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Abstract: Nowadays, there is a global surge in interest surrounding novel foods, particularly sprouts,
microgreens, and baby leaves, attributed to their rich content of bioactive compounds, such as pheno-
lic derivatives, glucosinolates, and vitamins. This study delves into the impact of exogenously applied
melatonin on novel foods derived from Brassica oleracea L. Two distinct cultivars of broccoli (Brassica
oleracea var. italica Plenck), namely Sicilian sprouting broccoli (Broccolo nero) and a commercial variety
(Cavolo Broccolo Ramoso Calabrese), were compared across the sprouts, microgreens, and baby
leaves stages, adhering to organic farming practices. Various doses of melatonin (0, 50, and 100 µM)
were administered at each harvesting stage. Plantlets were collected at different growth stages
and assessed for key morphometric traits, including the weight, hypocotyl length, and cotyledon
dimensions during the sprouts stage. For microgreens, the number and dimensions of the true leaves
were recorded, while for baby leaves, the stem length was additionally measured. The analysis of
glucosinolates was carried out using a high-performance liquid chromatograph with a diode array
detector (HPLC-DAD). The results revealed significant variations among the experimental factors
considered. Melatonin application significantly influenced the morphometric parameters at different
growth stages, exhibiting notable variations in the weight, hypocotyl length, cotyledon width, and
leaf width. The GLSs profile exhibited significant variations between the different growth stages
and genotypes studied. Particularly noteworthy was the tendency for the GLSs content to be higher
during the sprouts stage compared to the baby leaves stage, ranging from 24.07 to 4.61 µmol g−1 d.w.
from sprouts to baby leaves, respectively.

Keywords: Brassica oleracea var. italica; landrace; novel food; elicitors; secondary metabolite;
HPLC analysis

1. Introduction

The Brassicaceae family, also known as cruciferous vegetables, is well spread all over
the world and encompasses herbaceous, annual, biennial, and perennial plants. It includes,
in particular, 338–360 genera and about 3709 species adapted to different environmental
conditions [1]. They are distinguished by their typical cross-shaped flowers and can be
classified based on different plant morphologies, shaped by selective breeding for specific
plant parts, including the leaves, petioles, buds, flowers, roots, or seeds [2].

Brassica oleracea L. is a taxonomically significant species, encompassing different crops
with relevant economic importance. It comprises different species, such as Brassica oleracea
L. (broccoli, cauliflower, cabbage, Brussels sprouts, kale), Brassica nigra (black mustard),
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Brassica napus (rapeseed) and Brassica rapa (turnip, rape, Chinese cabbage) [3,4]. Among the
B. oleracea crops, Brassica oleracea var. italica L., commonly known as broccoli, is emerging
as a noteworthy vegetable, characterized by its hypertrophic reproductive organ, with
different curd sizes and shapes. Several crop wild relatives (CWRs) and landraces are
overspread and distinguished based on their typical morphometric characteristics [5] and
biochemical profiles, such as the glucosinolates amount, polyphenols, ascorbic acid, and
vitamins [6,7]. Brassica oleracea L. products can be utilized for various purposes, from food
and fodder to medicinal use, acting as model plants for research, high-yielding crops, and
even ornamental plants. They represent a rich source of bioactive compounds, such as
glucosinolates, polyphenols, ascorbic acid, and vitamins [8–10].

Glucosinolates are the primary secondary metabolites found in Brassica plants. These
sulfur compounds consist of a thioglucoside group and a side chain derived from specific
amino acids, namely alanine, valine, leucine, isoleucine, phenylalanine, methionine, tyro-
sine, and tryptophan. Consequently, glucosinolates can be categorized into three distinct
chemical groups: aliphatic, aromatic, and indolic. This classification is based on the types of
amino acids present in the side chain, providing a systematic framework for understanding
the variations in the glucosinolate structures [11]. Glucosinolates are not biologically active
until they undergo enzymatic hydrolysis via the plant’s endogenous enzyme, myrosinase
(thioglucoside glucohydrolase, E.C. 3.2.1.147). The result of this enzymatic breakdown is
different bioactive products, including isothiocyanates, nitriles, thiocyanates, epithionitriles,
oxazolidine-2-thiones, and epithioalkanes [12].

The process depends on different factors, such as the substrate, pH conditions, the
presence of ferrous ions, and the amount and activity of specific proteins, like the epithio-
specifier protein (ESP) [13]. The profile and amount of glucosinolates varies among the
Brassica species and cultivars, the different conditions for growing and harvesting, the
different parts of plants considered, and the processing conditions. Several studies have
shown an increase in glucosinolates in the leaves in comparison to the roots, particularly in
response to drought stress [14]. Sinigrin, glucobrassicin, and glucoiberin are recognized
as the pre-dominant GLSs in kale and cabbage, while glucoraphanin, glucobrassicin, and
neoglucobrassicin are the prevalent GLSs in broccoli [15]. Numerous research findings have
shown their potential preventive action against chronic-degenerative human disease due to
their influence during the initiation and promotion phases of cancer development [16–18].
The treatments with various elicitors could affect the morphometric parameters of the
plants and the secondary metabolite production.

Melatonin, chemically known as N-acetyl-5-methoxytryptamine, constitutes an am-
phiphilic, low-molecular-weight hormone, which is characterized by its indolic structure.
It is synthesized by various organisms, including plants, where its production plays an im-
portant role in different physiological functions [19–21]. In plants, melatonin biosynthesis
involves multiple enzymatic steps, starting with tryptophan as the precursor and serotonin
as the intermediate in the process [22–24]. Several studies have demonstrated the effects
on various physiological processes in plants [25], enhancing seed germination, biomass
production, photosynthesis rate, fruit ripening, osmoregulation, and root development,
and the response of the plants to abiotic/biotic stress [26–28]. It can also regulate the an-
tioxidant pathways of the plants and the biosynthesis of secondary metabolites, including
the amount and the profile of the glucosinolates [29,30]. It is well-established that the appli-
cation of exogenous melatonin significantly benefits the growth and development of plants
under abiotic stress [31,32]. This positive impact is realized through multiple mechanisms,
including the alleviation of oxidative stress via activating antioxidant systems and inducing
alterations in the expression of stress-responsive genes and heat shock proteins (HSPs) [33].

Nowadays, consumers are currently preferring foods not only for their taste but
also for their perception of the health and well-being benefits. The food supply chain,
in response to this trend, has introduced novel foods, such as sprouts, microgreens, and
baby leaves. These products are ready to eat and represent good sources of antioxidant
compounds, such as glucosinolates, phenolic compounds, vitamins, and minerals. Sprouts
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(germinating seeds with a cotyledon discloser without true leaves), microgreens (plantlets
with the appearance of the first true leaf) and baby leaves (plantlets with almost three true
leaves) are considered novel foods due to their bioactive compound content, potentially
contributing positively to human health [34]. Sprouts, microgreens, and baby leaves can be
easily cultivated in urban or peri-urban settings. This can be undertaken by specialized
vegetable farmers or even by consumers themselves. They present a short growth cycle and
can be adopted by different cultivation systems, such as hydroponic, aeroponic systems, or
modulating light conditions and temperature regimes [35,36]. These novel food items are
primarily consumed in their raw state, employing simple processing that includes cleaning,
cutting, packaging, and refrigerated storage. This approach is designed to prevent the
degradation of bioactive compounds, which is generally associated with heat processes
such as cooking and sterilization. Sprouts, microgreens, and baby leaves can be used in
many dishes as condiments and ingredients.

The objective of this study is to assess the impact of melatonin application on the
early growth stages of broccoli, with a focus on enhancing both the growth and glucosi-
nolate content of novel food products, including sprouts, microgreens, and baby leaves.
Specifically, our investigation targets two varieties: Sicilian sprouting black broccoli, Broc-
colo nero (Brassica oleracea var. italica Plenck), and a commercial variety, Cavolo Broccolo
Ramoso Calabrese (Brassica oleracea var. italica Plenck). Comprehensive evaluations at
various growth stages involve the characterization of the morphometric parameters and
glucosinolate profiles. The ultimate goal is to optimize the cultivation methods to enhance
the antioxidant properties of these innovative foods.

2. Materials and Methods
2.1. Experimental Design

One Sicilian sprouting black broccoli, Broccolo nero (BN), belonging to the Di3A active
brassica genebank collection, was compared to a commercial variety of broccoli, Cavolo
Broccolo Ramoso Calabrese (CR), provided by the S.A.I.S. S.p.A. seed company located in
Cesena, Italy. The sowing was carried out on 21 April 2023, in a cold greenhouse located
in Catania (South Italy, 37◦31′10′′ N, 15◦04′18′′ E; 105 m above sea level (m a.s.l.)), under
natural light and temperature conditions. The seeds were sown in cellular trays, each
comprising 104 holes, and filled with the organic substrate Brill® Semina Bio from Geotec,
Italy. Specifically, twenty seeds were allocated to each hole and one cellular tray was
considered as a replicate unit. The experimental design adopted was a split-plot with three
experimental factors: the first one was the different melatonin treatments (TLC 73-31-4—
Millipore Sigma, St. Louis, MO, USA) (melatonin, M: M0, M50, and M100 µM L–1); the
second factor was the different growth stages of the plants (GS), while the third one was
the genotype (GE). Each experimental condition was replicated three times. The melatonin
treatment was as follows: H2O and 0 µmol L–1 melatonin (M0), H2O and 50 µmol L–1

melatonin (M50), H2O and 100 µmol L–1 melatonin (M100). Melatonin was applied for
sprouts, a single dosage at sowing through soil drench; for microgreens, two applications
(at sowing and post-sprout collection); and three applications for baby leaves (at sowing,
after sprout collection, and post-harvesting microgreens) using the foliar spray method.
The plants were harvested at three different initial growth stages: sprouts were collected
when the cotyledons were disclosed, precisely 7 days from sowing on average; microgreens
were harvested at the appearance of the first leaf, around 15 days from sowing on average;
and baby leaves were collected when 3–4 true leaves were present, after an average of
1 month from sowing.

2.2. Plant Materials

The plants were washed and analyzed in terms of their main morphometric parame-
ters, including the weight of 10 individual plants (W), hypocotyl length (HL), cotyledon
length and width (CL and CW, respectively) for sprouts. Additionally, for microgreens, the
number (N), length and width of the true leaves (LL and LW, respectively) were registered.
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For baby leaves, in addition, the stem length (SL) was recorded [37,38]. The morphometric
measurements were carried out using an Epson Perfection V850 Pro scanner ( SEIKO
EPSON CORPORATION, Nagano-ken, Japan) with WinFolia Regular 2020 software. The
plants, consequently, were frozen at −80 ◦C, freeze-dried, ground into a fine powder, and
utilized for glucosinolates analysis.

2.3. Glucosinolates Extraction

The glucosinolate extraction was performed according to Kliebenstein et al., 2001,
with some modifications [39]. A total of 10 milligrams of lyophilized materials for each
sample was extracted in 400 µL of methanol, 10 µL of 0.3 M lead acetate, 120 µL of water,
and 10 µL of glucotrapaeolin as an internal standard. The samples were mixed for 1.30′ at
25 1/s to facilitate the extraction and incubated for 60 min at 250 rpm at room temperature.
The mixture was pelleted via centrifuging for 12 min at 3700 rpm (2250 FCR). Ninety-
six-well filter plates were loaded with 45 µL of diethylaminoethyl Sephadex A-25 using
a Millipore multiscreen column loader. Then, 300 µL of water was added to equilibrate
for 2 to 4 h. Consequently, 150 µL of supernatants was added to the columns after the
water was removed with 2 to 5 s of vacuum. This step was repeated once to bring the total
volume of 300 µL. To disulfate the glucosinolates on the column, 10 µL of water and 10 µL
of sulfatase (Sigma-Aldrich, St. Louis, MO, USA) solution were added to each column and
the plates were incubated overnight at room temperature. The desulfoglucosinolates were
eluted twice with 100 µL of 60% (by volume) methanol and twice with 100 µL of water. The
supernatant was collected and utilized for HPLC analysis.

2.4. High-Performance Liquid Chromatography (HPLC) Analysis

The chromatographic analyses were carried out on a high-performance liquid chro-
matograph ACQUITY UPLC H-Class PLUS (Waters, Milford, MA, USA) equipped with a
photodiode array detector. The UPLC column was a C18 ACQUITY UPLC HSS T3 (Waters,
Milford, MA, USA) (1.8 µm particle size, 50 × 2.1 mm i.d.) and was protected with a
C18 guard column (Waters). The oven temperature was set at 35 ◦C. The mobile phase
was a mixture of (A) 100% H2O and (B) 25% acetonitrile (v/v). The flow rate was set at
0.6 mL·min−1, starting with 95% of solvent A, followed by a linear gradient from 0.2 to
1.2 min to 90% A, 1.2–2.5 min to 70% A, 2.5–4.0 to 30% A, 4.0–5.4 to 0% A, keeping 0% A
for 1.6 min and returning to 95% A for 1 min. Compounds were detected at 229 nm. Five
microliters of the sample’s extracts were used to identify and quantify the glucosinolates.
The results were expressed as the µmol g−1 of dry weight (d.w.). The GLSs standards
were: GRA = glucoraphanin, GER = glucoerucin, GIB = glucoiberin, GBS = glucobras-
sicin, MeOHGBS = 4-methoxyglucobrassicin, NeoGBS = neoglucobrassicin, OHGBS =
4-hydroxiglucobrassicin, and GTP = glucotrapeolin (Figures S1 and S2). All the standards
were purchased from ChromaDex (Santa Ana, CA, USA).

2.5. Statistical Analysis

A two-way analysis of variance (ANOVA) was performed to evaluate the effects of
the melatonin and genotype on the morphometric plant traits. The mean values associated
with the main factors, as well as their interactions, were evaluated using Tukey’s post
hoc test (p < 0.05). The significance of the differences for the glucosinolates profile was
elaborated via a three-way analysis of variance (ANOVA). All the statistical analyses were
conducted using CoStat version 6.451 (CoHort Software in Birmingham, UK). The statistical
analysis was performed using the SPSS software version 27. Heat maps of the Pearson’s
correlation was produced using GraphPad Prism version 8.0 (GraphPad Software, Inc.,
San Diego, CA, USA). The Principal Component Analysis (PCA) was conducted using the
XLSTAT2018 software (Addinsoft, Paris, France).
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3. Results
3.1. Morphometric Traits

For the sprouts, with regard to the weight, no significant interaction of M × GE was
observed. However, it was affected by the genotype and its value varied from 0.76 to
0.61 for the CR and BN, respectively (Table 1). For the hypocotyl length, a significant
variation was ascertained and its value ranged from 31.68 to 19.58 mm for the CR M100 and
BN M100, respectively. The cotyledon length was significantly affected by the genotype,
with values ranging from 10.55 to 9.90 mm for the CR and BN, respectively. Additionally,
for the cotyledon width, we observed a significant interaction, with the values varying
from 12.63 to 10.14 mm for the BN and CR, respectively, in the M50 treatment. For the
other parameters, no significant interactions were detected. The hypocotyl length and
cotyledon width were most significantly influenced by the melatonin treatment, with the
CR displaying more noticeable variations compared to the other genotype.

For the microgreens, a significant interaction was ascertained for the weight, with the
values varying from 2.01 to 1.09 g for the CR M50 and BN M100, respectively (Table 2). For
the hypocotyl length, we observed a significant interaction of M × GE and its values ranged
from 32.62 to 22.29 mm for the CR M100 and BN M0, respectively. The cotyledon length was
affected by the genotype, with values ranging from 10.96 to 10.28 mm for the CR and BN,
respectively. However, for the cotyledon width, no significant variations were observed.
The dimensions of the leaves were affected by the genotype. The leaf length varied from
13.07 to 11.31 mm for the CR and BN, respectively, while the leaf width values fluctuated
from 9.86 to 7.96 mm for the CR and BN, respectively. During this plant growth stage, the
melatonin treatment notably influenced the weight and hypocotyl length, showing many
variations for the CR.

For the baby leaves, concerning the weight, no significant interaction was observed,
while it was affected by the genotype, with values varying from 7.31 to 5.96 for the CR
and BN, respectively (Table 3). A significant interaction of M × GE was determined for
the stem length, with values ranging from 57.79 to 48.03 mm for the CR M0 and CR M50,
respectively. No significant variation was observed for the number of leaves and leaf length,
whereas for the leaf width, we ascertained a significant interaction, with values varying
from 23.43 to 19.53 mm for the CR M100 and BN M0, respectively. For the baby leaves,
we observed a significant interaction for the stem length and leaf width, constituting an
important factor in determining the overall dimensions of the plant.

3.2. Glucosinolates Profile

The analysis of variance (ANOVA) showed significant variations between the total and
individual glucosinolate amount in relation to the different experimental factors considered
(Table 4). The growth stage and the genotype affected significantly the glucosinolates
profile. The results offer valuable insights into the different pathways of glucosinolates
during the first growth stage of the plant (sprouts, microgreens, and baby leaves).

The total glucosinolate content (µmol g−1 d.w.) varied significantly in relation to
the growth stage and genotype, showing an interaction of GS × GE (Table 4). The total
glucosinolate amount ranged from 2.98 to 28.07 µmol g−1 d.w. for the BN M100 baby leaves
and CR M100 sprouts, respectively (Figure 1). The total glucosinolate content was higher
for the sprouts compared to the baby leaves for the two genotypes tested. The CR showed
the highest amount of total glucosinolates, particularly during the sprouts stage, while it
exhibited a comparable amount to the BN during the microgreens and baby leaves stages.
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Table 1. Morphometric characteristics of the sprouts of Broccolo nero (BN) and Cavolo Broccolo Ramoso Calabrese (CR) studied. Data are reported as the mean ± S.E.
(n = 10). W = weight of 10 individuals (g); HL = hypocotyl length of 10 individuals (mm); CL = cotyledon length of 10 individuals (mm); CW = cotyledon width of
10 individuals (mm).

M0 M50 M100 Mean

BN CR x BN CR x BN CR x BN CR

W (g) 0.52 ± 0.12 d 0.81 ± 0.17 a 0.66 ± 0.20 b 0.71 ± 0.25 b 0.64 ± 0.12 bc 0.68 ± 0.05 b 0.61 ± 0.02 c 0.85 ± 0.06 a 0.73 ± 0.17 a 0.61 ± 0.09 b 0.76 ± 0.11 a
HL (mm) 21.08 ± 0.09 b 21.35 ± 0.10 b 21.22 ± 0.02 b 20.18 ± 0.02 b 28.23 ± 0.13 a 24.21 ± 0.57 a 19.58 ± 0.11 b 31.68 ± 0.11 a 25.63 ± 0.86 a 20.28 ± 0.08 b 27.09 ± 0.53 a
CL (mm) 9.45 ± 0.06 10.77 ± 0.05 10.11 ± 0.09 10.12 ± 0.05 10.13 ± 0.04 10.12 ± 0.01 10.13 ± 0.04 10.76 ± 0.05 10.45 ± 0.04 9.90 ± 0.04 b 10.55 ± 0.08 a
CW (mm) 11.19 ± 0.03 ab 10.21 ± 0.03 b 10.70 ± 0.07 12.63 ± 0.02 a 10.14 ± 0.02 b 11.38 ± 0.17 10.92 ± 0.07 b 10.33 ± 0.07 b 10.63 ± 0.08 11.58 ± 0.09 a 10.22 ± 0.01 b

Significance of the differences via the ANOVA Newman–Keuls method

M GE M × GE

W (g) n.s. * n.s.
HL (mm) *** *** ***
CL (mm) n.s. ** n.s.
CW (mm) n.s. *** *

The mean values associated with the two factors and their interaction were evaluated according to Tukey’s test. Means that are significantly different are indicated by different letters. n.s.
not significant; * significant at p < 0.05; ** significant at p < 0.01; *** significant at p < 0.001.
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Table 2. Morphometric characteristics of the microgreens of Broccolo nero (BN) and Cavolo Broccolo Ramoso Calabrese (CR) studied. Data are reported as the mean
± S.E. (n = 10). W = weight of 10 individuals (g); HL = hypocotyl length of 10 individuals (mm); CL = cotyledon length of 10 individuals (mm); CW = cotyledon
width of 10 individuals (mm); LL = leaf length of 10 individuals (mm); LW = leaf width of 10 individuals (mm).

M0 M50 M100 Mean

BN CR x BN CR x BN CR x BN CR

W (g) 1.15 ± 0.16 d 1.96 ± 0.22 ab 1.56 ± 0.58 b 1.32 ± 0.11 c 2.01 ± 0.14 a 1.66 ± 0.48 a 1.09 ± 0.16 d 1.86 ± 0.26 b 1.47 ± 0.55 c 1.18 ± 0.12 b 1.94 ± 0.07 a
HL (mm) 22.29 ± 0.23 c 27.20 ± 0.16 b 24.75 ± 3.47 20.84 ± 0.09 c 32.26 ± 0.03 a 26.55 ± 0.81 20.38 ± 0.08 c 32.62 ± 0.06 a 26.50 ± 0.87 21.17 ± 1.00 b 30.69 ± 0.30 a
CL (mm) 9.55 ± 0.25 10.86 ± 0.16 10.21 ± 0.92 10.92 ± 0.17 10.21 ± 0.29 10.57 ± 0.50 10.36 ± 0.22 11.80 ± 0.02 11.08 ± 1.02 10.28 ± 0.69 10.96 ± 0.80
CW(mm) 9.94 ± 0.42 9.56 ± 0.24 9.75 ± 0.27 10.29 ± 0.06 10.14 ± 0.31 10.22 ± 0.11 10.24 ± 0.07 10.13 ± 0.11 10.19 ± 0.08 10.16 ± 0.19 9.94 ± 0.33
LL (mm) 11.06 ± 0.04 13.32 ± 0.13 12.19 ± 1.59 11.71 ± 0.07 13.22 ± 0.13 12.46 ± 1.07 11.14 ± 0.05 12.68 ± 0.01 11.91 ± 1.09 11.31 ± 0.35 b 13.07 ± 0.34 a
LW (mm) 7.96 ± 0.03 9.90 ± 0.11 8.93 ± 1.37 8.28 ± 0.02 10.11 ± 0.07 9.19 ± 1.30 7.64 ± 0.05 9.57 ± 0.06 8.61 ± 11.37 7.96 ± 0.32 b 9.86 ± 0.27 a

Significance of the differences via the ANOVA Newman–Keuls method

M GE M × GE

W (g) *** *** *
HL (mm) n.s. *** ***
CL (mm) n.s. *** n.s.
CW (mm) n.s. n.s. n.s.
LL (mm) n.s. *** n.s.
LW (mm) n.s. *** n.s.

The mean values associated with the two factors and their interaction were evaluated according to Tukey’s test. Means that are significantly different are indicated by different letters. n.s.
not significant; * significant at p < 0.05; *** significant at p < 0.001.



Agronomy 2024, 14, 286 8 of 21

Table 3. Morphometric characteristics of the baby leaves of Broccolo nero (BN) and Cavolo Broccolo Ramoso Calabrese (CR) studied. Data are reported as the mean ±
S.E. (n = 10). W = weight of 10 individuals (g); SL = stem length of 10 individuals (mm); N = number of true leaves of 10 individuals (n); LL = leaf length of 10
individuals (mm); LW = leaf width of 10 individuals (mm).

M0 M50 M100 Mean

BN CR x BN CR x BN CR x BN CR

W (g) 6.01 ± 0.47 6.88 ± 0.64 6.44 ± 0.62 5.85 ± 0.71 7.27 ± 1.53 6.56 ± 1.00 6.02 ± 1.12 7.75 ± 2.20 6.89 ± 1.22 5.96 ± 0.09 b 7.31 ± 0.44 a
SL (mm) 49.61 ± 0.10 ab 57.79 ± 0.27 a 53.70 ± 0.58 52.28 ± 0.23 ab 48.03 ± 0.16 b 50.16 ± 0.30 50.21 ± 0.18 ab 54.83 ± 0.35 ab 52.52 ± 0.33 50.70 ± 0.14 53.55 ± 0.50

N (n) 3.23 ± 0.29 3.10 ± 0.10 3.17 ± 0.09 3.00 ± 0.27 3.10 ± 0.22 3.05 ± 0.07 3.17 ± 0.11 3.10 ± 0.22 3.13 ± 0.05 3.13 ± 0.12 3.10 ± 0.45
LL (mm) 28.71 ± 0.07 29.08 ± 0.11 28.90 ± 0.03 29.72 ± 0.09 29.47 ± 0.07 29.60 ± 0.02 28.78 ± 0.21 31.36 ± 0.17 30.07 ± 0.18 29.07 ± 0.06 29.97 ± 0.12
LW (mm) 19.53 ± 0.03 b 21.27 ± 0.11 ab 20.40 ± 0.12 b 21.39 ± 0.09 a 21.21 ± 0.02 ab 21.30 ± 0.01 ab 20.40 ± 0.06 b 23.43 ± 0.19 a 21.91 ± 0.21 a 20.44 ± 0.09 b 21.97 ± 0.13 a

Significance of the differences via the ANOVA Newman–Keuls method

M GE M × GE

W (g) n.s. *** n.s.
SL (mm) n.s. n.s. **

N (n) n.s. n.s. n.s.
LL (mm) n.s. n.s. n.s.
LW (mm) * ** *

The mean values associated with the two factors and their interaction were evaluated according to Tukey’s test. Means that are significantly different are indicated by different letters. n.s.
not significant; * significant at p < 0.05; ** significant at p < 0.01; *** significant at p < 0.001.
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Table 4. Variation of the total and individual GLSs (µmol g−1 d.w.) in relation to the experimental factors studied.

Total GLSs GRA GER GIB GBS MeOHGBS NeoGBS OHGBS Aliphatic Indolic

M

M0 13.22 ± 2.25 4.42 ± 1.71 0.48 ± 0.27 0.43 ± 0.25 3.47 ± 0.64 1.01 ± 0.01 0.68 ± 0.15 2.27 ± 0.41 5.78 ± 2.21 7.44 ± 1.02

M50 12.81 ± 3.04 4.52 ± 2.08 0.51 ± 0.32 0.68 ± 0.42 3.11 ± 0.68 1.04 ± 0.02 0.59 ± 0.14 2.02 ± 0.46 6.08 ± 2.69 6.72 ± 1.08

M100 13.38 ± 3.62 4.58 ± 2.31 0.66 ± 0.49 0.79 ± 0.51 2.99 ± 0.69 1.01 ± 0.01 0.62 ± 0.15 2.24 ± 0.55 6.52 ± 3.15 6.86 ± 1.17

GS

Sprouts 20.68 ± 1.84 a 10.24 ± 1.50 a 1.32 ± 0.48 a 1.31 ± 0.53 a 3.05 ± 0.17 b 1.03 ± 0.02 a 0.91 ± 0.09 a 1.89 ± 0.23 b 13.84 ± 1.75 a 6.88 ± 0.26 b

Microgreens 13.81 ± 0.40 b 2.83 ± 0.24 b 0.29 ± 0.02 b 0.56 ± 0.26 b 5.02 ± 0.15 a 1.01 ± 0.01 ab 0.73 ± 0.08 b 3.08 ± 0.55 a 3.96 ± 0.45 b 9.85 ± 0.47 a

Baby leaves 4.92 ± 0.60 c 0.51 ± 0.07 c 0.02 ± 0.08 b 0.04 ± 0.01 c 1.52 ± 0.26 c 0.99 ± 0.01 b 0.25 ± 0.04 c 1.56 ± 0.28 b 0.62 ± 0.09 c 4.31 ± 0.51 c

GE

BN 11.93 ± 1.95 3.58 ± 1.0 b 0.22 ± 0.0 b 1.19 ± 0.3 c 3.37 ± 0.5 a 1.02 ± 0.01 a 0.75 ± 0.14 a 1.52 ± 0.17 b 5.27 ± 1.43 6.66 ± 0.79 b

CR 14.34 ± 2.80 5.43 ± 2.0 a 0.88 ± 0.3 a 0.08 ± 0.0 b 3.02 ± 0.5 b 0.11 ± 0.01 b 0.51 ± 0.07 b 2.84 ± 0.39 a 6.99 ± 2.64 7.35 ± 0.92 a

Significance of the differences via ANOVA Student–Newman–Keuls

M n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s.

GS *** *** *** *** *** * *** *** *** ***

GE * * *** *** n.s. * *** *** n.s. n.s.

GS × M n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s.

GS × GE * ** *** *** n.s. n.s. *** *** ** n.s.

M × GE n.s. n.s. n.s. n.s. ** n.s. n.s. n.s. n.s. n.s.

GS × M × GE n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s.

The interaction of the factors *, **, and *** indicates that the Tukey test is significant at p < 0.05, p < 0.01 and p < 0.001, respectively. Means that are significantly different are
indicated by different letters. GRA = glucoraphanin, GER = glucoerucin, GIB = glucoiberin, GBS = glucobrassicin, MeOHGBS = 4-methoxyglucobrassicin, NeoGBS = neoglucobrassicin,
OHGBS = 4-hydroxiglucobrassicin, Aliphatic = aliphatic glucosinolates, Indolic = indolic glucosinolates, Total GLSs = total glucosinolates.
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Figure 1. Variation in the total amount of GLSs (µmol g−1 d.w.) concerning the experimental factors
studied. Different letters indicate significant differences according to Tukey test (p < 0.05).

3.3. The Variation of Individual Glucosinolates

The individual glucosinolates showed significant variations concerning the experi-
mental factors considered (Figure 2). Specifically, aliphatic and indolic glucosinolates were
detected. The glucoraphanin, glucoerucin, and glucoiberin were identified as the aliphatic
glucosinolates during the first growth stage of the plants in all the tested genotypes.
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Figure 2. Profile of the individual glucosinolates in the tested genotypes concerning the treatment
and the different growth stages.

The glucoraphanin content exhibited a significant interaction of GS × GE, with values
varying from 6.33 to 15.26 µmol g−1 d.w. for the BN and CR at the sprouts stage, respectively.
The glucoraphanin content during the sprouts stage is shown to be more than double that
of the baby leaves stage.

A significant interaction between GS × GE was observed for the glucoerucin amount,
whose value fluctuated from 0.02 to 3.12 µmol g−1 d.w. for the CR baby leaves and CR
sprouts, respectively. The glucoerucin was not detected for the BN baby leaves in the
different melatonin applications.
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The glucoiberin profile varied significantly in relation to the growth stage and geno-
type, showing as mentioned before for glucoraphanin and glucoerucin, a significant in-
teraction of GS × GE. Its value fluctuated from 0.02 to 3.10 µmol g−1 d.w. for the CR
microgreens and BN sprouts, respectively. The glucoiberin was not found for the CR
microgreens considering the M50 plot and in the CR baby leaves grown in the M50 and
M100 conditions.

Concerning the indolic glucosinolates, the glucobrassicin, 4-methoxyglucobrassicin,
neoglucobrassicin and 4-hydroxiglucobrassicin were detected.

The glucobrassicin content was affected significantly by the interaction of M × GE,
with values ranging from 0.87 to 5.56 µmol g−1 d.w. for the BN baby leaves grown in the
M100 plot and the BN microgreens in the M0 condition, respectively. The highest amount
was generally detected during the microgreens stage for both tested genotypes.

The 4-methoxyglucobrassicin amount varied significantly in relation to the growth
stage and genotype. The highest value was detected for the BN sprouts (1.07 µmol g−1 d.w.),
whereas the lowest value was observed for the CR sprouts (0.95 µmol g−1 d.w.).

The neoglucobrassicin showed a significant interaction of GS × GE and its value
varied from 0.13 to 1.18 µmol g−1 d.w. for the BN baby leaves and BN sprouts grown in the
M100 and M0 plots, respectively. The neoglucobrassicin, generally, was detected in lower
amounts in all the conditions tested.

The 4-hydroxiglucobrassicin content, finally, was affected significantly by the interac-
tion of GS × GE, which varied from 0.70 to 4.50 µmol g−1 d.w. for the BN baby leaves and
CR microgreens, respectively. The 4-hydroxiglucobrassicin was found in lower amounts in
the experimental conditions considered.

The aliphatic glucosinolates were predominant in the sprouts stage for both geno-
types studied (Figure 2). The glucoraphanin for the BN represents 44.75% of the total
glucosinolates; in relation to the melatonin application, a decrease to 7.42% was observed,
while the glucoiberin increased from 8.35% to 18.36% for the M0 and M100 conditions,
respectively. The glucoerucin was found in very low percentages for the BN sprouts. The
glucoraphanin increased from 52.87% to 57.37% of the total glucosinolates in relation to
the melatonin treatment for the CR M0 and CR M50, respectively. The glucoerucin under
the melatonin treatment increased from 8.86% to 11.10%. For the glucoiberin, a minimal
percentage was detected.

The aliphatic glucosinolates decreased during the microgreens and baby leaves stages
for both genotypes, while an increase in the indolic glucosinolates was observed. The
glucobrassicin represents 38.86% of the total glucosinolates for the BN baby leaves and
its value decreased to 29.02% under the M100 treatment. The 4-methoxyglucobrassicin
increased from 14.15% to 33.84% for the M0 to M100 conditions at the baby leaves stage.
The neoglucobrassicin increased to 6.96% of the total glucosinolates under the M100 con-
ditions for the microgreens. The 4-hydroxiglucobrassicin represents 29.63% of the total
glucosinolates for the baby leaves; under the melatonin treatment, a decrease to 23.22%
was determined.

For the CR, the percentage of glucobrassicin was 36.50% of the total glucosinolates
in the microgreens stage. The 4-methoxyglucobrassicin was found in the highest per-
centage for baby leaves stage and its value was 21.08%. The neoglucobrassicin indicates
5.38% of the total glucosinolates for the baby leaves. The percentage of glucobrassicin
and neoglucobrassicin, generally, decreased under the melatonin conditions, while the
4-hydroxiglucobrassicin increased from 30.48% to 40.64% for the M0 and M100 conditions.

3.4. Correlation and Principal Component Analysis (PCA)

The correlation analysis among the different GLSs detected for the genotypes studied
was performed to show the GLS profile and their pathway concerning the plant’s growth
stages variation in the melatonin conditions.

For the sprouts, the glucoraphanin showed a high significant correlation with the
aliphatic glucosinolate glucoerucin (r = 0.926, p < 0.001), while a strong negative corre-
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lation was observed between the glucoraphanin and glucoiberin (r = −0.964, p < 0.001)
(Figure 3). The glucoraphanin was significantly highly negatively correlated with the
indolic glucosinolates, glucobrassicin, 4-methoxyglucobrassicin, neoglucobrassicin and the
total amount of the indolic glucosinolates, as they are characterized by different metabolic
pathways. A strong negative correlation was observed between the glucoerucin and glu-
coiberin. In addition, the glucoerucin showed a negative correlation with the indolic
glucosinolates glucobrassicin, 4-methoxyglucobrassicin, neoglucobrassicin, while a high
positive correlation was observed between the glucoerucin and 4-hydroxiglucobrassicin.
The glucoerucin showed, additionally, a strong positive correlation with the total aliphatic
glucosinolates. The glucoiberin was correlated positively with the indolic glucosinolates,
4-methoxyglucobrassicin and neoglucobrassicin.
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Figure 3. Heat maps of the Pearson’s correlation between the individual and total GLSs for the sprouts
stage. GRA = glucoraphanin, GER = glucoerucin, GIB = glucoiberin, GBS = glucobrassicin, MeO-
HGBS = 4-methoxyglucobrassicin, NeoGBS = neoglucobrassicin, OHGBS = 4-hydroxiglucobrassicin,
Aliphatic = aliphatic glucosinolates, Indolic = indolic glucosinolates, Total GLSs = total glucosinolates.

For the indolic glucosinolates, glucobrassicin was highly positively correlated with
4-methoxyglucobrassicin and neoglucobrassicin, while it was highly negatively correlated
with the total aliphatic glucosinolates, as the metabolic pathways are different. The 4-
methoxyglucobrassicin showed a high positive correlation with the neoglucobrassicin and
the total indolic glucosinolates, while it was negatively correlated with the total aliphatic
glucosinolates. The indolic glucosinolate neoglucobrassicin showed a high negative correla-
tion with the total aliphatic glucosinolates, while a strong positive correlation was observed
between the neoglucobrassicin and the total indolic glucosinolates.

For the microgreens, the glucoraphanin showed a positive correlation with the total
aliphatic glucosinolates, while it was negatively correlated with the total indolic glucosino-
lates (Figure 4). The glucoerucin showed no correlation with all the glucosinolates detected.
The aliphatic glucosinolate glucoiberin was high positively correlated with the neogluco-
brassicin and the total aliphatic glucosinolates, while it was high negatively correlated
with the 4-hydroxiglucobrassicin and the total indolic glucosinolates. The glucobrassicin
showed no correlation with all the glucosinolates detected. The indolic glucosinolate
4-methoxyglucobrassicin showed no correlation with all the glucosinolates detected, ex-
cept for a significant negative correlation with the total GLSs. The neoglucobrassicin
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showed a high significant negative correlation with the 4-hydroxiglucobrassicin and the
total indolic glucosinolates. A strong negative correlation was observed between the 4-
hydroxiglucobrassicin and the total aliphatic glucosinolates, while it showed a high positive
correlation with the total indolic glucosinolates.
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Figure 4. Heat maps of the Pearson’s correlation between the individual and total GLSs for the
microgreens stage. GRA = glucoraphanin, GER = glucoerucin, GIB = glucoiberin, GBS = glu-
cobrassicin, MeOHGBS = 4-methoxyglucobrassicin, NeoGBS = neoglucobrassicin, OHGBS = 4-
hydroxiglucobrassicin, Aliphatic = aliphatic glucosinolates, Indolic = indolic glucosinolates, Total
GLSs = total glucosinolates.

For the baby leaves, the glucoraphanin was positively correlated with the aliphatic
glucosinolate glucoerucin (Figure 5). In addition, a strong positive correlation was observed
between the glucoraphanin and the total aliphatic glucosinolates. The glucoerucin showed
a high negative correlation with the aliphatic glucosinolate glucoiberin, while a strong posi-
tive correlation was observed between the glucoerucin and 4-hydroxiglucobrassicin. The
glucoiberin showed no correlation with all the glucosinolates detected, except for a signifi-
cant negative correlation with the indolic glucosinolate 4-hydroxiglucobrassicin. No correla-
tion was observed for the glucobrassicin. The indolic glucosinolate 4-methoxyglucobrassicin
showed a significant negative correlation with the neoglucobrassicin and the total GLSs.
The neoglucobrassicin was positively correlated with the total GLSs.

Principal Component Analysis (PCA) was performed on the GLS data to highlight the
variations in the GLS profiles, considering both the two genotypes and their relationship to
the plant growth stage and melatonin treatment (Figure 6). PC1 explained 44.99% of the
total variation, showing a positive association with the aliphatic and indolic glucosinolates
(excluding 4-hydroxyglucobrassicin, which was linked to PC2), while PC2 accounted for
29.08% of the total variation. The PCA revealed distinct differences in the GLS profiles
based on the genotype. The PCA revealed a discriminant effect, leading to the identification
of four distinct groups. In the first group, circled in green, the genotype CR during the
sprouts stage exhibited a notable correlation with the glucoerucin, showcasing a sensitivity
to different concentrations of melatonin (M0, M50, M100). Contrarily, the second group
(circled on blue) showcased the same genotype CR during the microgreen stage, albeit
positioned at the other extreme of the plot and correlated with the indolic glucosinolate 4-
hydroxiglucobrassicin. Notably, this group also included the genotype BN at the microgreen
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stage. The third group (circled on purple) emerged with the genotype BN during the
sprout growth stage, demonstrating a correlation with the 4-hydroxyglucobrassicin and
glucoiberin. In contrast, the fourth group (encircled on yellow) comprised both genotypes
in the baby leaves growth stage, showcasing distinctions under the various treatment
concentrations, with a negative correlation with the aliphatic glucosinolates. This specific
categorization highlights the relationships between the genotypes, growth stages, and
melatonin concentrations.
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Figure 5. Heat maps of the Pearson’s correlation between the individual and total GLSs for the
baby leaves stage. GRA = glucoraphanin, GER = glucoerucin, GIB = glucoiberin, GBS = glu-
cobrassicin, MeOHGBS = 4-methoxyglucobrassicin, NeoGBS = neoglucobrassicin, OHGBS = 4-
hydroxiglucobrassicin, Aliphatic = aliphatic glucosinolates, Indolic = indolic glucosinolates, Total
GLSs = total glucosinolates.
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Figure 6. PCA of the glucosinolate profile related to the experimental factors considered, with
BN = Broccolo nero, CR = Cavolo Broccolo Ramoso Calabrese; SP = sprouts, MG = microgreens,
BL = baby leaves. GBS = glucobrassicin, GER = glucoerucin, GIB = glucoiberin, GRA = glu-
coraphanin, MeOHGBS = 4-methoxyglucobrassicin, NeoGBS = neoglucobrassicin, OHGBS = 4-
hydroxiglucobrassicin, Total GLSs = total glucosinolates, Aliphatic = aliphatic glucosinolates,
Indolic = indolic glucosinolates. Sprouts are grouped in green and purple circles (CR and BN respec-
tively); microgreens are represented by blue circles; and baby leaves are highlighted in yellow circles.
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4. Discussion

Novel foods, including sprouts, microgreens, and baby leaves, are gaining popularity
due to their cultivation techniques and their antioxidant properties [40]. Our study aligns
with this trend, supporting the cultivation of these innovative crops. We emphasize the
role of exogenous melatonin treatment and specific plant growth stages in optimizing
the yield and influencing the glucosinolate (GLSs) content and profile in Brassica oleracea
L. The investigation revealed significant interactions and variations influenced by the
melatonin treatment and genotype, particularly in the sprouts. Notably, changes in the
sprout parameters, such as the weight, hypocotyl length, cotyledon length, and cotyledon
width, were observed. It is crucial to clarify that these changes were dose-dependent,
with the highest dose (M100) exhibiting the most substantial effects. In our experimental
design, various doses, including M50 and M100, were examined. Particularly noteworthy
was the revelation that the highest dose, M100, exerted the most substantial effects on the
measured sprout parameters. This implies a dose–response relationship, indicating that as
the melatonin dosage increased, the intensity or extent of the observed effects on the sprout
growth became more pronounced. Regarding the sprouts, the application of melatonin
exhibited a significant interaction (M × GE), with a notable increase in weight observed,
particularly at M100, indicating a dose-dependent effect. In both varieties, BN and CR, the
mean values showed a consistent pattern of increase with higher melatonin concentrations.
The highest melatonin concentration (M100) induced a considerable increase, signifying a
dose-dependent influence on the hypocotyl length. While cotyledon length did not show
significant differences, the cotyledon width displayed a significant interaction (M × GE).
The variations, especially at M100, indicate the influence of the melatonin concentration on
the cotyledon width, pointing to a nuanced response in these parameters under different
melatonin treatments.

Melatonin also acts as a growth promoter, inducing the active growth of hypocotyls in
etiolated seedlings of lupin at micromolar concentrations while displaying an inhibitory
effect at 100 µM [41]. Generally, growth inhibition by melatonin only occurs at a high con-
centration (>100 µM). High-concentration melatonin repressed the root growth and reduced
the biomass, as well as retarded the plant leaf growth, by reducing both the cell size and cell
proliferation [42,43]. Although melatonin plays an important role in the regulation of plant
growth and development, the underlying mechanism is still unclear and remains to be
elucidated. In summary, the data strongly support the assertion that melatonin treatment,
especially at higher concentrations, induces a notable increase in various morphometric
parameters crucial for plant development. These findings hold considerable agronomic
and commercial importance, emphasizing the potential of melatonin as a biostimulant
for optimizing plant growth. The nuanced responses observed in different morphometric
traits underline the need for precise dosage considerations in practical applications, of-
fering valuable insights for the cultivation of broccoli varieties. Conversely, microgreens
exhibited pronounced impacts on the weight (W) and hypocotyl length (HL) in response
to melatonin treatment. The substantial variations observed in the plant weight across
the different melatonin concentrations and genotypes underscore the intricate relationship
between the melatonin treatment and overall plant mass. The significant differences in
weight, especially at M100, suggest a dose-dependent response, emphasizing the potential
of melatonin to enhance the biomass of both the BN and CR broccoli varieties. The observed
substantial variations in weight, particularly at M100, indicate a dose-dependent response,
underscoring the promising capacity of melatonin to augment the biomass of both the
BN and CR broccoli varieties. This finding aligns seamlessly with the research conducted
by Sardar et al. [44], which demonstrated that exogenous application of melatonin under
salinity stress conditions contributes to an enhanced plant growth response. Notably, under
salt stress conditions, the application of 50 µM melatonin emerged as the optimal dose for
improving the overall growth of broccoli plants. Our study deepens this understanding,
providing further evidence of melatonin’s potential to positively impact biomass, especially
in the context of different broccoli varieties. This reinforces the practical application of
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melatonin in agricultural settings, showcasing its ability to mitigate environmental stressors
and promote plant growth. The increase in the hypocotyl length, particularly at M100,
indicates that melatonin plays a crucial role in promoting the elongation of the stem be-
low the cotyledons. This response is pivotal for enhancing the overall plant height, with
implications for improved structural integrity and potentially increased light interception.
The significant variations observed highlight the sensitivity of the hypocotyl length to the
melatonin concentration, offering valuable insights into the regulatory role of melatonin in
this morphometric trait. While the cotyledon length did not exhibit significant differences,
the cotyledon width showed consistent responses across the melatonin concentrations and
genotypes. The lack of a significant variation in the cotyledon traits suggests a more stable
response, indicating that melatonin may have a selective impact on specific morphometric
parameters. The considerable increases in both the leaf length and width, particularly
at M100, highlight melatonin’s influence on leaf morphogenesis. These findings imply
that melatonin, especially at higher concentrations, positively impacts the elongation and
expansion of leaves, as reported by Xioang et al. [45]. The significant differences observed
underscore the importance of considering the melatonin dosage when optimizing leaf
development, which has implications for the photosynthetic efficiency and overall plant
performance. Concerning baby leaves, the observed differences in the plant weight across
the melatonin concentrations and genotypes are noteworthy. Although not statistically
significant, there is a clear trend indicating that higher melatonin concentrations, especially
at M100, may contribute to increased plant mass. The Newman–Keuls method reveals a
significant difference in weight concerning the genotype (GE), emphasizing the importance
of genetic factors in influencing the overall plant weight. The shoot length data reveal
an intriguing pattern, with the highest shoot lengths observed in the M50 for both vari-
eties. While not statistically significant, the Newman–Keuls method indicates a significant
interaction between the melatonin concentration and genotype (M × GE). This suggests
that the response to melatonin treatment may vary between the two broccoli varieties,
influencing the shoot length differentially. The number of leaves does not exhibit significant
differences across the melatonin concentrations or genotypes. This implies that mela-
tonin treatment may not strongly influence leaf proliferation under the conditions studied.
The leaf length variations are not statistically significant, indicating a consistent response
across the melatonin concentrations and genotypes. The lack of significant differences
suggests that melatonin may not be a prominent factor in influencing the elongation of
individual leaves. The data on the leaf width, however, demonstrate significant differences,
particularly regarding the melatonin concentration (M) and its interaction with genotype
(GE). Notably, the Newman–Keuls method highlights the significance of the melatonin
concentration and its interaction with the genotype, underscoring the nuanced influence of
melatonin on the leaf width in different broccoli varieties. These results provide valuable
insights into the complex interactions between the melatonin concentration, genotype, and
various growth parameters in broccoli. While certain parameters, like the shoot length
and leaf width, exhibit notable responses, others, such as the weight and leaf length, show
less pronounced variations. These findings contribute to a deeper understanding of how
melatonin treatment can modulate specific aspects of plant growth in distinct broccoli
varieties, providing a foundation for further exploration and potential applications in
agricultural practices. In a recent study by Erdal [46], it was unveiled that melatonin (MT)
assumes a pivotal role in plant physiology. The research highlighted that MT serves as a
potent stimulator of vegetative growth in plants, notably by fostering the development of
lateral roots and increasing both the shoot length and leaf area.

Furthermore, our investigation unveiled distinct changes in the glucosinolate content
across the growth stages, including a notable variation of glucosinolates in the Sicilian
sprouting black broccoli in response to the melatonin treatment. While our findings strongly
suggest the efficacy of melatonin in promoting sprout growth, we recognize the importance
of further exploration to determine its broader applications in the cultivation of various
broccoli varieties. The analysis of the glucosinolate (GLS) profile provided further insights
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into the influence of the melatonin, genotype, and growth stage on the bioactive compounds
in broccoli. Previous studies [47–49] identified a total of 26 glucosinolate compounds (GLSs)
in both broccoli sprouts and microgreens. Key GLSs in this array include glucoraphanin,
glucoiberin, glucoerucin, glucobrassicin, and neoglucobrassicin, with glucoraphanin being
the most abundant, constituting over 50% of the total GLS content. The quantification
of the GLSs ranged from 605 to 1172 mg per 100 g of fresh weight (FW). In our study,
the total GLS content varied significantly, highlighting the influence of the growth stage
and genotype. The sprouts exhibited higher GLS levels compared to the microgreens and
baby leaves, suggesting a dynamic change in GLS production influenced by the growth
stage. During the sprouting stage, characterized by rapid cell division and metabolism,
Brassica plants initiated heightened synthesis of GLSs. This strategic response focused
on accumulating essential nutrients and bioactive compounds, which serve as a natural
defense mechanism against external threats. The substantial GLS levels in sprouts play
a crucial role in fortifying the young plant. As the plant progresses through subsequent
growth stages, like microgreens and baby leaves, the metabolic activities may shift toward
other aspects of growth and development. Our study is consistent with prior research
that has documented higher levels of antioxidant compounds, particularly glucosinolates,
during the sprouting phase. Subsequently, a decline in these compounds is observed as
the plants progress and mature [50–52]. Melatonin treatments induced distinct expression
patterns in genes associated with cell wall formation, carbohydrate metabolic processes,
oxidation/reduction processes, and catalytic activity [53]. Additionally, melatonin may
interact with key enzymes in metabolic pathways, influencing the flow of intermediates
toward secondary metabolite production. This interaction can lead to alterations in the
types and quantities of secondary metabolites, affecting the overall profile of compounds
like glucosinolates [54].

The observed trends in the glucosinolate levels with varying melatonin doses un-
derscore the intricate relationship between external factors, such as the treatment dosage,
and the inherent genetic characteristics of the plant. As the melatonin doses increase, a
consistent decrease in the glucosinolate levels is evident, reflecting not only the direct im-
pact of melatonin but also the underlying influence of the plant’s genotype. This suggests
that the interplay between external stimuli, like melatonin treatment, and the inherent
genetic makeup of the plant contributes to the observed variations in glucosinolate levels.
Melatonin has been observed to enhance the expression of various genes associated with
glucosinolate biosynthesis. The correlation analysis during the sprouts stage uncovered
relationships among the glucosinolates, providing insight into their regulatory dynamics.
The strong positive correlations observed between the glucoraphanin (GRA) and aliphatic
glucoerucin (GER) highlight their coordinated response, while GRA shows a contrasting
negative correlation with glucoiberin (GIB), suggesting potential regulatory divergence
in the aliphatic pathway. Similar correlation patterns were observed in the microgreens,
underscoring the intricate regulatory network governing glucosinolates during different
growth stages.

The absence of precise correlations for certain glucosinolates (GLSs) in the micro-
greens underscores the unique, stage-specific reactions to melatonin, highlighting the
intricate nature of regulatory mechanisms. In contrast, the correlation analysis for the
baby leaves reveals evolving relationships among the GLSs, reflecting changes in the
growth stages. The positive correlation between the glucoraphanin (GRA) and glucoerucin
(GER) with the total aliphatic GLSs suggests a coordinated response within the aliphatic
pathway. Consistent with a prior study by Bhandari et al. [55], significant positive cor-
relations between the progoitrin (PRO), glucoraphanin (GRA), glucoerucin (GER), and
total glucosinolates were found, given their shared aliphatic characteristics with 4-carbon
side chains, leading to similar biosynthetic pathways [56]. The negative correlation be-
tween the glucoerucin and glucoiberin (GIB), along with a positive correlation with the
4-methoxyglucobrassicin (OHGBS), implies specific regulatory changes associated with
the growth stage. Additionally, the negative correlation of the 4-methoxyglucobrassicin
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(MeOHGBS) with neoglucobrassicin (NeoGBS) and total GLSs further illustrates the nu-
anced interplay of GLSs during the baby leaves stage. The correlations in the baby leaves
underscore the dynamic regulation of GLSs in response to melatonin doses, emphasizing
the necessity for a comprehensive understanding of the glucosinolate pathway’s involve-
ment in these alterations. These correlation dynamics align with the known pathways of
glucosinolate biosynthesis [57]. The positive correlations within the aliphatic or indolic
groups suggest coordinated regulation, possibly influenced by shared enzymatic processes.
Conversely, the negative correlations between the aliphatic and indolic GLSs highlight
potential pathway competition or regulatory crosstalk. Changes in the levels of a single
metabolite derived from one branching pathway can be affected by enzymatic changes in a
competing branch [58].

As the plant progresses through the stages of sprouts, microgreens, and baby leaves,
the correlation patterns reflect the qualified adjustments within the glucosinolate pathway,
emphasizing the stage-specific responses to melatonin treatment. These insights contribute
to a more comprehensive understanding of the regulatory mechanisms governing glu-
cosinolate profiles in Brassica oleracea L. across the different growth stages. Furthermore,
defining the optimal dosage for effective application is essential, involving a comprehensive
examination of the biostimulant’s composition to establish accurate dosage recommenda-
tions for optimal efficacy [59].

5. Conclusions

In conclusion, our study successfully demonstrated the positive impact of melatonin
treatment on the growth parameters of Brassica oleracea L., particularly in sprouts. The
dose-dependent relationship observed, especially at M100, led to significant increases in
the weight, hypocotyl length, and cotyledon width. However, it is crucial to note that these
effects varied across the different growth stages and genotypes. While our findings support
the enhancement of growth through melatonin treatment, the dose-dependent reduction
in the glucosinolate levels raises considerations for its potential impact on the antioxidant
properties of these crops. This suggests a nuanced relationship between melatonin, growth,
and the glucosinolate content. In terms of recommendations, our study underscores the
need for precise dosage considerations in practical applications. While melatonin may be
beneficial for promoting growth, its potential trade-off with glucosinolate levels should be
carefully evaluated. Future research should focus on optimizing the melatonin application
for specific growth stages and cultivars, taking into account both growth promotion and
the desired antioxidant properties. These insights provide valuable agronomic indications
for the strategic use of melatonin in Brassica cultivation, emphasizing the importance of
balancing growth optimization and nutritional attributes.
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