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The A isoform of the insulin receptor (IR) is frequently over-
expressed in cancer cells and is activated by IGF-II as well as
by insulin, whereas the B isoform is predominant in differ-
entiated tissues and responds poorly to IGF-II. The IR
substrate-1 (IRS-1), a docking protein for the IR, is known to
send a mitogenic signal and to be a powerful inhibitor of cell
differentiation. We have investigated the biological effects of
the two IR isoforms in parental 32D hemopoietic cells, which

do not express IRS-1, and in 32D-derived cells in which IRS-1
is ectopically expressed. The effects of the two isoforms on cell
survival, differentiation markers and nuclear translocation of
IRS-1 were compared. The results confirm that the A isoform
responds to IGF-II and preferentially sends mitogenic, anti-
apoptotic signals, whereas the B form, poorly responsive to
IGF-II, tends to send differentiation signals. (Endocrinology
144: 2650–2658, 2003)

THE INSULIN RECEPTOR (IR) and the type I IGF re-
ceptor (IGF-IR) share a high degree of homology. After

ligand binding, the receptors activate common intracellular
mediators involved in the regulation of cell metabolism, pro-
liferation and survival (1–3). According to classical view, the
IR predominantly mediates anabolic effects, whereas the
IGF-IR predominantly mediates antiapoptotic, mitogenic,
and transforming effects (4, 5).

However, several lines of evidence also support a mito-
genic and transforming role of the IR (6, 7). The IR is over-
expressed in a variety of malignancies including breast, thy-
roid, ovary, renal, gastrointestinal, brain tumors, and
leukemia (8–10). The IR can be activated by IGF-II, a cytokine
frequently expressed in cancer (see below). In mouse embryo
fibroblasts (MEF) devoid of IGF-IR, IGF-II sends a prolifer-
ative signal through the IR (11). Genetic studies have also
shown that IGF-II can stimulate mouse embryo growth
through the IR (12). IGF-II binds with higher affinity to the
isoform A of the IR (IR-A) than to isoform B (IR-B). IR-A,
generated by exon 11 skipping, is characterized by the ab-
sence of 12 amino acid residues at the carboxyl terminus of
the IR �-subunit and is predominantly expressed in fetal
tissues and cancer cells (13–15). In contrast IR-B, containing
the 12 amino acid residues encoded by exon 11, binds insulin
well and IGF-II poorly, and is predominantly expressed in
adult differentiated cells (13, 16).

Limited data are available with regard to functional dif-
ferences between IR-A and IR-B. IR-A binds insulin with a
slight higher affinity, whereas IR-B elicits a slightly stronger

kinase activation (17, 18). IR-A appears more efficient in
mediating receptor endocytosis and insulin degradation (19).
Recently, it has been suggested that the two IR isoforms have
somewhat different signaling pathway, thus providing a
mechanistic basis for selective insulin action (20). Our pre-
vious data indicate that different ligands may affect IR-A
biological effects. In mouse fibroblasts devoid of IGF-IR and
transfected with the IR-A, insulin has a more pronounced
metabolic effect, whereas IGF-II has a more pronounced mi-
togenic effect (13). This predominant mitogenic effect in re-
sponse to IGF-II may be relevant to tumor progression, as
many malignancies overexpress IR-A and produce IGF-II
(21, 22).

To further investigate the differences between the two
receptor isoforms in survival, differentiation and intracellu-
lar signaling we have extended our studies to 32D cells. 32D
cells are a murine hemopoietic cell line, which has an abso-
lute requirement for IL-3 and undergoes massive apoptosis
upon IL-3 withdrawal (23, 24). Parental 32D cells have low
levels of both insulin and IGF-I receptors, and do not express
IRS-1 or IRS-2 (25, 26). Ectopic expression of IRS-1 in 32D cells
delays but does not prevent apoptosis (27, 28). When the
levels of IGF-IR are increased by transfection with a wild-
type human IGF-IR, the cells (32D IGF-IR cells) survive the
shift from IL-3 to IGF-I (29) but eventually differentiate (26).
Introduction of IRS-1 in 32D IGF-IR cells inhibits differen-
tiation, and transforms the cells, which form tumors in mice
(30). Overexpression of the IR in parental 32D cells has little
or no effect on survival (25, 31). Overexpression of the IR
combined with ectopic expression of IRS-1, however, results
in survival after IL-3 withdrawal (25, 31). A reasonable ex-
planation is that IGF-I- or insulin-mediated survival of 32D
cells requires at least two of three signaling pathways (32):

Abbreviations: IGF-IR, Type I IGF receptor; IR, insulin receptor; IR-A
or -B, isoform A or B of the IR; IRS-1, IR substrate-1; MEF, mouse embryo
fibroblasts; MPO, myeloperoxidase; SV40, simian virus 40; UBF, up-
stream binding factor.
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the IRS-1/Akt.p70S6K, the Y950 (Y960 in the IR)/Shc/Ras/
MAPK pathway, and a third pathway that depends on the
integrity of a serine quartet at 1280–1283 of the IGF-IR (31,
33). The IR (that does not have the serine quartet) has only
two pathways for an antiapoptotic signal, IRS-1 and the Y960
pathways. In the absence of IRS-1, the IR has only one path-
way and cannot protect 32D cells from apoptosis (32).

32D and 32D-derived cell lines are an attractive model to
study mitogenic and differentiation signals of the two iso-
forms in the presence or absence of IRS-1. As end points of
signaling, we have taken: 1) cell survival after IL-3 with-
drawal, and supplementation with ligands (IGF-II or insu-
lin); 2) the induction of differentiation markers, like myelo-
peroxidase (MPO) mRNA (30) or the levels of Id2 proteins.
Id2 proteins are induced by IGF-I (34–36) and inhibit dif-
ferentiation (37–39); 3) because the proliferative stimulus of
IRS-1 may be associated with its nuclear translocation (40–
42), we have investigated whether either isoform of the IR
can induce nuclear translocation of IRS-1. Finally, 4) we have
determined the expression of lipocalin 24p3, a glycoprotein
induced by IL-3 withdrawal in a variety of IL-3-dependent
cell lines, including 32D cells (43).

Materials and Methods
Plasmids

pMSCV-IRS-1 was generated from pMSCV-pac retroviral vector by
fusing the wild-type mouse IRS-1 sequence. The pNTK2 expression
vectors containing the cDNA for either IR-A (Ex11�) or IR-B (Ex11�)
were kindly provided by Axel Ullrich (Munich, Germany; Ref. 13).

Cell lines

32D IR-A and 32D IR-B cells were derived from the 32D murine
hematopoietic cell line clone 3, stably transfected with a plasmid ex-
pressing the human cDNA for either IR-A (Ex11�) or IR-B (Ex11�; Ref.
44). 32D IRS-1 cells were generated by retroviral transduction of 32D
cells with an MSCV-IRS-1 retroviral vector carrying puromycin resis-
tance. 32D IRS-1 IR-A and 32D IRS-1 IR-B cells are 32D IRS-1 cells stably
transfected with either IR-A or IR-B plasmids. All these cell lines are
mixed populations. Cells were grown in RPMI 1640 medium supple-
mented with 10% heat-inactivated fetal bovine serum (Life Technolo-
gies, Inc., Gaithersburg, MD), 10% WEHI cell-conditioned medium (as
a source of IL-3), 2 mm l-glutamine (Life Technologies, Inc.), and the
required antibiotic to maintain the selective pressure (600 �g/ml G418
for 32D IR-A and 32D IR-B cells, 600 �g/ml G418 plus 1 �g/ml puro-
mycin for 32D IRS-1 IR-A and 32D IRS-1 IR-B cells). For brevity, the
WEHI cell-conditioned medium will be referred to as IL-3.

Transfection

Cells were transfected by electroporation. Briefly, 10 � 106 cells were
suspended in electroporation buffer which consisted of a mixture of
20 mm HEPES, 137 mm NaCl, 5 mm KCl, 0.7 mm Na2HPO4, 6 mm
d-glucose, buffered to pH 7. The plasmids containing the IR-A or IR-B
cDNA (20 �g of DNA) were mixed with the cell suspension and placed
in a 4 mm-gap electroporation cuvette (Bio-Rad Laboratories, Inc., Her-
cules, CA). Cells were electroporated at a fixed capacitance of 960 �F and
0.32 kV using a Bio-Rad Laboratories, Inc. Gene Pulser instrument Bio-
Rad Laboratories, Inc. The electroporated cells were transferred to a
75-cm2 flask containing complete medium and placed in the incubator.
The medium was replenished after 24 h. The antibiotic selection was
added after 48 h.

Survival

Exponentially growing cells were washed 3 times with HBSS and
seeded 5 � 104/ml in IL-3-free medium (RPMI 1640 medium containing

10% heat-inactivated FBS) supplemented with insulin (Sigma, St. Louis,
MO) or IGF-II (Life Technologies, Inc.), 10 nm or 10% WEHI cell con-
ditioned medium. Cells were counted by standard procedures (31, 36).
Statistical analysis was carried out as previously described (31).

Northern blots

Cells were washed three times and seeded under the same conditions
used for growth analysis. Cells incubated with IL-3 served as controls.
At the indicated time points, cells were collected, and total RNA was
extracted using the RNeasy kit (QIAGEN Inc., Valencia, CA) following
the manufacturer’s instructions. Ten micrograms of total RNA for each
sample were run on 1% agarose-formaldehyde gel, blotted onto a nylon
membrane, and hybridized with a 1.45-kb myeloperoxidase cDNA frag-
ment obtained from pUC19-MPO6 plasmid (a kind gift from Dr. M.
Valtieri) or with a full-length 24p3 mouse cDNA (41).

Immunoprecipitation and immunoblots

For IR and IRS-1, cells were lysed with lysis buffer (50 mm HEPES,
pH 7.5; 150 mm NaCl; 1.5 mm MgC12; 1 mm EGTA; 10% glycerol;
1% Triton X-100; 100 mm NaF; 10 mm Na-pyrophosphate; 0.2 mm
Na-orthovanadate; 1 mm phenylmethylfulfonyl fluoride; 10 �g/ml
Aprotinin). Fifty to 100 �g of proteins were resolved on 4–15% SDS-
PAGE and after transfer, the nitrocellulose membrane was probed with
a rabbit polyclonal anti-IR-� subunit (Santa Cruz Biotechnology, Inc.,
Santa Cruz, CA) or with a rabbit polyclonal anti-IRS-1 antibody (Upstate
Biotechnology, Inc., White Plains, NY). For Id2 detection, exponentially
growing cells were washed in Hanks’ balanced solution to remove IL-3
and incubated for the indicated times in medium with 10% heat-inac-
tivated fetal bovine serum plus insulin or 10 nm IGF-II. Western blotting
for the Id2 and Grb2 protein was carried out by standard techniques as
previously described (34). All the experiments were repeated at least
three times to monitor the reproducibility of our results.

Immunohistochemistry

32D and 32D-derived cells were washed three times with Hanks’
buffer and seeded at a density of 5 � 104/2ml of RPMI supplemented
with 10% heat-inactivated FBS plus or minus the growth factors, as
indicated. Cells were harvested after 16 h and cytospins prepared. After
fixing in 3.7% formaldehyde solution in PBS and permeabilization with
0.2% Triton X-100 in PBS, the immunostaining was carried out using the
Histomouse SP Kit (95-9541, Zymed Laboratories, Inc., South San Fran-
cisco, CA) following the manufacturer’s protocol.

Antibodies

The antibodies used included: a rabbit polyclonal anti IR-� subunit
(Santa Cruz Biotechnology, Inc.), and a rabbit polyclonal anti-IRS-1
antibody (Upstate Biotechnology, Inc.). The antibody for the Id2 protein
(Santa Cruz Biotechnology, Inc.) was diluted 1:500 in TBS-T/5% milk).
The anti-Grb2 antibody was a mouse monoclonal antibody from Trans-
duction Laboratories, Inc. (Lexington, KY) and was used at 1:1000 in
TBS-T/5% milk.

Results
Cell lines

From parental 32D cells, we generated mixed populations
of cells overexpressing either the A or the B isoforms of the
IR. Figure 1 shows that the populations transfected with the
IR’s isoforms overexpress the IR (compare lanes 3 and 4 to
lane 5). A weak band of IR can be also detected in parental
32D cells as also shown by Peruzzi et al. (31). From 32D IRS-1
cells, we obtained two other mixed populations by transfec-
tion with the same plasmids. These latter cell lines (again
mixed populations) express high levels of IR and IRS-1. The
A isoform cells express somewhat more IRS-1 than the iso-
form B cells, which, in turn, express slightly higher levels of
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IR (Fig. 1, lanes 1 and 2). We believe these differences are not
crucial, as the IR is highly expressed in both cell lines (ap-
proximately 105 receptors/cell). The difference in IRS-1 ex-
pression is also not crucial. When single cell clones are gen-
erated from mixed populations, the levels of expression of
IRS-1 vary greatly from one clone to another (45), yet all
clones grow equally well. In fact, even low levels of IRS-1
expression can make 32D IGF-IR cells tumorigenic in mice
(30). In subsequent experiments, the cell populations will be
designated as indicated in Fig. 1.

Cell survival

Like all 32D-derived cell lines, these cell lines grow very
well in serum supplemented with IL-3 and die promptly in
serum deprived of IL-3 and not supplemented with growth
factors. In the following figures, we show only the growth in
IL-3 of 32D IR-A and 32D IR-B cells (Fig. 2A), but all cell lines
grew in IL-3. The cells overexpressing the IR isoforms and no
IRS-1 die when IL-3 is withdrawn, even when the serum is
supplemented with insulin or IGF-II (Fig. 2A). They die so
rapidly that by 24 h most of the cells are dead, like parental
32D cells (31). For comparison, we show that 32D cells ex-
pressing the IGF-IR grow well in IGF-I, at least for 48 h,
confirming that, in the absence of IRS-1, the IGF-IR has other
antiapoptotic pathways not shared with the IR (33). The
modality of cell death is by apoptosis, as repeatedly shown

FIG. 1. Expression of IR and IRS-1 in 32D-derived cells. Parental 32D
cells were transfected with plasmids expressing either the IR-A or
IR-B isoforms, to generate mixed populations overexpressing either
form of the IR. Each of these mixed populations was subsequently
transduced with a retroviral vector expressing IRS-1, and new mixed
populations were selected. Levels of receptor and IRS-1 were deter-
mined in cell lysates by Western blot with the appropriate antibodies
(see Materials and Methods). The right lane is a lysate from parental
32D cells that express low levels of IR.

FIG. 2. Survival of 32D-derived cells after IL-3 withdrawal. The cell lines used are those described in Fig. 1. Survival was determined at 24
and 48 h after IL-3 withdrawal, or supplementation with either insulin (10 nM) or IGF-II (10 nM). The number of cells was counted, and the
results are expressed as percentage increase (or decrease) over cells plated. A, Survival of 32D-IR-A and 32D-IR-B cells. No 48-h count could
be made because most of the cells were dead by 24 h. Both cell lines grow in IL-3. To the right, we show the growth of 32D IGF-IR cells, in
the absence or presence of IGF-I after IL-3 withdrawal. B, Survival of 32D IRS-1 IR-A and 32D IRS-1 IR-B under the same conditions and up
to 48 h. Both cell lines survive in insulin, but only the 32D IRS-1 IR-A cells survive and grow in IGF-II. The data given are the results of four
different experiments.
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in several papers from this and other laboratories (24, 26, 31,
32). When 32D IR-A cells express IRS-1, they now survive
and grow in both insulin and IGF-II. 32D IRS-1 IR-B cells
grow in insulin, but die in IGF-II, albeit more slowly than in
10% serum. These experiments were repeated several times
and confirm previous reports indicating a difference between
the two isoforms in their ability to respond to IGF-II (13, 14).
They also confirm that in cells expressing IRS-1, the IR is as
effective as the IGF-IR in protecting cells from apoptosis
(25, 46).

Expression of MPO mRNA

In 32D IGF-IR cells, the receptor sends a differentiation
signal that can be detected in the first 24 h after IL-3 is
replaced by IGF-I. The marker of differentiation is MPO
mRNA, which can be detected even while the 32D IGF-IR
cells are still growing exponentially, in the first 48 h after
shifting from IL-3 to IGF-I (26). This differentiation program
is extinguished by the expression of IRS-1 (30). The MPO
marker is very convenient as it is detectable at an early stage;
therefore, it can be used to find out whether a differentiation
program has been established even in cells programmed for
eventual apoptosis (Ref. 35; and see Discussion). We deter-
mined the expression of MPO mRNA in the four cell lines at
24 h after shifting the cells from IL-3 to different growth
conditions (Fig. 3). MPO mRNA is clearly present in 32D IR-B
cells regardless of the presence or absence of ligands. It is
present, but weakly, in 32D IR-A cells. It suggests that IR-B,
like the IGF-IR, can initiate a differentiation program in 32D
cells, presumably by default, as this program is also activated
in cells stimulated with IGF-II. The differentiation program
is interrupted by the premature death of cells not expressing
IRS-1. The presence of IRS-1 decreases or even abrogates the
induction of MPO mRNA. Thus, ectopic expression of IRS-1
in these cells induces survival (see Fig. 2) and abolishes the
differentiation program (Fig. 3). Similar results were ob-
tained with the IGF-IR, where ectopic expression of IRS-1
inhibits differentiation (26, 30).

Expression of Id2 protein

Id2 protein levels are usually increased in proliferating
cells, and decrease markedly in differentiated cells (37, 38, 47,
48). An increase in Id2 mRNA and protein caused by the
activation of the IGF-IR has been reported from one of our
laboratories (34, 35). In those experiments, the expression of
Id mRNA and proteins was markedly increased by the pres-
ence of IRS-1 (34). We have determined the effect of the two
isoforms of the IR on the expression of Id2 proteins in 32D-
derived cells, and the results are shown in Fig. 4, A–C. Id2
protein levels increase in all four cell lines, when IL-3 is
replaced by either insulin or IGF-II. The increase is tempo-
rary, as protein levels decrease after 12 h. The high level of
Id2 in panel C for the cells expressing IRS-1 and the IR-B
isoform at 72 h is largely due to the amount of protein in that
lane (see the Grb2 control). The increase in Id2 expression is
unaffected by the presence of IRS-1. This is true for both
receptors and is at variance with the results obtained with the
IGF-IR. In 32D-derived cells expressing the IGF-IR, IRS-1

FIG. 3. Expression of MPO mRNA in 32D-derived cells. The four cell
lines are the same as described in Fig. 1. The levels of MPO mRNA
were determined by Northern blots as described in Materials and
Methods, at 24 h after IL-3 withdrawal and supplementation with the
indicated growth factors. Repeated experiments gave the same re-
sults.

FIG. 4. Up-regulation of Id2 gene expression in 32D-derived cell
lines. Levels of Id2 proteins were determined by Western blots using
the antibodies described in Materials and Methods. A, 32D IR-A (left)
and 32D IR-B (right). B, 32D IRS-1 IR-A. C, 32D IRS-1 IR-B. Treat-
ment is indicated above the lanes. The amounts of protein in each lane
were monitored with an antibody to Grb2. These experiments have
been repeated several times, with similar results.
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strongly increased Id2 protein levels (34). These experiments
have been repeated several times. They show that the IR, like
the IGF-IR, can induce Id2 gene expression. At variance with
the IGF-IR, IRS-1 has little effect on the levels of Id2 proteins.

Nuclear translocation of IRS-1

We have previously demonstrated, in different cell lines,
that IRS-1 is tyrosyl phosphorylated by both isoforms of the
IR (13). We have confirmed in 32D-derived cells that IRS-1 is
tyrosyl phoshorylated by both forms (not shown). More re-
cently, Reiss and co-workers (40) and one of our laboratories
(41, 42) have reported that IRS-1 can translocate to the nuclei
of cells stimulated with IGF-I or transformed by oncogenes,
like viral T antigens and v-src. We investigated by histo-
chemistry the subcellular localization of IRS-1 in 32D-
derived cell lines. A representative experiment is shown in
Fig. 5, where immunohistochemistry was carried out on 32D
IRS-1 IR-A and 32D IRS-1 IR-B cells. The cells were shifted
from IL-3 to either insulin or IGF-II, fixed after 16 h, stained
for IRS-1, and counter-stained with hematoxylin. Transloca-
tion of IRS-1 into the nuclei is detected by the change in the
color of the nuclei (42). IRS-1 is mostly, if not completely,
cytoplasmatic in unstimulated cells and in 32D IRS-1 IR-B
cells stimulated with IGF-II. Insulin causes nuclear translo-
cation of IRS-1 in both cell lines, and IGF-II in 32D IRS-1 IR-A
cells. The difference in size of the 32D IRS-1 IR-B cells, un-
stimulated or stimulated with IGF-II was also reproducible
(compare with the cells in insulin). These results were con-
firmed by confocal microscopy (not shown, see Discussion).

Expression of 24p3

Devireddy et al. (43) have reported that IL-3 withdrawal
causes the expression of a lipocalin, designated as 24p3. This
lipocalin is secreted into the medium and according to De-
vireddy et al. (43), causes apoptosis of IL-3-dependent cells.
IGF-I inhibits the transcription of 24p3 (43), but the presence
of IRS-1 is crucial (41). We tested the expression of 24p3
mRNA in our selected cell lines, under different growth
conditions. We are presenting only the data obtained up to
16 h after IL-3 withdrawal, because with some of these cell
lines, cells start dying at 16 h (see Fig. 2). Figure 6, A and B,
shows that 24p3 is induced in 32D IR-A and 32D IR-B cells,
regardless of the growth factors added, and provided that
IL-3 is withdrawn. This result suggests that 24p3 induction
is caused not by the ligands but simply by IL-3 withdrawal.
When 32D IR-B cells express IRS-1, 24p3 is poorly induced.
In 32D IRS-1 IR-A, no or very little 24p3mRNA is detectable
under these conditions. These experiments confirm that
IRS-1 inhibits 24p3 mRNA induction after IL-3 withdrawal.
A reasonable explanation is that IRS-1 also plays a major role
in inhibiting 24p3 transcription in cells expressing the IR.
Figure 6C confirms that the IGF-IR does not need IRS-1 to
inhibit 24p3 induction, as 24p3 is not induced (or barely so)
in 32D IGF-IR cells, up to 24 h after shifting from IL-3 to IGF-I.

Discussion

The roles of the IGF-IR and IRS-1 in the growth, survival,
and transformation of 32D cells have been studied in several

FIG. 5. Immunohistochemistry of 32D IRS-1 cells expressing either the A or the B isoforms of the IR. The cells were stained with an antibody
to IRS-1 and counterstained with hematoxylin (42). Upper panels are 32D IRS-1 IR-A cells, lower panels 32D IRS-1 IR-B cells, 16 h after shifting
from IL-3 to either insulin or IGF-II. The panels, in order from the left, are: no ligands, insulin, IGF-II. IRS-1 is translocated to the nuclei by
both ligands in the IR-A cells, but only by insulin in cells with the B isoform. Magnification, �1000.
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papers from one of our laboratories (26, 30–32, 36, 41, 49). In
this paper, we have examined the effect of the two isoforms
of the IR on 32D and 32D-derived cells. There are two in-
teresting comparisons to be made in the discussion. The first
is the comparison between IGF-II and insulin stimulation on
the two isoforms of the IR. The second interesting compar-
ison is between the two IR and the IGF-IR.

32D cells are a good model for studying IGF-I and IR
signaling because of the various permutations they offer. The
absence of expression of IRS-1 does not make 32D cells more
artificial than other cells in culture. During differentiation,
the expression of IRS-1 is modulated. Cell types prone to
differentiation often do not express IRS-1 or express very low
amounts. This is true of hemopoietic cell lines (25), especially
myeloid cell lines (50), but also of neuronal cells (51) and
myoblasts (52). Furthermore, in cells with low levels of IRS-1,
induction of differentiation causes a further decrease in IRS-1

expression (53, 54). A convincing demonstration is offered by
skeletal muscle. IRS-1 is barely detectable in skeletal muscle,
is highly expressed in growing myoblasts, and markedly
decreases when myoblasts differentiate into myotubes (52).
The absence of IRS-1 in 32D cells, therefore, should not be
considered as a unique case. On the contrary, absence of
IRS-1 in 32D and other cell lines should be considered a
model for cell differentiation.

With this premise, we can summarize our results as fol-
lows: 1) Both isoforms, overexpressed, fail to protect parental
32D cells from apoptosis caused by IL-3 withdrawal, regard-
less of the growth factor added (insulin or IGF-II). 2) If 32D
cells overexpress both the IR and IRS-1, the results after IL-3
withdrawal are different. The cells expressing the A isoform
and IRS-1 survive if the medium is supplemented with either
insulin or IGF-II. The cells expressing the B isoform and IRS-1
survive in insulin, but not in IGF-II. 3) A differentiation
program, as monitored by MPO expression, is strongly ac-
tivated by the B isoform, and more weakly by the A isoform.
In both instances, IRS-1 expression abrogates the differenti-
ation program, as it does with the IGF-IR (26). 4) At variance
with the IGF-IR, IRS-1 does not increase further the activation
of Id2 gene expression by the two isoforms of the IR in the
absence of IL-3. 5) Nuclear translocation of IRS-1 is detectable
when either isoform is stimulated by insulin, but only the
IR-A isoform induces translocation with IGF-II. 6) 24p3
mRNA is induced by IL-3 withdrawal. Induction of 24p3 is
inhibited by the IGF-IR (alone) or by either isoform of the IR
in combination with IRS-1. This strongly suggests that IRS-1
plays a major role in suppressing the induction of 24p3.
For the convenience of the reader, a comparison between the
two isoforms of the IR and the IGF-IR are summarized in
Table 1.

These experiments confirm that the IR, without IRS-1,
cannot protect 32D cells from apoptosis, whereas the IGF-IR
is fully protective by itself (31). This is true of either isoform
of the IR. Ectopic expression of IRS-1 rescues the antiapo-
ptotic activity of the IR. The requirement for IRS-1 is con-
firmed by the observation that in MEF, that express endog-
enous IRS-1, the antiapoptotic activities of the IGF-I and IRs
are only marginally different (46). This is due to the fact that
the IGF-IR has alternative pathways for survival, not shared
with the IR (31, 33). Although both isoforms protect 32D cells
from apoptosis when expressing IRS-1 and stimulated with
insulin, only the A isoform does so, when the cells are stim-
ulated with IGF-II. Thus, we confirm in 32D cells the different
response of the two isoforms to IGF-II (see Introduction).

The IGF-IR is known to send a differentiation signal, which
is abrogated by IRS-1 (reviewed in Ref. 55). This is especially
apparent in 32D IGF-IR cells, where the shifting of cells from
IL-3 to IGF-I causes, after a 48-h period of exponential
growth, differentiation along the granulocytic pathway (26).
While these cells are growing exponentially, early markers of
differentiation are already apparent, such as an increase in
MPO mRNA levels (26, 35). These markers are extremely
useful to detect the induction or the lack of induction of a
differentiation program in those 32D-derived cells that die
before granulocytes can be morphologically detected (usu-
ally 4 d after shifting from IL-3 to IGF-I). Using this approach,
we show here that, in the absence of IRS-1, the IR sends in

FIG. 6. Expression of 24p3 in 32D-derived cells. The levels of 24p3
mRNA were determined by Northern blot in the various cell lines as
indicated and up to 16 h after IL-3 withdrawal. Growth factors’ sup-
plementation is indicated above the lanes. A, 32D IR-A and 32D IRS-1
IR-A cells. B, 32D IR-B and 32D IRS-1 IR-B cells. C, 32D IGF-IR cells
24 h after shifting from IL-3 to IGF-I.
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32D cells a differentiation signal, stronger with the B than
with the A form. As with the IGF-IR, ectopic expression of
IRS-1 abrogates the differentiation program.

A negative marker of differentiation is instead the increase
in Id2 gene expression. The Id proteins are generally tran-
scription factors that play a role in the differentiation of a
variety of cell types (37, 39, 56). Id gene expression is mark-
edly increased in proliferating cells and tumor cell lines (39,
57, 58). High levels of Id gene expression inhibit differenti-
ation (35, 37, 38). Although there is an increase in Id2 gene
expression after insulin or IGF-II and with both isoforms, the
increase is modest and tends to decrease rapidly afterwards.
The IGF-IR is a stronger inducer of Id gene expression (34,
35). The most interesting observation, though, is the little
effect that expression of IRS-1 has on the levels of expression
of Id2 protein in 32D cells overexpressing the IR, regardless
of the isoform. As mentioned, Id2 expression is dramatically
increased by IRS-1 in 32D IGF-IR cells (34). We really have
no plausible explanation on why IRS-1 increases Id2 gene
transcription when activated by the IGF-IR and not when
activated by the IR. However, in MEF, Id gene expression is
regulated in part by two domains of the IGF-IR. These two
domains are the serine quartet at 1280–1283 and a group of six
amino acids, four of which are basic amino acids, at residues
1289–1294 (59). Interestingly, the IR lacks these two domains,
indeed, two of the basic amino acids in the second domain are
replaced by glutamic acid. The absence of these two domains
may explain why the IR (both isoforms) is a weak inducer of
Id gene expression, even in 32D cells expressing IRS-1. Never-
theless, these results were reproducible.

We and others (40–42) have recently reported that IRS-1
can translocate to the nuclei of cells stimulated by IGF-1 or
expressing oncogenes like the simian virus 40 (SV40) and JCV
T antigens, or v-src. This has been shown to occur in MEF,
medulloblastoma cells, and 32D-derived cells. In addition,
nuclear IRS-1 has been reported in tissue sections of human
medulloblastoma (40), human breast cancer (60) and rat liver
(61). The evidence for nuclear (and nucleolar) translocation
of IRS-1, as well as IRS-2 has been rigorously documented in
previous papers (40, 41, 42, 62) and needs not to be reiterated
here. Suffices to say that it was documented by immunohis-
tochemistry, confocal microscopy, subcellular fractionation,
the use of IRS-1 mutants and of FLAG-tagged IRS proteins.
In those experiments, it was possible to show that IRS-1 was
cytosolic in quiescent cells and moved to the nucleus after

stimulation with IGF-I. Cells transformed by the SV40 T
antigen and v-src (42) and by the JCV T antigen (40) show
nuclear IRS-1 regardless of the stimulation with growth fac-
tors. Nuclear IRS-1 binds the upstream binding factor (UBF),
which is a regulator of RNA polymerase I activity (42, 62, 63).
The binding of IRS-1 to UBF results in an increase in rRNA
synthesis (62), as one would expect from an activation of
UBF. This observation constitutes the first molecular link
between IRS-1 and the ribosomal DNA transcriptional ma-
chinery, which controls cell size. Indeed, 32D IGF-IR cells
expressing IRS-1 are twice as large as 32D IGF-IR cells, even
when the cells are growing exponentially (30).

We have also reported that the A isoform (but not the B
isoform) of the IR can cause nuclear translocation of IRS-1 in
MEF, whether stimulated by insulin or IGF-II (63). The trans-
location is significantly less than with the IGF-IR, but clearly
detectable. In that paper, we used confocal microscopy, as
well as immunohistochemistry and subcellular fractionation
to confirm the nuclear translocation of IRS-1 by the IR. The
present results confirm that IGF-II sends a mitogenic signal
in 32D IRS-1 IR-A cells, where most of the cells show nuclear
localization of IRS-1. Although an occasional 32D IRS-1 IR-B
shows nuclear IRS-1, most of them show a cytosolic local-
ization after IGF-II stimulation.

The two isoforms inhibit the expression of 24p3 lipocalin,
but only in the presence of IRS-1. The lipocalin protein family
is a large group of small extracellular proteins. Among the
members of the lipocalin protein family are the retinol-bind-
ing protein, the retinoic acid binding protein, apolipoprotein
D and a prostaglandin D synthase (reviewed in Ref. 64).
However, the lipocalin that is relevant to this discussion is a
glycoprotein designated as the 24p3 gene product (65). When
IL-3 is withdrawn from certain IL-3-dependent hemopoietic
cell lines, the 24p3 protein is transcribed and secreted into the
medium (43). 24p3 is also secreted by 32D cells after IL-3
withdrawal, and its transcription is inhibited by addition of
IGF-I (43). IL-3 withdrawal induces 24p3 in cells expressing
either isoform of the IR, but this induction is abrogated by the
presence of IRS-1 expression. The IGF-IR does not need IRS-1
to inhibit 24p3 expression (see Fig. 6C). On the other side, the
effect of IRS-1 on 24p3 mRNA expression suggests that IRS-1
is a potent inhibitor of 24p3 expression, thus extending the
observation of Devireddy et al. (43) that 24p3 expression is
inhibited by IGF-I. Interestingly, 24p3 is also induced by
SV40 T antigen (66).

TABLE 1. Comparative effects of the IGF-1 and insulin receptors on 32D cells

Receptor IRS-1 Ligand Survival and
growth MPO Id2 24p3 Nuclear IRS-1

IRA � IGF-II � � � � NA
IRA � Insulin � � � � NA
IRB � IGF-II � ��� � �� NA
IRB � Insulin � ��� � �� NA
IGF-IR � IGF-I ��� ��� � � NA
IRA � IGF-II ��� � � � ���

IRA � Insulin ��� � � � ���
IRB � IGF-II � � � � �
IRB � Insulin �� � � � �
IGF-IR � IGF-I ���� � ��� � ���

Data compiled from this paper and previous ones (26, 30, 31).
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In conclusion, we have examined in this paper some of the
signaling aspects of the A and B isoforms in 32D cells, a
murine hemopoietic cell line, which is IL-3-dependent and
undergoes apoptosis upon IL-3 withdrawal. The IR in these
cells requires expression of IRS-1 to send a survival signal.
The B isoform sends a stronger differentiation signal than the
A isoform. Finally, the A form can translocate IRS-1 to the
nucleus while the B form seems to be less effective in this
regard, especially with IGF-II.
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