-binding, soluble, 1; May regulate 

apoptosis, cell proliferation and cell differentiation. Binds 

beta-galactoside and a wide array of complex 

carbohydrates. Inhibits CD45 protein phosphatase activity 

and therefore the dephosphorylation of Lyn kinase 

(135 aa) 

VIM 

 

 

Vimentin; Vimentins are class-III intermediate filaments 

found in various non-epithelial cells, especially 

mesenchymal cells (466 aa) 

ACTA2 

 

 

 

Actin, alpha 2, smooth muscle, aorta; Actins are highly 

conserved proteins that are involved in various types of 

cell motility and are ubiquitously expressed in all 

eukaryotic cells (By similarity) (377 aa) 

NEDD8 

 

 

 

 

 

 

 

 

Neural precursor cell expressed, developmentally down-

regulated 8; Ubiquitin-like protein which plays an 

important role in cell cycle control and embryogenesis. 

Covalent attachment to its substrates requires prior 

activation by the E1 complex UBE1C- APPBP1 and 

linkage to the E2 enzyme UBE2M. Attachment of NEDD8 

to cullins activates their associated E3 ubiquitin ligase 

activity, and thus promotes polyubiquitination and 

proteasomal degradation of cyclins and other regulatory 

proteins (81 aa) 

HIST1H2AB 

 

 

 

 

 

 

 

 

Histone cluster 1, H2ab; Core component of nucleosome. 

Nucleosomes wrap and compact DNA into chromatin, 

limiting DNA accessibility to the cellular machineries 

which require DNA as a template. Histones thereby play a 

central role in transcription regulation, DNA repair, DNA 

replication and chromosomal stability. DNA accessibility 

is regulated via a complex set of post-translational 

modifications of histones, also called histone code, and 

nucleosome remodeling (130 aa) 

ACTC1 

 

 

 

Actin, alpha, cardiac muscle 1; Actins are highly 

conserved proteins that are involved in various types of 

cell motility and are ubiquitously expressed in all 

eukaryotic cells (By similarity) (377 aa) 
 

CCR2 

 

 

 

Chemokine (C-C motif) receptor 2; Receptor for the MCP-

1, MCP-3 and MCP-4 chemokines. Transduces a signal by 

increasing the intracellular calcium ions level. Alternative 

coreceptor with CD4 for HIV-1 infection (374 aa) 

http://string-db.org/newstring_cgi/display_single_node.pl?taskId=gKWbXeZD9tJ3&node=976005&targetmode=proteins
http://string-db.org/newstring_cgi/display_single_node.pl?taskId=gKWbXeZD9tJ3&node=976131&targetmode=proteins
http://string-db.org/newstring_cgi/display_single_node.pl?taskId=gKWbXeZD9tJ3&node=976640&targetmode=proteins
http://string-db.org/newstring_cgi/display_single_node.pl?taskId=gKWbXeZD9tJ3&node=976648&targetmode=proteins
http://string-db.org/newstring_cgi/display_single_node.pl?taskId=gKWbXeZD9tJ3&node=977740&targetmode=proteins
http://string-db.org/newstring_cgi/display_single_node.pl?taskId=gKWbXeZD9tJ3&node=978506&targetmode=proteins
http://string-db.org/newstring_cgi/display_single_node.pl?taskId=gKWbXeZD9tJ3&node=981220&targetmode=proteins
http://string-db.org/newstring_cgi/display_single_node.pl?taskId=gKWbXeZD9tJ3&node=981341&targetmode=proteins
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LYZL6  Lysozyme-like 6 (148 aa) 

C1orf74 
UPF0739 protein C1orf74 (269 aa) 

ACTG2 

 

 

 

Cctin, gamma 2, smooth muscle, enteric; Actins are highly 

conserved proteins that are involved in various types of 

cell motility and are ubiquitously expressed in all 

eukaryotic cells (By similarity) (376 aa) 

H2AFZ 

 

 

 

 

 

 

 

 

 

 

 

H2A histone family, member Z; Variant histone H2A 

which replaces conventional H2A in a subset of 

nucleosomes. Nucleosomes wrap and compact DNA into 

chromatin, limiting DNA accessibility to the cellular 

machineries which require DNA as a template. Histones 

thereby play a central role in transcription regulation, 

DNA repair, DNA replication and chromosomal stability. 

DNA accessibility is regulated via a complex set of post-

translational modifications of histones, also called histone 

code, and nucleosome remodeling. May be involved in the 

formation of constitutive heterochromatin. May be [...] 

(128 aa) 

HIST1H2AA 

 

 

 

 

 

 

 

 

Histone cluster 1, H2aa; Core component of nucleosome. 

Nucleosomes wrap and compact DNA into chromatin, 

limiting DNA accessibility to the cellular machineries 

which require DNA as a template. Histones thereby play a 

central role in transcription regulation, DNA repair, DNA 

replication and chromosomal stability. DNA accessibility 

is regulated via a complex set of post-translational 

modifications of histones, also called histone code, and 

nucleosome remodeling (131 aa) 

CD3D 

 

CD3d molecule, delta (CD3-TCR complex); The CD3 

complex mediates signal transduction (171 aa) 

TUBA1A 

tubulin, alpha 1a; Tubulin is the major constituent of 

microtubules. It binds two moles of GTP, one at an 

exchangeable site on the beta chain and one at a non-

exchangeable site on the Alpha-chain (By similarity) 

(451 aa) 

WFDC13  
WAP four-disulfide core domain 13 (93 aa) 

H2AFV 

 

 

 

 

 

 

 

 

 

 

H2A histone family, member V; Variant histone H2A 

which replaces conventional H2A in a subset of 

nucleosomes. Nucleosomes wrap and compact DNA into 

chromatin, limiting DNA accessibility to the cellular 

machineries which require DNA as a template. Histones 

thereby play a central role in transcription regulation, 

DNA repair, DNA replication and chromosomal stability. 

DNA accessibility is regulated via a complex set of post-

translational modifications of histones, also called histone 

code, and nucleosome remodeling. May be involved in the 

formation of constitutive heterochromatin. (128 aa) 

TUBA3E 

 

tubulin, alpha 3e; Tubulin is the major constituent of 

microtubules. It binds two moles of GTP, one at an 
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exchangeable site on the beta chain and one at a non-

exchangeable site on the alpha-chain (By similarity) 

(450 aa) 

HIST1H2AC 

 

 

 

 

 

 

 

 

Histone cluster 1, H2ac; Core component of nucleosome. 

Nucleosomes wrap and compact DNA into chromatin, 

limiting DNA accessibility to the cellular machineries 

which require DNA as a template. Histones thereby play a 

central role in transcription regulation, DNA repair, DNA 

replication and chromosomal stability. DNA accessibility 

is regulated via a complex set of post-translational 

modifications of histones, also called histone code, and 

nucleosome remodeling (130 aa) 

TUBA3D 

 

 

 

 

Tubulin, alpha 3d; Tubulin is the major constituent of 

microtubules. It binds two moles of GTP, one at an 

exchangeable site on the beta chain and one at a non-

exchangeable site on the alpha-chain (By similarity) 

(450 aa) 

HBG1 
Hemoglobin, gamma A (147 aa) 

HIST1H2AJ 

 

 

 

 

 

 

 

 

Histone cluster 1, H2aj; Core component of nucleosome. 

Nucleosomes wrap and compact DNA into chromatin, 

limiting DNA accessibility to the cellular machineries 

which require DNA as a template. Histones thereby play a 

central role in transcription regulation, DNA repair, DNA 

replication and chromosomal stability. DNA accessibility 

is regulated via a complex set of post-translational 

modifications of histones, also called histone code, and 

nucleosome remodeling (128 aa) 

EEF1A1 

 

 

 

Eukaryotic translation elongation factor 1 alpha-like 7; 

This protein promotes the GTP-dependent binding of 

aminoacyl-tRNA to the A-site of ribosomes during protein 

biosynthesis (By similarity) (462 aa) 

HIST1H2AK 
Histone cluster 1, H2ak (130 aa) 

ACTG1 

 

 

 

Actin, gamma 1; Actins are highly conserved proteins that 

are involved in various types of cell motility and are 

ubiquitously expressed in all eukaryotic cells (By 

similarity) (375 aa) 

 

HIST2H2AC 

 

 

 

 

 

 

 

Histone cluster 2, H2ac; Core component of nucleosome. 

Nucleosomes wrap and compact DNA into chromatin, 

limiting DNA accessibility to the cellular machineries 

which require DNA as a template. Histones thereby play a 

central role in transcription regulation, DNA repair, DNA 

replication and chromosomal stability. DNA accessibility 

is regulated via a complex set of post-translational 

modifications of histones, also called histone code, and 

nucleosome remodeling (129 aa) 
 

HBG2 

 

Hemoglobin, gamma G; Gamma chains make up the fetal 

hemoglobin F, in combination with alpha chains (147 aa) 
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HIST1H2AD 

 

 

 

 

 

 

 

 

Histone cluster 1, H2ad; Core component of nucleosome. 

Nucleosomes wrap and compact DNA into chromatin, 

limiting DNA accessibility to the cellular machineries 

which require DNA as a template. Histones thereby play a 

central role in transcription regulation, DNA repair, DNA 

replication and chromosomal stability. DNA accessibility 

is regulated via a complex set of post-translational 

modifications of histones, also called histone code, and 

nucleosome remodeling (130 aa) 

ANXA2 

 

 

 

 

 

Annexin A2 pseudogene 1; Calcium-regulated membrane-

binding protein whose affinity for calcium is greatly 

enhanced by anionic phospholipids (By similarity). It 

binds two calcium ions with high affinity (By similarity). 

May be involved in heat-stress response (By similarity) 

(357 aa) 

POTEE  
POTE ankyrin domain family, member E (1075 aa) 

ACTB 

 

 

 

Actin, beta; Actins are highly conserved proteins that are 

involved in various types of cell motility and are 

ubiquitously expressed in All eukaryotic cells (By 

similarity) (375 aa) 

POTEF 
POTE ankyrin domain family, member F (1075 aa) 

SMCHD1 

 

 

 

 

 

 

 

 

 

Structural maintenance of chromosomes flexible hinge 

domain containing 1; Core component of nucleosome. 

Nucleosomes wrap and compact DNA into chromatin, 

limiting DNA accessibility to the cellular machineries 

which require DNA as a template. Histones thereby play a 

central role in transcription regulation, DNA repair, DNA 

replication and chromosomal stability. DNA accessibility 

is regulated via a complex set of post-translational 

modifications of histones, also called histone code, and 

nucleosome remodeling (130 aa) 

ACTA1 

 

 

 

Actin, alpha 1, skeletal muscle; Actins are highly 

conserved proteins that are involved in various types of 

cell motility and are ubiquitously expressed in all 

eukaryotic cells (By similarity) (377 aa) 

 

HIST3H2A 

 

 

 

 

 

 

 

Histone cluster 3, H2a; Core component of nucleosome. 

Nucleosomes wrap and compact DNA into chromatin, 

limiting DNA accessibility to the cellular machineries 

which require DNA as a template. Histones thereby play a 

central role in transcription regulation, DNA repair, DNA 

replication and chromosomal stability. DNA accessibility 

is regulated via a complex set of post-translational 

modifications of histones, also called histone code, and 

nucleosome remodeling (130 aa) 

S100A6 

 

 

 

S100 calcium binding protein A6; May function as 

calcium sensor and contribute to cellular calcium signaling 

(Potential). May function by interacting with other 

proteins and indirectly play a role in the reorganization of 
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the actin cytoskeleton and in cell motility. Binds 2 calcium 

ions. Calcium binding is cooperative (90 aa) 

HIST2H2AA4 

 

 

 

 

 

 

 

 

Histone cluster 2, H2aa4; Core component of nucleosome. 

Nucleosomes wrap and compact DNA into chromatin, 

limiting DNA accessibility to the cellular machineries 

which require DNA as a template. Histones thereby play a 

central role in transcription regulation, DNA repair, DNA 

replication and chromosomal stability. DNA accessibility 

is regulated via a complex set of post-translational 

modifications of histones, also called histone code, and 

nucleosome remodeling (130 aa) 

DES 

 

 

 

 

Desmin; Desmin are class-III intermediate filaments found 

in muscle cells. In adult striated muscle they form a 

fibrous network connecting myofibrils to each other and to 

the plasma membrane from the periphery of the Z-line 

structures (470 aa) 

H2AFX 

 

 

 

 

 

 

 

 

 

 

 

H2A histone family, member X; Variant histone H2A 

which replaces conventional H2A in a subset of 

nucleosomes. Nucleosomes wrap and compact DNA into 

chromatin, limiting DNA accessibility to the cellular 

machineries which require DNA as a template. Histones 

thereby play a central role in transcription regulation, 

DNA repair, DNA replication and chromosomal stability. 

DNA accessibility is regulated via a complex set of post-

translational modifications of histones, also called histone 

code, and nucleosome remodeling. Required for 

checkpoint-mediated arrest of cell cycle progression in 

resp [...] (143 aa) 

H2AFJ 

 

 

 

 

 

 

 

 

H2A histone family, member J; Core component of 

nucleosome. Nucleosomes wrap and compact DNA into 

chromatin, limiting DNA accessibility to the cellular 

machineries which require DNA as a template. Histones 

thereby play a central role in transcription regulation, 

DNA repair, DNA replication and chromosomal stability. 

DNA accessibility is regulated via a complex set of post-

translational modifications of histones, also called histone 

code, and nucleosome remodeling (129 aa) 

TMEM203 
Transmembrane protein 203 (136 aa) 

TDG 

 

 

 

 

 

 

 

 

 

Hymine-DNA glycosylase; In the DNA of higher 

eukaryotes, hydrolytic deamination of 5-methylcytosine to 

thymine leads to the formation of G/T mismatches. This 

enzyme corrects G/T mispairs to G/C pairs. It is capable of 

hydrolyzing the carbon-nitrogen bond between the sugar- 

phosphate backbone of the DNA and a mispaired thymine. 

In addition to the G/T, it can remove thymine also from 

C/T and T/T mispairs in the order G/T >> C/T > T/T. It 

has no detectable activity on apyrimidinic sites and does 

not catalyze the removal of thymine from A/T pairs or 
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from single-stranded DNA. It can also r [...] (410 aa) 

 
Continued  

 

POTEI POTE ankyrin domain family, member M (1075 aa) 

NTF3 

 

Neurotrophin 3; Seems to promotes the survival of 

visceral and proprioceptive sensory neurons (270 aa) 

ENSG00000227826 

 

HLA class II histocompatibility antigen, DR beta 4 chain 

Precursor (266 aa) 

PI4KAP2 

 

Phosphatidylinositol 4-kinase, catalytic, alpha pseudogene 

2 (592 aa) 

EFCAB10  
EF-hand calcium binding domain 10 (149 aa) 
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NLHBI: National Heart, Lung, and Blood Institute 

Nrf: Nuclear factor erythroid 2–related factor 2 
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OCS:Oral corticosteroids 
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WB: Western blot 

WURSS: Wisconsin Upper Respiratory Symptom Survey. 

X/XO: Xanthine/Xanthine Oxidase 
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