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Abstract: Alterations of glucose homeostasis are associated with subclinical vascular damage; however,
the role of platelet reactivity in this process has not been fully investigated. In this cross-sectional study,
we evaluated the correlation between markers of platelet reactivity and inflammation and markers
of vascular disease in subjects with prediabetes. Markers of platelet reactivity such as 11-dehydro-
thromboxane B2 urinary levels (11-dh-TXB2) and mean platelet volume (MPV) and inflammatory
indexes such as platelet-to-lymphocyte ratio (PLR) were evaluated in subjects with prediabetes (n = 48),
new-onset type 2 diabetes (NODM, n = 60) and controls (n = 62). Furthermore, we assessed the
cardiovascular risk profile of the study population with arterial stiffness and quality intima–media
thickness (qIMT). Subjects with prediabetes and NODM exhibited higher 11-dh-TXB2 urinary levels and
MPV and a proinflammatory profile with an increased PLR, high-sensitivity C-reactive protein, ferritin
and fibrinogen. Furthermore, after multiple regression analyses, we found that urinary 11-dh-TXB2 was
one of the major determinants of IMT and arterial stiffness parameters. In conclusion, subjects with
prediabetes exhibit increased platelet reactivity as well as a proinflammatory profile. Furthermore, this
condition is associated with early markers of cardiovascular disease.

Keywords: prediabetes; 11-dh-thromboxane; cardiovascular risk; IMT; arterial stiffness

1. Introduction

Prediabetes identifies a clinical condition with a higher risk of developing diabetes and
cardiovascular disease [1]. According to the American Diabetes Association (ADA), this
category includes subjects with impaired fasting glucose (IFG) and/or impaired glucose
tolerance (IGT) and/or HbA1c 5.7–6.4% [2].

It is well known that mechanisms at the base of macrovascular complications of
diabetes already act in the prediabetes phase, prior to diagnosis of diabetes, via atheroscle-
rosis [3–5]. Based on these considerations, prediabetes is associated with more advanced
vascular damage compared with normoglycemia [6]. In the last few years, several different
pathways have been analyzed to explain the link between early alterations of glucose home-
ostasis and vascular damage, such as the role of advanced glycation end-products and their
soluble receptors [7], the increase in small, dense low-density lipoproteins (sdLDLs) [8],
low vitamin D plasma levels [9] and micro-RNA (mi-RNA) deregulation [10].

Even though platelets play a pivotal role in the pathogenesis of atherothrombosis, the
role of platelet reactivity in this process has not been fully investigated, especially in the
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setting of prediabetes [11]. This phenomenon has been studied in other conditions related
to metabolic syndrome, such as overweight, obesity and insulin resistance [12–14].

Platelet activation is quite a complex mechanism, and platelet reactivity can be eval-
uated both with morphological and functional parameters, i.e., mean platelet volume
(MPV) and 11-dehydro-thromboxane B2 (11-dh-TXB2) urinary excretion. In physiological
conditions, in response to external stimuli, platelets increase their thromboxane A2 (TXA2)
production, while prostacyclin production is reduced. This phenomenon is regulated by
the activity of cyclooxygenases (COXs) [15]. The importance of platelet morphological
features can be explained considering that larger platelets are more active because of the
presence of a higher quantity of alpha-granules and the production of more thromboxane
A2 (TXA2) [16]. TXA2 is chemically instable, and thus it is rapidly converted into throm-
boxane B2 (TXB2) that, in turn, is metabolized into 11-dh-TXB2. 11-dh-TXB2 is the principal
metabolite of TXA2, and different studies have shown the possibility of using its urinary
excretion as a biomarker of platelet reactivity [17,18].

Platelets are essential for primary hemostasis and repair of the endothelium; however,
they also play a key role in the development of vascular inflammation and participate in
the process of forming and extending atherosclerotic plaques. The relationship between
chronic and acute vascular inflammation is unclear, but platelets are a source of inflamma-
tory mediators; i.e., the F2 isoprostane 8-iso-PGF2α can be produced as a minor product of
the cyclooxygenase activity of platelets in response to platelet stimulation with collagen,
thrombin or arachidonate, and it is also a marker of oxidative stress [18,19]. In addition, it
is interesting to consider the platelet-to-lymphocyte ratio (PLR), which is a cheap and easy
way to obtain a parameter that takes into account two different aspects of atherosclerosis:
platelet count and inflammation. This index has been used in the field of oncology, but
in the last few years, it has become a promising biomarker in other conditions, particu-
larly in cardiovascular disease [20–22]. In the atherosclerotic process, the inflammatory
response and oxidative stress also play important roles, and the activation of platelets by
inflammatory triggers may be a critical component of vascular damage [23,24].

In this study, we evaluated platelet reactivity and inflammatory parameters in subjects
with prediabetes and new-onset type 2 diabetes (NODM) and examined their association
with early markers of cardiovascular disease.

2. Materials and Methods

Study subjects. One hundred seventy subjects with no previous diagnosis of diabetes
who attended our university hospital for diabetes and cardiovascular risk evaluation
were consecutively recruited in this study. The inclusion criteria were ages ranging from
18–65 years and Caucasian race. All patients underwent a physical examination and review
of clinical history, smoking status (active or nonsmokers) and alcohol consumption. The
exclusion criteria were as follows: a previous history of diabetes; a previous history of overt
cardiovascular events (stroke, ischemic heart disease, chronic obstructive peripheral arteri-
opathy or heart failure), anemia or hemoglobinopathies; use of medications known to affect
glucose metabolism and platelet aggregation (statins, antiplatelet drugs); clinical evidence
of advanced liver or renal disease, chronic inflammatory disease or other chronic diseases;
and/or recent history of acute illness, malignant disease and drug or alcohol abuse.

BMI was calculated as weight (kg)/(height (m))2. Blood pressure (BP) was measured
with a calibrated sphygmomanometer after 10 min rest. Venous blood samples were
drawn from the antecubital vein in the morning after an overnight fast. Baseline venous
blood samples were obtained for the measurement of clinical biochemistry parameters.
LDL cholesterol concentrations were estimated using the Friedewald formula. All subjects
underwent a 75 g oral glucose tolerance test (OGTT) with 0, 30, 60, 90, and 120 min sampling
for plasma and insulin, as previously described [25]. Glucose tolerance status was defined
on the basis of OGTT according to ADA recommendations [2].
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Biochemical analyses. Plasma glucose, serum total cholesterol, triglycerides, high-
density lipoprotein (HDL) cholesterol and high-sensitivity C-reactive protein (hs-CRP)
were measured using available enzymatic methods, as previously described [26].

The concentrations of urinary 11-dh-TXB2 and 8-iso-PGF2α were measured with an
enzyme-linked immunosorbent assay commercial kit (Cayman Chemical, Ann Arbor, MI,
USA). Data are expressed as ng/mg creatinine. Analyses were performed in a blinded
manner. Thus, the biologist who analyzed the samples was not aware of the clinical
characteristics of the subjects. The commercially available ELISA kits were used according
to the manufacturer’s instructions.

HbA1c was measured via high-performance liquid chromatography using a National
Glycohemoglobin Standardization Program and was standardized to the Diabetes Control
and Complications Trial (DCCT) assay reference [27]. Chromatography was performed
using a certified automated analyzer (HPLC; HLC-723G7 hemoglobin HPLC analyzer;
Tosoh Corp.) (normal range 4.25–5.9%).

Carotid ultrasound examination. Ultrasound scans were performed using a high-resolution
B-mode ultrasound system equipped with a linear array transducer. All ultrasound examina-
tions were performed by a single physician who was blinded to the clinical and laboratory
characteristics of the subjects. Longitudinal B-mode (60 Hz, 128 radiofrequency lines) images
of the right common carotid artery 2 cm below the carotid bulb were obtained using a high-
precision echo tracking device (MyLab Alpha, Esaote, Maastricht, The Netherlands) paired
with a high-resolution linear array transducer (13 MHz) to acquire quality intima–media
thickness (qIMT) using the built-in echo tracking software.

Pulse wave velocity. The SphygmoCor CvMS (AtCor Medical, Sydney, Australia)
system was used for the determination of the pulse wave velocity (PWV), as previously
described [28]. This system uses a tonometer, and two different pressure waves obtained
at the common carotid artery (proximal recording site) and at the femoral artery (distal
recording site). An electrocardiogram was used to determine the start of the pulse wave.
The PWV was determined as the difference in travel time of the pulse wave between the two
different recording sites and the heart, divided by the travel distance of the pulse waveform.
The PWV was calculated on the mean basis of 10 consecutive pressure waveforms to cover
a complete respiratory cycle.

Pulse wave analysis. All measurements were made from the right radial artery by
applanation tonometry using a Millar tonometer (SPC-301; Millar Instruments, Houston,
TX, USA) [29]. The measurements were performed by a single investigator with the
subject in the supine position. The data were collected directly with a desktop computer
and processed with SphygmoCorCvMS (AtCor Medical, Sydney, Australia). The aortic
waveform has two systolic pressure peaks; the latter one is caused by wave reflection
from the periphery. With arterial stiffening, both the PWV and the amplitude of the
reflected wave are increased such that the reflected wave arrives earlier and adds to (or
augments) the central systolic pressure. The aortic waveform in pulse wave analysis was
subjected to further analysis for the calculation of the aortic augmentation pressure (AugP),
augmentation index (AugI—calculated by dividing augmentation by pulse pressure),
central BP, ejection duration (duration of the systolic period in milliseconds) and Buckberg
subendocardial viability ratio (SEVR; area of diastole divided by area of systole during
one cardiac cycle in the aorta). Pulse pressure is the difference between the systolic and
diastolic BPs.

Statistical analyses. The sample size was calculated based on 11-dh-TXB2 using a level
of significance (α) set to 5% and a power (1 − β) set to 80%. The estimated sample size was
48 subjects per group.

Statistical comparisons of clinical and biomedical parameters were performed using
Stat View 6.0 for Windows. The data are presented as the mean ± standard deviation
(SD) or median and interquartile range (IQR). Each variable’s distributional characteristics,
including normality, were assessed by the Kolmogorov–Smirnov test. ANOVA for clinical
and biological data was performed to test the differences among groups, and the Bonferroni
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post hoc test for multiple comparisons was further performed. The χ2 test was used for
categorical variables. A p value less than 0.05 was considered significant. When necessary,
numerical variables were logarithmically transformed to reduce skewness.

Simple regression analysis was performed to relate 11-dh-TXB2, MPV and PLR to the
following variables: age, sex, BMI, systolic and diastolic BP, HDL cholesterol, triglycerides,
LDL cholesterol, homeostasis model assessment insulin resistance index (HOMA-IR),
HbA1c and fasting glucose.

In order to identify variables independently associated with variations in qIMT, PWV
and AugP, we performed two multivariate regression models: the first model included
cardiovascular risk factors (age, sex, BMI, systolic and diastolic BP, LDL cholesterol, HDL
cholesterol, HbA1c, fasting glucose, HOMA-IR); variables reaching significance in the first
model were included in a second model including variables related to platelet activation and
inflammation (11-dh-TXB2, platelet count, MPV, 8-iso-PGF2α, PLR, hs-CRP, fibrinogen).

The variance inflation factor (VIF) was used to check for the problem of multicollinear-
ity among the predictor variables in multiple regression analysis. Any variable with a
VIF that exceeded 4 was excluded from the model, as recommended in the literature (no
variable was detected with a VIF greater than 4) [30].

The study was approved by the local ethics committee. Informed consent was obtained
from each participant.

3. Results

The study population (170 subjects) was divided into three groups based on fast-
ing glucose, OGTT and HbA1c levels: 62 control subjects (36%) (control group) (NFG
and NT and HbA1c < 5.7%), 48 subjects with prediabetes (28%) (prediabetes group)
(IFG and/or impaired glucose tolerance (IGT) and/or HbA1c 5.7–6.4%) and 60 subjects
with NODM (35%) (NODM group) (fasting glucose ≥ 126 mg/dL and/or 2 h glucose
post-OGTT ≥ 200 mg/dL and/or HbA1c ≥ 6.5%). The clinical and biochemical charac-
teristics of the study subjects are presented in Table 1. The prediabetic patients were not
older than the controls and had a similar BMI. Subjects with prediabetes were younger than
subjects with NODM; however, there were no differences concerning BMI and diastolic
BP. In addition, subjects with NODM showed a higher HOMA index than those of the
prediabetic and control groups.

3.1. Platelet Reactivity and Inflammation Indexes in Subjects with Prediabetes

MPV was in prediabetic subjects significantly higher than that in controls (9.1 ± 0.8
vs. 8.7 ± 1.1 fL, p < 0.05) and showed no significant differences from that in subjects with
NODM. No differences were found in 8-iso-PGF2α urinary levels between the three groups.

The platelet count in the subjects with prediabetes was higher than that in controls
without reaching statistical significance (230 ± 64.2 vs. 251.5 ± 69 103/µL, p = 0.15) but
was similar to that in subjects with NODM.

In the simple regression analysis, 11-dh-TXB2 urinary levels were associated with
age (r = 0.197, p = 0.01) and systolic blood pressure (r = 0.14, p < 0.05). Moreover, MPV
was associated with fasting glucose (r = 0.25, p = 0.001), HbA1c (r = 0.16, p < 0.05) and
HOMA-IR (r = 0.25, p = 0.0018).

Hs-CRP was significantly higher in prediabetic subjects in comparison with controls
(0.21 (0, 12–0.54) vs. 0.09 (0.07–0.29) mg/dL, p < 0.05) and in diabetic subjects than in
controls (0.28 (0.19–0.59) vs. 0.09 (0.07–0.29) mg/dL, p < 0.05). Ferritin was significantly
higher in the prediabetes group in comparison with the control group (119 (73–120) vs.
68 (73–200) ng/mL, p < 0.05) and in the NODM group than in the control group (108
(40.5–192.5) vs. 68 (73–200) ng/mL, p < 0.05). Fibrinogen in the prediabetes group was
significantly higher than that in the control group (350 ± 71.3 vs. 324 ± 73.1 mg/dL,
p < 0.05) and showed no significant differences from that in the NODM group. PLR was
higher in the prediabetes group than in the control group without reaching statistical
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significance (138 ± 54 vs. 121.2 ± 38, p = 0.16), and it was significantly higher in the NODM
group than in the control group (144 ± 87 vs. 121.2 ± 38, p < 0.05) (Table 2).

Table 1. Clinical and metabolic characteristics of the study population according to glucose tolerance.

Controls
(n = 62)

Prediabetes
(n = 48)

New-Onset Type 2
Diabetes (NODM)

(n = 60)

Age (years) 51.35 ± 7.84 51.75 ± 7.75 54.7 ± 6.84 *,#

BMI (kg/m2) 27.54 ± 3.95 30.39 ± 6.18 30.25 ± 5.22
SBP (mmHg) 118.83 ± 11.91 123.37 ± 14.54 131.17 ± 15.05 *,#

DBP (mmHg) 74.83 ± 9.61 78.54 ± 9.73 * 81.33 ± 8.53 *
Total cholesterol (mg/dL) 225 ± 36.23 233.46 ± 36.32 216.62 ± 23.94

HDL (mg/dL) 59.55 ± 17.74 54.83 ± 13.8 58.63 ± 37.95
TG (mg/dL) 93 (61–118) 114 (84.5–163.5) 108 (78–132)

LDL (mg/dL) 137.00 ± 44.61 153.22 ± 34.44 139.9 ± 24.13
eGFR(mL/min/1.73 m2) 99.25 ± 15.05 98.52 ± 15.55 103.40 ± 21.48
Fasting glucose (mg/dL) 85.58 ± 6.61 98.46 ± 16.99 * 127.30 ± 39.33 *,#

Plasma insulin (mIU/L) 7.10 (5.70–9.30) 9.20 (5.80–11.50) * 10.40 (6.50–19.70) *
HOMA-IR 1.46 (1.15–1.95) 2.11 (1.54–3.1) * 3.2 (1.77–5.45) *,#

HbA1c (%) 5.36 ± 0.23 5.87 ± 0.38 * 6.90 ± 1.19 *,#

ACR (mg/g creatinine) 7 (6–8) 8 (5–10) 10 (8–18) *,#

Hypertension (%) 23% 28% 45% *,#

Use of ACEis or ARBs (%) 13% 25% * 33% *
Use of CCBs (%) 3% 6% 13% *

Use of other
antihypertensive drugs (%) 0% 4%* 3% *

Active smokers (%) 20% 36% 31%
Sex (M/F) 26/36 30/18 * 42/18 *

The data are presented as the mean ± SD or median (IQR). BMI: body mass index; SBP: systolic blood pressure;
DBP: diastolic blood pressure; TG: triglycerides; eGFR: estimated glomerular filtration rate; HOMA-IR: homeosta-
sis model assessment insulin resistance; ACR: albuminuria-to-creatininuria ratio; ACEis: angiotensin-converting
enzyme inhibitors; ARBs: angiotensin receptor blockers; CCBs: calcium channel blockers. * p < 0.05 vs. controls;
# p < 0.05 vs. prediabetes.

Table 2. Inflammation and platelet activation indexes in the study population according to
glucose tolerance.

Controls
(n = 62)

Prediabetes
(n = 48)

New-Onset Type 2
Diabetes (NODM)

(n = 60)

hs-CRP (mg/dL) 0.09 (0.07–0.29) 0.21 (0.12–0.54) * 0.28 (0.19–0.59) *
WBC (106/µL) 6.1 ± 1.8 7.2 ± 1.8 * 7.5 ± 1.8 *

Ferritin (ng/mL) 68 (25–125) 119 (73–200) * 108 (40.5–192.5) *
Fibrinogen (mg/dL) 324 ± 23.1 350 ± 71.3 * 348.9 ± 42.8

Platelet count (103/µL) 230 ± 64.2 251.5 ± 69 255.2 ± 85.4 *,#

MPV (fL) 8.7 ± 1.1 9.1 ± 0.8 * 9.1 ± 0.8 *
PLR 121.2 ± 38 138 ± 54 144 ± 87 *

11-dh-TXB2 (ng/mg creatine) 10.6 (6.3–27.6) 16.5(9.9–27.8) * 18.2(8.5;36.6) *,#

8-iso-PGF2α (ng/mg creatine) 9.7 (6.4–18.3) 9.9 (5.6–13.7) 10.7(6.8–18.2)
The data are presented as the mean ± SD or median (IQR). Hs-CRP: high-sensitivity C-reactive protein; WBC:
white blood cells; MPV: mean platelet volume; PLR: platelet-to-lymphocyte ratio; 11-dh-TXB2: 11-dehydro-
thromboxane B2 urinary levels; 8-Iso-PGF2α: isoprostane PGF2α urinary levels. * p < 0.05 vs. controls; # p < 0.05
vs. prediabetes.

PLR was associated with diastolic BP (r = 0.28, p = 0.0002), HbA1c (r = 0.16, p = 0.04)
and HOMA-IR (r = 0.15, p < 0.05) in the simple regression analysis.

3.2. Intima–Media Thickness and Arterial Stiffness in Subjects with Prediabetes

We found several differences in intima–media thickness and arterial stiffness parame-
ters between the study groups (Table 3).
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Table 3. Arterial stiffness and thickness parameters according to glucose tolerance.

Controls
(n = 62)

Prediabetes
(n = 48)

New-Onset Type 2
Diabetes (NODM)

(n = 60)

qIMT (mm) 0.69 ± 0.11 0.75 ± 0.12 * 0.76 ± 0.12 *
PWV (m/sec) 7.4 ± 1 7.9 ± 1.5 * 8.1 ± 1.9 *,#

AugP (mmHg) 10 ± 4.8 12 ± 8 * 12.7 ± 5.5 *
AugI (%) 26 ± 8.2 28.8 ± 13.1 30.5 ± 9.7 *
SEVR (%) 159.8 ± 27.7 160 ± 25.5 150.4 ± 25.5 *,#

Atherosclerotic
plaque presence (%) 19% 27% 28%

The data are presented as the mean ± SD. qIMT: quality intima–media thickness; PWV: pulsed wave velocity;
AugP: augmentation pressure; AugI: augmentation index; SEVR: subendocardial viability ratio. * p < 0.05 vs.
controls; # p < 0.05 vs. prediabetes.

qIMT in the prediabetes group was significantly higher than that in the control
group (0.75 ± 0.12 vs. 0.69 ± 0.11 mm, p < 0.05) and had no differences from that in
the NODM group.

In the multiple regression analysis using two models (see Section 2), qIMT exhibited a
significant correlation with age (p < 0.0001) and fasting glucose (p = 0.01) in the first model.
In the second model, the variables that remained significantly associated with qIMT were
age (p < 0.0001), 11-dh-TXB2 urinary levels (p < 0.05), 8-iso-PGF2α urinary levels (p = 0.04)
and fibrinogen (p < 0.05) (Table 4).

Table 4. Multiple regression analysis evaluating qIMT, AugP and PWV as dependent variables.

Coefficient β p Value

qIMT
Multiple regression—Model 1 *

Age (years) 8.9 <0.0001
FG (mg/dl) 1.48 0.01

Multiple regression—Model 2 **
Age (years) 0.007 <0.0001

11-dh-TXB2 (ng/mg creatinine) 0.002 <0.05
Fibrinogen (mg/dL) 0.0003 <0.05

8-iso-PGF2α (ng/mg creatinine) −0.003 0.04
AugP

Multiple regression—Model 1 *
Male sex −5.97 <0.0001

HbA1c (%) 1.65 0.02
HDL (mg/dL) −0.04 0.03

Multiple regression—Model 2 **
Male sex −7.74 <0.0001

HbA1c (%) 2.46 0.02
HDL (mg/dL) −0.05 0.01

11-dh-TXB2 (ng/mg creatinine) 0.107 <0.05
PWV

Multiple regression—Model 1 *
Male sex 0.56 0.03

SBP (mmHg) 0.04 <0.0001
HDL (mg/dL) −0.12 0.01

Multiple regression—Model 2 **
Male sex 0.88 0.03

SBP (mmHg) 0.03 0.005
11-dh-TXB2 (ng/mg creatinine) 0.031 0.0002

* Model 1 was adjusted for age, sex, BMI, systolic BP, HDL cholesterol, LDL cholesterol, HbA1c, fasting glycemia
and HOMA-IR. ** Model 2 was adjusted for 11-dh-TXB2 urinary levels, fibrinogen, MPV, platelet count, hs-CRP,
8-iso-PGF2αurinary levels and PLR. FG: fasting glycemia; 11-dh-TXB2: 11-dehydro-thromboxane B2 urinary
levels; 8-iso-PGF2α: isoprostane PGF2α urinary levels; BMI: body mass index; PLR: platelet-to-lymphocyte ratio;
hs-CRP: high-sensitivity C-reactive protein; SBP: systolic blood pressure.

PWV was significantly higher in the prediabetes group vs. the control group (7.9 ± 1.5
vs. 7.4 ± 1 m/s, p < 0.05) and in NODM vs. the prediabetes group and the control group
(8.1 ± 1.9 vs. 7.9 ± 1.5 and 7.4 ± 1 m/s, p < 0.05). AugP was significantly higher in the
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prediabetes group than in the control group (12 ± 8 vs. 10 ± 4.8 mmHg, p < 0.05) and in
NODM in comparison with the control group (12.7 ± 5.5 vs. 10 ± 4.8 mmHg, p < 0.05).
AugI was higher in the prediabetes group than in the control group without reaching
statistical significance (28.8 ± 13.1 vs. 26 ± 8.2%, p = 0.08), while it was significantly higher
in the NODM group (30.5 ± 9.7 vs. 26 ± 8.2%, p < 0.05).

As regards the multiple regression analysis, in the first model, PWV showed a statis-
tically significant association with male sex (p = 0.03), systolic BP (p < 0.0001) and HDL
cholesterol (p = 0.01), while in the second model the variables that remained significantly
related to PWV were male sex (p = 0.03), systolic BP (p = 0.005) and 11-dh-TXB2 urinary
levels (p = 0.0002). Furthermore, AugP in the first model showed a correlation with male
sex (p < 0.0001), HbA1c (p = 0.02) and HDL cholesterol (p = 0.03). In the second model, the
variables significantly associated with AugP were male sex (p < 0.0001), HbA1c (p = 0.02),
HDL cholesterol (p = 0.01) and 11-dh-TXB2 urinary levels (p < 0.05).

4. Discussion

In this study, we measured biomarkers of platelet reactivity and inflammation in
subjects with prediabetes. Furthermore, we evaluated the association of these factors
with qIMT and arterial stiffness, which are well known as early markers of cardiovascular
disease and predictive of cardiovascular events.

We found that 11-dh-TXB2 urinary levels were significantly higher in the prediabetes
group compared with the control group, as well as MPV; moreover, we found no differences
between these parameters in the prediabetes group compared with the NODM group; these
data provide evidence of an in vivo increased platelet activation in subjects with early
alterations of glucose homeostasis.

Few studies are available concerning the 11-dh-TXB2 marker in subjects with pre-
diabetes. Previous studies highlighted the association between prediabetes and platelet
over-reactivity and resistance to antiplatelet therapy [31]. Santilli et al. found an enhanced
thromboxane biosynthesis in subjects with impaired glucose tolerance (IGT), a subset of
prediabetic subjects. Moreover, they observed that, among IGT subjects, those experi-
encing conversion to overt diabetes were characterized by a progressive rise in urinary
thromboxane metabolite excretion rate [32]

The increase in 11-dh-TXB2, which is a direct marker of platelet activation, was already
described in patients with type 1 and type 2 diabetes mellitus. Zaccardi et al. found that
asymptomatic young subjects with type 1 diabetes showed persistently enhanced TXA2-
dependent platelet activation and oxidant stress in vivo, and this phenomenon was related
to female sex and microvascular and oxidative damages [18]. Al-Sofiani et al. demonstrated
that type 2 diabetic patients have higher in vivo platelet activation compared with subjects
without diabetes both before and after antiplatelet therapy, and they hypothesized that
endothelial dysfunction may play a role in this platelet hyperactivity [33]. In addition,
Lopez et al. highlighted that type 2 diabetes is associated not only with an increase in
platelet reactivity biomarkers, but also with a poor response to antiaggregant therapy [34].

Platelet hyperactivity was observed in other conditions often associated with diabetes
and prediabetes, such as obesity, dyslipidemia and hypertension. Davì et al. reported
that urinary 11-dh-TXB2 is significantly increased in otherwise healthy obese women,
as compared to non-obese controls [35]. Furthermore, the same study group found that
successful short-term weight loss was associated with a statistically significant reduction
in thromboxane urinary metabolites, identifying insulin resistance as one of the major
determinants of platelet reactivity in subjects with obesity [36]. A large body of evidence
strongly supports a reciprocal relationship between insulin resistance and endothelial
function, sustaining the hypothesis that endothelial dysfunction may be the link between
insulin resistance and platelet activation [37]

In addition, previous studies demonstrated that increased total and LDL cholesterol
levels are correlated with a higher 11-dh-TXB2 excretion rate, suggesting that platelet
activation can be a main determinant of hypercholesterolemia-induced cardiovascular
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risk [38]. As regards hypertension, Dolegowska et al. highlighted the mutual connections
between platelet activation and mean arterial pressure, hypothesizing a potential platelet
involvement in atherosclerosis development [39].

Thus, higher urinary thromboxane metabolite excretion is associated with atheroscle-
rosis risk factors and is partially reversible after improved disease control, suggesting that
the primary abnormalities, such as hyperglycemia, insulin resistance and hypercholes-
terolemia, may be responsible for enhanced and persistent thromboxane biosynthesis. In
this regard, it is of relevance that disease-modifying strategies, such as lifestyle intervention,
different antidiabetic agents and statins, may blunt, at least in part, urinary thromboxane
metabolites [38]. Moreover, urinary thromboxane metabolite excretion could be a pre-
dictive biomarker of adverse cardiovascular outcomes, as demonstrated in patients with
established atherosclerotic cardiovascular disease [40].

The higher MPV in subjects with prediabetes is consistent with other studies such as
the one by Inoue et al. that analyzed a Japanese cohort [41]. Furthermore, we found that
MPV was directly associated with HbA1c and HOMA-IR, as previously described [42,43].
Insulin resistance is a common denominator of several metabolic conditions related to
platelet hyperactivity. This is consistent with the fact that platelets exhibit insulin receptors.
Therefore, insulin resistance may cause the lack of the physiological action exerted by
insulin on platelet function, such as reduction of the pro-aggregatory properties of agonists,
and the activation of endothelial nitric oxide (NO) synthase, with increased NO formation
and intraplatelet concentrations of cyclic adenosine monophosphate (cAMP) [36].

As previously reported [44], we highlighted a significant alteration of arterial stiffness
and thickness parameters in our prediabetic subjects. Furthermore, we found that 11-
dh-TXB2 urinary levels were associated with carotid atherosclerosis and arterial stiffness.
Thus, these data suggest a link between platelet over-activation and atherosclerosis in
prediabetes, confirming the high cardiovascular risk of this condition. This is clinically
relevant, considering the incidence of macrovascular complications is already increased in
prediabetes and in new-onset type 2 diabetes [45].

In addition, we found an increase in different inflammatory parameters, such as white
blood cell count, hs-CRP, ferritin and fibrinogen. Moreover, even though it did not reach
statistical significance, probably because of the sample size, we found an increase in PLR in
prediabetic subjects, and we found a significant increase in PLR in diabetic patients com-
pared with controls; furthermore, this parameter was associated with HbA1c and HOMA-IR
in the simple regression analysis. This observation is consistent with previous studies in
different populations and suggests that prediabetes is a proinflammatory condition [46,47].
Our group previously explored this hypothesis, demonstrating an impaired inflammatory
profile in subjects with early glucose intolerance status and metabolic syndrome [6,48].
PLR can be a key factor for emphasizing the interplay between two major components
of atherothrombosis: thrombosis and inflammation. Previous studies demonstrated that
higher platelet and lower lymphocyte counts are associated with adverse cardiovascular
outcomes. Thus, an elevated PLR may have an additive role in predicting major adverse
cardiovascular outcomes [22].

This study presents some strengths and limitations. The major strength of the study is
the exclusion of patients undergoing therapies known to affect platelet activation such as
statins and antiplatelet drugs. Therefore, our results cannot be affected by drugs. As regards
limitations, this was a cross-sectional study, and a longitudinal causal relationship cannot be
established between changes in plasma platelet activation biomarkers and arterial stiffness
and thickness. In addition, there are some differences in the sex distribution between the
study groups.

As regards the evaluation of arterial stiffness, we used PWV. However, another indica-
tor has emerged in recent years. The cardio-ankle vascular index (CAVI), which reflects the
stiffness of the arterial tree from the beginning of the aorta to the ankle, is easy to measure
and operator-independent. Thus, it could be a promising alternative to PWV. In addition,
CAVI has been used in the prediabetic and diabetic populations [49,50].
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5. Conclusions

In conclusion, subjects with prediabetes exhibit increased platelet reactivity as well as
a proinflammatory profile. Furthermore, this condition is associated with early markers of
cardiovascular disease independently of classical risk factors.
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