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Abstract: The aim of this review was to explore existing evidence from studies conducted on hu-
mans and summarize the mechanisms of action of dietary polyphenols on vascular health, blood
pressure and hypertension. There is evidence that some polyphenol-rich foods, including berry
fruits rich in anthocyanins, cocoa and green tea rich in flavan-3-ols, almonds and pistachios rich in
hydroxycinnamic acids, and soy products rich in isoflavones, are able to improve blood pressure
levels. A variety of mechanisms can elucidate the observed effects. Some limitations of the evidence,
including variability of polyphenol content in plant-derived foods and human absorption, difficulty
disentangling the effects of polyphenols from other dietary compounds, and discrepancy of doses
between animal and human studies should be taken into account. While no single food counteracts
hypertension, adopting a plant-based dietary pattern including a variety of polyphenol-rich foods is
an advisable practice to improve blood pressure.

Keywords: polyphenols; flavonoids; phenolic acids; hypertension; blood pressure; endothelial

1. Introduction

Dietary risk factors represent a heavy burden for global chronic, non-communicable
diseases [1]. There is consolidated evidence that dietary factors play a central role in
determining cardiovascular disease (CVD) through a number of potential mechanisms.
Obesity, type-2 diabetes, dyslipidemias, and hypertension are intermediary conditions
representing key risk factors for CVD development, all strongly influenced by nutrition as
well [2]. Among various potential effects on human health, dietary patterns such as the
Mediterranean diet, the dietary approach to stop hypertension (DASH) model, Nordic diet,
and lacto-ovo vegetarian have been demonstrated to play a role in preserving vascular
health and reducing blood pressure [3]. A common feature of such dietary patterns is the
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richness in plant-derived foods, which are rich in fiber and phytochemicals with proven
antioxidant activity, that have been studied over the last decades to explain the potential
anti-hypertensive effects of the aforementioned diets.

Polyphenols are a large group of plant secondary metabolites that exert a number
of biological activities involved in plant defense, including antioxidant and antibacterial
actions [4]. While a large variety including thousands of molecules have been found in
plants, some of them have also been proven to exert biological activities in humans [4]. The
general chemical structure of plant polyphenols is characterized by one or more hydroxyl
groups binding to one or more aromatic rings; besides being linked with one or more sugar
residues, they can be associated also with other compounds, such as amines, carboxylic and
organic acids, lipids and other phenols [5]. Based on their chemical structure (the number
of phenol rings and structural elements that bind them) polyphenols are divided into
groups and subgroups (Figure 1), mainly represented by flavonoids (further divided into
flavonols, flavan-3-ols, anthocyanidins, flavones, flavanones, isoflavones, and chalcones)
and “non-flavonoids” comprising phenolic acids, tyrosols, stilbenes, lignans, saponin, and
tannins [5]. The structural diversity of these molecules affects their properties, thus yielding
to different potential activities across different groups [4].
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Polyphenols are found in different quantities and proportions in most edible and
wild plants, fruits, and plant-derived beverages, but their consumption in humans is



Nutrients 2022, 14, 545 3 of 15

widely affected by the variety of the diet and, specifically, of plant-derived foods. In fact,
consuming a high proportion of fruits and vegetables generally leads to a high dietary
content of flavonoids [6]; populations consuming a high quantity of tea and coffee (i.e.,
northern and eastern European countries) have high dietary content of phenolic acids
(i.e., caffeic acid) and catechins [7]; moreover, populations commonly using extra-virgin
olive oil as dressing or red wine as alcohol during meals (i.e., Mediterranean countries)
have a characteristic high intake of tyrosols and stilbenes [8]. Moreover, the bioavailability
of polyphenols is generally low, with most of the compounds poorly absorbed in the
small intestine, reaching the colon, where they are transformed by the colonic flora and
later absorbed [9]. Importantly, the relation between polyphenols and gut microbiota
is bidirectional, since the amount and types of molecules ingested have been shown to
modulate the human gut microbiome community [10,11]. Thus, the overall absorption
and, consequently, the potential effects of polyphenols may vary greatly depending on the
content and variety of the overall diet (i.e., content in fiber, richness and variety of fruits
and vegetables, consumption of coffee and tea, etc.).

In the most recent meta-analysis on the relation between dietary flavonoid consump-
tion and cardiovascular outcomes [12] conducted on 39 prospective cohort studies in-
cluding about a million and a half individuals, we reported that increasing consumption
of flavonoids was linearly associated with a lower risk of CVD. Moreover, several other
associations were found among main subclasses, including the linear association between
anthocyanin and flavan-3-ol intake and CVD risk, flavonol and flavone intake and CHD
risk, and flavanone intake and stroke risk [12]. Given the linear dose–response relation
between flavonoid consumption and CVD risk, these results provide strong evidence of
their effects on cardiovascular health. These potential protective effects are, at least in part,
driven by their actions on vascular health and blood pressure regulation. There is plenty
of literature describing putative mechanisms providing the rationale for a direct effect
of dietary polyphenol intake on vascular health. The aim of this review is to summarize
updated scientific literature published over the last few years on the relation between
dietary polyphenols and polyphenol-rich foods on blood pressure, vascular endothelium
health, and hypertension risk, as well as to elucidate the main mechanisms underlying the
retrieved findings.

2. Evidence on Polyphenol and Hypertension
2.1. Observational Studies

We recently performed a systematic review and meta-analysis of observational studies
on dietary polyphenol consumption and risk of hypertension including 15 cross-sectional
investigations and 7 prospective cohorts [13]. The meta-analysis of five prospective cohorts,
comprising 200,256 individuals and 45,732 cases of hypertension, included in the quantita-
tive analysis showed that total flavonoids was not associated with the risk of hypertension,
while among individual subgroups, anthocyanin intake was consistently associated with
reduction in hypertension risk; among other observational studies reviewed, individuals
consuming a higher intake of phenolic acids (such as hydroxycinnamic acids) [14,15] and
phytoestrogens (including isoflavones) [16,17] were less likely to be hypertensive [13].

Concerning polyphenol-rich foods, a comprehensive summary of evidence from umbrella
meta-reviews showed a decreased risk of hypertension associated with higher consumption of
plant-based foods, including fruit, whole grains, nuts, and legumes/pulses [18–22], although
some of the meta-analyses included were of relatively low quality, thus undermining the
overall strength of the evidence. Null results were rather found for vegetable intake and risk of
hypertension [23,24]. Concerning plant-derived beverages rich in polyphenols, we performed
the most complete meta-analysis on long-term coffee consumption and risk of hypertension,
including seven cohorts and 205,349 individuals and 44,120 cases of hypertension, which
showed a linear dose–response association [25].
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2.2. Dietary Intervention Trials

A summary of the main results from meta-analyses of randomized controlled trials
(RCTs) is presented in Figure 2.
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Figure 2. Summary of the main results from meta-analyses of randomized controlled trials (RCTs)
investigating the effect of polyphenol and polyphenol-rich food supplementation on (a) systolic blood
pressure (SBP), and (b) diastolic blood pressure (DBP). NA denotes not applicable.

Some studies investigating polyphenol supplementation consistently revealed null
effects on blood pressure, suggesting that the lack of significant results may be due to the
limited number of included studies and their quality; among the existing meta-analyses,
supplementation with hesperidin (a major flavanone contained in citrus fruits) [26], genis-
tein (an isoflavone contained in soy products) [27], and resveratrol (a stilbene contained
in grapes and red wine) [28] led to null results on blood pressure outcomes. However,
findings from other meta-analyses on resveratrol supplementation revealed an effect on
flow-mediated dilatation (FMD) levels (1.77, 95% CI: 0.25 to 3.29, p = 0.02; I2: 96%) [29] and
lowered systolic blood pressure (−5.77, 95% CI: −8.61 to −2.93) when considering diabetic
patients [30]. A meta-analysis including RCTs supplementing patients with quercetin (an-
other major flavonoid contained in onions and apples) showed a significant effect on both
systolic (−3.09 mmHg, 95% CI: −4.59 to −1.59, p = 0.0001) and diastolic blood pressure
(−2.86 mmHg, 95% CI: −5.09 to −0.63, p = 0.01) [31], despite the fact that no effects were
detected on vascular cell adhesion molecule 1 (VCAM-1) of intercellular adhesion molecule
1 (ICAM-1) [32]. A meta-analysis of 91 RCTs comparing the effect of flavan-3-ols (flavonoids
contained in cocoa and green tea) with controls on blood pressure showed a significant
decrease in systolic (−1.46 mmHg, 95% CI: −2.27 to −0.65; I2 = 65.3%) and diastolic blood
pressure (−0.99 mmHg, 95% CI: −1.50 to −0.45; I2 = 58.0%) [33]. Finally, a meta-analysis
showed a significant systolic blood-pressure-lowering effect following chlorogenic acid
supplementation (a major coffee polyphenol belonging to the hydroxycinnamic acid group)
(−4.31 mmHg, 95% CI: −3.91 to −3.45, p < 0.001) [34]. However, the inclusion of a small
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number of participants and funding from manufacturers of original RCTs generally limited
the strength of evidence due to possible bias.

Dietary intervention trials aiming to investigate the role of dietary polyphenols on
blood pressure are typically characterized by supplementation with a polyphenol-rich
food (or food group) in comparison to a control group. Regarding the potential effect
of fruits on blood pressure, a recent meta-analysis on flavonoid-rich fruits (assessing the
potential effect of anthocyanins, naringin, narirutin, and flavan-3-ols) including 15 RCTs
and 572 participants showed no effect of flavonoids on systolic or diastolic blood pressure
when compared to the placebo; however, pooled results from two crossover RCTs evi-
denced a reduction in systolic blood pressure [35]. Among specific fruits, a meta-analysis
of 28 intervention studies on berry-based foods (rich in anthocyanins and some flavonols)
showed an improvement in systolic (−2.07 mmHg, 95% CI: −3.50 to −0.64, p = 0.005)
and diastolic blood pressure (−1.43 mmHg, 95% CI: −2.47 to −0.38, p = 0.007), while
no effects were found on VCAM (−21.00, 95% CI: −58.75 to 16.74) and ICAM (−0.103,
95% CI: −0.481 to 0.275) [36]. Similarly, another meta-analysis conducted on anthocyanin-
containing products (including berries, red grapes, and red wine) showed a decrease in
blood pressure (systolic, −0.23, p < 0.001; diastolic, −0.20, p < 0.001) [37]. These results
have been confirmed in a more recent meta-analysis on berries (including juice of barberry,
cranberry, grape, pomegranate, powder of blueberry, grape, raspberry and freeze-dried
strawberry), showing a significant reduction in systolic blood pressure by 3.68 mmHg (95%
CI −6.79 to −0.58, p = 0.02) and diastolic blood pressure by −1.78 mmHg (95% CI −3.43
to −0.12, p = 0.04) and elevated sVCAM-1 levels by 14.57 ng/mL (85% CI 4.22 to 24.93;
p = 0.02) [38]. Other meta-analyses focused on specific berry fruits reported an individ-
ual positive impact on systolic blood pressure with the consumption of strawberries [39]
and chokeberry (aronia melanocarpa) [40]. Concerning fruit juices, a meta-analysis on
100% fruit juices showed a favorable effect on blood pressure (systolic, MD: −3.14 mmHg;
diastolic, MD: −1.68 mmHg), arterial compliance (carotid–femoral pulse wave velocity,
−0.38 m/s), and endothelial function (flow-mediated dilation, 2.10%) [41]. Among specific
juices, a meta-analysis including eight RCTs on pomegranate juice found significant reduc-
tions in both systolic (−4.96 mmHg, 95% CI: −7.67 to −2.25, p < 0.001) and diastolic blood
pressure (−2.01 mmHg, 95% CI: −3.71 to −0.31, p = 0.021) after pomegranate juice (rich in
anthocyanin) consumption [42]. Another meta-analysis including 22 trials (1248 partici-
pants) on beetroot juice (rich in anthocyanin) showed a lower mean difference of systolic
(−3.55 mmHg; 95% CI: −4.55 to −2.54) and diastolic blood pressure (−1.32 mmHg; 95%
CI: −1.97 to −0.68) in the intervention compared to control groups [43].

Although no significant association between total vegetable intake and risk of hyper-
tension has been found in observational studies, a meta-analysis of RCTs on garlic (rich
in hydroxycinnamic acid derivatives) revealed lowering effects on systolic (−5.07 mmHg;
95% CI −7.30 to −2.85) and diastolic blood pressure (−2.48 mmHg; 95% CI −4.07 to
−0.89) [44]. Supplementation with vegetables such as turmeric (rich in curcuminoids)
has been reported not to exert significant effects on blood pressure, although a significant
reduction in systolic (−1.24 mmHg, 95% CI:−2.26 to−0.22; I2 = 0%) but not diastolic blood
pressure (0.29 mmHg, 95% CI: −0.65 to 1.22; I2 = 1%) has been observed when restricting
the analysis on studies with a duration >12 weeks [45]. Among other plant-derived foods,
a meta-analysis including eight RCTs (768 participants) on whole-grain supplementation
(containing a variety of phenolic acids and lignans) showed no effects on either systolic
(0.04 mmHg, 95% CI: −1.67 to 1.75) or diastolic blood pressure (0.16, 95% CI: −0.89 to
1.21) [46]. While no RCTs have been conducted on pulses, a meta-analysis on soy products
(characterized by high content in isoflavones) including 15 RCTs showed a significant
reduction in both systolic (−1.70 mmHg, 95% CI: −3.34 to −0.06, p = 0.04; I2 = 45%) and
diastolic blood pressure (−1.27 mmHg, 95% CI: −2.36 to −0.19, p = 0.02; I2 = 43%) [47].
A meta-analysis on tree nuts (high in phenolic acids, including hydroxybenzoic acids)
showed no direct effects on blood pressure levels following ingestion of nuts with no
differentiation among types [48]. When considering specific nut types, walnut-enriched
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diets and peanut supplementation did not lead to significant differences in blood pressure
levels [49,50]. However, a meta-analysis specifically conducted on almonds including
16 RCTs and 1128 participants showed a reduction in diastolic (−1.30 mmHg, 95% CI:
−2.31 to −0.30; I2 = 0.0%) but not systolic blood pressure levels [51]. In contrast, in another
meta-analysis on pistachio supplementation including 13 RCTs with 563 participants, a sig-
nificant decrease in systolic blood pressure (−2.12 mmHg, 95% CI−3.65 to−0.59, p = 0.007)
was found, whereas changes in flow-mediated dilation and diastolic blood pressure were
not significant [52]. Similarly, in another meta-analysis on cashew nut supplementation,
although limited to two RCTs and 123 participants, no effect was recorded for diastolic
blood pressure, but a significant reduction in systolic blood pressure (−3.39 mmHg, 95%
CI = −6.13 to −0.65; I2 = 0.0%) in the intervention compared to the control group was
found [53].

Concerning cocoa products (rich in flavan-3-ols), a meta-analysis of 35 trials (40 treat-
ment comparisons) involving 1804 mainly healthy participants showed a significant blood
pressure-reducing effect of flavanol-rich cocoa products compared with the control in trials
(−1.76 mmHg, 95% CI:−3.09 to−0.43, p = 0.009, and−1.76 mmHg, 95% CI:−2.57 to−0.94,
p < 0.001, respectively) [54]. A meta-analysis including RCTs restricting the interventions
in middle-aged and elderly individuals showed a significant reduction in systolic blood
pressure by 2.77 (95% CI: −5.28 to −0.27, p = 0.03; I2 = 89%) and diastolic blood pressure
by 1.47 mmHg (95% CI: −2.40 to −0.55, p = 0.001; I2 = 45%) [55]. Another meta-analysis
including 15 RCTs with 18 intervention arms estimating a 704 mg/d higher intake of cocoa
flavan-3-ols on average than the control revealed a significant improvement of FMD by
1.17% (95% CI: 0.76% to 1.57%) [56].

While no intervention trials are available for regular coffee consumption and blood
pressure, a meta-analysis of nine RCTs on green coffee extract supplementation showed
a significant reduction in systolic (−3.09 mmHg, 95% CI: −3.91 to −2.27; I2 = 0.0%) and
diastolic blood pressure (−2.17 mmHg, 95% CI: −2.74 to −1.59; I2 = 46.5%) with low
heterogeneity among the studies [57]. In contrast, a quantitative summary of evidence on
tea consumption has been conducted including 13 trials (1115 participants) on black tea (rich
in hydroxybenzoic acids) and 24 trials (1697 participants) on green tea supplementation
(rich in flavan-3-ols, such as epigallocatechin-gallate) showing a significant reduction in
both systolic (−1.04 mmHg, 95% CI: −2.05 to −0.03, p = 0.04, and −1.17 mmHg, 95%
CI: −2.18 to −0.16, p = 0.02, respectively) and diastolic blood pressure (−0.59 mmHg,
95% CI: −1.05 to −0.13, p = 0.01, and −1.24 mmHg, 95% CI:−2.07 to −0.40, p = 0.004,
respectively), although with some evidence of heterogeneity between studies [58,59]. An
analysis restricted to studies conducted on individuals with high blood pressure (five RCTs
on 408 participants) showed more clinically relevant effects on both systolic (−4.81 mmHg,
95% CI: −8.40 to −1.58, p = 0.004) and diastolic blood pressure (−1.98 mmHg, 95% CI:
−3.77 to −0.20, p = 0.029) [60].

Among other foods rich in polyphenols, ginger is rich in gingerols and it has been
studied for its potential effects on blood pressure; a meta-analysis including six RCTs
and 345 participants showed that ginger supplementation would reduce both systolic
(−6.36 mmHg, 95% CI: −11.27 to −1.46, p = 0.011; I2 = 89%) and diastolic blood pressure
(−2.12 mmHg, 95% CI: −3.92 to −0.31, p = 0.002; I2 = 73%), although the overall level of
evidence is relatively weak due to the high heterogeneity between studies and the small
number of participants [61]. Additionally, olive oil is particularly rich in polyphenols,
especially phenolic acids, which have been considered most probably responsible for the
health benefits of this oil; however, a meta-analysis on high-polyphenol extra-virgin olive
oil including five RCTs showed no direct effect on blood pressure levels (−2.03 mmHg,
95% CI: −6.57 to 2.50, p = 0.38; I2 = 79% for systolic blood pressure; −2.70 mmHg, 95% CI:
−5.71 to 0.31, p = 0.08; I2 = 78% for diastolic blood pressure) [62].
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3. Summary of Potential Mechanisms of Action

A summary of the potential mechanisms of action through which polyphenols may
affect endothelial health and reduce the risk of hypertension is shown in Figure 3.
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3.1. Endothelial Health

Vascular functions, including vascular tone maintenance, redox balance, and inhibi-
tion of platelet aggregation and coagulation, are key factors for endothelial health and
the prevention of hypertension, atherosclerosis, and CVD [63]. Endothelial cells produce
substances needed for the maintenance of healthy vascular function, including nitric oxide
(NO), carbon monoxide, endothelium-dependent hyperpolarizing factors and endothelium-
derived contracting factors, vasoactive prostanoids and prostacyclin, endothelin, and
superoxide [63]. Endothelial dysfunction is substantially driven by reduced availability
of NO as a consequence of increased oxidative stress, generation of free radicals, and
other stress factors; polyphenols may improve the release of NO from the endothelial cells,
leading to activation of cyclic guanosine monophosphate in vascular smooth muscle cells
and exerting blood vessel relaxation, antioxidant, anti-inflammatory, and antithrombotic ef-
fects [64]. Flavonoids, such as anthocyanins [65,66], flavones (i.e., luteolin) [67], flavanones
(i.e., naringin) [68], flavan-3-ols (i.e., epicatechin) [69], flavonols (i.e., kaempferol) [70] and
isoflavones [71], and resveratrol [72,73] may play a direct role in improving the bioavail-
ability in the bloodstream of NO by increasing the activation of inducible NO synthase
(iNOS) and endothelial NO synthase (eNOS) provided by modulation of signal transduc-
tion, for instance through the phosphatidylinositol 3-kinase (PI3K)/Akt or the adenosine
monophosphate-activated protein kinase (AMPK) pathways [67]. Together with other
polyphenols, such as caffeic acid [74], kaempferol [75], quercetin [76], luteolin [77], and
biochanin A [78], these compounds may exert vasorelaxing effects also by acting on vascu-
lar smooth muscle cells directly (through activation of BK channels or inhibition of Ca2+

channels) or indirectly (through activation of Ca2+-activated K+ channels in endothelial
cells, leading to hyperpolarization and inhibition of Ca2+ influx to vascular smooth muscle
cells), eventually limiting construction and leading to vasorelaxation [79]. However, some
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polyphenols, such as resveratrol, have been shown to act through more than one of the
aforementioned mechanisms [80].

3.2. Antioxidant Effects

Oxidative stress following free radical and reactive oxygen species (ROS) production
is a cornerstone process in aging and disease, including atherosclerosis and CVD [81].
Regarding atherosclerosis development, oxidative modification of low-density lipopro-
tein (LDL) into oxidized-LDL (ox-LDL) represents one of the earliest events of the whole
process; dietary polyphenols have been shown to counteract this process and exert an-
tioxidant activity through a variety of endogenous and exogenous mechanisms [82]. The
most common mechanism of action of flavonoids [83], including citrus flavonoids [84] and
flavan-3-ols (i.e., epicatechin) [85], and phenolic acids, such as ferulic acid [86], against ROS
have been shown to be the potent direct scavenging free radical activity. Flavonoids are
oxidized by free radicals, resulting in more stable and less reactive compounds; among the
most potent antioxidant compounds, flavonols (i.e., quercetin) [87], flavanones (i.e., narin-
genin and hesperetin), flavones (i.e., apigenin) [67], flavan-3-ols (i.e., catechins), stilbenes
(i.e., resveratrol) [88], and many others have been shown to directly scavenge superox-
ide or other reactive species, reversing vascular stiffening and restoring its functionality.
Polyphenols may provide antioxidant effects, counteracting senescence and restoring mito-
chondrial function vascular smooth muscle cells and endothelial cells by modulation of
signal transduction [4]. For instance, flavonoid subgroups such as flavanones and antho-
cyanins, as well as phenolic acids such as caffeic acid, demonstrated antioxidant activity by
enhancing the cellular antioxidant defenses through activation of transcription factors of
antioxidant and cytoprotective enzymes, such as the extracellular signal-regulated kinase
(ERK)/nuclear factor (erythroid-derived 2)-like 2 (Nrf2) signaling pathway [89,90]. Modu-
lation of signal transduction may lead to the promotion of upregulation of anti-oxidative
genes, such as heme oxygenase-1 (HO-1), NAD(P)H dehydrogenase quinone 1 (NQO1),
glutamate–cysteine ligase (through its catalytic subunit–GCLC), and induction of endoge-
nous antioxidant enzymes, such as glutathione peroxidase, superoxide dismutase, catalase,
or glutathione reductase [91].

3.3. Anti-Inflammatory Action

Inflammation plays a central role in numerous non-communicable diseases, including
cardiovascular disorders [92]. Concerning vascular health, migration and accumulation
of ox-LDL cholesterol in the vascular intima has been long considered the main event for
the determination of atheroschlerotic disease, while this interpretation of events is rather
limited; in fact, it only represents the first step in the development of the disease, which
also involves macrophages’ activity in discharging various mediators of inflammation,
sustaining the whole process of infiltration of smooth muscle cells, formation of foam cells,
and leukocytes infiltration/proliferation [93]. Inflammatory biomarkers characterizing the
process include various cytokines (interleukin- (IL-) 1, 3, 6, 8, and 18), tumor necrosis factor
(TNF-alpha), and the macrophage colony-stimulating factor; among polyphenols, some
flavonoids such as anthocyanins [94] and flavan-3-ols [94], phenolic acids (including chloro-
genic and caffeic acids) [95], and resveratrol [96] are promising anti-inflammatory agents
due to their anti-inflammatory effects specifically interfering with the aforementioned
mechanisms through regulation of several signaling pathways, including the mitogen-
activated protein kinases (MAPK), the janus kinase/signal transducers/activators of the
transcription (JAK/STAT), and the NF-κB pathways [97].

3.4. Platelet Adhesion, Aggregation, and Coagulation

Proinflammatory stimuli lead to changes in the endothelial phenotype, leading to
damage of barrier function and upregulation of adhesion molecules expression, including
vascular cell adhesion molecule-1 (VCAM-1) and intercellular adhesion molecule (ICAM-
1) [98]. Such changes represent the final step toward plaque formation, necrotization, and
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rupture, with the establishment of atherosclerosis. Several polyphenol groups, such as
apigenin [99], curcumin and luteolin [100,101], quercetin [102], epicatechin [103], and resver-
atrol [104], have been shown to reduce platelet aggregation through the aforementioned
anti-inflammatory pathways and inhibition of adhesion molecules [105].

3.5. Potential Role of Gut Microbiota

Dietary polyphenols have been described to be of great relevance for the composition
of the colonic bacterial flora [106]. Although heterogeneity in individuals’ characteristics
(i.e., age, sex, ethnicity, BMI) causes large inter-individual variations in gut microbiota to
occur, the bacterial production of molecules reaching the systemic circulation has been
hypothesized to play an indirect role in vascular endothelial health [107]. Among the most
studied compounds produced by the gut microbiota, the metabolite trimethylamine-N-
oxide (TMAO), generated in the liver via the oxidation of trimethylamine (TMA) formed
by Firmicutes and Proteobacteria from carnitine and choline-rich foods (i.e., red meat, dairy,
eggs, poultry), has been demonstrated to induce vascular inflammation through mitogen-
activated protein kinase (MAPK) and NF-κB signaling [108]. Polyphenols, such as resver-
atrol, have been shown to decrease circulating TMAO by regulating its synthesis via gut
microbiota remodeling [109], with similar results confirmed in a recent RCT conducted on
humans [110]. Additionally, tea flavonoids (i.e., flavan-3-ols) have been shown to alleviate
atherosclerosis by decreasing serum TMA by regulating gut microbiota [111]. Other impor-
tant gut microbiota-derived metabolites shown to be beneficial for blood vessel control are
short-chain fatty acids (SCFAs), which are the result of bacterial (mainly Lactobacillus and
Bifidobacterium) fermentation of undigested carbohydrates, which can cross the intestinal
epithelium and influence mucosal immune responses [112]. In vivo studies showed that
polyphenols, such as isoflavones [113], anthocyanins [114], and flavan-3-ols [115], have
been shown to affect gut microbiota composition and increase fecal SCFA.

4. Limitation of the Evidence

Existing evidence from meta-analyses is generally limited by common general limita-
tions, such as a small number of studies or participants, involvement of manufacturers, and
scarce clinical relevance of some significant results (not enough variation in blood pressure).
Moreover, while there is a certain agreement between studies conducted on humans and
mechanistic studies from the laboratory setting, some limitations of the retrieved evidence
may stem from the following: (i) large variability of polyphenol content in plant-derived
foods (depending on cultivar, preservation, temperature, sun exposure, and other factors)
as well as in absorption of polyphenols among humans; (ii) dietary sources of polyphenols
are typically rich in other compounds that may exert cardioprotective effects, including
fiber or monounsaturated fatty acids; thus, disentangling the unique effects of polyphenols
is rather difficult when studying food groups; (iii) mechanistic studies conducted on cells
and animals often do not take into account the cooking processes, which may lead to a
loss in total polyphenol or transformation of specific molecules into others with different
biological activities; and (iv) discrepancy between in vitro and in vivo doses (in vitro doses
often lead to unrealistic dietary intake in humans).

5. Conclusions

In conclusion, evidence from human studies suggests that some polyphenol-rich foods
exert positive effects on blood pressure levels. However, given the small clinical effects
reported, the real-world implications for their consumption rely on their inclusion in a
healthy diet rather than consumption of an individual food. There is no singular mech-
anism nor individual polyphenol compound that may explain the pathway to improve
endothelial health and prevent hypertension and CVD. On the contrary, it is likely that the
health benefits of plant-based diets rich in polyphenols may depend both on the quantity
and the variety of compounds acting through several pathways, leading to synergistic
actions toward health. Furthermore, a recommendation for the adherence to a healthy diet
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rich in plant-based foods, providing not only substrates to the gut microbiome (i.e., fiber)
and important co-factors playing a role in polyphenol bioavailability but also influencing
gut microbiota profile, could strengthen the beneficial effects of polyphenols toward car-
diovascular health. Although recommendations on the consumption of single foods are
inappropriate, it can be concluded that a diet rich in multiple polyphenol-rich foods is
likely to improve vascular health and reduce the risk of hypertension.
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Effects of anthocyanins on vascular health. Biomolecules 2021, 11, 811. [CrossRef]

68. Pengnet, S.; Prommaouan, S.; Sumarithum, P.; Malakul, W. Naringin Reverses High-Cholesterol Diet-Induced Vascular Dys-
function and Oxidative Stress in Rats via Regulating LOX-1 and NADPH Oxidase Subunit Expression. BioMed Res. Int. 2019,
2019, 3708497. [CrossRef]

69. Garate-Carrillo, A.; Navarrete-Yañez, V.; Ortiz-Vilchis, P.; Guevara, G.; Castillo, C.; Mendoza-Lorenzo, P.; Ceballos, G.; Ortiz-
Flores, M.; Najera, N.; Bustamante-Pozo, M.M.; et al. Arginase inhibition by (-)-Epicatechin reverses endothelial cell aging. Eur. J.
Pharmacol. 2020, 885, 173442. [CrossRef]

70. Tettey, C.O.; Yang, I.-J.; Shin, H.-M. Vasodilatory effect of kaempferol-7-O-α-L-rhamnopyranoside via NO-cGMP-PKG signaling.
Arch. Biochem. Biophys. 2019, 667, 1–5. [CrossRef]

71. Domae, C.; Nanba, F.; Maruo, T.; Suzuki, T.; Ashida, H.; Yamashita, Y. Black soybean seed coat polyphenols promote nitric
oxide production in the aorta through glucagon-like peptide-1 secretion from the intestinal cells. Food Funct. 2019, 10, 7875–7882.
[CrossRef] [PubMed]

72. Li, J.; Zhong, Z.; Yuan, J.; Chen, X.; Huang, Z.; Wu, Z. Resveratrol improves endothelial dysfunction and attenuates atherogenesis
in apolipoprotein E-deficient mice. J. Nutr. Biochem. 2019, 67, 63–71. [CrossRef] [PubMed]

73. Tasatargil, A.; Tanriover, G.; Barutcigil, A.; Turkmen, E. Protective effect of resveratrol on methylglyoxal-induced endothelial
dysfunction in aged rats. Aging Clin. Exp. Res. 2019, 31, 331–338. [CrossRef] [PubMed]

74. de Alencar Silva, A.; Pereira-de-Morais, L.; Rodrigues da Silva, R.E.; de Menezes Dantas, D.; Brito Milfont, C.G.; Gomes, M.F.;
Araújo, I.M.; Kerntopf, M.R.; Alencar de Menezes, I.R.; Barbosa, R. Pharmacological screening of the phenolic compound caffeic
acid using rat aorta, uterus and ileum smooth muscle. Chem. Biol. Interact. 2020, 332, 109269. [CrossRef] [PubMed]

75. Mahobiya, A.; Singh, T.U.; Rungsung, S.; Kumar, T.; Chandrasekaran, G.; Parida, S.; Kumar, D. Kaempferol-induces vasorelaxation
via endothelium-independent pathways in rat isolated pulmonary artery. Pharmacol. Rep. 2018, 70, 863–874. [CrossRef]

76. Yuan, T.-Y.; Niu, Z.-R.; Chen, D.; Chen, Y.-C.; Zhang, H.-F.; Fang, L.-H.; Du, G.-H. Vasorelaxant effect of quercetin on cerebral
basilar artery in vitro and the underlying mechanisms study. J. Asian Nat. Prod. Res. 2018, 20, 477–487. [CrossRef]

77. Li, W.; Dong, M.; Guo, P.; Liu, Y.; Jing, Y.; Chen, R.; Zhang, M. Luteolin-induced coronary arterial relaxation involves activation of
the myocyte voltage-gated K+ channels and inward rectifier K+ channels. Life Sci. 2019, 221, 233–240. [CrossRef]

78. Migkos, T.; Pourová, J.; Vopršalová, M.; Auger, C.; Schini-Kerth, V.; Mladěnka, P. Biochanin A, the Most Potent of 16 Isoflavones,
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