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Abstract

Domination is a rapidly developing area of research in graph theory. This

dissertation focuses on the Roman Domination Problem; it was introduced

quite recently and has some interesting applications in real world problems

such military strategies and wireless networking.

Given a graph, a Roman Dominating Function is a function that labels the

vertices of the graph with an integer between 0, 1, 2, satisfying the condition

that every vertex labeled by 0 is adjacent to at least one vertex labeled by 2.

The weight of a Roman Dominating Function is the sum of all the labels, and

the minimum weight is called the Roman Domination Number. The Roman

Domination Problem is to find such number and function.

In this dissertation we study the Roman Domination Problem when

restricted to the class of grid graphs, i.e. graphs that, when drawn on an

Euclidean Plane, form a specific regular tiling. A review of well–known results

is given, and new results are presented. We aimed to find an algorithm

that can find an exact solution for all the grid graphs, and, to do so, we

present some important results: we prove a better lower-bound and present an

upper-bound on the Roman Domination Number which improves the previous

one and, we conjecture, is the Roman Domination Number for many, if not

all, grid graphs.



Sommario

La Dominazione è un’area della ricerca nella teoria dei grafi in rapida

evoluzione. Questa dissertazione si propone di studiare il Problema della

Dominazione Romana: introdotto di recente, questo problema ha alcune

interessanti applicazioni nel mondo reale, quali le strategie militari e lo studio

delle reti senza fili.

Dato un grafo non orientato, una Funzione di Dominazione Romana è una

funzione che etichetta i vertici con un numero intero compreso tra 0, 1, 2, e

che inoltre soddisfa la seguente condizione: ogni vertice etichettato 0 deve

essere adiacente ad almeno un vertice etichettato 2. Il peso di una Funzione

di Dominazione Romana è la somma di tutte le etichette, e il peso minimo

è detto Numero di Dominazione Romana. Il Problema della Dominazione

Romana è proprio quello di trovare tali numero e funzione. Dopo aver elencato

alcuni risultati salienti, studieremo il Problema della Dominazione Romana

restringendo il campo ai grafi a griglia, cioè grafi che, quando rappresentati

su di un Piano Euclideo, formano una specifica copertura regolare.

Il nostro obbiettivo è quello di trovare un algoritmo che possa trovare

una soluzione esatta per tutti i grafi a griglia, e per fare questo presentiamo

alcuni risultati notevoli: proveremo un limite inferiore migliore al Numero

di Dominazione Romana e presenteremo un limite superiore che migliora

il limite precedente e che noi congetturiamo sia il Numero di Dominazione

Romana per molti, se non tutti, i grafi a griglia.
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Introduction

“Optimization is the art of compromise.”

- William A. Dembski -

Combinatorial Optimization is a field of applied mathematics and theo-

retical computer science that consists in the search of an optimal solution in

a finite set of objects, so in principle to solve them it is possible to use any

kind of search algorithm or heuristic. In computer science, a heuristic is a

technique designed for solving a problem more quickly when classic methods

are too slow, or for finding an approximate solution when classic methods

fail to find any exact solution. Combinatorial Optimization is a well studied

field because it has important applications in many other fields, like software

engineering, machine learning, artificial intelligence, etc. . .

However for many problems related to Combinatorial Optimization it is

not feasible to do an exhaustive research, because generic search algorithms

are not guaranteed to find an optimal solution, nor are they guaranteed to

run quickly, i.e. in polynomial time. Some famous combinatorial problem are

the Minimum Spanning Tree Problem, the Traveling Salesman Problem, the

Knapsack Problem, the Eight Queens Puzzle, the Domination Problem.

Unless P = NP, we can divide the Combinatorial Optimization Problems

in: problems that have a polynomial-time algorithms that find the exact
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solution, like the Minimum Spanning Tree; and problems that do not have such

algorithms, like the Knapsack Problem or the Traveling Salesman Problem.

For the last kind of problems we can however have:

• polynomial-time exactly solvable special cases of the problem;

• algorithms that perform well on random instances;

• approximation algorithms that run in polynomial time and find a solution

that is close to optimal.

Since the XX century the Domination Problem is one of the most studied

Combinatorial Optimization Problem; its origins can be related to the Eight

Queens Puzzle and the Domination Queens Problem, two problems related to

the game of chess. In Graph theory, a dominating set for a graph is a subset

of vertices such that any other vertex of the graph is adjacent to at least one

vertex in the subset and the domination number is the number of vertices in

a smallest dominating set. The Domination Problem is to find such number,

and because it is a NP-hard problem, for a proof see [47], it is believed there

is no efficient algorithm to find a smallest dominating set for a given graph.

Among the many variants of the Domination Problem, the Roman Domi-

nation Problem, introduced quite recently, has some interesting applications

in real world problems such military strategies and wireless networking.

Given a graph, a Roman Dominating Function is a function that labels the

vertices of the graph with an integer between 0, 1, 2, satisfying the condition

that every vertex labeled by 0 is adjacent to at least one vertex labeled by 2.

The weight of a Roman Dominating Function is the sum of all the labels, and

the minimum weight is called the Roman Domination Number. The Roman

Domination Problem is to find such number and function.

In the first chapter of this dissertation we introduce the Roman Domination

Problem, give a historical motivation for its name, and enumerate some of
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its theoretical properties; we also give a demonstration of its complexity,

by reduction from the well known 3–SAT Problem, and a non-deterministic

polynomial time algorithm for solving the problem.

In the second chapter we amply study the Roman Domination Problem

when restricted to the class of grid graphs. The grid graphs are graphs that,

when drawn on an Euclidean Space, form a regular tiling. We will always

use the square grid graphs, whose vertices corresponds to the points of the

Euclidean Plane with integer coordinates and two vertices are connected by

an edge if and only if the corresponding points are at distance 1; also we will

always refer to a finite section of the infinite graph, like the grid graph of m

rows and n columns.

For grid graphs of m rows and n columns, with 1 ≤ m ≤ 8, there

exist polynomial-time algorithms that find an exact solution of the Roman

Domination Problem. For generic grid graphs, i.e. grid graphs of m rows

and n columns, with m,n ≥ 5, also exist the lower- and upper-bounds for the

Roman Domination Number. We aimed to find an algorithm that can find

an exact solution for generic grid graphs.

In the third and the fourth chapters we present some important results,

in fact in the third chapter we prove a better lower-bound for generic grid

graphs, while in the fourth chapter we define and then discuss some general

schemas to produce good Roman Dominating Functions over generic grid

graphs that lead to an upper-bound on the Roman Domination Number

which improves the previous upper-bound and, we conjecture, is the Roman

Domination Number for many, if not all, generic grid graphs.

Finally in the fifth chapter we present some implementations in high-level

languages that helped us with our studies: first of all we created a dataset

of various classes of graphs, not only grid graphs, then implemented some

algorithms that can be used as heuristic for finding an approximate solution
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to the Roman Domination Problem. The most performant heuristic uses the

concept of GainFactor, i.e. a dynamic value assigned to every vertex. We

also developed some genetic algorithms, using a virus variant of the Uniform

Crossover.



Chapter 1

The Roman Domination Problem

1 Introduction

As we said in the introductory chapter, in this dissertation we will talk

about the Roman Domination Problem (RDP), a combinatorial optimization

problem that was introduced fairly recently by Stewart in [53]. The Roman

Domination Problem is a variation of the Domination Problem (DP), a

problem that has been well studied, see [30] and [31].

Given a graph, i.e. an ordered pair G = (V,E) where V is a set, elements

of which are called vertices or nodes, and E is a set of unordered pairs of

distinct vertices called edges or lines, the Domination Problem is to find a

sub-set of vertices S ⊆ V , the dominating set, such that every other vertex is

linked by an edge to at least a member of the sub-set, i.e. every vertex v ∈ V

either is in S or is adjacent to a vertex in S. A minimal dominating set in

a graph G is a dominating set that contains no dominating set as a proper

subset. The Domination Number γ(G) of a graph is the number of vertices

in a smallest dominating set.

Let f be a function f : V → {0, 1}, the function f is called a dominating
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Figure 1.1: The Eight Queens Puzzle, a possible solution.

function if:

∀ v ∈ V : f(v) = 0 ∃ u ∈ V : f(u) = 1 ∧ e(u, v) ∈ E .

The function f is minimal if there does not exist a dominating function g 6= f

such that g(v) ≤ f(v) for each v ∈ V . The Domination Number can be

defined as:

γ(G) = min
f

∑

v∈V

f(v)

In [30] are listed over 1.200 papers related to Domination in graphs,

and several hundred other papers on the topic have been written since its

publication.
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Figure 1.2: A possible solution of The Queens Domination Problem, or how

to place a minimum number of queens on a chessboard so that each square is

controlled by at least one queen.

Historically, the first domination-type problems came from the game of

chess. In the XIX century, chess players were interested in many problems

concerning the game as: the Eight Queens Puzzle (see Figure 1.1), its gener-

alized n-Queens version, the Queens Domination Problem (see Figure 1.2),

Queens and Knights, etc. . .

For example, the Eight Queens Puzzle is the problem of placing eight

chess queens on an 8× 8 chessboard so that no two queens can attack each

other. Recall that a queen can move any number of squares horizontally,
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vertically, or diagonally on the chessboard, thus a solution requires that no

two queens share the same row, column, or diagonal.

The Queens Domination Problem, instead, is to place on the chessboard

the minimum number of queens such that every square on the chess board

either contains a queen or is attacked by a queen. In 1862, the chess master

C.F. de Jaenisch wrote a treatise [37] on the applications of mathematical

analysis to chess in which he also considered the number of queens necessary

to attack every square on a n× n chess board.

Apart from chess, Domination in graphs has applications in several other

fields. Domination arises in facility location problems, where the number of

facilities (e.g. police stations, hospitals, fire stations) is fixed and one attempts

to minimize the distance that a person needs to travel to get to the closest

facility. A similar problem occurs when the maximum distance to a facility

is fixed and one attempts to minimize the number of facilities necessary so

that everyone is served. Concepts from Domination also appear in problems

involving finding sets of representatives, in monitoring communication or

electrical networks, and in land surveying (e.g., minimizing the number of

places a surveyor must stand in order to take height measurements for an entire

region). Another interesting field is of application is social networking [54]: if

we consider the vertices as people and two vertices are linked if there exists a

friendship between the two people, then a dominating set is the set of people

who knows everyone.

At present, Domination is considered to be one of the fundamental concepts

in graph theory and its various applications to ad hoc networks, biological

networks, distributed computing, social networks and web graphs partly

explain the increased interest. Such applications usually aim to select a subset

of vertices that will provide some definite service such that every vertex in

the network is close to some vertex in the subset.
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It is easy to see that, for a given graph G(V,E) with |V | = n, the

domination number can have a value in the following range: 1 ≤ γ(G) ≤ n.

In particular, γ(G) = 1 if and only if ∆(G) = n, and the equality for the upper

bound is true if and only if ∆(G) = 0, where ∆(G) is the maximum degree of

a graph. The question whether there exists a polynomial time algorithm for

determining γ(G) naturally arises. However, for arbitrary graphs, there is no

algorithm that has better time complexity than exponential–time algorithms.

In fact, in [23] and [47] it is shown that Domination Problem is NP-

complete for arbitrary graphs. Thus, it is of importance to determine bounds

for γ(G) and various similar parameters.

In general, many domination parameters can be defined by combining

Domination with another graph theoretical property.

In [29] this concept is formalized by imposing an additional constraint

on the dominating set: for a given property P , the conditional domination

number γ(G : P ) is the smallest cardinality of a dominating set D ⊆ V such

that the induced subgraph G[D] satisfies property P . Thus, by considering

different properties P , many new variants of Domination can be defined.

Also in [30] are listed more than 75 of such varieties. One of such variation

is the Roman Domination Problem.

Like many Domination Problems on graphs, the Roman Domination

Problem has several applications, for example either in military strategy [4],

in which the authors point out the usefulness of the graph theory in studying

optimization problems in the real world, and propose a comparative analysis

between the Roman and the British Empire, in using a defense strategy

devised by Constantine the Great (see 1.1), or for wireless server placements

over networks, see [45] and [50].

Mathematically, given a graph, the Roman Domination Problem is to

find a vertex labeling, such that every vertex must be labeled with values in
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the set {0, 1, 2}, and every vertex labeled by 0 must have at least a neighbor

labeled by 2.

The idea is that the labels 1 and 2 represent either one or two Roman

armies stationed at a given location, say vertex v. A nearby location (an

adjacent vertex u) is considered to be unsecured if no armies are stationed

there, but become securable by sending an army from v, given the constraint

that at least one army has to be left behind, i.e. f(v) = 2.

The Roman Domination Number of a graph (γR(G)) is the smallest value

of the sums of labels, which satisfy the condition above.

1.1 Historical Basis for The Roman Domination Prob-

lem

The Roman Domination Problem can be defined and explained using an

interesting historical anecdote about the Roman Empire’s military strategies

between the III and the IV century of the Common Era (CE), see [4], [49]

and [53].

In the III century the Roman Empire dominated the majority of Europe,

North Africa and Near East. To defend its borders and the empire itself, it

was used a forward defense strategy, whereas fifty legions secured even the

furthermost areas of the empire.

In the IV century, when the empire lost much of its power, and the

number of its legions dropped drastically, Constantine the Great devised the

defense in depth strategy, where local troops were used to disrupt invasions

and rebellions, and mobile groups of six legions, called Field Armies, were

used to stop them definetively. With this new strategy, a region is considered

secure if it has one or more Field Armies stationed in it. On the other hand,

a region may be securable if a Field Army may be able to deploy in a single
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Figure 1.3: The Roman Empire at Constantinian Era.

step from an adjacent region and only if it moves from a region where there

is at least an other Field Army.

At that time, the empire was connected as in Figure 1.3, where each

region is represented as a circle and movements along a line between regions

represent a step. While in the previous century, the there were eight Field

Armies, one for each region of the empire, the challenge for Constantine was

to allocate just four Field Armies to defend all the empire.

He chose to place 2 Field Armies in Rome and 2 Field Armies in Con-

stantinople, at that time the two capitals of the empire. With this deployment

all the regions were secure or securable, with the exception of Britain, in fact

it is no coincidence that Britain was the first region of the Empire to be lost.

In a modern analysis, there are other solutions that will secure all the empire.

One solution is to deploy 1 Field Army in Britain, 2 Field Armies in Rome

and 1 Field Army in Asia Minor; another solution is to deploy 2 Field Armies
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in Gaul and 2 Field Armies in Egypt. These solutions, however, have the

disadvantage to leave completely defenseless at least one of the capitals of

the Roman Empire, a unthinkable solution for Constantine.

The same strategy was used at least two other times: the first time by the

British Empire in the XIX century to defend its vast regions; in this case the

regions are the oceans and seas of the world: they had four Battle Fleets and

six sea regions to defend. The second time by the USA in the post Cold War

Era: they had a similar situation, with four Unit of Forces and five regions,

see [4].

2 Some Definitions over Graphs

We assume that the readers are familiar with many terms throughout

this dissertation, but for sake of clarity we present here some definitions, and

others will be introduced when necessary.

A graph G(V,E) consists of a set of vertices V and a set E of unordered

pairs of vertices called edges. For a graph G(V,E), n = |V | is the order of

G. In a directed graph the set of edges is replaced with a ordered pairs of

vertices called arcs. If (u, v) is an edge in a graph G, we say that u and v are

adjacent in G, whereas if [u, v] is an arc in a directed graph D, then we will

say that v is adjacent to u. We will assume that all graphs are simple, i.e. no

edge can appear in the edge set more than once and there is no edge between

the same vertex.

In a graph G(V,E), the degree of a vertex u, denoted with δ(u), is the

number of vertices adjacent to u. The minimum and maximum degree of a

graph G(V,E) are denoted respectively with:

δ(G) = min{δ(u) : u ∈ V }
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and

∆(G) = max{δ(u) : u ∈ V } .

A vertex is isolated if its degree is zero, and a graph is isolate-free if it has no

isolated vertices.

In a graph, a path of length k from vertex v0 to vertex vk is a collection

of edges, denoted with P = v0v1 . . . vk−1vk. A cycle is a closed path where

v0 = vk. A graph is connected if there is a path from every vertex to every

other vertex. In a connected graph, the distance between two vertices u and

v, denoted as d(u, v), is the shortest path joining u and v.

A graph H(W,F ) is a subgraph of the graph G(V,E) if W ⊆ V and F ⊆ E.

A connected graph is a tree if it does not contain a cycle as a subgraph.

For any vertex u ∈ V , the open neighborhood of u is the set

N(u) = {v ∈ V : (u, v) ∈ E}

and the closed neighborhood is the set

N [u] = N(u) ∪ {u} ,

thus for a graph G(V,E), a set of vertices S is a dominating set of G if

N [S] = V .

There are some classes of graphs that we will encounter in the next

chapters:

• Pn denotes the graph consisting of a path of n vertices.

• Cn denotes the graph consisting of a cycle of n vertices.

• Kn denotes the complete graph of n vertices, where every vertex is

adjacent to every other vertex.

• Kn denotes the graph of n isolated vertices.
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• A graph is bipartite if the vertex set V can be partitioned into two

disjoint subsets A and B such that vertices in A are only adjacent to

vertices in B and vice versa.

• A unit disk graph is the intersection graph of a family of unit disks

in the Euclidean plane, that is, we form a vertex for each disk, and

connect two vertices by an edge whenever the corresponding disks have

non-empty intersection.

• For graphs G and H, the cartesian product of G and H, denoted with

G×H is the graph with vertex set {(u, v) : u ∈ V (G), v ∈ V (H)}. Two

vertices (u1, v1) and (u2, v2) in G×H are adjacent if and only if one of

the following conditions is true:

– u1 = u2 and v1 is adjacent to v2 in H;

– v1 = v2 and u1 is adjacent to u2 in G.

• The join of two graphs G and H, denoted with G +H, is the graph

with vertex set V (G) ∪ V (H) and edge set E(G) ∪E(H) ∪ {(u, v) : u ∈

V (G), v ∈ V (H)}.

3 State of the Art

3.1 The First Studies

In [49], the authors connected the Roman Domination Problem to the

class of Location Problems, i.e. the 0, 1 Optimization Problems that seek yes

or no location decisions at discrete points. So, using the integer programming,

they define two problems:

• the Set Covering Deployment Problem (SCDP), a variation of the

Location Set Covering Problem: given a graph G(V,E), for each vertex
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vi are defined two {0, 1} variables xi and yi, representing the first and

the second armies on the vertex, we have to find and place the least

number of armies so that every vertex have at least one army within a

minimum distance.

MINIMIZE
∑

i∈V

(xi + yi)

with yi ≤ xi ∀i

and xi +
∑

(vi,vj)∈E

yj ≥ 1 ∀i .

Where xi is 1 if the vertex i contains one or two armies and 0 otherwise, yi

is 1 if the vertex i contains two armies and 0 otherwise. The constraints

guarantee that every vertex either has a army on it or has a neighbor

with two armies on it.

• the Maximal Covering Deployment Problem (MCDP), the complemen-

tary of the problem above, is a variation of the Maximal Covering

Location Problem. The objective in this problem is to maximize the

number of regions secured by a fixed number of armies, p. Given a

graph G(V,E), for each vertex vi are defined three {0, 1} variables xi,

yi and Ui; xi and yi representing the first and the second armies on the

vertex, while Ui = 1 if vi has an army or it exists a neighbor with two

armies on it, Ui = 0 otherwise.

MAXIMIZE
∑

i∈V

Ui

with yi ≤ xi ∀i

and Ui ≤ xi +
∑

(vi,vj)∈E

yj ∀i

and
n

∑

i=1

(xi + yi) = p .
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The techniques used by the authors to solve these problems are the branch

and bound algorithms, i.e. a systematic enumeration of all candidate solutions,

where large subsets of fruitless candidates are discarded en masse, by using

upper and lower estimated bounds of the quantity being optimized.

3.2 The Modern Approach

In [11], the authors studied the Roman Domination Problem as a varia-

tion of the Domination Problem on graphs using a purely graph theoretical

approach, and formalized for the first time the Roman Domination Problem

as we know it.

We can imagine the regions of the Roman Empire as the vertices of a

graph, whereas the links are the edges. Each vertex has a label with three

possible values: 0, 1, 2. If a vertex has label 0, then it has to be adjacent to

at least one vertex with label 2.

Formally, given a graph G = (V,E), a Roman Dominating Function (RDF)

is a labeling function f : V → {0, 1, 2}, satisfying the following:

∀ u ∈ V : f(u) = 0 ⇒ ∃ v ∈ V : (u, v) ∈ E ∧ f(v) = 2 .

The function f induces a partition of V = (V0, V1, V2), where

Vi = {v ∈ V : f(v) = i} .

If we define ni = |Vi| then we will have n0 + n1 + n2 = n = |V | .

The weight of f is

f(V ) =
∑

u∈V

f(u) = 2 · n2 + 1 · n1 + 0 · n0 = 2 · n2 + n1 .

For each graph G, we define the Roman Domination Number γR(G) as

the minimum value of a Roman Dominating Function:

γR(G) = min
f∈F

f(V ) = min
f∈F

∑

u∈V

f(u)
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where F is the set of all Roman Dominating Functions for G.

In [11], among many others, were proven the following facts about the

Roman Dominating Function and γR(G) and γ(G), i.e. the Domination

Number of G:

1. For any graph G(V,E):

γ(G), γR(G) ≤ n .

2. For any graph G(V,E):

γ(G) ≤ γR(G) ≤ 2 · γ(G) .

3. A graph G(V,E) is said to be Roman if

γR(G) = 2 · γ(G) .

This imply that there exists a minimal Roman Dominating Function

such that:

n1 = |V1| = 0 .

4. For any graph G(V,E):

γ(G) = γR(G) = 1 ⇐⇒ G = Kn ,

i.e. G is a complete graph.

5. For any graph G(V,E):

γ(G) = γR(G) = n ⇐⇒ G = Kn ,

i.e. G is an edgeless graph.

6. For any graph G(V,E), such that G[V1] is the subgraph induced by V1:

∆(G[V1]) = 1 .
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7. For any graph G(V,E), u ∈ V1, v ∈ V2:

(u, v) /∈ E .

8. For any graph G(V,E) with no isolated vertices, such that n1 is mini-

mum:

n0 ≥ 3 · n/7 .

9. For any graph G(V,E) 6= Kn:

γR(G) ≥

⌈

2 · n

∆(G) + 1

⌉

where ∆(G) is the maximum degree of G. The proof is in Chapter 3,

see also [12].

10. Given a graph G(V,E), by using a probabilistic method due to [3], we

have the following upper bound on γR:

γR(G) ≤ n ·

2 + ln

(

(1 + δ(G))

2

)

1 + δ(G)

where δ(G) is the minimum degree of G.1

In [48], using again a probabilistic method, it is proved an improved

upper-bound for the Roman Domination Number:

γR(G) ≤ 2 n ·

(

1−
21/δ(G) · δ(G)

(1 + δ(G))1+1/δ(G)

)

and, using the inequality 1− p ≤ e−p:

γR(G) ≤ n ·
2 ln(1 + δ(G))− ln 4 + 2

1 + δ(G)

Moreover, the author proved that this upper-bound is asymptotically best

possible, i.e.:

1Note that this upper-bound contains a misprint in the original paper. The exact value

is proved below.
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Theorem 1. When n is large, there exists a graph G(V,E) such that

γR(G) ≥ n ·
2 ln(1 + δ(G))− ln 4 + 2

1 + δ(G)
· (1 + o(1))

In [8] the authors proved two upper-bounds for any connected graph G:

1. γR ≤ 4n/5 . Actually, to be true n has to be greater or equal to 3, in

fact if n = 2, γR = 2 > 4 · n/5 = 8/5.

2. if δ(G) ≥ 2 ∧ n ≥ 9 then γR ≤ 8n/11 .

Still for any connected graph G with n ≥ 3, in [21] it was proven that:

1. |V0| ≥ n/5 + 1 ;

2. |V1| ≤ 4n/5− 2 ;

3. |V2| ≤ 2n/5 .

In [40] the authors showed some algorithms to compute γR in linear time

for some classes of graphs, such as interval graphs and co-graphs. Additionally

they gave a polynomial algorithm for AT-free graph.

In [19] the author gives a polynomial-time algorithm for computing a

minimal Roman Dominating Function for trees; this implies that we can

compute a minimal Roman Dominating Function for acyclic graphs, because

an acyclic graph G can be viewed as a forest of trees ∪Ti, where T1, . . . , Tn

are the single trees, and so the Roman Domination Number of G is the sum

of the single Roman Domination Numbers of Ti, i.e. γR(G) =
∑

γR(Ti).

In [45] the Roman Domination is applied to solve a network location

problem, while in [50] is applied to unit disk graph, a mathematical model

for wireless networking, and it is found an approximation algorithm in linear

time.



1.4 Complexity 20

4 Complexity

We will show now that the decision problem corresponding to computing

γR(G) is NP-complete, see [19].

The (decisional) Roman Domination Problem can be stated as follows:

Problem 2 (dRDP). Given a graph G = (V,E) and an integer ̺ ≤ |V |, is

there a Roman Dominating Function f = (V 0, V 1, V 2) such that

γR(G) ≤ ̺ ?

To show that this problem is NP-complete, we construct a polynomial

transformation from the 3-Satisfiability Problem (3–SAT).

Problem 3 (3–SAT). Given a collection C = {C1, C2, . . . , Cm} of clauses on

a finite set X = {X1, X2, . . . , Xn} of variables, is there a truth assignment

for X such that all the clauses in C are satisfied ?

A literal is either a variable Xj ∈ X or its complement Xj. A clause

Ci, formed by three literals, is satisfied by a truth assignment, a function

A : X → {TRUE, FALSE}, if one of the three literals is set to TRUE.

Let I be an instance of 3–SAT, as defined above. We produce a graph

G(I) and a positive integer ̺ such that I as a satisfying truth assignment if

and only if G(I) has a Roman Dominating Function f = (V 0, V 1, V 2) with

f(V ) ≤ ̺ = 2n.

Corresponding to each clause Ci, we construct a vertex labeled ci. Cor-

responding to each variable Xi ∈ X we construct a copy of the complete

bipartite graph K2,3, with partite sets Ri = {xi, xi} and Si = {ui, vi, wi}. To

each K2,3 we add the edge (xi, xi), and we add three edges from each clause

vertex ci to the three vertices corresponding to the three literals in clause Ci.

An example of the construction of G(I) is given in Figure 1.4. We claim that
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Figure 1.4: Constructing a reduction from 3–SAT, C1 = X1X2Xn .

the given instance of 3–SAT has a satisfying truth assignment if and only if

the graph G(I) has a Roman Dominating Function f with f(V ) ≤ 2n.

Let the given instance of 3–SAT have a satisfying truth assignment A.

For each variable Xi, if A(Xi) = TRUE, then let f(xi) = 2. Otherwise, let

f(xi) = 2. For all other vertices w in G(I), let f(w) = 0. It is easy to see

that the function f so defined is a Roman Dominating Function of weight

̺ ≤ 2n, since either xi or xi is in V2, and either vertex defends Ri ∪ Si. Also,

every vertex ci has at least one neighbor in V2 because A assigns at least one

literal to TRUE in every clause Ci.

Conversely, assume that G(I) has a Roman Dominating Function f of

weight f(V ) = ̺ ≤ 2n. It is easy to see that for each induced subgraph on

Ri ∪ Si, we must have either f(xi) = 2 or f(xi) = 2. Therefore, f has weight

at least 2n. It follows that the set of vertices v for which f(v) = 2 defends the

set of clause vertices. Therefore, the given instance of 3–SAT has a satisfying

truth assignment A, where A(Xi) = TRUE if and only if f(xi) = 2.

Using similar constructions, it can be proved that the (decisional) Roman

Domination Problem is NP-complete even when restricted to bipartite or

planar graphs.

Because both the Domination Problem, as showed in [30], and Roman
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Domination Problem, as showed above, are NP-complete, it is interesting to

study the properties of γ and γR for specific classes of graphs. (See [1], [9],

[26], [11], [?], [32], [52], [46]).

4.1 A Non-Deterministic Algorithm

Algorithm 1 A non-deterministic Algorithm for the RDP.

ND-RDF (G = (V,E))

γ = 0

for v ∈ V do

if Guess-label(v, 2) == TRUE then

label(v) = 2 {we guess v must be labeled 2}

γ+ = 2

else

label(v) = −1 {-1 stands for unlabeled}

end if

end for

for v ∈ V do

if label (v) == −1 then

if (∃u ∈ V : (u, v) ∈ E ∧ label (v) = 2) then

label(v) = 0

else

label(v) = 1

γ+ = 1

end if

end if

end for

return γ,G
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We can utilize the non-deterministic polynomial time Algorithm 1 for

computing γR. Such algorithm can, obviously, be used to prove that the

Roman Domination Problem is in NP.

From the definition of the Roman Domination Problem, it is clear that

once we decide which vertices have to be labeled with 2, then we can label all

other vertices: with 0 the unlabeled vertices connected to at least one vertex

labeled by 2, and with 1 all the remaining vertices. This will give us Roman

Dominating Functions that will have a special property:

Definition 4 (weak Property of non–Redundancy). Given a Roman Domi-

nating Function f over a graph G(V,E), we said that the function f is weakly

non–redundant if:

• Every vertex v labeled by 1 has no vertices labeled by 2 in its adjacency

list, see the Propositions 6 and 7 above.

There exists a strong version of the property, that we will use in the next

chapters:

Definition 5 (strong Property of non–Redundancy). Given a Roman Domi-

nating Function f over a graph G(V,E), we said that the function f is strongly

non–redundant if:

• Every vertex v labeled by 1 has no vertices labeled by 2 in its adjacency

list, see the Propositions 6 and 7 above.

• Every vertex v labeled by 0 is covered by only one vertex labeled by 2.

The idea of finding the best vertices to be labeled with 2 can be used

in developing approximation algorithms. In such cases, one needs to find

effective heuristics to do so. However, for a special class of graphs, described

in the next chapter, we can decide in a precise manner which vertices are to be

labeled with 2, obtaining a polynomial time algorithm which gives excellent

solutions, that we believe are the optimal ones.



Chapter 2

Grid Graphs

1 Introduction

The following contents and that of Chapter 3 and Chapter 4 are object

of the paper The Roman Domination Problem on Grid Graphs, presented at

the Middle-European Conference on Applied Theoretical Computer Science

(MATCOS-13), [14].

As we already said in the introductory chapter, the grid graphs are a class

of graphs that, when drawn on an Euclidean Space, form a regular tiling.

We will always use the square grid graphs, whose vertices corresponds to the

points of the Euclidean Plane with integer coordinates and two vertices are

connected by an edge if and only if the corresponding points are at distance 1.

We will always refer to a finite section of the infinite graph, like the grid graph

of m rows and n columns, as x-coordinates being in the range 0, . . . , n− 1,

y-coordinates being in the range 0, . . . ,m− 1.

In alternative, we can define a grid graph as a Cartesian product of two

path graphs with n− 1 and m− 1 edges, see Figure 2.1.
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Figure 2.1: The Grid Graph G5,5 as cartesian product of two path graphs P5.

We will denote a grid graph with m rows and n columns by Gm,n. Also

we will call a tile of dimension n, and we will denote it by Tn, any grid graph

of type Gn,n.

Each vertex of the grid graph is characterized by its coordinates (i, j)

and is connected to (at most) 4 vertices, namely, the vertices of coordinates

(i, j − 1), (i, j + 1), (i− 1, j), (i+ 1, j), if they exist. Obviously vertices on

the grid graph’s corners are connected to only 2 other vertices, while vertices

on the borders (but not on the corners) are connected to 3 vertices.

For sake of clarity, we specify that the coordinates of the top-left corner

of the grid are (0, 0) and the coordinates of the bottom-right corner of the

grid graph Gm,n are (m− 1, n− 1), see again Figure 2.1.

1.1 Roman Dominating Function for some type of Grid

Graphs

In [11] was given a characterization of the Roman Domination Problem

for grid graphs G1,n, i.e. the path graphs Pn, see Figure 2.2, and grid graphs
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Figure 2.2: The coloring of the path graphs Pn, for 1 ≤ n ≤ 5. In black the

vertices labeled by 2, while in gray the vertices labeled by 1 and in white the

vertices labeled by 0.

Figure 2.3: The coloring of the grid graphs G2,n, for 1 ≤ n ≤ 5.

G2,n, see Figure 2.3, leading to the following equations:

γR(G1,n) =

⌈

2n

3

⌉

;

γR(G2,n) = n+ 1 .

They also left an open problem, i.e. to give a characterization of the RDP for

grid graphs Gm,n, for m,n ≥ 3.

This open problem was addressed by Dreyer in [19], Cockayne et al. in

[12] and, quite recently, Pavlic and Zerovnik in [46].

In particular, in [19] the author proposes a covering method for grid graphs

of type G3,n, see Figure 2.4, and one for grid graphs of type G4,n, see Figure

2.5. The first method leads to:

γR(G3,n) =







































6k + 1 n = 4 · k

6k + 2 n = 4 · k + 1

6k + 4 n = 4 · k + 2

6k + 6 n = 4 · k + 3

. (2.1)

For this type of grid graphs, indeed, we independently derived a more

simple equation:
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Figure 2.4: The coloring of the grid graphs G3,n, for 1 ≤ n ≤ 5.

Figure 2.5: The coloring of the grid graphs G4,n, for 1 ≤ n ≤ 5.

γR(G3,n) =



















⌊

3n

2

⌋

+ 1 n = 4 · k + 1

⌈

3n

2

⌉

+ 1 otherwise

. (2.2)

The second method leads to:

γR(G4,n) =











2n+ 1 n = 1, 2, 3, 5, 6

2n otherwise

. (2.3)

In [46] the authors showed covering methods for grid graphs of type Gk,n

with 5 ≤ k ≤ 8, see Figures 2.6, 2.7, 2.8, 2.9, which lead to the following

equations:

γR(G5,n) =



















8 n = 3

⌊

12n

5

⌋

+ 2 otherwise

; (2.4)
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Figure 2.6: The coloring of the grid graphs G5,n, for 1 ≤ n ≤ 5.

Figure 2.7: The coloring of the grid graphs G6,n, for 1 ≤ n ≤ 5.

γR(G6,n) =























⌊

14n

5

⌋

+ 2 n < 5 | n ∈ {5k, 5k + 3, 5k + 4: k ∈ N}

⌊

14n

5

⌋

+ 3 otherwise

;

(2.5)

γR(G7,n) =























⌊

16n

5

⌋

+ 2 n ∈ {1, 2, 4, 7, 5k : k ∈ N}

⌊

16n

5

⌋

+ 3 otherwise

; (2.6)
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Figure 2.8: The coloring of the grid graphs G7,n, for 1 ≤ n ≤ 5.

γR(G8,n) =























































9 2

16 4

⌊

18n

5

⌋

+ 4 n ∈ {5k + 3: k ∈ N}

⌊

18n

5

⌋

+ 3 otherwise

. (2.7)

In [12] the authors proposed an upper-bound on the grid graphs Gm,n,

with m,n ≥ 5, see Theorem 6 in the section below.

However, the problem of finding a unique formula and covering method

for a generic grid graph was still open.
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Figure 2.9: The coloring of the grid graphs G8,n, for 1 ≤ n ≤ 5.

2 Covering Schemas for generic Grid Graphs

In what follows, we will describe a covering method that lead to five

different schemas for finding Roman Dominating Functions for grid graphs

that are good, if not optimal. The method works as follows:

1. Choose the vertices of the grid graph where to place the label 2.

2. Place the label 0 on all the vertices connected to at least a vertex labeled

by 2.

3. Place the label 1 on the remaining vertices.

Basically we use the Algorithm 1, only this time we know which vertices

have to be labeled by 2. The underlying assumption is clear: once you

decide where to place the labels 2, the labels of the remaining vertices are

automatically determined (as in Step 2 and Step 3 above) to guarantee a

Roman Dominating Function enjoying the weak Property of non–Redundancy,

see Property 4.
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2.1 The New Method

After some try-outs, we noticed that if we labeled a inner vertex by 2, we

could use a regular pattern to place the others labels 2 that will guarantee a Ro-

man Dominating Function enjoying the strong Property of non–Redundancy,

see Property 5. Such pattern is similar to a move typical of the game of chess:

the Knight Movement ; a knight can move in two way:

• Clockwise, i.e. it makes a movement of a square and then a movement

of two squares.

• Counter-clockwise, i.e. it makes a movement of two squares and then a

movement of a square.

In Figure 2.10 we show how the pattern works:

1. Initially we label with 2 a vertex, in black in the figure, and with 0 its

adjacent vertices.

2. In the second step, using the clockwise Knight Movement, we select the

four red vertices, label them with 2 and then their adjacent vertices

with 0.

3. In the third step, again using the clockwise Knight Movement and as

starting point the red vertices, we select the eight blue vertices, label

them with 2 and their adjacent vertices with 0.

4. And so on, until there are no more vertices reachable by a clockwise

knight movement.

2.2 The Five Schemas

We noticed that, using this method, we will obtain a very regular Roman

Dominating Function, and based on which vertices is chosen as first, this
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Figure 2.10: The Knight Movement: in black the initial position, in red the

first four positions that are compatible with a optimal covering, and so on,

we have the blue positions and after the green ones.

method will lead to five initial points, i.e. we obtain five schemas, which we

will denote as Si for i = 0, . . . , 4. The initial vertex of the schema Si is the

vertex (0, i).

To describe the five schemas, we will make use of the tile T5, see Fig-

ures 2.11(a)-(e), because we are interested only in grid graphs with m,n ≥ 5.

When applied to T5, S0 places the label 2 on the vertices of coordinates

(0, 0), (1, 3), (2, 1), (3, 4), (4, 2). As we said earlier, such pattern is then

repeated on grid graphs with a larger number of rows and/or columns. To
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(a) S0 (b) S1 (c) S2

(d) S3 (e) S4

Figure 2.11: The 5 Covering Schemas. In black there are the vertices labeled

by 2, in grey by 1 and in white by 0. The schemas only give the positions of

the vertices labeled by 2 (vertices are then labeled by 1 whenever this is

necessary).

obtain the schema Si from S0, we shift in every row the labels 2 by i, for

i = 1, 2, 3, 4.

Table 2.1 tells us where the labels 2 are placed according to the five

different schemas.

The first schema, S0, (see Figure 2.11(a) for a visual description of it

on a T5), was introduced in [12], where for grid graphs of type Gm,n, with

m,n ≥ 5, they proved the following result:

Theorem 6. Given a grid graph Gm,n, with m,n ≥ 5, we have

γR(Gm,n) ≤ 2 ·
(⌈m · n

5

⌉

+
⌈m

5

⌉

+
⌈n

5

⌉)

.

Proof. Clearly, following the Schema S0, |V2| ≤
⌈m · n

5

⌉

. Each vertex of
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S0 S1 S2 S3 S4

i mod 5 j mod 5 j mod 5 j mod 5 j mod 5 j mod 5

0 0 1 2 3 4

1 3 4 0 1 2

2 1 2 3 4 0

3 4 0 1 2 3

4 2 3 4 0 1

Table 2.1: Rules for placing labels 2 on the grid graph.

V \ V2 which is not on the borders is adjacent to a vertex in V2 and thus

labeled by 0, see Thoerem 7. On the borders, some vertices are in N [V2],

labeling them with 0, while some others have to be placed in V1, labeling

them with 1. Note that on the borders at most one every five vertices has to

be labeled by 1, so |V1| ≤ 2 ·
⌈m

5

⌉

+ 2 ·
⌈n

5

⌉

.

Thus we can say that:

γR(Gm,n) = 2 · |V2|+ |V1| ≤ 2 ·
⌈m · n

5

⌉

+ 2 ·
⌈m

5

⌉

+ 2 ·
⌈n

5

⌉

In general, every five vertices, one vertex is labeled by 2 and four vertices

by 0, with the exception of the borders, where every five vertices, at most one

vertex is labeled by 1. Such coverings guarantees that none of the internal

vertices of the grid will be labeled by 1 (see Theorem 7).

Theorem 7. Let Gm,n be a grid graph. If a Roman Dominating Function f

of Gm,n is obtained by using one of the schemas S0, · · · , S4, then it enjoys

the strong Property of non–Redundancy, i.e. every internal vertex of G using

f is either labeled by 2 or it is connected to one and only one vertex labeled
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Figure 2.12: Covering of the Tile T9 by the schema S2. The circles define the

influence of the vertices labeled by 2.

by 2 and thus labeled by 0 and every vertex labeled by 1 has no vertices labeled

by 2 in its adjacency list.

Proof. The theorem clearly holds by construction.

We studied the other four covering schemas, shown in Figure 2.11(b)-(e),

because we noticed that they generally give better results than the schema

S0, see Table 2.2.

For example, if we consider the schema S2 and the tile T9, we would have

the covering shown in Figure 2.12. In this case, only one vertices for each
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border has to be labeled by 1.

In what follows, given a grid graph Gm,n, we will denote by γi(Gm,n) the

Roman Domination value obtained by schema Si.

3 Remarks

At this point, we had a lower-bound, see the subsection 3.2 of Chapter 1,

and an upper-bound, see Theorem 6; our aim was to find the exact Roman

Domination Number, and in doing so we improved those bounds.

In Chapter 3 we will prove a better lower-bound for grid graphs; while in

Chapter 4 we will prove a sharper upper-bound.
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Grid Graph γ0 γ1 γ2 γ3 γ4

G5,5 14 14 14 14 14

G5,6 17 16 16 17 16

G5,7 19 19 18 19 19

G5,8 22 21 21 21 21

G5,9 24 24 23 24 23

G6,5 17 16 16 16 17

G6,6 20 19 19 19 19

G6,7 22 22 22 22 22

G6,8 25 24 25 25 25

G6,9 28 27 27 28 28

G7,5 19 19 19 18 19

G7,6 22 22 22 22 22

G7,7 25 25 25 25 26

G7,8 29 28 28 28 29

G7,9 32 32 31 31 32

G8,5 21 21 21 21 22

G8,6 25 25 24 25 25

G8,7 28 29 28 28 29

G8,8 32 32 32 32 32

G8,9 35 36 35 36 36

G9,5 24 24 23 23 24

G9,6 28 28 27 28 27

G9,7 31 32 31 32 32

G9,8 36 35 35 36 36

G9,9 40 40 38 40 40

Table 2.2: A Comparison between the five Schemas; the minimal values

found by the schemas is emphasized in bold characters.
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Improving the bounds:

The Lower-Bound

1 Introduction

In the subsection 3.2 of Chapter 1, we remarked that for any graph G 6= Kn

with |V | = n, we have the following lower-bound:

γR(G) ≥
2 · n

∆(G) + 1
.

We chose to use the ceiling function in the disequation because the Roman

Domination Number is always an integer:

γR(G) ≥

⌈

2 · n

∆(G) + 1

⌉

.

We give here a short proof of this.

Proof. Let G(V,E) 6= Kn be a graph, with maximum degree ∆(G), and

f = (V0, V1, V2) be a minimal Roman Dominating Function of G, with weight
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γR(G). Since each vertex v ∈ V0 is adjacent to at least a vertex in V2, we can

say that:

|V0| ≤ ∆(G) · |V2| . (3.1)

Thus:

(∆(G) + 1) · γR(G) = (∆(G) + 1) · |V1|+ (∆(G) + 1) · 2 |V2|

(∆(G) + 1) · γR(G) = (∆(G) + 1) · |V1|+ 2∆(G) · |V2|+ 2 |V2| ≥

≥ (∆(G) + 1) · |V1|+ 2 |V0|+ 2 |V2| by Equation 3.1.

And, because G 6= Kn implies ∆(G) ≥ 1, we will have:

(∆(G) + 1) · γR(G) ≥ (1 + 1)|V1|+ 2 |V0|+ 2 |V2| = 2n .

Finally:

γR(G) ≥
2 · n

∆(G) + 1

and, as γR(G) is always an integer:

γR(G) ≥

⌈

2 · n

∆(G) + 1

⌉

.

If we compute this lower bound for a grid graph Gm,n, with m,n ≥ 3 we

will have |V | = m · n and ∆(Gm,n) = 4, i.e.:

γR(Gm,n) ≥

⌈

2 · (m · n)

4 + 1

⌉

=

⌈

2 · (m · n)

5

⌉

.

We chose m,n ≥ 3 because every grid graph Gm,n with m,n ≥ 3 will

have ∆(G) = 4, instead a grid graph G2,n, with n ≥ 3, will have ∆(G) = 3

and a grid graph G1,n, better known as a path graph, with n ≥ 3, will have

∆(G) = 2, see Figures 3.1.
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(a) Grid graph G1,n with n ≥ 3 (b) Grid graph G2,n with n ≥ 3

(c) Grid graph Gm,n with m,n ≥ 3

Figure 3.1: The Maximum Degree for Grid Graphs.

2 Improving the Bound

In order to improve the lower-bound, we introduce now the idea of cost (χ)

of a vertex, i.e. for each vertex in a given graph we associate a new value

that, given a Roman Dominating Function f , represents how much we spend

to protect that vertex.

We suppose that the Roman Dominating Function f is weakly non–

redundant, i.e. every vertex labeled by 1 has no neighbor labeled by 2.

If a vertex v is labeled by 2, then its value is shared equally among the

vertex itself and its neighbors, i.e. among its closed neighborhood N [v]. So,

the shared value (σ) of v among the vertices of its closed neighborhood is
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Figure 3.2: The Graph K4: the vertex v is labeled by 2 and the others by 0.

The cost of all the vertices is 1/2.

defined as:

σ(v, w) =
2

|N [v]|
∀w ∈ N [v] .

If a vertex v is labeled by 1, then its value is not shared with any other

vertex, i.e.

σ(v, w) =











1 w = v

0 ∀w ∈ N(v)

.

If a vertex v is labeled by 0, then there is no value to be shared among its

neighborhood and thus:

σ(v, w) = 0 ∀w ∈ N [v] .

So the cost of a vertex v is the sum of all the shares from all the vertices

in its closed neighborhood, i.e.:

χ(v) =
∑

w∈N [v]

σ(w, v) .

In particular, if a vertex v is labeled by 1, then its cost is 1, i.e.:

χ(v) = 1 .

For example, if we consider a Kn, then in a Roman Dominating Function

weakly non–redundant, a vertex is labeled by 2 and all the others by 0, and

each vertex has a cost of 2/n, see for example Figure 3.2.
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Figure 3.3: The vertices of a grid graph are divided in two sets: in black the

internal vertices (Set A) and in white the external ones (Set B).

Clearly, we will have that the sum of all the costs is equivalent to the sum

of the value of the chosen Roman Dominating Function, i.e.:

∑

v∈V

χ(v) =
∑

v∈V

fRD(v) .

In the specific case of grid graphs, we divide the vertices in two sets: A is

the set of the internal vertices and B is the set of vertices on the borders, see

Figure 3.3.

The minimum cost of the vertices in A is 2/5. Indeed, in the best case

scenario, we have a vertex v labeled by 2 and its four neighbors labeled by 0

and covered only by v.

For the vertices in B, the problem of finding the minimum cost is a bit

trickier. In theory, every vertex v on the borders can have a cost of 2/5, and

this is the case when v is covered only by an internal vertex labeled by 2, so
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we find the initial lower-bound:

γR(G) ≥
2

5
· |A|+

2

5
· |B| =

2

5
· |V | =

2 · (m · n)

5
.

But not every vertex in B has a cost of 2/5, in fact a vertex in B labeled

by 0 can have a cost of:

1. 2/4 + 2/5 + 2/4 = 13/10, if it has the three adjacent vertices labeled by

2.

2. 2/4 + 2/3 = 7/6, if it has an adjacent vertex on the border labeled by 2

and an adjacent vertex on the corner labeled by 2.

3. 2/4 + 2/4 = 1, if it has the two adjacent vertices on the border labeled

by 2.

4. 2/5+ 2/4 = 9/10, if it has the internal adjacent vertex labeled by 2 and

an adjacent vertex on the border labeled by 2.

5. 2/3, if it is covered only by a corner vertex labeled by 2.

6. 2/4, if it covered only by a border vertex labeled by 2.

7. 2/5, if it is covered only by an internal vertex labeled by 2.

A vertex in B labeled by 2 can have a cost of:

1. 2/3 + 2/4 + 2/4, if it is a vertex on the corner, and has two adjacent

vertices labeled by 2.

2. 2/4+2/4+2/4, if it has the two adjacent vertices on the border labeled

by 2 and the internal one labeled by 0.

3. 2/3 + 2/4, if it is a vertex on the corner, and has an adjacent vertex

labeled by 2 and one labeled by 0.

4. 2/4 + 2/4, if it has an adjacent vertices on the border labeled by 2 and

the others adjacent vertices labeled by 0.

5. 2/3, if it is a vertex on the corner, and has two adjacent vertices labeled

by 0.
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6. 2/4, if it has the three adjacent vertices labeled by 0.

Finally, a vertex in B labeled by 1 has a cost of 1.

2.1 A Preparatory Lemma

We now define B∗ as the set of vertices, whose cost is less than 2/4:

B∗ = {v ∈ B : χ(v) < 2/4} .

As we said above, the only case for a vertex to be in B∗ is when its cost

is 2/5 and it is covered only by an internal vertex, see case seven above.

Lemma 8. Let Gm,n be a grid graph, covered by a Roman Dominating

Function weakly non–redundant, then there exists a injective function f : B∗ →

A ∪ B, such that ∀v ∈ B∗:

χ(v) + χ(f(v)) ≥











2/5 + 2/4 if f(v) ∈ A

2/4 + 2/4 if f(v) ∈ B

. (3.2)

Proof. To prove the lemma, we will move clock-wise along the borders of

Gm,n, starting from the vertex at position (0, 1) and ending at position (0, 0).

Given a vertex v ∈ B∗, s(v) and i(v) will be respectively the successor and

internal adjacent vertex of v, in such clock-wise order. There are four possible

cases:

1. s(v) ∈ B∗, then this implies two adjacent vertices in A labeled by 2,

and their cost is at least 2 · 2/5 = 4/5, so we define f(v) = i(v), see

Figure 3.4(a).

2. s(v) 6∈ B∗, with a cost of 2/4, then this implies that s(s(v)) is labeled

by 2 and i(s(s(v))) has a cost at least2/4, so we define f(v) = i(s(s(v))),

as in Figure 3.4(b).
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(a) Case 1 (b) Case 2

(c) Case 3 (d) Case 4

Figure 3.4: The four Cases of the Lemma 3.2.

3. s(v) 6∈ B∗, with a cost of 2/3, so we define f(v) = s(s(v)), as in

Figure 3.4(c).

4. s(v) 6∈ B∗, with a cost of 1, so we define f(v) = s(v), as in Figure 3.4(d).

Clearly, the function f is injective by construction.
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2.2 The New Lower-Bound

We now define a partition of B∗ and the images on V of the injective

function f of such partition:

• B∗1 as the set of vertices such that

v ∈ B∗1 iff v ∈ B∗ ∧ f(v) ∈ A ;

• B∗2 as the set of vertices such that

v ∈ B∗2 iff v ∈ B∗ ∧ f(v) ∈ B ;

• K ′ as the set of vertices such that

v ∈ K ′ iff ∃ u ∈ B∗ : f(u) = v ∧ v ∈ A ;

• K ′′ as the set of vertices such that

v ∈ K ′′ iff ∃ u ∈ B∗ : f(u) = v ∧ v ∈ B .

Once defined the sets above, we can demonstrate our theorem:

Theorem 9. Given a Roman Dominating Function weakly non–redundant,

and the function f defined above, the Roman Domination Number of a grid

graph (Gm,n), with m,n ≥ 3, has a lower-bound of:

γR(G) ≥
|A| · 2

5
+
|B| · 2

4
.

Proof.
∑

v∈V

χ(v) =
∑

v∈A

χ(v) +
∑

v∈B

χ(v) =

=
∑

v∈A−K′

χ(v) +
∑

v∈B−(B∗∪K′′)

χ(v) +
∑

v∈K′

χ(v) +
∑

v∈B∗

χ(v) +
∑

v∈K′′

χ(v) ≥

As |B∗| = |B∗1 |+ |B
∗

2 |

=
∑

v∈A−K′

χ(v) +
∑

v∈B−(B∗∪K′′)

χ(v) +
∑

v∈K′

χ(v)+
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+
∑

v∈B∗

1

χ(v) +
∑

v∈B∗

2

χ(v) +
∑

v∈K′′

χ(v) =

=
∑

v∈A−K′

χ(v) +
∑

v∈B−(B∗∪K′′)

χ(v) +





∑

v∈B∗

1

χ(v) +
∑

v∈K′

χ(v)



+

+





∑

v∈B∗

2

χ(v) +
∑

v∈K′′

χ(v)



 =

and |K ′| = |B∗1 |, |K
′′| = |B∗2 |

=
∑

v∈A−K′

χ(v) +
∑

v∈B−(B∗∪K′′)

χ(v) +





∑

v∈B∗

1

χ(v) +
∑

v∈B∗

1

χ(f(v))



+

+





∑

v∈B∗

2

χ(v) +
∑

v∈B∗

2

χ(f(v))



 ≥

for Equation (3.2)

≥
∑

v∈A−K′

χ(v)+
∑

v∈B−(B∗∪K′′)

χ(v)+





∑

v∈B∗

1

(

2

5
+

2

4

)



+





∑

v∈B∗

2

(

2

4
+

2

4

)



 ≥

≥
|A−K ′| · 2

5
+
|B − (B∗ ∪K ′′)| · 2

4
+

∑

v∈B∗

1

2

5
+

∑

v∈B∗

1

2

4
+

∑

v∈B∗

2

2

4
+

∑

v∈B∗

2

2

4
≥

≥
|A−K ′| · 2

5
+
|B − (B∗ ∪K ′′)| · 2

4
+

∑

v∈K′

2

5
+

∑

v∈B∗

1

2

4
+

∑

v∈B∗

2

2

4
+

∑

v∈K′′

2

4
≥

≥
(|A−K ′|+ |K ′|) · 2

5
+

(|B − (B∗ ∪K ′′)|+ |B∗1 |+ |B
∗

2 |+ |K
′′|) · 2

4
=

=
|A| · 2

5
+
|B| · 2

4
.
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3 Conclusions

If we consider a grid graph Gm,n with m,n ≥ 3, the cardinality of the set

of internal vertices of G is

|A| = (m− 2) · (n− 2)

and the cardinality of the external vertices is

|B| = m · n− ((m− 2) · (n− 2)) = 2m+ 2n− 4 ,

then the lower-bound for a grid graph is:

γR(Gm,n) ≥
|A| · 2

5
+
|B| · 2

4
=

(m− 2) · (n− 2) · 2

5
+

(2m+ 2n− 4) · 2

4
=

=
((2 ·m · n+ 8− 4m− 4n) + (5m+ 5n− 10))

5
=

=
(2 ·m · n+m+ n− 2)

5

As before, we can use the ceiling function, so we will have:

γR(Gm,n) ≥

⌈

(2 ·m · n+m+ n− 2)

5

⌉

This is a sharper lower-bound, in fact if:

m+ n− 2

5
> 1 → m+ n− 2 > 5 → m+ n > 7

we will have:

⌈

(2 ·m · n+m+ n− 2)

5

⌉

≥

⌈

2 · (m · n)

5
+ 1

⌉

>

⌈

2 · (m · n)

5

⌉

.
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Improving the bounds:

The Upper-Bound

1 Introduction

In this chapter we will prove a strict upper-bound that we believe can be

the Roman Domination Number for most, if not all, grid graphs.

As grid graphs have a regular structure, given any grid graph Gm,n and

its transpose Gn,m, it follows

γR(Gm,n) = γR(Gn,m) .

Remember that, given a grid graph Gm,n, we denoted by γi(Gm,n) the

Roman Domination value obtained by schema Si, see Subsection 2.2 of

Chapter 2. In what follows, we will use only the schema S2 as covering

method, because it always gives the best results, as we can see in Table 2.2,

except for two classes of grid graphs: G1+5h,3+5k and G2+5h,5k, for integers

h, k ≥ 1. In such cases, though, the schema S2 gives the best results on the

transpose grid graphs, see again Table 2.2.
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Thus we define γ∗2(Gm,n) as

γ∗2(Gm,n) = min{γ2(Gm,n), γ2(Gn,m)}.

We will now state our main theorem, which, as said before, improves the

upper-bound given in Theorem 6.

Theorem 10 (Grid Theorem). Let Gm,n be a grid graph, with m,n ≥ 5.

Then, by using Schema S2:

γR(Gm,n) ≤ γ∗2(Gm,n) =































⌊

2 · (m · n+m+ n)

5

⌋

− 1 if m,n mod 5 = 4

⌊

2 · (m · n+m+ n)

5

⌋

otherwise

.

(4.1)

Initially, we will prove that the Grid Theorem is true in some special cases,

see Lemma 11 and Lemma 13, then we will prove the general case.

2 Preparatory Lemmas

We will prove now the first lemma.

Lemma 11. The Grid Theorem is true for the grid graphs Gm,n with 5 ≤

m,n ≤ 9 .

Proof. The Lemma follows from Table 4.1.

In Table 4.1 we can see a comparison, for the grid graphs Gm,n with

5 ≤ m,n ≤ 9 , between the exact value of γR(G), γ∗2(G), the Grid Theorem

and Theorem 6. The exact values of γR(G) are given by the Equations on

Page 27.
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Grid Graph γR γ∗

2
Grid Theorem Theorem 6

5x5 14 14 14 14

5x6 16 16 16 18

5x7 18 18 18 20

5x8 21 21 21 22

5x9 23 23 23 24

6x5 16 16 16 18

6x6 19 19 19 24

6x7 22 22 22 26

6x8 24 24 24 28

6x9 27 27 27 30

7x5 18 18 18 20

7x6 22 22 22 26

7x7 24 25 25 28

7x8 28 28 28 32

7x9 31 31 31 34

8x5 21 21 21 22

8x6 24 24 24 28

8x7 28 28 28 32

8x8 32 32 32 34

8x9 35 35 35 38

9x5 23 23 23 24

9x6 27 27 27 30

9x7 31 31 31 34

9x8 35 35 35 38

9x9 n.d. 38 38 42

Table 4.1: A comparison between the exact value of γR, γ
∗

2(G), the Grid

Theorem and Theorem 6.
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We can add that, with the exception of G7,7, of which we will discuss in

the conclusions, and G9,9, the Grid Theorem gives the exact value of γR, as

we can see in Table 4.1. We do not know the exact value of γR(G9,9), but as

we know γR(G8,9), we can say:

35 = γR(G8,9) ≤ γR(G9,9) ≤ γ∗2(G9,9) = 38

35 ≤ γR(G9,9) ≤ 38 .

The next lemma, about a special case of graphs, a Cartesian Product of a

path e a cycle, will be useful for the demonstration of the Lemma 13 and for

the Grid Theorem.

Lemma 12. Let G = C5 ⊗ Pn with n ≥ 5 be a Cartesian product of a cycle

graph with 4 edges and a path graph with n− 1 edges. Then, G can be covered

with any schema Si and we will have:

γi(C5 ⊗ Pn) = γi(Pn ⊗ C5) = γR(C5 ⊗ Pn) = 2 · n+ 2 .

Proof. The Cartesian product of a cycle graph with 4 edges and a path graph

with n− 1 edges is a cylinder with a base formed by 5 vertices and height of

n vertices.

Whatever schema you choose, it is invariant respect a rotation along the

height. Using any schema Si, we have to place a label 2 in each column; only

2 vertices, one for each base, remain uncovered and has to be labeled by 1.

This is the optimal solution for this kind of graphs, i.e.:

γi(C5 ⊗ Pn) = γi(Pn ⊗ C5) = γR(C5 ⊗ Pn) = 2 · n+ 2 .

A mathematical proof is found in [46].

The next lemma is an intermediate step, in which we prove the Grid

Theorem for grid graphs of fixed m.



4.2 Preparatory Lemmas 53

Figure 4.1: Grid Graph G9,9 plus a insertion of Grid Graph G9,5.

Lemma 13. The Grid Theorem is true for grid graphs Gm,n, with 5 ≤ m ≤ 9

and n ≥ 10 .

Proof. Let k′ = n mod 5, and let b > 0 be the integer such that n =

5 · (b+ 1) + k′ . Then n = 5 · b+ k with 5 ≤ k ≤ 9, where k = k′ + 5 .

Grid graph Gm,n can be seen as an insertion of grid graph Gm,5·b in grid

graph Gm,k, as we can see in Figure 4.1. Moreover, the grid graph Gm,5·b can

be seen as a composition of b sub-grid graphs of type Gm,5. Each of these b

sub-grid graphs can be seen as an open graph C5 ⊗ Pm, and by Lemma 12,

it can be covered using m labels 2 (one per row) and 2 labels 1 (one for the

upper row and one for the lower row), see Figure 4.1.

Thus

γR(Gm,n) ≤ γ∗2(Gm,n) = (2 ·m+ 2) · b+ γ∗2(Gm,k) (4.2)
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Because 5 ≤ m, k ≤ 9, by Lemma 11 it follows:

γ∗2(Gm,k) =































⌊

2 · (m · k +m+ k)

5

⌋

− 1 if m, k mod 5 = 4

⌊

2 · (m · k +m+ k)

5

⌋

otherwise

.

We discuss the first case, the second is analogous.

Let m = 9 and k = 9, then using Equation 4.2 we obtain

γR(Gm,n) ≤ γ∗2(Gm,n) = (2 ·m+ 2) · b+

⌊

2 · (m · k +m+ k)

5

⌋

− 1 =

=

⌊

5 · (2 ·m+ 2) · b+ 2 · (m · k +m+ k)

5

⌋

− 1 =

=

⌊

2 · (5 ·m · b+ 5 · b+m · k +m+ k)

5

⌋

− 1 =

=

⌊

2 · (m · (5 · b+ k) +m+ (5 · b+ k))

5

⌋

− 1 =

=

⌊

2 · (m · n+m+ n)

5

⌋

− 1

3 Equality for Some type of Grid Graphs

In the following Lemma, we show that for grid graphs Gm,n with 5 ≤ m ≤ 8

and n ≥ 5, with the exception of grid graph G7,7, our upper-bound is the

Roman Domination Number.

Lemma 14. For grid graphs Gm,n with 5 ≤ m ≤ 8 and n ≥ 5, with the

exception of grid graph G7,7, the Grid Theorem gives the value of γR(Gm,n).
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Proof. The equations for γR(Gm,n) are that of Page 27.

We have four cases:

• m = 5
⌊

2 · (5 · n+ 5 + n)

5

⌋

=

⌊

12 · n+ 10

5

⌋

=

⌊

12 · n

5

⌋

+ 2 = γR(G5,n)

• m = 6
⌊

2 · (6 · n+ 6 + n)

5

⌋

=

⌊

14 · n+ 12

5

⌋

=

=























































14k + 2 n = 5k

14k + ⌊26/5⌋ = 14k + 5 n = 5k + 1

14k + ⌊40/5⌋ = 14k + 8 n = 5k + 2

14k + ⌊54/5⌋ = 14k + 10 n = 5k + 3

14k + ⌊68/5⌋ = 14k + 13 n = 5k + 4

=

=























































14k + 2 n = 5k

14k + ⌊14/5⌋+ 3 = ⌊14n/5⌋+ 3 n = 5k + 1

14k + ⌊28/5⌋+ 3 = ⌊14n/5⌋+ 3 n = 5k + 2

14k + ⌊42/5⌋+ 2 = ⌊14n/5⌋+ 2 n = 5k + 3

14k + ⌊56/5⌋+ 2 = ⌊14n/5⌋+ 2 n = 5k + 4

=

= γr(G6,n)

• m = 7 (n 6= 7)
⌊

2 · (7 · n+ 7 + n)

5

⌋

=

⌊

16 · n+ 14

5

⌋

=

=























































16k + 2 n = 5k

16k + ⌊30/5⌋ = 16k + 6 n = 5k + 1

16k + ⌊46/5⌋ = 16k + 9 n = 5k + 2

16k + ⌊62/5⌋ = 16k + 12 n = 5k + 3

16k + ⌊78/5⌋ = 16k + 15 n = 5k + 4

=
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=























































16k + 2 n = 5k

16k + ⌊16/5⌋+ 3 = ⌊16n/5⌋+ 3 n = 5k + 1

16k + ⌊32/5⌋+ 3 = ⌊16n/5⌋+ 3 n = 5k + 2

16k + ⌊48/5⌋+ 3 = ⌊16n/5⌋+ 3 n = 5k + 3

16k + ⌊64/5⌋+ 3 = ⌊16n/5⌋+ 3 n = 5k + 4

=

= γr(G7,n)

• m = 8
⌊

2 · (8 · n+ 8 + n)

5

⌋

=

⌊

18 · n+ 16

5

⌋

=

=























































18k + 3 n = 5k

18k + ⌊34/5⌋ = 18k + 6 n = 5k + 1

18k + ⌊52/5⌋ = 18k + 10 n = 5k + 2

18k + ⌊70/5⌋ = 18k + 14 n = 5k + 3

18k + ⌊88/5⌋ = 18k + 17 n = 5k + 4

=

=























































18k + 3 n = 5k

18k + ⌊18/5⌋+ 3 = ⌊18n/5⌋+ 3 n = 5k + 1

18k + ⌊36/5⌋+ 3 = ⌊18n/5⌋+ 3 n = 5k + 2

18k + ⌊54/5⌋+ 4 = ⌊18n/5⌋+ 4 n = 5k + 3

18k + ⌊72/5⌋+ 3 = ⌊18n/5⌋+ 3 n = 5k + 4

=

= γr(G8,n)
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Figure 4.2: Grid Graph G9,14 plus a insertion of Grid Graph G5,14.

4 The Proof of the Grid Theorem

Let us now prove the general case of the Grid Theorem.

Theorem (Grid Theorem). Let Gm,n be a grid graph, with m,n ≥ 5. Then,

by using Schema S2:

γR(Gm,n) ≤ γ∗2(Gm,n) =































⌊

2 · (m · n+m+ n)

5

⌋

− 1 if m,n mod 5 = 4

⌊

2 · (m · n+m+ n)

5

⌋

otherwise.

(4.3)

Proof. Let Gm,n be a grid graph with m,n ≥ 5 .
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If 5 ≤ m,n ≤ 9, the proof follows from Lemma 11.

If 5 ≤ m ≤ 9 and n ≥ 10, or if 5 ≤ n ≤ 9 and m ≥ 10 the proof follows

from Lemma 13.

Else, let Gm,n be a grid graph with m,n ≥ 10 .

Let h′ = m mod 5, and let a > 0 be the integer such that m = 5 · (a +

1) + h′ . Then m = 5 · a+ h, where h = h′ + 5 .

Grid graph Gm,n can be seen as an insertion of grid graph G5·a,n in grid

graph Gh,n, as we can see in Figure 4.2. Moreover, the grid graph G5·a,n can

be seen as a composition of a sub-grid graphs of type G5,n. Each of these b

sub-grid graphs can be seen as an open graph C5 ⊗ Pn, and by Lemma 12, it

can be covered using n labels 2 (one per column) and 2 labels 1 (one for the

leftmost column and one for the rightmost column), see Figure 4.2.

Thus

γR(Gm,n) ≤ γ∗2(Gm,n) = (2 · n+ 2) · a+ γ∗2(Gh,n) . (4.4)

Because 5 ≤ h ≤ 9, by Lemma 13 it follows:

γ∗2(Gh,n) =































⌊

2 · (h · n+ h+ n)

5

⌋

− 1 if h, n mod 5 = 4

⌊

2 · (h · n+ h+ n)

5

⌋

otherwise

.

Again, we discuss the first case, the second is analogous.

Let h = 9 and n mod 5 = 4, then, using Equation 4.4 we obtain

γR(Gm,n) ≤ γ∗2(Gm,n) = (2 · n+ 2) · a+

⌊

2 · (h · n+ h+ n)

5

⌋

− 1 =

=

⌊

5 · a · (2 · n+ 2) + 2 · (h · n+ h+ n)

5

⌋

− 1 =

=

⌊

2 · (5 · a · n+ 5 · a+ h · n+ h+ n)

5

⌋

− 1 =
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=

⌊

2 · ((5 · a+ h) · n+ (5 · a+ h) + n)

5

⌋

− 1 =

=

⌊

2 · (m · n+m+ n)

5

⌋

− 1

5 Conclusions and Open Problems

As we can clearly see, the Grid Theorem gives a sharper upper-bound

than the Theorem 6 over the Grid Graphs. Indeed, we have:

• m,n mod 5 = 4:

⌊

2 · (m · n+m+ n)

5

⌋

− 1 ≤ 2 ·
(⌈m · n

5

⌉

+
⌈m

5

⌉

+
⌈n

5

⌉)

• otherwise:

⌊

2 · (m · n+m+ n)

5

⌋

≤ 2 ·
(⌈m · n

5

⌉

+
⌈m

5

⌉

+
⌈n

5

⌉)

The equality holds only when m,n mod 5 = 0. In all the other cases, the

difference between the old upper-bound and the new one is at most 5, as in

case of the grid graph G6,6; although the improvement is very minimal, is

nonetheless an important improvement.

We show now that the Grid Theorem also gives sharp upper-bounds to

the classes of graphs G1,n, G2,n, G3,n and G4,n. We have:

• G1,n, i.e. m = 1:

⌊

2 · (m · n+m+ n)

5

⌋

=

⌊

2 · (1 · n+ 1 + n)

5

⌋

=

⌊

2 · (2 · n+ 1)

5

⌋

=

=

⌊

4 · n+ 2

5

⌋

=

⌊

4 · n

5
+

2

5

⌋

=

⌊

12 · n

15
+

6

15

⌋

=
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– if n < 5: by enumeration;

– if n ≥ 5:

=

⌊

10 · n

15
+

2 · n

15
+

6

15

⌋

≥

⌊

10 · n

15
+

10

15
+

6

15

⌋

≥

≥

⌊

10 · n

15
+

16

15

⌋

≥

⌈

10 · n

15

⌉

≥

⌈

2 · n

3

⌉

≥ γR(G1,n)

• G2,n, i.e. m = 2:

⌊

2 · (m · n+m+ n)

5

⌋

=

⌊

2 · (2 · n+ 2 + n)

5

⌋

=

⌊

2 · (3 · n+ 2)

5

⌋

=

=

⌊

6 · n+ 4

5

⌋

=

⌊

6 · n

5
+

4

5

⌋

≥

⌊

5 · n

5
+

1

5
+

4

5

⌋

≥ n+ 1 ≥ γR(G2,n)

• G3,n, i.e. m = 3:

⌊

2 · (m · n+m+ n)

5

⌋

=

⌊

2 · (3 · n+ 3 + n)

5

⌋

=

⌊

2 · (4 · n+ 3)

5

⌋

=

=

⌊

8 · n+ 6

5

⌋

=

⌊

8 · n

5
+

6

5

⌋

=

⌊

16 · n

10
+

12

10

⌋

– if n = 1:

≥

⌊

15 · n

10
+

10

10

⌋

≥

⌊

3 · n

2
+ 1

⌋

≥ γR(G3,1)

– if n 6= 1:

≥

⌊

15 · n

10
+

n

10
+

12

10

⌋

≥

⌈

15 · n

10
+

10

10

⌉

≥

≥

⌈

3 · n

2
+ 1

⌉

≥ γR(G3,n)

• G4,n, i.e. m = 4:

⌊

2 · (m · n+m+ n)

5

⌋

=

⌊

2 · (4 · n+ 4 + n)

5

⌋

=

⌊

2 · (5 · n+ 4)

5

⌋

=

=

⌊

2 · n+
8

5

⌋

= 2 · n+ 1 ≥ γR(G4,n)

We have indeed an equation that is a sharp upper-bound to all type of

grid graphs.
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✲

old-Low new-Low new-Upp

| | |

Figure 4.3: A comparison between the old lower-bound, the new lower-bound

and the new upper-bound.

A Comparison between The New Bounds

Summing up, if we make a comparison between the new lower- and the

new upper-bound, we have:
⌈

(2 ·m · n+m+ n− 2)

5

⌉

≤ γR(Gm,n) ≤

⌊

2 · (m · n+m+ n)

5

⌋

.

The gap is circa (m + n)/5 = Θ(m + n), which is sub-linear, given the

number of vertices, m · n, of a grid graph. Also, we halved the gap between

the old lower- and upper-bound, see Figure 4.3:

(m+ n)/5 ≃

(

2 ·
(⌊m · n

5

⌋

+
⌊m

5

⌋

+
⌊n

5

⌋)

−

⌈

(2 ·m · n)

5

⌉)

2
.

5.1 Open Problems

In this chapters, we have presented a method for producing good coverings

for the Roman Domination Problem over grid graphs. In particular, we proved

that these coverings have a sharper upper-bound on the Roman Domination

Number over grid graphs, with respect to the previous known upper-bound,

see Theorem 6 and [12].

We already proved that for grid graphs Gm,n with 5 ≤ m ≤ 8 and n ≥ 5,

except the grid graph G7,7, and grid graphs Gm,n with m = 9 and 5 ≤ n ≤ 8,

our upper-bound is the Roman Domination Number.
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Figure 4.4: Grid Graph G7,7. On the left we have the optimal covering,

γR = 24, with in red the vertices covered by two black ones. On the right we

have the covering by schema S2, γ2 = 25.

The grid graph G7,7 is an exception, see Figure 4.4, because its optimal

covering is a variation of our schema S2, where some internal vertices were

covered by two vertices labeled by 2. We conjecture that this is the only case

where our method fails. In fact, attempts to replicate the schema used in the

optimal covering of grid graph G7,7 on other grid graphs failed; we suppose

because the number of internal vertices covered by two vertices labeled by

2 increased, leading to a non–optimal covering; while with our method the

internal vertex are always covered by only one vertex labeled by 2, and the

number of vertices labeled by 1 is fixed.

So, as the covering method we proposed enjoys the strong Property of

non–Redundancy, see Property 5, and given the regular structure of the grid

graphs, we conjecture that, given a grid graph Gm,n with m,n ≥ 5, except the

grid graph G7,7, our upper-bound is the exact value of the Roman Domination

Number of that grid graph, i.e.

if m,n ≥ 5 and m,n 6= 7 then γR(Gm,n) = γ∗2(Gm,n) .



Chapter 5

The Implementations

“Good programmers know what to write.

Great ones know what to rewrite (and reuse).”

- Eric Steven Raymond -

1 Introduction

As we said, the Roman Domination Problem is feasible only for specific

class of graph, see for example [40]: interval graphs, co-graphs, trees.

As for generic graphs the Roman Domination Problem is NP−hard, in

this chapter we discuss some implementations: we tried to find heuristic

algorithms that could compute in polynomial time a Roman Dominating

Function that was the best possible. To do so, first of all, we had to generate

a congruent dataset on which we could test our algorithms, because there is

no such thing freely available.

We implemented our graphs’ generators using Objective–C and the XCode

integrated enviroment. After, we implemented some heuristics and genetic

Algorithms, again using Objective–C and XCode.
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The following contents are object of the article Heuristics with Dynamic

Parameters for Roman Domination Problem, to be submitted, [13], and are

explained in detail in the dissertation Algoritmi Euristici per il Problema

della Dominazione Romana by Dott. Mario Nolassi, see [44].

2 Graphs Dataset Generation

We generated a graphs’ dataset large enough to be representative of the

class of graphs that we wanted to study and on which we could try the

heuristics and the genetic algorithms for finding good roman covering.

We generated:

• Gilbert random graphs;

• Barabási-Albert random graphs;

• bipartite graphs;

• planar graphs;

• grid graphs.

The theory of random graphs is a miscellaneous in-between graph theory

and probability theory, see [6]. To generate a random graph we need some

random process that we can use as seed.

The first random model we implemented is the Gilbert’s random model,

see [24]. This model is the most simple and is denoted by G(n, p) where n is

the number of vertices, while 0 ≤ p ≤ 1 is the edge’s probability of existence.

Initially we generate a set of n isolated vertices and then we randomly add

edges between them.

However, sometimes a graph, even if random, need to have some proper-

ties and so the generation procedure can have some parameters. Different



5.2 Graphs Dataset Generation 65

Figure 5.1: A Barabási-Albert Random Graph.

parameters can generate different kind of random graphs and will produce a

different probability function.

An example of this is the second random model we implemented: the

Barabási-Albert’s random model, see [5]. In this model is introduced a new

idea: the scale-free networks. With this property, the vertices’ degree follow

a power law, i.e. they have a scale-free degree distribution, see Figure 5.1.

This degree distribution follow a power law of the form

P (K) ∼ K−3

A characteristic of this model is that there exist some vertices called hub, that

have a degree much larger than the mean.

Scale-free networks are widely observed in natural and human-made

systems, including the Internet, the world wide web, citation networks, and

some social networks. It incorporates two important general concepts: growth

and preferential attachment.Growth means that the number of vertices in the

network increases over time. Preferential attachment means that the more

connected a vertex is, the more likely it is to receive new links. Vertices with
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higher degree have stronger ability to grab links added to the network.

Intuitively, see [55] and [42], the preferential attachment can be understood

if we think in terms of social networks connecting people. Here a link from

A to B means that person A knows or is acquainted with person B. Heavily

linked vertices represent well-known people with lots of relations. When a

newcomer enters the community, he is more likely to become acquainted with

one of those more visible people rather than with a relative unknown.

Using the Gilbert model we generated also bipartite graphs and planar

graphs. For the planar graph, initially, we associated a pair of geometric

coordinates to every vertices, and we randomly linked the vertices giving an

higher probability to nearer vertices. After that, we verify the planarity using

a planarity test, [36].

Also we generated the grid graphs, to support the theoretic research.

For all the graphs we generated for our dataset, n varies between 50 and

10.000, and when arise necessity to define a probability of connectivity p, it

varies between 0.01 and 0.9.

We decided to use the adjacency list for representing the graphs and mem-

orize its using a formatted text file: the GDL (Graph Description Language)

format, implementing the interface for importing and exporting the graphs.

Such format can be output on screen using aiSee, a software whose design

has been optimized to handle automatically large graphs generated by other

applications and moreover can minimize the intersection of the edges when

drawing the graph, see [17] and [38].
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3 Heuristic Algorithms

In this section we will discuss the heuristic algorithms we used to obtain

a good approximation of the Roman Domination Number for generic grid

graphs.

3.1 The Simple Heuristic

The first heuristic we implemented is the most simple and straightforward;

using a greedy algorithm we:

• sort in decreasing order the vertices using their degree;

• label the first vertex by 2 and its open neighborhood by 0;

• if a vertex has no open neighborhood or its neighborhood has been

already labeled, label it with 1;

• continue until there are no more vertices unlabeled.

With this strategy, we label with 2 the most connected vertices. Also, if

we use a post-processing routine, we can have better results: we reduce the

vertices labeled by 1, i.e. if a vertex v labeled by 0 has two or more vertices ui

in its neighborhood labeled by 1, then we can label v with 2 and the vertices

ui with 0.

This heuristic has complexity O(|V |·|E|) time, as that is the time occurring

to the processing routine and to the post-processing routine.

3.2 The GainFactor Heuristic

This heuristic use a new parameter: a value, called GainFactor, associated

to each vertex; specifically, the GainFactor of a vertex v means the gain that
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we could have if we label v with 2, and labeling with 0 its neighborhood

vertices, previously labeled by 1; it is a dynamic parameter, because its value

can change during the computation.

We define:

GainFactor(v, t) = label(v)− 2 + adj1(v)

where t is the time of computation, label(v) is the current labeling of v and

adj1(v) is the count of all the vertices labeled by 1 in the open neighborhood

of v. If the sum is negative, we pone the GainFactor equals to 0. We can

prove that, during the computation, the GainFactor of each vertex can only

decrease, because adj1(v) can only decrease and label(v) can only increase

when v is selected for processing and this implies that adj1(v) will decrease.

When we select a vertex v for processing, we modify its label from 0 or 1

to 2, and so we update the vertices labeled by 1 in the open neighborhood of

v, labeling them with 0; this implies that we have to update the GainFactor

value of v, of its open neighborhood and of its open neighborhood of second

level N2(v) because processing v implies a possible update of all the label of

N [v] and this implies the update of the closed neighborhood of second level.

We define the open neighborhood of second level of a vertex v as the union

of set of vertices in the adjacency list of the vertices in the adjacency list of v,

i.e. N2(v) = {x : u ∈ N(v)∧ e ∈ E ∧ e = (u, x)} and the closed neighborhood

of second level as N2[v] = N2(v) ∪N [v].

Experimentally, even for graphs with connectivity 0.1, the closed neighbor-

hood of second level may be equal to the entire set of vertices, so instead of

computing the two sets N [v] and N2[v] it is better to update the GainFactor

of all the vertices; if we keep a list of all the vertices with positive GainFactor,

we update only the vertices in this list, and as the GainFactor can not increase,

this implies that at every step the list will became shorter.
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At time t = 0 each vertex is labeled with 1 in the initialization routine.

This guarantees us that at each step, we are dealing with a Roman Dominating

Function.

Then we compute the GainFactor for all the vertices, and maintain a list

A of the positive ones.

At each iteration, we select from the list A, the vertex v with greater

GainFactor, label it with 2, and label with 0 all the vertices in its open

neighborhood previously labeled by 1; then we update the GainFactor of

the vertices in the list A and eliminate from the list A the vertex v and the

vertices with negative GainFactor. This until the list A is not empty.

Finally, we check if a vertex v, labeled with 0 or 1, has in its neighborhood

one or more vertices ui labeled by 1; if this is true, we label v with 2 and ui

with 0.

The complexity of this heuristic is O(V ) · O(V + E) time, because the

most expensive operation is to update the GainFactor (O(V +E) time) of all

the vertices (|V |).

3.3 Variations of the GainFactor Heuristic

After, we implemented some variations on the GainFactor Heuristic:

• Random Selection. When we had to select the vertex with greater

GainFactor in the GainFactor Heuristic, if there were two or more

such vertices, we simply selected the first. We tried other methods of

selection, but the results were more or less the same, so we chose to

select the first vertex to avoid more computations and discard these

variations.

• Varying Initial Point. In this variation, we run the GainFactor Heuristic

multiple times; if we have n vertices, we run the GainFactor Heuristic
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n times, each time forcing the vertex vi to be labeled with 2. This

variation gives better solutions, but has a drawback: often the iterations

select the vertices in the same order, thus wasting computational time.

• Sequence Control. In this variation, we tried to solve the drawback of

the previous; for each iteration we maintain an auxiliary list, containing

the sequence of vertices’ selection. If two sequence are equals, then

discard the last selection and select another vertex. Theoretically, this

variation has to give the better solutions, but is quite time-consuming,

and it is infeasible for graphs with |V | > 500.

3.4 Conclusions

We tested the heuristics over our dataset. As we can see in Table 5.1, the

Simple Heuristic give solutions that are worst than the GainFactor Heuristic,

and the gap increase proportionally as the number of vertices.

In Table 5.2 we can see that all the solutions are below the known upper-

bounds, see Section 3.2 in Chapter 1.

For generic graphs, the stricter upper-bound is:

γR(G) ≤

⌊

n ·
2 · ln(1 + δ(G))− ln 4 + 2

1 + δ(G)

⌋

(5.1)

Finally in Table 5.3 we can see how good do the various heuristics on some

grid graphs; the Simple Heuristic is always the worst, while the GainFactor

Heuristic with Varying Initial Point, although is the better heuristic, is always

over the new Upper-Bound proven before.
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Graph γSH(G) γGFH(G)

Random, 150 vertices, p = 0.1 41 29

Random, 150 vertices, p = 0.2 23 17

Random, 150 vertices, p = 0.3 18 13

Bipartite, 100 + 100 vertices, p = 0.1 69 52

Bipartite, 100 + 100 vertices, p = 0.2 51 33

Bipartite, 100 + 100 vertices, p = 0.3 34 22

Random, 2000 vertices, ∆(G) = 6 1109 785

Random, 2000 vertices, ∆(G) = 11 829 532

Random, 2000 vertices, ∆(G) = 21 570 335

Random, 5000 vertices, ∆(G) = 6 2761 1954

Random, 10000 vertices, ∆(G) = 6 5540 3913

Random, 10000 vertices, ∆(G) = 11 4156 2622

Random, 10000 vertices, ∆(G) = 21 2948 1690

Table 5.1: Simple Heuristic vs GainFactor Heuristic.
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Graph γGFH(G) Eq. (5.1)

Random, 100 vertices, p = 0.1, δ(G) = 4 27 76

Random, 200 vertices, p = 0.2, δ(G) = 26 18 53

Bipartite, 100 + 100 vertices, p = 0.1, δ(G) = 3 52 169

Bipartite, 200 + 200 vertices, p = 0.05, δ(G) = 3 109 338

Random, 450 vertices, p = 0.05, δ(G) = 12 70 198

Random, 700 vertices, p = 0.1, δ(G) = 51 44 114

Bipartite, 350 + 350 vertices, p = 0.3, δ(G) = 76 32 45

Random, 850 vertices, p = 0.3, δ(G) = 218 18 44

Random, 1000 vertices, p = 0.1, δ(G) = 70 48 128

Random, 2000 vertices, ∆(G) = 21, δ(G) = 4 335 1533

Random, 5000 vertices, ∆(G) = 21, δ(G) = 4 847 3832

Random, 10000 vertices, ∆(G) = 21, δ(G) = 5 1690 6995

Table 5.2: GainFactor Heuristic vs Theoretical Upper-Bound.

Grid Graph γSH(G) γGFH(G) γGFH+(G) γ∗2(G)

G10,10 84 54 52 48

G10,20 174 105 103 92

G15,15 198 127 115 102

G20,20 364 205 202 176

G30,20 554 312 303 260

Table 5.3: A Comparison over Grid Graphs. Simple Heuristic vs GainFactor

Heuristic vs GainFactor Heuristic with Varying Initial Point vs the New

Upper-bound.



5.4 Genetic Algorithms 73

4 Genetic Algorithms

A Genetic Algorithm is a search heuristic that use the process of natural

selection as a template, and is used to generate approximate solutions to

optimization and search problems. They are inspired by natural evolution,

such as selection, crossover, mutation and inheritance.

Genetic algorithms are used in every field of human studies, like bioin-

formatics, engineering, computational science, chemistry, economics, physics,

. . .

In a genetic algorithm there is a set of candidate solutions (called population

of individuals) that are evolved toward better solutions. Each individual has

a genetic representation, i.e. a set of properties that can be altered; usually

are used binary strings (or arrays of bits) of 0, 1 values.

Because usually all the individuals’ representations have the same length,

it is simple to operate on pair of individuals, for example using a crossover

operation. For our problem, the Roman Domination Problem, an element of

the population represent a candidate solution, and a position of the array

represent a vertex of the graph.

4.1 Fitness Function

Initially the population is randomly generated and at each iteration, a

new generation is created. A fitness function is used to evaluate the goodness

of each individual, and the most fit individuals are randomly chosen from the

current generation and are recombined and possibly mutated to form a new

generation. The genetic algorithms terminate usually if it has been reached a

prefixed level of fitness or it has passed a prefixed number of generation.

For the Roman Domination Problem, the fitness function is computed
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using the Roman Dominating Function:

ff = fRD = 2 ∗ |V2|+ 1 ∗ |V1|+ 0 ∗ |V0| = 2 ∗ |V2|+ |V1|

where, as we already know, if G(V,E) is a graph and fRD a partitioning of

the vertices, Vi is the set of vertices labeled by i, where i = 0, 1, 2; thus the

fitness function is the sum of the labels of every vertex.

To do so, however, we need a transformation function between the 0, 1

values of the arrays of bits and the 0, 1, 2 values of the Roman Dominating

Function. Given an enumeration of the vertices, the transformation function

works this way:

1. Label with 2 every vertex corresponding to a position in the array with

1;

2. Label with 0 every vertex adjacent to a vertex labeled by 2;

3. Label with 1 every other vertex.

We need also an inverse of the transformation function:

1. Set 1 on every position corresponding to a vertex labeled by 2;

2. Set 0 on the other vertices.

This work because knowing the vertices labeled by 2 gives a unique Roman

Dominating Function weakly non–redundant, i.e. every vertex v labeled by 1

has no vertices labeled by 2 in its adjacency list.

Given an array of bits, representing an individual of the population,

to compute its fitness value we use the transformation function, and then

compute the sum of all the labels.
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4.2 Genetic Operators

During each generation, a sub-set of the population is selected to produce

a new generation. The modality of selection can vary from a purely ramdom

selection to a purely deterministic selection, based only on the fitness of the

individuals. Usually the fitness of an individual increase the probability of

such individual to be chosen, i.e. fitter individuals are more likely to be

selected.

Once we have selected the individuals, we can use two kind of genetic

operators: the crossover and the mutation.

For the crossover operator we need at least two parents. The crossover

can be with k points or uniform:

• k-point crossover: we select randomly k point in the array of bits, and

then change, alternatively, some portion of the array;

• Uniform crossover: this method enables the individuals to contribute at

the bit level, i.e. the offspring has approximately half of the genes from

first parent and the other half from second parent.

With the mutation operator, we alter one or more bits of an individual, and

by doing so, we introduce some diversity in the population from a generation

to the next. The probability of mutation is usually very low, because if it is

set too high, then the genetic search will turn in a random search. Usually

is used the single point mutation, where a random bit is chosen and with

probability p = 1/l is inverted, where l is the length of the array.

There can be many variation to genetic algorithms, but the most widely

used is the elitist selection, in which some of the better individuals of a

generation are allowed to continue to the next generation without alterations.
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4.3 Methodology

We tried many variations of genetic algorithms, and also studied a new

type of crossover with a mutant virus, that acts as a non–purely random

mutation operator, see [15]:

1. 1-Point Crossover with no-Mutation;

2. 1-Point Crossover with Mutation;

3. 5-Point Crossover with no-Mutation;

4. 5-Point Crossover with Mutation;

5. Uniform Crossover with no-Mutation;

6. Uniform Crossover with Mutation;

7. Uniform Crossover with Virus.

Every algorithm needs some parameters, some are common to all, like the

population’s dimension, the number of generations and the initialization of

the individuals, i.e. how many positions will be set to 1. For the Uniform

Crossover with Virus we need to set a supplementary array of 2 + ⌈log2|V |⌉

bits for each individual.

We decided to set the following parameters: the number of individual is

equal to the number of vertices, the number of generations is 100 and the

individuals will have 10% of 1. We use elitism to preserve only the best

individual of a generation.

Uniform Crossover with Virus

A more detailed explanation is needed for the Uniform Crossover with

Virus. The parents are chosen among the population, based on the fitness,

the reproduction uses the uniform crossover, however the virus reproduce in

a way of its own.
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As we said, for the virus variant the array length is |V |, plus 2 control

bits (the activation state) and ⌈log2 |V |⌉ bits that represent the virus. The

virus identify exactly a bit in the array of the individual; if |V | is not a power

of 2 then the virus may represent a bit outside of the array. In this case, the

virus has no effect.

The virus is active only if the two control bits are set to 1. We can divide

the population in three sub-set:

• healthy individuals, if both control bits are set to 0;

• healthy carriers, if the control bits have different values;

• sick individuals, if both control bits are set to 1.

When the virus is active, i.e. the individual is sick, the virus identify a

position in the array, that are set to 1. If two individuals, both healthy

carriers, reproduce, then the offsprings will be sick with probability 25%.

During the initialization, the virus is randomly generated with uniform

distribution, while the control bits are set to 1 with probability p1 = 10%.

The virus reproduction is slightly different from the uniform crossover; in fact

in the uniform crossover, if in a given position, the parents have the same

value, the the two children will have the same value, while if the values differs,

one child will have the position set to 1 and the other to 0. For the virus,

if the parents have the same value, the children will have that value, but if

the values differ, then the children will have a random value with probability

p2 = 50%.

The control bits will reproduce too; if c1, c2 are a child’s control bits, and

c11, c12 of one parent and c21, c22 of the other, we will have that c1 will be

randomly chosen between c11, c12, while c2 between c21, c22; lastly, if both c1

and c2 are set to 0, then c1 will be set to 1 with probability p3 = 16.6%.



5.4.3 Methodology 78

Graph |V | p γUC−V (G) γGFH(G)

(%)

Random 50 1 33 32

Random 50 2 36 35

Planar 50 8 8

Bipartite 50 + 50 1 68 61

Bipartite 50 + 50 2 66 60

Planar 100 12 11

Random 150 1 113 95

Random 150 2 93 85

Planar 150 16 11

Bipartite 100 + 100 1 145 121

Bipartite 100 + 100 2 147 121

Planar 200 21 18

Random 250 1 185 138

Random 250 2 139 105

Planar 250 26 21

Bipartite 200 + 200 1 310 242

Bipartite 200 + 200 2 260 182

Table 5.4: A Comparison between Genetic Algorithm with Virus and

GainFactor Heuristic.
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Grid Graph γUC−V (G) γGFH(G) γ∗2(G)

G10,10 60 54 48

G10,15 91 80 70

G10,20 129 105 92

G20,20 271 205 176

G30,20 422 312 260

Table 5.5: A Comparison over Grid Graphs between Genetic Algorithm with

Virus, GainFactor Heuristic and the New Upper-bound.

4.4 Conclusions

The tests used the dataset we generated. For each graph, we execute 3

run of every genetic algorithm, and took the best results. In the Table 5.4

there is a comparison between the performance of the genetic algorithm with

virus and the GainFactor Heuristic for some random, bipartite and planar

graphs; as we can see, although the genetic algorithm with virus has a good

performance, the GainFactor Heuristic has a better one. The same thing is

true for grid graphs, see Table 5.5.
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