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ABSTRACT

The advent of Artificial Intelligence (AI) in healthcare has marked

a new era of medical diagnostics and treatment. Particularly in the

field of medical imaging, Deep Learning (DL), a subset of AI, has

demonstrated unprecedented success. Complex neural network archi-

tectures have been developed, capable of detecting, classifying, and

segmenting diseases from medical images with remarkable accuracy,

often rivaling or surpassing human experts. However, the effective-

ness of deep learning is contingent upon access to vast, diverse, and

high-quality datasets, the acquisition of which is often hindered by pri-

vacy concerns, data sharing restrictions, and the inherent variability

in medical data across different institutions.

Federated Learning (FL), an innovative machine learning

paradigm, offers a compelling solution to these challenges. FL en-

ables the training of AI models across multiple decentralized devices

or servers holding local data samples, without the need to exchange

the data itself. This approach not only preserves data privacy but

also allows for the utilization of diverse datasets from different insti-

tutions, thereby enhancing the robustness and generalizability of the
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AI models.

In addition to the core principles of FL, the use of generative mod-

els, such as Generative Adversarial Networks (GANs), has emerged

as a powerful tool for maintaining privacy in the FL scenario. These

models can generate synthetic data that mimic the statistical prop-

erties of the original data, allowing for the training of robust models

without exposing sensitive patient information.

This thesis explores the transition from the classic centralized deep

learning approach to federated learning in medical imaging, with a

specific focus on the use of generative models for privacy preservation.

We delve into the technical aspects of implementing FL and generative

models, discuss the challenges and potential solutions, and present

case studies where these methods have been successfully applied.

By investigating the shift from deep learning to federated learning

and the role of generative models, this research aims to contribute to

the ongoing efforts to integrate AI into healthcare more effectively,

responsibly, and inclusively. The advent of federated learning and

generative models marks a new era in medical imaging analysis, paving

the way for a future of effective, collaborative and privacy-preserving

healthcare.
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Part I

INTRODUCTION

At the beginning of this journey, it is essential to establish a clear

context for upcoming exploration. The initial chapters are critical in

setting this context. Chapter 1 reveals the inspirations behind our

investigation and outlines the specific goals we seek to achieve. Next,

Chapter 2 presents the key concepts and state-of-the-art approaches

that have shaped the field. This chapter not only provides a compre-

hensive background, but also highlights the key works and methodolo-

gies that will be used in our thesis. Together, these sections ensure a

comprehensive introduction to the research narration and the central

role of our contributions.
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CHAPTER

ONE

MOTIVATIONS AND OBJECTIVES

In clinical practice, huge volumes of data are routinely produced, span-

ning a myriad of formats such as images (MRI, CT scans, sonography,

radiography), time series data (like EEG, EMG, ECG), audio (speech,

Doppler sounds), and text documents (structured and unstructured re-

ports, annotations, and comments). Comprehensive digitalization of

medical data has paved the way for extensive processing and training

of artificial intelligence (AI) systems, aiming to assist in various tasks

within clinical practice. However, despite AI’s inception in the 1950s,

it’s only in the past two decades that digital medical data has become

widespread.

The ”AI-winter” from the 1960s to the 1980s, marked by a lack

of data and computational power, saw AI facing widespread criticism,

leading to a decline in its research and development. In particular, the

medical community was reluctant to adopt these new technological

methods. The reliance on technology for patient care and healthcare

3



4 Chapter 1. Motivations and objectives

optimization was viewed with skepticism.

However, the landscape has evolved radically. With advancements

in data processing capabilities, deep learning has found its way in

clinical medicine: it is now pivotal in generating diagnoses through

medical imaging and signal analysis, planning treatments via chatbots

and questionnaires, and even assisting in surgeries with AI-guided

robotic systems.

As we delve into the core of this thesis, the initial focus is on

traditional centralized approaches in medical imaging. We specifi-

cally explore and propose solutions for COVID-19 assessment from

CT scans, pancreas segmentation, and pancreatic cyst classification.

These centralized methodologies, while effective, often grapple with

issues related to generalization, scalability and data privacy.

The dissertation then shifts to Federated Learning, a paradigm

that attempts to address the limitations of centralized systems. Here,

the emphasis is on the innovative use of generative models that offer

data-driven approaches for federated learning. We finally conclude this

dissertation with the introduction of a new methodology: by combin-

ing experience replay from continual learning with federated learning

principles and by enforcing privacy-preserving capabilities to GAN,

we present a distributed federated learning approach that achieves

remarkable results in real-world medical scenarios.

The motivation behind this exploration is to harness the transfor-

mative potential of AI in addressing the pressing challenges of medical

imaging, offering solutions that are not only effective but also prioritize

the sanctity of patient data.

The advantages of integrating AI into medicine are multiple: in-

deed, AI can play a pivotal role in helping clinicians, especially those
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in the early stages of their careers, and by providing decision support,

reducing the likelihood of oversight and enhancing overall quality of

care.

As we navigate through the chapters, this journey will not only

highlight the challenges faced in this domain but also present ground-

breaking solutions that leverage the myriad benefits of AI in enhancing

medical practice.
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CHAPTER

TWO

BACKGROUND

In this chapter, we will provide an introduction to the key concepts

and state-of-the-art approaches that form the foundation of this the-

sis. Each concept introduced here will be explored in greater depth in

the subsequent chapters, ensuring that the reader has a comprehensive

understanding of the specifics and nuances of our work. This founda-

tional knowledge will serve as a roadmap, guiding the reader through

the intricate details and methodologies presented in each chapter.

2.1 Machine Learning in Healthcare

Machine learning, specifically deep learning, has been instrumental in

the evolution of medical imaging analysis. The application of these

techniques has significantly improved the detection, classification, and

segmentation of diseases from medical images [162].

Segmentation and classification stand as pivotal processes in the

7



8 Chapter 2. Background

medical imaging analysis domain. In segmentation, each pixel within

an image is labeled. Pixels belonging to the same type of object receive

identical labels, as seen in semantic segmentation [118]. Conversely,

in instance segmentation [55], distinct objects of the same category

are identified as separate entities. The primary objective of image

segmentation through deep learning is to equip machines with a more

human-centric perception and understanding of images. Classification,

in contrast, is about labeling an entire image or a specific segment

based on its content. Numerous deep learning architectures, notably

Convolutional Neural Networks (CNNs) [92], have been extensively

employed for both these segmentation and classification tasks [2, 111].

CNN-based models have been crucial in the field of medical imag-

ing research. However, a new type of architecture, known as the Trans-

former, has recently made a significant impact. Transformer models,

introduced by [170], have shown exceptional performance across vari-

ous artificial intelligence domains, including natural language process-

ing [169], audio processing [42], and more recently, computer vision

tasks [85]. Transformers are capable of effectively learning arbitrary

functions. They are composed of two primary operational blocks: an

attention-based block that models relationships between elements, and

a multi-layer perceptron (MLP) that models relationships within ele-

ments. A sequence of attention and MLP blocks, combined with resid-

ual connections, has proven to generalize well across multiple tasks.

Transformer-based architectures offer several key advantages in

medical imaging analysis. They can capture long-range dependen-

cies, provide an inherent method for explaining model decisions, and

can achieve comparable performance to traditional deep learning with

simpler models.
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Vision Transformers (ViTs) [43] have become increasingly popu-

lar. Following this, numerous ViT-based approaches have been devel-

oped and continuously adapted for medical practice. Many of these

approaches, such as TransUNet [28] and TransFuse [191], focus on

image segmentation by integrating transformer modules with tradi-

tional deep learning ones. Others, like ViT-V-Net [29], explore the

use of ViTs for volumetric image registration using a hybrid ConvNet-

Transformer architecture. Some models use transformers for detec-

tion [44] or classification [36] tasks.

Despite the significant advancements in these areas, several chal-

lenges persist in medical imaging analysis. One of the primary issues

is the lack of large, diverse, and high-quality datasets. This problem is

further exacerbated by distribution shifts, where the data distribution

changes between the training and testing phases, leading to a decrease

in model performance.

Another challenge is the evaluation of model performance; several

metrics are commonly used to evaluate the performance of segmen-

tation and classification models. One of the most straightforward

metrics is accuracy, which provides a general measure of how often

the model’s predictions align with the actual outcomes.

However, in many scenarios, like the medical one, the stakes are

high, accuracy alone might not provide a comprehensive view of the

model’s performance and the consequences of incorrect predictions can

be significant. Therefore, certain metrics become especially important

to ensure that models are both sensitive to actual cases and specific in

their predictions, especially when dealing with imbalanced datasets.

Some metrics particularly crucial in medical contexts are the following:



10 Chapter 2. Background

• Sensitivity (True Positive Rate): measures the proportion of

actual positive cases that the model correctly identifies. In med-

ical scenarios, this metric is vital because it indicates how well

the model detects true cases of a disease or condition. High

sensitivity is crucial for conditions where missing a positive case

(false negative) could have severe consequences, such as failing

to diagnose a malignant tumor.

• Precision: evaluates how many of the positive identifications

made by the model are actually correct. In medical tests, high

precision ensures that patients aren’t falsely diagnosed with a

condition they don’t have, which could lead to unnecessary

stress, further testing, or even unwarranted treatment.

• Area Under the Receiver Operating Characteristic Curve

(AUC-ROC): Given that medical datasets can sometimes be

imbalanced (e.g., few positive cases of a rare disease), the AUC-

ROC becomes essential. It provides a comprehensive view of

the model’s performance across all possible classification thresh-

olds, ensuring that the model can distinguish between positive

and negative cases effectively. An AUC of 1 indicates perfect

classification, while an AUC of 0.5 suggests that the model’s

performance is no better than random guessing.

• F-measure (F1-score): The F1-score is the harmonic mean of

precision and recall (sensitivity). In medical contexts, where

both false positives and false negatives can have significant im-

plications, the F1-score provides a balanced metric that consid-

ers both types of errors.
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While these metrics are crucial, it’s essential to consider the specific

medical scenario when evaluating a model. For instance: in a prelim-

inary screening test for a severe disease, a high sensitivity might be

prioritized to ensure no positive cases are missed, even if it means

some false positives that can be ruled out with further testing. In a

confirmatory diagnostic test, precision might be more critical to en-

sure that only true positive cases are identified to avoid unnecessary

treatments. In all cases, the choice of metrics should align with the

clinical objectives and the potential consequences of model errors.

In summary, while building and training models is a complex task,

evaluating their performance is equally crucial. Leveraging a com-

bination of these metrics ensures a more holistic understanding of a

model’s strengths and areas of improvement.

In the following chapters, we will delve deeper into the techniques

used for segmentation and classification in medical imaging analysis,

discuss the challenges in more detail, and explore potential solutions.

2.2 Interpretabilty in Deep Models

The complexity of deep networks often makes them difficult to under-

stand, which hinders their broader use in critical decision-making fields

like healthcare. It’s crucial to make these models more transparent so

users can grasp the reasoning behind their decisions. Explainable AI

(XAI) offers insights into how these models work. In fact, regula-

tions like the European Union’s General Data Protection Regulation

(GDPR, Article 15) emphasize the importance of understanding how

medical decisions are derived.
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Many AI experts are turning to XAI to demystify their algorithms.

XAI techniques can be grouped based on whether they’re built into

the model or applied afterward, if they’re specific to a certain model

or can be used universally, and if they provide a broad or narrow

explanation.

Methods built directly into the model, i.e. model-based methods,

aim to make the model inherently explainable. But, these aren’t suit-

able for large-scale models with numerous parameters. On the other

hand, posthoc techniques first train a model and then analyze its fea-

tures to explain its behavior. For instance, they might visually high-

light which parts of an input image were most influential in a decision.

Some XAI methods, focus solely on the relationship between a

model’s input and output, without needing details about the model

itself; these are also considered post-hoc techniques. Others, instead,

are designed specifically for certain types of models, and have limited

versatility.

These techniques can be used to explain a model’s reasoning either

broadly or in specific cases. For instance, in medicine, they might

pinpoint which parts of an MRI were crucial in identifying a tumor.

In medical imaging, XAI has been used to offer visual or writ-

ten explanations for a model’s decisions. Visual methods, like Grad-

CAM [152], highlight areas of an image that influenced a decision,

while textual explanations, like image captioning, describe what hap-

pens in an image. Some approaches even combine both visual and

textual explanations [94].

However, not all XAI methods are universally lauded. Some post-

hoc techniques have been criticized for not offering deep enough in-

sights into the inner workings of models [147]. Some experts recom-
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mend built-in explainability methods over post-hoc ones.

Transformers, naturally offer more transparency due to their at-

tention mechanisms, which can be visualized to elucidate the model’s

reasoning process [3, 23]. By seamlessly blending performance with

explainability, Transformers obviate the need for major modifications,

effectively bridging the advantages of both built-in and post-hoc XAI

approaches.

2.3 Federated Learning

Federated Learning (FL) [113] is a groundbreaking machine learning

paradigm that enables multiple entities to collaboratively develop a

robust machine learning model without sharing raw data. This ap-

proach addresses crucial issues such as data privacy, data security,

data access privileges, and access to heterogeneous data.

FL can be broadly categorized into two types: centralized and de-

centralized. In centralized FL, a central server is responsible for aggre-

gating model updates from all participating devices and distributing

the updated global model back to the devices [98]. In contrast, decen-

tralized FL allows devices to exchange model updates directly with

each other without relying on a central server.

One of the most popular algorithms used in FL is Federated Av-

eraging (FedAvg) [113], which averages the model updates from all

devices to update the global model. However, FedAvg and similar

algorithms can face challenges when dealing with non-independently

and identically distributed (non-i.i.d.) data, where the data distri-

bution varies across devices. Several strategies have been proposed
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to mitigate the negative effects caused by non-i.i.d. datasets. For

instance, FedProx [98] addresses this limitation by adding a penalty

term to the loss, driving the local models to a shared optimum. On

the other hand, FedCurv [157] incorporates curvature information to

improve the aggregation of local model updates. FedMA [171] builds

a shared global model in a layer-wise manner by matching and averag-

ing hidden elements with similar feature extraction signatures. Mean-

while, FedBN [100] keeps batch normalization layers private, while

other model parameters are aggregated by the central node.

FL has found applications in various domains, including health-

care [183, 9], Internet of Things (IoT) [84], and edge systems [173].

Despite its advantages, FL also presents several challenges. One

of the primary challenges is system efficiency, which pertains to the

computational and communication overheads associated with training

models across distributed nodes [98]. Data heterogeneity and sta-

tistical heterogeneity arise due to the diverse nature of data sources

and the varying data distributions across different nodes, respectively.

System heterogeneity, on the other hand, refers to the differences

in computational capabilities and resources of participating devices

or nodes. Data imbalance is another challenge where some nodes

might have abundant data while others have scarce data. Resource

allocation pertains to the optimal distribution of computational re-

sources for efficient training. Lastly, privacy concerns revolve around

ensuring that the shared model updates do not leak sensitive infor-

mation. To address these challenges, various solutions have been pro-

posed. Blockchain technology, for instance, has been introduced to

secure data sharing and enhance the training process in FL [107].

For handling data heterogeneity and ensuring privacy, methods based
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on secret sharing and generative adversarial networks have been sug-

gested [196]. Additionally, to tackle the challenges of data imbalance

and resource allocation, advanced optimization techniques and adap-

tive algorithms have been developed [41].

In terms of communication efficiency, FL algorithms have been

evaluated and compared, highlighting the need for solutions that ad-

dress both communication and privacy perspectives. Furthermore,

new efficient FL algorithms have been proposed to optimize client and

cost selections, addressing the major problems of communication, sys-

tem heterogeneity, and data heterogeneity faced by FL [108, 104].

Federated learning can be implemented using either a centralized

or decentralized approach. In the centralized approach [113, 98, 100],

a central server coordinates the learning process, receiving model up-

dates from each device and sending back the updated global model.

This approach is simpler and easier to manage, but it can be a single

point of failure and may not scale well to large networks [101].

In contrast, the decentralized approach [90, 164] involves peer-to-

peer communication between devices, without the need for a central

server. This approach can be more resilient and scalable, but it also

requires more sophisticated coordination mechanisms to ensure con-

sistent learning.

2.4 Federated Learning in Healthcare

Federated learning (FL) has emerged as a transformative approach

in the domain of healthcare, addressing the intricate challenges as-

sociated with the management and utilization of medical data. The
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essence of FL lies in its commitment to safeguarding patient privacy.

Unlike traditional centralized learning methods, FL ensures that sensi-

tive health data remains localized, never leaving its original location.

This decentralized approach is paramount in the healthcare sector,

where data spans a spectrum from electronic health records and diag-

nostic images to real-time measurements from wearable devices [16].

One of the standout features of healthcare data is its inherent het-

erogeneity. Given the vast diversity in patient demographics, health

conditions, and data collection methodologies, healthcare often grap-

ples with non-i.i.d. scenarios. Here, data distribution can vary dra-

matically across different devices or institutions. FL’s architecture is

uniquely suited to navigate this heterogeneity, fostering models that

are not only robust but also exhibit enhanced generalizability across

a myriad of patient profiles and conditions [154].

In the fields of medical imaging, for example, Sheller et al. [154]

utilized FL for brain tumor segmentation in MRI scans across multiple

institutions, highlighting the value of diverse data for model general-

ization. Similarly, Li et al. [98] demonstrated the efficacy of FL in chest

X-ray classification, achieving top-tier performance across decentral-

ized datasets. Beyond imaging, Brisimi et al [16]. showcased FL’s

potential in predicting patient hospitalizations using electronic health

records, achieving enhanced accuracy without direct data sharing.

However, the integration of FL into healthcare is not without its

challenges. The technical intricacies of FL, combined with the diverse

nature of healthcare data and the ever-present need for stringent pri-

vacy measures, necessitate continuous research and innovation. Ad-

dressing these challenges requires a multidisciplinary approach, com-

bining expertise from medical professionals, data scientists, and pri-
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vacy experts. As solutions to these challenges evolve, FL stands poised

to redefine healthcare, offering a harmonious blend of data-driven in-

sights and uncompromised patient privacy. Its potential to revolution-

ize healthcare practices, from diagnosis to treatment, positions FL as

a cornerstone of future medical advancements.

2.5 Privacy in Federated Learning

The significance of privacy in FL is crucial, especially in sectors like

healthcare or finance where data sensitivity is of the highest impor-

tance [97, 149].

To ensure that privacy is maintained, various techniques and pro-

tocols are employed. Differential privacy [1, 56, 93], for instance, in-

troduces noise to the data or results, making it challenging to reverse-

engineer individual data points. Homomorphic encryption is another

technique that allows computations on encrypted data without the

need for decryption, ensuring data remains secure during process-

ing [188]. Secure aggregation protocols are also in place to ensure

that data shared during the model aggregation phase remains pri-

vate [47, 75].

However, ensuring privacy is not without its challenges. Some

studies have highlighted potential vulnerabilities in FL [121], empha-

sizing the need for continuous research and improvement in privacy-

preserving mechanisms. One of the emerging concerns is the ability of

adversaries to reconstruct the original input data from shared model

weights or gradients [51, 197]. Such reconstruction attacks can com-

promise the very essence of privacy that FL aims to uphold.
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In conclusion, as the digital landscape becomes increasingly data-

driven, the emphasis on privacy in frameworks like FL underscores the

evolving priorities in the fields of artificial intelligence and machine

learning.



Part II

CENTRALIZED DEEP LEARNING

METHODS FOR MEDICAL IMAGE

ANALYSIS

In the intricate scenario of medical diagnostics, the fusion of artificial

intelligence (AI) with medical imaging has emerged as a source of inno-

vation, heralding a new era of enhanced precision and patient-centric

care. Central to this transformative journey are the two pillars of clas-

sification and segmentation, each playing a pivotal role in shaping the

future of medical interventions.

Classification, beyond its foundational role of categorizing medical

images into diagnostic groups, has profound implications for patients’

perspectives. By accurately identifying and categorizing pathologies,

from the early stages of diseases like cancer to the nuanced variations of

conditions like pneumonia, classification ensures that patients receive

timely and appropriate care. In an era where early detection can sig-

nificantly alter disease outcomes, the importance of precise classifica-

tion cannot be overstated. It’s not merely about categorizing images;
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it’s about outlining the way of patient care, ensuring interventions are

timely, relevant, and effective.

Segmentation, while technical in its delineation of regions of in-

terest, is crucial in its applications. Accurate segmentation forms the

backbone of many therapeutic procedures. In radiation therapy, for in-

stance, precise segmentation ensures that radiation is delivered solely

to the tumor, sparing healthy tissue and mitigating side effects. In sur-

gical planning, understanding the exact boundaries and relationships

of anatomical structures can mean the difference between a success-

ful surgery and post-operative complications. Through segmentation,

we’re not just viewing images; we’re visualizing the roadmap for in-

terventions, ensuring they’re both precise and safe.

In this dynamic landscape, the following works represent efforts to

harness the potential of AI-driven medical image analysis techniques.

Each proposed work faces unique challenges as it seeks to provide

innovative solutions.

The Chapter 3 delves into the pressing global challenge of the

COVID-19 pandemic. In the face of the COVID-19 pandemic, rapid

and accurate diagnosis became the pivot of effective patient care. This

research not only introduces a state-of-the-art AI-powered pipeline for

detecting COVID-19 from CT scans but emphasizes the crucial as-

pect of explainability. By bridging the gap between AI predictions

and clinical understanding, it ensures that radiologists are not just

passive recipients of AI decisions but active participants in a collabo-

rative diagnostic process. Chapter 4 ventures into the intricate realm

of pancreatic pathologies. IPMN, a precursor to one of the most lethal

cancers, requires nuanced and precise identification. This work show-

cases the potential of neural transformers in medical diagnostics, high-
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lighting their capability to capture complex patterns and offer accurate

classifications, which can significantly influence therapeutic decisions.

Lastly, Chapter 5 delves into the challenges of accurate organ seg-

mentation, a foundational step in many diagnostic and therapeutic

procedures. By focusing on the hierarchical learning of 3D features,

this work emphasizes the significance of understanding spatial rela-

tionships in three-dimensional medical images, leading to enhanced

precision in pancreas segmentation.

Together, these works not only provide a comprehensive explo-

ration of the current state and future potential of centralized deep

learning methods in medical image analysis but also highlight the con-

tinuous evolution of methodologies, ensuring that the medical commu-

nity is equipped with the best tools for patient care.
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CHAPTER

THREE

AN EXPLAINABLE AI SYSTEM FOR

AUTOMATED COVID-19 ASSESSMENT AND

LESION CATEGORIZATION FROM CT-SCANS

We begin our journey with an emergency that has impacted the entire

global population: the COVID-19 pandemic. Recognizing the critical

need for efficient diagnosis, we venture into addressing two funda-

mental tasks in medical image analysis: lung segmentation and the

subsequent categorization of lesions within it.We will delve into the

intricacies of these challenges and present a comprehensive pipeline

that excels at initially extracting the lung parenchyma and lobes, en-

abling the accurate detection and categorization of COVID-19 lesions

within CT scans.
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3.1 Motivation

At the end of 2019 in Wuhan (China) several cases of an atypical

pneumonia, particularly resistant to the traditional pharmacological

treatments, were observed. In early 2020, the COVID-19 virus [198]

has been identified as the responsible pathogen for the unusual pneu-

monia. From that time, COVID-19 has spread all around the world

hitting, to date about 155 million of people (with about 3.5M deaths),

stressing significantly healthcare systems in several countries. Since

the beginning, it has been noted that 20% of infected subjects ap-

pear to progress to severe disease, including pneumonia and respira-

tory failure and in around 2% of cases death [129]. Currently, the

standard diagnosis of COVID-19 is de facto based on a biomolecular

test through Real-Time Polimerase Chain Reaction (RT-PCR) test

[67, 126]. However, although widely used, this biomolecular method

is time-consuming requiring up to several hours for being processed.

Recent studies have outlined the effectiveness of radiology imaging

through chest X-ray and mainly Computed Tomography (CT) given

the pulmonary involvement in subjects affected by the infection [105,

30]. Given the extension of the infection and the number of cases that

daily emerge worldwide and that call for fast, robust and medically

sustainable diagnosis, CT scan appears to be suitable for a robust-scale

screening, given the higher resolution w.r.t. X-Ray. In this scenario,

artificial intelligence may play a fundamental role to make the whole

diagnosis process automatic, reducing, at the same time, the efforts

required by radiologists for visual inspection [148].

In this paper, thus, we present an AI-based system to achieve

both COVID-19 identification and lesion categorization (ground glass,
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crazy paving and consolidation) that are instrumental to evaluate lung

damages and the prognosis assessment. Our method relies only on ra-

diological image data avoiding the use of additional clinical data in or-

der to create AI models that are useful for large-scale and fast screen-

ing with all the subsequent benefits for a favorable outcome. More

specifically, we propose an innovative automated pipeline consisting

of 1) lung/lobe segmentation, 2) COVID-19 identification and inter-

pretation and 3) lesion categorization. We tested the AI-empowered

software pipeline on multiple CT scans, both publicly released and col-

lected at the Spallanzani Institute in Italy, and showed that: 1) our

segmentation networks is able to effectively extract lung parenchyma

and lobes from CT scans, outperforming state of the art models; 2)

the COVID-19 identification module yields better accuracy (as well

as specificity and sensitivity) than expert radiologists. Furthermore,

when attempting to interpret the decisions made by the proposed AI

model, we found that it learned automatically, and without any su-

pervision, the CT scan features corresponding to the three most com-

mon lesions spotted in the COVID-19 pneumonia, i.e., consolidation,

ground glass and crazy paving, demonstrating its reliability in sup-

porting the diagnosis by using only radiological images. Finally, we

integrate the tested AI models into a user-friendly GUI to support fur-

ther AI explainability for radiologists. The GUI processes entire CT

scans and reports if the patient is likely to be affected by COVID-19,

showing, at the same time, the scan slices that supported the decision.

To sum up, the main contributions of the work are the following:

• We propose a novel lung-lobe segmentation network outperform-

ing state-of-the-art models;
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• We employ the segmentation network to drive a classification

network that first identifies CT scans of COVID-19 patients,

and, afterwards, automatically categorizes specific lesions;

• We then provide interpretation of the decisions made by the em-

ployed models and discover that, indeed, the proposed approach

focuses on specific COVID-19 lesions for distinguishing whether

a CT scan is related to positive patients or not;

• We finally integrate the whole AI pipeline into a web platform to

ease use for radiologists, supporting them in their investigation

on COVID-19 disease. To the best of our knowledge, this is the

first publicly available platform that offers COVID-19 diagnosis

services based on CT scans with explainability capabilities. The

free availability to the general public for such an important task,

while the pandemic is still in full effect, is, in our opinion, an

invaluable aid to the medical community.

3.2 Related Work

The COVID-19 epidemic caught the scientific community unprepared

and in response a high volume of research has been dedicated to the re-

lated compelling issues to address, at all possible levels. In particular,

since the beginning of the epidemic, AI models have been employed

for disease spread monitoring [8, 103, 193], for disease progression [13]

and prognosis [102], for predicting mental health ailments inflicted

upon healthcare workers [35] and for drug repurposing [119, 82] and

discovery [139].
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However, the lion’s share in employing AI models for the fight

against COVID-19 belongs to the processing of X-rays and CT scans

with the purpose of detecting the presence of COVID-19 or not. In

fact, recent scientific literature has demonstrated the high discrimina-

tive and predictive capability of deep learning methods in the analysis

of COVID-19 related radiological images[18, 66]. The key radiological

techniques for COVID-19 induced pneumonia diagnosis and progres-

sion estimation are based on the analysis of CT and X-ray images of

the chest, on which deep learning methodologies have been widely used

with good results for segmentation, predictive analysis, and discrimi-

nation of patterns [122, 124, 115]. If, on one hand, X-Ray represents a

cheaper and most effective solution for large scale screening of COVID-

19 disease, on the other hand, its low resolution has led AI models to

achieve lower accuracy compared to those obtained with CT data.

For the above reasons, CT scan has become the gold standard for

investigation on lung diseases. In particular, deep learning, mainly in

the form of Deep Convolutional Neural Networks (DCNN), has been

largely applied to lung disease analysis from CT scans images, for

evaluating progression in response to specific treatment (for instance

immunotherapy, chemotherapy, radiotherapy) [153, 26], but also for

interstitial lung pattern analysis [14, 48] and on segmentation and

discrimination of lung pleural tissues and lymph-nodes [120, 156]. This

latter aspect is particularly relevant for COVID-19 features and makes

artificial intelligence an extremely powerful tool for supporting early

diagnosis of COVID-19 and disease progression quantification. As

a consequence, several recent works have reported using AI models

for automated categorization of CT scans [115] and also on COVID-

19 [96, 155, 12] but without being able to distinguish between the
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various types of COVID-19 lesions.

3.3 Explainable AI for COVID-19 data

understanding

The proposed AI system aims at 1) extracting lung and lobes from

chest CT data, 2) categorizing CT scans as either COVID-19 positive

or COVID-19 negative; 3) identifying and localizing typical COVID-

19 lung lesions (consolidation, crazy paving and ground glass); and 4)

explaining eventually what CT slices it based its own decisions.

3.3.1 AI Model for Lung Segmentation

Our lung-lobe segmentation model is based on the Tiramisu net-

work [72], a fully-convolutional DenseNet [65] in a U-Net architec-

ture [142]. The model consists in two data paths: the downsampling

one, that aims at extracting features and the upsampling one that

aims at generating the output images (masks). Skip connections (i.e.,

connections starting from a preceding layer in the network’s pipeline

to another one found later bypassing intermediate layers) aim at prop-

agating high-resolution details by sharing feature maps between the

two paths.

In this work, our segmentation model follows the Tiramisu archi-

tecture, but with two main differences:

• Instead of processing each single scan individually, convolutional

LSTMs [181] are employed at the network’s bottleneck layer to

exploit the spatial axial correlation of consecutive scan slices.
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Figure 3.1: The proposed segmentation architecture, consisting of a

downsampling path (top) and an upsampling path (bottom), intercon-

nected by skip connections and by the bottleneck layer.

• In the downsampling and upsampling paths, we add residual

squeeze-and-excitation layers [64], in order to emphasize relevant

features and improve the representational power of the model.

Before discussing the properties and advantages of the above mod-

ifications, we first introduce the overall architecture, shown in Fig. 3.1.

The input to the model is a sequence of 3 consecutive slices – suit-

ably resized to 224×224 – of a CT scan, which are processed individ-

ually and combined through a convolutional LSTM layer. Each slice

is initially processed with a standard convolutional layer to expand

the feature dimensions. The resulting feature maps then go through

the downsampling path of the model (the encoder) consisting of five

sequences of dense blocks, residual squeeze-and-excitation layers and
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transition-down layers based on max-pooling. In the encoder, the fea-

ture maps at the output of each residual squeeze-and-excitation layer

are concatenated with the input features of the preceding dense block,

in order to encourage feature reuse and improve their generalizability.

At the end of the downsampling path, the bottleneck of the model

consists of a dense block followed by a convolutional LSTM. The fol-

lowing upsampling path is symmetric to the downsampling one, but

it features: 1) skip connections from the downsampling path for con-

catenating feature maps at the corresponding layers of the upsampling

path; 2) transition-up layers implemented through transposed convo-

lutions. Finally, a convolutional layer provides a 6-channel segmenta-

tion map, representing, respectively, the log-likelihoods of the lobes (5

channels, one for each lobe) and non-lung (1 channel) pixels.

In the following, we review the novel characteristics of the

proposed architecture.

Residual squeeze-and-excitation layers. Explicitly modeling

interdependencies between feature channels has demonstrated to

enhance performance of deep architectures; squeeze-and-excitation

layers [64] instead aim to select informative features and to suppress

the less useful ones. In particular, a set of input features of size

C×H×W is squeezed through average-pooling to a C×1×1 vector,

representing global feature statistics. The “excitation” operator is a

fully-connected non-linear layer that translates the squeezed vector

into channel-specific weights that are applied to the corresponding

input feature maps.

Convolutional LSTM. We adopt a recurrent architecture to pro-
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Figure 3.2: Example of lung and lobes segmentation.

cess the output of the bottleneck layer, in order to exploit the spatial

axial correlation between subsequent slices and enhance the final seg-

mentation by integrating 3D information in the model. Convolutional

LSTMs [181] are commonly used to capture spatio-temporal correla-

tions in visual data (for example, in videos), by extending traditional

LSTMs using convolutions in both the input-to-state and the state-to-

state transitions. Employing recurrent convolutional layers allows the

model to take into account the context of the currently-processed slice,

while keeping the sequentiality and without the need to process the

entire set of slices in a single step through channel-wise concatenation,

which increases feature sizes and loses information on axial distance.

Fig. 3.2 shows an example of automated lung and lobe segmenta-

tion from a CT scan by employing the proposed segmentation network.

The proposed segmentation network is first executed on the whole CT

scan for segmenting only lung (and lobes); the segmented CT scan is

then passed to the downstream classification modules for COVID-19

identification and lesion categorization.
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3.3.2 Automated COVID-19 Diagnosis: CT clas-

sification

Figure 3.3: Overview of the COVID-19 detection approach for

CT scan classification as either COVID-19 positive or negative.

After parenchima lung segmentation (through the segmentation

model presented in Sect. 3.3.1) a deep classification model analyzes

slice by slice each segmented CT scan, and decides whether a single

slice contains evidence of the COVID-19 disease. Note that slice-based

COVID-19 classification is only the initial step towards the final pre-

diction, which takes into account all per-slice predictions, and assigns

the “positive” label in presence of a certain number of slices (10% of

the total) that the model has identified as COVID-19 positive. Hence,

COVID-19 assessment is actually carried out per patient, by combin-
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ing per-slice predictions.

At this stage, the system does not carry out any identification

and localization of COVID-19 lesions, but it just identifies all slices

where patterns of interest may be found and according to them, makes

a guess on the presence or not of COVID-19 induced infection. An

overview of this model is shown in Fig. 3.3: first the segmentation

network, described in the previous section, identifies lung areas from

CT scan, then a deep classifier (a DenseNet model in the 201 configu-

ration [65]) processes the segmented lung areas to identify if the slice

shows signs of COVID-19 virus.

Once the COVID-19 identification model is trained, we attempt

to understand what features it employs to discriminate between pos-

itive and negative cases. Thus, to interpret the decisions made by

the trained model we compute class-discriminative localization maps

that attempt to provide visual explanations of the most significant

input features for each class. To accomplish this we employ Grad-

CAM [151] combined with VarGrad [5]. More specifically, GradCAM

is a technique to produce such interpretability maps by investigating

output gradient with respect to feature map activations. More specif-

ically, GradCAM generates class-discriminative localization map for

any class c by first computing the gradient of the score for class c, sc,

w.r.t feature activation maps Ak of a given convolutional layer. Such

gradients are then global-average-pooled to obtain the activation im-

portance weights w, i.e.:

wc
k =

∑︂
i

∑︂
j

∂yc

∂Ak
ij

(3.1)

Afterwards, the saliency map Sc, that provides an overview of the
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Figure 3.4: Overview of COVID-19 lesion categorization ap-

proach.

activation importance for the class c, is computed through a weighted

combination of activation maps, i.e.:

Sc = ReLU

(︄∑︂
k

wc
kA

k

)︄
(3.2)

VarGrad is a technique used in combination to GradGAM and consists

in performing multiple activation map estimates by adding, each time,

Gaussian noise to the input data and then aggregating the estimates

by computing the variance of the set.
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3.3.3 COVID-19 lesion identification and catego-

rization

An additional deep network activates only if the previous system iden-

tifies a COVID-19 positive CT scan. In that case, it works on the sub-

set of slices identified as COVID-19 positives by the first AI system

with the goal to localize and identify specific lesions (consolidation,

crazy paving and ground glass). More specifically, the lesion identi-

fication system works on segmented lobes to seek COVID-19 specific

patterns. The subsystem for lesion categorization employs the knowl-

edge already learned by the COVID-19 detection module (shown in

Fig. 3.3) and refines it for specific lesion categorization. An overview

of the whole system is given in Fig. 3.4.

3.3.4 A Web-based Interface for Explaining AI

decisions to Radiologists

In order to explain to radiologists, the decisions made by a “black-

box” AI system, we integrated the inference pipeline for COVID-19

detection into a web-based application. The application was designed

to streamline the whole inference process with just a few clicks and

visualize the results with a variable grade of detail (Fig. 3.5). If the

radiologists desire to see which CT slices were classified as positive or

negative, they can click on “Show slices” where a detailed list of slices

and their categorization is showed (Fig. 3.6).

Because the models may not achieve perfect accuracy, a single

slice inspection screen is provided, where radiologists can inspect more

closely the result of the classification. It also features a restricted set
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Figure 3.5: The main page of the AI-empowered web GUI for ex-

plainable AI. The user is presented with a list of the CT scan classifi-

cations reporting the models’ prediction.

Figure 3.6: The summarized classification result showing the CT

slices that the neural network classified as positive or negative.
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Figure 3.7: The slice inspection screen. In this screen the user can

inspect each single slice and the AI models’ decisions.

of image manipulation tools (move, contrast, zoom) for aiding the user

to make a correct diagnosis (Fig. 3.7).

The AI-empowered web system integrates also a relevance feedback

mechanism where radiologists can correct the predicted outputs, and

the AI module exploits such a feedback to improve its future assess-

ments. Indeed, both at the CT scan level and at the CT slice level,

radiologists can correct models’ prediction. The AI methods will then

use the correct labels to enhance their future assessments.
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3.4 Results and Discussion

3.4.1 Dataset and annotations

Data. Our dataset contains overall 166 CT scans: 72 of COVID-19

positive patients (positivity confirmed both by a molecular — reverse

transcriptase–polymerase chain reaction for SARS-coronavirus RNA

from nasopharyngeal aspirates — and an IgG or IgM antibody test)

and 94 of COVID-19 negative subjects (35 patients with interstitial

pneumonia but tested negative to COVID-19 and 59 controls).

CT scans were performed on a multi-detector row helical CT system

scanner 1 using 120 kV pp, 250 mA, pitch of 1.375, gantry rotation

time of 0,6 s and time of scan 5,7 s. The non-contrast scans were

reconstructed with slice thicknesses of 0.625 mm and spacing of 0.625

mm with high-resolution lung algorithm. The images obtained on

lung (window width, 1,000–1,500 H; level, –700 H) and mediastinal

(window width, 350 H; level, 35–40 H) settings were reviewed on a

picture archiving and communication system workstation2. For train-

ing the lung/lobe segmentation model we adopted a combination of

the LIDC [10], LTRC3 and [61] datasets, for a total of 300 CT scans.

Annotations. We perform both COVID-19 identification and lesion

categorization, thus the annotations are different according to the task.

For COVID-19 identification, ground truth consists of the results of

the molecular and an IgG/IgM antibody test. Among the set of 166

CT scans, we used 95 scans (36 positives and 59 negatives) for train-

1Bright Speed, General Electric Medical Systems, Milwaukee, WI
2Impax ver. 6.6.0.145, AGFA Gevaert SpA, Mortsel, Belgium
3https://ltrcpublic.com/
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ing, 9 scans for validation (5 positives and 4 negatives) and 62 scans

(31 positives and 31 negatives) for test. To compare the AI perfor-

mance to the human one, the test set of 62 CT scans was provided to

three expert radiologists for blind evaluation.

For lesion categorization, instead, CT scans of positive patients were

also annotated by three expert radiologists (through consensus) who

selected a subset of slices and annotated them with the type (Con-

solidation, Ground Glass and Crazy Paving) and the location (left-

/right/central and posterior/anterior) of the lesion. In total, about

2,400 slices were annotated with COVID-19 lesions and about 3,000

slices of negative patients with no lesion. Tab. 3.1 provides an overview

of all the CT scans and lesion annotations in our dataset.

As for lung segmentation, annotations on lung/lobe areas were done

manually by the same three expert radiologists who carried out lesion

categorization.

CT scans Annotated slices

Ground glass Crazy paving Consolidation Total

Positive 72 1,035 757 598 2,390

Negative 94 – – – 2,988

Table 3.1: CT Dataset for training and testing the deep models.

3.4.2 Training Procedure

COVID-19 Identification Model. The COVID-19 detection net-

work is a DenseNet201, which was used pretrained on the ImageNet

dataset [39]. The original classification layers in DenseNet201 were re-
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placed by a 2-output linear layer for the COVID-19 positive/negative

classification. Given the class imbalance in the training set, we used

the weighted binary cross-entropy (defined in 3.3) as training loss and

RT-PCR virology test as training/test labels. The weighted binary

cross-entropy loss for a sample classified as x with target label y is

then calculated as:

WBCE = −w [y · log x+ (1− y) · log(1− x)] (3.3)

where w is defined as the ratio of the number negative samples to

the total number of samples if the label is positive and vice versa. This

way the loss results higher when misclassifying a sample that belongs

to the less frequent class. It is important to highlight that splitting

refers to the entire CT scan and not to the single slices: we made sure

that full CT scans were not assigned to different splits to avoid any

bias in the performance analysis. This is to avoid the deep models

overfit the data by learning spurious information from each CT scan,

thus invalidating the training procedure, thus enforcing robustness to

the whole approach. Moreover, for the COVID-19 detection task, we

operate at the CT level by processing and categorizing each single

slice. To make a decision for the whole scan, we perform voting:

if 10% of total slices is marked as positive then the whole exam is

considered as a COVID-19 positive, otherwise as COVID-19 negative.

The choice of the voting threshold was selected according to the best

operating point in the ROC curve.

COVID-19 lesion categorization model. The lesion categoriza-

tion deep network is also a DenseNet201 model where classification

layers were replaced by a 4-output linear layer (ground glass, con-
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solidation, crazy paving, negative). The lesion categorization model

processes lobe segments (extracted by our segmentation model) with

the goal to identify specific lesions. Our dataset contains 2,488 an-

notated slices; in each slice multiple lesion annotations with relative

location (in lobes) are available. Thus, after segmenting lobes from

these images we obtained 5,264 lobe images. We did the same on

CT slices of negative patients (among the 2,950 available as shown

in Tab. 3.1) and selected 5,264 lobe images without lesions. Thus, in

total, the entire set consisted of 10,528 images. We also discarded the

images for which lobe segmentation produced small regions indicating

a failure in the segmentation process. We used a fixed test split con-

sisting of 195 images with consolidation, 354 with crazy paving, 314

with ground glass and 800 images with no lesion. The remaining im-

ages were split into training and validation sets with the ratio 80/20.

Given the class imbalance in the training set, we employed weighted

cross-entropy as training loss. The weighted cross-entropy loss for a

sample classified as x with target label y is calculated as:

WCE = −w
C∑︂

y · log(x) (3.4)

where C is the set of all classes. The weight w for each class c is

defined as:

wc =
N −Nc

N
(3.5)

where N is the total number of samples and Nc is the number of

samples that have label c.

Since the model is the same as the COVID identification network,

i.e., DenseNet201, we started from the network trained on the COVID-
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identification task and fine-tune it on the categorization task to limit

overfitting given the small scale of our dataset.

For both the detection network and the lesion categorization

network, we used the following hyperparameters: batch-size = 12,

learning rate = 1e-04, ADAM back-propagation optimizer with beta

values 0.9 and 0.999, eps = 1e-08 and weight decay = 0 and the

back-propagation method was used to update the models’ parameters

during training. Detection and categorization networks were trained

for 20 epochs. In both cases, performance are reported at the highest

validation accuracy.

Lung/lobe segmentation model. For lung/lobe segmentation, in-

put images were normalized to zero mean and unitary standard de-

viation, with statistics computed on the employed dataset. In all

the experiments for our segmentation model, input size was set to

224× 224, initial learning rate to 0.0001, weight decay to 0.0001 and

batch size to 2, with RMSProp as optimizer. When C-LSTMs were

employed, recurrent states were initialized to zero and the size of the

input sequences to the C-LSTM layers was set to 3. Each training was

carried out for 50 epochs. All experiments have been executed using

the HPC4AI infrastructure [7].

3.4.3 Performance Evaluation

In this section we report the performance of the proposed model for

lung/lobe segmentation, COVID-19 identification and lesion catego-

rization.
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Lobe segmentation

Our segmentation model is based on the Tiramisu model [72] with

the introduction of squeeze-and-excitation blocks and of a convolu-

tional LSTM (either unidirectional or bidirectional) after the bottle-

neck layer. In order to understand the contribution of each module,

we first performed ablation studies by testing the segmentation per-

formance of our model using different architecture configurations:

• Baseline: the vanilla Tiramisu model described in [72];

• Res-SE: residual squeeze-and-Excitation module are integrated

in each dense block of the Tiramisu architecture;

• C-LSTM: a unidirectional convolutional LSTM is added after

the bottleneck layer of the Tiramisu architecture;

• Res-SE + C-LSTM: variant of the Tiramisu architecture that

includes both residual squeeze-and-Excitation at each dense layer

and a unidirectional convolutional LSTM after the bottleneck

layer.

We also compared the performance against the U-Net architecture

proposed in [61] that is largely adopted for lung/lobe segmentation.

All architectures were trained for 50 epochs by splitting the em-

ployed lung datasets into a training, validation and test splits using

the 70/10/20 rule. Results in terms of Dice score coefficient (DSC) are

given in Tab. 3.2. It has to be noted that unlike [61], we computed

DSC on all frames, not only on the lung slices.

The highest performance is obtained with the Res-SE + C-LSTM
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configuration, i.e., when adding squeeze-and-excitation and the uni-

directional C-LSTM at the bottleneck layer of the Tiramisu archi-

tecture. This results in an accuracy improvement of over 4 percent

points over the baseline. In particular, adding squeeze-and-excitation

leads to a 2 percent point improvement over the baseline. Segmenta-

tion results are computed using data augmentation obtained by apply-

ing random affine transformations (rotation, translation, scaling and

shearing) to input images. The segmentation network is then applied

to our COVID-19 dataset for prior segmentation without any addi-

tional fine-tuning to demonstrate also its generalization capabilities.

Model Lung segmentation Lobe segmentation

Baseline Tiramisu [72] 89.41± 0.45 77.97 ± 0.31

Baseline + Res-SE 91.78± 0.52 80.12 ± 0.28

Baseline + C-LSTM 91.49± 0.57 79.47 ± 0.38

Baseline + Res-SE + C-LSTM 94.01 ± 0.52 83.05 ± 0.27

Table 3.2: Ablation studies of our segmentation network in terms of

dice score. Best results are shown in bold. Note: we did not compute

confidence intervals on these scores as they are obtained from a very

large set of CT voxels.

COVID-19 diagnosis

We here report the results for COVID-19 diagnosis, i.e., classification

between positive and negative cases. In this analysis, we compare

model results to those yielded by three experts with different degree

of expertise:
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1. Radiologist 1: a physician expert in thoracic radiology (∼30
years of experience) with over 30,000 examined CT scans;

2. Radiologist 2: a physician expert in thoracic radiology (∼10
years of experience) with over 9,000 examined CT scans;

3. Radiologist 3: a resident student in thoracic radiology (∼3 years

of experience) with about 2,000 examined CT scans.

Sensitivity C.I. (95%)

Radiologist 1 83.9 [71.8 – 91.9]

Radiologist 2 87.1 [75.6 – 94.3]

Radiologist 3 80.6 [68.2 – 89.5]

AI Model without lung segmentation 83.9 [71.8 – 91.9]

AI Model with lung segmentation 90.3 [79.5 – 96.5]

Table 3.3: Sensitivity (in percentage together with 95% confidence

interval) comparison between manual readings of expert radiologists

and the AI model for COVID-19 detection without lung segmentation

and AI model with segmentation.

It should be noted that the gold standard employed in the evalu-

ation is provided by molecular and antibody tests, hence radiologists’

assessments are not the reference for performance comparison.

We also assess the role of prior segmentation on the performance.

This means that in the pipelines showed in Figures 3.3 and 3.4 we

removed the segmentation modules and performed classification us-

ing the whole CT slices using also information outside the lung areas.
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Results for COVID-19 detection are measured in terms of sensitivity,

specificity and AUC, and are given in Tables 3.3, 3.4 and 3.5. Note

that the AUC is a reliable metric in our scenario, since we explicitly

defined the test set to be balanced among classes. More recent tech-

niques [25] may be suitable when this assumption does not hold, as is

often the case for new or rare diseases.

Specificity C.I. (95%)

Radiologist 1 87.1 [75.6 – 94.3]

Radiologist 2 87.1 [75.6 – 94.3]

Radiologist 3 90.3 [79.5 – 96.5]

AI Model without lung segmentation 87.1 [75.6 – 94.3]

AI Model with lung segmentation 93.5 [83.5 – 98.5]

Table 3.4: Specificity (in percentage together with 95% confidence

interval) comparison between manual readings of expert radiologists

and the AI model for COVID-19 detection without lung segmentation

and AI model with segmentation.

Our results show that the AI model with lung segmentation

achieves higher performance than expert radiologists. However, given

the relatively small scale of our dataset, statistical analysis carried

out with the Chi-squared test does not show any significant difference

between AI models and radiologists.

Furthermore, performing lung segmentation improves by about 6

percent points both the sensitivity and the specificity, demonstrating

its effectiveness.
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AUC C.I. (95%)

Radiologist 1 0.83 [0.72 – 0.93]

Radiologist 2 0.87 [0.78 – 0.96]

Radiologist 3 0.80 [0.69 – 0.91]

AI Model without lung segmentation 0.94 [0.87 – 1.00]

AI Model with lung segmentation 0.95 [0.89 – 1.00]

Table 3.5: AUC (together with 95% confidence interval) comparison

between manual readings of expert radiologists and the AI model for

COVID-19 detection without lung segmentation and AI model with

segmentation.

In addition, we also measure how the sensitivity of the COVID-19

identification changes w.r.t. the level of disease severity. In particular,

we categorize the 31 positive cases into three classes according to the

percentage of the affected lung area: low severity (11 cases), medium

severity (11 cases), high severity (9 cases). Results are reported in

Table 3.6 that shows how our AI-based method seems to be yielding

better assessment than the domain experts, especially at the beginning

of the disease (low severity). This is important as an earlier disease

detection may lead to a more favourable outcome. In case of high

severity, two out of three radiologists showed difficulties in correctly

identifying the COVID-19, mainly because when the affected lung area

is significant, the typical COVID patterns are less visible. However,

even in this case, our deep learning model was able to discriminate
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robustly COVID cases.

Low Severity Medium severity High severity

Radiologist 1 72.7(50.6− 88.5) 100.0(90.9− 70.6) 77.8(54.7− 92.6)

Radiologist 2 72.7(50.6− 88.5) 90.9(70.6− 100.0) 100.0(81.5− 100.0)

Radiologist 3 63.6(42.3− 81.3) 100.0(90.9− 70.6) 77.8(54.7− 92.6)

Modelwo segmentation 72.7(50.6− 88.5) 90.9(70.6− 100.0) 88.9(67.0− 99.2)

Modelw segmentation 81.8(59.6− 94.9) 90.9(70.6− 100.0) 100.0(81.5− 100.0)

Table 3.6: Sensitivity (in percentage) changes w.r.t. disease severity.

From the 31 test CTs for positive patients: 11 are with low severity, 11

with medium severity, and 9 with high severity. Values in parentheses

indicate 95% confidence intervals (CI).

As a backbone model for COVID-19 identification, we employ

DenseNet201 since it yields the best performance when compared to

other state of the art models, as shown in Table 3.7. In all tested

cases, we use upstream segmentation through the model described in

Sect. 3.3.1. Voting threshold was set to 10% on all cases.

In order to enhance trust in the devised AI models, we analyzed

what features these methods employ for making the COVID-19 diag-

nosis decision. This is done by investigating which artificial neurons

fire the most, and then projecting this information to the input images.

To accomplish this we combined GradCAM [151] with VarGrad [5]4

and Fig. 3.8 shows some examples of the saliency maps generated

by interpreting the proposed AI COVID-19 classification network. It

is interesting to note that the most significant activation areas cor-

respond to the three most common lesion types, i.e., ground glass,

4https://captum.ai/
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Model Variant Sensitivity (CI) Specificity (CI) Accuracy (CI)

AlexNet - 71.0(57.9− 81.6) 90.3(79.5− 96.5) 80.7(68.3− 89.5)

18 71.0(57.9− 81.6) 93.5(83.5− 98.5) 82.3(70.1− 90.7)

34 80.7(68.3− 89.5) 90.3(79.5− 96.5) 85.5(73.7− 93.1)

50 83.9(71.9− 91.9) 90.3(79.5− 96.5) 87.1(75.6− 94.3)

101 77.4(64.7− 89.9) 87.1(75.6− 94.3) 82.3(70.1− 90.7)
ResNet

152 77.4(64.7− 89.9) 90.3(79.5− 96.5) 83.9(71.9− 91.9)

121 77.4(64.7− 89.9) 93.5(83.5− 98.5) 85.5(73.7− 93.1)

169 67.9(83.5− 98.5) 93.5(83.5− 98.5) 81.4(68.7− 90.2)DenseNet

201 90.3(79.5-96.5) 93.5(83.5− 98.5) 91.9(81.5− 97.5)

SqueezeNet - 66.7(54.5− 78.9) 93.5(83.5− 98.5) 81.4(68.7− 90.2)

ResNeXt - 77.4(64.7− 86.9) 90.3(79.5− 96.5) 83.9(71.9− 91.9)

Table 3.7: COVID-19 classification accuracy (in percentage) by sev-

eral state of the art models. Values in parentheses indicate 95% con-

fidence intervals (CI).

consolidation and crazy paving. This is remarkable as the model has

indeed learned the COVID-19 peculiar patterns without any informa-

tion on the type of lesions (to this end, we recall that for COVID-19

identification we only provide, at training times, the labels “positive”

or “negative”, while no information on the type of lesions is given).

COVID-19 lesion categorization

For COVID-19 lesion categorization we used mean (and per-class)

classification accuracy over all lesion types and per lesion that are

provided, respectively, in Table 3.8. Note that no comparison with
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Figure 3.8: Lung salient areas identified automatically by the AI

model for CT COVID-19 identification.
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radiologists is carried out in this case, since ground-truth labels on

lesion types are provided by radiologists themselves, hence they are

the reference used to evaluate model accuracy.

Model no segm Model w segm

Consolidation 77.8%(69.9− 84.1) 97.9%(93.6− 99.8)

Ground glass 18.6%(14.1− 24.1) 41.3%(35.1− 47.7)

Crazy Paving 57.1%(49.4− 64.4) 98.3%(94.8− 99.8)

Negative 99.3%(98.6− 99.7) 99.9%(99.5− 100)

Average 63.2% 84.4%

Table 3.8: Per-class accuracy for lesion categorization between AI

model without lung segmentation and AI model with segmentation.

Values in parentheses indicate 95% confidence intervals (CI).

Mean lesion categorization accuracy reaches, when operating at

the lobe level, about 84% of performance. The lowest performance is

obtained on ground glass, because ground glass opacities are specific

CT findings that can appear also in normal patients with respiratory

artifact. Operating at the level of single lobes yields a performance en-

hancement of over 21 percent points, and, also in this case, radiologists

did not have to perform any lobe segmentation annotation, reducing

significantly their efforts to build AI models. The most significant

improvement when using lobe segmentation w.r.t. no segmentation is

obtained on the Crazy Paving class, i.e., 98.3% against 57.1%.
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3.4.4 Discussion

Although COVID-19 diagnosis from CT scans may seem an easy task

for experienced radiologists, our results show that this is not always

the case: in this scenario, the approach we propose has demonstrated

its capability to carry out the same task with an accuracy that is at

least on par with, or even higher than, human experts, thus showing

the potential impact that these techniques may have in supporting

physicians in decision making. Artificial intelligence, in particular, is

able to accurately identify not only if a CT scan belongs to a positive

patient, but also the type of lung lesions, in particular the smaller and

less defined ones (as those highlighted in Fig. 3.8). As shown, the

combination of segmentation and classification techniques provides a

significant improvement in the sensitivity and specificity of the pro-

posed method.

Of course, although the results presented in this work are very

promising in the direction of establishing a clinical practice that is

supported by artificial intelligence models, there is still room for im-

provement. One of the limitations of our work is represented by the

relatively low number of samples available for the experiments. In

order to mitigate the impact of this issue, we carried out confidence

level analysis to demonstrate the statistical significance of our results.

Moreover, the employed dataset consists of images taken by the same

CT scanner, not tested in multiple scanning settings. This could af-

fect the generalization of the method on images taken by other CT

scanner models; however, this issue can be tackled by domain adap-

tation techniques for the medical imaging domain, which is an active

research topic [134, 110, 109].
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Finally, one of the key features of our approach is the integration of

explainability functionalities that may help physicians in understand-

ing the reasons underlying a model’s decision, increasing in turn, the

trust that experts have in AI–enabled methods. Future developments

in this regard should explore, in addition to model explainability, also

causability features in order to evaluate the quality of the explanations

provided [62, 63].

3.5 Conclusion

In this work we have presented an AI-based pipeline for automated

lung segmentation, COVID-19 detection and COVID-19 lesion cate-

gorization from CT scans. Results showed a sensitivity of 90.3% and

a specificity of 93.5% for COVID-19 detection and average lesion cate-

gorization accuracy of about 84%. Results also show that a significant

role is played by prior lung and lobe segmentation, that allowed us to

enhance diagnosis performance of about 6 percent points.

The AI models are then integrated into a user-friendly GUI to sup-

port AI explainability for radiologists. To the best of our knowledge,

this is the first AI-based software, publicly available, that attempts

to explain radiologists what information is used by AI methods for

making decisions and that proactively involves in the loop to further

improve the COVID-19 understanding.

The results obtained both for COVID-19 identification and lesion

categorization pave the way to further improvements, driven towards

the implementation of an advanced COVID-19 CT/RX diagnostic

pipeline, that is interpretable, robust and able to provide not only
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disease identification and differential diagnosis, but also the risk of

disease progression.
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CHAPTER

FOUR

NEURAL TRANSFORMERS FOR

INTRADUCTAL PAPILLARY MUCOSAL

NEOPLASMS (IPMN) CLASSIFICATION IN

MRI IMAGES

We then focused on the classification of precancerous cysts, particu-

larly intraductal papillary mucinous neoplasms (IPMNs). Specifically,

we propose an AI-based classifier of IPMNs that leverages the capabil-

ities of neural transformers, with the goal of increasing accuracy and

while targeting interpretability issues.

55
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4.1 Motivation

Pancreatic cancer, also known as pancreatic ductal adenocarcinoma

(PDAC), is a growing public health issue around the world. In the

United States in 2021, an estimated 60,430 new cases of pancreatic

cancer will be diagnosed, with 48,220 people dying from the disease

[160]. Pre-cancerous cysts or neoplasms in the pancreatic ducts are

known as Intraductal Papillary Mucosal Neoplasms (IPMN) and can

develop anywhere in the pancreas’ ductal zone. Grading the severity

of IPMNs is an important diagnosis step: most IPMNs are low-grade,

and should be monitored over time; high-grade IPMNs, however, may

turn into invasive cancer if left untreated. In these cases, surgery is

the first choice to prevent them from expanding into malignant pan-

creatic tumors. Therefore, there is an unmet need for early detection

techniques of IPMNs, in order to identify which IPMNs may lead to

cancer. Automated image analysis in radiology imaging plays a key

role in diagnosis, treatment and intervention of pancreas diseases; thus

there is a strong potential for machine learning tools to support IPMN

grade prediction that can serve better than the current radiographic

standards. The most popular imaging modalities for the pancreas are

computed tomography (CT) and magnetic resonance imaging (MRI).

In the last few years, transformer architectures [170, 43] have proven

to be a valid alternative to standard convolutional networks on a vari-

ety of different tasks. More specifically, transformers enable learning

arbitrary functions and consists of two main operation blocks: first,

an attention-based block for modeling inter-element relations; second,

a multi-layer perceptron (MLP) modeling relations intra-element. A

sequence of attention and MLP blocks intertwined with residual con-
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nections and normalization has showed to allow for generalization over

multiple tasks. Following this trend, herein we propose an automated

IPMN classifier based on transformer architecture. We, in particular,

show how transformers generalize better than standard and state-of-

the-art CNNs (namely, DenseNet, AlexNet, etc.) also for extremely

complex tasks, as IPMN classification, while providing similar accu-

racy to the state of the art IPMN classification study with deep learn-

ing [91].

The major contributions of this study are the following:

1. Our work on IPMN classification is an important application

contribution, which is not widely done due to the difficult na-

ture of the problem, and hence there is a very limited published

research on this task using MRI data with deep learning. Our

method provides a significant state-of-the-art baseline to be com-

pared with for further MRI pancreas research just before critical

surgery decision or surveillance.

2. Our study contributes to the recent AI research in the strive

to demonstrate architectural universalism of Transformers that

can be used in a wide variety of tasks using little inductive bias,

beside validating their better interpretability than CNN coun-

terparts. To the best of our knowledge, transformers have never

been tried on high-risk medical diagnoses tasks before, particu-

larly for pancreas imaging research.
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4.2 Related Work

While significant progress has been made for automated approaches to

segment the pancreas and its cysts [194], the use of advanced machine

learning algorithms to perform fully automatic risk-stratification of

IPMNs is still limited.

Some recent works, employing machine learning techniques for predict-

ing the risk of malignancy in IPMN, have used endoscopic ultrasound

(EUS) images [89, 54] yielding high accuracy of 94.0%, outperforming

both human diagnosis (56%) and conventional guidelines (40–68%).

CT imaging has been also adopted for investigating IPMN as in [57, 50]

where low-level imaging features, such as texture, strength, and shape,

have been extracted from segmented cysts or pancreas for IPMN clas-

sification. Recently, deep learning methods based on standard convo-

lutional neural networks have been proposed to diagnose IPMN from

MRI scans [68, 34, 91]. Sarfaraz et. al. [68] proposed an architec-

ture for automated IPMN classification based on feature extraction

with canonical correlation using a pre-trained 3D CNN, while [34]

propose a novel CNN for recognizing high grade dysplasia or cancer

on MR-images, yielding promising results. Finally, Rodney et al. [91]

constructed two novel ”inflated” CNN architectures, InceptINN and

DenseINN, for the task of diagnosing IPMN from multisequence (T1

and T2) MRI obtaining an accuracy of about 73% in grading IPNM

into three classes (no risk, low and high-risk). In this work, we employ

transformers that are specific neural architectures originally proposed

for machine translation tasks [170]. Transformer-based models in NLP

are generally pre-trained on large corpora and then fine-tuned for the

task at hand [40, 135]. The increasing interest in their application to
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vision tasks starts with Vision Transformers [43] and Detection Trans-

former [23]. Recently, several methods have explored transformer-

based architectures for medical image analysis mainly for segmentation

tasks [28, 180, 58]. However, these method employ an hybrid archi-

tecture combining both convolutions and transformers. Our approach

builds upon pure vision transformers and employs a strategy similar

to that one employed in NLP (as in [40, 135]), i.e., pre-training trans-

formers on natural images and then fine-tuning them to MRI IPNM

images. Experimental results show that our pre-trained transformers

perform significantly better than state-of-the-art CNN classifiers.

4.3 Method

In our study, we follow the recently emerging approach of Transform-

ers [170] for vision tasks. In particular, we use the ViT [43] setting,

in which the encoder of the original transformer model is used on a

sequence of image “patches”. However, since [43] is trained on natural

images, it is necessary to adapt the input representation to be able to

process MRI scans, which are instead composed by an aggregation of

multiple slices, providing anatomical volumetric information.

Fig. 4.1 describes the proposed procedure in detail. We use T1- and

T2-weighted MRI scans of the same patients in an early fusion fash-

ion to enrich diagnostic and anatomical (localization) information. For

each modality, we first sample k=9 consecutive slices and use them to

create a single image, rearranging the selected slices in a
√
k×
√
k grid.

k can be set differently depending on the memory availability and z-

direction resolution of the MRI scan. In our experiments, we optimize
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Figure 4.1: The proposed transformer-based architecture. T1 and

T2 slices are concatenated along the channel dimension and sequences

of 9 consecutive slices are arranged in a 3×3 grid. Patches are then

extracted from the resulting image, and are used as input to the trans-

former architecture. After encoding the pach set through transformer

layers (consisting of a cascade of multihead attention block and MLP

layers), a special classification token encodes global image represen-

tation, and is used for final classification into three IPMN classes:

normal, low risk and high risk.

this number to appreciate full anatomical information of the pancreas.

The two images (one for each modality) are then concatenated along

the channel dimension: the resulting tensor, of size
√
kH ×

√
kW × 2,
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with H × W being the original size of each slice, is provided as in-

put to the transformer. Without loss of generality, let us assume that

H = W . As in [43], the input image is then divided into N patches

of size P × P , where N = kHW
P 2 . As a result of this procedure, an

input image X ∈ RH×W×C becomes a sequence of 2D patches Xp ∈
RN×(P×P×C) with C being the channel dimension. The 2D patches

are then flattened into vectors of size P 2C and projected to an em-

bedding space of size D, obtaining a sequence of token embeddings. As

a last pre-processing step, learnable positional encodings are summed

to token embeddings, producing the actual input data sequence to the

transformer. We extend the token sequence with a special class to-

ken, whose state at the output of the transformer describes the overall

input image representation for classification purposes [43, 167, 40].

Formally, the input z0 to the transformer is defined as:

z0 =
[︁
xclass,x

1
pE, . . . ,x

N
p E
]︁
+ Epos, (4.1)

where each xi
p ∈ RP 2C is a flattened patch vector, E ∈ R(P 2C)×D is

the embedding matrix and Epos ∈ R(N+1)×D is the positional encoding

matrix.

The transformer encoder [170] alternates multi-head self-attention

and MLP (multilayer perceptron) blocks. These blocks are then

intertwined with layer normalization and residual connections (see

Fig. 4.1), as follows:

z′l = MSA(LN(zl−1)) + zl−1, (4.2)

zl = MLP(LN(z′l)) + z′l, (4.3)

where l = 1 · · ·L identifies the transformer layer, LN(·) performs layer
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normalization, MLP represents a multilayer perceptor, and MSA(·)
computes the standard query-key-value multi-head self-attention [170].

At the last transformer layer, the output embedding corresponding

to class token is finally used for classification into 3 classes, since the

MRI dataset includes normal scans, low-grade and high-grade IPMN

lesions:

y = LN(z0L), (4.4)

with y being the vector of output class scores.

4.4 Experimental Results

4.4.1 Dataset

We evaluate the accuracy of our proposed IPMN risk assessment

method in MRI (with both T1 and T2 modalities). We use a total

of 139 scans from distinct patients, retrospectively collected at Mayo

Clinic [91]. Patients have either IPMN cysts detected in their pan-

creases or they are normal control cases selected to match the IPMN

patients. Out of 139 cases, 58 (42%) were male; mean (standard de-

viation) age was 65.3 (11.9) years. 22% had normal pancreas; 34%,

low-grade dysplasia; 14%, high-grade dysplasia; and 29%, adenocar-

cinoma [34]. Two expert radiologists graded the cases in a pathology

report after surgery: 0) normal, 1) low-grade IPMN, and 2) high-grade

IPMN. We did not consider invasive carcinoma in our analysis as they

are outside the scope of IPMN risk stratification.

MRI images were resized (in the transverse plane) to 256×256
pixels. Voxel spacing of MRI scans were varying from 0.468 mm to



4.4. Experimental Results 63

1.406 mm. We applied a set of pre-processing steps: N4 bias field

correction followed by an edge-preserving Gaussian smoothing, and

intensity standardization procedure to normalize MRI scans across

patients, scanners, and time. All MRIs were performed using Siemens

scanners 1.5 or 3 T (Siemens, Berlin, Germany).

The experimental procedures involving human subjects described

in this paper were approved by the Institutional Review Board.

4.4.2 Training Procedure

We use the Vision-Transformer pre-trained on 300 million images [163]

and released in [43]. During training, we fine-tune all transformers

layers with the training data from the MRI dataset. MRI slices are

cropped around the pancreas areas by expert physicians for all scans,

and each set of 9 consecutive slices, extracted in a sliding window fash-

ion, is arranged in a 3× 3 grid (from top-left to bottom-right), where

each cell of the grid is filled by a 64×64 MRI slice (see Fig. 4.1). Input

MRI scans are re-oriented using the RAS axes convention and normal-

ized, individually, between 0 and 1. Data augmentation is performed

through random horizontal flipping and random 90-degrees rotation

(identically applied to all slices within a grid). We minimize the cross-

entropy loss with gradient descent using the Adam optimizer (learning

rate: 0.003) and batch size of 8, for a total of 3000 epochs. At infer-

ence time, we classify each input MRI by feeding the sequence of 9

central slices to the model.

We employ the same training and evaluation procedure for CNN

models used as baselines, i.e., DenseNet-121 [65], AlexNet [88]

ResNet18 [59], EfficientNet b5 [166] and MobileNet v2 [150]. Exper-
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iments are performed on a NVIDIA RTX 3090 GPU. The proposed

approach was implemented in PyTorch and MONAI.

Method Accuracy Precision Recall

AlexNet 0.42±0.17 0.37 ± 0.15 0.39 ± 0.11

DenseNet 0.51 ± 0.12 0.54 ± 0.14 0.50 ± 0.14

ResNet18 0.53 ± 0.11 0.55 ± 0.23 0.32 ± 0.08

MobileNet v2 0.43 ± 0.11 0.54 ± 0.26 0.35 ± 0.11

EfficientNet b5 0.55 ± 0.10 0.60 ± 0.14 0.36 ± 0.08

Ours 0.70 ± 0.11 0.67 ± 0.19 0.64 ± 0.12

Table 4.1: Performance of tested models with 10-fold nested cross-

validation. We report results in term of mean ± standard deviation of

metrics computed over all validation folds.

4.4.3 Performance

We perform 10-fold nested cross-validation in order to estimate the ac-

curacy of the proposed approach and the methods under comparison.

Results are reported in Table 4.1, where the proposed model largely

outperforms the CNN models, confirming the better generalization

capabilities of transformer-based architectures compared to standard

convolutional models.

We also evaluate the role of early fusion and of combining the T1

and T2 modalities, by assessing classification performance when the

model receives only one modality at a time (either T1 or T2) and when

performing late fusion. In this case, we train two transformer mod-

els, one for each modality, and we then concatenate the two class to-
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Method Accuracy Precision Recall

T1 0.53 ± 0.08 0.60 ± 0.11 0.58 ± 0.14

T2 0.64 ± 0.12 0.64 ± 0.13 0.63 ± 0.11

T1+T2 modalities

Late fusion 0.60 ±0.16 0.61 ± 0.13 0.59 ± 0.11

Early fusion 0.70 ± 0.11 0.67 ± 0.19 0.64 ± 0.12

Table 4.2: Performance of our model using different input data

modality with 10-fold nested cross-validation. We report results in

terms of mean ± standard deviation of metrics computed over all val-

idation folds.

kens before classification. Performance is reported in Table 4.2 which

demonstrates how using T1 and T2 in an early fusion setting yields

the highest performance.

It has to be noted that, comparing on the same dataset, the per-

formance achieved by our transformer-based approach is slightly lower

than those obtained in [91], i.e., about 73%. However, the architec-

ture in [91] was specifically designed and tuned for solving the IPMN

classification problem, while our transformer architecture is general,

designed for natural image classification and applied directly without

significant architectural changes to IPMN classification problem. This

is remarkable, as we demonstrate that a general architecture performs

similarly to an ad-hoc one for a complex task with limited training

data.
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AlexNet DenseNet MobileNet v2 ResNet18 EfficientNet b5 Our method

Figure 4.2: Comparison between the attention maps of several state-

of-the-art models and our model in case of correct (top row) and er-

roneous (bottom row) predictions on a 3×3 grid of MRI images.

4.4.4 Interpretability of results

Transformers allow for a more direct interpretation of their internal

representations through visualizing the attention weights [43], thus

supporting the sought interpretability necessary in safety-critical con-

texts as the medical domain one. We apply Attention Rollout [3] to

track down the information propagated from the input layer to the

embeddings in the higher layers. Thus, we average attention weights

of all heads of each transformer layer and then multiply these averages

across all layers. Fig. 4.3 shows some examples of interpretabilty maps

in cases of correct cyst classification.

It can be observed how our transformer-based model focuses its

attention mainly on cysts, thus it provides robust predictions. Con-

versely, CNN-based models lead to weak decisions, as their attention

maps (estimated using GradCam [152]) reveal that features not strictly

related to cysts are used for classification (see Fig. 4.2, top row). Fi-
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nally, although our model fails in some cases, as demonstrated by the

classification accuracy in Tab. 4.1, its attention maps often point to

the correct cyst regions (see Fig. 4.2, bottom row); thus, the wrong

prediction is due to either using directly raw data, rather than a more

powerful representation, or lack of enough training data.

4.5 Discussion

In this work, our overall goal was to classify pancreas (IPMN) cysts

automatically. We utilized transformers for the first time for pan-

creas risk predictions and obtained promising results that can be used

for MRI-based IPMN risk stratification routinely. Compared to the

(few) existing methods, transformers showed higher performance over-

all. We found that training transformer for IPMN risk stratification

is easier than conventional CNN based systems and generalizes bet-

ter. Furthermore, the proposed transformer-based classifier allows for

better interpretation of results than standard CNNs, revealing how

Figure 4.3: Attention maps of our transformer-based classifier on

3×3 grid of MRI images for correct IPMN classification.
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it employs cues exclusively related to cysts, providing more robust-

ness to the automated diagnosis than the comparing methods. These

findings highlight the contribution that transformers can give to the

future research in medical image understanding, in general, and IPMN

classification, in particular, beside contributing the recent AI research

efforts towards universal architectures.
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CHAPTER

FIVE

HIERARCHICAL 3D FEATURE LEARNING

FOR PANCREAS SEGMENTATION

In this chapter, we continue our exploration of the pancreas, shifting

our focus to the foundational task of segmentation. However, when it

comes to the pancreas, segmentation is no a straightforward endeavor.

The organ’s shapes and sizes exhibit vast variability across patients;

further challenges arise from the pancreas’s intensity similarities to

surrounding tissues and its often indistinct boundaries, a consequence

of the resolution limitations inherent to medical scanners. The pres-

ence of cysts, tumors, or other abnormalities only exacerbates these

challenges, often confounding segmentation algorithms and leading to

inaccurate boundary delineations. Yet, in the face of these complex-

ities, we propose an effective automated segmentation method that

works both MRI and CT imaging modality.

69
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5.1 Motivation

Pancreatic cancer is a growing public health concern worldwide. In

2021, an estimated 60,430 new cases of pancreatic cancer will be di-

agnosed in the US and 48,220 people will die from this disease [160].

Early detection of pancreas cancer [127] is very hard and options in

treatment are very limited. Radiology imaging and automated image

analysis play key roles in diagnosis, prognosis, treatment, and inter-

vention of pancreatic diseases; thus, there is a strong, unmet, need

for computer aided analysis tools supporting these tasks. The first

step in such analysis is to automate the medical image segmentation

procedures, since manual segmentation (current standard) is tedious,

prone to error, and it is not practical in routine clinical evaluation

of the diseases [128]. Beyond the known challenges of medical image

segmentation problems, pancreas is one of the most difficult organs to

segment despite the recent advances in deep segmentation models.

Computed tomography (CT) and magnetic resonance imaging

(MRI) are the two most common modalities for pancreas imaging.

CT is the modality of choice for pancreatic cancer at the moment,

while MRI is mostly used for finding other pancreatic diseases in-

cluding cysts and diabetes. Compared to CT, MRI has advantages

such as the lack of ionizing radiation, better resolution and soft tissue

contrast. However, MRI has other unique difficulties, including field

inhomogeneity, non-standard intensity distributions due to variations

in scanners, patients, field strengths, and high similarity in pancreas

and non-pancreas tissue densities.

Image-based pancreas analysis is by itself a challenging task. Shapes

and sizes greatly vary across different patients, making it difficult to
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use robust priors for improving the delineation procedures. Intensity

similarities to non-pancreatic tissues, and smooth or invisible bound-

aries (due to resolution limitations of medical scanners) are other chal-

lenges that need to be addressed in a successful segmentation method.

Moreover, in presence of a cyst, tumor, or other abnormalities in pan-

creases, segmentation algorithms may easily fail to delineate correct

boundaries.

To address these challenges, in this work we propose a novel 3D

fully convolutional encoder-decoder network with hierarchical multi-

scale feature learning, for general, fully-automated pancreas segmen-

tation applicable to CT and MRI scans. Major contributions of this

study are the following:

• Our segmentation network is unique in the sense that it is volu-

metric, learns to extract 3D volume features at different scales,

and decodes features hierarchically, leading to improved segmen-

tation results;

• We show the efficacy of our work both on CT and MRI scans.

Our architecture successfully extracts pancreases from CT and

MRI with high accuracy, obtaining new state-of-the-art results

on a publicly-available CT benchmark and first-ever volumetric

pancreas segmentation from MRI in the literature.

• Our work on MRI pancreas segmentation is an important appli-

cation contribution, due to the very limited published research

on this task using MRI data with deep learning. It is our belief

that our method provides a significant state-of-the-art baseline

to be compared with for further MRI pancreas research.
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5.2 Related Work

Following the success of deep learning methods applied in medical

image segmentation, researchers have recently shown an increasing

interest in pancreas segmentation, in order to support physicians in

early stage diagnosis for pancreas cancer. Although this application

field is still in its infancy — also due to variabilities in texture, size

and imaging contrast — a line of promising approaches has been pro-

posed in the literature, mainly on CT scans [20, 86, 95, 106, 112, 143,

144, 145, 172, 175, 186, 195]. We here describe the most significant

ones which relate to our proposed model.

In [144], a two-stage cascaded approach for pancreas localization and

pancreas segmentation is proposed. In the first stage, the method

localizes the pancreas in the entire 3D CT scan, providing a reliable

bounding box for a more refined segmentation step, based on an effi-

cient application of holistically-nested convolutional networks (HNNs)

on the three views of pancreas CT image. Per-pixel probability maps

are then fused to produce a 3D bounding box of the pancreas. Projec-

tive adversarial networks [86] incorporate high-level 3D information

through 2D projections and introduce an attention module that sup-

ports a selective integration of global information from the segmenta-

tion module to an adversarial network. More recently, [175] proposes

a dual-input v-mesh fully-convolutional network, which receives orig-

inal CT scans and images processed by contrast-specific graph-based

visual saliency, in order to enhance the soft tissue contrast and high-

light differences among local regions in abdominal CT scans.

All of the above works tackle the problem of pancreas segmentation

on CT scans. However, as already mentioned, MRI acquisitions have
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several advantages over CT — most importantly, fewer risks to the

patients. On the other hand, MRI pancreas segmentation presents

additional challenges to automated visual analysis. For this reason

and others (e.g., the lack of public benchmarks), very few works have

addressed pancreas segmentation on MRI data: to the best of our

knowledge, the major attempts are [11, 20, 21]. In [21], two CNN

models are combined to perform, respectively, tissue detection and

boundary detection; the results are provided as input to a conditional

random field (CRF) for final segmentation. In [11], an algorithmic

approach based on hand-crafted features is proposed, employing an

ad-hoc multi-stage pipeline: contrast enhancement within coarsely de-

tected pancreas regions is applied to differentiate between pancreatic

and surrounding tissue; 3D segmentation and edge detection through

max-flow and min-cuts approach and structured forest are performed;

finally, non-pancreatic contours are removed via morphological oper-

ations on area, structure and connectivity.

5.3 Method

Our 3D fully-convolutional pancreas segmentation model — PankNet

— is based on an encoder-decoder architecture; however, unlike

standard encoder-decoder schemes with a single decoding path (see

Fig. 5.1a), we have parallel decoders at different abstraction levels,

generating multiple intermediate segmentation maps (Fig. 5.1c). Hi-

erarchical decoding is also fundamentally different from using skip

connections (Fig. 5.1b), since these have the purpose to ease gradient

flow and forward low-level features for output reconstruction, while
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(a) encoder-decoder

(b) skip-connection

(c) hierarchical decoding

Figure 5.1: A comparison between our proposed architecture and

other types of networks used for segmentation: (a) standard encoder–

decoder architecture; (b) encoder–decoder architecture with skip con-

nections; (c) encoder–hierarchical decoder architecture (ours).
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our multiple decoders aim to extract local and global dependencies.

The detailed architecture is shown in Fig. 5.2: the input data (either

CT or MRI volume) is first processed by the encoder stream of the

model which aggregates volumetric features at different abstraction

levels. These features are then given as input to different decoder

streams, each generating a segmentation mask volume.

All intermediate masks are concatenated along the channel dimen-

sion and finally merged through a convolutional layer in order to pre-

dict the final segmentation mask for all input slices.

5.3.1 Volume feature encoding

The model’s encoder performs aggregation of volumetric features from

the input data. It is based on S3D [179], a network originally pro-

posed for action recognition using 3D spatial and temporal separable

3D convolution layers, pretrained on the Kinetics Dataset [81]. We

use the pretrained network, similarly to other works [21, 86, 91], to

ease convergence given the limited training data we have from both

CT and MRI datasets. Our encoder processes D = 48 slices from

an input scan by progressively aggregating volumetric cues down to

a more compact representation of size 1024×W
8
× H

32
× D

32
(channels

× width × height × depth). Features at the bottleneck and at the

outputs of the second, third and fourth pooling layers are fed to sep-

arate decoders, described in the following section, to implement our

hierarchical decoding strategy.

The proposed approach can be easily adapted to different encoder

architectures. Thus, we additionally design a lightweight variant of

our PanKNet network by replacing the S3D-based encoder with an
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Figure 5.2: PanKNet architecture: the encoding path extracts aggre-

gated volumetric features, while the decoding path predicts four differ-

ent intermediate segmentation masks (coarse to fine). Finally, inter-

mediate segmentations are integrated into a detailed output mask.

encoder based on MobileNetV2 [150], where 2D convolutions are re-

placed with 3D ones through inflation. In particular, the 2D kernels

are replicated along the third dimension, and the values of the weights

are divided by the number of replications as proposed in [24]. In this
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case, as input to the decoders, we select the output of the second,

third, fourth and sixth bottleneck blocks of MobileNetV2, providing a

more compact feature map of size 160×W
16
× H

32
× D

32
. This lightweight

variant has 10 times fewer parameters (2.5 millions of parameters, 9.33

MB) and than the S3D counterpart (25.6 millions of parameters, 97.88

MB).

5.3.2 Hierarchical Decoding

Our hierarchical decoding strategy employs features at different points

of the encoder stream to generate intermediate segmentation masks

that aim to capture and combine fine segmentation (derived from de-

coders of deeper features) to coarse segmentation (derived from de-

coders of initial features). We include four decoders: each one pro-

cesses a set of volumetric features taken from the corresponding level

in the encoder stack and performs segmentation on the input volume

(see Fig. 5.2, yellow blocks). Each decoder consists of a cascade of

upsampling blocks, depending on the size of the input feature map:

decoders operating on deeper features require less blocks to recover

the original input size. Each upsampling block contains a 3D convo-

lutional block (convolutional layer + batch normalization + ReLU),

one or two 3D separable convolutional blocks, and a trilinear upsam-

ple layer. As last layer, a pointwise 3D convolution outputs a volume

with size 2 ×W × H × D, where W , H and D are the same as the

input volume.
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5.3.3 Pancreas Segmentation

Intermediate segmentation maps predicted by each of the model’s de-

coders are combined into a global mask. In particular, the four inter-

mediate maps are concatenated into a 8×W × H × D tensor, which

then goes through a last layer performing a voxel-wise convolution to

generate a single segmentation map of size 2×W ×H ×D.

The whole model (encoder, hierarchical decoders and output layer)

is trained end-to-end using a hierarchical Dice loss [116] between

ground-truth mask, intermediate generated masks and the output seg-

mentation mask. Formally, given the predicted output segmentation

masks Sv for the input volume, the four maps Ŝvi estimated by the

decoders, and the ground-truth segmentation maps Gv for the input

data, the segmentation loss Ls is:

Ls

(︂
Sv, Ŝvi ,Gv

)︂
=

4∑︂
i=1

2
∑︁

j Ŝvi,jGvj∑︁
j Ŝ

2

vi,j +
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j G
2
vj

+
2
∑︁

j SvjGvj∑︁
j S

2
vj
+
∑︁

j G
2
vj

(5.1)

where index i iterates over the four intermediate maps and index j

iterates over voxels.

5.4 Experiments and Results

5.4.1 Dataset

We evaluate the accuracy of our proposed deep segmentation method

in both CT and MRI modalities. For the former, we use the publicly

available NIH Pancreas-CT dataset, which is the most used pancreas
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segmentation dataset for benchmarking [143]. This dataset includes

82 abdominal contrast-enhanced 3D CT scans. The resolution of the

CT scans is 512 × 512 × Z, with Z (between 181 and 466) indicating

the number of slices along the transverse axis. Voxel spacing ranges

from 0.5 mm to 1 mm. More details on this dataset are available

in [143].

In our experiments with MRI data, we use 40 in-house collected

T2-weighted MRI scans from 40 patients, who have either IPMN (in-

traductal papillary mucinous neoplasm) cysts detected in their pan-

creases or invasive pancreatic ductal carcinoma. Two expert radi-

ologists annotated pancreases manually and consensus segmentation

masks were generated at the end of the ground-truth labeling pro-

cedure with agreement. MRI images were resized (in the transverse

plane) to 256 x 256 pixels, with voxel spacing of varying from 0.468

mm to 1.406 mm. To minimize uncertainties in MRI scans, we ap-

plied a set of pre-processing steps: N4 bias field correction followed

by an edge-preserving Gaussian smoothing, and intensity standard-

ization procedure to standardize MRI scans across patients, scanners,

and time.

5.4.2 Training and evaluation procedure

We apply the same training procedure for the two datasets, with the

only difference regarding how model backbones are pre-trained. On

the NIH Pancreas-CT dataset, we pre-train S3D on Kinetics [81] and

MobileNetV2 on ImageNet [39] with weight inflation; on our MRI

data, Pancreas-MRI, we employ the backbones pre-trained on the CT

task.
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Input CT and MRI scans are re-oriented using the RAS axes con-

vention for consistency. We then perform voxel resampling through

trilinear interpolation in order to have isotropic (1 mm) voxel spacing,

and normalize the values of each scan between 0 and 1. During train-

ing, data augmentation is performed with random horizontal flipping,

random 90-degrees rotation and random crops of size 128×128×48
(in RAS coordinates). We minimize our multi-part Dice loss with

mini-batch gradient descent using the Adam optimizer (learning rate:

0.001) and batch size 8, for a total of 3000 epochs.

At inference time, we compute output segmentation masks by

running a sliding window routine over an entire input scan, using

256×256×48 windows overlapping by 25%. Voxel labels from overlap-

ping segmentations are obtained by averaging the set of predictions.

For evaluation, we carry out 4-fold cross-validation. At each iteration,

the set of training folds is further split into the actual training set and

a validation set, that is used to select the epoch at which Dice score

on the test fold is reported. As metrics for quantitative evaluation,

we employ: Dice score coefficient (DSC), Positive Predictive Value

(PPV) and Sensitivity.

Experiments are performed on an NVIDIA Quadro P6000 GPU.

The proposed approach was implemented in PyTorch and MONAI.

5.4.3 Results

We first test our model (as well as its lightweight variant) on the

NIH Pancreas-CT dataset and compare it to existing methods (which

share our evaluation strategy with 4-fold cross-validation), namely,

[20, 86, 95, 106, 112, 143, 144, 145, 172, 175, 186, 195]. Summarized
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Method DSC PPV SENS

Avg Max Min

Roth et al. [143] 71.42±10.11 86.29 23.99 – –

Roth et al. [144] 78.01±8.20 88.65 34.11 – –

Roth et al. [145] 81.27±6.27 88.96 50.69 – –

Zhou et al. [195] 82.37±5.68 90.85 62.43 – –

Cai et al. [20] 82.40±6.70 90.10 60.00 – –

Li et al.(2019) [95] 83.50±6.20 – – 84.50±6.90 83.70±10.40

Liu et al.(2020) [106] 84.10±4.90 – – 83.60±5.90 85.30±8.20

You et al. [186] 84.50±4.97 91.02 62.81 – –

Khosravan et al. [86] 85.53±1.23 88.71 83.20 – –

Wang et al.(2020) [172] 85.90±3.40 – – – –

Man et al.(2019) [112] 86.90±4.90 – – – –

Wang et al. [175] 87.04±6.80 – – 89.50±5.80 87.70±7.90

PanKNetLight 87.13±4.58 93.49 72.77 86.85±6.52 88.48±5.12

PanKNet 88.01±4.74 93.84 70.62 88.25±5.45 88.69±5.99

Table 5.1: Comparison of PanKNet against multiple state-of-the-art

models for pancreas segmentation on NIH Pancreas-CT dataset using

4-fold cross-validation. Best performance in bold, second best in

italic.

in Table 5.1, our results indicate that PanKNet outperforms existing

methods over different metrics. Note that PanKNet does not require

any auxiliary regularization networks [86], nor additional inputs [175],

nor upstream pancreas localization module [112]. Remarkably, even

the lightweight variant of PanKNet yields accuracy comparable to the

full model, while outperforming existing models, showing that the

choice of the backbone is not as important as the overall employed
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Method DSC PPV SENS

Avg Max Min

3D-UNet [83] 65.05±9.17 84.58 49.80 61.55±7.55 74.42±13.99

BaselineLight 69.17±8.10 83.86 49.92 64.64±7.49 84.19±11.72

Baseline 65.16±9.11 84.00 49.49 61.92±8.22 75.22±12.46

PanKNetLight 72.96±10.33 88.54 49.90 71.39±11.21 79.76±11.53

PanKNet 77.46±08.62 89.07 52.30 76.63±8.66 80.91±10.51

Table 5.2: Segmentation performance on Pancreas-MRI dataset (4-

fold cross-validation).

hierarchical architecture. The best trade-off between accuracy and

computational resources for CT pancreas segmentation is represented

by PanKNetLight, whose memory occupation is about 10 MB compared

to about 100 MB of PanKNet, but with very similar performance.

We then test our model on pancreas segmentation from MRI data.

In this case, we compare the 3D-UNet, proposed in [83], pre-trained

on the NIH Pancreas-CT dataset and fine-tuned on our MRI dataset.

Furthermore, we add to this evaluation some control experiments to

show the effectiveness of the designed architecture. Consequently, we

define as baseline our encoder-decoder architecture without hierarchi-

cal decoding strategy, decoding only the features at the model’s bot-

tleneck. Results in Table 5.2 indicate that both PanKNet variants

outperform the state-of-the-art 3D U-Net model [83]. The baseline

(with either backbones) also performs better than 3D U-Net model [83]

demonstrating that even our 3D fully convolutional network, ablated

from the hierarchical decoding, is effective for MRI pancreas segmen-

tation. Adding hierarchical decoding leads to enhanced segmentation
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Figure 5.3: Segmentation masks at the highest (left column) and

lowest (right column) Dice score on NIH Pancreas-CT (first row) and

Pancreas-MRI dataset (second row).

performance, especially on DSC and PPV. Different from CT segmen-

tation and from baseline models, PanKNet largely outperforms its

lightweight counterpart, demonstrating that MRI pancreas segmenta-

tion is far more complex and challenging than CT segmentation and

calls for high-capacity networks to be solved.

Example segmentation masks, corresponding to the highest and

lowest Dice scores reported in Tables 5.1 and 5.2 for CT and MRI

pancreas segmentation, are illustrated in Fig. 5.3.

5.5 Discussion

In this study, we propose a novel 3D fully-convolutional network for

pancreas segmentation from MRI and CT scans. Our proposed deep
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network aims at learning and combining multi-scale features, namely a

hierarchical decoding strategy, to generate intermediate segmentation

masks for a coarse-to-fine segmentation process. The intermediate

masks, capturing fine details, are derived from decoders of deeper fea-

tures while coarse segmentation details are derived from decoders of

initial features. We evaluated the efficacy of our method (a) on CT

scans from the publicly available NIH CT-Pancreas benchmark, and

obtained a new state of the art Dice score 88.01%, outperforming all

previous methods; and (b) on MRI scans, obtaining a Dice score of

77.46%, which can be used as a baseline for future works on MRI pan-

creas segmentation. Noting that MRI pancreas segmentation methods

are extremely limited due to the challenging nature of the problem,

our study offers a fresh insight into MRI analysis of pancreas from a

fully automated volumetric segmentation strategy. PanKNet is tested

for pancreas segmentation, but its architecture is general and can be

applied to any 3D object segmentation problem in medical domain.
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Part III

GENERATIVE-BASED FEDERATED

LEARNING STRATEGIES

In the preceding section of this thesis, we explored some important

centralized approaches in medical imaging. While these centralized

methodologies have showcased remarkable efficacy, they inherently

grapple with challenges, especially those tied to data centralization.

Aggregating data from diverse sources at a single point not only in-

troduces logistical complexities but also amplifies concerns related to

data privacy and security. In the sensitive realm of medical imaging

data, where the protection of patient data is of paramount importance,

these concerns cannot be overlooked.

At its core, federated learning is a decentralized strategy where the

model is trained across multiple devices or servers without the need

to centralize the data. This paradigm ensures that data remains lo-

calized, thereby addressing the primary concerns of data transfer and

central storage. More critically, federated learning emerges as a beacon

for data privacy. Instead of sharing raw data, which could potentially

expose sensitive information, federated learning shares model updates,
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ensuring that the individual data points never leave their original loca-

tion. This decentralized approach not only preserves the integrity and

confidentiality of the data but also harnesses the collective intelligence

of diverse datasets in a privacy-centric manner.

However, the shift towards federated learning is not trivial. A

primary concern is ensuring that decentralized data meaningfully

contributes to the global model without breaching privacy con-

straints. Recognizing this challenge, we introduced an innovative ap-

proach leveraging the capabilities of Generative Adversarial Networks

(GANs). GANs, renowned for their ability to generate synthetic yet

realistic data, are the cornerstone of our solution. By synthesizing

data that mirrors the essential characteristics of the original without

directly replicating it, GANs offer a pathway to share and enhance

federated learning models without compromising data privacy. In

essence, instead of sharing actual data, we propose sharing its syn-

thetic counterpart that maintains privacy while still keeping the sig-

nificant visual features. Building on this foundational idea of using

GANs for privacy-preserving federated learning, we embarked on a

series of research endeavors, each addressing unique challenges and

offering innovative solutions within this framework. These works not

only underscore our commitment to advancing the field but also high-

light the practical applications of our proposed methods.

In Chapter 6 we delve deeper into the latent space of GANs, fo-

cusing on its manipulation and aggregation. We propose innovative

techniques that generate privacy-preserving synthetic images and in-

troduce novel methods for aggregating this information in a federated

context. The emphasis here is on how the latent space can be har-

nessed and manipulated to enhance federated learning, ensuring that
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medical insights can be shared and aggregated without compromis-

ing the integrity of the original data. Building upon the foundational

concepts of the latent space, Chapter 7 introduces a complementary

approach to the previous research. While many methods, including the

prior work and techniques like k-same, focus on aggregating informa-

tion in the latent space, and generating samples from this aggregation

in a strainghtforward way, in this research we propose an intelligent

method to navigate the latent space, ensuring equidistance, privacy,

and class consistency during data generation. Moving to the last work

presented in this thesis, Chapter 8 seamlessly integrates the concepts

of continual learning and federated learning to address the challenges

posed by distribution shifts. Continual learning predominantly ad-

dresses the issue of distribution shift over time, as models contin-

uously evolve and adapt to incoming data. In contrast, federated

learning confronts distribution shifts in space due to the decentralized

nature of its data sources. By combining these concepts with gener-

ative adversarial models, our FedER framework effectively integrates

features from local nodes, crafting models that can generalize across

diverse datasets while preserving privacy. This strategy sidesteps the

constraints of traditional federated learning solutions, presenting a ro-

bust and privacy-focused methodology. Furthermore, the real-world

relevance of this framework is emphasized by its application in ac-

tual medical scenarios, showcasing its resilience and effectiveness in

practical contexts.
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CHAPTER

SIX

GAN LATENT SPACE MANIPULATION AND

AGGREGATION FOR FEDERATED

LEARNING IN MEDICAL IMAGING

As we embark on the next phase of our exploration, we move into

the world of federated learning, approaching it from a distinctly data-

driven perspective. The overarching goal is clear: to generate and dis-

seminate synthetic samples that maintain the integrity of the original

data while ensuring utmost privacy. The synthesis of data is achieved

through a multistage strategy: exploiting the power of Generative Ad-

versarial Networks (GANs) to grasp the distribution of original data,

projecting these private data samples into the GAN’s latent space,

and then clustering these projections. By interpolating the cluster

centroids, we generate synthetic images, meticulously ensuring a min-

imized risk of sensitive information leakage.

89
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6.1 Motivation

The recent success of deep learning in the medical domain has shown

it to be a promising tool to support medical diagnosis and treatment,

but large amounts of training data are still needed to build models

able to achieve good accuracy and generalization. However, medical

institutions generally curate their own datasets and keep them private

for privacy concerns. Due to their small size, models trained on private

datasets tend to overfit, introduce biases and generalize badly on other

data sources that address the same task [187].

A viable solution for increasing the size and diversity of data is to

employ a collaborative learning strategy, where multiple distributed

nodes support the training of a model for a shared task [184]. Fed-

erated Learning [113, 154], in particular, has emerged as a training

paradigm where each node trains a copy of a shared model on its pri-

vate data and sends the local updates to a central server, where model

parameters are tuned based on aggregated local updates. However, ag-

gregating gradients or weights from multiple nodes does not deal with

the non-i.i.d. nature of distributed data. Furthermore, gradient inte-

gration raises privacy issues as training data might be reconstructed,

to a certain degree, starting from the shared gradients as demonstrated

in [51, 192, 197].

In this work, we propose a generative approach where each dis-

tributed node generates, and shares, a synthetic version of its own

data through manipulation and aggregation of latent spaces learned

by a Generative Adversarial Network (GAN). In particular, our syn-

thetic samples are drawn from the same distribution as the original

ones, but are designed to prevent the inclusion of patient-specific visual
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patterns. Sharing the manipulated images, rather than the generation

model, prevents the reconstructions of real data through attacks to the

model and circumvents the gradient/weight aggregation problem.

We tested our approach on the task of tuberculosis classification

from X-ray images of two different datasets, namely, the Montgomery

County X-ray Set and Shenzhen Hospital X-ray Set [22, 71, 70]. Our

experiments simulate a multi-node multimodal data scenario, where

each dataset is located on a different node. It achieves 75% and

60% in classification accuracy on the Shenzhen and the Montgomery

datasets, respectively, whereas standard centralized training on the

dataset union (i.e., not in a federated learning setting) yields 78% and

43%. The capabilities of our approach to synthesize images visually

distant from the real ones are measured quantitatively by evaluating

LPIPS (Learned Perceptual Image Patch Similarity) distance [190]

between real images and samples generated through latent space op-

timization on a standard (non-privacy-preserving) GAN and by the

proposed approach. Qualitatively, we also show several examples of

generated images with corresponding closest match in the real dataset,

demonstrating significant differences that prevent tracing back to the

original real distribution.

6.2 Related Work

Federated learning (FL) embraces a family of privacy-preserving dis-

tributed learning strategies that allow nodes to keep training data

private, while supporting the creation of a shared model. Typically,

a central server sends a model to a set of client nodes; local model
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updates are aggregated by the server, which sends the new model

to the clients in an iterative process. In FedAvg [113], the server

computes model averaging combining local stochastic gradient de-

scent updates of each client. FedProx [98] is a generalization and

re-parametrization of FedAvg proving theoretically convergence guar-

antee when training over non-identical distributed data (statistical

heterogeneity). FedMA [171] builds a shared global in a layer-wise

manner by matching and averaging hidden elements with similar fea-

ture extraction signatures. All these methods attempt to train a cen-

tral model using the gradients gathered from multiple models trained

on local private data.

FL particularly suits medical field applications, where data privacy is

a critical concern. Li et al. [99] present the first FL system for medical

image analysis, employing FedAvg and differential privacy [1] for brain

tumor segmentation. Roy et al. [146] also apply FL for whole-brain

segmentation in MRI. Recently, several other collaborative learning

methods [37, 46, 130] have been proposed, especially because of the

emergency need raised by the COVID-19 pandemic, in order to har-

ness multiple data sources to promptly react to emergency scenarios.

However, gradient aggregation does not seem to guarantee the required

level of data privacy, as it has been demonstrated that network inputs

can be recovered from gradient updates [51, 176, 197]. Differential pri-

vacy [1, 56, 93] attempts to reduce this issue by obfuscating gradients

through noise. Zhu et al. [197], for instance, add Gaussian/Lapla-

cian noise to gradients and compress the model with gradient prun-

ing. However, adding noise to the gradients significantly compromises

model’s performance.

In this work, we tackle the problem of federated learning from a data-
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perspective: rather than sharing weights/updates, which can be at-

tacked, we share a synthetic version of private data — generated

through a GAN — that retains visual content to support distributed

training, but improves privacy by hiding specific visual patterns of pa-

tients. GANs have been also employed in federated learning regime,

but always in the view of aggregating parameters to create a general

model. In GS-WGAN [27], a gradient-sanitized Wasserstein GAN im-

proves differential privacy, by carefully distorting gradient information

in a way that reduces loss of information and generates more informa-

tive samples. Federated CycleGAN [161] is designed to perform unsu-

pervised image translation; however, they still share local gradients,

which may introduce the above privacy concerns. FedDPGAN [189]

designs a distributed DPGAN [178] trained in a FL framework, to

train models for COVID-19 diagnosis from chest X-ray images, with-

out data sharing. In [136], the authors propose a framework to extend

a large family of GANs to a FL setting utilizing a centralized adver-

sary.

6.3 Method

6.3.1 Overview

In our approach, shown in Fig. 6.1, a set of distributed nodes create

synthetic images and share them with a central node, where a model

is trained using the received data. Specifically, each node trains a

GAN to transform its own private dataset into a privacy-preserved

one where patient information leak is minimized. The visual features

of the privacy-preserved dataset still come from the same distribution
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of the real private one (as per GAN training) in order to support the

training of the centralized model. Although we do not perform a

Figure 6.1: The proposed federated learning framework

formal security analysis of our approach, for the sake of readability we

will refer to it as “privacy-preserving”, to distinguish it from the cases

where no precaution is taken to prevent patient information leak in the

sharing and learning process (referred to as “non privacy-preserving”).

6.3.2 Generative Adversarial Network

Generative Adversarial Networks (GANs) [52] consist of two networks,

a generator model and a discriminator model: the former is trained

to generate realistic images, while the latter is trained to distinguish

between real and synthetic samples. In the conditional settings, where

the generation process is controlled by a label to synthesize samples

for a specific class, the two models are alternately trained to minimize
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the following losses, respectively:

LD = Ex,y[log(D(x, y))] + Ez,y[log(1−D(G(z, y), y))] (6.1)

LG = Ez,y[log(D(G(z, y), y))] (6.2)

where (x, y) is sampled from the real data distribution D, z is

sampled from a latent distribution Z (mapped by generator G to the

real distribution for class y) and D is the discriminator model that

predicts the likelihood of the input being real, given the target label.

During training, the better D becomes at recognizing fake samples,

the more G has to improve its generation capabilities, thus increasing

the realism of synthetic data.

In this work, our GAN architecture is based on StyleGAN2 [78],

where an auxiliary network maps a class-conditioned latent vector

z to an intermediate latent vector w ∈ W , which helps to improve

generation quality and simplifies the projection of real images in D to

the latent space W . Indeed, given a real image x of class y, it is then

possible to find an intermediate latent point ŵ such that G(ŵ) ≈ x,

by optimizing the LPIPS distance loss [190] between x and G(ŵ) with

respect to ŵ, which measures the similarity of activations by a pre-

trained model. Of course, this projection property negatively affects

the sought privacy in FL, as the generated synthetic distribution may

contain visual patterns highly similar to those of the original samples.

6.3.3 Privacy-Preserving Aggregation

To address the privacy limitation of existing GAN methods, we pro-

pose a Privacy-Preserving Aggregation strategy (shown in Fig. 6.2)

injected in the GAN training during data generation to encourage
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Figure 6.2: Privacy Preserving Aggregation: a) a generator G is

trained for each node using its own private dataset. Training images

are then projected in the generator latent space; b) projected latent vec-

tors are clustered through spectral clustering, based on pairwise LPIPS

distance between corresponding images; c) linear interpolation among

cluster centroids produces new latent vectors, which are used to gen-

erate synthetic samples that are sent to the central node.

privacy. Let Ŵ = {w1̂, w2̂, ..., wN̂} be a set of points obtained by

projecting N images onto the GAN latent space, for a given dataset

class. We carry out spectral clustering [125] based on LPIPS dis-

tances between the images corresponding to Ŵ projections. Clus-

ter centroids W cˆ =
{︁
wc

1̂, w
c
2̂, ..., w

c
M̂

}︁
, representing latent aggregations

with similar visual features in terms of LPIPS distance, are then em-

ployed as a starting point for data synthesis. Working with centroids

allows us to capture shared patterns between dataset samples while

improving privacy, since the resulting latent vectors cannot be traced

back to specific patients. To create enough synthetic samples to al-

low model’s training, we then carry out an augmentation procedure

based on linearly interpolating the W cˆ centroids in the latent space

and generating training samples using points along the trajectories be-

tween them. This is also beneficial for increasing dataset variability,
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as it allows to produce samples that combine patterns of groups of pa-

tients (e.g., interpolating clusters with lesions on left/right lung may

produce synthetic images with lesions on both lungs), leading to bet-

ter generalization capabilities. Note that clustering and interpolation

are carried out independently for each dataset class, by exploiting the

conditional generation capabilities of the generator. This ensures that

sampled latent vectors are assigned a well-defined label, making the

corresponding synthetic images suitable for training the central node

classifier. Clusters with only one sample are discarded in the process.

6.4 Experiments and Results

We test the proposed approach on the task of tuberculosis classifi-

cation from X-ray images in a non-i.i.d. federated learning setting,

where different datasets are used for each node, to simulate a more re-

alistic training scenario. Each node generates synthetic X-ray images

by applying our aggregation approach on its private dataset; images

generated by each node are shared with a central node and used to

train a classification model.

6.4.1 Datasets and training procedure

We employ the Montgomery County X-ray Set and the Shenzhen Hos-

pital X-ray set1 [22, 71, 70]. The Montgomery Set contains 138 frontal

chest X-ray images (80 negatives and 58 positives), captured with a

Eureka stationary machine (CR) at 4020×4892 or 4892×4020 pixel

1This dataset was released by National Library of Medicine, National Institute

Of health, Bethesda, USA
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resolution. The Shenzhen dataset was collected using a Philips DR

Digital Diagnostic system. It includes 662 frontal chest X-ray images

(326 negatives and 336 positives), with a variable resolution of ap-

proximately 3000×3000 pixels. In our federated learning setting, each

dataset is associated to a node. We employ 80% of each dataset to

train a GAN and generate synthetic images using the proposed ap-

proach. The remaining 20% of each dataset is used for testing the

model trained on the central node. Test labels are balanced: 65 posi-

tives and 65 negatives on the Shenzhen dataset, and 15 positives and

15 negatives on the Montgomery dataset.

We use StyleGAN2-ADA [77] for image generation on each node,

because of its suitability in low-data regimes and its intrinsic latent

projection mechanism. GANs are trained in a label-conditioned set-

ting and yield a Fréchet inception distance (FID) of 21.36 and 55.38

on the Shenzhen and Montgomery datasets, respectively. Latent space

projection is carried out as in [78] for 500 iterations. Spectral cluster-

ing is carried out using 20 clusters on the Shenzhen Dataset and 10

on Montgomery one, due to the difference in sizes. Centroid interpo-

lation computes 9 intermediate points for each pair of centroids. The

resulting synthetic datasets include 1,730 samples per class on Shen-

zen and 415 samples per class on Montgomery. On the central node,

we use a ResNet-50 classifier, trained by minimizing a cross-entropy

loss with mini-batch gradient descent using the Adam optimizer for

a total of 1,000 epochs; mini-batch size is set to 64 and the learning

rate is 10−6. All images are resized to 256×256, and data augmenta-

tion is carried out with random horizontal flip and random 90-degree

rotations. Experiments are performed on an NVIDIA GeForce RTX

3090, using PyTorch.
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6.4.2 Experimental Results

We evaluate the performance of our approach by considering three

different data usage scenarios:

1. Real data: the central server trains a classifier on the origi-

nal joint dataset using images of all nodes (this is the standard

supervised centralized setting).

2. Synthetic (non privacy-preserving) data: each node gener-

ates a synthetic training set by sampling from a GAN trained on

the real data; synthetic samples are then used to train on the cen-

tral server. No privacy-preserving mechanism is enforced: sam-

pled images are drawn from the original distribution as learned

by the GAN.

3. Synthetic privacy-preserving data: the training set for the

central server is created by employing our privacy-preserving

generation procedure (see Sect. 6.3.3).

Tab. 6.1 reports the test accuracy on each dataset under the above

three scenarios. On the Shenzhen dataset, our approach is close to

centralized training using all data, respectively 0.75 and 0.78 classi-

fication accuracy. Interestingly, the non-privacy-preserving synthetic

setting achieves even higher performance, which is explained by the

larger number of training samples (662 real samples in Shenzhen, com-

pared to 3,460 synthetic samples), confirming that sample synthesis

helps making up for data scarcity – although in this case no precau-

tions are taken to improve privacy. This phenomenon is even more

evident on the smaller Montgomery dataset (138 samples), where the
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usage of synthetic data yields significantly improved accuracy (0.43 on

the original dataset vs 0.60 on the synthetic one).

Dataset Training data Accuracy

Real 0.78

Synthetic (non privacy-preserving) 0.82Shenzhen

Synthetic (privacy-preserving) 0.75

Real 0.43

Synthetic (non privacy-preserving) 0.60Montgomery

Synthetic (privacy-preserving) 0.60

Table 6.1: Classification accuracy on the test set of each dataset, in

different training scenarios.

Figure 6.3: In red, LPIPS distance histogram between real images

and the corresponding images obtained through latent space projection.

In blue, LPIPS distance histogram between real images and the closest

images generated with the proposed approach.

Privacy-preserving capabilities of the proposed approach are mea-

sured quantitatively by computing the LPIPS distance between real
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training images and a) their projected counterparts using StyleGAN2,

and b) the most similar samples from the pool of images generated by

our strategy. Ideally, we would expect that, when using a standard

StyleGAN2 network, the latent projection procedure should be able to

recover an image that the model has used at training time — which is

undesirable, since knowledge of the model would allow an attacker to

reconstruct original samples; we also expect that images synthesized

through generative aggregation should be significantly dissimilar to

any real sample. Indeed, LPIPS distance histograms in Fig. 6.3 show

that a distribution shift can be observed between the two sets of mea-

sured distances: latent space projection of real images tends to pro-

duce samples with significantly smaller distances than those obtained

with most similar synthetic images generated by our approach. This

Figure 6.4: Top: real images from Shenzhen Dataset; middle: im-

ages generated by latent projection; bottom: most similar synthetic

images obtained with the proposed method.
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effect can be also appreciated qualitatively in the samples reported

in Fig. 6.4, showing six images randomly sampled from the Shenzhen

Dataset (top row) compared to their projection in the generator latent

space (middle row) and the closest image in the aggregated dataset

(bottom row).

6.5 Discussion

In this study we propose a synthetic data aggregation approach as

an alternative to classic federated learning with gradient aggregation,

which is subject to privacy concerns due to the risk of reconstruct-

ing the original inputs. Rather than training a central model by ag-

gregating gradients from individual nodes, we propose to generate a

synthetic dataset for each node and use the union of these datasets to

train the central model. We tested our approach in a realistic scenario,

using two X-Rays datasets for Tuberculosis classification, simulating a

system with two nodes and non-i.i.d. data. The results demonstrated

the validity of our approach, which obtains comparable performance to

those obtained when training on the union of all datasets. Moreover,

we showed, both quantitatively and qualitatively, that the generated

images exhibit visual features typical of the original data, while be-

ing significantly different from any actual real image, thus preventing

to trace them back to individual patients. Still, this is a preliminary

work: future developments will investigate its validity in the presence

of more nodes or in the presence of i.i.d. distributions.
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CHAPTER

SEVEN

A PRIVACY-PRESERVING WALK IN THE

LATENT SPACE OF GENERATIVE MODELS

FOR MEDICAL APPLICATIONS

Building on the foundation laid in the previous chapter, we now take

one step deeper into the intricacies of navigating latent spaces. Al-

though linear interpolation offers a simple method for generating syn-

thetic samples, it poses the risk of producing data points that are very

similar to real ones, potentially compromising privacy. To solve this

problem, in this chapter we introduce a new strategy to navigate latent

spaces, ensuring the generation of diverse and privacy-preserving syn-

thetic samples. Using an auxiliary identity classifier, we learn a non-

linear pathway between points in latent spaces, reducing the chances

of inadvertently replicating real samples. Through rigorous empirical

evaluations, we demonstrate the superiority of our method over linear

interpolation in terms of security. Moreover, its applicability goes be-

105
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yond GANs. Indeed, any network architecture with a navigable latent

space can benefit from our method, underscoring its versatility and

wide relevance.

7.1 Motivation

The success of deep learning for medical data analysis has demon-

strated its potential to become a core component of future diagnosis

and treatment methodologies. However, in spite of the efforts de-

voted to improve data efficiency [87], the most effective models still

rely on large datasets to achieve high accuracy and generalizability.

An effective strategy for obtaining large and diverse datasets is to

leverage collaborative efforts based on data sharing principles; how-

ever, current privacy regulations often hinder this possibility. As a

consequence, small private datasets are still used for training models

that tend to overfit, introduce biases and generalize badly on other

data sources addressing the same task [187]. As a mitigation measure,

generative adversarial networks (GANs) have been proposed to syn-

thesize highly-realistic images, extending existing datasets to include

more (and more diverse) examples [131], but they pose privacy con-

cerns as real samples may be encoded in the latent space. K-same

techniques [73, 114] attempt to reduce this risk by following the k-

anonymity principle [165] and replacing real samples with synthetic

aggregations of groups of k samples. As a downside, these methods

reduce the dataset size by a factor of k, which greatly limits their

applicability.

To address this issue, we propose an approach, complementing k-
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same techniques, for generating an extended variant of a dataset by

sampling a privacy-preserving walk in the GAN latent space. Our

method directly optimizes latent points, through the use of an auxil-

iary identity classifier, which informs on the similarity between train-

ing samples and synthetic images corresponding to candidate latent

points. This optimized navigation meets three key properties of data

synthesis for medical applications: 1) equidistance, encouraging the

generation of diverse realistic samples suitable for model training;

2) privacy preservation, limiting the possibility of recovering original

samples, and, 3) class-consistency, ensuring that synthesized samples

contain meaningful clinical information. To demonstrate the gener-

alization capabilities of our approach, we experimentally evaluate its

performance on two medical image tasks, namely, tuberculosis classi-

fication using the Shenzhen Hospital X-ray dataseet [22, 71, 70] and

diabetic retinopathy classification on the APTOS dataset [80]. On

both tasks, our approach yields classification performance compara-

ble to training with real samples and significantly better than existing

k-same techniques such as k-SALSA [73], while keeping the same ro-

bustness to membership inference attacks.

Contributions: 1) We present a latent space navigation approach

that provides a large amount of diverse and meaningful images for

model training; 2) We devise an optimization strategy of latent walks

that enforces privacy; 3) We carry out several experiments on two med-

ical tasks, demonstrating the effectiveness of our generative approach

on model’s training and its guarantees to privacy preservation.
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7.2 Related Work

Conventional methods to protect identity in private images have in-

volved modifying pixels through techniques like masking, blurring, and

pixelation [138, 15]. However, these methods have been found to be in-

sufficient for providing adequate privacy protection [4]. As an alterna-

tive, GANs have been increasingly explored to synthesize high-quality

images that preserve information from the original distribution, while

disentangling and removing privacy-sensitive components [182, 185].

However, these methods have been mainly devised for face images and

cannot be directly applicable to medical images, since there is no clear

distinction between identity and non-identity features [73].

Recent approaches, based on the k-same framework [114], employ

GANs to synthesize clinically-valid medical images principle by aggre-

gating groups of real samples into synthetic privacy-preserving exam-

ples [73, 132]. In particular, k-SALSA [73] uses GANs for generating

retinal fundus images by proposing a local style alignment strategy to

retain visual patterns of the original data. The main downside of these

methods is that, in the strive to ensure privacy preservation following

the k-anonymity [165] principle, they significantly reduce the size of

the original dataset.

Our latent navigation strategy complements these approaches by

synthesizing large and diverse samples, suitable for downstream tasks.

In general, latent space navigation in GANs manipulates the latent

vectors to create new images with specific characteristics. While many

works have explored this concept to control semantic attributes of gen-

erated samples [78, 17], to the best of our knowledge, no method has

tackled the problem from a privacy-preservation standpoint, especially
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on a critical domain such as medical image analysis.

7.3 Method

The proposed Privacy-preserving LAtent Navigation (PLAN) strat-

egy envisages three separate stages: 1) GAN training using real sam-

ples; 2) latent privacy-preserving trajectory optimization in the GAN

latent space; 3) privacy-preserving dataset synthesis for downstream

applications. Fig. 7.1 illustrates the overall framework and provides a

conceptual interpretation of the optimization objectives.

Figure 7.1: Overview of the PLAN approach. Using real sam-

ples, we train a GAN, an identity classifier ϕid and an auxiliary clas-

sifier ϕclass. Given two arbitrary latent points, wa and wb, PLAN

employs ϕid and ϕclass to gain information on latent space structure

and generate a privacy-preserving navigation path (right image), from

which synthetic samples can be sampled (far right images, zoom-in for

details).
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Formally, given a GAN generator G :W → X , we aim to navigate

its latent spaceW to generate samples in image space X in a privacy-

preserving way, i.e., avoiding latent regions where real images might

be embedded. The expected result is a synthetic dataset that is safe

to share, while still including consistent clinical features to be used by

downstream tasks (e.g., classification).

Our objective is to find a set of latent points W̄ ⊂ W
from which it is safe to synthesize samples that are significantly

different from training points: given the training set X̂ ⊂ X and a

metric d on X , we want to find W̄ such that minx∈X̂ d (G (w̄) ,x) >

δ, ∀w̄ ∈ W̄ , for a sufficiently large δ. Manually searching for W̄ ,

however, may be unfeasible: generating a large W̄ is computationally

expensive, as it requires at least |W̄| forward passes through G, and

each synthesized image should be compared to all training images;

moreover, randomly sampled latent points might not satisfy the

above condition.

To account for latent structure, one could explicitly sample away

from latent vectors corresponding to real data. Let Wi
ˆ ⊂ W be the

set of latent vectors that produce near-duplicates of a training sample

xi ∈ X , such that G(ŵi) ≈ xi, ∀ŵi ∈ Wi
ˆ . We can thus define Ŵ =⋃︁N

i=1 Ŵ i as the set of latent points corresponding to all N samples

of the training set: knowledge of Ŵ can be used to move the above

constraint from X toW , by finding W̄ such that minŵ∈Ŵ d (w̄, ŵ) > δ,

∀w̄ ∈ W̄ . In practice, although Wi
ˆ can be approximated through

latent space projection [78, 6] from multiple initialization points, its

cardinality |Wi
ˆ | cannot be determined a priori as it is potentially

unbounded.

From these limitations, we pose the search of seeking privacy-
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preserving latent points as a trajectory optimization problem, con-

strained by a set of objectives that mitigate privacy risks and en-

force sample variability and class consistency. Given two arbi-

trary latent points (e.g., provided by a k-same aggregation method),

wa,wb ∈ W , we aim at finding a latent trajectory W̄T =

[wa = w̄1, w̄2, . . . , w̄T−1,wb = w̄T ] that traverses the latent space

from wa to wb in T steps, such that none of its points can be mapped

to any training sample. We design our navigation strategy to sat-

isfy three requirements, which are then translated into optimization

objectives:

1. Equidistance. The distance between consecutive points in the

latent trajectory should be approximately constant, to ensure

sample diversity and mitigate mode collapse. We define the

equidistance loss, Ldist, as follows:

Ldist =
T−1∑︂
i=1

∥w̄i, w̄i+1∥22 (7.1)

where ∥·∥2 is the L2 norm. Note that without any additional

constraint, Ldist converges to the trivial solution of linear inter-

polation, which

gives no guarantee that the path will not contain points belong-

ing to Ŵ .

2. Privacy preservation. To navigate away from latent regions

corresponding to real samples, we employ an auxiliary network

ϕid, trained on X̂ to perform identity classification. We then set

the privacy preservation constraint by imposing that a sampled
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trajectory must maximize the uncertainty of ϕid, thus avoiding

samples that could be recognizable from the training set. As-

suming ϕid to be a neural network with as many outputs as

the number of identities in the original dataset, this constraint

can be mapped to a privacy-preserving loss, Lid, defined as the

Kullback-Leibler divergence between the softmax probabilities

of ϕid and the uniform distribution U :

Lid =
T∑︂
i=1

KL[ϕid(G(w̄i)) ∥ U(1/nid)] (7.2)

where nid is the number of identities.

This loss converges towards points with enhanced privacy, on

which a trained classifier is maximally uncertain.

3. Class consistency. The latent navigation strategy, besides be-

ing privacy-preserving, needs to retain discriminative features to

support training of downstream tasks on the synthetic dataset.

In the case of a downstream classification task, given wa and

wb belonging to the same class, all points along a trajectory

between wa and wb should exhibit the visual features of that

specific class. Moreover, optimizing the constraints in Eq. 7.1

and Eq. 7.2 does not guarantee good visual quality, leading to

privacy-preserving but useless synthetic samples. Thus, we add

a third objective that enforces class-consistency on trajectory

points. We employ an additional auxiliary classification network

ϕclass, trained to perform classification on the original dataset,

to ensure that sampled latent points share the same visual prop-

erties (i.e., the same class) of wa and wb. The corresponding
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loss Lclass is as follows:

Lclass =
T∑︂
i=1

CE [ϕclass(G(w̄i)), y] (7.3)

where CE is the cross-entropy between the predicted label for

each sample and the target class label y.

Overall, the total loss for privacy-preserving latent navigation is ob-

tained as:

LPLAN = Ldist + λ1Lid + λ2Llabel (7.4)

where λ1 and λ2 weigh the three contributions.

In a practical application, we employ PLAN in conjunction with a

privacy-preserving method that produces synthetic samples (e.g., a k-

same approach). We then navigate the latent space between random

pairs of such samples, and increase the size of the dataset while retain-

ing privacy preservation. The resulting extended set is then used to

train a downstream classifier ϕdown on synthetic samples only. Over-

all, from an input set of N samples, we apply PLAN to N/2 random

pairs, thus sampling TN/2 new points.

7.4 Experiments and Results

We demonstrate the effectiveness and privacy-preserving properties of

our PLAN approach on two classification tasks, namely, tuberculosis

classification and diabetic retinopathy (DR) classification.
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7.4.1 Training and evaluation procedure

Data preparation. For tuberculosis classification, we employ the

Shenzhen Hospital X-ray set1 [22, 71, 70] that includes 662 frontal

chest X-ray images (326 negatives and 336 positives). For dia-

betic retinopathy classification, we use the APTOS fundus image

dataset [80] of retina images labeled by ophthalmologists with five

grades of severity. We downsample it by randomly selecting 950 im-

ages, equally distributed among classes, to simulate a typical scenario

with low data availability (as in medical applications), where GAN-

based synthetic sampling, as a form of augmentation, is more needed.

All images are resized to 256×256 and split into train, validation and

test set with 70%, 10%, 20% proportions.

Baseline methods. We evaluate our approach from a privacy-

preserving perspective and by its capability to support downstream

classification tasks. For the former, given the lack of existing meth-

ods for privacy-preserving GAN latent navigation, we compare PLAN

to standard linear interpolation. After assessing privacy-preserving

performance, we measure the impact of our PLAN sampling strategy

when combined to k-SALSA [73] and the latent cluster interpolation

approach from [132] (LCI in the following) on the two considered tasks.

Implementation details. We employ StyleGAN2-ADA [77] as GAN

model for all baselines, trained in a label-conditioned setting on the

original training sets. For all classifiers (ϕid, ϕclass and ϕdown) we em-

ploy a ResNet-18 network [59]. Classifiers ϕid and ϕclass are trained

on the original training set, while ϕdown (i.e., the task classifier, one

1This dataset was released by the National Library of Medicine, NIH, Bethesda,

USA.
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for each task) is trained on synthetic samples only. For ϕid, we apply

standard data augmentation (e.g., horizontal flip, rotation) and add

five GAN projections for each identity, to mitigate the domain shift

between real and synthetic images. ϕdown is trained with a learning

rate of 0.001, a batch size of 32, for 200 (Shenzhen) and 500 (APTOS)

epochs. Model selection is carried out at the best validation accuracy,

and results are averaged over 5 runs. When applying PLAN on a pair

of latent points, we initialize a trajectory of T = 50 points through

linear interpolation, and optimize Eq. 7.4 for 100 steps using Adam

with a learning rate of 0.1; λ1 and λ2 are set to 0.1 and 1, respectively.

Experiments are performed on an NVIDIA RTX 3090.

7.4.2 Results

To measure the privacy-preserving properties of our approach, we em-

ploy the membership inference attack (MIA) [158], which attempts to

predict if a sample was used in a classifier’s training set. We use at-

tacker model and settings defined in [123, 74], training the attacker on

30% of the training set (seen by PLAN through ϕid and ϕclass) and 30%

of the test set (unseen by PLAN); as a test set for MIA, we reserve 60%

of the original test set, leaving 10% as a validation set to select the best

attacker. Ideally, if the model preserves privacy, the attacker achieves

chance performance (50%), showing inability to identify samples used

for training. We also report the FID of the generated dataset, to mea-

sure its level of realism, and the mean of the minimum LPIPS [190]

(“mmL” for short) distances between each generated sample and its

closest real image, to measure how generated samples differ from real

ones. We compare PLAN to a linear interpolation between arbitrary
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pairs of start and end latent points, and compute the above measures

on the images corresponding to the latent trajectories obtained by two

approaches. We also report the results of the classifier trained on real

data to provide additional bounds for both classification accuracy and

privacy-preserving performance.

Shenzhen Aptos

Acc. (%)(↑) MIA (↓) FID (↓) mmL (↑) Acc. (%)(↑) MIA (↓) FID (↓) mmL (↑)

Real 81.23±1.03 71.41±3.59 – – 50.74±2.85 73.30±4.04 – –

Linear 82.14±1.40 56.28±1.60 63.85 0.125 41.58±2.11 50.53±3.06 85.17 0.118

PLAN 83.85±1.33 50.13±3.99 63.22 0.159 46.95±3.06 48.51±2.85 90.81 0.131

Table 7.1: Comparison between the downstream classifier (ϕdown)

model trained with real samples and those trained with synthetic sam-

ples generated from the linear path and privacy path, respectively.

Results in Table 7.1 demonstrate that our approach performs

similarly to training with real data, but with higher accuracy with

respect to the linear baseline. Privacy-preserving results, measured

through MIA and mmL, demonstrate the reliability of our PLAN

strategy in removing sensitive information, reaching the ideal lower

bound of MIA accuracy.

Fig. 7.2 shows how, for given start and end points, PLAN-

generated samples keep high quality but differ significantly from real

samples, while latent linear interpolation may lead to near-duplicates.

This is confirmed by the higher LPIPS distance between generated

samples and the most similar real samples for PLAN.

After verifying the generative and privacy-preserving capabilities of
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Figure 7.2: Linear vs PLAN navigation between two arbi-

trary points. For each step of the latent trajectory, we compute the

LPIPS distance between each synthetic sample and its closest real im-

age. On the right, a qualitative comparison of images at step 35 and

their closest real samples: the synthetic image obtained with PLAN

differs significantly from its closest real sample; in linear interpola-

tion, synthetic and real samples look similar. Bottom images show

synthetic samples generated by linear interpolation and PLAN at the

same steps (zoom-in for details).

our approach, we evaluate its contribution to classification accuracy

when combined with existing k-same methods, namely k-SALSA [73]

and LCI [132]. Both methods apply latent clustering to synthesize

a privacy-preserving dataset, but exhibit low performance transfer-

ability to classification tasks, due to the reduced size of the resulting

synthetic dataset. We carry out these experiments on APTOS, using
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k = 5 and k = 10, for comparison with [73]2. Results are given in

Table 7.2 and show how our PLAN strategy enhances performance of

the two baseline methods, reaching performance similar to training

the retinopathy classifier with real samples (i.e., 50.74 on real data vs

44.95 when LCI [132] is combined with PLAN) and much higher than

the variants without PLAN. We also measured MIA accuracy between

the variants with and without PLAN, and we did not observe signif-

icant change among the different configurations: accuracy was at the

chance level in all cases, suggesting their privacy-preserving capability.

k-SALSA [73] k-SALSA LCI [132] LCI

+PLAN +PLAN

k = 5 25.58±6.32 36.59±3.48 38.74±4.51 43.16±2.71

k = 10 27.47±3.42 34.21±1.62 36.42±3.77 44.95±1.61

Table 7.2: Impact of our navigation strategy on k-same methods on

the APTOS dataset. Performance are reported in terms of accuracy.

7.5 Discussion

We presented PLAN, a latent space navigation strategy designed to

reduce privacy risks when using GANs for training models on synthetic

data. Experimental results, on two medical image analysis tasks,

demonstrate how PLAN is robust to membership inference attacks

2Values of k smaller than 5 led to vulnerabilities to MIA on APTOS, as shown

in [73].
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while effectively supporting model training with performance compa-

rable to training on real data. Furthermore, when PLAN is combined

with state-of-the-art k-anonymity methods, we observe a mitigation of

performance drop while maintaining privacy-preservation properties.

Future research directions will address the scalability of the method to

large datasets with a high number of identities, as well as learning la-

tent trajectories with arbitrary length to maximize privacy-preserving

and augmentation properties of the synthetic datasets.
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CHAPTER

EIGHT

FEDER: FEDERATED LEARNING THROUGH

EXPERIENCE REPLAY AND

PRIVACY-PRESERVING DATA SYNTHESIS

Approaching the end of our journey, this chapter attempts to bring to-

gether all the concepts we have explored through our dissertation. We

propose a comprehensive framework for distributed federated learn-

ing. The core of this framework is a privacy-preserving GAN, trained

to generate data that can be shared safely, facilitating the exchange of

knowledge among federation participants. Inspired by the principles

of Continual Learning, we incorporate the concept of Experience Re-

play to manage the distribution shifts present among the federation

nodes. This strategy, not only ensures patterns that can generalize

across different datasets, but also supports privacy. The real proof of

the effectiveness of our approach, is its impressive performance in real

medical scenarios, which underscores its practical importance.

121
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8.1 Motivation

Recent advances of deep learning in the medical imaging domain have

shown that, while data-driven approaches represent a powerful and

promising tool for supporting physicians’ decisions, the availability of

large-scale datasets plays a key role in the effectiveness and reliability

of the resulting models [69, 174, 32]. However, the curation of large

medical imaging datasets is a complex task: data collection at single

institutions is relatively slow and the integration of historical data may

require significant efforts to deal with different data formats, storage

modalities and acquisition devices; moreover, medical institutions are

often reluctant to share their own data, due to privacy concerns. As

a consequence, this affects the quality, reliability and generalizability

of models trained on local datasets, which unavoidably suffer from

bias and overfitting issues, reducing the ability to address future data

distribution shifts [187]. In order to overcome the lack of large-scale

datasets, methodological solutions can be adopted: in particular, fed-

erated learning [184] encompasses a family of strategies for distributed

training over multiple nodes, each with its own private dataset, which

typically communicate with a central node by sending local model

updates, used to train the main model. In this scenario, no data is

explicitly shared between nodes, thus addressing the required privacy

issues. However, this family of techniques generally performs well

when dataset distributions are approximately i.i.d. and local gradi-

ents/models contribute to learning shared features: unfortunately, in

practice this hypothesis rarely holds, due to differences in the acqui-

sition and in the clinical nature of data collected by multiple institu-

tions. Moreover, the presence of a central node, besides representing
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a single point of failure, requires that all nodes trust it to correctly

and fairly treat updates from all sources: indeed, privacy issues arise

when transferring local updates to the “semi-honest” central node [45],

which might attempt to reconstruct original inputs from gradients or

parameter variations [197, 51, 192]. To address the above limitations,

we present FedER, a federated learning approach that, leveraging ex-

perience replay from continual learning [137, 140, 141, 19] and gener-

ative models [52, 117, 78], proposes a principled way for training local

models that approximately converge to the same decisions, without

the need of a shared model architecture and of central coordination.

FedER also enforces privacy preservation through the transmission of

synthetic data generated in a way to obfuscate real data patterns.

Specifically, FedER’s learning strategy envisages multiple nodes that

initially train their local models and a GAN on their own datasets. The

GAN will be used in order to generate a privacy-preserving synthe-

sized version of the dataset (buffer). Once local training is completed

in a node, its model and the “buffer” of generated synthetic data

are sent to a random node of the network. The receiving node then

adapts the incoming model using its own data and the received buffer

data, in order to limit model’s forgetting. Data privacy is ensured

through a privacy-preserving generative adversarial network (GAN)

that employs a specific loss designed to maximize the distance from

real data, while keeping a high level of realism and — as importantly

— clinically-consistent features, in order to allow models to be trained

effectively.

FedER is tested on two tasks, simulating a non-i.i.d. medi-

cal scenario: 1) classification of tuberculosis from X-ray data, us-

ing Montgomery County and Shenzhen Hospital datasets [22, 71, 70],
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and 2) melanoma classification using skin images of the ISIC 2019

dataset [33, 168, 31]. The experimental setting is specifically designed

to emulate a realistic medical non-i.i.d. scenario, where each node in

the federation uses its own dataset. This is in stark contrast with com-

mon procedures where non-i.i.d. distributions are simulated by split-

ting a single source dataset. Results show how our approach is able

to reach performance similar to using centralized training on all real

data together in a single node, while outperforming current state-of-

the-art methods, such as FedAvg [113], FedProx [98] and FedBN [100].

Privacy-preserving capabilities are measured quantitatively by evalu-

ating LPIPS distance [190] between real images and samples gener-

ated, respectively, through latent space optimization on a standard

GAN and by the proposed approach. Qualitatively, we also show sev-

eral examples of generated images with corresponding closest match

in the real dataset, demonstrating significant differences that prevent

tracing back to the original real distribution.

In summary, the overall contributions of the proposed work are the

following:

• We propose a decentralized federated learning strategy, based

on continual learning principles, designed for medical imag-

ing data, which outperforms server-based federated learning

approaches and yields performance similar to standard (non-

federated) training settings. Furthermore, experience replay al-

lows local node models to converge to the same decisions, thus

making the whole approach behave similarly to server-based ag-

gregation models.

• We propose a GAN-based privacy-preserving mechanism that
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supports synthetic data sharing through a GAN-based technique

designed to minimize patient information leak. This is different

from most privacy-preserving techniques based on differential

privacy, which degrades performance due to added noise.

• Most approaches for model aggregation in federated learning

employ gradient/parameter averaging. These solutions com-

pletely neglect any similarity or dissimilarity between merged

features, possibly resulting in interference that harm conver-

gence. FedER, instead, takes feature semantics into account

when merging models: if a node receives a model that ex-

tracts useful features for the local dataset, these can be read-

ily employed and re-used, without the risk of randomly aver-

aging them with other less important features. FedER, thus,

surpasses the common and straightforward weight/gradient av-

eraging paradigm, replacing it with a principled way for knowl-

edge transfer, which relaxes two of the constraints of the leading

federated learning approaches: the presence of a central node

and model homogeneity.

8.2 Related Work

In a typical FL setting, a central server sends a model to a set of client

nodes; each node fine-tunes the model on its own data, then sends

local model updates back to the server; the server aggregates the up-

dates by all nodes into the global model, which is sent back to nodes

iteratively until convergence. Given the constraints existing in the

medical domain, especially in terms of data sharing, it represents an
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appropriate test-bench for federated learning methods [99, 146, 37, 46].

The most straightforward way to aggregate information from multiple

nodes is through averaging local models of each client, as proposed

in FedAvg [113] and FedProx [98]. However, statistical data hetero-

geneity is an issue as it may lead to catastrophic forgetting [76, 53].

FedCurv [157] addresses this limitation by adding a penalty term to

the loss driving the local models to a shared optimum. FedMA [171]

builds a shared global model in a layer-wise manner by matching and

averaging hidden elements with similar feature extraction signatures.

Our method differs from existing feature integration approaches in

that, instead of averaging model updates or gradients, which can be

subject to input reconstruction attacks [51, 178, 197], each node at-

tempts to learn features that perform well on its own dataset while

retaining knowledge from other nodes, in a more principled way than

parameter averaging. The strategy of fitting the global model to lo-

cal data is also sought by the recent federated personalized methods.

FedBN [100], for instance, keeps batch normalization layers private,

while other model parameters are aggregated by the central node.

However, the presence of a central node that aggregates local

updates simplifies the communication protocol when the number of

clients is very large (thousands or millions), but introduces several

downsides: it represents a single point of failure; it can become a bot-

tleneck when the number of clients increases [101]; in general, it may

not always be available or desirable in collaborative learning scenar-

ios [76]. In this work, we deal with decentralized federated learning, in

which the central node is replaced by peer-to-peer communication be-

tween clients: there is no longer a global shared model as in standard

FL, but the communication protocol is designed so that all local mod-
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els approximately converge to the same solution. Decentralized learn-

ing is particularly suitable to application in the medical domain, where

the number of nodes (i.e., institutions) is relatively low; however, re-

search is still ongoing, and no effective solutions have been established.

In [90], a Bayesian approach is proposed to learn a shared model over

a graph of nodes, by aggregating information from local data with the

model of each node’s one-hop neighbors. A secure weight averaging

algorithm is proposed in [177], where model parameters are not shared

between nodes, but all converge to the same numerical values (with the

disadvantages associated to parameter averaging with non-i.i.d. data

distributions). Other approaches implement different communication

strategies based on parameter sharing (e.g., decentralized variants on

FedAvg [164, 113]). In general, many of the existing solutions do not

target, nor are they tested on, the medical domains — most employ

toy datasets, such as MNIST and CIFAR10. Two works, similar in

the decentralized learning spirit to ours, are proposed in [146, 49],

where use cases of decentralized and swarm learning for medical im-

age segmentation are presented. However, like other approaches, they

adopt simple parameter averaging to integrate features or predictions

from multiple nodes.

8.3 Method

8.3.1 Overview

An overview of FedER is shown in Fig. 8.1. In this scenario, a federa-

tion consists of a set of N peer nodes, each owning a private dataset.

Before the decentralized training algorithm is started, each node
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Figure 8.1: Overview of FedER learning strategy. Each node

initially trains a privacy-preserving GAN, that is used to sample syn-

thetic data from the local distribution, without retaining features that

may be used to identify patients. Then, each node iteratively receives

the local model and a buffer of synthetic samples from a random node,

and fine-tunes the received model on its own private data, using the

buffer to prevent forgetting of previously-learned features.

internally trains a privacy-preserving generative adversarial network,

which is used to generate synthetic samples from its private data distri-

bution. The training objective of the GAN is designed to enforce the

constraint that sampled data do not include privacy-sensitive infor-

mation, while maintaining the clinical features required for successful

training.

At each round of decentralized training, each node receives a model

and a set of synthetic samples — “buffer” — from a random node in

the federation. The input model to the node is fine-tuned on both

the private dataset and the buffer, in a way that is reminiscent of

experience replay techniques in continual learning (e.g., [19]), in or-

der to learn features that transfer between nodes and that can handle
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non-i.i.d. distributions. At the end of each round (i.e., after per-

forming several training iterations), the locally-trained model is sent

to a randomly-chosen successor node together with a buffer of local

synthetic samples, and the whole procedure is repeated.

In this work we specifically address the problem of federated learn-

ing for medical image classification; thus, the method is presented by

considering this task, but the whole strategy can be applied to any

other task without losing generalization.

8.3.2 Privacy-preserving GAN

In the proposed method, nodes exchange both models and data, im-

plementing a knowledge transfer procedure based on experience re-

play (see Sect. 8.3.3 below). Of course, sharing real samples would

go against federated learning policies; hence, exchanged samples are

generated so that they are representative of the local data, while tak-

ing precautions against privacy violations — which may happen, for

instance, if the generative model overfits the source dataset.

Formally, we assume that each node ni, from a set ofN nodes, owns

a private dataset Di = {(x1,y1) , (x2,y2) , . . . , (xM ,yM)}, where each

xj ∈ X represents a sample in the dataset, and each yj ∈ Y represents

the corresponding target1. The local dataset can then be used to train

a conditional GAN [117], consisting of a generator G, that synthesizes

samples for a given label by modeling P (x|y, z)), where z ∈ Z is

a random vector sampled from the generation latent space, and a

1The proposed approach is task-agnostic, as long as it is possible to sample

from the Y distribution. For simplicity, within the scope of this work, we will

focus on classification tasks, and we will assume that targets are class labels.
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discriminator D, which outputs the probability of an input sample

being real, modeling P (real|x,y). The standard GAN formulation

introduces a discrimination loss, which trainsD to distinguish between

real and synthetic samples:

LD = −Ex,y [log (D (x,y))]− Ez,y [log (1−D (G (z,y) ,y))] , (8.1)

and a generation loss, which trains G to synthesize samples that ap-

pear realistic to the discriminator:

LG = −Ez,y [D (G (z,y) ,y)] . (8.2)

While it has been theoretically proven that, at convergence, the

distribution learned by the generator matches and generalizes from

the original data distribution [53], unfortunately GAN architectures

may be subject to training anomalies, including mode collapse and

overfitting: as a consequence, the basic GAN formulation may lead

to the generation of samples that are near duplicates of the original

samples, which would be unacceptable in a federated learning scenario.

In order to mitigate this risk, we introduce a privacy-preserving

loss, enforcing the generation of samples that do not retain poten-

tially sensitive information, but still include features that are clinically

relevant to the target y of the synthetic sample. In other words, if

y encodes generic features for the diagnosis of a certain disease, we

want the generator to learn how to synthesize samples conditioned by

y, that exhibit evidence of that disease but cannot be traced back to

any of the dataset’s samples of the same disease.

To do so, our privacy-preserving loss aims at penalizing the model

proportionally to the similarity between pairs of real and synthetic

samples. We measure “similarity” by means of the LPIPS metric [190],
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which has been shown to capture perceptual similarity by calibrat-

ing the distance between feature vectors extracted from a pre-trained

VGG model [159].

In practice, given a batch of real samples
{︂
x
(r)
1 ,x

(r)
2 , . . . ,x

(r)
b

}︂
and a

batch of synthetic samples
{︂
x
(s)
1 ,x

(s)
2 , . . . ,x

(s)
b

}︂
, the privacy-preserving

loss term is computed as:

LPP =
1

b

∑︂
x(r)

∑︂
x(s)

dL
(︁
x(r),x(s)

)︁
, (8.3)

where dL is the LPIPS distance defined as:

dL(x
(r),x(s)) =

∑︂
i

wi · ∥ϕi(x
(r))− ϕi(x

(s))∥2 (8.4)

where ϕi represents the feature maps extracted from the ith layer of

a deep neural network and wi is a weight learned to reflect the per-

ceptual importance of that layer. Note that, in this formulation,

we ignore the y targets associated to each x: we want to prevent

the model from generating near-duplicates of real samples in general,

regardless of class correspondence. Also, we intentionally employ a

pairwise metric on samples, rather than an aggregated metric such as

Frêchet Inception Distance [60], since we want to prevent similarity

between samples, not between distributions, which would conflict with

the GAN objective.

The resulting new loss for the Generator is a combination of Eq. 8.2

and Eq. 8.3:

LG-PP = LG − αLPP (8.5)

where LPP is sign reversed as we want to maximize Eq. 8.3, while α

is a hyperparameter used to balance the two terms.
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The combined effect of the three loss terms — LD, LG, LPP

— pushes the generator to explore the sample space to match the

dataset distribution, while “avoiding” latent space mappings that

would project to actual real samples.

8.3.3 Federated learning with experience replay

Current approaches for federated learning are mostly based on param-

eter averaging (e.g., FedAvg), which is, however, a straightforward way

to combine knowledge from multiple sources: feature locations are not

aligned over different models and may be disrupted by updates, be-

fore slowly converging to consensus: hypothetically, two models could

learn the same set of features at different locations of the same layer,

to only have them cancel each other when averaging. In a decentral-

ized scenario, this issue is even exacerbated, due to the lack of an

entity that enforces global agreement on node features.

In our approach, we address this problem by taking inspiration

from continual learning strategies [38] that learn how to perform a task

with a non-i.i.d data stream without forgetting previously-learned

knowledge: as a consequence, models are encouraged to reuse and

adapt features so that they can equally serve the current and previous

tasks. Analogously, in the federated learning setting, the objective is

to train a global model trained on disjoint non-i.i.d. data distributions

coming from different nodes.

Given these premises, we define a federated learning strategy where

a node receives another node’s model and surrogate data (generated

through our privacy-preserving GAN) — the “previous task” — and

fine-tunes that model on its own private date — the “current task” —
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while using received synthetic data as a reference to what is necessary

to retain/adapt from the knowledge learned by the previous node. The

idea is to build for each node a model able to tackle its internal data

while not forgetting about the data seen in previous nodes/iterations.

We first introduce the terminology used in the method’s descrip-

tion. In our approach, we define a set of N tasks T = (T1, T2, . . . , TN),

where Ti is the task to be solved within node ni.

Definition 1. Task Ti aims at optimizing a model Mi, parame-

terized by θi, on dataset Di residing on node ni and that cannot be

shared to other nodes.

Definition 2. A buffer Bi is a set of synthetic images, drawn

from a latent space learned through a generative model Gi using data

Di available on node ni.

Definition 3. Training is organized in parallel rounds. At the

end of round r, each node ni produces a model M r
i trained on dataset

Di and on a buffer Bj, received from another node nj, to optimize

an objective L, i.e., to find argminθr
i
= E(x,y)∼Di∪Bj

[L(M r
i (x,θ

r
i ),y)].

For each training round, all nodes in parallel share to/receive from

other nodes, buffer of synthetic images and trained models.

In the following, we describe our method (whose graphical repre-

sentation is given in Fig. 8.1) from the point of view of a single node

nj. At a given round r, training for node nj can be seen as learning

a new task Tj, from dataset Dj, in a continual learning setting by

finetuning the incoming model Mr−1
i (with parameters θr−1

i ) on Dj
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and on the incoming buffer Bi in order to learn Tj while mitigating

the forgetting of Ti. Thus, unlike other federated learning approaches,

each node does not have its own local model: as the decentralized

learning strategy proceeds, a node iteratively receives a model from

another node and updates it with local information, while preserving

previously-learned knowledge, before sending it to the next node. For-

mally, the loss function for modelMr
j in node nj at round r is given

as:

L(θr
j ) = λE(x,y)∼Dj

[L(M r
j (x,θ

r
j ),y)]+

+ (1− λ)E(x′,y′)∼Bi
[L(M r

j (x
′,θr

j ),y
′)]

(8.6)

where λ controls the importance between real samples from the

local dataset Di and replayed synthetic samples from node ni. Note

that, for a given nj, the predecessor node ni is not fixed: in a practical

asynchronous implementation, a node may receive a model and buffer

from any random node in the federation at any time, using queues to

handle incoming data.

After optimizing the L(θr
j ) objective through mini-batch gradient

descent for a certain number of training iterations, the resulting model

M r
j (θ

r
j ), with updated parameters θr

j , is sent to a random node nk of

the federation, along with a buffer Bj of locally-generated synthetic

samples. The number of training rounds/iterations and the size of the

buffer is discussed in the next section.

Then, the general federated model M, after all training rounds,

is given by the union of all the N node models, i.e., M = M1 ∪
M2 ∪ · · · ∪ MN . However, experimental results, reported below in

Sect. 8.4, demonstrate that all models converge to similar decisions,
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thus each node model can be considered as a general model for the

entire network.

To ease the understanding of the whole training strategy we also

report the algorithm pseudo-code in Alg. 1.

8.4 Experimental Results

We test FedER on two applications simulating real case scenarios with

multiple centers holding, and not sharing, their own data: 1) tuber-

culosis classification from X-ray images using two different datasets,

and 2) skin lesion classification with three different datasets. In this

section we present the employed benchmarks, the training procedure

and report the obtained results to demonstrate the advantages of the

proposed approach w.r.t. the state-of-the-art.

8.4.1 Datasets

X-ray image datasets for tuberculosis classification. We as-

sume two separate nodes in the federation: one with the Montgomery

County X-ray set and another one with the Shenzhen Hospital X-ray

set [22, 71, 70]. The Montgomery Set consists of 138 frontal chest

X-ray images (80 negatives and 58 positives), captured with a Eureka

stationary machine (CR) at 4020×4892 or 4892×4020 pixel resolu-

tion. The Shenzhen dataset was collected using a Philips DR Digital

Diagnostic system. It includes 662 frontal chest X-ray images (326

negatives and 336 positives), with a variable resolution of approxi-

mately 3000×3000 pixels.

Skin lesion classification. We employ the ISIC 2019 challenge



136 Chapter 8. FedER: FL through ER an PP Data Synthesis

Algorithm 1: FedER Learning Procedure
Notations The N nodes are indexed by ni; E is the number of local

epochs for each round. R the total round of communications between

nodes.

Each node ni contains:

Di Private Dataset

Gi Generator (privacy-preserving) trained on Di

Mr
i Model for node ni at round r

Bi Synthetic data buffer sampled using Gi

// Before Federated Training

for each node ni ∈ N do
Train Gi on Di

Generate Buffer Bi using Gi
TrainM0

i on Di

end

// Federated Training

for each round r = 1, 2, ..., R do

for each node nj ∈ N in parallel do

SendMr−1
j , Bj to a node nk ∈ {N \ nj}

ReceiveMr−1
i , Bi from a node ni ∈ {N \ nj}

Mr
j ←M

r−1
i

TrainMr
j on {Dj ∪ Bi} for E epochs

end

end
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Tuberculosis Melanoma

Shenzhen Montgomery BCN HAM MSK4

R
o
u
n
d
s

E
p
o
ch
s

Accuracy Accuracy Accuracy Accuracy Accuracy

1 82.39±6.91 56.13±3.03 76.73±2.07 82.24±4.01 67.93±4.84

10 82.86±2.44 86.73±4.22 83.83±1.96 84.72±2.29 73.67±2.5910

100 83.56±1.72 90.79±3.92 85.51±1.85 88.65±1.12 71.81±2.04

1 83.31±2.59 88.71±3.82 78.94±2.55 87.34±1.62 72.07±3.45

10 85.22±2.42 89.72±3.46 84.62±1.40 85.05±1.62 73.72±2.41100

100 87.10±2.31 91.50±2.60 86.06±0.96 89.26±1.11 72.41±1.53

Table 8.1: Rounds and epochs in FedER. Results (mean ±
standard deviation) obtained with 5-fold cross-validation. Buffer size

= 512.

dataset, which contains 25,331 skin images belonging to nine differ-

ent diagnostic categories. In this case, we assume a federation with

three nodes as data provided belongs to three different sources: 1)

the BCN20000 [33] dataset, consisting of 19,424 images of skin lesions

captured from 2010 to 2016 in the Hospital Cĺınic in Barcelona; 2) the

HAM10000 dataset [168], which contains 10,015 skin images collected

over a period of 20 years from two different sites, the Department of

Dermatology at the Medical University of Vienna, Austria, and the

skin cancer practice of Cliff Rosendahl in Queensland, Australia; 3)

the MSK4 [31] dataset, which is anonymous and includes 819 samples.

Among all skin lesion classes, we only consider the melanoma class,

posing the problem as a binary classification task.

In all tasks and datasets we adopt 80% of the available data to train

both the privacy-preserving GAN and the classification model, while
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the remaining 20% of each dataset is used as test set. Test sets are

also balanced w.r.t. the label to avoid performance biases due to

class imbalance. For all tested federated methods (including state-

of-the-art ones), model selection is carried out through with 5-fold

cross-validation on the training set, as a grid search on number of

training rounds, number of rounds per epoch and learning rate. For

FedProx [98], we also include the µ hyperparameter.

8.4.2 Training procedure and metrics

Federated training

In all settings, we employ ResNet-18 as classification model, trained

by minimizing the cross-entropy loss with mini-batch gradient descent

using the Adam optimizer. Mini-batch size is set to 32 and 8 for the

Shenzhen and Montgomery datasets, respectively, and to 64 for skin

lesion datasets. The learning rate was found, through cross-validation,

to be 10−4. Data augmentation is carried out with random horizontal

flip; for skin images we additionally apply random 90-degree rota-

tions. All images are resized to 256×256. The ratio between real and

synthetic samples controlled by λ in Eq. 8.6 is set to 0.5 for all exper-

iments, i.e., each mini-batch is composed by the same quantity of real

and synthetic images. This also ensures that our method performs the

same number of optimization steps as other approaches that do not

use any synthetic data.

The node federation is trained for R rounds. In our implemen-

tation, at each round nodes are randomly ordered to establish each

node’s predecessor and successor: given our focus on medical applica-
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tions, we can assume that the number of nodes is low enough that syn-

chronization is not an issue. However, asynchronicity can be achieved

by assuming that nodes can store incoming data in a queue: if the

distribution of successor nodes is uniform and computation times are

similar for all nodes, this is on average equivalent to the synchronous

case. The number of rounds R and epochs E for FedER on the tuber-

culosis and melanoma classification tasks are set both to 100, accord-

ing the 5-fold cross-validation results shown in Table 8.1. Buffer size

is set for all experiments to 512.

Method
Tuberculosis

Shenzhen Montgomery Mean

Standalone 82.31 90.00 86.16

Centralized training 82.77 77.67 80.22

Centralized training with synthetic data only 76.92 79.33 78.13

Centralized training with synthetic and real data 85.38 86.67 86.03

FedER (ours) 80.15 86.67 83.41

Table 8.2: Comparison between FedER and centralized base-

lines for Tuberculosis. Results for FedER are obtained with a

buffer size of 512, 100 rounds and 100 epochs per round.

GAN training

We recall that GAN training is carried out before federated learning

using training data only, while leaving out test samples, as mentioned

in Sect. 8.4.1. Our privacy-preserving GAN employs StyleGAN2-

ADA [79] as a backbone, because of its suitability in low-data regimes

and its generation capabilities. Training is carried out in two steps:
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Method
Melanoma

BCN HAM MSK4 Mean

Standalone 82.90 82.55 69.75 78.40

Centralized training 78.80 82.90 71.23 77.64

Centralized training with synthetic data only 60.71 61.09 61.23 61.01

Centralized training with synthetic and real data 81.53 80.44 73.46 78.48

FedER (ours) 82.11 84.58 68.40 78.36

Table 8.3: Comparison between FedER and centralized base-

lines for Melanoma. Results for FedER are obtained with a buffer

size of 512, 100 rounds and 100 epochs per round.

1) the GAN is initially trained without any privacy-preserving loss to

support learning of high-quality visual features; 2) afterwards, we en-

able privacy-preserving loss and fine-tune the model in order to limit

the embedding of patient-specific patterns in the GAN latent space.

For classification purposes, GANs are trained in a label-conditioned

fashion with a mini-batch size of 32 and learning rate of 0.0025 for

both the generator and the discriminator. Early-stopping criteria are

based on the Frêchet Inception Distance (FID) [60] between real and

synthetic distributions: in the first training step, we stop training if

FID does not improve for 10,000 iterations; in the second training

step, we employ a criterion which stops training if FID increases by

a factor of 2.5 w.r.t. the value obtained in the first step. As for the

α parameter in Eq. 8.3, we tested multiple values of α (0, 0.5, 1, 1.5,

2 and 3) and found that the value of 1 yields the best compromise

between image generation quality and pairwise LPIPS distance [190]

over all tested datasets. In order to quantitatively evaluate privacy
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preservation, we also compute the average LPIPS distance between

each real image and its closest synthetic sample by means of latent

space projection (described in Sect. 8.4.4): the higher value of LPIPS,

the lower the possibility to reconstruct real images from the generator.

Dataset FedER Standalone

Shenzhen 80.54± 1.20 66.15± 22.84
Tuberculosis

Montgomery 85.67± 2.36 70.00± 28.28

BCN 82.87± 1.22 65.06± 19.68

HAM 84.45± 0.75 59.94± 20.47Melanoma

MSK4 67.78± 1.28 65.43± 5.05

Table 8.4: Accuracy convergence among distributed node

models. Each local model is evaluated on all test sets of the federation

in order to measure convergence and generalization (lower standard

deviation corresponds to higher convergence).

8.4.3 Federated learning performance

We first evaluate the performance (in terms of classification accuracy)

of FedER in the non-i.i.d. setting, and compare it to several central-

ized baselines, namely:

• Centralized training: all datasets are merged in a single node

where all training happens. In this setting, no federated learning

constraints are applied.

• Centralized training with synthetic data only. In this

setting, each node trains a privacy-preserving GAN model and
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shares a synthetic version of its own data with the central node,

where global training is performed. In this case, we aim to assess

how much information is retained by synthetic data to support

classification.

• Centralized training with synthetic and real data. This

setting is a combination of the previous two: real and synthetic

samples are centrally merged and used for training a global clas-

sifier. This scenario measures the contribution of synthetic data

as a data augmentation approach.

We also compare FedER against standard training of the local

node models, referred to as “Standalone” . Classification accuracy is

computed using local node models on their own data. The results,

reported in Table 8.2 and Table 8.3, show that standalone training

appears to be the most favourable scenario. Centralized strategies

perform generally worse than standalone training, because of the non-

i.i.d. nature of the data. However, when the centralized approach

is trained with original data augmented with synthetic samples, its

classification accuracy is on par with the standalone training, possibly

due to the learned generative latent spaces that likely tend to smooth

different modes of non-i.i.d. data. FedER, instead, outperforms its

centralized counterpart and yields slightly worse performance (1.5 per-

cent points less) than standalone training. Although this may appear,

at a first glance, as a shortcoming of FedER, we recall that in a fed-

erated learning scenario, we aim at building a model that, leveraging

multiple data distributions present in the federation, may generalize

better, thus addressing possible future data drifts. In order to assess

the capabilities of the trained models to achieve such a generaliza-
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tion, we measure the decision convergence by evaluating how a local

node model performs on other node datasets. Results are in Table 8.4

and show a good average accuracy, with a low standard deviation, by

FedER, indicating that each node model performs equally well on its

own dataset and on the others (i.e., all node models converge to similar

decisions). Conversely, standalone training yields significantly lower

accuracy and higher standard deviation than ours, demonstrating to

be an unsuitable strategy for the sought generalization properties.

Shenzhen Montgomery Mean

FedAvg [113] 72.31 83.33 77.82

FedProx [98] 78.46 76.67 77.56

FedBN [100] 63.08 70.00 66.54

FedER (ours) 80.15 86.67 83.41

Table 8.5: Comparison with state-of-the-art methods for

Tuberculosis. In bold, best accuracy values.

BCN HAM MSK4 Mean

FedAvg [113] 77.55 75.15 67.28 73.33

FedProx [98] 78.80 81.87 64.81 75.16

FedBN [100] 82.19 81.12 59.26 74.19

FedER (ours) 82.11 84.58 68.40 78.36

Table 8.6: Comparison with state-of-the-art methods for

Melanoma. In bold, best accuracy values.

Thus, Tables 8.2 and 8.3 show the performance obtained by each

node model on its internal test data, while Table 8.4 shows, instead,



144 Chapter 8. FedER: FL through ER an PP Data Synthesis

the performance obtained when each node model is tested again all

other nodes’ data. The latter results indicate that in FedER, any arbi-

trary node model can be used for the final evaluation, as all federation

models converge to the same decisions. However, we further investi-

gate whether building an ensemble of all node models yields better

performance than using one arbitrary model. Results are given in Ta-

ble 8.7 indeed showing higher accuracy by the ensemble. However,

the models’ ensemble leads to increased communication overhead (af-

ter training, all models have to be shared across the federation) and

inference costs (each node needs to make a forward pass for all its

available models to make the prediction). For this reason, the follow-

ing experiments are carried out without using ensemble.

Method Tuberculosis Melanoma

No ensemble 83.41± 4.61 78.36± 8.72

Ensemble 84.77 ± 4.57 80.35 ± 9.42

Table 8.7: Accuracy performance with and without mod-

els’ ensemble. Results are computed by testing (first line) each node

model with its own data and (second line) creating an ensemble and

testing it on all nodes’ data.

We then compare our approach (without ensemble) to state-of-the-

art federated learning approaches, namely: a) server-based federated

methods, FedAvg [113] and FedProx [98], which have shown to per-

form generally better than decentralized methods [164, 90], and b) a

personalized method, FedBN [100]. As already mentioned, to avoid
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biased assessment, we use the official code repository2 of FedBN [100]

and hyper-parameter selection on the tested datasets was carried out

through grid search on training rounds/epochs, learning rate and µ

for FedProx [98] using 5-fold cross validation as for our approach. Re-

sults, for the tuberculosis and the melanoma tasks, are reported in

Table 8.5 and Table 8.6 respectively, and show that FedER outper-

forms all methods under comparison. Interestingly, FedER learning

strategy does better than: a) server-based methods, FedAvg [113] and

FedProx [98], suggesting that experience replay is a more effective

feature aggregation approach than naive parameter averaging; b) per-

sonalized methods, such as FedBN [100], which affects a limited aspect

of feature representation (i.e., input layer distributions), while our ap-

proach adapts the entire model to local and remote tasks.

Node Convergence

Buffer Shenzhen Montgomery

0 70.62± 11.97 80.33± 10.84

256 80.46± 2.96 81.67± 4.24

512 80.54± 1.20 85.67± 2.36

1024 82.23± 1.31 86.00± 3.01

2048 82.08± 1.39 88.67± 2.97

Table 8.8: FedER classification accuracy w.r.t. buffer size.

Each local model is evaluated on all test sets of the federation in order

to measure convergence and generalization (lower standard deviation

corresponds to higher convergence).

2https://github.com/med-air/FedBN

https://github.com/med-air/FedBN
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Figure 8.2: Scalability performance in the i.i.d. setting w.r.t.

number of nodes for the proposed approach and state-of-the-art meth-

ods.

These above results suggest that experience replay plays a key role

in federated models as a principled way to integrate features coming

from different data distributions. To further assess its contribution,

we evaluate FedER performance when using buffer at different sizes.
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Results on the tuberculosis task, measured as mean and standard

deviation of the local node models over a given dataset, are shown

in Table 8.8 and indicate a clear contribution of the buffer in terms

of overall performance and models’ agreement. Indeed, with no buffer

we obtain the lowest average performance and the highest standard

deviation. As the buffer is enabled, we can observe a performance gain

(mainly for the Shenzhen dataset) and a significant drop in standard

deviation. Performance improves as buffer size increases, although

gain becomes negligible above 512. Since higher buffer sizes result in

more data to be shared among nodes, we use a buffer size of 512, as

the best trade-off between accuracy and communication costs. We

finally evaluate the capability of FedER to scale with the size of the

federated network. Accordingly, we quantify this property using an

i.i.d. setting on both tuberculosis (Shenzhen dataset) and skin lesion

classification (BCN dataset) tasks, by equally splitting the available

data on multiple nodes. Fig 8.2 shows how the proposed approach

is able to keep classification accuracy high and performs on par with

state-of-the-art approaches (namely, FedAvg, FedProx and FedBN).

8.4.4 Privacy-preserving performance

In this section we quantify how much information of real samples is

retained by our privacy-preserving method, and in particular in the

mapping between latent space and synthetic images. To do so, we

employ the projection method proposed in [78]: given a real image x,

we find an intermediate latent point w such that the generated image

G(w) is most similar to x, by optimizing w to minimize the LPIPS

distance [190] between x and G(w).
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Figure 8.3: Quantitative analysis of privacy-preserving

generation. In blue, LPIPS distance histogram between real images

and the corresponding images obtained through latent space projection

using a GAN trained without the proposed privacy-preserving loss. In

red, LPIPS distance histogram between real images and the closest im-

ages generated with the proposed approach.

In practice, for each image of the dataset used for GAN training,

we perform backprojection to find its most similar synthetic sample,

and measure the LPIPS distance between the original and projected

images. Fig. 8.3 shows the histograms of the resulting distances on the

Shenzhen dataset, using GAN models trained with and without the

proposed privacy-preserving loss (both models start from the same w,

for fairness). The histograms show that standard GAN training, with

no privacy-preserving loss, tends to yield distances closer to 0, demon-

strating that real images are indeed included into the generator latent

space; while our model significantly mitigates this issue, by synthesiz-

ing samples that are substantially different than the original ones. In

order to qualitatively substantiate these findings, Fig. 8.4 compares
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Figure 8.4: Qualitative samples of our privacy-preserving

generation. Top row: real images from the Shenzhen dataset. Middle

row: projection with a standard GAN. Bottom row: projection with our

privacy-preserving GAN.

original samples from the Shenzhen dataset with the corresponding

projections, generated with and without our privacy-preserving loss3.

It is easy to notice that generated samples with a traditional GAN

highly resemble real data, making it impossible to share such samples,

albeit synthetic, in a privacy-safe manner, as they clearly contain pa-

tient information. Instead, comparing real images with the projections

obtained from privacy-preserving GAN confirms the inability of the

generator to find latent representations that recover real images used

during training.

Given the high realism of generated samples, we run additional

3We show only X-Ray synthesized samples, as the effect is of our privacy-

preserving strategy, is more appreciable than in skin lesion data.
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Figure 8.5: Privacy-enhanced alternative architectures. (a)

FedER-A configuration (“Buffer-only sharing”): a local node model is

trained on real data, but only a buffer of synthetic samples is shared

with other nodes. (b) FedER-B (“Synthetic-only training”): Even

within the dataset owner node, models are trained on synthetic data

only.

tests by proposing two FedER variants aiming to increase the level of

privacy preservation: a) FedER-A: models are not shared among nodes

— only synthetic buffers are sent and received; b) FedER-B : models

are trained only using synthetic data, even on local nodes. Fig. 8.5

shows the internal architecture of each node in the two variants. Re-

sults obtained with these alternative privacy-enhanced configurations

are provided in Table 8.9. It can be noted that FedER-A (i.e., “buffer-

only sharing”) configuration achieves comparable performance to our

standard FedER (82.76 vs 83.41), but, remarkably, it outperforms

all existing federated learning methods on the same datasets (com-

pare Table 8.5 with the node performance block in Table 8.9). The

FedER-B (i.e., “synthetic-only training”) configuration, instead, per-

forms slightly worse than the other two configurations, but is still on

par with existing federated methods.
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Config
Node Performance Node Convergence

Shenzhen Montgomery Mean Shenzhen Montgomery

FedER 80.15 86.67 83.41 80.54 ±1.20 85.67 ±2.36
FedER-A 83.54 82.00 82.76 78.84 ±6.64 81.00 ±3.30
FedER-B 74.15 81.33 77.74 73.61 ±4.68 80.40 ±3.60

Table 8.9: Classification accuracy of the proposed privacy-

enhanced strategies in the non-i.i.d. setting. FedER-A: only

buffers are shared (Fig. 8.5-a). FedER-B: models are trained on syn-

thetic data only (Fig. 8.5-b). Node performance measures how each

node model performs on its own private dataset, while node conver-

gence assesses how a node model performs on other federation nodes.

8.4.5 Communication and computational perfor-

mance

We conclude the experimental analysis by measuring communication

and computational costs.

As for communication costs, compared to state-of-the-art ap-

proaches, FedER requires additional transmission of synthetic images

between nodes at each round. Tab. 8.10 reports per-node communica-

tion costs for state-of-the-art models (the table reports FedAvg, but

the same values apply for FedProx and FedBN) and for FedER, in its

full formulation and in the FedER-A variant, where only buffers of syn-

thetic data are shared. The main cost for state-of-the-art models lies in

the transfer of the model, and depends on the specific architecture (we

included ResNet-18 and ResNet-152 as representative examples of dif-

ferent model scales). Values for our approach are reported for buffers
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of size 512 containing 256×256 images, and depend on the color space.

For our full FedER model, the increment in communication costs is

significant but not excessive. However, if we take into consideration

the variant where only synthetic data are exchanged (i.e., FedER-A),

which still performs better than state-of-the-art methods (Tab. 8.5

and Tab. 8.9), communication overhead becomes significantly less than

model-sharing approaches.

As for computational costs of federated training, FedER incurs the

same overhead for parameter optimization and aggregation as state-of-

the-art methods. Additionally, before federated training starts, FedER

requires that each node trains a local privacy-preserving GAN off-line;

this, however, does not affect online federated learning costs, as it is

carried out only once at the very beginning of the whole procedure.

Furthermore, we argue that, in the medical domain, the number

of institutions in a federation is relatively low and it is reasonable to

assume that nodes can benefit from a powerful communication net-

work and computing infrastructure: thus, the overhead introduced by

FedER is tolerable, in light of the methodological advantages and the

obtained performance and generalization capabilities showed by the

resulting models.

8.5 Discussion

We propose FedER, a decentralized federated learning framework that

replaces traditional parameters averaging with a more principled fea-

ture integration approach based on the combination of experience

replay and privacy-preserving generative models. In FedER, nodes
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Tuberculosis Melanoma

ResNet-18 ResNet-152 ResNet-18 ResNet-152

FedAvg

45 MB 230 MB 45 MB 230 MBFedProx

FedBN

FedER 65 MB 250 MB 105 MB 290 MB

FedER-A 20 MB 20 MB 60 MB 60 MB

Table 8.10: Communication results comparison

communicate with each other by sharing local models and buffers

of synthetic samples; local model updates are carried out in a way

that encourages the reuse and adaptation of features learned by other

nodes, thus avoiding potentially disruptive effects due to blind feature

averaging. Experimental results show that our method outperforms

significantly state-of-the-art server-based approaches in a non-i.i.d.

scenario, which is a typical setting in the medical domain. Addi-

tionally, quantitative and qualitative analysis shows that our privacy-

preserving generation approach is able to synthesize samples that are

significantly different from real data, while correctly supporting the

learning of discriminative features. In the future, we aim at investi-

gating some unexplored properties of our method: for instance, unlike

all other existing methods based on parameter averaging is required,

our approach does not strictly require that all nodes share the same

model architecture. Model heterogeneity could therefore be employed

to create a shared ensemble and combine different feature learning

capabilities.
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M. Pennisi, F. Proietto Salanitri, G. Bellitto, B. Casella, M. Aldinucci,

S. Palazzo, and C. Spampinato, “Feder: Federated learning through

experience replay and privacy-preserving data synthesis,” Computer

Vision and Image Understanding, p. 103882, 2023. [133].



Part IV

CONCLUSION

As we wrap up this thesis, it’s important to think back on the jour-

ney we’ve taken, the insights we have gathered, and the implications

of our findings. The research we’ve presented has covered different

aspects of Medical Imaging Analysis, offering both new perspectives

and reaffirming established paradigms. We now distill the essence of

the conducted research and consider its broader implications for the

field and potential avenues for future exploration.
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CHAPTER

NINE

CONCLUSIONS

The field of medical imaging analysis has been evolving over the years,

driven by the search for more accurate, efficient, and privacy-friendly

methodologies. This thesis has traversed a road map in this field, be-

ginning with standard centralized approaches for medical image analy-

sis and culminating in the exploration of federated learning techniques.

The initial phases of our research were rooted in centralized

methodologies. These approaches, while powerful and effective, pri-

marily rely on the consolidation of data at a single location or server.

We have attempted to address fundamental tasks in the field of med-

ical image analysis by proposing innovative and effective methodolo-

gies. An emphasis on the interpretability of deep learning models has

been at the core of all the devised approaches. In a field as criti-

cal as medical imaging, where patient health is crucial, it is essential

that our models not only perform accurately, but also provide un-

derstandable and usable information for medical professionals. Our
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journey started with an AI-driven system, designed for the pressing

challenge of COVID-19 assessment by CT scans. Achieving a sensi-

tivity of 90.3% and specificity of 93.5%, the system went beyond just

accurate lesion categorization. It harnessed the power of explainable

AI techniques, offering radiologists insights into its decision-making,

thereby bolstering trust and interpretability. While we faced hurdles

such as a limited sample size, the robustness of our approach was un-

derscored by a thorough confidence level analysis. We then moved to

the development of models specifically designed for the pancreas, an

organ that presents significant challenges in medical imaging analysis.

The complexity of accurately identifying and analyzing the pancreas

is highlighted by the fact that pancreatic cancer is one of the lead-

ing causes of mortality worldwide. We designed a Transformer-based

neural network tailored for MRI imaging to tackle the classification

challenges associated with Intraductal Papillary Mucosal Neoplasms

(IPMN), a precursor to pancreatic cancer. Our innovative approach

not only showcased the superior capabilities of Transformer architec-

tures in identifying complex patterns within MRI data, thereby en-

hancing classification accuracy, but also highlighted their innate ad-

vantage in terms of interpretability. Transformers have demonstrated

to be more generalizable for IPMN risk stratification than CNNs. Fur-

thermore, our transformer-based classifier is able to provide meaning-

ful insights, focusing predictions on the most relevant regions of the

image related to cysts, which in turn bolstered the robustness of the

automated diagnosis. Finally, we introduced PanKNet, a novel Hier-

archical 3D fully-convolutional network for pancreas segmentation in

both MRI and CT scans. Given the pancreas’s complex structure and

its close proximity to other organs, achieving accurate segmentation



159

in medical imaging is notoriously challenging. Our approach empha-

sizes a hierarchical decoding strategy, which facilitates a coarse-to-fine

segmentation process. This method combines multi-scale features:

deeper features provide intermediate segmentation masks capturing

fine details, while initial features offer coarse segmentation outlines.

We evaluated PanKNet performance using CT scans from the NIH

CT-Pancreas benchmark, achieving a leading Dice score of 88.01%.

For MRI scans, we attained a Dice score of 77.46%, setting state-of-

the-art results on the segmentation of the MRI pancreas. Furthermore,

the PanKNet architecture is adaptable for 3D segmentation in several

medical areas. However, as with all technological advancements, cen-

tralized approaches are not without their limitations. First and fore-

most, the availability of large data within a single node to enhance the

generalization capabilities of trained models. However, in the field of

medical imaging, this is often unfeasible. The process of annotating

medical images is time consuming, requiring expert knowledge and

precision. Furthermore, smaller medical centers or institutions might

only have access to a limited number of samples, making it challenging

to curate a comprehensive dataset. This lack of data, combined with

the inherent complexities of medical imaging, underscores the need for

collaborative and decentralized solutions, leading us to the domain of

federated learning. Federated learning, with its decentralized nature,

allows for data analysis at the source, sidestepping the need for data

consolidation. This not only addresses privacy concerns but also of-

fers a scalable solution for medical imaging analysis across diverse and

distributed datasets.

In the research reported in this thesis, we initially focused on data-

centric methods, leveraging the capabilities of GANs to approach fed-



160 Chapter 9. Conclusions

erated learning from a data perspective. Our primary endeavor was

to delve into the latent space of GANs, aiming to aggregate features

derived from real samples encoded within this space. This exploration

led to the development of techniques that produce synthetic images

while preserving data privacy. Instead of the traditional federated

learning approach of gradient aggregation, which poses privacy risks

due to potential input reconstruction, we introduced a synthetic data

aggregation method. In this approach, each node generates a synthetic

dataset, and the central model is trained using the combined synthetic

datasets. The obtained results are promising, with performance met-

rics comparable to training on the combined original datasets. Such

method not only facilitates the aggregation of synthesized informa-

tion in a federated setting, but also highlights the potential benefits

of utilizing GAN latent space to bolster federated learning. Build-

ing on these results, we introduced PLAN, an innovative approach

to navigate this space. This method ”walks” from one aggregated

point to another within the latent space, ensuring equidistance, pri-

vacy, and class consistency. Through this, we devised a strategy that

generates synthetic data with enhanced privacy considerations, re-

fining traditional latent space aggregation techniques. Experimental

results on two medical image analysis tasks shows PLAN’s resilience

against membership inference attacks, while supporting model train-

ing with performance metrics comparable to those achieved with real

data. Moreover, when PLAN is combined with state-of-the-art k-

anonymity methods, we observe a reduced performance drop, while

upholding privacy-preservation properties.

In our final exploration, we delved into a more reliable setting

of federated learning: the decentralized approach. We introduced
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FedER, a comprehensive framework that seamlessly integrates the

principles of continual Learning and federated Learning to address

the challenges posed by distribution shifts (both in space and in time).

Distinct from traditional federated methods that rely on parameter av-

eraging, FedER adopts a principled feature integration approach. This

is achieved by combining experience replay with privacy-preserving

generative models. In the FedER paradigm, nodes communicate by

sharing both local models and buffers of synthetic samples. The local

model updates are orchestrated in a way that promotes the reuse and

adaptation of features learned by other nodes, thereby sidestepping the

potential pitfalls of blind feature averaging. Our experimental results

show the superiority of FedER, as it significantly outperforms state-

of-the-art centralized approaches, especially in non-i.i.d. scenarios, a

common setting in the medical domain. Moreover, both quantitative

and qualitative analyses reveal that our privacy-preserving generation

approach can synthesize samples that are markedly distinct from real

data, yet effectively support the learning of discriminative features. A

unique aspect of FedER, setting it apart from other methods reliant

on parameter averaging, is its flexibility in accommodating nodes with

varied model architectures. Distinct from our previous two endeavors,

this framework ensures rigorous data privacy through the deployment

of a specially trained GAN, emphasizing privacy preservation.

The potential for future developments is huge. As we continue

to scale our techniques, accommodating the ever-growing datasets in

medical imaging becomes crucial. Ensuring that methods like PLAN

remain robust and effective, especially when compared with a mul-

titude of identities, will be a focal point of our research. By delv-

ing deeper into the latent space, we envision a comprehensive explo-
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ration of trajectories of varying lengths, aiming to strike a balance

between optimizing privacy and enhancing data augmentation capa-

bilities. Furthermore, the inherent flexibility of FedER offers an unique

and promising solution to address challenges in federated learning. Its

ability to seamlessly integrate nodes with different architectures, not

only underscores its adaptability, but also opens up avenues for inno-

vative research. Indeed, by harnessing this model heterogeneity, we

may create shared ensemble models without moving the data from

its origin. The ensemble models would allow for learning diverse fea-

tures, offering a holistic solution that captures the nuances of varied

datasets. As we move forward, the fusion of these approaches and the

exploration of their synergies will undoubtedly shape the next frontier

in medical imaging research.
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