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Abstract
Parkinson’s disease displays clinical heterogeneity, presenting with motor and non-motor symptoms. Heterogeneous phe-
notypes, named brain-first and body-first, may reflect distinct α-synuclein pathology starting either in the central nervous 
system or in the periphery. The immune system plays a prominent role in the central and peripheral pathology, with misfolded 
α-synuclein being placed at the intersection between neurodegeneration and inflammation. Here, we characterized the inflam-
matory profile and immune-phenotype of peripheral blood mononuclear cells (PBMCs) from Parkinson’s disease patients 
upon stimulation with α-synuclein monomer or oligomer, and investigated relationships of immune parameters with clinical 
scores of motor and non-motor symptoms. Freshly isolated PBMCs from 21 Parkinson’s disease patients and 18 healthy sub-
jects were exposed in vitro to α-synuclein species. Cytokine/chemokine release was measured in the culture supernatant by 
Multiplex Elisa. The immune-phenotype was studied by FACS-flow cytometry. Correlation analysis was computed between 
immune parameters and parkinsonian motor and non-motor scales. We found that Parkinson’s disease patients exhibited a 
dysregulated PBMC-cytokine profile, which remained unaltered after exposure to α-synuclein species and correlated with 
both motor and non-motor severity, with a strong correlation observed with olfactory impairment. Exposure of PBMCs 
from healthy controls to α-synuclein monomer/oligomer increased the cytokine/chemokine release up to patient’s values. 
Moreover, the PBMCs immune phenotype differed between patients and controls and revealed a prominent association of 
the Mos profile with olfactory impairment, and of NK profile with constipation. Results suggest that a deranged PBMC-
immune profile may reflect distinct clinical subtypes and would fit with the recent classification of Parkinson’s disease into 
peripheral-first versus brain-first phenotype.
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Introduction

Parkinson’s disease (PD) is a complex neurodegenerative 
disorder characterized by a set of cardinal motor features 
variably associated with several non-motor symptoms 
(NMS) such as REM sleep behavior disorder, cognitive 
and mood changes, hyposmia, constipation, cardiovascular 
disturbances and others [1]. Clinical heterogeneity may 
reflect PD subtypes with different pathophysiology and 
pathological progression [2]. The neuropathological hall-
mark of PD is represented by deposit of Alpha-synuclein 
(αSyn), a monomeric protein that may also aggregate into 
toxic species and may be detectable in extracellular bioflu-
ids of patients with PD (PWP), including the cerebrospi-
nal fluid (CSF), blood and saliva [3–6]. The initial αSyn 
pathology may occur in the brain or in the periphery, an 
observation that has led to the hypothesis that PD com-
prises two overall subtypes: a body-first subtype, in which 
αSyn pathology originates in the enteric nervous system 
and invades the CNS via the vagus nerve and sympathetic 
connectome; a brain-first subtype, in which pathology 
arises in the brain itself, most often in the limbic system or 
in the olfactory bulb. In this context, constipation has been 
considered as a prodromal NMS of PD with peripheral-
onset, while hyposmia is a prodromal NMS linked to CNS 
involvement [7, 8].

Several earlier studies showing microgliosis [9, 10] 
and altered levels of brain’s cytokines [11, 12] have sug-
gested that the immune system can play a pivotal role 
in PD pathology [13]. More recently, brain infiltrates of 
peripheral immune cells [14], peripheral inflammation 
and altered peripheral immune profile have been reported, 
indicating that immune response is systemically dysregu-
lated [13]. Correlations between blood mononuclear cell 
(PBMCs) subpopulations or peripheral cytokines produc-
tion and severity of motor/non-motor symptoms [15–28] 
also support the relevant role of central and peripheral 
immune changes in PD.

In the PD brain, αSyn is placed at the intersection 
between neurodegeneration and inflammatory responses. 
While neurotoxicity is mostly caused by αSyn aggregates 
[29–31], inflammatory response in microglia can be elic-
ited by both monomeric and aggregated species [32, 33]. 
Moreover, αSyn may affect peripheral immune cells by 
stimulating cytokine overproduction, thereby contribut-
ing to immune activation [33–37]. These findings notwith-
standing, several effects of αSyn monomers and oligomers 
on peripheral immune response and the relationship of 
immune changes with motor and non-motor clinical phe-
nomenology remain to be definitely clarified. To investi-
gate the role of monomeric and aggregated forms of α-syn 
in PD-associated inflammation, we analyzed a large panel 

of cytokines/chemokines as well as the immune cell profile 
in PBMCs isolated from PWP and healthy subjects (HS) 
upon stimulation with an amount of exogenous human 
αSyn monomer (αSynM) and oligomer (αSynO) described 
in the plasma of PD patients [38]. Correlations were drawn 
between PBMCs immune response and measures of motor 
and non-motor PD severity.

Materials and methods

Participants

PWP were enrolled at the outpatient Movement Disorder 
Clinic of the University of Cagliari. Diagnosis was made 
by a movement disorder expert according to the diagnostic 
criteria from the Movement Disorder Society [39]. Controls 
were HS attending the same center as caregivers or relatives 
of non-parkinsonian patients, with no history of PD or other 
neurodegenerative disorders. HS were clinically evaluated 
by the same physicians, and they were included in the study 
if both the neurological exam and the cognitive abilities were 
normal. None of the HS reported any of the typical prodro-
mal NMSs of PD, such as REM sleep behavior disorder, 
olfactory deficit, constipation, and mood disorders. Exclu-
sion criteria were atypical parkinsonism, dementia, immu-
nological diseases requiring continuous immunomodulatory 
therapy, uncontrolled diabetes, recent vaccination against 
COVID-19 and infections occurring less than 4 weeks prior 
the recruitment. Motor severity was assessed by the modified 
Hoehn and Yahr (HY) scale [40] and Unified Parkinson’s 
Disease Rating Scale part III (UPDRS-III) Scale [41]. The 
burden of non-motor symptoms was assessed using the Non-
Motor Symptoms Scale (NMSS) [42] that allows the identi-
fication of specific non-motor symptoms [43]. Total NMSS 
score and single items score were computed. Cognitive 
abilities were assessed by the Montreal Cognitive Assess-
ment (MoCA) [44]. Data on current medications and disease 
duration were also collected. The levodopa equivalent daily 
dose (LEDD) was computed as previously reported [45]. 
The study was approved by the Local Ethical Committee 
(approval n. PG/2021/5461) and performed according to the 
Declaration of Helsinki. Participants were provided with an 
explanatory overview of the study and signed their consent 
to participate.

Exogenous human α‑synuclein species synthesis 
and purification

αSynM. αSynM was obtained through recombinant 
expression in E. coli using a pT7-7 plasmid, as previously 
described [29]. Protein was further purified by size exclu-
sion chromatography (Hiload 26/60 Superdex 75 preparation 
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grade, GE Healthcare, Little Chalfont, UK). Protein purity 
was assessed via SDS-PAGE, and protein concentrations 
determined spectrophotometrically.

αSynO. αSynO samples were prepared as previously 
described [29], starting from 6 mg of recombinant acety-
lated αSynM. αSynO samples were checked with circular 
dichroism and dynamic light scattering to conform with 
standard properties identified in our previous structural 
study [29]. Some samples were also tested for their cyto-
toxicity in neuronal cells using the MTT test [46]. After the 
purification procedure αSyn was tested for endotoxin con-
tamination via the LAL (Limulus Amebocyte Lysate) assay 
(Kairosafe, Italy). The detection for bacterial endotoxin was 
constantly < 0.06 E.U./ml.

Fluorescent αSyn molecules were labelled with the 
AF647 dye (Invitrogen, Carlsbad, CA, USA) through 
ligation with the thiol moiety of Cys 122. Fluorescent oli-
gomers were generated by mixing 90% unlabelled αSyn 
and 10% AF647-αSyn. The low ratio of labeled/unlabeled 
monomers and the position of the fluorescent probe in 
the C-terminal region, outside the structured oligomer 
core [29], ensured that no significant modifications to the 

oligomer properties were induced by the labelling proto-
col, as established by biophysical measurements.

Samples collection and PBMCs isolation from whole 
blood

Figure 1A summarizes the experimental protocol. Fresh 
blood samples were collected and diluted (1:1) in Hanks’ 
Balanced Salt Solution (HBSS). PBMCs were isolated by 
density gradient media (Ficoll-Paque). The diluted blood 
was layered on top of an equal volume of Ficoll-Paque 
and centrifuged at 500 g and 20 °C for 30 min. The PBMC 
layer was collected and PBS-washed. Cells were counted 
by automatic Scepter™2.0 counter (Merck Millipore) and 
8 × 105/mL were cultured in RPMI supplemented with 
FBS 10–1% penicillin/streptomycin in 12-well plates, and 
treated for 24 h with 0.5 µM of αSynO or αSynM [29], or 
for 2 h with 0.5 µM of αSynO conjugated to FITC. The 
αSyn concentration was selected based on previous work 
reporting the αSynO content in peripheral blood of PWP 
[38].

Fig. 1   Experimental protocol and gating strategy. A Procedure and analyses of blood samples obtained from HS and PWP. Created using 
Biorender. B Gating strategy and analysed PBMCs population: T cells, B cells, Monocytes and NK cells with their respective markers
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Cytokine and chemokine analysis by multiplex ELISA

Cytokines and chemokines release was assayed in the super-
natant of PBMCs collected 24 h after αSynO/αSynM treat-
ment. Cytokine & Chemokine Convenience 34-Plex Human 
ProcartaPlex™ Panel (EPXR340-12167–901, Thermo 
Fisher Scientific) was performed according to the manufac-
turer’s instructions. Analyte concentration was measured by 
Luminex MAGPIX (Luminex Corporation, Austin, TX) and 
data analyzed with xPONENT® software (Luminex Corpo-
ration, Austin, TX).

Internalization of human α‐synuclein oligomers

PBMCs treated with FITC-conjugated αSynO were centri-
fuged at 500 g for 5 min, washed and resuspended in PBS. 
Cells were incubated with CD45-ECD (1:10, A07784, Beck-
man Coulter, Brea, CA) for 15 min at RT in the dark to visu-
alize the membrane. The cell suspension was transferred on 
a slide and images of alive PBMCs were acquired (Olympus 
BX4, 40 × magnification).

Immunophenotyping of PBMCs by FACS‑flow 
cytometry

After incubation with αSynO/αSynM cells were collected, 
centrifuged at 500 g for 5 min, washed and resuspended 
in PBS. To exclude dead cells PBMCs were stained with 
the viability dye ViaKrome 405 (1:20, C36614, Beckman 
Coulter, Brea, CA). A classical FACS gating strategy was 
used to separate T cells, B cells, Mos and NK cells. To 
detect surface antigens cells were stained with a panel of 
specific monoclonal antibodies for 15 min at RT in the dark. 
The antibodies and relative concentrations were: CD45-
KO (1:20, B36294), CD3-APC (1:20, A94680), CD4-PC5 
(1:10, B16491), CD8-AF700 (1:10, B76279), CD19-APC 
(1:20, IM2470), CD14-PC7 (1:20, A22331), CD16-ECD 
(1:10, B49216), and CD56-PE (1:10, A07788), purchased 
from Beckman Coulter. After staining, cells were fixed with 
1% PFA and analyzed with MoFlo Astrios EQs cell sorter 
(Beckman Coulter Inc, Brea, CA) with Summit version 
6.3.1 software and 405, 488 and 642 nm lasers. Instrument 
compensation was set using the antibody capture beads kit 
VersaCom (B22804, Beckman Coulter, Brea, CA) following 
manufacturer’s instructions.

Figure 1B illustrates the gating strategy. Briefly, starting 
from CD45 + PBMCs, CD3 + T cells were separated into 
immune subpopulations based on single or double surface 
expression of CD4 and CD8 markers. CD3- cells expressing 
the surface marker CD19 were identified as B cells, while 
CD19- cells included Mos, NK cells and dendritic cells. 
Mos were further subdivided based on their expression of 
CD14 and CD16, into classical (cMos, CD14high/CD16−), 

intermediate (iMos, CD14high/CD16high), and non-classical 
(ncMos, CD14low/CD16high) [25, 47]. NK cells (CD14-) 
were separated based on the CD56 and CD16 expression, 
into immature NKs (imNK, CD56bright/CD16 +), mature 
NKs (mNK, CD56dim/CD16 +) and unconventional NKs 
(ucNK, CD56-/CD16 +) [48, 49].

Statistical analysis

Statistical analysis was performed using Prism 8 (GraphPad 
Software, San Diego, CA, USA) and IBM SPSS Statistics for 
Macintosh, Version 29.0.2.0 (IBM Corp. in Armonk, NY). 
Data were expressed as means ± standard errors of the means 
(SEM), and analyzed by parametric or non-parametric tests 
(unpaired t test with Welch's correction and Mann–Whitney 
test) and one-way ANOVA followed by Tukey’s Multiple 
Comparison Test. In immunophenotype experiments, cell 
frequency data were presented as the percentage respect to 
each selected PBMCs subpopulation and to the total PBMCs 
population for each sample. The Spearman’s rank correla-
tion coefficient with two-tailed p values was used to check 
for correlations between cell frequency in immunopheno-
type experiments and clinical scores, or between cytokines/
chemokines concentration in multiplex ELISA experiments 
and clinical scores. To check the effect of multiple testing 
on single correlations, we used the original FDR (false dis-
covery rate) method of Benjamini and Hochberg. A Quade 
nonparametric ANCOVA test considering age as a covari-
ate, was used to verify whether age or disease duration may 
affect the differences observed between PD and HS inter-
nalization results.

Results

Twenty-one PWP and 18 HS individuals participated into 
the study, (Table 1). The two groups were similar for sex (10 
women and 11 men vs. 8 women and 10 men, p = 1) and age 
(70.5 ± 8.9 vs. 72.7 ± 7 years, p = 0.4).

Cytokine profile in culture medium from PBMCs

Several inflammatory cytokines (i.e., IL-2, IL-6 and IL-
17a), anti-inflammatory cytokines (i.e., IL-4, IL-10 and 
IL-13) (Fig. 2A) and chemokines (CCL3, CCL4 and CCL2) 
(Fig. 2B) were significantly higher expressed in the culture 
media of unstimulated PBMCs from PWP than HS. In vitro 
exposure to αSynM and αSynO did not modify the cytokine/
chemokine release in PBMCs from PWP; by contrast, both 
αSyn species induced a potent inflammatory response 
in PBMCs from HS, with the release of cytokines and 
chemokines increasing to levels similar to those observed 
in PWP (Fig. 2A-B).
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Internalization of fluorescent FITC-conjugated αSynO 
was significantly lower in PBMCs from PWP than HS 
(10% vs. 26% of cells, p < 0.001 by Quade nonparametric 
ANCOVA test considering age as a covariate) (Fig. 3).

Correlation of cytokine/chemokine concentrations 
and clinical measures

When we checked for possible relationships between 
cytokine/chemokine concentration from the entire panel and 
clinical measures, several significant correlations emerged 
(Table 2) The remaining correlations that failed to reach 
significance were not shown). Namely, IL-2, IL-5, IL-6 and 
IL-9 positively correlated with the Q28 parameter of the 
NMSS; IL-7 positively correlated with UPDRS-III score, 
total NMSS score, and the Q28 item; IL-18 positively cor-
related with UPDRS-III score, HY staging and the Q28 item; 
and the chemokine CXCL8 correlated positively with total 
NMSS score and the Q28 item.

PBMC immunophenotype

PBMCs immunophenotyping by FACS-flow cytometry 
yielded similar percentage of viable cells in PWP and HS 
(98.4 ± 1.10 vs. 97.2 ± 2.7, percent of total isolated PBMCs). 
Although the small number of subjects involved, the HS and 
PWP groups were matched for sex, and the sex effect on 

immune profile was evaluated. Since we did not find any sig-
nificant sex effect on the immune profile, sexes were merged 
in graphs.

Monocytes

The percentage of Mos out of CD45 + PBMCs was simi-
lar in PWP and HS (supplementary Table 1). Three Mos 
subpopulations—cMos, iMos and ncMos—were identified 
according to CD14 and CD16 expressions (Fig. 4A). The 
frequency of the three subpopulations was comparable in 
PWP and HS (Fig. 4A). The Mos profile was not affected 
by treatment with αSynM or αSynO neither in PWP nor in 
HS (supplementary Table 1).

NKs

NK subpopulations were identified based on CD16 and 
CD56 expression (Fig. 4B and supplementary Fig. 1). The 
NK cell percentage out of CD45 + PBMCs was similar in 
PWP and HS (supplementary Table 1). As expected, the 
imNKs (CD56 Bright/CD16 +) represented the less frequent 
subpopulation and were similarly represented in PWP and 
HS. mNKs (CD56Dim/CD16 +) were the most frequent sub-
population and displayed a tendency to decrease in PWP 
(p = 0.067) (Fig. 4B). Finally, we observed a third NK sub-
population (CD56-/CD16 +), classified as unconventional 
NKs (ucNKs) based on previous description (Fig. 4B and 
supplementary Fig. 1) [48]. ucNKs were highly frequent in 
PWP but nearly absent in HS (p < 0.05) (Fig. 4B). Stimula-
tion with αSynM or αSynO did not change the NK subpopu-
lations frequency (supplementary Table 1).

T cells and B cells

The percentage of T cells out of CD45 + PBMCs was simi-
lar in PWP and HS (supplementary Table 1). Out of the 
total CD3 + T cell population, CD8 + cells tend to decrease, 
while CD4 + and double-positive (CD4 + CD8 +) cells tend 
to increase in PWP (supplementary Fig. 2) as previously 
reported [22]. Frequency of B cells showed a trending 
decrease in PWP (supplementary Fig. 2). Stimulation with 
αSynM or αSynO did not change the frequency of T or B 
cells (supplementary Table 1).

Correlation of PBMC immunophenotype and clinical 
measures

When we checked for possible relationships between 
immune cell subpopulations and motor and non-motor 
symptoms, several significant correlations emerged.

An inverse correlation was found between cMos fre-
quency and disease duration (Rho = − 0.446; p = 0.049) 

Table 1   Demographic and clinical features of PD patients

Values are expressed as the mean + SD
PD Parkinson’s disease, SD standard deviation, UPDRS unified PD 
rating scale, LEDD levodopa equivalent daily dose, HY Hoehn and 
Yahr stage, MoCA montreal cognitive assessment, NMSS non-motor 
symptoms scale, NA not available

Parkinson’s 
Disease patients 
(n.21)

Mean age (years) of PD onset ± SD 70.5 ± 8.9
Mean PD duration (years) ± SD 5.3 ± 4.5
Mean HY staging ± SD 1.9 ± 0.7
Mean UPDRS- III score ± SD 25.3 ± 12.9
Mena LEDD (mg) ± SD 450.1 ± 422.1
Mean MoCA score ± SD 21.9 ± 6.2
NMSS (mean score ± SD):
Total score
Domain 1: Cardiovascular including falls
Domain 2: Sleep/fatigue
Domain 3: Mood/cognition
Domain 4: Perceptual problems/hallucinations
Domain 5: Attention/memory
Domain 6: Gastrointestinal tract
Domain 7: Urinary
Domain 8: Sexual function
Domain 9: Miscellaneous

53.5 ± 44.4
3.0 ± 3.8
6.25 ± 8.0
8.8 ± 15.1
0.55 ± 1.8
6.3 ± 9.2
6.6 ± 5.9
13.8 ± 13.7
3.8 ± 7.1
6.6 ± 6.8
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Fig. 2   Cytokine (A) and chemokine (B) production at basal and after stimulation with human αSynM or αSynO. *p < 0.05, **p < 0.01, 
***p < 0.001, ****p < 0.0001
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(Fig. 5A and supplementary Table 2), and between cMos 
frequency and the NMSS item “olfactory deficits” (Q28 
in NMSS) (Rho = − 0.64; p = 0.003) (Fig. 5B and supple-
mentary Table 2). The remaining correlations not reaching 
statistical significance were not shown. When patients were 
stratified by the NMSS Q28 item (presence of olfactory 
symptoms), the frequency of cMos was lower in patients 
reporting olfactory deficits (p < 0.01) (Fig. 5C). No other 
correlation between cMos frequency and other NMSS items 
could be detected.

The NK frequency did not correlate with any motor item 
nor with disease duration. However, there was an inverse 
correlation between mNK frequency and the NMSS Q21 
item (constipation) (Rho = − 0.52, p value = 0.021) (Fig. 5D 
and supplementary Table  2) and a positive correlation 
between ucNKs and the NMSS Q21 item (Rho = 0.55, p 
value = 0.014) (Fig. 5E and supplementary Table 2. Remain-
ing correlations that failed to reach significance were not 
shown). When patients were stratified by the NMSS Q21 
item, the frequency of mNKs was lower, and the frequency 
of ucNKs was higher, in patients reporting constipation 
(p < 0.01) (Fig. 5F). Accordingly, the mNK/ucNK ratio 
decreased in patients reporting constipation (Fig.  5G) 

Fig. 3   α‐synO internalization by PBMC in HS and PWP. A Fluorescence microscopy images showing α‐synO internalization in HS and PWP. B 
Internalization percentage in HS and PWP. Quade nonparametric ANCOVA test, **p < 0.001

Table 2   Correlations between cytokine/chemokine concentrations 
and clinical scales

Correlations (Spearman’s Rank correlation coefficient) between 
cytokine expression and clinical scales. Correlations that failed to 
reach significance are not shown
ns not significant, UPDRS unified PD rating scale, HY Hoehn and 
Yahr stage, NMSS non-motor symptoms scale

UPDRS
Rho/p value

HY
Rho/p value

NMSS
Rho/p value

Q28 
(Olfactory 
deficit)
Rho/p 
value

IL-2 ns ns ns 0.94/0.002
IL-5 ns ns ns 0.84/0.014
IL-6 ns ns ns 0.90/0.005
IL-7 0.76/0.024 ns 0.69/0.048 0.80/0.025
IL-9 ns ns ns 0.85/0.014
IL-18 0.84/0.006 0.70/0.04 ns 0.78/0.03
CCL11 0.56/0.039 ns ns ns
CXCL8 ns ns 0.57 / 0.008 0.90/0.005
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(p < 0.05). Finally, inflammatory cytokines IL-6, IL-9, 
IL-13, IL-21, as well the chemokine CCL4 positively cor-
related with ucNK frequency (p < 0.05; see supplementary 
Table 3 for details on Rho/p values).

Discussion

This study analyzed the inflammatory profile and phe-
notype of PBMCs isolated from PWP and healthy indi-
viduals, before and after stimulation with αSynM and 
αSynO. PBMCs from PWP displayed a marked cytokine/
chemokine inflammatory profile in the absence of exoge-
nous αSyn stimulation, which correlated with the UPDRS-
III score and NMSS total score. Stratifying by single 
NMSS items yielded a significant correlation with con-
stipation. Stimulation with αSynM and αSynO could not 
further modify the inflammatory profile of PBMCs from 
PWP but raised the inflammatory response of PBMC from 
HS to levels comparable to those observed in unstimulated 
PBMCs from PWP. We also observed a reduced capacity 
of PBMCs from PWP to phagocytose αSyn in vitro. The 
PBMCs immune phenotype differed between PWP and HS. 
Mos correlated significantly with olfactory impairment, 
NKs correlated with constipation. Accordingly, stratifica-
tion of patients by olfactory impairment or constipation 

revealed significant differences in the frequency of Mos 
and NK subpopulations, respectively.

The release of higher amounts of pro-inflammatory and 
anti-inflammatory cytokines and chemokines by unstimu-
lated PBMCs from PWP extends previous reports on PBMCs 
or serum reporting variable results [11, 12, 17, 50–53]. The 
present findings supported a dysregulated peripheral immune 
response in PD and the possible recruitment of monocytes 
from periphery to the brain. Among the 30 cytokines and 
chemokines analyzed, some of them correlated with disease 
severity as assessed by UPDRS-III score (IL-7, IL-18 and 
CCL11) and with NMSS total score (IL-7 and CXCL8). Of 
note, cytokines IL-6, IL-2, IL-5, IL-7, IL-9, IL-18 and the 
chemokine CXCL8/IL-8 significantly correlated with the 
NMSS Q28 item (indicating olfactory deficit) but not with 
other NMSS items. This is a novel information that adds to 
a few previous studies exploring the association of periph-
eral cytokines and chemokines with motor and cognitive 
symptoms [15–17, 51, 52, 54–57]. The herein highlighted 
relationship between cytokine profile and olfactory impair-
ment, an early sign that typically precedes cardinal PD motor 
signs, supports a contribution of peripheral inflammation to 
the pathophysiology of PD [13] and raises the possibility, to 
be explored, that measuring peripheral inflammatory species 
would contribute to diagnose prodromal PD.

Fig. 4   A Frequency of classical 
(cMos), intermediate (iMos) 
and non-classical (ncMos) 
monocytes out of CD14/
CD16 subpopulation in HS and 
PWP. B Frequency of imNK 
(CD56 Bright/CD16 +), mNK 
(CD56Dim/CD16 +), ucNK 
(CD56-/CD16 +) in HS and 
PWP. T test with Welch’s cor-
rection, *p < 0.05
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The baseline cytokine/chemokine profile in PWP could 
not be modified by a stimulation with oligomeric αSyn at 
a concentration comparable to that described in the plasma 
of PD patients [38]. Instead, αSyn stimulation of PBMCs 
from HS raised the cytokine response to the same quali-
tative/quantitative level observed in unstimulated PBMCs 
from PWP. Although the present study was not designed to 
investigate dose-dependent responses, results may suggest 
that PBMCs collected from PWP were already highly acti-
vated. Moreover, results showed that both species of αSyn 

were inflammatory triggers for immune cells. This observa-
tion fits into the ongoing debate on differential toxicity of 
αSyn strains. While a number of studies have demonstrated 
that direct αSyn toxicity against neurons is structure-depend-
ent [29, 58, 59], results were mixed about the inflammatory 
potential of monomeric and aggregated αSyn species against 
microglia and PBMCs [31, 37, 60]. This inconsistency could 
be related to the various degrees of toxicity displayed by 
diversely aggregated αSyn species used in these studies. Our 
results are in line with the previous reports showing that 

Fig. 5   Spearman correlation 
between (A) cMos and disease 
duration and (B) cMos and Q28 
item limited to olfactory deficit. 
C cMos frequency in PWP 
stratified for olfactory deficit. 
T test with Welch’s correction, 
*p < 0.05; **p < 0.01. Spearman 
correlation between (D) mNKs 
(CD16 + /CD56dim) or (E) 
ucNKs (CD16 + /CD56-) and 
the Q21 item for constipation. 
F mNKs and ucNKs frequency 
in PWP stratified for constipa-
tion. G mNK/ucNK ratio in 
PWP stratified for constipation. 
T test with Welch’s correction, 
*p < 0.05. PWP: patients with 
Parkinson’s disease; PDOD 
Parkinson’s disease patients 
with olfactory deficits, PDC 
Parkinson’s disease patients 
with constipation
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monomer and aggregated αSyn elicit a microglial response 
[37], and that both species bind to TLR2 and activate the 
downstream pathway [33]. Despite the quite different con-
formational properties of monomeric and oligomeric αSyn, 
the TLR2 has the capability to recognize a wide range of 
structurally unrelated PAMPs and DAMPs. The C-termi-
nal and the N-terminal domains are exposed in oligomeric 
αSyn, and readily accessible in the unstructured monomeric 
state, thus potentially providing common interaction sites for 
TLR2. Therefore, unlike neurons peripheral leukocytes were 
similarly activated by oligomeric and monomeric αSyn spe-
cies. Our observation was strengthened by the use of well-
characterized human αSyn oligomers which are kinetically 
trapped in a toxic conformation and highly homogeneous 
in size and structural properties [29]. The purity of these 
oligomers previously enabled the characterization of their 
toxicity mechanisms in vitro and in vivo against neurons 
and glial cells [61, 62].

The reduced capability of PBMCs from PWP to phago-
cytose αSyn in vitro was consistent with studies showing 
a decreased expression of TLR4 in peripheral phagocytes 
from PWP [25], and studies indicating a reduced capacity 
of αSyn clearance by glial cells in PD models [61, 63–65].

Although the percentage of Mos subpopulations did 
not differ in PBMCs from PWP and HS, cMos inversely 
correlated with disease duration and the NMSS item Q28 
“olfactory deficits”. This is a further novel information that 
strengthened the aforementioned association between several 
cytokines/chemokines and olfactory deficit. Previous studies 
have shown that Mos are highly dynamic and stage-depend-
ent in PD, showing an increase of cMos in the early disease 
stage but not at later stages, in line with our results [24, 
25]. Moreover, a negative correlation was reported between 
frequency of cMos and measures of cognitive impairment 
in PWP [25] supporting a critical involvement of Mos dys-
regulation in the brain pathology. Our finding of an overpro-
duction of monocyte-chemoattractant chemokines by PBMC 
from PWP, supports the possibility that chemokines would 
drive Mos to migrate from blood to the inflamed brain tissue. 
Other studies reported varying results on Mos profile, likely 
reflecting the disease stage analyzed and the gating strategy 
applied [52, 66].

The few studies that have examined changes in periph-
eral NK frequency in PWP reported uneven results [25, 26, 
28, 67–70], probably due to pronounced differences in the 
markers used to identify these cells. Our characterization of 
NK profile based on classical CD56/CD16 expression [71] 
yielded the identification of three subpopulations, namely 
immature NKs, terminally mature and cytotoxic NKs, 
and a third subpopulation categorized as unconventional 
NKs. Typically, unconventional NKs increase during viral 
infections or autoimmune diseases [48, 49, 72], with their 
expansion being associated with a decrease in the mature 

subpopulation and regulated by cytokines [48, 49]. Con-
sistently, we found a positive correlation between cytokines 
production in PWP and the frequency of ucNKs. Notably, 
the unconventional NK subset was significantly more rep-
resented among PWP while the mature subset was signifi-
cantly more present in HS. Moreover, this is the first report 
describing an inverse specific correlation of both mature and 
unconventional NKs with constipation. Hence, mNK and 
ucNKs were respectively low and highly represented in a 
subgroup of PWP reporting constipation, and inversely cor-
related with this symptom. This report adds to the few stud-
ies that investigated NK cell frequency in relation with other 
PD clinical features [73–75]. Interestingly, multiple lines of 
evidence suggest a relationship between viral or bacterial 
exposures, alterations in gut microbiota, and the increased 
risk of developing PD [13]. Our finding further supports the 
specific involvement of the NK population in PD phenotypes 
with gut disturbances.

The clinical heterogeneity of PD may reflect subtypes 
with distinct pathophysiology and progression, namely 
peripheral-first versus brain-first phenotype, whose differ-
ential diagnosis would benefit of specific biological param-
eters. While the body-first subtype implies that pathol-
ogy originates in periphery, including the enteric nervous 
system, and subsequently invades the CNS, the brain-first 
subtype implies that pathology arises in the brain itself, 
most often in the limbic system or in the olfactory bulb. In 
this context, constipation has been proposed as a prodro-
mal symptom reflecting peripheral-onset, while prodromal 
hyposmia may reflect CNS onset [7, 8]. The present finding 
of correlations between specific immune cell populations 
and specific NMS of PD well fits into this scenario and may 
aid the early differential diagnosis of peripheral versus brain-
onset phenotypes, although larger population-based studies 
are warranted to consolidate our findings. Hence, the NK 
profile was mostly affected by constipation and may sup-
port the early recognition of body-first PD phenotypes, while 
the Mos profile changed in relation to olfactory deficits and 
severity/duration of motor symptoms, supporting recogni-
tion of brain-first phenotypes.

This study has strengths and limitations. The research was 
conducted on a limited number of PWP, and a selection bias 
cannot be ruled out. Nevertheless, the inclusion of consecu-
tive patients throughout the study period and their diagnosis 
by movement disorder specialists of the same center, follow-
ing the same study protocol, provided a sample reflective of 
the typical PD population. We believe that PD patients in our 
study were relatively homogeneous in terms of disease stage. 
Indeed, this is supported by the low variability in the HY 
stage and the UPDRS scores, which are values of a consist-
ent disease severity across participants. Our control group 
was composed solely of HS, whereas others also considered 
patients with a variety of neurological conditions mimicking 
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PD, such as dementia with Lewy Bodies and multiple system 
atrophy. To assess NMDS, we used the NMSS, a widely 
used tool that is based on patient self-reporting and may thus 
be influenced by the individual's perception and understand-
ing of their symptoms. Expanding our results with specific 
questionnaires, such as the semi-objective olfactory evalua-
tion with the Sniffin' Sticks test or the University of Pennsyl-
vania Smell Identification Test would be needed.

PBMCs were freshly analyzed to avoid any freeze and 
thaw cycle which may affect phenotyping and the relative 
subpopulation percentage. To avoid any methodological bias 
and allow data comparison, all samples were immediately 
processed after collection and equally isolated by density 
gradient media. Although it has been reported that the 
expression of PBMC cell surface markers differ across cell 
isolation procedures and upon cell culture respect to direct 
ex-vivo measurement [76, 77], cell culture was mandatory 
to test the effect of αSyn monomer and oligomer. A similar 
protocol was used in the previous studies involving PBMC 
cultures [37].

Importantly, we took advantage of structurally charac-
terized and highly homogeneous human αSyn oligomers to 
stimulate PBMCs. In addition, the multiplex Elisa test used 
in the present study enabled the assessment of a wide range 
of cytokines and chemokines in a single well and in the 
same sample aliquot, thus overcoming caveats arising from 
different individual cytokine assays comparison. Owing to 
the small size of the sample and the low statistical power, 
correlation analysis for most NMSS items yielded inconclu-
sive results. Nevertheless, the significance level reached by 
some correlation analyses including the NMSS Q28 and Q21 
items, despite of low study power, would suggest a greater 
magnitude of the association with some immune parameters 
for the Q28 or Q21 NMSS items than for the other items.

Conclusion

Our findings provided new insights on immune response in 
PWP. While confirming and extending several deviations in 
peripheral immune profile of PWP, the significant correla-
tions between some immune and clinical parameters unveil 
an uneven behavior of immune subpopulations in relation 
with specific NMS. The prevalent association of the Mos 
profile with olfactory impairment and the association of NK 
profile with a peripheral NMS such as constipation would fit 
with the recent classification of PD into subtypes with differ-
ent pathological onset, namely peripheral versus brain-first 
phenotype. In the context of the clinical heterogeneity of PD, 
measurement of peripheral immune parameters may aid to 
differentiate peripheral versus brain-onset phenotypes. Our 
findings also highlight the potential relevance of peripheral 
inflammatory parameters in delineating prodromal PD.
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