
UNIVERSITÀ DEGLI STUDI DI CATANIA
dipartimento di matematica ed informatica

Ph. D in Computer Science

Federico Savasta

TWO-PARTY AND THRESHOLD ECDSA CONSTRUCTIONS
WITH BANDWIDTH EFFICIENT INSTANTIATIONS

FROM CLASS GROUPS OF IMAGINARY QUADRATIC FIELDS

Final Dissertation

Supervisor:
Prof. Dario Catalano - University of Catania, Italy

Examiners:
Prof. Michel Abdalla - École Normale Supérieure, Paris, France
Prof. Manuel Barbosa - University of Porto, INESC TEC, Portugal

Academic Year 2020/2021

2

Introduction

One of the most interesting challenges in Cryptography is building distributed protocols
which are efficient and secure. Distributed protocols are thought to compute a function
among a set of connected parties, where these functions can range from, for example, com-
puting a decryption of encrypted data to signing documents together. Previous example
tasks belong to an area of Cryptography called Secure Multi-Party Computation, or sim-
ply Multi-Party Computation (MPC). MPC covers several situations where two or more
connected parties wish to jointly compute a function on their own private inputs. The
aim of MPC is to carry out a distributed task securely. The security properties an MPC
should satisfy are not fixed and they depend on what we want to guarantee, the model
considered or the kind of adversary we face. However, some properties are quite general,
as privacy (no more than expected information from the output has to be obtained, then
no additional infos about the inputs can be deduced), correctness (it is guaranteed that
the output received is correct), or indistinguishability of inputs (malicious parties cannot
choose their inputs as a function of honest parties inputs). Actually, in some contexts,
protocols also guarantee output delivery to honest parties or fairness. Anyway, not all of
these property are always guaranteed. In particular, latter two properties are not satisfied
when an adversary can corrupt more than an half of the parties1.

Threshold Cryptography The domain of the entire manuscript is Threshold Cryp-
tography, a particular setting of the more general Multi-Party Computation. In Threshold
Cryptography we consider n players that take part in a distributed protocol, where at
most t < n players cooperating cannot obtain a specific goal, but at least t + 1 of them
can run the protocol to an end. Threshold Cryptography ([Des88, DF90, GJKR96b,
SG98, Sho00, Boy86, CH89, MR04]) has a lot of advantages in the real life, e.g. it does
not permit to an individual to sign sensitive documents that need to be approved by
a quorum. This versatility sparked intense research efforts that, mainly in the decade
from the early 1990s to the early 2000s, produced efficient threshold versions of most
commonly used cryptographic schemes. If we look at the specific case of signatures, a set
of at least t + 1 parties have to cooperate to generate a signature of a chosen message.
The main interesting point consists in how threshold signature protocols permit to split
the secret key in a way that each party is not able to reconstruct it in its entirety, and
at the same time it is possible to compute the signature. As a consequence, it is clear
that an attack to reconstruct the secret key would require the corruption of a significant
number of parties. With a threshold scheme it is possible to avoid the problem of the
single point of failure which is typical to centralized schemes. Indeed, the significance

1We do not detail about this, we refer to [HL10]

i

of the threshold value t is an indication on how many parties a malicious adversary A
needs to corrupt to totally break the protocol, i.e. to obtain the secret key and being
able to sign messages as A is impersonating a valid population of signers. Of course,
obtaining the secret key and creating forgeries is not the only possible attack, it is also
fundamental to detect misbehaving actions and to avoid that the protocol reaches an
end revealing private informations of the honest players. Indeed, in some contexts it is
necessary to take in account what infos a malicious adversary can obtain only seeing if
an honest player aborts or not.
In this manuscript, we will consider exclusively Threshold ECDSA, the threshold variant
of the Elliptic Curve Digital Signature Algorithm. We informally introduce threshold
signatures, then we will look at the specific case motivating the aim of the manuscript
during this introduction. As the name suggests, threshold signatures concern with the
study of the techniques for building secure and efficient threshold signatures scheme.
The task of a threshold signature scheme is computing a distributed signature function
without revealing information on the secret key, or anything for what an adversary can
compute a valid signature as a group of valid signers. An usual example is that of an
agency that is going to accept a project, but it is necessary that a certain number of
potential voters give their consensus. Certainly, no one should be able to accept the
document individually, or the meaning of a distributed protocol is missed.
From the beginning of ’80s and motivated by applications, cryptographers started to
think on how widely used protocols can be converted in their distributed variant, noting
that for some of them this task was hard. For example, initially multi-party version of
RSA or Schnorr Signatures were presented, but for the case of ECDSA – the Elliptic
Curve based variant of DSA – we had to wait for years. Recent years have seen renewed
interest in the field (e.g. [GGN16, Lin17, GG18, DKLs18, LN18, DKLs19]) for several
reasons. First a number of start-up companies are using this technology to protect keys
in real life applications [Ser, Unb, Sep]. Moreover, Bitcoin and other cryptocurrencies –
for which security breaches can result in concrete financial losses – use ECDSA as under-
lying digital signature scheme. While multisignature-based countermeasures are built-in
to Bitcoin, they offer less flexibility and introduce anonymity and scalability issues (see
[GGN16]).
How to build efficient solutions for distributed ECDSA is our main scope in this manuscript.
We are not the first who propose an efficient solution for distributed ECDSA, but we will
present our contributions in the construction of efficient distributed ECDSA schemes that
improve the state of art. In this introduction chapter we introduce the issues behind the
construction of secure and efficient threshold ECDSA schemes and we recall some of the
most relevant works on this topic with the purpose to give an idea about the state of
art and the starting point of our contributions. Detailed explanations, extended intro-
ductions to our works and the technical parts of our constructions will be given later in
dedicated chapters. In this intro chapter we introduce previous works that inspired our
constructions and we only briefly introduce our works.

ii

Public parameters: An Elliptic Curve group G, of prime order q, with generator P .

Secret Key: Random x ∈ Z/qZ.

Public Key: Q← x · P ∈ G.

EC-Schnorr Sign Algorithm:

• Sample k ←↩ Z/qZ

• R← k · P

• e← H(R||m)

• s← k − x · e mod q

• Output (e, s)

ECDSA Sign Algorithm:

• Sample k ←↩ Z/qZ

• R← k · P

• r ← rx mod q where R = (rx, ry)

• s← k−1·(H(m) + rx) mod q

• Output (r, s)

Figure 1: EC-Schnorr/ECDSA Signing

Towards distributed ECDSA
How to build an efficient threshold ECDSA scheme became an interesting challenge, in
particular from the ’90s to the early 2000, motivated by the difficulty of this problem. In
general, researchers started to think about how to construct distributed versions for most
used schemes, such as RSA, DSA or Schnorr signatures. A stumbling block was presenting
an efficient solution for threshold DSA/ECDSA. The best solution proposed until the
early 2000 is that one of [MR04] for the two party case, but it is not efficient enough for
applications. Furthermore, the lack of direct applications of Threshold ECDSA has put
the interest in this problem a little apart. The main bottleneck in the construction of a
distributed variant of ECDSA relies on its non linear structure, which does not permit to
split all the elements involved in additive shares. To understand what this last sentence
means, we give a informal description of ECDSA comparing it with Schnorr signature
scheme ([Sch90]) adapted to the elliptic curve case in Figure 1.
Looking at Figure 1, it is clear that in Schnorr Signing algorithm the nonce k and the
secret key x appears only in linear expressions. At the same time, a signature in ECDSA
is computed as an expression depending on k−1 and on k−1x. As a consequence, Schnorr
algorithm can be adapted to a distributed version using additive shares of k and x among
the players. Indeed, suppose that two players Pi and P3−i, i ∈ {1, 2}, join the protocol
and each Pi owns ki and xi. Then, each player can compute Ri ← ki · P and share Ri.
After receiving R3−i, Pi can compute R = Ri +R3−i. Under the hardness of the discrete
logarithm in the Elliptic Curve, Ri does not reveal informations about ki. After that, Pi
computes si ← ki − xi · e mod q, shares it and receives s3−i. Finally, the signature is
computed as

s = si + s3−i = (ki + k3−i)− (xi + x3−i) · e mod q = k − x · e mod q

iii

where k = ki + k3−i and x = xi + x3−i. A similar reasoning does not work in the case
of ECDSA, since it is not clear how to compute additive shares of k−1 and k−1x from
additive shares of k and x. The most intuitive idea to approach this problem is to use
multiplicative shares instead of additive ones. This is the idea behind the solution of
[MR04] in the two-party case, that was improved by Lindell ([Lin17] and generalized by
our work ([CCL+19]) in a different setting. Before talking about the improvements, we
first introduce the technique used in [MR04] in the next section. About [Lin17], a brief
introduction will be given in this chapter, while in Chapter 3 is entirely dedicated to our
work [CCL+19].

Two-party ECDSA
When we talk about the security of a distributed protocols, a relevant factor is the number
of parties that an adversary can corrupt. In particular, it is of fundamental importance
if the adversary is able to corrupt a majority of the parties – i.e. more than an half –
or not. In the specific case of two party, an adversary can corrupt at most 1 party to
guarantee that there is at least one honest party joining the protocol. Of course, in this
specific case honest majority with corruptions cannot be achieved. This is the reasoning
why it is better to split in two different situations two-party protocols and more general
threshold protocols. That means that the ideas behind constructions of two-party and
threshold protocols are quite different. In this section, we give a brief description of some
of the solutions that bring two-party ECDSA protocols to the today’s state-of-art. The
choice of the following results is also done in relation to their importance to our works.

The MacKenzie-Reiter idea As discussed above, MacKenzie and Reiter ([MR04])
proposed a two-party protocol to compute DSA/ECDSA signatures. The authors treat
the case of DSA, but we will use the elliptic curve notation to describe it. Their idea is
using a multiplicative sharing of k and x distributed among the players. The advantage
is avoiding the difficulty to compute additive shares of k−1 or k−1x from additive shares
of k and x. Indeed, if k = k1k2, then k−1 = k−1

1 k−1
2 . Furthermore, their idea is to use

an homomorphic encryption scheme to send and operate on encrypted values, which is
Pailler in their specific case. The resulting signing public key and nonce are Q = x1x2 ·P
and R = k1k2 ·P , respectively, where P is a generator of points in the chosen group. Even
if the idea is quite simple, the resulting protocol is not efficient for several reasons. To
understand better where is the bottleneck, we explain how the basic idea works first. The
basic idea is not the original protocol in [MR04], but it is a general framework followed
by these authors for first, and by others afterwards, including our work [CCL+19].
Let P1 and P2 be the two players involved. We split the computation in two phases, a key
generation phase IKeyGen and a signing one ISign. In the IKeyGen phase, P1 and P2, with
secrets x1, x2 ← Z/qZ, respectively, run a key exhange to compute Q = x1 ·Q2 = x2 ·Q1,
where Qi = xi · P . In the ISign phase:

• P1 and P2 run a key exchange to compute R = k1·R2 = k2R1, where Ri = ki·P, ki ←
Z/qZ as done in IKeyGen

• P1 uses Paillier encryption to compute c1 = Enc(pk1, k
−1
1 ·H(m)) and c2 = Enc(pk1, k

−1
1 x1r).

Then, P1 sends c1 and c2 to P2

iv

• P2 can then complete the signature, using the homomorphic properties of the scheme
as follows

c← c
k−1

2
1 c

k−1
2 x2

2 = Enc(pk1, k
−1 ·H(m))Enc(pk1, k

−1xr) = Enc(pk1, k
−1(H(m) + xr))

• P2 concludes the protocol by sending back c to P1

• P1 can extract the signature s ← k−1(H(m) + xr)) mod q from c using its secret
key sk1 of the encryption scheme.

However, proving that each party follow the protocol correctly turned out to be hard.
The main bottleneck in [MR04] is the cost of the zero-knowledge proofs involved. We
presented above the main points followed by the protocol of [MR04], but we do not present
the more complex scheme in [MR04] and we recall only the main issues. In particular,
in [MR04] protocol, player P1 has to send additional encrypted values to player P2, such
for example an encryption of k−1

1 and of k−1
1 x1, and both of the players have to prove the

consistency of the sent elements and of the computations done during subsequent steps.
Furthermore, for encryptions it is necessary to run range proofs, which are expensive.
The reason why range proofs are required is linked to the different moduli involved, the
composite N for Paillier encryption from one side and the prime q order of the group
from the other side. As a consequence, checks can fail if a wrap around occurs. This last
issue is inherited from more recent solutions that uses the same framework with Paillier
encryption scheme for homomorphic operations. For this reason, we will return to it
when we will talk about our technical contributions.

Lindell Improvement In 2017, Lindell ([Lin17]) managed to provide a much simpler
and efficient protocol. What Lindell did is a crucial observation. He noticed that in
the two party ECDSA signing protocol, dishonest parties are able to create only little
trouble. In brief, in the IKeyGen phase P1 sends an encryption ckey = Enc(pk1, x1) to P2
using Paillier homomorphic encryption, where pk1 is P1’s public encryption key and x1
is P1’s share of signing secret key. In addition, they compute the public key Q running a
Diffie-Hellman key exchange. After this phase, in the ISign phase:

• P1 and P2 compute R from a Diffie-Hellman key exchange

• P2 homomorphically computes an encryption c← Enc(k−1
2 ·H(m)+k−1

2 rx2x1) from
ckey and finally it sends back c to P1

• P1 decrypts c obtaining α and it computes the signature as s← k−1
1 α.

Now, if P1 is corrupted, since P1 has to prove in zero-knowledge that it used the same x1
in ckey and in its share Q1 = x1 ·P of the signing public key, essentially what it can do is
participating in the generation of R = k1k2 · P . However, the computation of R consists
in a Diffie-Hellman protocol, for which very efficient and robust protocols exists. On the
other hand, if P2 is corrupted, what she can do is taking part in the generation of R –
and we have seen that she cannot cheat during this phase – and create a bad c̃ to be sent
to P1. After receiving c̃, P1 can decrypt it and check if the resulting signature is valid
and as a consequence, she detect that P2 cheated. This last situation does not require

v

zero-knowledge proofs, improving the efficiency of the protocol in [MR04]. As a result,
Lindell’s protocol is simple and efficient. We will give more details of Lindell’s solution
in Chapter 3, where we will compare it with our two-party ECDSA protocol based on
Hash Proof Systems ([CCL+19]). For completeness, a brief description of our solution is
given in the next paragraph.

Castagnos-Catalano-Laguillaumie-Savasta-Tucker two-party ECDSA In 2019,
Castagnos et al. ([CCL+19]2) proposed a new two party ECDSA protocol from a more
general framework. Their scheme follows the idea of [Lin17]. Even if the structure of both
the protocols is quite similar, the fundamental contribution in [CCL+19] is the proposal
of a general framework for building two-party ECDSA protocol based on Hash Proof
Systems ([CS98]). Without going too deeply with details in this preliminary discussion,
HPSs have the main advantage to set an encryption scheme which is homomorphic, in the
sense of [HO09], and which works modulo any q. HPS are useful to avoid the costly range
proofs in [Lin17], since the modulo of the encryption scheme can be set to be same prime
number which is the order of the elliptic curve defining the signature algorithm. They
also presents a concrete instantiation of the protocol using Class Groups of an Imaginary
Quadratic Field, whose properties are perfectly in line with the general construction from
HPS. This work is discussed in details in the dedicated Chapter 3.

The general case - Threshold ECDSA
In a more general case, there are n parties that join the signature protocol. The protocol
is also parametrized by a threshold t < n which indicates what is the maximum number
of parties that together cannot compute a signature. The range of possible thresholds
for a scheme is fundamental to define which properties the scheme can achieve. In con-
texts where an adversary corrupts less than half of the parties, it could be possible to
reconstruct the signature from honest values and ending the protocol with a valid output
([GJKR96a]). In general this is not true in contexts where an adversary can corrupt a ma-
jority of the involved parties and failures of the protocol in the task of computing a valid
output are more frequent. To achieve security against any threshold t < n it is required
to consider security with aborts. Informally, if at a certain point a party misbehaves,
the protocol will abort and no informations about honest parties’ values are revealed, or
computed by seeing honest parties behaviour. Anyway, after an abort occurs it is not
possible to reconstruct the final output. Under this kind of security, recently efficient full
threshold ECDSA solution were proposed. Starting from the construction of Gennaro
and Goldfeder ([GGN16]), we give a description of the ideas that permitted to construct
efficient full threshold ECDSA schemes. Some points are similar to the two-party con-
structions, i.e. using an homomorphic encryption scheme as a building block, but using
multiplicative share is not possible anymore. We generalize the result of [GG18] in our
work [CCL+20] in the context of Class Groups. Chapter 4 is dedicated to our [CCL+20].

Gennaro et al. full threshold ECDSA We give a brief description of two relevant
results from Gennaro et al.

2This is one of our works

vi

[GGN16] In 2016, Gennaro et al. (cf. [GGN16]) took the challenge to construct an efficient
and optimal threshold DSA scheme. Gennaro et al. proposed a threshold DSA
scheme without honest majority as an extension to a context of more than 2 parties
([MR04]). However, they did not extend directly the construction of [MR04], but
they proposed a new scheme which uses the threshold variant of Paillier encryption
scheme as a building block. However, they also thought about an extension of the
[MR04] scheme for the general (t, n)− threshold case, noting how much inefficient
was the result. Indeed, the extension works with N = O(q3t−1), a storage of O(nt)
for each party and a non constant number of rounds, i.e. O(t) rounds. On the other
hand, the proposal in [GGN16] has 6 rounds, i.e. a constant number, and N > q8

to avoid wrap-arounds. Finally, their scheme presents a series of zero-knowledge to
prove the correctness of the computations and it ends with a final decryption step
in which the signature is computed as the threshold decryption of a value generated
in previous rounds using the homomorphic properties of the scheme.

[GG18] In 2018, Gennaro and Goldfeder (cf. [GG18]) proposed a new optimal threshold
ECDSA protocol in the context of a malicious adversary and dishonest majority.
The scheme improved the previous result of [GGN16] (and a successive improvement
in [BGG17]). The new protocol requires less communication, it is simpler and
solves the problem of a very costly distributed key generation part which is present
in [GGN16]. Furthermore, authors improved on the number of the costly zero-
knowledge proofs. The new protocol uses a Shamir secret sharing for generating the
public key and the secret key (implicitly) for the signature scheme. Furthermore,
a threshold variant of Paillier encryption is not required anymore and relevant
products for the computation of the final signature are computed from a distributed
subprotocol that converts multiplicative shares to additive shares. This clearly
permits to compute the product k · x in the signature, where x := sk and R = gk

−1

as usual in ECDSA (see Figure 1 for notation), from additive shares. Finally, some
range proofs are necessary to avoid that a failure in generating the signature can
reveal sensitive informations.

Castagnos-Catalano-Laguillaumie-Savasta-Tucker full threshold ECDSA Fol-
lowing the framework of [GG18], Castagnos et al. ([CCL+20]) proposed a threshold
ECDSA scheme based on Class Groups of Imaginary Quadratic Fields. They noted that
changing the Paillier encryption scheme used in [GG18] with the Castagnos-Laguillaumie
linearly homomorphic encryption scheme (CL) brings to advantages in terms of commu-
nication. Even if this seems a little change, we see how much stronger this change is and
how efficiency issues from [GG18] disappears. Unfortunately, new issues relative to prov-
ing statement for CL appeared and a relevant contribution of [CCL+20] relies on how we
managed to solve them. Looking at the advantages, first of all working with two different
modulus – N for Paillier encryption and q for the Elliptic curve – requires the usage of
running expensive range proofs. The first advantage in using CL is that the messages are
chosen in Z/qZ where q is freely chosen (with very weak conditions). Therefore, using
the same prime of the elliptic curve avoids to run range proofs. Second, the advantage is
in bandwidth consumption, since ciphertext in CL are shorter than Paillier ciphertext for
the same level of security. However, for the structure of CL it is required to prove that

vii

a ciphertext comes from a valid message since the scheme is not surjective with respect
to the couple (message, randomness). A second contribution of the paper is proposing a
new efficient zero knowledge to do this task. The resulting scheme is better in terms of
communication and faster for high levels of security. A more detailed description of our
work, i.e. [CCL+20], is given in the dedicated Chapter 4.

Further Improvements on Threshold ECDSA

Previous solutions lack some crucial properties which are useful for real life situations.
To complete our description of recent results on threshold ECDSA, we recall here a brief
description of the results in [CGG+20] and of our work [CCL+21].

Canetti et al. In [CGG+20], Canetti et al. proposed two threshold ECDSA schemes
which guarantee proactivity, identifiable aborts and adaptive security against t = n − 1
corruptions in the Universal Composability model. Informally, a scheme has identifiable
aborts if it is possible to detect a misbehaving player which caused an abort and to
exclude her; a scheme is proactive if its key can be updated instead of being recomputed
after a certain time period to avoid corruptions of parties one by one during a long time.
Both the schemes are divided in four phases: Key generation, Key refresh, Presigning
and Signing. The scheme is thought to have an offline presigning phase and an online
signing phase. During the Presigning phase, parties compute the necessary values which
permits a fast and simple Signing procedure (which consists only in sending a share of
the signature which belongs to Z/qZ). Their two schemes are principally different in
the identification procedure when an abort occurs caused by a misbehaving player. The
first identification procedure requires a cost of O(n2) and three rounds of communication
Presigning phase, while the second identification procedure requires a cost of O(n) but six
rounds of communication in Presigning. Indeed, the best choice depends on the condition
behind the usage of the scheme, i.e. if in the application is more important the cost or
the latency.

Castagnos-Catalano-Laguillaumie-Savasta-Tucker enhanced threshold ECDSA
In [CCL+21] we improved our solution from [CCL+20], to take in account the same prop-
erties of accountability, proactivity and the split in offline/online phases. We present two
schemes, one which is secure against a static adversary that corrupts up to n− 1 player
and another proven secure against an adaptive adversary which corrupts exactly n − 1
player. Actually, the two schemes can be seen as only one since the unique difference is
in the key generation protocol, which is optimized for t = n− 1. The details about this
specific choice are given in Chapter 5. We also present new zero-knowledge for proving
that a CL ciphertext decrypts to some message or to ⊥ useful for our identification pro-
tocol specific for using CL. The main difference with [CGG+20] consists in the model
considered. Our schemes are provably secure, but they are not proven secure in the UC
model. The main advantage of this choice is efficiency. Our solutions have comparable
communication and computational costs with [CCL+20]. Details of [CCL+21] are given
in the dedicated Chapter 5.

viii

Goal and resume of the manuscript
Short description of our works This manuscript is based on our works in [CCL+19],
[CCL+20] and [CCL+21]. The three works can be seen as an unique series of works
on the same topic that step by step generalize the context we work with. As already
introduced, all our works treat the problem of building a distributed ECDSA protocol
which is secure and efficient, and we do that instantiating our solutions with Class Groups
of Imaginary Quadratic Fields. The principal difference with other constructions relies
on the encryption scheme used as a building block and the advantages that derives from
it. One of the notable advantages in using CL is the reduction of the communication
costs with respect to other schemes, thanks to the shorter representation of ciphertexts
with regard to the security parameter. The strongest of the three works is [CCL+19]:
in this work we proposed a general framework based on Hash Proof Systems for the
two-party ECDSA and we proved its security in the simulation real/ideal model. Then,
we presented an efficient instantiation with Class Groups, which are adaptable to the
properties we need. In [CCL+20], we propose a solution based on CL for threshold
ECDSA which is secure against a malicious adversary that can corrupt up to n − 1
parties joining the protocol, where n is the total number of them. We presented a game
based security proof of it. The proposed protocol is also bandwidth efficient, thanks
also to the smaller communication cost from ciphertexts representation in CL. Finally,
in [CCL+21] we extended the protocol of [CCL+20] to take in account the possibility to
identify misbehaving players when an abort occurs and to make it proactive. As opposed
to Paillier based solutions, we do not need to prove that a key is well-formed and as a
consequence the refreshing of a key can be done without an expensive proof of validity.

The main body of the thesis is divided in five Chapters, where the first two chapter
are dedicated to parts of the tools required for the next ones. The remaining tools
are introduced and explained when necessary, to avoid confusion in the reading. Next
Chapters deal with the works which include the author of this thesis as a coauthor. These
last three Chapter are sequential both in time and in the topics covered.

Structure of the manuscript
• We began with this Intro Chapter.

• In Chapter 1, we give a list of some cryptographic and mathematical tools re-
quired for next chapters.

• Chapter 2 is written as a brief manual on Class Groups of Imaginary Quadratic
Fields, which is of independent interest since it is thought to give a good, but not
exaggeratedly detailed, background on these mathematical object and to introduce
cryptographers to this interesting topic. Furthermore, it is useful to understand the
Castagnos-Laguillaumie encryption scheme. The Castagnos-Laguillaumie scheme
(CL) is a building block of our threshold ECDSA scheme, since it is the underlying
linearly homomorphic encryption scheme used in our constructions, and then the
author thought it deserves a significant part of Chapter 2. This chapter does not
introduce new results, but it is an original survey of the author of this manuscript.

ix

• Chapter 3 is completely dedicated to the work of [CCL+19] that we introduced
above. It deals with the construction of a two-party ECDSA protocol from Hash
Proofs Systems.

• Chapter 4 is built on the work of [CCL+20]. The chapter deals with a more
general (t, n)−threshold ECDSA construction instantiated using Class Groups of
Imaginary Quadratic Fields.

• Chapter 5 is built on the work of [CCL+21]. Differently from the other two papers
in previous items, at the time of writing this work ([CCL+21]) has not yet published.
This work considers a next step of improvements, in terms of additional features,
of the full (t, n)−threshold ECDSA scheme from [CCL+20], i.e. it takes in account
identifiable aborts, proactivity and a specific case of (n − 1, n)−adaptive security
of the scheme. Furthermore, a novelty, even if not relevant as in the previous
two papers (cf. [CCL+19], [CCL+20]), is the introduction of a proof for proving
correct decryption with Castagnos-Laguillaumie scheme which permits to identify
misbehaving players in any case.

Notes for the reader In this manuscript, each of our works has a dedicated chapter
and then it is usual that we say Our/Chapter 3/[CCL+19], Our/Chapter 4/[CCL+20]
and Our/Chapter 5/[CCL+21] interchangeably. Also, class groups and the CL scheme
are used in all the three works and to avoid repetitions, we often refer to Chapter 2,
instead of recalling it. Finally, part of the notation used in next chapters is given at the
beginning of Chapter 1.

Final note All the three works detailed in this thesis ([CCL+19], [CCL+20] and [CCL+21])
are joint works with my supervisor Dario Catalano (University of Catania), Guilhem
Castagnos (University of Bordeaux), Fabien Laguillaumie (University of Montpellier)
and Ida Tucker (IMDEA Software Institute Madrid).

x

Contents

Introduction i

1 Preliminaries 5
1.1 Introduction to Public Key Cryptography 6

1.1.1 Security model . 6
1.2 Public Key Encryption . 8

1.2.1 Homomorphic Encryption . 10
1.3 Digital Signatures . 11

1.3.1 The elliptic curve digital signature algorithm 13
1.4 Equivocable commitment schemes . 15
1.5 Zero-knowledge proofs . 15

1.5.1 Sigma protocols . 17
1.5.2 Zero Knowledge Proofs concerning DL 19

1.6 Verifiable secret sharing . 20

2 Background on Class Group of Imaginary Quadratic Fields 23
2.1 Towards the definition of the Ideal Class Groups: the Algebraic Part . . 24

2.1.1 Binary Quadratic Forms . 25
2.1.1.1 The reduction algorithm 27
2.1.1.2 The composition of forms 31
2.1.1.3 The Form Class Group 32

2.1.2 Imaginary Quadratic Fields, Orders and Fractional O−Ideals . . . 34
2.1.2.1 Maximal and non-maximal orders 35
2.1.2.2 Representation and inclusions of orders 36
2.1.2.3 Fractional O−ideals . 37
2.1.2.4 Product of O−ideals . 39

2.1.3 The Ideal Class Group . 41
2.1.3.1 Relations between the ideal class group and the form class

group . 43
2.2 Class groups in Cryptography: the Castagnos-Laguillaumie encryption

scheme . 46
2.2.1 Computing square roots in Cl(O∆) 47
2.2.2 The odd part of the Class Group 49

2.2.2.1 A choice for a 2−Sylow of order 2 50
2.2.2.2 The Cohen-Lenstra Heuristic 50

2.2.3 Switching between a maximal order and a non maximal suborder 52

1

2.2.4 A subgroup with an easy discrete logarithm problem 55
2.2.4.1 Additional modification to CL 57
2.2.4.2 Construction of the direct product Gq and F 59

3 Two-Party ECDSA from Hash Proofs Systems 61
3.1 Ideal functionalities . 64
3.2 Background on HPS, a HPS-based PKE scheme and ECDSA-friendly HPS 66

3.2.1 Defining HPS and PHF . 67
3.2.2 Hard assumptions for PHF . 68
3.2.3 Homomorphic Properties . 69
3.2.4 Resulting Encryption Scheme . 70
3.2.5 ECDSA friendly Projective Hash Families 72
3.2.6 Zero-Knowledge Proofs . 76

3.3 Two-Party ECDSA Signing Protocol with Simulation-Based Security . . 77
3.3.1 The Two-Party ECDSA protocol 78
3.3.2 Simulation-based security of the Two-Party ECDSA scheme . . . 80

3.4 Instantiation from Class Group of Imaginary Quadratic Fields 90
3.4.1 A Smooth Homomorphic Hash Proof System from HSM 91
3.4.2 A zero-knowledge proof for RCL−DL 94
3.4.3 Two-Party Distributed ECDSA Protocol from HSM 97

3.5 Efficiency comparison . 97
3.5.1 Lindell’s Protocol with Paillier’s Encryption Scheme 99
3.5.2 Our Protocol with HSM− CL Encryption Scheme 99
3.5.3 Comparison . 101

3.6 Instantiation of our Generic Construction Using DCR 102

4 Bandwidth-efficient Threshold ECDSA from Class Groups 103
4.1 Preliminaries . 105

4.1.1 Building blocks from Class Groups 105
4.1.2 Algorithmic assumptions . 107

4.2 Threshold EC-DSA protocol . 109
4.2.1 ZKAoK ensuring a CL ciphertext is well formed 110
4.2.2 Interactive set up for the CL encryption scheme 113
4.2.3 Resulting threshold ECDSA protocol 117

4.2.3.1 Key generation. 117
4.2.3.2 Signing. 118

4.3 Security . 120
4.4 Further improvements . 131

4.4.1 An improved ZKPoK which kills low order elements. 131
4.4.2 Assuming a standardised group 132

4.5 Efficiency comparisons . 135

5 Improvements on Threshold ECDSA 139
5.1 Improved Threshold ECDSA protocol . 143
5.2 Identifying Aborts . 146

5.2.1 Arguing knowledge of a decrypted message 148

2

5.2.2 Aborting and detection of misbehaving parties 149
5.3 Security . 154

5.3.1 Security of the Full Threshold Protocol with Identifiable Aborts
against Static Adversaries . 154
5.3.1.1 Indistinguishability of Real and Simulated Environments 160

5.3.2 Security Against Adaptive Adversaries 166
5.3.2.1 Indistinguishability of real and simulated executions against

adaptive adversaries . 174
5.3.2.2 Concluding the proof . 176

5.4 Efficiency comparisons . 176

Conclusion 177

References 181

Acknowledgement 191

3

4

Chapter 1

Preliminaries

This chapter has the aim to recall some of the cryptographic tools and definitions re-
quired in technical chapters which follow. This chapter does not include all the necessary
background, since more specific tools are directly recalled in chapters that require them.
Then, the following sections only consist of a collection of known results in Cryptogra-
phy (e.g. [KL14] for an introductory background, or [Lin16] for a tutorial on simulation
technique, or [HL10] for secure multiparty computation notions).

Notations. We present below the notation principally used in Chapters 1, 3, 4 and 5.
Chapter 2 has its own specific notation.

• Distributions: given a distribution D, we write d←↩ D to refer to d being sampled
from D and b

$←− B if b is sampled uniformly from a set B.

• Groups: we use the G notation for the elliptic curve group and G for the class
group. We denote with P the generator of G, and each point of the curve is denoted
with the notation Q = x · P , for some x ∈ Z/qZ, where q is the order of G.

• Interactive protocols: in an interactive protocol IP, between parties P1, . . . , Pn
for some integer n > 1, we denote by IP〈x1; . . . ;xn〉 → 〈y1; . . . ; yn〉 the joint ex-
ecution of parties {Pi}i∈[n] in the protocol, with respective inputs xi, and where
Pi’s private output at the end of the execution is yi. If all parties receive the same
output y we write IP〈x1; . . . ;xn〉 → 〈y〉. For the specific two-party case, we use the
same style, i.e. IP〈x1;x2〉 → 〈y1; y2〉, for the joint execution of parties {Pi}i∈{1,2},
with respective inputs xi, and where Pi’s private output at the end of the execution
is yi. We use sans-serif to indicate protocols (e.g. KeyGen).

• Arrows: in an interactive protocol, we use the single arrow α−→ from a party Pi to
a party Pj to indicate Pi sending α to Pj. We use doublearrow α=⇒ from a party
Pi to indicate that Pi sending α in boradcast. In some specific cases, we use the
left-right simple arrow π←→ for interactive protocols π between parties.

• Algorithms: a (P)PT algo stands for an algorithm running in (probabilistic) poly-
nomial time with regard to the length of its inputs. We use calligrafic style (S,A,
F) to denote the adversary, a simulator and ideal functionalities. .

5

1.1 Introduction to Public Key Cryptography
The seminal work of Diffie and Hellman ([DH76]) put the basis of a new type of cryptog-
raphy, i.e. cryptography based on a public key. This is know as Public Key Cryptography,
or Asymmetric Cryptography. The reason why it is called asymmetric, in constrast with
the symmetric case, is related to the asymmetric roles of the sender and the receiver.
It is well known that the two principal problems in Cryptography are privacy – i.e. an
encrypted message must not reveal information on the plaintext – and authentication –
which means that an adversary must not be able to impersonate someone else and being
able to sign message for her. [DH76] introduces a duality of keys, a public key pk to com-
pute an encryption (or check a signature) publicly and a secret key sk to compute private
operations as decrypting a ciphertext (or signing a message). The keys are strongly linked
under some hard cryptographic assumption. This means that obtaining the secret key
from the knowledge of the public key needs to be unfeasible. In an asymmetric context,
it sufficient that each party shares its public key to everyone without too much worries
thanks to the hardness in computing its secret key. Even if asymmetric cryptography
presents a lot of advantages with regards to symmetric one, it is in general less efficient
in terms of computation, and when possible a symmetric option is preferred.
In general, a public key scheme is composed by three elements: a protocol, a security
definition and some assumptions. This is a very easy way to define it, but substantially
this is what we need to construct a secure scheme. First, we need to define what secure
means and if necessary, which assumptions are assumed hard to guarantee the validity of
the security definition. Certainly, a security proof relies also on the model or the type of
adversary considered.

1.1.1 Security model
In general, a security definition is composed by two elements, a threat model (the spec-
ification of an adversary, its power, its corruption strategy) and a security goal. To be
secure with respect to the definition of security considered, a protocol has to satisfy that
security definition. Without going deeper, we can consider substantially two types of se-
curity: information theoretic security and computational security. Informally, the former
includes definitions of security against unbounded adversaries which are not able to break
the scheme with a non negligible probability, where the meaning of breaking the scheme
depends on security task that we want to be guarantee. Generally, information theoretic
security is a strong requirement for real applications. The latter, i.e. the computational
security, includes the definitions of security against a computational bounded adversary.
In public key cryptography it is usual to consider computational definitions of security.

The adversary An adversary is an entity which corrupts parties which join a protocol.
There is not a specific description of an adversary, but the strength of a protocol is also
based on the type of the adversary considered. In general, we cannot deduce the strategy
adopted by the adversary, but we can describe different types of adversary by its way
to misbehave and by the corruption strategy it adopts. We present only the types of
adversary which are often considered in works. Referring to the way it can misbehave we
distinguish:

6

Honest
but-curious

An adversary is said honest but curious, or semi-honest or passive, if it follows the
protocol as an honest party does. The aim of this type of adversary is not to harm
the right execution of the protocol, but it is to obtain private infos about honest
players, i.e. data that are not expected to be known.

Malicious An adversary is called malicious, or active, if it can decide to not follow the protocol.
This means that the adversary is able to send wrong data, or it can decide to do not
answer to a request (Denial of Service (DoS) attack), or to choose values that can
compromise the distribution of relevant values in the protocol revealing private data.
In brief, a malicious adversary can decide to deviate from the protocol everytime it
desires.

Another characterization of how an adversary can cheat is linked to the type of corruption
it does, i.e. when it can corrupt and how. From the works we will present in next chapters,
we recall type of corruption of our interest, that coincide with the most used in literature.
In this definition we do not consider the corruption power, i.e. how many corruptions the
adversary can do, for a clear description.

Static A static adversary corrupts a fixed number of parties before the protocol starts.
When coping with static adversaries, it is known a the beginning who are the
corrupted parties. New parties cannot be corrupted after the protocol starts.

Adaptive An adaptive adversary is able to corrupt a certain number t of parties during the
protocol running. There is no limitation about when a party is corrupted. This type
of adversary can corrupt parties in any moment, obtaining their internal state, in
any moment and with the condition that the total number of corrupted parties does
not exceed t. Furthermore, an adaptive adversary cannot decide to ”decorrupt” a
party to free a slot of corruption, i.e. once a party is corrupted it will be so until
the end.

Mobile A mobile adversary, or proactive adversary ([OY91], [CH94]), is able to corrupt up
to t parties during a time period called epoch. After an epoch, a mobile adversary
is able to corrupt another set of t parties. This behaviour is that of a virus which
spreads over machine during the time. The condition about mobile adversaries is
that it corrupts at most t parties in an epoch.

Game-based and Simulation-based definitions

We can distinguish between two types of approach to prove the security of a scheme. The
approach depends on the model considered and the type of security we want to guarantee.

Game-based security. The first approach is to prove security from game-based def-
initions of security. In a game-based context, the security relies on an experiment (or
game). The experiment consists in a challenge chosen by an entity C, called a challenger,
and an adversary A whose aim is to break the problem behind the challenge. A scheme
is said secure in the sense of a game-based definition if the advantage of a PPT adver-
sary in solving the challenge is negligible. Game-based definitions for digital signatures
in general consist in being able to create a forgery. i.e. a valid signature for a message

7

whose signature is unknown. Our works [CCL+20] and [CCL+21] treated in Chapters 4
and 5, respectively, are game-based secure.

Simulation-based security and ideal functionalities. The second approach is to
prove security from simulation-based definitions. It is usual to prove the security of
a scheme in the simulation real/ideal paradigm. The real/ideal paradigm consists of
two world, called real and ideal. In the basic definition of the ideal world, parties can
communicate only with a functionality sending an input and receiving an output, while in
the real world they exchange messages among them. The ideal world is assumed secure
by definition, since the functionalities are not corruptible. We say that a protocol is
secure in this paradigm if the real world is indistinguishable by the ideal world, i.e. from
a world where there are no security issues. The technique behind this type of proof is
called simulation. Informally, let f be a functionality which is secure by definition and π a
protocol that does the same task of f . To prove that π compute f we construct a simulator
S that receives the output from the functionality f and simulates the interaction of an
adversary A and parties in a real world. The idea to prove security is constructing S that
simulates the view of A such that this view is computationally indistinguishable from
its view in a real world where it takes part in a protocol communicating with parties.
Additionally, S has to generate a view which is consistent with the output received from
the functionality.

The hybrid model In the hybrid model, parties can communicate as in a real protocol
π, but they also have access to ideal calls to a set of functionalities f1, f2, . . . , fn. This
means that they are instructed to send inputs to a set of functionalities and receiving
back the outputs. In general, when it is asked for an ideal call to a functionality fi, π
continues after the output from fi is received.

For an more extended and detailed explanation of how to write simulators and prove
security via the simulation paradigm we refer the reader to the tutorial of [Lin16] and to
[HL10].

1.2 Public Key Encryption
Public Key Encryption is the part of Public Key Cryptography which comprises the
theory of encryption in the asymmetric setting. We introduce below the definition of a
public key encryption scheme and some standard definitions about the security of the
scheme.
Definition 1.2.1 (Public key Encryption Scheme [DH76]). A public key encryption scheme
ia s triple of PPT algorithms (KeyGen,Enc,Dec) such that:

• The key generation algoritm KeyGen takes as input the security parameter 1λ and
outputs a pair of keys (pk, sk), called public key and secret key, respectively.

• The encryption algorithm Enc takes as input a public key pk and a message m from
some message space M. It outputs a ciphertext c← Enc(pk,m).

8

• The deterministic decryption algorithm Dec takes as input a private key sk and a
ciphertext from some ciphertext space C, and outputs a message m := Dec(sk, c) or
a special symbol ⊥ denoting failure.

It is required that, except with negligible probability over (pk, sk) output by KeyGen(1λ),
we have Dec(sk, (Enc(pk,m)) = m for any message m ∈M.

Semantic Security Informally, an encryption scheme is semantically secure if what
can be computed from a ciphertext is almost the same of what can be computed from
a priori knowledge, without the knowledge of the ciphertext. Let h : {0, 1}∗ → {0, 1}∗
denote an arbitrary auxiliary function of the plaintext, i.e. h describes partial information
on the plaintext that may be leaked by adversary. Let f : {0, 1}∗ → {0, 1}∗ a function of
the message that the adversary wants to learn from the knowledge of the ciphertext and
h. The original definition of semantic security was introduced in [GM82], while we recall
here that of the treatment in [Gol04] (in the form that it is found in [HL10]).

Definition 1.2.2 (Semantic security in public-key encryption). Let Π = (KeyGen,Enc,Dec)
be a public encryption scheme, and (pk, sk) ← KeyGen a couple of public/private keys
output by the key generation algorithm. Π is semantically secure (in the public-key
model) if for every PPT algorithm A, there exists a PPT algorithm A′ such that for every
ensemble {Xλ}λ∈N with |Xλ| ≤ poly(λ), every pair of polynomially-bounded functions
f, h : {0, 1}∗ → {0, 1}∗, every polynomial p(·) > 0 and all sufficiently large λ:

Pr
pk←KeyGen(1λ)

[A(1λ, pk,Enc(pk, Xλ), 1|Xλ|, h(1λ, Xλ)) = f(1λ, Xλ)]

< Pr[A′(1λ, 1|Xλ|, h(1λ, Xλ)) = f(1λ, Xλ)] + 1
p(n)

Security against Chosen-Plaintext Attacks The notion of indistinguishability against
adaptive chosen-plaintex attack (ind-cpa) resumes the inability of a PPT adversary A to
distinguish between the encryptions of two different messages chosen by the adversary it-
self. Since ind-cpa security against a single encryption or multiple encryptions are proved
to be equivalent, we consider the experiment in the case of multiple challenges. Consider
a public key encryption scheme Π = (KeyGen,Enc,Dec) and an adversary A, the LR
experiment is depicted in Figure 1.1.

Definition 1.2.3. Consider the experiment in Figure 1.1. A public key encryption scheme
Π = (KeyGen,Enc,Dec) is said be ind-cpa secure with multiple encryptions if for all PPT
adversaries A, there exists a negligible function µ(·) such that

Pr[ExptLR−cpa
A,Π (λ) = 1] ≤ 1

2 + µ(λ)

Remark 1. Goldwasser and Micali also proved the equivalence between semantic security
and ind-cpa security.

9

The LR experiment ExptLR−cpa
A,Π (λ)

1. Run KeyGen(1λ) which outputs (pk, sk)

2. Choose a uniform bit b ∈ {0, 1}

3. A is given the public key pk and the access to an oracle LRpk,b which takes on
input a couple of messages m0 and m1 and returns the c← Enc(pk,mb).

4. ALRpk,b(·,·)(pk)→ b′

5. If b = b′ the output of the experiment is 1, otherwise it is 0. A succeeds if
ExptLR−cpa

A,Π (λ) = 1

Figure 1.1: The LR experiment ExptLR−cpa
A,Π (λ)

1.2.1 Homomorphic Encryption
In some context, as for example distributed ones, it can be relevant to be able to op-
erate directly on the ciphertext without the necessity to know a decryption key or the
underlying plaintext. Some schemes, as for example Paillier encryption scheme, have
homomorphic properties that permits to modify the encryption c of a message m to an
encryption c′ of a message m′, where m′ is a linear transformation of the original m. A
formal definition is the following:
Definition 1.2.4 (Homomorphic encryption scheme [KL14],[HL10]). A public key encryp-
tion scheme Π = (KeyGen,Enc,Dec) is homomorphic if for all security parameter λ and
all (pk, sk) output by KeyGen(1λ), it is possible to define two groups (M,+) and (C,⊕)
(depending only on pk) such that:

• M is the message space, and all ciphertexts output by Enc(pk, ·) are elements of C.

• For any couple of messages m1,m2 ∈ M , any valid encryptions c1 ← Enc(pk,m1)
and c2 ← Enc(pk,m2), it holds that

Dec(sk, c1 ⊕ c2) = m1 +m2

.

Furthermore, the distribution on ciphertexts obtained by the product of the encryptions
of m1 and m2 is identical to the distribution of the ciphertexts obtained by encrypting
m1 +m2.

Paillier Encryption Scheme Paillier ([Pai99]) presented one of the most used encryp-
tion schemes in applications, called the Paillier Encryption Scheme from the name of the
author. We recall here Paillier Encryption Scheme principally for two reasons: first, it
is a good example of an homomorphic encryption scheme and second, it is at the basis
of the threshold ECDSA protocols we will compare our solutions with in next chapters.
Indeed, a relevant difference between other efficient solutions and ours is the different

10

homomorphic encryption scheme at the basis of constructions and analyzing pros and
cons in using one scheme or the other one is of particular interest. We postpone the de-
scription of the encryption scheme we use in our works ([CCL+19], [CCL+20], [CCL+21])
to Chapter 2, since it requires understanding more complex objects. In this paragraph
we look at Paillier encryption scheme, which is proved ind-cpa secure under the hardness
of the Decisional Composite Residuosity problem.
Definition 1.2.5 (DCR assumption). Let be GenMod(1λ) be a poly-time algorithm which
on input the security parameter λ returns a tuple (N, p, q) such that N = pq and p, q
are prime of lenght λ, except for a negligible function of λ. The Decisional Residuosity
Problem (DCR) is hard relative to GenMod if for all PPT adversary A there exists a
negligible function negl such that∣∣∣Pr[A(N, rN mod N2) = 1]− Pr[A(N, r) = 1]

∣∣∣ ≤ negl(λ),

where the probabilities are taken from the experiment in which GenMod(1λ) returns
(N, p, q) and after that r is chosen in Z∗N2 .

Paillier encryption scheme consists of a tuple of algorithm (KeyGen,Enc,Dec) where:

KeyGen : the probabilistic key generation algorithm KeyGen takes in input the security
parameter λ and generate two large primes p, q of equal length. Finally, set N = pq.

Enc Consider the Carmichael function of N , defined as λ(N) = lcm(p − 1, q − 1), and
denote Γ a generator of a subgroup of order N in Z∗N2

1. To encrypt a message, Enc
takes in input a message m ∈ ZN , it selects a randomness r ∈ Z∗N and it returns a
ciphertext c = ΓmrN mod N2.

Dec : Consider the function L : {u ∈ ZN2 : u = 1 mod N} → Z that sends u to
L(u) = (u−1)

N
. To decrypt a ciphertext c ∈ ZN2 , the decryption algorithm Dec takes

in input c and it returns a message m = L(cλ(N))
L(Γλ(N)) mod N .

Paillier scheme as said above, satisfies some homomorphic properties. Let denote
⊕,�, · the homomorphic sum in ZN2 , homomorphic product by constant in ZN2 and the
standard product in ZN , respectively. If we take two ciphertexts c1, c2 ∈ ZN2 , we have
that c1 ⊕ c2 = c1c2 mod N2 is a valid encryption of Dec(sk, c1) · Dec(sk, c2). Also, if
c ∈ ZN2 and k ∈ ZN is a constant, then k � c = ck mod N2 is a valid encryption of
k · Dec(sk, c). Finally, about the security of Paillier encryption scheme it is proved that:

Theorem 1.2.1. The Paillier encryption scheme is ind-cpa secure under the assumption
that the DCR problem is hard relative to GenMod.

1.3 Digital Signatures
As discussed in the introduction, in Chapters 3, 4 and 5 we will see how to build dis-
tributed versions of ECDSA. In this section we give a description of the basic version of
ECDSA and its (t, n)−threshold variant with all the necessary security definitions.

1A choice can be Γ = 1 +N

11

Definition 1.3.1. A digital signature scheme is a tuple S = (KeyGen, Sign,Verif) of prob-
abilistic polynomial-time algorithms defined as follows:

KeyGen(1λ) The key generation algorithm KeyGen takes in input a security parameter 1λ and re-
turns a couple (vk, sk) which consists of a (public) verification key vk and a (private)
signing key sk.

Sign(sk,m) The signing algorithm takes in input a signing key sk and a message m from some
message space and returns a signature σ.

Verif(pk,m, σ) The verification algorithm takes in input a verification key vk, a message m and a
signature σ. It returns a bit b = 1 or b = 0 if the signature is valid for m or not,
respectively

A standard security notion required for digital signature schemes is that of existential
unforgeability under chosen message attacks (eu-cma) [GMR88]. This notion is defined
from an experiment between a challenger and an adversary.

The eu-cma experiment Expeu-cma
A,S (λ)

Let λ be a security parameter and S = (KeyGen, Sign,Verif) be a digital signa-
ture scheme. Consider the steps:

1. Run KeyGen(1λ) to obtatin a couple (vk, sk) of keys as defined in Definition 1.3.1

2. It is given vk and access to a signature oracle Sign(sk, ·) to the adversary A.
A interacts with the signing oracle and returns a couple (m,σ).

3. Let M denote the set of all queries A asked to the signing oracle. A succeeds if
and only if

• Verif(vk,m, σ) = 1 and
• m was never asked to the signing oracle

In that case the result of the experiment is 1.

Figure 1.2: The eu-cma experiment Expeu-cma
A,S (λ).

Definition 1.3.2 (Existential unforgeability [GMR88]). Let S = (KeyGen, Sign,Verif) be
a digital signature scheme, λ a security parameter and consider a PPT algorithm A,
which is given as input a verification key vk output by KeyGen(1λ)→ (sk, vk) and oracle
access to the signing algorithm Sign(sk, ·) to whom it can (adaptively) request signatures
on messages of its choice as in experiment in Figure 1.2. Let M be the set of queried
messages. S is existentially unforgeable if for any such A, there is a negligible function
negl such that

Adveu-cma
A,S (λ) = Pr[Expeu-cma

A,S (λ) = 1] ≤ negl(λ)

that A produces a valid signature on a message m /∈M is a negligible function of λ.

12

1.3.1 The elliptic curve digital signature algorithm
Elliptic curve digital signature algorithm. ECDSA is the elliptic curve analogue of
the Digital Signature Algoritm (DSA). It was put forth by Vanstone [Van92] and accepted
as ISO, ANSI, IEEE and FIPS standards. It works in a group (G,+) of prime order q (of
say µ bits) of points of an elliptic curve over a finite field, generated by P and consists
of the following algorithms.

KeyGen(G, q, P)→ (x,Q) where x $←− Z/qZ is the secret signing key and Q := xP is the
public verification key.

Sign(x,m)→ (r, s) where r and s are computed as follows:

1. Compute m′: the µ leftmost bits of SHA256(m) where m is to be signed.

2. Sample k $←− (Z/qZ)∗ and compute R := k−1P ; denote R = (rx, ry) and let
r := rx mod q. If r = 0 choose another k.

3. Compute s := k · (m′ + r · x) mod q.

Verif(Q,m, (r, s))→ {0, 1} indicating whether or not the signature is accepted.

About the security of ECDSA it is known that it is secure in the generic group model
([Sho97] for this model), i.e. assuming that the underlying group is a generic group, and
under the assumption that the hash function considered is collision resistant ([Bro00]
for the security proof and analysis, and [Bro02] for a revision from the same author
to [Bro00]). In our application in next chapters, we deal with the construction of dis-
tributed version of ECDSA. During the last decade several paper about new solution
to construct efficient distributed version of ECDSA were proposed ([GGN16], [Lin17],
[GG18], [DKLs19], [CCL+19], [CCL+20], [CGG+20]). The motivation behind this inten-
sive study is strongly linked with real application of the protocol. Indeed, ECDSA is a
building block for signing Bitcoin transaction and Threshold ECDSA could further im-
prove the state of art of the Bitcoin technology. For the case of (t, n)−threshold ECDSA
we give a formal description and the security definitions that are needed. In particular,
we recall the notion of threshold signature unforgeability from [GJKR96b] and a more
recent definition, which is called enhanced existential unforgeability ([CGG+20]). This
latter definition assumes the knowledge of the nonces R of the ECDSA protocol, before
agreeing on the message to be signed. The motivation behind this last definition will be
clear in Chapter 5, when we will require this definition for the first time.

(t, n)−threshold ECDSA. For a threshold t and a number of parties n > t, threshold
ECDSA consists of the following interactive protocols:

IKeyGen〈(G, q, P); . . . ; (G, q, P)〉 → 〈(x1, Q); . . . ; (xn, Q)〉 s.t. KeyGen(G, q, P) → (x,Q)
where the values x1, . . . , xn constitute a (t, n) threshold secret sharing of the signing
key x.

ISign〈(x1,m); . . . ; (xn,m)〉 → 〈(r, s)〉 or 〈⊥〉 where ⊥ is the error output, signifying the
parties may abort the protocol, and Sign(x,m)→ (r, s).

13

The verification algorithm is non interactive and identical to that of ECDSA.
Following [GJKR96b], we can present a game-based definition of security analogous

to eu-cma, which is adapted to the (t, n)− threshold case. This notion is called threshold
unforgeability under chosen message attacks (tu-cma).

Definition 1.3.3 (Threshold signature unforgeability [GJKR96b]). Consider a (t, n)-threshold
signature scheme IS = (IKeyGen, ISign,Verif), and a PPT algorithm A, having corrupted
at most t players, and which is given the view of the protocols IKeyGen and ISign on
input messages of its choice (chosen adaptively) as well as signatures on those messages.
Let M be the set of aforementioned messages. IS is unforgeable if for any such A, the
probability Advtu-cma

IS,A that A can produce a signature on a message m /∈M is a negligible
function of λ.

As in [CGG+20] we assume a somewhat enhanced variant of existential unforgeability
under chosen message attacks (e− eu− cma) for ECDSA. In this notion, for each signa-
ture query performed by the adversary A, it gets to see the randomness R used to sign
before choosing the message to be signed.

Definition 1.3.4 (Enhanced existential unforgeability [CGG+20]). Consider a PPT algo-
rithm A, which is given as input a verification key Q output by KeyGen(G, q, P)→ (x,Q)
and access to oracles:

• OR to obtain a uniformly random point R = (rx, ry) in G;

• OSign(x,m;R) which on input m ∈ Z/qZ chosen by A, returns a valid signature (r, s)
on m where r := rx mod q for some fresh R = (rx, ry) which was output by OR
but has not been previously used by OSign; else it returns ⊥.

Let M be the set of queried messages. ECDSA is enhanced existentially unforgeable
under chosen message attack (e− eu− cma) if for any suchA, the probability Adve−eu−cma

ECDSA,A
that A produces a valid signature on a message m /∈M is a negligible function of λ.

Note that A chooses the messages queried to OSign, and knows (but does not choose)
the randomness. Canetti et al. [CGG+20] show that in the generic group model ECDSA
is e− eu− cma; and that in some cases, enhanced unforgeability of ECDSA follows from
standard unforgeability of ECDSA in the random oracle model.

We present a game-based definition of security analogous to e− eu− cma: enhanced
threshold unforgeability under chosen message attacks (e− tu− cma).

Definition 1.3.5 (Enhanced threshold unforgeability). Consider a (t, n)-threshold ECDSA
protocol IS = (IKeyGen, ISign,Verif), and a PPT algorithm A, having corrupted at most t
players, and which is given the view of the protocols IKeyGen and ISign on input messages
of its choice as well as signatures on those messages. As in Definition 1.3.4, A can chose
these messages adaptively, and after seeing the randomness used in ISign.

LetM be the set of aforementioned messages. The protocol IS is enhanced threshold
unforgeable under chosen message attack (e− tu− cma) if for any such A, the probability
Adve−tu−cma

IS,A that A can produce a valid signature on a message m /∈ M is a negligible
function of λ.

14

1.4 Equivocable commitment schemes
An equivocable commitment scheme is used by a sender S to commit to a message m such
that it’s message is perfectly hidden. When S reveals m and an opening value d(m) to a
receiver R (this is called opening phase), S is computationally bound to the committed
message. The scheme allows for a trapdoor which allows to open a commitment to
arbitrary messages (this is called equivocating the commitment). The trapdoor should
be hard to compute efficiently.

Formally a (non-interactive) equivocable commitment scheme consists of four PPT
algorithms (Setup,Com,Open,Equiv):

Setup The set up procedure Setup(1λ) → (pp, tk) takes a security parameter λ and it
outputs public parameters pp and associated secret trapdoor key tk;

Com The committing algorithm Com(m, r) → [c(m), d(m)] takes in input a message m
and random coins r and outputs the commitment c(m) and an opening value d(m)
(if S refuses to open a commitment d(m) is set to ⊥);

Open The opening algorithm Open(c, d) → m or ⊥ takes in input a commitment c and
an opening value d and outputs either a message m or an error symbol ⊥;

Equiv The equivocating algorithm Equiv(tk,m, r,m′) → d̂ allows to open commitments
c(m) to arbitrary values m′ if tk is a trapdoor key for pp.

Precisely, for any messages m and m′, any Setup(1λ) → (pp, tk), let Com(m, r) →
[c(m), d(m)] and Equiv(tk,m, r,m′)→ d̂ then Open(c(m), d̂)→ m′; and such that opening
fake and real commitments is indistinguishable. The equivocable commitments we will
use in next chapters satisfy the following properties:

• Correctness: for all message m and randomness r, if [c(m), d(m)] ← Com(m, r),
then m← Open(c(m), d(m)).

• Perfect hiding: for every message pair m,m′ the distributions of the resulting com-
mitments are statistically close.

• Computational binding: for any PPT algorithm A, the probability that A outputs
(c, d0, d1) such that Open(c, d0) → m0; Open(c, d1) → m1; m0 6= ⊥; m1 6= ⊥ and
m0 6= m1 is negligible in the security parameter.

• Concurrent non-malleability: a commitment scheme is non-malleable [DDN00] if
no PPT adversary A can “maul” a commitment to a value m into a commit-
ment to a related value m. The notion of a concurrent non-malleable commitment
[DDN00, PR05] further requires non-malleability to hold even if A receives many
commitments and can itself produce many commitments.

1.5 Zero-knowledge proofs
Let R be a relation. A zero-knowledge proof of knowledge (ZKPoK) system for a binary
relation R is an interactive protocol (P, V) between two probabilistic algorithms: a prover

15

P and a PT verifier V . In a ZKPoK, the goal of the prover P is to convince the verifier V
that it knows a witness w for a given statement x such that (x,w) ∈ R, without revealing
to V anything than information that is not trivially known or the truth of the statement.
Informally, a ZKPoK has to satisfy three properties, giving a true output with overwhelm-
ing probability if the prover behaves honestly, giving a false output with overwhelming
probability if the prover is cheating about the knowledge of the witness and do not reveal
anything which is not necessary to be known. Zero-knowledge proofs are fundamental in
many contexts in Cryptography, since they permit to prove the validity of actions done by
parties without revealing secret values. This is of particular relevance in contests where
the adversary is malicious and it can deviate from the protocol. Indeed, zero-knowledge
proofs can require to prove the validity of some actions, also for the adversary. Of partic-
ular interest is their usage in multiparty protocols, and as we will see in Chapter 3,4,5,
we build general purpose zero-knowledges for CL, the Castagnos-Laguillaumie encryption
scheme ([CL15]) we use for our applications. We below define formally a zero-knowledge
proof of knowledge and the concept of computationally convincing proofs of knowledge.
Furthermore, we will look at another type of zero-knowledge, i.e. zero-knowledge ar-
gument of knowledge (ZKAoK). Arguments of knowledge play an important role in the
efficiency improvements of the state of art proofs for the validity of a CL encryption. We
will see the original ZKPoK from [CCL+19] in Chapter 3 and new efficient ZKAoKs from
[CCL+20] in Chapter 4.
Coming back to ZKPoK, consider a language L. x ∈ L is a true statement while x /∈ L
is a false and 1 ← (P, V)(x) (resp. 0 ← (P, V)(x)) denotes the case when V interacting
with P accepts (resp. rejects) the proof statement.
Definition 1.5.1. Let L be a language and x ∈ L (or x /∈ L) be a statement; a ZKPoK
must satisfy the following properties:

• Completeness: for any x ∈ L:

Pr[1← (P, V)(x)] > 1/2

• Soundness: for any prover P ∗ and for any x /∈ L:

Pr[0← (P ∗, V)(x)] > 1/2

• Zero-knowledge: for every probabilistic polynomial time verifier V ∗, there exists
a probabilistic simulator Sim running in expected polynomial time such that for
every x ∈ L,

(P, V ∗)(x) ≡ Sim(x).
(P, V)(x) is a random variable representing the output of V at the end of an in-
teraction with P , then the zero-knowledge property holds if for any probabilistic
polynomial time V ∗, the output of V ∗ after an interaction with P is the same one
of the simulator.

For a full explanation on this model see [Gol01] for interactive proofs and [GMR89]
for zero-knowledge.
In a zero-knowledge argument of knowledge (ZKAoK), the proof provided by P is com-
putationally sound (P is also a PT algorithm).

16

To refer to a zero-knowledge, we use the notation introduced by Camenisch-Stadler
[CS97], which conveniently expresses the goals of a ZKP (resp. ZKA) scheme:

ZKPoKx{(w) : (x,w) ∈ R} and ZKAoKx{(w) : (x,w) ∈ R},

where x is a statement and w a witness. Finally, we provide formal definitions for com-
putationally convincing proofs of knowledge in the next paragraph.

Computationally convincing proofs of knowledge. We here provide some termi-
nology and definitions relating to computationally convincing proofs of knowledge (or
arguments of knowledge) as defined in [DF02]. Consider a relation generator algorithm
R, that takes as input 1λ and outputs the description of a binary relation R. A prover
is a machine P who gets R as an input, outputs a statement x and finally conducts the
interactive proof with a verifier V using R, x as common input. From P , define a machine
Pview which starts in the state P is in after having seen view view and having produced x.
Pview then conducts the protocol with V following P ’s algorithm. The view view contains
all inputs, messages exchanged and random coins so in particular x is determined by
view. We note εview,P P ’s probability to make V accept, conditioned on view. The knowl-
edge error function κ(λ) is the probability that P can make V accept without knowing
a witness w s.t. (x,w) ∈ R (for a security parameter λ). An extractor is a machine M
that gets R and a statement x as an input, has black-box access to Pview for some view
consistent with x and computes a witness w s.t. (x,w) ∈ R.
Definition 1.5.2. For some given cheating P ∗, extractor M and polynomial p(), M fails
on view view if εview,P > κ(λ), and the expected running time of M using P ∗view as oracle,
is greater than p(λ)

εview,P∗−κ(λ) .
Definition 1.5.3. LetR be a probabilistic polynomial time relation generator, and consider
a protocol (P, V), a knowledge extractor M , polynomial p() and knowledge error function
κ(λ) be given. Consider the following experiment with input λ: R := R(1λ), x := P ∗(R)
which defines view view. The advantage of P ∗, denoted Advκ,M,p(P ∗, λ), is the probability
(taken over the random coins of R, P ∗) that M fails on the view generated by this
experiment.
Definition 1.5.4. Let R be a PPT relation generator. (P, V) is a computationally con-
vincing proof of knowledge for R, with knowledge error κ(), failure probability ν() and
time bound t(), if the following hold:

Completeness The honest prover P receives R ← R(1λ), produces (x,w) ∈ R, sends x to V and
finally conducts the protocol with V , who accepts with overwhelming probability
in λ.

Soundness: There exists a polynomial p() and an extractor M , s.t. for all provers P ∗ running
in time at most t(λ), Advκ,M,p(P ∗, λ) ≤ ν(λ).

1.5.1 Sigma protocols
Given a relation R, a Sigma protocol for R is a 3− round protocol between a prover P and
a verifier V . Informally, in Sigma protocols initially the prover sends a message a to the

17

verifier V , then the verifier V sends back a k−bit challenge e to P . Finally, P compute
an answer z and sends it to V and V checks some relation between the statement and
the answer. Formally,

Definition 1.5.5. Let R be a relation. A protocol π is said to be a Sigma protocol for R
if it is a 3−move protocol as above and if it satisfies the following properties:

• Completeness: If P and V follow the protocol on input x and witness w to P , where
(x,w) ∈ R, the verifier always accepts.

• Special soundness: From any x and any pair of accepting conversations on input x,
(a, e, z), (a, e′, z′) where e 6= e′, one can efficiently compute w such that (x,w) ∈ R.

• Special honest-verifier zero-knowledge: There exists a polynomial-time simulator
M , which on input x and a random e outputs an accepting conversation of the
form (a, e, z), with the same probability distribution as conversations between the
honest P , V on input x.

Theorem 1.5.1. Let π be a Sigma protocol for a relation R with challenge length k.
Then π is a proof of knowledge with knowledge error 2−k.

Random Oracle Model (ROM) and the Fiat-Shamir Heuristic Firstly formally
treated by Bellare and Rogaway in [BR93], the random oracle model (ROM) is an ideal-
ized model to prove security of cryptographic schemes. A random oracle is a black-box
function H : {0, 1}t1 → {0, 1}t2 , acting as an oracle, that takes in input a string of
lenght t1 and return a truly random string of lenght t2. Furthermore, H is fixed, i.e.
it returns the same value on the same string. An advantage in assuming the existence
of the random oracle is that it allows to transform interactive zero-knowledge proof in
non-interactive. Anyway, it is usual to consider the existence of a random oracle model
as a strong assumption. Indeed, normally ROM is instantiated using collision resistant
hash functions, but there is no guarantee that a protocol which is proven secure in the
random oracle model has also a secure instantiation2. Using a hash function in place of
the verifier to do non-interactive proofs is also called Fiat-Shamir heuristic3, and this idea
comes from [FS87]. Finally, Fiat-Shamir heuristic is useful to transform Honest Verifier
Zero-Knowledge property of a Sigma protocol to zero-knowledge property. Indeed, mak-
ing a Sigma protocol non interactive excludes a dishonest verifier to choose a challenge
with some property useful for obtaining informations about the witness. Using a random
oracle, the challenge is chosen uniformly in the challenge set. This modus operandi is of
particular interest in protocols that cope with active adversaries, motivated by the fact
that the Sigma protocol is originally only honest verifier zero-knowledge.

2Indeed, there exist negative results about the issue of translating a random oracle to a cryptographic
hash functions. In [CGH04] the authors prove that there exist encryption and signature schemes which
are proven secure in the ROM, but such that there is no secure implementation of the random oracle for
which the resulting schemes are secure.

3Actually, Fiat-Shamir transform was initially thought to convert identification protocols to signature
protocols

18

1.5.2 Zero Knowledge Proofs concerning DL
We recall in this paragraph simple proofs of the knowledge of a discrete logarithm of an
element Q ∈ G, given a group G and a generator P , i.e. x ∈ Z such that Q = x · P and
for the similar relations involving discrete logarithm. The proofs as they are presented,
are used in the context of a cyclic group G of finite order. In Chapters 2, 3, 4 and 5
we will also consider groups of unknown order, and necessary proofs for that case are
presented in dedicated sections.

Schnorr Protocol Schnorr (cf. [Sch90]) proposed a zero-knowledge protocol for the
relation RDL = {Q;x : Q = x · P} for some P,Q ∈ G where G is a group of known
finite order. The protocol is recalled in Figure 1.3. Schnorr protocol is an easy proof for
proving the knowledge of the discrete logarithm of a given element in a finite group G
and requires the computation of only 3 group elements, which are 2 from the receiver and
1 from the verifier.

Prover (Q, x ∈ Z/qZ) Verifier (Q)

r
$←− Z/qZ

A := r · P A−−−−−−−−−→
k

$←− Z/qZ
k←−−−−−−−−−

z := r + kx ∈ Z/qZ z−−−−−−−−−→ Check if z · P = A+ k ·Q

Figure 1.3: Schnorr Sigma-protocol for discrete logarithm relation RDL

Other proofs for DL based relations In Chapters 4 and 5 we will require proofs
for relations which involve the knowledge of discrete logarithm composed by other state-
ments. We present them in this paragraph since they are similar to Schnorr proof. First,
consider the relation

Rdouble−DL = {(T); (σ, `) : T = σ · P + ` ·H},

where P,H ∈ G and G is finite group of order q prime. An (honest-verifier) zero-
knowledge argument for Rdouble−DL is presented in Figure 1.4.

The second relation is

Rtriple−DL = {(T, S,R); (σ, `) : T = σ · P + ` ·H ∧ S = σ ·R},

where P,H ∈ G and G is finite group of order q prime. An (honest-verifier) zero-
knowledge argument for Rtriple−DL is presented in Figure 1.5.

19

Prover (T, σ ∈ Z/qZ, ` ∈ Z/qZ) Verifier (T)

a, b
$←− Z/qZ

A := a · P + b ·H A−−−−−−−−−→
k

$←− Z/qZ
k←−−−−−−−−−

t := a+ kσ ∈ Z/qZ
u := b+ k` ∈ Z/qZ t,u−−−−−−−−−−→ Check if t · P + u ·H = A+ k · T

Figure 1.4: Sigma protocol for relation Rdouble−DL

Prover (T, S, σ ∈ Z/qZ, ` ∈ Z/qZ) Verifier (T, S)

a, b
$←− Z/qZ

A := a ·R
B := a · P + b ·H A,B−−−−−−−−−−−→

k
$←− Z/qZ

k←−−−−−−−−−
t := a+ kσ ∈ Z/qZ
u := b+ k` ∈ Z/qZ t,u−−−−−−−−−−→ Check if t ·R = A+ k · S

and t · P + u ·H = B + k · T

Figure 1.5: Sigma protocol for relation Rtriple−DL

1.6 Verifiable secret sharing

Threshold secret sharing. A (t, n) threshold secret sharing scheme allows to divide
a secret s into shares s1, . . . , sn, amongst a group of n participants, in such a way that
knowledge of any t + 1 or more shares allows to compute s; whereas knowledge of any t
or less shares reveals no information about s.

Verifiable Secret Sharing A verifiable secret sharing (VSS) protocol allows to share
a secret between n parties P1, . . . , Pn in a verifiable way. Specifically, it can be used by a
party to share a secret with the other ones. The main idea behind VSS is sending secrets
with auxiliary infos which do not reveal sensible data under computational assumptions or
that are secure in a information theoretic sense. In the context of multiparty computation,
protocols as Feldmann’s VSS ([Fel87]) and Pedersen’s VSS ([Ped92]) are widely used. For
what concerns threshold signature protocols in Chapters 4 and 5, we will use Feldman
VSS. Feldman VSS relies on Shamir’s secret sharing scheme [Sha79], but the former gives
additional information allowing to check the sharing is done correctly.

20

Feldman Verifiable Secret Sharing

Definition 1.6.1 (Feldman Verifiable Secret Sharing). Let G be a group of order q, g a
generator of G, P1, . . . , Pn a set of n parties, and suppose that one of the parties, that
we call P , wants to share a secret σ ∈ Z/qZ with the other ones. To share the secret, it
does the following steps:

1. P generates a random polynomial p ∈ (Z/qZ)[x] of degree t and with σ as free
term. The polynomial is then

p(x) = atx
t + at−1x

t−1 + . . .+ a2x
2 + a1x+ σ mod q,

where σ = p(0) mod q. The shares of σ are σi = p(i) mod q.

2. P sends σi to Pi, for all i ∈ [n].

3. P publishes auxiliary information that other players can use to check the shares are
consistent and define a unique secret: {vj = gaj ∈ G}j∈[t] and v0 = gσ ∈ G.

Each party can check its own share is consistent by verifying if the following condition
holds:

gσi =
t∏

j=0
vi
j

j ∈ G

If one of the checks fails, then the protocol terminates. Furthermore, the only infor-
mation that the Feldman’s VSS leaks about the secret σ is v0 = gσ. The computational
security of Feldman VSS is based on the hardness of the Discrete Logarithm Problem in
the group G.

Lagrange Interpolation In the construction of a multiparty protocol with a threshold
t, it is usual to convert a shared secret among n players in t shares of it. This is useful
for example in context where after n players run a key generation protocol, only a part of
them compute the rest of relevant values and operations, say t of them. This is the case
of some known works on Threshold ECDSA, where n parties compute public and secret
(implicitly) keys, while t < n compute the signature of a message. If we take the t shares
of the signers as they are, they can be inconsistent with the previously computed signing
and verification keys. In Cryptography, a common way to convert n shares of some value
in t shares such that they guarantee that consistency is using Lagrange Interpolation.
Lagrange Interpolation is a way to construct a degree t polynomial in F[x], where F is a
field (finite or infinite), from t + 1 points. In the context we will consider, the secret is
implicitly defined in the known term of a polynomial. Then, t+ 1 points are necessary to
compute the polynomial, but in general no one knows t+ 1 points and as a consequence
no one knows the polynomial in clear. Since a secret can be set as the degree zero term
of the resulting polynomial, the fact that the polynomial is not known is a important
point. Actually, the most important requirement is that the polynomial where the secret
is hidden is defined and it is unique, even if no one knows it. We give the definition of
Lagrange Interpolation below. In addition, we are not concerned with the mathematical
proof of the existence of the polynomial.

21

Definition 1.6.2 (Lagrange Interpolation). Let {(xi, yi)}i∈{0,...,t} be a set of t + 1 points,
where xi 6= xj, ∀i 6= j, the interpolation polynomial in the Lagrange form is a linear
combination

L(x) :=
t∑

j=0
yjλj(x)

of Lagrange basis polynomials

λj(x) :=
∏

0≤m≤t
m 6=j

x− xm
xj − xm

where 0 ≤ j ≤ t. From the assumption that no two xj are the same, then (when m 6= j)
xj − xm 6= 0, so this expression is always well-defined.

If a secret s is the degree 0 term of the resulting polynomial L, then s = L(0) =∑k
j=0 yjλj(0). Notice that in a cryptographic context, if xi are known to all the parties

P1, . . . , Pn, then everyone can compute λj(x) and in particular λj(0). As a consequence,
the converted (t, t) share of the original (t, n) share of the secret s of the player Pj is
yjλj(0).

22

Chapter 2

Background on Class Group of
Imaginary Quadratic Fields

Introduction to the chapter This chapter is dedicated to Class Groups of Imaginary
Quadratic Fields, the building block of our instantions of the schemes in Chapter 3, 4
and 5. During the reading of this chapter, sometimes we shortly call them Class Groups,
since we will remain inside an imaginary quadratic field all the time, and then it is not
necessary to specify what kind of field is considered in each occasion. Indeed, even if Class
Groups can be built from real quadratic fields, we are interested only in the imaginary
case motivated by constructions in Cryptography based on them and that we use for our
results. Before going on, we specify that this chapter does not include new results, but it
is thought as a background on the theory on Class Groups. The idea behind this chapter
is put together the study of different authors (cf. [BV07] for the starting background,
[Cox14] for more advanced topics at the basis of recent cryptographic construction and
[Coh00] for the computational point of view) together with some paper results to explain
in a linear way the cryptosystem of our interest in this manuscript. At the same time
this chapter can be assumed as a general background about Class Groups theory and
complexity in applications.
This chapter is a little longer than a standard background section we can find in a paper
because our idea is to give a more detailed description of these objects which can be
useful to understand what happens behind the cryptographic protocols we will consider.
Indeed, our goal is presenting these objects without leaving relevant concepts and results
unexplained or assumed as facts, except in cases where theorems involved require an ad-
vanced knowledge of other topics, an unnecessary background or if they require too much
space. In latter cases, we will simply give the reasons why those theorems are important
and necessary. On the other hand, this Chapter is a lot shorter than a book entirely
dedicated to Class Groups, because our aim in this thesis is not presenting a course on
this interesting topic. This chapter can be seen as a short manual divided in two parts.
In the first part (cf. Section 2.1) it is explained what are class groups of an imaginary
quadratic field from an algebraic point of view with the purpose to reduce at minimum the
basic knowledge required from courses in Commutative Algebra and Algebraic Number
Theory, and making them more accessible. Furthermore, we present also relevant algo-
rithms with their complexity. In the second part (cf. Section 2.2) we look at some of the
cryptographic aspects of class groups: which operations are efficient with their elements

23

– e.g. computing square roots –, which problems are hard and which are the improve-
ments that bring them to be used in Cryptography. Obviously, these improvements are
the only ones we are interested in, i.e. how the class groups are useful to build a specific
encryption scheme based on them, i.e. the Castagnos-Laguilllaumie encryption scheme
(CL from now). Indeed, CL scheme is a building block of the original works on distributed
ECDSA in next chapters, i.e. the main topic of this thesis. The second part refers to
the first one to understand and motivate actions took by the authors of the contributions
we will see. We will refer in particular to the results of Castagnos and Laguillaumie
([CL09], [CL15]) and the improvements in [CLT18a]. Finally, sometimes some concepts
will be given as an intuition without an excess of formality because the aim of this Chap-
ter is introducing cryptographers to this mathematical field (where this time ”field” is
not intended in a algebraic sense), and not losing the idea of what we are doing. Indeed,
the author of this thesis is not a researcher in Pure Algebra, but he is a little interested in.

In general, independently from the context, a class group is a group structure where
elements are classes. A class is defined by the elements of the set involved which are
equivalent with respect to an equivalence relation. We will detail about the precise struc-
ture required in this chapter. Informally, our target is to construct Class Groups in a
specific context, i.e. a group of classes inside an Imaginary Quadratic Field. At this point
there are a lot of questions to answer and all of them will receive a detailed response.
Some of them could be:

• What is the nature of elements defining the classes?

• How is the group operation defined?
In Section 2.1 we give an answer to previous questions and others. After giving the

algebraic background, in Section 2.2 we will answer to questions as:
• Which are the difficult problems with Class Groups?

• How does CL uses class groups and under which assumption it is proved secure?
During both the Sections, we recall algorithms that compute the involved operation

also looking at their computational cost. Then we will answer to questions as:
• How much efficient are operations in the Class Group?

• How much inefficient are the algorithms which solve hard problems in a Class
Group?

Finally, a Class Group of Imaginary Quadratic Fields is called also the Ideal Class
Group to distinguish it from the Form Class Group. We consider both of them, but the
Class Group we consider in the end is the ideal one.

2.1 Towards the definition of the Ideal Class Groups:
the Algebraic Part

In this section we have as final goal to define Class Groups of Imaginary Quadratic Fields.
The style followed in this section is constructive following a bottom-up direction: we start

24

with mathematical entities that at first sight seem cannot have nothing to do with the
Class Group, but things will be clear paragraph by paragraph. In the introduction of
this chapter we informally said what a class group is in general, without talking about
the details as the objects considered and their properties, but saying only that we have a
group structure with an unknown defined operation. To sum up, to define Class Groups
we need principally two elements: a set and an operation. We start introducing binary
quadratic forms, which are bivariate homogeneous degree two polynomials that are easy
to understand, the operation on them and then we define the Form Class Group. A Form
Class Group is strongly linked to an Ideal Class Group in a quadratic field. This link
gives a correspondence of the representations of quadratic forms and ideals, translating
operations on the form class group to the ideal class group. Indeed, quadratic forms are
more accessible and some operations on them are quite simple and fast, and furthermore
being able to use the same algorithms in ideal class groups is a clear advantage.

More in detail, our description starts with defining binary quadratic forms and impor-
tant algorithms that are related to them, then we will pass to pure algebraic objects as
imaginary quadratics fields and orders. Next, we will define ideals in the orders – which
are the elements that represent the ideal classes – and the structure of their product,
completing all with the definition of Class Group of Imaginary Quadratic Fields. During
the description, some proof is omitted, while fundamental lemmas, propositions, theorem
are proved and explained when possible.

Notation. Bold letters N,Z,Q,R,C denote the usual sets of natural, integral, rational,
real and complex numbers and An denote their repetition for n times where A is one of
the previous sets. In the case of integers, with a|b we indicate that a divides b. Expression
as f(x, y) are two-variable functions. b mod a and b mod ca denote the remainder of b
divided by a using the Extended Euclid Algorithm and the Centered Extended Euclid
Algorithm, respectively. The latter one gives the remainder r > 0 if −a/2 < r ≤ a/2 and
r − a otherwise. [a] denote the integer part of a. With the notation | · | we refer to the
absolute value of a number, not the size.

2.1.1 Binary Quadratic Forms
A binary quadratic form is a bivariate homogeneous degree 2 polynomial

f(x, y) = ax2 + bxy + cy2,

with a, b and c real coefficients. If the coefficients are integers, the form f is called integral.
An integral form is called primitive if gcd(a, b, c) = 1. From now, we will use the triple
representation of f , i.e. f = (a, b, c), or f(x, y) depending on what we are interested
in. The triple representation is trivially unique. The quantity ∆(f) = b2 − 4ac is the
discriminant of f . When clear from the context, we will refer to binary quadratic forms
as forms. Depending on the real solutions of f(x, y) = 0, forms can be characterized.
Furthermore, the characterization depends only on the discriminant and the sign of a or
c.
Definition 2.1.1. A form f is said

• positive definite if f(x, y) > 0 for each couple (x, y) 6= (0, 0) of real values

25

• positive semidefinite if f(x, y) ≥ 0 for each couple (x, y) of real values

• negative definite if f(x, y) < 0 for each couple (x, y) 6= (0, 0) of real values

• negative semidefinite if f(x, y) ≤ 0 for each couple (x, y) of real values

• indefinite if there exists at least a couple (x, y) of real values such that if f(x, y) > 0
and at least a couple (x, y) of real values such that if f(x, y) < 0

Proposition 2.1.1. The form f is

• positive definite if and only if ∆(f) < 0 and a > 0

• positive semidefinite if and only if ∆(f) ≤ 0 and (a > 0 or c > 0)

• negative definite if and only if ∆(f) < 0 and a < 0

• negative semidefinite if and only if ∆(f) ≤ 0 and (a < 0 or c < 0)

• indefinite if and only if ∆(f) > 0

Remark 2. Note that for integral forms ∆ = 0, 1 mod 4, since ∆ = b2− 4ac ≡ b2 mod 4
and a square mod 4 can be only 0 or 1. We will consider only valid discriminant, and
for each valid discriminant there exist a form. In particular, the forms x2 + (∆/4)y2 if
∆ = 0 mod 4 or x2 + xy+ ((1−∆)/4)y2 if ∆ = 1 mod 4 is called the principal form of
discriminant ∆.

We are interested only in positive definite forms, though there is a full literature about
indefinite forms and class groups of a real quadratic field. At this point, we still do not
know the relation between forms and ideals, then we premise that positive definite forms
are strongly linked with ideals in a imaginary quadratic field, while indefinite forms are
linked to ideals in a real quadratic field. We will see later this link. From what we
said, forms that are not positive definite are out of our scope and the case of indefinite
forms is not part of the class group based cryptography we will consider in next chapters.
From now, after having given some general definitions and easy results on forms, we will
consider only integral forms, i.e. f = (a, b, c) with integers a, b and c.
Consider a form f = (a, b, c) and write it as a function, i.e. f(x, y) = ax2 + bxy + cy2. A
general linear transformation that applied to a form results in another form is denoted
as U(x, y) = (sx + ty, ux + wy). This transformation can be written in a matrix form

from its coefficients, i.e. U =
(
s t
u v

)
. The form after transformation is

g(x, y) = f(sx+ ty, ux+ wy)
= (as2 + bsu+ cu2)x2 + (2(ast+ cuv) + b(sv + tu))xy + (at2 + btv + cv2)y2

= f(s, u)x2 + (2(ast+ cuv) + b(sv + tu))xy + f(t, v)y2

Two forms f, g are said to be equivalent if there exists a matrix U ∈ GL(2,Z) such that
g = det(U)f(U), where f(U) represents the form after the linear transformation above.
They are said proper equivalent if exists a matrix U ∈ SL(2,Z) such that g = f(U).
Remember that GL(2,Z) and SL(2,Z) are the groups of matrices U ∈ Z2×2 such that
det(U) = ±1 and det(U) = 1, respectively.

26

Lemma 2.1.2. The discriminant of two equivalent forms f and g = det(U)f (as defined
above) is the same.

Proof. Just notice that ∆(g) = (2(ast+ cuv) + b(sv+ tu))2− 4 · (as2 + bsu+ cu2) · (at2 +
btv + cv2) = b2 − 4ac = ∆(f)

With some calculations, the following proposition is proved.

Proposition 2.1.3. Proper equivalence is an equivalence relation on the set of all integral
primitive positive definite forms. Equivalence is an equivalence relation on the set of all
integral primitive indefinite forms.

From Proposition 2.1.3 the equivalence relation we consider for the forms is the proper
equivalence. From Lemma 2.1.2 and Proposition 2.1.3, it is possible to divide all primitive
positive definite forms with the same discriminant in classes of proper equivalence. In each
of the classes there are special forms called reduced, and in the following subsubsections
we will see that actually there is only one reduced form in each (proper) equivalence class.
Definition 2.1.2. A positive definite form f = (a, b, c) is said reduced if −a < b ≤ a, a ≤ c
and b ≥ 0 if a = c. f is said normal if −a < b ≤ a (it is not required that a ≤ c).

2.1.1.1 The reduction algorithm

We introduced the notion of reduced forms above and we said that in each class there is
exactly one reduced form. In this subsubsection we prove this fact and we explain how to
compute the reduced form equivalent to a given form f . Among all proper transformation,
two of them form a set of generators for SL(2,Z) (cf. [BV07], Ex. 2.9.1) and then each
proper transformation U can be represented by a combination of only two matrices. More

in detail, this two matrices are S =
(

0 −1
1 0

)
and T =

(
1 1
0 1

)
, and it is proved that

each U ∈ SL(2,Z) can be written as U = T s1St1T s2St2 · · ·T skStk for some k ∈ N \ {0}
and some exponent si, ti ∈ Z, 1 ≤ i ≤ k. Then, to describe any proper transformation
it is enough to work only with S and T . Matrix S exchanges the values of a and c, and
it changes the sign of b. It is useful in the reducing process when the condition a ≤ c
is not true. Furthermore, if a = c it changes b < 0 to b ≥ 0, motivating the condition

b ≥ 0. Matrix T s =
(

1 s
0 1

)
transforms (a, b, c) in (a, b + 2as, c + bs + as2), then it is

useful in reducing b > a or b ≤ −a to a value that satisfies the inequality −a < b ≤ a
without changing the value of a. Indeed, to do that it is enough to choose s =

[
− b

2a

]
1.

Using S and T we prove the existence and unicity of the reduced form in a class. In next
proposition, we give implicitly a way to reduce a form and then we present an algorithm
in clear.

Proposition 2.1.4 ([Coh00], Proposition 5.3.3). In every equivalence class of positive
definite forms there is only one reduced form.

1Notice that this is the unique value of s such that −a < b+ 2as ≤ a. It is computed by a centered
Euclidean division, i.e. consider b mod 2a if b satisfies inequalities or (b mod 2a) − 2a otherwise.
(remember that in this case |b| > a and only one of the values satisfy the condition

27

Proof. We prove in the first part the existence of reduced form in a class, then that if a
form is reduced is unique.

Existence Consider all forms (a, b, c) in a given class, and take one for which a is minimal.
This implies that for any such form we have c ≥ a since (a, b, c) is equivalent to
(c,−b, a) (using S transformation). Then, applying the transformation T s with
s =

[
− b

2a

]
, the value of a does not change, while the b is in the interval] − a, a].

Since a is minimal, we will still have a ≤ c, hence the form that we have obtained
is essentially reduced. If c = a, changing (a, b, c) again in (c,−b, a) sets b ≥ 0 as
required.

Unicity If (a, b, c) is reduced, we prove that a is minimal among all the forms equivalent
to (a, b, c). Indeed, every other a′ has the form a′ = as2 + bsu + u2 with s and u

coprime integers – from any proper transformation U =
(
s ·
u ·

)
– and the identities

as2 + bsu+ cu2 = as2
(

1 + b

a

u

s

)
+ cu2 = as2 + cu2

(
1 + b

c

s

u

)

immediately imply our claim, since |b| ≤ a ≤ c. Now in fact these same identities
show that the only forms equivalent to (a, b, c) with a′ = a are obtained by changing
(x, y) into (x + ky, y) (corresponding to s = 1 and u = 0), and this finishes the
proof of the proposition.

Next point to see is that the number of classes of primitive positive definite forms is
finite. Logically, since in each class there is a unique reduced form and then different
reduced forms are representative of distinct classes, the number of classes is the same as
the number of primitive reduced forms. Therefore, proving that primitive reduced forms
are a finite number is equivalent to prove that the number of classes is finite.

Lemma 2.1.5. If a form (a, b, c) is reduced, then a ≤
√
|∆|/3. If a <

√
|∆|/4, then

(a, b, c) is reduced.

If a form is reduced, |b| < a ≤
√
|∆|/3 and c is fixed by a, b,∆. As a consequence, there

are at most
√
|∆|/3 ·2 ·

√
|∆|/3 = 2

3 · |∆| reduced forms of discriminant ∆, which is a finite
number. Actually, since b has the same parity of ∆ (remember that ∆ = b2 mod 4), the
upper bound is reduced by an half to 1

3 · |∆|.
Example 1. The unique reduced class of discriminant ∆ = −3 is f = (1, 1, 1), while the
reduced classes with ∆ = −75 are f = (3, 3, 7) and f = (1, 1, 19). The class (5, 5, 5) is
not considered since it is not primitive.

The class number
Definition 2.1.3. The number h(∆) of proper equivalence classes of primitive positive
definite forms of discriminant ∆ is called class number. Since there is only one reduced
form in each class, h(∆) is equal to the number of primitive reduced positive definite
forms of discriminant ∆.

28

The inefficiency of algorithms computing the class number for large values of the dis-
criminant is postponed to Section 2.2. For now, we give the basic idea on how compute
the class number using an easy inefficient deterministic procedure. We do not write the
algorithm in a dedicated figure since it is very easy and we can explain it in few lines. The
algorithm uses Lemma 2.1.5 and works computing c = b2−∆

4a for each 0 < a ≤
√
|∆|/3,

0 ≤ b ≤
√
|∆|/3, such that b = ∆ mod 2 and b ≤ a, looking if (a, b, c) is a reduced form

and considering also (a,−b, c) as reduced if a 6= c and b 6= a. Finally, for each reduced
form it updates the class number by 1 or 2, where h is increased by 1 if a = b or a = c,
since in the definition of reduced forms b ≥ 0 in that cases, and by 2 in the other cases
since we obtain (a, b, c) and (a,−b, c) as reduced forms.

We present the reduction algorithm for forms in Algorithm 1 and we call it Red(f).
It consists on applying the two different proper equivalent transformations S and T
for a finite number of times. Notice that proper equivalence sends primitive forms
to primitive forms. Indeed, let g(x, y) = f(sx + ty, ux + vy) be a proper transfor-
mation of f = (a, b, c), where f is not primitive and d = gcd(a, b, c) > 1. Then,
g = (f(s, u), 2(ast + cuv) + b(sv + tu), f(t, v)), and d divides each of the three coeffi-
cients. We conclude that g is not primitive. Anyway we will work on primitive ones since
if f is primitive then Red(f) is primitive because it is properly equivalent to f . Then,
it is enough to add the condition ”if gcd(a, b, c) 6= 1 abort” at the beginning, or simply
choosing a primitive f . However, notice that if the discriminant ∆ is fundamental, all
the forms of discriminant ∆ are primitive (see Definition 2.1.6). Indeed, if f = (a, b, c) is
not primitive and ∆ is fundamental, then f = dg, where d = gcd(a, b, c) and g is a form
of a valid discriminant ∆′ = ∆/d2 reaching an absurd.

Looking at Algorithm 1, it seems that Red(f) computes c differently from applying T ,
however this is a little optimization which avoids squaring of s.2. Red(f) reaches an end
with the correct output in time O(size(f)2). Algorithm 1 can be used also to test if two
forms f and g are equivalent repeating it two times, one for each form, and verifying if

2Notice that c← c− 1
2 (b+ r)s = c− 1

2 (b+ b− 2as)s = c− bs+ as2 as seen in the description of the
reduction. The unique difference is that algorithm from [Coh00] sets b = 2as+ r instead of b+ 2as = r,
motivating the − sign in bs. This is only a rewriting used to recall the original algorithm

29

Red(f) = Red(g).
Algorithm 1: Red(f) – [Coh00], Algorithm 5.4.2

Input: A positive definite form f = (a, b, c) of discriminant ∆ = b2 − 4ac < 0
Output: The unique reduced form equivalent to f
/* Step 1 */
if −a < b ≤ a then

go to step 3;
/* Step 2 */
Let b = 2as+ r with 0 ≤ r < 2a be the Euclidean division of b and 2a;
if r > a then

Set r ← r − 2a;
s← s+ 1;

Set c← c− 1
2(b+ r)s;

Set b← r;
/* Step 3 */
if a > c then

Set b← −b;
Exchange a and c;
Go to step 2;

else if a = c and b < 0 then
Set b← −b;

return (a, b, c)

Lemma 2.1.6. Let (a, b, c) is a positive definite quadratic form of discriminant ∆ =
b2−4ac < 0 such that −a < b < a and a <

√
|∆|. Then either (a, b, c) is already reduced,

or the form f = (c, r, s) where −b = 2cq + r, −c < r ≤ c obtained by one reduction step
of Algorithm 1 will be reduced.

Theorem 2.1.7. The deterministic algorithm to compute the class number described
above, has running time O(|∆|(log(|∆|)2)

Proof. The number of a’s and b’s in the two cycles is O(
√
|∆|), while their binary lenght

is O(log(|∆|). Since the number of arithmetic operations on (a, b) is O(1), we conclude
that the trivial deterministic algorithm proposed for computing the class number has
running time O(

√
|∆|

2
· log |∆|2) = O(|∆| log |∆|2).

Remark 3. In [BV07], Chapter 5, the authors give in Algorithm 5.1, 5.2 and 5.3 an
extended reduction procedure. The main structure of these algorithms is the same we
saw in Algorithm Red(f), with the difference that they also update the transformation
matrix. As a final output they obtain Red(f) and the matrix P such that Red(f) = fP .
The total cost takes in account assignments of values to a 2× 2 matrix of integers, then
there is an increase in the space required. However, because of we can reassign values to
the same locations, the additional space required is the size of 4 integers.

30

2.1.1.2 The composition of forms

Until now, we talked about operations on a single form – as in the case of the reduction
algorithm – and about relations between forms of the same discriminant, i.e. the proper
equivalence. We can do operations between forms too, indeed forms can be ”multiplied”
in a certain way. We are not using the term ”multiplication” in the common sense of
the component-wise product, but as it is used in group theory to indicate the operation
defined in a group, since it is usual to call it product or multiplication. The correct term
to indicate what we are calling multiplication of forms is composition, but we wanted
to tell that the composition is the group operation. As we know a form is a degree 2
polynomial and the standard product between forms gives a polynomial of degree 4. The
first property a product should satisfy is returning a valid form, and as a result neither
the standard product or a classical composition of forms – in the sense of f(g(x)) where
f and g are forms – are valid candidates. We introduce then the Gauss composition of
forms (1798). The Gauss composition copes with primitive positive forms of the same
discriminant ∆. We do not explain the work that brings to the composition formula,
however the composition gives in output a normalized form, i.e. computed modulo the
action Γ on the form f , where Γ is the set of all matrix T s for each integer s and T is the
special matrix of Subsubsection 2.1.1.1. Specifically, the Γ action on f is the Γ−orbit of
f , i.e. the set

fΓ =
{
f

(
1 s
0 1

)
: s ∈ Z, f = (a, b, c)

}
= {(a, b+ 2as, c+ bs+ as2) : s ∈ Z, f = (a, b, c)}.

Reducing modulo Γ means computing a normal form in fΓ, i.e. that one such that
−a < b + 2as ≤ a. Obviously, if f is normal, then s = 0. Furthermore, the normal
form is unique in the Γ−orbit, since s =

[
− b

2a

]
is the unique value which normalize the

form f = (a, b, c). To conclude, it is clear that reducing modulo Γ means computing
B = B̄ mod 2ā in the range −Ā < B < Ā. Furthermore, with the substitution with the
normalizing integer s, i.e. B = B̄ + 2Ās, we obtain C = B2−∆

4A = C̄ + B̄s + Ās2 where
(Ā, B̄, C̄) its the output before reduction modulo Γ.

We will see how the normal form in the Γ−orbit is useful for the standard represen-
tation of an ideal in Subsection 2.1.3. The discussion about the Γ−orbit is necessary to
understand the composition formula of forms, since it requires a reduction modulo Γ. We
introduce below the composition of two forms:

Definition 2.1.4 ([Coh00]). Let f = (a1, b1, c1) and g = (a2, b2, c2) be two quadratic forms
of the same discriminant ∆. Set s = (b1 + b2)/2, n = (b1 − b2)/2 and let u, v, w and d
such that

ua1 + va2 + ws = d = gcd(a1, a2, s)

and let d0 = gcd(d, c1, c2, n). We define the composite of the two forms f and g as the
form

(A,B,C) =
(
d0
a1a2

d2 , b2 + 2a2

d
(v(s− b2)− wc2), B

2 −∆
4A

)
.

modulo the action of Γ =
{(

1 τ
0 1

)
, τ ∈ Z

}
.

31

If we work on classes then with reduced forms, we have to reduce the product using the
reduction algorithm since a normalization is not enough to obtain a reduced form. If the
product is not reduced, its class is the same, but working with representatives of classes
is better because we use a unique representative of the class. Indeed, the composition
can be applied both to classes of forms and to single forms. Then, multiplying classes [f]
and [g] is equivalent to multiply f and g and reducing the product.

From a computational point of view, computing the composition of two form can be
done efficiently. Indeed, Algorithm 2 does the task in O(log(|∆|)2).

Algorithm 2: Comp(f, g) – [Coh00], Algorithm 5.4.7
Input: Two primitive positive definite quadratic forms f = (a1, b1, c1) and

g = (a2, b2, c2) with the same discriminant ∆ < 0
Output: The composition F = (A,B,C) of f and g
/* Step 1: Initialize */
if a1 > a2 then

Exchange f and g;
Set s← 1

2(b1 + b2), n← b2 − s;
/* Step2: First Euclidean Step */
if a1|a2 then

Set y1 ← 0 and d← a1;
else

Compute (u, v, d) such that ua2 + va1 = d = gcd(a2, a1) (using Euclid’s
extended algorithm);

Set y1 ← u;
/* Step 3: Second Euclidean Step */
if d|s then

Set y2 ← −1, x2 ← 0 and d1 ← d;
else

Compute (u, v, d1) such that us+ vd = d1 = gcd(s, d) (using Euclid’s
extended algorithm);

Set x2 ← u, y2 ← −v;
/* Step 4: Compose */
Set v1 ← a1/d1, v2 ← a2/d1, r ← (y1y2n− x2c2 mod v1), B ← b2 + 2v2r,
A = v1v2, C ← (c2d1 + r(b2 + v2r))/v1 (or C ← B2−∆

4A);
Compute F ← Red(A,B,C) using Algorithm 1;
return F

From the efficiency side, Atkin (cf. [Atk90]) proposed two optimized version of Shanks’
NUCOMP and NUDUPL, which are two optimized algorithm to do operations with
forms. The composition is done by the algorithm NUCOMP, while the second algorithm,
NUDUPL, is used to compute squares. The application of these two algorithms can be
seen as a Square and Multiply version with forms.

2.1.1.3 The Form Class Group

The Form Class Group represents the first step to make easier the understanding of the
structure of the ideal class group in the Subsection 2.1.3. We will see that they are
strongly linked together, since an isomorphism between them exists and it is possible

32

to translate easy operations on forms to ideals. Previously, we defined classes of forms
from the proper equivalence relation and in the previous subsubsection we defined a
product/composition operation for primitive positive definite forms in the case they have
the same discriminant. As explained at the beginning of this chapter, they are the
necessary ingredients for defining a class group. The remaining property for defining a
group is the existence of a neutral element. For any discriminant ∆ and the set of positive
definite forms of discriminant ∆ < 0, the role of the neutral element is covered by the
class of the principal form.
Definition 2.1.5 (Principal form). Let ∆ be a discriminant. The principal form of dis-
criminant ∆ is f = (1, 0,−∆

4) if ∆ ≡ 0 mod 4 and f = (1, 1, 1−∆
4) if ∆ ≡ 1 mod 4.

[Cox14] analyzes a subcase of the composition of forms, i.e. the case when d =
gcd(a, a′, b+b′2) = 1. Indeed, when composing two forms f = (a, b, c) and g = (a′, b′, c′)
the results is a form F = d(A,B,C), which is clearly not primitive if d 6= 1, and the
discriminant of F is not the same as for f and g. However, Definition 2.1.4 takes in
account this fact, using d as a divisor of the result. We conclude that the next theorem
from [Cox14] which defines the form class group from the restricted composition with
d = 1 it is also valid extending to d 6= 1 using the composition in Definition 2.1.4.

Theorem 2.1.8 ([Cox14], Theorem 3.9). Let ∆ < 0 be a discriminant, i.e. ∆ ≡ 0, 1
mod 4 and let Cl(∆) be the set of classes of primitive positive definite forms of discrimi-
nant ∆. Then composition induces a well-defined binary operation on Cl(∆) which makes
Cl(∆) into a finite abelian group whose order is the class number h(∆). The identity
element of Cl(∆) is the class of the principal form of discriminant ∆, while the inverse
of the class of f = (a, b, c) is the class of f = (a,−b, c).

Last theorem concludes the necessary background on binary quadratic forms. We
recall main results of thi section to start talking about Ideals in Quadratic Fields. We
defined binary quadratic forms and we focused on positive definite ones. After that we
introduced the proper equivalence relation between forms and we divided forms in classes
with respect to this equivalence relation. Then, we saw that each class is represented by a
reduced form – which is unique for each class – and we explained how to compute it from
using the reduction algorithm. Furthermore, we saw that the class number is the number
of primitive reduced forms of a fixed discriminant. However, the deterministic algorithm
proposed in paragraph Computing the class number is not efficient3. Once we did
a partition of the set of positive definite forms, we presented the composition operation
which sends two primitive positive definite forms of discriminant ∆ to a primitive positive
definite form of discriminant ∆. The reduction of the product of any two forms f and g
is equivalent to the reduction of the product of the two reduced forms in the classes of
f and g, then the composition of forms can be seen as a composition of classes. Finally,
there is always a class represented by the principal form (which is the reduced form of its
class) that it is the neutral element class. To sum up, Cl(∆) is the Abelian class group
of primitive positive definite forms of discriminant ∆ and neutral element of the class is

3When talking about the class number of the ideal class group in imaginary quadratic fields, which is
equal to the class number of the form class group for negative discriminant, we will talk about the best
known solutions for computing the discrete logarithm. Computing discrete logarithms gives information
about the class number.

33

the principal form. In next subsections we will introduce the ideal class group Cl(O∆) of
discriminant ∆ and we will analyze the relation between Cl(∆) and Cl(O∆) for the case
of ∆ < 0. To conclude, we present the last definition of the chapter, i.e. the conductor
of a discriminant. The conductor has a fundamental role in the theory of ideals in a
imaginary quadratic field in Subsection 2.1.2.

Conductor of a discriminant Not all the discriminant are the same. In this para-
graph we introduce the notion of conductor of discriminant. The conductor is of particu-
lar relevance in the context of maximal and non maximal orders. Here, we give only the
definition and its importance will be clear in Subsection 2.1.2.
Definition 2.1.6 (Conductor). The conductor f(∆) of a discriminant ∆ is the largest
positive integer f such that ∆′ = ∆/f(∆)2 is a discriminant, i.e. ∆′ = 0, 1 mod 4. A
discriminant ∆ is called fundamental if f(∆) = 1.

An easy characterization of fundamental discriminants is given in the following propo-
sition.

Proposition 2.1.9. A integer discriminant ∆ is fundamental if and only if

• ∆ ≡ 1 mod 4 and ∆ is square free, or

• ∆ ≡ 0 mod 4, ∆/4 ≡ 2, 3 mod 4 and ∆/4 is square free

Proof. Suppose that ∆ ≡ 1 mod 4 ad ∆ is not square free. Notice that a prime p which
divides ∆ is odd. Therefore, p2 ≡ 1 mod 4 and ∆/p2 ≡ ∆ mod 4 ≡ 1 mod 4. Let
t = p2α1

1 · . . . · p2αk
k the maximal square which divides ∆, then ∆′ = ∆/t ≡ 1 mod 4. ∆′

is a valid disciminant and as a result ∆ is not fundamental, which brings to an absurd.
On the other side, if ∆ is square-free, there is not an integer f such that f 2|∆, i.e. ∆
is fundamental. For the case ∆ ≡ 0 mod 4, we work on ∆/4. Let ∆ be fundamental,
then ∆/4 6≡ 0, 1 mod 4. With the reasoning in the previous case and using the same
notation, (∆/4)/t is square-free. On the other side, there is not a square which divides
∆/4.

2.1.2 Imaginary Quadratic Fields, Orders and Fractional O−Ideals
In this subsection, we introduce imaginary quadratic fields and their unitary subrings
called orders. After that, we introduce O−ideals, where O is an order. O−ideals are the
elements of the ideal class group we will work with in the next section and that is at the
basis of the instantiations in the next chapters. We start giving some algebraic definition
and then we present the required notions. Links with the theory of binary quadratic
forms will become more clear after reading this part.
Definition 2.1.7. A field extension is a pair of fields K ⊆ L, such that K inherits the
operations in L. The extension is indicated with the notion L/K. L may be seen as a
K−vector space. The degree of the field extension is the dimension of L as K−vector
space, and it is denoted by [L : K].
Example 2. C/R is a field extension and [C : R] = 2. Indeed, C = R + iR and (1, i) is
a basis of C over R.

34

Definition 2.1.8 (Number Fields). A number field K is a subfield of C which has finite
degree over Q. The degree of K over Q is denoted [K : Q].

In particular, we are interested in a subfamily of number fields, i.e. quadratic fields.
Definition 2.1.9 (Quadratic Fields). A quadratic field K is an algebraic number field of
degree two over Q, i.e. [K : Q] = 2.
Example 3. Q(i) = Q+iQ = {a+bi|a, b ∈ Q}, where i is the imaginary unit, is a number
field. It strictly includes Q and [Q(i) : Q] = 2, indeed i ∈ Q(i) and then (1, i) is a Q−
basis over Q(i). Actually, Q(i) is also a quadratic number field.

If K is a quadratic field, it can be written in a unique way as K = Q(
√
N) = Q+

√
NQ

where N is squarefree integer and N 6= 0, 1. Actually, let N not be a squarefree integer,
thenN = f 2M , where f,M are integers, M squarefree. Then, Q+

√
NQ = Q+f

√
MQ ⊂

Q+
√
MQ and the inverse direction is given by

√
M = 1/f

√
f 2M ∈

√
NQ. Therefore N

is assumed squarefree. This little remark motivates the definition of the maximal order
we will see later.

2.1.2.1 Maximal and non-maximal orders

Definition 2.1.10 (R−module). Let R be a ring. A left R−module is a commutative
group (G,+) equipped with a scalar multiplication R ×G→ G, (r, g)→ r · g such that
for r, s ∈ R and a, b ∈ G,

• r · (a+ b) = r · a+ r · b

• (r + s) · a = r · a+ s · a

• r · (s · a) = (r · s) · a

In our context we consider R = Z, and the ”·” operation is commutative, so we do
not say the sets we consider are left or right Z−modules, but simply Z−modules. With
the natural correspondence (z, a)→ z · a for z ∈ Z and a ∈ G, where (G,+) is a group,
it is clear that a commutative group is a Z−module. Some R−modules can be written
from a set of generators, for example we saw in the examples at the beginning of this
subsection that C = R + iR. C is then generated by elements 1 and i with coefficients
in R. A R−module G is said finitely generated if there exists a finite set of elements
g1, . . . , gt such that G = g1R + . . . gtR, i.e. if for each element g ∈ G there exists a tuple
(r1, . . . , rt) ∈ Rt such that g = ∑t

i=1 ri · gi. If the generators are linearly independent,
i.e. if ∑t

i=1 ri · gi = 0 implies r1 = . . . = rt = 0, the R−module is said free and the
number of generators is its rank. As one can notice, a free R−module is quite similar to
a vector space. Actually, the main difference between them is that R is a ring and not
a field as in the definition of a vector space. If we consider R = Z, we can notice that
a free Z−module has a lattice structure. Indeed, typically a lattice is defined as a set
L = v1Z + . . . + vnZ, where {vi}i∈[n] are vectors in Rn (cf. [GM02]). However, we will
consider the components of v in a subfield K ⊂ C.
Now, we have the necessary tools to define orders in a quadratic field, and in particular in
an imaginary one. Next step is defining orders. Orders are necessary to define O−ideals,
which are the building block of ideal class groups and then of particular relevance in
building cryptographic instantiations from Class Groups of Imaginary Quadratic Fields.

35

As pointed at the beginning of this chapter, we will see in the Section 2.2 how these
tools were used by Castagnos-Laguillaumie to build a linearly homomorphic encryption
scheme.

2.1.2.2 Representation and inclusions of orders

Any quadratic field K can be written in a unique way as K = Q(
√
N) = Q +

√
NQ. 4

Consider N ∈ Z, N 6= 0, 1 and N is a squarefree integer. We denote the discriminant
∆K of K as ∆K := N if N ≡ 1 mod 4 or ∆K := 4N , otherwise. Notice that from
Proposition 2.1.9, the conditions on the choice of ∆K imply that ∆K is a fundamental
discriminant.
Definition 2.1.11. An order O in a quadratic field K is a unitary subring of K which is
a free Z−module of rank 2.

The ring of integers of K, i.e. the set of elements in K – called the algebraic integers
– that are roots of some monic polynomial in Z[x] is a special order O∆K

in K. O∆K
is

the unique maximal order in K and it is represented as

O∆K
=
Z + 1+

√
N

2 Z ifN ≡ 1 mod 4
Z +
√
NZ ifN 6≡ 1 mod 4

where N is linked to the discriminant ∆K of K as above. However, we can choose an
integer from the first component Z of O∆K

such that z + ∆K mod 2 ∈ {0, 1} concluding
that both cases can be written in a unique expression as O∆K

= Z + ∆K+
√

∆K

2 Z. We
do not prove here how the structure of O∆K

is obtained neither the fact it is the unique
maximal order (see [BV07], Theorem 8.2.5 for the proof). A final observation is that
since

√
∆K is an imaginary number, it is clear that O∆K

is a free Z−module of rank 2
generated by 1 and ωK = ∆K+

√
∆K

2 . In general, given a quadratic field K, orders can be
classified in maximal and non-maximal and the difference depends on the conductor of
the discriminant.

Theorem 2.1.10 ([BV07] – Theorem 7.2.2 readapted). The quadratic orders are exactly
the two dimensional Z−modules of the form O = aZ + −b+

√
∆

2 Z, where f = (a, b, c) is a
principal form of some discriminant ∆.

Definition 2.1.12. An order is called maximal if its discriminant is fundamental, i.e. its
conductor f(∆) = 1. Otherwise, it is called non-maximal.
Theorem 2.1.10 implies that for quadratic orders, a = 1 and b = ∆ mod 2 and that for
each discriminant there is only one quadratic order. Indeed, for each discriminant there
is only one principal form of that discriminant. This implies that O = Z + ∆ mod 2+

√
∆

2 Z
which is equal to O = Z + ∆+

√
∆

2 Z. Then all the orders have the same representation of
maximal ones, as in the definition of O∆K

.
We gave a correspondence between primitive forms and orders. In particular the discrim-
inant ∆(O) of an order O is ∆(O) = ∆(f), where f is the principal quadratic form that

4This is the notation to denote the smallest field K which has Q as a subfield and that contains
√
N

as element.

36

represents O in Theorem 2.1.10. We see here why fundamental discriminants represent
maximal orders, i.e. why that orders are maximal in a chain of inclusion. Proposition
2.1.11 below proves that the standard inclusion of orders depends only on their discrimi-
nant. From the factorization of the discriminant it is possible to identify all the maximal
orders and their suborders.

Proposition 2.1.11 ([BV07], Lemma 7.2.6 + Proposition 7.2.7). A quadratic order O′ is
contained in an other quadratic order O if and only if ∆(O′) = d2∆(O) for some integer
d, i.e. if ∆(O′)/∆(O) is the square of a integer.

Proof. Set ∆ := ∆(O) and ∆′ := ∆(O′). If ∆′ = d2∆ for some integer d, then

O′ := O∆′ = Od2∆ = Z + d2∆ +
√
d2∆

2 Z = Z + (d2∆− d∆) + d∆ +
√
d2∆

2 Z

= Z + d∆ + d
√

∆
2 Z = Z + d

∆ +
√

∆
2 ⊂ O,

since (d2∆ − d∆)/2 ∈ Z, and the generators of O′, i.e. 1, d∆+
√

∆
2 belong to O. For the

other direction, ∆′+
√

∆′
2 ∈ O′ ⊂ O, i.e. ∆′+

√
∆′

2 ∈ O. Then there exist x, y ∈ Z such that
∆′+
√

∆′
2 = x + y∆+

√
∆

2 . This implies x + y∆ = ∆′ and
√

∆′ = y
√

∆. The solution of the
system is (x, y) =

(
∆′−y∆

2 ,
√

∆′√
∆

)
, which implies ∆′ = y2∆ proving the second part5.

2.1.2.3 Fractional O−ideals

A class group of an imaginary quadratic field consists of classes of O−ideals. In this
subsection we introduce the notion of O−ideal and its properties. Then, we will analyze
the link between O−ideals and quadratic forms looking at how we can use algorithms
we saw for quadratic forms, as composition and reduction, to compute the product and
reduction of O−ideals. The correspondence between operations on forms and ideals
makes easy to understand how to work with ideals and the efficiency of operations with
forms is translated in the efficiency of the operations with ideals. In the next definition,
the notion of multiplication is general, but we will inherit the multiplication from binary
quadratic forms theory.
Definition 2.1.13. Let K be a quadratic number field and O ⊂ K an order of discriminant
∆.

• An O−ideal is an additive subgroup of O which is an O−module with respect to
multiplication.

• An O−ideal a is called primitive if does not exist m ∈ N and another O−ideal b
such that a = mb.

• A subset b ⊂ K is called a fractional O−ideal if db is an O−ideal for some positive
d ∈ N.

• An O−ideal a is called principal if a = αO for some α ∈ K∗. α is called a generator.
5Notice that the proof of Proposition 2.1.11 is valid both for positive and negative discriminants. The

unique observation to add is that ∆ and ∆′ has the same sign.

37

Standard representation of fractional O-ideals FractionalO−ideals have a unique
standard representation which permits to identify them with few elements. Of particular
interest are the reduced O−ideals. The notions of reduced ideals will be given soon, but
for now it is enough to know that they are one of the most important type of ideals we
will work with and that they are linked to reduced forms. Indeed, we saw that in each
form class there is a a reduced form. As we will see the same is valid for classes of ideals
and the correspondence between forms and ideals permits us to represent reduced ideals
with two integers (a, b) smaller than

√
|∆| using that standard representation. The next

two propositions give the standard representation we require.

Proposition 2.1.12 ([BV07], Proposition 8.4.4). Let b ⊂ K, then b is a fractional O-
ideal if and only if b = q

(
aZ + −b+

√
∆

2

)
for some q ∈ Q+ and where (a, b) are coefficient

of an integral form (a, b, c) of discriminant ∆ (where c is not relevant since uniquely
determined by a,b and ∆.)

Proposition 2.1.13 ([BV07], Proposition 8.4.5). Let b = q
(
aZ + −b+

√
∆

2

)
a fractional

O-ideal . Then the value of q is uniquely determined and f = (a, b, c) is an integer form
which is unique modulo Γ. b is integral if and only if q ∈ N and b is integral primitive if
and only if q = 1.

Looking at Proposition 2.1.12 and 2.1.13, we can see that a primitive reduced O−ideal
can be denoted by (a, b) where 0 < a ≤

√
|∆|/3 and −a < b ≤ a. This implies that

the representation of a reduced ideals require two integers of the same size of
√
|∆|, i.e

O(log(
√
|∆|).

Even if we do not have yet defined a correspondence between forms and ideals, we
will see in Subsection 2.1.3 that it is easier to define an isomorphism between the form
class and the ideal class. However, from previous propositions we know a link between
forms and representations of ideals.
Remark 4. In Subsection 2.1.1 we defined how Γ acts on a form f as fΓ = {(a, b +
2as, c + bs + as2) : f = (a, b, c), s ∈ Z}, then reducing f mod Γ consists in sending g =
(a′, b′, c′) = (a, b′, c′) ∈ fΓ in (ā, b̄, c̄) = (a, b mod c2a, c̄), where the remainder b mod a
is centered, i.e. −a < b̄ ≤ a, and c̄ = b̄2−∆

4ā . For example, consider the form f = (4, 5, 6)
for ∆ = −71. The standard representation of a from f is not a = 4Z + −5+

√
−71

2 Z, but
a = 4Z+ −5 mod c8+

√
−71

2 Z = 4Z+ 3+
√
−71

2 Z, i.e. where b is the unique value mod 2a such
that −a < b ≤ a. However, there is no problem in using a not normal form to represent an
ideal, even if the standard form is unique. Indeed, aZ+ −b+

√
∆

2 Z = aZ+ −(b+2as)+
√

∆
2 Z for

each s ∈ Z 6 and f = (a, b, c) is equivalent to g = (a, b+2as, c̄) for a uniquely determined
c̄. This is perfectly in line with the correspondence between standard representations and
Γ−orbits of forms.

From Proposition 2.1.13, we understand that above representations (a, b) of in-
tegral primitive O−ideals are in biunivocal correspondence with Γ−orbits fΓ =
{(a, b+ 2aτ, c+ bτ + aτ 2) : f = (a, b, c), τ ∈ Z} of integral forms f = (a, b, c) of discrimi-
nant ∆, i.e. the standard representation of a is defined by the unique normal form – i.e.

6Notice that 2as/2 = as ∈ aZ

38

that one with −a < b < a – in fΓ. From this reasoning, the standard representation of
a is given by the normal form fa = (a, b, c) linked to a. From now, we will use the nota-
tion fa to indicate the normal form in the standard representation of a. From previous
proposition we know the unique representation modulo Γ of a fractional O−ideal. i.e. the
standard representation. To conclude the set of representations of O−ideals, we see that
at first sight principal O−ideals does not satisfy the form of a standard representation
since they are of the form αO for α ∈ K∗, and not simply in Q. Actually, a principal
O−ideal is a fractional one and then it should can be rewritten in the standard represen-
tation, too. Indeed, if α ∈ K∗ then α = m

n
+ s

t

√
∆, for some integers m,n, s, t ∈ Z. Since

(1, ∆+
√

∆
2) is a basis of O, then (α, α · ∆+

√
∆

2) is a basis of αO. Rewriting we haveα = 2mt+2ns
√

∆
2nt

α · ∆+
√

∆
2 = (mt+ns)∆+(mt+ns∆)

√
∆

2nt

and applying the following proposition we obtain a standard representation for principal
ideals. Actually, since we can see fractional O-ideals as two-dimensional lattices, they
can be also written in a lattice form as α1Z + α2Z, where α1, α2 ∈ K. Fortunately, the
next proposition permits to transform a lattice representation of a fractional O-ideal in
a standard one.

Proposition 2.1.14 ([BV07], Proposition 8.4.8). Let b a fractional O-ideal and let
(α1, α2) be a Z−basis of b. Write αi = xi+yi

√
∆

2d , xi, yi ∈ Z, i = 1, 2 and d ∈ Z+.
Let τ = gcd(y1, y2) = u1y1 + u2y2, u1, u2 ∈ Z (from Extended Euclid Algorithm). Then
b = q

(
aZ + b+

√
∆

2

)
where

a =
∣∣∣∣y2x1 − y1x2

2τ 2

∣∣∣∣ , b = u1x1 + u2x2

τ
, c = b2 −∆

4a , q = τ

d

.

Applying Proposition 2.1.14 to the fractional O-ideal αO = αZ +α∆+
√

∆
2 Z, i.e. choosing

x1 = 2mt, y1 = 2ns, x2 = (mt+ns)∆, y2 = mt+ns∆ and d = nt we obtain the standard
representation of αO from a and b formulas.

2.1.2.4 Product of O−ideals

The product between ideals of the same discriminant ∆ works essentially as for binary
quadratic forms. We saw that algorithms on forms are efficient, then a translation of them
in the context of ideals permits to do operation on them efficiently. Indeed, the product
of two forms (a1, b1, c1) and (a2, b2, c2) of discriminant ∆ gives the form (a1a2, B,

B2−∆
4a1a2

)
where the value of B can be computed from the following lemma, which is the composition
formula version for ideals.

Lemma 2.1.15 ([Coh00], Lemma 5.4.5). Let I1 = a1Z + −b1+
√

∆
2 and I2 = a2Z + −b2+

√
∆

2
be two ideals, set s = (b1 + b2)/2, d = gcd(a1, a2, s), and let u, v, w be integers such that
ua1 + va2 + ws = d. Then we have

I1 · I2 = d

(
AZ + −B +

√
∆

2 Z
)

39

where
A = d0

a1a2

d2 , B = b2 + 2a2

d
(v(s− b2)− wc2)

and d0 = 1 if at least one of the forms (a1, b1, c1) or (a2, b2, c2) is primitive and in general
d0 = gcd(a1, a2, s, c1, c2, n) where n = (b1 − b2)/2.

Invertible O−ideals We saw that fractional O-ideals can be multiplied. This product
is at the basis of the definition of a class group. Anyway, we need a group structure and
the set of fractional O-ideals of a given discriminant ∆ with the product operation is not
enough because it defines only a semigroup, not a group7. Indeed, the product is closed,
commutative and associative, but it is not true that all the elements are invertible. The
meaning of invertible is the usual one, i.e. a fractional O-ideal a is invertible if exists a
fractional O-ideal b such that ab = O, where O has the role of the neutral element. It
is clear that if we restrict the set of fractional O-ideals to its subset I(O) of invertible
ones, the structure of group is achieved. Indeed, the product is still closed because if
a, b ∈ I(O), then ab is invertible with inverse b−1a−1 = a−1b−1. Notice that the group
P (O) of principal O−ideals is contained in I(O) and the inverse of some αO is trivially
1
α
O.

Remark 5 (On the inversion of α ∈ K∗). If α ∈ K, then α = λ+ µ
√
N , where λ, µ ∈ Q.

It is easy to check that α−1 = − λ2

µ2N−λ2 + µ
µ2N−λ2

√
N . Remember that K is a field and

then each element except 0 is invertible, then there are no problem with the denominator
of α−1. However, this is a consequence of a check that we can do here: an element cannot
be invertible if it is 0 or if µ2N − λ2 = 0, i.e. if N = λ2

µ2 . However, this implies that N is
the square of the rational number λ

µ
. Since N is an integer, the equality is valid if λ

µ
∈ Z

and if N is a square. But, N is not a square by definition of K. Therefore, any element
except 0 is invertible in K (as expected since K is a field), and we saw hot to compute
its inverse.

The classic definition of invertible ideals does not give the standard representation that
permits to distinguish them from non invertible ones. For this, the following proposition
helps us:

Proposition 2.1.16 ([Coh00], Proposition 5.2.5). Let a = aZ + −b+
√

∆
2 Z be a fractional

O−ideal, and let f = (a, b, c) be the corresponding quadratic form of discriminant ∆.
Then a is invertible if and only if f is primitive. In that case, we have a−1 = Z+ b+

√
∆

2a Z =
1
a

(
aZ + b+

√
∆

2 Z
)
.

Notice that each invertible O−ideal is trivially fractional, but in general the inverse is not
true. Since the ideal class group works on classes of invertible ideals, it is not relevant
knowing when the two definition coincide, even if the proof is very easy. However, to
prove the equivalence is necessary to introduce the notion of ring of multipliers that can
be avoided to do not burden the discussion. For completeness, we recall only a corollary
of what we saw for fractional O−ideals.

Corollary 2.1.16.1. If O is a maximal order, then all fractional O-ideals are invertible.
7The set of integral O−ideals also forms a semigroup with the product.

40

2.1.3 The Ideal Class Group
Finally, we have all the tools to understand Class Groups of Imaginary Quadratic Fields.
What we need is again an equivalence relation and an operation. We saw in Subsub-
section 2.1.2.4 how to compute the product of two ideals, so we have an operation. It
remains to define elements of the classes and an equivalence relation. Given an order O
of discriminant ∆, recall I(O) the group of all invertible O−ideals and let P (O) be the
group of all principal O−ideals. Furthermore, sometimes ideals will be denote by their
standard representation a = aZ + −b+

√
∆

2 Z or from their base a = [α1, α2] as Z−module
and sometimes classes of ideals are denoted by their representative forms as [a] = [a, b, c]
depending on which characteristics we are focus on.

Reduction of O−ideals The characterization of reduced O−ideals is almost the same
as in the case of binary forms. Indeed, from previous sections we know that the standard
representation of a fractional O−ideal a is in biunivocal correspondence with the normal
form fa. Then:
Definition 2.1.14. An O−ideal a = m

(
aZ + −b+

√
∆

2 Z
)

is reduced if m = 1 and fa =
(a, b, c) is reduced.

Before giving the characterization of reduced O−ideals, we require the notion of norm
of an O−ideal.
Definition 2.1.15 (Norm of an ideal). Let a a fractional O-ideal of discriminant ∆. The
norm of a is defined as N∆(a) = NO(a) = [O : a].
To give an easy way to compute the N(a) with respect to O, we see a and O as lattices.
The representation is exactly the same we saw, then a = q

(
aZ + −b+

√
∆

2 Z
)

and O =
Z + ∆+

√
∆

2 Z. The basis of these Z−module (or two-dimensional lattices) are (α1, α2) =
(qa, q−b+

√
∆

2) and (β1, β2) = (1, ∆+
√

∆
2), respectively. From lattice theory, [O : a] =

| det(T)| where T ∈ GL(2,R) is the matrix which transform a basis of O in a basis for
a. We do not explore here the invariance of the determinant and of the two basis in the

result, but we give a good choice for T . It is clear that (α1, α2) = (1, ∆+
√

∆
2)

(
qa − b+∆

2 q
0 q

)
.

The matrix T has | det(T)| = det(T) = q2a ∈ Q 8. We deduce that N(a) = q2a in O.
However, notice that if the order changes the norm changes too and this can happens
for example when considering the norm of an O−ideal, where O is non maximal, with
respect to O and with respect to its maximal order O∆K

.
Example 4. Let a = q

(
aZ + −b+

√
∆

2 Z
)

be an O−ideal, where O is non maximal of con-
ductor f and let O∆K

be its maximal order. Then NO(a) = q2a, while NO∆K
(a) = fq2a.

If the order is clear from the context, it can be omitted from the norm notation. The
characterization of reduced forms (see Lemma 2.1.5) is valid in the context of reduced
ideals but considering the norm of the ideal:

Proposition 2.1.17. Let ∆ < 0, then

• a is reduced if and only if a = N(a) = min{N(α) : α ∈ a, α 6= 0 and b ≥ 0 if a = c}.
8|det(T)| = det(T) because of a > 0 for negative discriminants.

41

• if a is reduced, then N(a) <
√
|∆|/3

• if N(a) <
√
|∆|/4, then a is reduced

To reduce an O−ideal a it is enough to reduce the form fa in its representation. As a
consequence, reduced ideals can be computed efficiently computing Red(fa) in Algorithm
1. Furthermore, remember that if we do not have the standard representation of a,
but another representation from a form f in the same Γ−orbit of fa, as observed in
Subsubsection 2.1.2.3, it is enough to normalize f and then reduce it.

Equivalence of ideals Even ideals can be put in a equivalence relation which brings
to a partition of them. Two fractional O-ideals a and b are said equivalent if a = αb for
some α ∈ K∗, and properly equivalent if a = αb for some α ∈ K∗ and N(α) > 0.9 Since
in a imaginary quadratic field K the norm of each element is positive, we will consider
only the proper equivalence of ideals. It is easy to check that proper equivalence is an
equivalence relation of fractional O−ideals and it divides O−ideals in O−ideal classes.
Definition 2.1.16. The ideal class group of O is defined as Cl(O) = I(O)/P (O). It is an
abelian group and its order is the class number h(O).
Remark 6. If we define P+(O) as the group of principal O−ideals which have a generator
of positive norm, we can define the narrow class group of O as Cl+(O) = I(O)/P+(O).
In the case we consider, i.e. with ∆ < 0, all the fractional O-ideals have positive norm
and this is also valid for all the principal O−ideals, since they are in particular fractional
ideals. As a result P (O) = P+(O) and Cl(O) = Cl+(O) if ∆ < 0.
At first sight, the quotient which defines the ideal class group does not say a lot about
its meaning, but we give a deeper look on it. First, elements in Cl(O) are taken from
I(O), the set of fractional invertible O−ideals. In particular, we saw that I(O) has a
group structure with the product of ideals we take from Lemma 2.1.15. We prove now
that Cl(O) is exactly the same set obtained by considering classes of invertible fractional
O−ideals with the properly equivalence relation. Let a and b be properly equivalent
fractional O−ideal, i.e. a = αb for some α ∈ K∗. From group theory, if we consider a
quotient group G/H from an equivalence relation then a, b ∈ G belongs to the same class
if ab−1 ∈ H. In our context a = αb implies

a = bαO ⇒ ab−1 = αO ∈ P (O),

i.e. [a] = [b] in Cl(O). On the other side, if [a] = [b] in Cl(O), then ab−1 = αO for
some α ∈ K∗ of positive norm (recall P (O) = P+(O)) and therefore a = bαO = αb. We
conclude that a and b are properly equivalent.
From what said above, to test that two O−ideals are in the same class, essentially it
seems to be enough to reduce their representatives, and check if the resulting reduced
representative are the same. Actually, it is more complicated than using their normal
forms fa representative because of the imaginary part. However reduction of ideals and
forms are in some way similar, but we have to take in account multiplication of ideal by

9The norm of an element α = λ+ µ
√
N ∈ K∗ is defined as usual for complex numbers, i.e. N(α) =

λ2 + µ2|N | > 0.

42

the field elements. We avoid to extend the discussion about checking if two O−ideals are
equivalent to be concise. In brief, we have to extend the reduction procedure of forms
to ideals. This brings to a reduction ”factor”. If two O−ideals have the same factor,
they are equivalent. This is motivated by the fact that if a = αb, α ∈ K∗, the ideals are
equivalent, but α in general is not an integer.

Group operations in Cl(O) Basic operations on the class group are quite efficient.
Basic operations are: decide if two classes are equal, computing the inverse of a class and
compute the product between classes.

Equality Each class is represented also by its reduced form, then it is enough to compare
reduced representatives and verifying if two ideals have the same ones. Verifying
two representation are the same – not that they are equivalent – consists of reading
and comparing their triple representation (a, b, c), then the equality test takes time
O(log(|∆|), since |b| < a <

√
|∆|/3 and they have the same c if a and b are

the same (∆ is fixed). Notice that the size of a and b is O(log
√
|∆|), however

c = b2+|∆|
4a ≤ a2+|∆|

4a ≤ a+|∆|
4 ≤

√
|∆|/3+|∆|

4 is of size O(log(|∆|)).

Inverse Notice that from Proposition 2.1.16, the inverse of an ideal a has a multiplying
factor 1/a. However, 1/a ∈ K∗ and therefore [a−1] = [1

a
a−1] in Cl(O). The inverse

of [a, b, c] ∈ Cl(O) is therefore computed as [a, b, c]−1 = [a,−b, c]. We conclude
that the inverse of a class is computed in time O(log(|∆|), i.e. the lenght of its
representation as pointed in the Equality item above.

Product A product of two classes requires the time of doing the product of representatives
and reducing the result to the reduced form. The total time is O((log(|∆|)2).

2.1.3.1 Relations between the ideal class group and the form class group

Definition 2.1.17. a is said a proper O−ideal if O = {β ∈ K : βa ⊂ a}
The definition of proper ideals is needed to generalize the notion of invertible O−ideal.

Indeed, from Corollary 2.1.16.1, we know that all fractional O∆K
−ideals are invertible,

when O∆K
is maximal. When talking about classes, we consider only integral ideals since

from the standard representation of any fractional ideals, we know it is obtained by the
multiplication of an integral one by a constant belonging to the field K, i.e. they are in
the same class. Applying the corollary, we have that in a maximal order O∆K

the class of
every O∆K

−ideal is invertible. In general, a fractional O−ideal is invertible if and only
if it is proper (cf. [Cox14], Proposition 7.14).

Theorem 2.1.18 ([Cox14], Theorem 7.7). Let O be the order of discriminant ∆ in an
imaginary quadratic field K. Then

• if f(x, y) = ax2 + bxy + cy2 is a primitive positive definite quadratic form of dis-
criminant ∆, then

[
a, −b+

√
∆

2

]
is a proper ideal of O

• the map sending f(x, y) to
[
a, −b+

√
∆

2

]
induces an isomorphism between the form

class group Cl(∆) and the ideal class group Cl(O)

43

If h(∆) := |Cl(∆)| and h(O) := |Cl(O)|, from item 2 of the previous theorem we
deduce Cl(∆) = Cl(O) for ∆ < 0, and as a result h(∆) = h(O). Theorem 2.1.18 is
fundamental since it permits to use operations on forms, e.g. the reduction algorithm,
with more complex objects as ideal classes.

The class number h(O) We have seen in Theorem 2.1.18 that from a discriminant
∆ there exists a bijection between the ideal class group and primitive positive definite
quadratic form class group. Since bijection is a one-to-one correspondence, it is clear that
the number of ideal classes is the same as the number of reduced primitive positive definite
forms. Let h(O) denote the number of ideal classes of an order O of discriminant ∆, we
have h(O) = h(∆). All the correspondences between ideal classes and form classes are
fundamental since they give us an easy representation of ideals and they permits us to use
the algorithm from forms theory for computing different tasks.However, as we have seen
in Subsection 2.1.1, computing the class number is hard in computational terms. Indeed,
the complexity of computing the class number derives from the computational costs of
algorithms doing the task, even if an analytic formula exists. Consider the Dirichlet
series

L(1, χ∆) =
∞∑
n=1

χ∆(n)
n

=
∏
p

(
1− χ∆(p)

p

)−1

,

where χ∆(n) =
(

∆
n

)
and

(
·
·

)
denotes the Kronecker symbol.

Theorem 2.1.19. For ∆ < 0, the class number is h(O∆) = w
√
|∆|

2π · L(1, χ∆), where w
denotes the number of the roots of unity in O∆.

Remark 7. For a negative discriminant ∆ < 0, we have w = 2 for any value of ∆ < −4
since the set of units in O∆ is {±1}. For the remaining cases ∆ = −3,−4, we have
w−3 = 6 and w−4 = 4. Without going too deeply in the explanation of this fact which is
linked to automorphisms of forms given by equivalence transformations, for ∆ = −3,−4
the set of units of O∆ are the sixth roots and fourth roots of unity respectively. Then for
∆ < −4, we have h(O∆) =

√
∆
π
L(1, χ∆).

Now, we can give the formula which explains the relation between an order O (non-
maximal) and its (maximal) order O∆K

. We recall the notation [O∗∆K
: O∗∆f

] that indi-
cates the dimension of O∗∆K

as a O∗∆f
−vectorial space. We introduced this notation in

Subsection 2.1.2.

Theorem 2.1.20 ([Cox14], Theorem 7.24). Let O∆f
be the order of conductor f in an

imaginary quadratic field K. Then

h(O∆f
) = h(O∆K

)f
[O∗∆K

: O∗∆f
]
∏
p|f

(
1−

(
∆K

p

)
1
p

)

where the product is computed for each prime p dividing the conductor f . Furthermore,
h(O∆f

) is always an integer multiple of h(O∆K
).

In Remark 7, we saw that in general w = 2 for a negative discriminant, except for the
cases ∆ = −3,−4. Since the fundamental discriminant we will consider are large enough

44

(in absolute value) to guarantee security properties, we can assume ∆K < −4, and of
course non-maximal orders have a discriminat ∆f < ∆K < −4. As a result, in Theorem
2.1.20 we have |O∗∆K

| = |O∗∆f
| = 2 and then [O∗∆K

: O∗∆f
] = 1. The formula becomes

h(O) = h(O∆K
)f
∏
p|f

(
1−

(
∆K

p

)
1
p

)
.

For example, in the construction of the CL encryption scheme in Section 2.2, it is chosen
∆K = −pq and ∆q = −pq3, where p, q are primes, then the conductor is f = q. Since q is
the unique prime divisor of f and q|∆K , then

(
∆K

q

)
= 0 and h(O∆q) = q · h(O∆K

). Even
if it is hard to compute the class number, Theorem 2.1.20 gives us an analytic formula
which links the class numbers of a maximal order and a non maximal suborder of it.

Even if it is hard to compute the class number from the discriminant, we know which
is its asymptotic behaviour from the Brauer-Siegel theorem and a upper bound used in
application. Even if it is proved in the more general case of number fields we recall a
corollary of it for fields of a fixed degree over Q – as in the case of quadratic fields –
readapted for the case of imaginary quadratic fields.
Theorem 2.1.21 (Brauer-Siegel). Let K vary in a family of number fields of fixed degree
over Q. Then, as |∆| → ∞, we have

ln(h(∆K)) ∼ ln(
√
|∆K |).

As a consequence, h(∆K) ∼
√
|∆K | asymptotically. This was a relevant result used in

[HM00], where the authors use Brauer-Siegel theorem to propose suitable choices for the
size and the form of the discriminant which avoid known attacks that aim to compute
discrete logarithm in the class group. Furthermore, it is known that

h(∆) < 1
π

√
|∆| ln(|∆|)

From an algorithmic point of view, computing class number is quite hard with in-
creasing of the discriminant (h(∆) ∼

√
|∆| for the Brauer-Siegel theorem, cf. Theorem

2.1.21). Jacobson ([Jac00]) proposed an algorithm to solve the discrete logarithm in class
group of imaginary quadratic field of discriminant based on an index-calculus method.
Next, Biesse et al. ([BJS10]), analyze the computational cost of variants of the Jacobson
proposed by Biasse and Vollmer and they conjectured that the state of the art implemen-
tation has complexity L|∆|[1/2, o(1)] 10. They also proposed new values for the size of the
discriminant with respect to the recommended NIST levels of security (112,128,192,256).
Furthermore, the best known algorithm to compute class numbers in the case of funda-
mental discriminants is based on the same method and it has the same complexity as
conjectured. Notice that we do not go deeper in the description of Jacobson proposal,
since it requires a section dedicated on the structure of Cl(O) and how to find a system
of relation and generators for Cl(O). We limits us to say that computing the structure
of the class group consists in writing Cl(O) as the direct products of cyclic groups. An
attack on it is based on computing these cyclic groups and using their orders to find a
solution, when it exists, of a system of modular equations using the Chinese Remainder
Theorem.

10Lx[a, b] = eb(log x)a(log log x)1−a , where a, b, x ∈ R, 0 ≤ a, b ≤ 1 and x > e, i.e. the Euler constant.

45

2.2 Class groups in Cryptography: the Castagnos-
Laguillaumie encryption scheme

Castagnos and Laguillaumie ([CL15]) proposed an El-Gamal fashion linear homomorphic
encryption scheme whose security relies only on the DDH assumption. They also proposed
a concrete instantiation based on Class Groups of Imaginary Quadratic Fields. The idea
of their protocol consists in building the Class Group – whose order is unknown even
if the discriminant is public11 – such that it is possible to define a subgroup of prime
order where it is easy to compute the discrete logarithm. After some years, the protocol
has been modified and new versions were proposed. The most significant variation is
in [CLT18a], where the DDH assumption on the elements of the group was changed
by an hard subset membership assumption (HSM). In the original version from 2015,
the message space is Z/qZ where q is a random prime computed by the algorithm that
generates the parameters, and its elements are encoded in the subgroup of known order.
The encryption of a message m is of the form (c1, c2) = (gr, pkrfm), where g generates
the group they work with, f is the generator of the easy discrete log subgroup, pk = gsk

is the public key and sk is the secret key which is took from some distribution D. At that
point, to decrypt a ciphertext it is enough to compute m = logf (c2/c

sk
1).

In this section we will talk a little about the encryption scheme focusing more on its
parameters generation, since it is the part which reflects what we saw in previous section.
Then, the starting point is building the subgroup where the discrete logarithm is easy,
from a group which is defined by a discriminant. After giving an informal explanation of a
DDH group with an easy DL subgroup in the original version, we present the instantiation
of the generation of parameters in the variation of CL we will consider, i.e. that one in
[CCL+19]. We start with some results on the structure of the class group for a specific
choice of the discriminant and the consequences of this choice. Before considering that
construction of CL, we will look at the novelty of [CLT18a] in which the class group is
”split” in a direct product of two subgroups, where one of them is the subgroup with an
easy DL. The main difference with the original version is that this time a generator of a
subgroup Gq is used instead of a generator of the group. The group G and its subgroup
Gq define the HSM problem under which the encryption scheme is ind-cpa secure. In
some cases what we will recall are not always proved results, but some of them are
conjectures motivated by experiments, as the Cohen-Lenstra heuristic which is very used
in the context of class groups. Unfortunately, from a mathematical/computational point
of view, it is quite hard to compute the order of the class group or its structure. However,
from the cryptographic side, this hardness it is used for the security. To obtain a class
group which is a product of two disjoint subgroup where one is of a chosen prime order,
it is clear that the discriminant must be chosen with respect to some proved results in
Algebraic Number Theory.

Structure of the section: Castagnos and Laguillaumie (cf. [CL15], pag. 22) observed
that it is necessary to work with squares of the Class Group, otherwise it is easy to break
the DDH assumption in the group. Then, in Subsection 2.2.1, we present some result in
the genus theory and we see how to test that a class is a square and that it is possible

11The group is finite and unknown order means that it cannot be efficiently computable.

46

to compute square roots efficiently. In Subsection 2.2.2, we will see for which choices
of the discriminant we can minimize the maximal power of 2 dividing the class number.
In Subsection 2.2.3 we explain how to switch between a maximal order O∆K

and a non
maximal suborder O∆q ⊂ O∆K

, that is necessary in the proof of Proposition 2.2.11 and in
the Gen algorithm of CL based on that proposition. Finally, in Subsection 2.2.4 we present
the definition of a HSM group with an easy DL subgroup, we see how the choice of previous
subsections fits with the definition and we recall CL scheme with its characteristics.

2.2.1 Computing square roots in Cl(O∆)
Gauss (and others independently) studied the genus theory applied to binary quadratic
forms. A genus is a set of classes of forms with the same discriminant ∆ which represent
the same values in (Z/∆Z)∗. The genus cointaning the class of the principal form is called
principal genus. In particular, characters χ of order 2 (i.e. χ(a)2 = 1 for each a in the set
consided) are useful to distinguish squares from non squares. These characters are called
genus characters and they are essentially Legendre symbols applied to number properly
represented by a class [f] of forms. Before going on, a form f(x, y) properly represents
a number n if there exists a couple (x̄, ȳ) such that f(x̄, ȳ) = n and gcd(x̄, ȳ) = 1. If a
form g is properly equivalent to f , then the sets of elements represented by f and g are
the same. Indeed, if g = f(U(x, y)) for some proper transformation U , then n is equal to
g(U−1(x̄, ȳ)) = f(UU−1(x̄, ȳ)) = f(x̄, ȳ). As a consequence, we can see the class of proper
equivalence [f] of the form f as representative of the set of elements represented by f .
Then, all genus character can be obtained by a basis of specific characters called assigned
characters. Assigned characters are defined from each odd prime divisor p1, . . . , pk of
the discriminant and some special ones if ∆ ≡ 0 mod 4, i.e. χ1(·) = (·/p1), χ2(·) =
(·/p2), . . . , χk(·) = (·/pk) for the prime divisor of ∆ and χ−4(t) = (−1)(t−1)/2, χ8(t) =
(−1)(t2−1)/1 and χ−8(t) = χ−4(t)χ8(t), taken depending on −∆/4 mod 8 if ∆ is even.
Let µ denote the number of assigned characters12. We do not repeat the table of assigned
characters chosen for even discriminant, that can be found in [Cox14], Theorem 3.15
proof, but we will give soon a look at some example. We call a complete character of
a class the tuple of characters Ψ([t]) = (χ1([t]), χ2([t]), . . . , χµ([t])), where [t] denotes
the class of t in (Z/∆Z)∗ with the usual meaning of integers prime to ∆ with the same
remainder t mod ∆. Complete characters allows us to distinguish squares from non
squares as we will see from next results:

Theorem 2.2.1 ([Cox14], Theorem 3.15). Let ∆ ≡ 0, 1 mod 4, ∆ < 0, then

• There are 2µ−1 genera of forms of discriminant ∆

• The principal genus (the genus containing the principal form) consists of the classes
in Cl(∆)2, the subgroup of squares in the class group Cl(∆).

Example 5. The reduced forms with discriminant ∆ = −56 are
(1, 0, 14), (2, 0, 7), (3,−2, 5) and (3, 2, 5), Their classes belongs to two different gen-
era of order 2, i.e. H = {[1, 0, 14], [2, 0, 7]} and H ′ = {[3,−2, 5], [3, 2, 5]}. Notice

12If ∆ odd, then µ = k, otherwise µ = k + c, where c is the number of the assigned characters for the
even discriminant considered.

47

that elements in the principal genus H are squares since [1, 0, 14] = [1, 0, 14]2 and
[2, 0, 7] = [3, 2, 5]2. However, we did not still give a method to identify squares efficiently,
but we are going to do it.

Lemma 2.2.2 ([Cox14], Lemma 3.17). The homomorphism Ψ : (Z/∆Z)∗ → {±1}µ is
surjective and its kernel is the subgroup H of values represented by the principal form.
Thus Ψ induces an isomorphism (Z/∆Z)∗/H ∼→ {±1}µ.

Theorem 2.2.1 proves that squares and principal genus are the same set, i.e. if an
element lies in the principal genus it is a square, otherwise it is not a square. Lemma 2.2.2
proves that the elements represented by principal genus are the kernel of the complete
character. This implies that a class is in the principal genus and then it is a square
if Ψ([f]) = (1, . . . , 1), i.e. if each assigned character is equal to 1. However, we need
the last step necessary to compute the complete character. Indeed, we need a properly
represented number which is prime to the discriminant since assigned characters are
computed on them.
Remark 8. Special assigned characters for even discriminants, i.e. χ−4(t) = (−1)(t−1)/2,
χ8(t) = (−1)(t2−1)/1 and χ−8(t) = χ−4(t)χ8(t), are defined for an odd t and chosen
depending on the remainder of −∆/4 mod 8. Then, to calculate the complete character
of a class with an even discriminant, we need a odd properly represented number prime
to ∆, while for odd ∆ the number can be even.

The final question is if a properly represented number prime to the discriminant exists.
Fortunately, the answer is positive.

Lemma 2.2.3 ([Cox14], Lemma 2.25). Given a form f(x, y) and an integer M , then
f(x, y) properly represents at least one number relative prime to M .

Example 6. We give two examples:

1. In the case of ∆ = −pq, consider a form class [a, b, c] representing n such that
gcd(n,∆) = 1. If χp(n) = χq(n) = 1, then [a, b, c] is a square.

2. In the previous example, ∆ = −56 = −23 · 7 = −4 · 14, then −∆/4 ≡ 6 mod 8
and the complete character is Ψ(·) = (χ7(·), χ−8(·)). If applied to [2, 0, 7], the form
represent 9 = f(1, 1) which is prime to the discriminant. Since χ7(9) = 1 and
χ−8(9) = 1, we conclude that the form is a square. Applied to [3, 5, 2], we choose
3 = f(1, 0) prime to the discriminant and notice that χ7(3) = −1 and χ−8(3) = 1,
then [3, 5, 2] is not a square.

Lagarias (cf. [Lag80]) proposed an algorithm to compute efficiently the square root of
a form. First of all, it proved that the computation of the complete character is done in
O(µ log(∆)2) elementary operations in the worst case, where µ is the number of assigned
characters. We do not recall the entire algorithm which breaks the square root because
it requires too much space and additional notions, but we limit ourselves to recall the
resulting theorem, which satisfies all the condition we will assume in the construction of
the CL scheme. Notice that, it is usual to call determinant the value N such that the
discriminant is ∆ = N or ∆ = 4N depending from the cases ∆ ≡ 0, 1 mod 4 to indicate
the part outside the 4.

48

Theorem 2.2.4. Given a properly reduced form f of nonsquare determinant N such
that

1. A complete factorization of N is provided.

2. A quadratic nonresidue n, is given for each prime pi dividing N .

3. f is in the principal genus.

There is an algorithm which produces a proper primitive form g such that [g] · [g] = [f].
This algorithm terminates in O(µ log(N)3) elementary operations in the worst case.

In our application ∆ = N = −pq and the factorization is public, satisfying the
first condition of Theorem 2.2.4. The second condition requires the computation of a
complete character and we saw it can be done efficiently. Finally, since we will work in
the subgroup of squares in Cl(O∆), the third condition is always true. We conclude that
in our application in next chapters we need to pay particular attention on the exponents
of elements because, as we will see, the computation of square root compromises the
security.

2.2.2 The odd part of the Class Group
We will work in the odd part of the class group, i.e. the subgroup of the elements of odd
order. The choice is motivated by the Cohen-Lenstra heuristic in Subsubsection 2.2.2.2,
which gives information about the structure of the class group. The starting question is:

If we do not know the class number, how do we know that we are in the odd part?

This question can be answered in an easy way for discriminants of a specific form
that we will see in this section, since they generate a class group where the 2−Sylow,
i.e. each subgroup of order 2k where k is the maximum possible is of order two. At this
point it is enough to work with squares, since the square of an element in a 2−Sylow
is sent to the unit and as a consequence the squares of elements which are different
from the unit have an odd order. In this subsection, we give the required definition and
mathematical results/conjectures that are at the basis of the class groups used to build
the CL encryption scheme.

Theorem 2.2.5. Let G be a finite group, and let ord(G) be the order of G. Then, for
each prime p and each integer r such that pr divides ord(G), there is a subgroup of G of
order pr.

Definition 2.2.1 (p−Sylow subgroup). Let G a finite group, and let p be a prime number
such that p divides ord(G). Let ord(G) = pkm, where p does not divide m. Each subgroup
of G of order pk is called a p−Sylow subgroup (or simply a p−Sylow) of G.
A p−Sylow is not necessarly unique, indeed if pk is the order of the p−Sylow, it is possible
to have more subgroups of G of order pk. For example, 〈9〉 and 〈11〉 are both 3−Sylow
of G = Z∗14, where ord(G) = 6.
We are not interested in how many p−Sylow (or 2−Sylow in our specific case) there are,
but in how large they are. As noticed before, we are interested in discriminants which
permits to generate groups where the 2−Sylow is of order 2.

49

2.2.2.1 A choice for a 2−Sylow of order 2

Remember that our final goal is explaining how the CL encryption scheme from Castagnos-
Laguillaumie is built, and of particular interest in this construction it is the 2−Sylow in
Cl(O∆K

). In particular, [HM00] recommends to construct the discriminant ∆K such that
the two-part of Cl(O∆K

), i.e. the 2−Sylow, is small. Then if the 2−Sylow has order 2,
the subgroup of squares has an odd order, since elements of order 2 squared give the
neutral element in Cl(O∆K

). [Kap78] studied the link between the order of the 2−Sylow
of the class group and its discriminant, also for our specific case. To recall it, in our
construction we look at using a discriminant of the form ∆ = −pq where p, q are odd
primes such that p ≡ −q mod 4 and

(
p
q

)
= −1.13

Before analyzing our situation, we need a new easy notion. Fixed a discriminant, the
principal form could not be the unique reduced form with b = ∆ mod 2, e.g. (1, 0, 14)
and (2, 0, 7) for ∆ = −56. This type of reduced forms are called ambiguous forms.
Ambiguous forms are that ones which squared give the principal form, i.e. the form
of order ≤ 2. Doing some calculation it is easy to prove that all reduced ambiguous
forms (a, b, c) are that ones with b = 0, or a = b or a = c. It was proved by Gauss (cf.
[Kap78], Proposition 0 (Gauss)) that if the discriminant is negative, then in a class there
is exactly 1 ambiguos form. If we call S2 the 2−Sylow subgroup, Gauss proved that if
∆ = ±p ≡ −1 mod 4, or ∆ = ±2p, or when ∆ = ±pq ≡ 1 mod 4 (i.e. our case), S2
is cyclic non trivial, i.e. S2 contains the class of an ambiguous form which square is the
class of the principal form. Furthermore, [Kap78] reports that if S2 is cyclic non trivial,
then 4 divides its order h2(∆), i.e. the even part of h(∆), if and only if the class of the
ambiguos form inside S2 is a square.
Looking at our choice of ∆, we exclude the case b = 0 since ∆ is odd. Ambiguous
forms are given by (a, a, c) and (a, b, a). If a = b, then ∆ = −pq = a(a − 4c), then
a = p and 4c − a = q (remember that a > 0) or a = q and 4c − a = p. In the
latter case we obtain the ambiguous form (p, p, p+q4), which is reduced if q > 3p (equality
q = 3p implies that it is not primitive). Notice that f(1, 4) = 9p + 4q is prime to
∆ = −pq (if not p|q or q|p, for p, q > 3). Then we conclude this is not a square since(

9p+4q
p

)
=
(

4q
p

)
=
(

4
p

) (
q
p

)
= 1 ·(−1) = −1 and

(
9p+4q
q

)
=
(

9p
q

)
=
(

9
q

) (
p
q

)
= 1 ·(−1) = −1

by the choice of p and q. Setting a = c and doing the same reasoning, we obtain
the two ambiguous forms (p+q4 ,±p−q

2 , p+q4). We see that this is not a square taking the
representative f(2, 0) = p+ q.
To recap we saw that for the choice ∆ = −pq, p ≡ −q mod 4 and

(
p
q

)
=
(
q
p

)
= −1, the

2−Sylow subgroup of Cl(O∆) has order 2, i.e. the order of the squares in Cl(O∆) is odd.

2.2.2.2 The Cohen-Lenstra Heuristic

Some relevant results about the structure of a class group or the properties of the class
number with regard to the discriminant are little known. Cohen and Lenstra ([CL84])
presented a conjecture about probability of different events occuring in class groups, such
as the probability that the group is cyclic or that a small prime divides the class number.

13Actually, the order of choice of p and q in
(

p
q

)
is irrelevant, since from Kronecker symbol properties

and the choice of p, q mod 4,
(

p
q

)
= (−1)(p−1)(q−1)/4

(
q
p

)
=
(

q
p

)
.

50

These probabilities were proved by experiments done by the authors and we present the
proposed conjecture – which we took from [Coh00], Conjecture 5.10.1. The heuristic
consider the odd part of the class group, i.e. the subgroup of elements of odd order,
which we call Clodd. From Subsubsection 2.2.2.1, we saw that depending on the choice
of the discriminant, we know some information about the even part of the class group.
With our particular choice, the even part is isomorphic to Z/2Z, then the subgroup of
square is of odd order t such that t|h(∆)/2. Actually, for the choice ∆ = −pq, there are
only two genera, i.e. the principal genus and another one. Since each genus has the same
number of classes and principal genus consists only of squares, the size of the subgroup
of squares is exactly t = h(∆)/2.
Definition 2.2.2 (Riemann ζ function). The Riemann ζ(·) function is defined as

ζ(s) =
∞∑
n=1

n−s = 1
1s + 1

2s + 1
3s + · · ·, if Re(s) > 1

where Re(s) is the real part of the complex number s.

Conjecture 2.2.6 (Cohen-Lenstra Heuristic). For any odd prime p and any r ∈ Z∪{∞},
set ηr(p) = ∏

1≤k≤r(1− p−k) and A = ∏
k≥2 ζ(k) ≈ 2.29486.

• The probability that Clodd is cyclic is equal to

ζ(2)ζ(3)
3 · η∞(2) · A · ζ(6) ≈ 0.977575

• If p is an odd prime, the probability that p|h(∆) is equal to

f(p) = 1− η∞(p) = 1
p

+ 1
p2 −

1
p5 − . . .

• If p is an odd prime, the probability that the p−Sylow subgroup of Cl(∆) is isomor-
phic to a given finite Abelian p−group G is equal to (p)∞/|Aut(G)|, where Aut(G)
denotes the group of automorphisms of G.

• If p is an odd prime, the probability that the p−Sylow subgroup of Cl(∆) has rank
r (i.e. is isomorphic to a product of r cyclic groups) is equal to η∞(p)

pr2ηr(p)2

Remark 9. The values used in Item 1 of the Cohen-Lenstra conjecture are ζ(2) = π2/6 ≈
1.645, ζ(3) ≈ 1.202, ζ(6) = π6/945 ≈ 1.017 and η∞(2) ≈ 0.289. In Item 2, to understand
the dimension of f(p), we have f(3) ≈ 0.43987, f(5) ≈ 0.23967 and f(7) ≈ 0.16320.

We give a little explanation of the Cohen-Lenstra Conjecture: first item tells us that
we expect that after having chosen a suitable discriminant, the odd part of the class
group is cyclic except in 1 case out of about 45. Then, if the 2−Sylow subgroup is
isomorphic to Z/2Z, there is large probability that the subgroup Clodd of order h(∆)/2
is cyclic. Indeed, first item does not depend on the choice of the discriminant. However,
item 2 works on a random variabile which is the discriminant. In second item, this is
translated in the probability that chosing a random discriminant ∆ an odd prime divides
h(∆) and as a consequence we cannot say anything on a specific choice. Furthermore,

51

it does not guarantee that the odd part is not divisible by small primes. To give an
example, if we choose p = 3 the Cohen-Lenstra heuristic tells that p|h(∆) with probability
τ3 = 1/3 + 1/9 ≈ 0.4444. Doing some tests counting the number of times 3|h(∆) for each
negative ∆ > −50000 and ∆ > −150000, we obtain the empirical probabilities 0.4470
and 0.4643, respectively. For ∆ > −50000 and p = 5, the heuristic returns τ5 = 0.2400,
while empirically is 0.2131. Item 4 tells how large is the probability that a p−Sylow is the
direct product of r cyclic subgroup. For completeness, each class group can be written in
a unique way as the direct product of cyclic subgroup (cf. [BV07], Theorem 9.4.5), then
Item 4 is in line with this last theorem.

2.2.3 Switching between a maximal order and a non maximal
suborder

This subsection is the final part of the math results on class groups needed. Even if the
first part of this section is related to the previous section, it is put here because it is a
starting point of the cryptographic construction we will see. We start giving properties
of class groups useful to understand a fundamental proposition of [CL15] which permits
to build a group with a subgroup where the discrete logarithm problem is easy. This
subgroup represents the space of encodings of messages.
Definition 2.2.3 (Coprime Ideals). Two O−ideals a and b are said coprime if a + b = O.
Given an order O of conductor f with respect to a maximal order O∆K

, an O−ideal a
is said prime to the conductor f is a + fO = O, which is equivalent to say that a and
b = fO are coprime.
Example 7. If ∆ = −95, a = 2Z+ −1+

√
−95

2 Z and b = 3Z+ −1+
√
−95

2 Z are coprime. Indeed,
a + b = 2Z + 3Z + −1+

√
−95

2 Z = Z + −1+
√
−95

2 Z = Z + 1+
√
−95

2 Z = O−95.
However, there is an easy way to see if a fractional O-ideal a is prime to the conductor.

Indeed, a is prime to conductor f if and only if gcd(N(a), f) = 1. The notion of ideal
prime to conductor is relevant where the discriminant is not fundamental. Indeed, when
working with a maximal order O∆K

, the conductor is f = 1 and then each O∆K
−ideal

is automatically prime to the conductor. In the case of a non maximal order O it is
necessary to see how the conductor can influence the class group Cl(O). The following
Proposition 2.2.7 presents a link between the size of the class group in a maximal order
and in a non maximal suborder with regard to the conductor. Proposition 2.2.9 presents
links between O∆K

and O−ideals which are prime to conductor.

Proposition 2.2.7 ([Cox14], Proposition 7.19). The inclusion I(O, f) ⊂ I(O) induces
an isomorphism

I(O, f)/P (O, f) ' I(O)/P (O) = Cl(O)

Lemma 2.2.8 ([Cox14], Lemma 7.18). Let O be an order of conductor f

• An O−ideal a is prime if and only if its norm N(a) is relatively prime to f

• Every O−ideal prime to f is proper

Proposition 2.2.9 ([Cox14], Proposition 7.20)). Let O be an order of conductor f in
an imaginary quadratic field K.

52

• If A is an O∆K
−ideal prime to f , then A∩O is an O−ideal prime to f of the same

norm.

• If a is an O−ideal prime to f , then aO∆K
is an O∆K

−ideal prime to f of the same
norm.

• The map ϕf : I(O, f)→ I(O∆K
, f) such that a 7→ aO∆K

is an isomorphism

Finally, we can apply the isomorphism of Proposition 2.2.9 to classes, but it is neces-
sary that in the class considered there is an ideal which is prime to conductor. This is
not a problem, since there is always such an ideal, from the following Proposition:

Proposition 2.2.10 ([Cox14], Corollary 7.17). Let O be an order in an imaginary
quadratic field. Given a nonzero integer M , then every ideal class in Cl(O) contains
a proper O−ideal whose norm is relatively prime to M .

From a theoretical point of view, from Proposition 2.2.9 we know that there exists
an isomorphism from ideals prime to conductor of a maximal order O∆K

to ideals prime
to conductor of a non maximal suborder O∆f

⊂ O∆K
, and viceversa. From Proposition

2.2.10 we saw that in each class there is at least one O−ideal which is prime to the
conductor. This means that classes in O∆K

are in bijective correspondence with classes
in O∆f

with the isomorphism ϕf applied on a prime representative of the class. From a
more practical point of view, we need a way to compute ideals which are prime to the
conductor and an algorithm to compute ϕf and its inverse ϕ−1

f . These two tasks can
be done with some algorithms proposed in [HJPT98] and [PT00], but not for all values
of the conductor. However, even if some algorithm we will see are specific for a prime
conductor, this is not a problem for the resulting encryption scheme in Section 2.2.4 since
it works with a prime conductor.

A generalization of the composition for different discriminants We can extend
Definition 2.1.4 to the case of forms g1 and g2 with different discriminants ∆(g1) 6= ∆(g2),
where both discriminants come from the same fundamental discriminant, i.e. ∆(g1) =
f 2

1 ∆ and ∆(g2) = f 2
2 ∆ for some maximal discriminant ∆. This is perfectly in line with

Algorithm 4 from [HJPT98] in next section (or the algorithms of [PT00] not recalled
here). The following definition is a readaptation of the formula of the product of two-
dimensional lattices in [BV07], Theorem 7.3.16 which follows the line of Definition 2.1.4.
Definition 2.2.4. Let g1 = (a1, b1, c1) and g2 = (a2, b2, c2) be two quadratic forms of
disciminants ∆1 = f 2

1 ∆ and ∆2 = f 2
2 ∆, respectively, for some fundamental discriminant

∆ and fi is the conductor of ∆i. Set s = (b1f2+b2f1)/2, n = (b1f2−b2f1)/2, d1 = f1
gcd(f1,f2)

and d2 = f2
gcd(f1,f2) . Let u, v, w and d such that

ua1d2 + va2d1 + ws = d = gcd(a1d2, a2d1, s)

and let d0 = gcd(d, c1d2, c2d1, n). We define the composite of the two forms g1 and g2 as
the form

(A,B,C) =
(
d0
a1a2

d2 ,
1
d2

(
b2 + 2a2

d
(v(s− b2d1)− wd1c2)

)
,
B2 −∆2/d

2
2

4A

)
.

53

modulo the action of Γ =
{(

1 τ
0 1

)
, τ ∈ Z

}
.

If ∆2 is fundamental, e.g. when switching from a non maximal order to a maximal
one, we have f2 = 1 and then ∆2 = ∆, d2 = 1, and the composition is

(A,B,C) =
(
d0
a1a2

d2 , b2 + 2a2

d
(v(s− b2d1)− wd1c2,

B2 −∆
4A

)
.

Last formula is useful when switching between a non maximal order O∆f
to a maximal

order O∆K
which contains O∆f

. We will see in next section how to switch between
orders, for now it is enough to know that the class of O∆f

−ideal a is transformed into a
class in O∆K

computing the class of the O∆K
−ideal aO∆K

. Let δ := ∆K mod 2. From
Definition 2.2.4, a = aZ + −b+

√
∆f

2 Z and O∆K
= Z + δ+

√
∆K

2 Z, where ∆f = f 2∆K imply
g1 = (a, b, b2−f2∆K

4a), g2 = (1, δ, δ−∆K

4), d1 = f , d2 = 1. Since an assumption used is that
gcd(a, f) = 1 14, then d = gcd(a, f, b+δf2) = 1, w = 0 (a and f coprime) and d0 = 1. With
the substitution of the element, we obtain

(A,B,C) =
(
a, bv + uaδ,

B2 −∆K

4a

)
mod Γ,

Then, the output is reduced and we obtain exactly the output of Algorithm 4.

How to find a prime ideal to the conductor Algorithm 1 in [HJPT98] takes in
input a primitive O−ideal a and a prime conductor q and returns another O−ideal a
which is prime to q and equivalent to a, i.e. it finds an prime to conductor ideal in the
class of a.

Algorithm 3: FindIdealPrimeTo – [HJPT98], Algorithm 1
Input: A primitive O∆−ideal a = (a, b) and a prime q
Output: A primitive O∆−ideal, A = (A,B) equivalent to a, such that

gcd(N(A), q) = gcd(A, q) = 1
if gcd(a, q) > 1 then

c← (b2 −∆)/4a;
if gcd(c, q) > 1 then

A← a+ b+ c;
B ← −b− 2a;

else
A← c;
B ← −b;

return (A,B)
else

return (a, b)
The idea behind the algorithm is quite easy. If gcd(a, q) = 1, then a has already its

norm coprime to conductor. If not, we look at c, and if gcd(c, q) = 1, it is enough to
switch a and c using the transformation (a, b) 7→ (c,−b) which brings to an O−ideal b

14Choosing a prime conductor of a certain size guarantees that this is always true

54

equivalent to a.15 Finally, if both a and c are not coprime to q, then the algorithm chooses
A = a+b+c, which is coprime to q. If not, q|b and then (a, b, c) is not primitive. Fixed A
and B as in the algorithm, we have C = a. The form (a+b+c,−b−2a, c) is equivalent to
(a, b, c) with the composition of transformations (x, y) 7→ (x, x+ y) and (x, y) 7→ (y,−x).
Furthermore, the algorithm is efficient since it requires the computation of at most two
gcd of element of size at most O(log(|∆|)), i.e. the max size of c.

How to move between O∆K
and O∆q Algorithm 3 in [HJPT98] present a practical

to compute ϕ(a) for some O∆f
. The algorithm takes in input an O∆q−ideal a, it obtains

an O∆q−ideal b prime to conductor using Algoritm FindIdealPrimeTo and it computes
ϕf (b).

Algorithm 4: GoToMaxOrder – [HJPT98], Algorithm 3
Input: A primitive O∆q−ideal a = (a, b), the fundamental discriminant ∆K and

the conductor q
Output: A primitive O∆K

−ideal A = ϕ−1(b) = bO∆K
= (A,B), where b ∼ a

and gcd(N(b), q) = 1
(A,B)← FindldealPrimeTo(a, q);
δ ← ∆K mod 2;
Solve 1 = µq + λA for µ, λ ∈ Z;
B ← Bµ+ Aδλ mod 2A;
return (A,B)

Algorithm 5: GoToNonMaxOrder(Inverse) – [HJPT98], Algorithm 2
Input: A primitive O∆K

−ideal A = (A,B) and the conductor q
Output: A primitive O∆q−ideal a = ϕ(B) = B ∩ O∆q = (a, b), where B ∼ A

and gcd(N(B), q) = 1
(a, bq)← FindldealPrimeTo(A, q);
b← bqq mod 2a;
return (a, b)
Both the algorithms require O(log(|∆|)2) bit operations, where in GoToMaxOrder ∆ =

∆q and in GoToNonMaxOrder ∆ = ∆K .

2.2.4 A subgroup with an easy discrete logarithm problem
In this subsection we recall the framework of the CL linearly homomorphic encryption
scheme, introduced in [CL15] and built from a finite group G which contains a sub-
group where DL problem is easy. A concrete instantiation of the scheme is obtained
from class groups of imaginary quadratic fields. Next, the scheme has been enhanced in
[CLT18a],[CCL+19],[CCL+20]. The original proposed CL in [CL15] is different from its
version in [CLT18a] principally for the hard assumption at the basis of the ind-cpa secu-
rity of the scheme. Indeed, the original scheme is based on the hardness of the decisional
Diffie-Hellman assumption in the group G, while the version in [CLT18a] is based on a
hard subset membership problem, i.e. the difficulty to distinguish elements in the group

15Looking at the associated forms, this is the proper transformation (x, y) 7→ (y,−x). Furthermore, if
necessary the ideal has to be normalized.

55

G from elements in a certain subgroup of G. In this section we do not recall neither the
enhanced version in [CLT18a] in its entirety nor the original version in [CL15], but we
give only an informal description of them. However, we give a more detailed description
of the slightly modified version of CL proposed in [CCL+19], since it is the version we
consider in next chapters. In next paragraphs GenGroup refers to the couple of algorithms
(Gen, Solve), where Gen outputs the group G with an easy DL subgroup F and necessary
parameters, while Solve outputs discrete logarithms in F .

The original CL scheme In [CL15], the authors – inspired by [BCP03] – present a
definition of a DDH group with an easy DL subgroup, i.e. a group G where the deci-
sion Diffie-Hellman assumption is hard but such that there is a subgroup F of G where
computing the discrete logarithm is easy. They also proposed a generic linearly homo-
morphic encryption scheme based on that definition and they presented an instantiation
using class group of imaginary quadratic field. In few words, CL is an El-Gamal fashion
encryption scheme where messages are encoded in the exponent of the subgroup F . In-
deed, to decrypt a message it is necessary to extract the part in F of the ciphertext using
the secret key and computing the easy discrete logarithm of the result with Solve. In the
instantiation from the ideal class group, Gen and Solve algorithm are constructed from
Proposition 2.2.11. Proposition 2.2.11 is an original result of [CL15] and it gives a way
to compute the subgroup of order q where the DL is easy.

Proposition 2.2.11 ([CL15], Proposition 1). Let ∆K be a fundamental discriminant
with ∆K ≡ 1 mod 4 of the form ∆K = −qs where q is an odd prime and s a non-negative
integer prime to q such that s > 4q. Let t = (q2, q) be an ideal of O∆q , the order of
discriminant ∆q = ∆K · q2 = −q3s. Denote by f = [t] the class of t in Cl(O∆q). For
m ∈ {1, . . . , q − 1}, Red(fm) = (q2, L(m)q) where L(m) is the odd integer in [−q, q]
such that L(m) ≡ 1/m mod q. Moreover, f is a generator of the subgroup of order q of
Cl(O∆q).

The idea behind the proof of Proposition 2.2.11 consists in considering the surjection
ϕ̄q between Cl(O∆q) and Cl(O∆K

) from Proposition 2.2.9 and noticing that ker(ϕ̄q) is
cyclic of order q. Then, a generator g of a cyclic isomorphic group to ker(ϕ̄q) is found
and a principal O∆K

−ideal is built from it. Finally, using the inverse of the surjection
the authors find an O∆q−ideal which is prime to conductor and equivalent to (q2, q). The
class of (q2, q) defines the generator f of the subgroup F = ker(ϕ̄q) of order q. In this
subgroup it is easy to compute Dlogs since gm gives an ideal corrispondent to (q2, L(m)q)
and computing L(m)−1 mod q is a very efficient operation. Furthermore, all elements
in F are easily recognizable by their norm q2.16 From Proposition 2.2.11 and following
a construction of [HJPT98], in [CL15] the authors were able to construct a generation
algorithm Gen for a DDH group with an easy DL subgroup in the instantiation with the
class group. To sum up, they presented the first version of CL, a linearly homomorphic
encryption scheme which is ind-cpa secure if the DDH problem is hard in the group G
and they gave a concrete instantiation.

16This is in general not true, however if a = q2 and b = L(m)q then c > a and a > |b|. As a
consequence, fm is reduced.

56

Enhanced CL scheme Castagnos et al. (cf. [CLT18a]) enhanced the CL framework
by introducing a hard subgroup membership assumption (HSM). They slightly modify
the definition of DDH group with an easy DL subgroup to make it suitable to the HSM
assumption. First, the integer q from GenGroup is chosen prime. Second, from Gen
algorithm in [CL15] they deduced that instead of giving the generator g of a group as
output in Gen, this algorithm can directly output the generator gq of the subgroup of the
q−powers Gq, the generator f of F – i.e. [(q2, q)] ∈ ker(ϕ̄q) – and consider g = gq ·f as the
generator of the class group they work with. The order of Gq divides s and gcd(q, s) = 1,
then Gq ∩ F = {[O]} (the class of the principal ideal, i.e. the unit of the group) and by
construction G = Gq × F is cyclic with generator g. From the construcion, the authors
built a CL version which is ind-cpa if the HSM assumption is hard, i.e. if it is hard to
distinguish between elements in G from that in Gq.

2.2.4.1 Additional modification to CL

[CCL+19, CCL+20, CCL+21] present distributed versions of the threshold ECDSA proto-
col using a linear homomorphic encryption scheme to compute part of the operations on
parties’ shares. In their construction the encryption scheme used is CL, but it is adapted
to the parameter of the signature scheme. We do not go deeply in what they exactly do
because Chapters 3, 4 and 5 are completely dedicated to them. What we are interested
in is the fact the instantiations in their scheme are built using the CL scheme with some
adaptation to the definition we informally introduced above. In particular, these defini-
tions can be slightly modified to be compatible with the order of the elliptic curve. We
now present formal definition of a group with an easy DL subgroup and of HSM in the
context of [CCL+19]. However, the costructions in [CCL+20, CCL+21] require additional
modifications that we will see in the dedicated chapters. Indeed, in [CCL+20, CCL+21]
the generation of the parameters of the class group requires the partecipation of all par-
ties and in those contexts it is required that the distribution of the generator is close to
uniformly random, while in the setup of CL the generator is deterministic. Anyway, we
postpone this discussion to the dedicated chapters since it is not relevant to present the
CL construction below.
Definition 2.2.5 ([CCL+19] version). Let GenGroup be a pair of algorithms (Gen, Solve).
The Gen algorithm is a group generator which takes as inputs a parameter λ and a prime
q and outputs a tuple (s̃, g, f, gq, Ĝ, G, F,Gq). The set (Ĝ, ·) is a finite abelian group of
order q · ŝ where the bitsize of ŝ is a function of λ and gcd(q, ŝ) = 1. The algorithm Gen
only outputs an upper bound s̃ of ŝ. It is also required that one can efficiently recognise
valid encodings of elements in Ĝ. The set (F, ·) is the unique cyclic subgroup of Ĝ of
order q, generated by f . The set (G, ·) is a cyclic subgroup of Ĝ of order q · s where s
divides ŝ. By construction F ⊂ G, and, denoting Gq := {xq, x ∈ G} the subgroup of
order s of G, it holds that G = Gq × F . The algorithm Gen outputs f , gq and g := f · gq
which are respective generators of F , Gq and G. Moreover, the DL problem is easy in F ,
which means that the Solve algorithm is a deterministic polynomial time algorithm that
solves the discrete logarithm problem in F :

Pr
[
x = x? : (s̃, g, f, gq, Ĝ, G, F,Gq)← Gen(1λ, q), x $←− Z/qZ, X ← fx,

x? ← Solve(q, s̃, g, f, gq, Ĝ, G, F,Gq, X)
]

= 1.

57

Our definition slightly modify the original definition of [CLT18a] to be adapted to our
application. In the original Gen algorithm the prime q is generated by the algorithm,
while here it is given as input. We output the group Ĝ from which the group G with
an easy DL subgroup F is produced. Giving a prime q as input to the Gen algorithm
does not change the meaning of it since q was independently generated of the rest of the
output in [CL15, CLT18a].

A Hard Subgroup Membership Assumption We present the definition of an hard
subgroup membership (HSM) problem within a group with an easy DL subgroup as defined
in [CCL+19], which is slightly modified from the definition of HSM in [CLT18a]. In
Definition 2.2.5, one has G = F ×Gq. The assumption says that it is hard to distinguish
the elements ofGq inG. To understand the similarity of HSM with other hard assumption,
we can compare it to Paillier’s DCR assumption. They are closely related, but there is no
reduction from one to the other one. Such hard subgroup membership problems are based
on a long line of assumptions on the hardness of distinguishing powers in groups. DCR
and HSM are essentially the same assumption, but they are defined in different groups.
We emphasise that this assumption is well understood both in general, and for the specific
case of class groups of quadratic fields, which we will use to instantiate GenGroup. It was
first used by [CLT18a] within class groups to prove the ind-cpa security of HSM−CL, i.e.
the CL scheme from HSM we use in the manuscript (even if we refer to it as simply CL
almost always), but we adapt it to our specific context.

Definition 2.2.6 (HSM assumption, [CCL+19]). We say that GenGroup is the generator
of a HSM group with easy DL subgroup F if it holds that the HSM problem is hard even
with access to the Solve algorithm. Let D (resp. Dq) be a distribution over the integers
such that the distribution {gx, x←↩ D} (resp. {gxq , x←↩ Dq}) is at distance less than 2−λ
from the uniform distribution in G (resp. in Gq). Let A be an adversary for the HSM
problem, its advantage is defined as:

AdvHSM
A (λ) =

∣∣∣∣∣2 · Pr
[
b = b? : (s̃, g, f, gq, Ĝ, G, F,Gq)← Gen(1λ, q),

x←↩ D, x′ ←↩ Dq, b
$←− {0, 1}, Z0 ← gx, Z1 ← gx

′

q ,

b? ← A(q, s̃, g, f, gq, Ĝ, G, F,Gq, Zb, Solve(.))
]
− 1

∣∣∣∣∣

The HSM problem is said to be hard in G if for all probabilistic polynomial time attacker
A, AdvHSM

A (λ) is negligible.

58

Gen(1λ, q)

1. Let µ be the bit size of q. Pick q̃ a random η(λ)−µ
bits prime such that qq̃ ≡ −1 mod 4 and (q/q̃) =
−1.

2. ∆K ← −qq̃, ∆q ← q2∆K and Ĝ← Cl(∆q)

3. f ← [(q2, q)] in Cl(∆q) and F := 〈f〉

4. s̃← d 1
π

log |∆K |
√
|∆K |e

5. Let r be a small prime, with r 6= q and
(

∆K

r

)
= 1,

set r an ideal lying above r.

6. Set gq ← [ϕ−1
q (r2)]q in Cl(∆q) and Gq ← 〈gq〉

7. Set g ← gp · f and G← 〈g〉

8. Return (s̃, g, f, gq, Ĝ, G, F,Gq)

Figure 2.1: Group generator Gen

2.2.4.2 Construction of the direct product Gq and F

The parameter generation algorithm Gen of the CL cryptosystem is presented in Figure
2.1. First, a prime q is chosen and given to the algorithm. Then, in step 1 and 2
the algorithm pick another prime q̃ such that the resulting fundamental discriminant is
∆K = −qq̃ ≡ 1 mod 4. For the choice of q̃ – i.e. such that (q/q̃) = −1 – the resulting
class group has a 2−Sylow subgroup of order 2 as discussed in Subsubsection 2.2.2.1.
Then, the class group from a non maximal order of conductor q is uniquely defined and
the 2−Sylow subgroup is again of order 2 because of h(∆q) = q · h(∆K). In step 3 and
4 the algorithm chooses the generator f of the subgroup of order q where the DL is easy
following Proposition 2.2.11 and it fixes the known upperbound s̃ of the class number.
In Steps 5,6 and 7, alogrithm compute the generator of Gq following the construction in
the proof of Proposition 2.2.11 and the construction presented in [HJPT98], obtaining
G = Gq × F as a subgroup of Ĝ. Indeed, the order of Gq divides ŝ, but it is not assured
that it is equal to ŝ.

Remark 10. The strategy adopted by [HJPT98] is the following: first, select a prime
number r such that (∆q/r) = 1, i.e. ∆q is a quadratic residue mod r. Then, build a
prime O∆q−ideal r← (r, br) computing br, i.e. a square-root of ∆q mod 4r. The authors
suggest to do this computation using Shanks’ probabilistic algorithm RESSOL. A version
of RESSOL with expected run time O((log(r))3 + log(∆q) · log(r)), and a deterministic
algorithm for computing the Kronecker-symbol (∆q/r) in O((log(r))2 +log(r) · log(|∆q|)).
Finally, consider r2 and reduce it. The exponentiation can be done via NUCOMP and
NUDUPL.

59

Algorithm KeyGen(1λ, q)

1. (s̃, g, f, gq, Ĝ, G, F,Gq)← Gen(1λ, q)

2. Pick x←↩ Dq and h← gxq

3. Set pk← (s̃, gq, f, p, h)

4. Set sk← x

5. Return (pk, sk)

Algorithm Enc(pk,m)

1. Pick r ←↩ Dq

2. Return (grq , fmhr)

Algorithm Dec(sk, (c1, c2))

1. Compute M ← c2/c
x
1

2. Return Solve(M)

Figure 2.2: Description of the HSM− CL encryption scheme

.

A linearly homomorphic encryption scheme from HSM We here recall the HSM−
CL scheme of [CLT18a]. Under the hardness of the HSM assumption, the encryption
scheme is ind-cpa secure scheme (the proof is given in the full version of [CLT18a], i.e.
in [CLT18b], Appendix IV). It is a building block for the distributed ECDSA schemes
of Chapters 3,4 and 5. Elements from Gq are chosen in {grq , r ← Dq}, where Dq is a
distribution at distance less than 2−λ from the uniform distribution in Gq. The plaintext
space is Z/qZ, where q is a µ bit prime, with µ ≥ λ. The scheme (from [CLT18a]) used
in [CCL+19] is depicted in Figure 2.2.

On the size of parameters The size η(λ) of ∆K is chosen to resist the best practical
attacks, which consists in computing discrete logarithms in Cl(∆K) (or equivalently the
class number h(∆K)). - An index-calculus method to solve the DL problem in a class
group of imaginary quadratic field of discriminant ∆K was proposed in [Jac00]. It is con-
jectured in [BJS10] that a state of the art implementation of this algorithm has complexity
O(L|∆K |[1/2, o(1)]), which allows to use asymptotically shorter keys compared to proto-
cols using classical problems that are solved in subexponential complexity O(L[1/3, o(1)])
(see Section 3.5.3 for concrete sizes for η).

60

Chapter 3

Two-Party ECDSA from Hash
Proofs Systems

In previous chapters we introduced and we explained some of the tools we need to un-
derstand next chapters, starting from this one. As said in the introduction, Chapters
3, 4 and 5 focus on our results in [CCL+19], [CCL+20] and [CCL+21], respectively, and
each work has a dedicated chapter. To resume the precise topics of each chapter, this one
copes with our two-party ECDSA construction, the next chapter with the more general
case of our (t, n)−threshold ECDSA and the last one with improvements to our threshold
construction to take in account proactivity, the identification of misbehaving players and
other properties. More details about our threshold constructions will be given in next
chapters.

The starting point Our construction generalizes from the two-party ECDSA protocol
of Lindell [Lin17]. To understand the main advantages and contributions of our solution,
we introduce the main difficulties that Lindell proposal overcame. Then, we see how to
build a more general framework for two-party ECDSA from Hash Proof Systems (HPS),
observing how this improves on Lindell’s idea. In the introduction chapter, we presented
the problem of building an efficient two-party threshold ECDSA starting from [MR04].
As pointed there, their solution is inefficient caused by the number of expensive zero-
knowledge required to prove the security of their protocol. We then recalled the idea
followed by [Lin17], which managed to provide a much simpler and efficient protocol
than previous one in [MR04]. This chapter begins with a little deeper discussion of the
solution of Lindell, since it is the starting point of our scheme in [CCL+19]. We limit
the description of [Lin17] to this introduction, and the entire chapter is dedicated to
our two-party ECDSA construction referring to [Lin17] only to highlight the differences
between its and ours constructions when required.
The crucial idea of Lindell’s protocol is the observation that dishonest parties can create
very little trouble. Indeed, suppose that P1 is corrupted. Initially, P1 sends both a
Paillier’s encryption key and an encryption Enc(x1) of its share x1 of the secret signing
key to P2, and after this step all P1 can do is participate in the generation of R← k1k2P ,
essentially, where R is the nonce of the ECDSA scheme. Anyway, the generation of R is a
Diffie-Hellman protocol, and very efficient and robust protocols for it exist. On the other
hand, if P2 is corrupted all she can do (except again participate in the generation of R)

61

is to create a bad c as a final response for P1. However, while P2 can certainly try that,
this would be easy to detect by simply checking the validity of the resulting signature.
Even if Lindell’s intuition is nice and interesting, the resulting protocol presents caveats
given by working with elements of Paillier homomorphic encryption:

1. Paillier’s plaintexts space is Z/NZ (where N is a large composite), whereas ECDSA
signatures live in Z/qZ (q is prime). The difference between moduli creates incon-
sistencies if a wraparound occurs during the whole signature generation process. A
solution to avoid such inconsistencies is to make sure that N is taken large enough
so that no wraparounds occur. As a consequence, because of N > q it is necessary
that that when sending Enc(x1) to P2, P1 needs to prove that the plaintext x1 is in
the right range (i.e. sufficiently small).

2. A second issue is linked to using Paillier’s encryption in the proof. Indeed, if
one wants to use the scheme to argue indistinguishability of an adversary’s view
in real and simulated executions, it seems necessary to set up a reduction to the
indistinguishability of Paillier’s cryptosystem. This means one must design a proof
technique that manages to successfully use Paillier’s scheme without knowing the
corresponding secret key. In Lindell’s protocol the issue arises when designing the
simulator’s strategy against a corrupted player P2. In such a case, P2 might indeed
send a wrong ciphertext c (i.e. one that does not encrypt a signature) that the
simulator simply cannot recognize as bad. Lindell [Lin17] proposes two alternative
proofs, one that relies on game based definition and the other one on simulation.
The former avoids the problem by simply allowing the simulator to abort with a
probability that depends on the number of issued signatures qs. This results in a
proof of security that is not tight (as the reduction loses a factor qs). The latter
proof is simulation based, avoids the aborts, but requires the introduction of a
new interactive non standard assumption regarding Paillier’s encryption (which we
recall in Figure 3.5).

Two-party ECDSA from Hash Proof Systems From the caveats listed in previous
paragraph, we can ask to ourselves if it possible to devise a two party ECDSA signing
protocol which is practical (both in terms of computational efficiency and in terms of
bandwidth consumption1), that does not require interactive assumptions. Furthermore,
can such a proposal allow for a tight security reduction? We have a positive answer
for the above question and we will present in details our solution from [CCL+19] for
answering it. The aim of this chapter is presenting this solution with all the required
tools. The first contribution we give in [CCL+19] is providing a generic construction
for two-party ECDSA signing from hash proof systems (HPS), which achieves simula-
tion based security. HPS are a mathematical tool introduced by Cramer and Shoup
([CS98],[CS02]) to present a general framework for public key encryption which is se-
cure against adaptive chosen ciphertext attacks. We will recall HPS and the properties
they require to satisfy for our protocol in Section 3.2. Our solution can be seen as a
generalization of Lindell’s scheme [Lin17] to the general setting of HPSs that are homo-
morphic in the sense of [HO09]. This generic solution is not efficient enough for practical

1We note here that the very recent two party protocol of [DKLs18] is very fast in signing time and
only relies on the ECDSA assumption. However its bandwidth consumption is much higher than [Lin17].

62

applications as, for instance, it employs general purpose zero knowledge as underlying
building block. Still, beyond providing a clean, general framework which is of interest in
its own right, it allows us to abstract away the properties we want to realize. In partic-
ular, our protocol allows for a proof of security that is both tight and does not require
artificial interactive assumptions when proving simulation security. It is also interesting
that in public key encryption schemes based on HPSs, indistinguishability of ciphertexts
is not compromised by the challenger knowing the scheme’s secret keys as it relies on
a computational assumption and a statistical argument. This is a clear difference from
using Paillier encryption, as we discuss in previous paragraph. The correctness of our
protocol follows from homomorphic properties that we require of the underlying HPS.
We define the notion of homomorphically-extended projective hash families which ensure
the homomorphic properties of the HPS hold for any public key sampled from an effi-
ciently recognisable set, thus no zero-knowledge proofs are required for the public key.
The notion of is a fundamental property which makes HPS-based encryption compatible
with the ECDSA signature. Finally, the our HPS-based two-party ECDSA scheme and
its analysis of security are detailed in Section 3.3.

Concrete instantiation Towards efficient solutions, we then show in Section 3.4 how
to instantiate our (homomorphic) HPS construction using class groups of imaginary
quadratic fields. We here recall only the relevant points of the CL framework and we
refer to Section 2.2 for details on the CL scheme, complexity of the attacks on the dis-
crete logarithm in the class group, reference to works about the choice of the discriminant.
Principally, the resulting schemes benefit from (asymptotically) shorter keys. Moreover,
interest in the area has been renewed in recent years as it allows versatile and efficient
solutions such as encryption switching protocols [CIL17], inner product functional en-
cryption [CLT18a] or verifiable delay functions [BBBF18, Wes19a]. Concretely, the main
feature of the Castagnos and Laguillaumie cryptosystem (CL) and its variants is that they
rely on the existence of groups with associated easy discrete log subgroups, for which hard
decision problems can be defined. In CL there exist a cyclic group G := 〈g〉 of order qs
where s is unknown, q is prime and gcd(q, s) = 1, and an associated cyclic subgroup
of order q, F := 〈f〉. Denoting with Gq := 〈gq〉 the subgroup of q-th powers in G (of
unknown order s), one has G = F ×Gq, and one can define an hard subgroup member-
ship problem. This allows to build a linearly homomorphic public key encryption scheme
where the plaintext space is Z/qZ for arbitrarily large q. This also means that if one uses
the very same q underlying the ECDSA signature, one gets a concrete instantiation of
our general protocol which naturally avoids all the inefficiencies resulting from N and q
being different. Finally, details on the efficiency comparisons are given in Section 3.5.

A zero knowledge for CL We remark that, similarly to Lindell’s solution, our schemes
require P2 to hold an encryption Enc(x1) of P1’s share of the secret key. This imposes
a somewhat heavy key registration phase in which P1 has to prove, among other things,
that the public key is correctly generated. Fortunately, in our setting we can achieve this
without resorting to expensive range proofs, however other difficulties arise: first of all,
we work with groups of unknown order and second we cannot assume that all ciphertexts
are valid (i.e., actually encrypt a message). The latter derives from the non surjectivity

63

of CL scheme, i.e. not all the ciphertext derives from a couple message/randomness2. We
address this by developing a new proof that solves both issues at the same time. Our
proof is inspired by the Girault et al. [GPS06] identification protocol but introduces new
ideas to adapt it to our setting and to make it a proof of knowledge. As for Lindell’s
case, it uses a binary challenge, which implies that the proof has to be repeated t times
to get soundness error 2t.

Improvements on the zero-knowledge In our work [CCL+19], initially we did not
propose a solution for enlarging the challenge space of our proof for proving well-formness
of ciphertext. This is fundamental to reduce the number of repetitions of the proof and to
lead to substantial efficiency improvements. Fortunately, in 2020 we proposed a protocol
for threshold ECDSA ([CCL+20]) built from class groups and, motivated by the expensive
costs of proofs with CL and a larger number of players that have to run those proofs,
we proposed a new very efficient ZKAoK for well-formness of CL ciphertexts. The same
idea, with some constraints, can be applied to the zero-knowledge proof we use in our
two party construction. We will introduce the improvements on our proof at the end of
Subsection 3.4.2, but we will look at it in detail in Chapter 4.

3.1 Ideal functionalities
Notations. See Notation at the beginning of Chapter 1.

The elliptic curve digital signature algorithm. See the description of ECDSA
from Subection 1.3.1

Two-party ECDSA. This consists of the following interactive protocols:

IKeyGen〈(G, q, P); (G, q, P)〉 → 〈(x1, Q); (x2, Q)〉 such that KeyGen(G, q, P) → (x,Q)
where x1 and x2 are shares of x.

ISign〈(x1,m); (x2,m)〉 → 〈∅; (r, s)〉 or 〈(r, s); ∅〉 or 〈(r, s); (r, s)〉 where ∅ is the empty out-
put, signifying that one of the parties may have no output and Sign(x,m)→ (r, s).

The verification algorithm is non interactive and identical to that of ECDSA.

Interactive zero-knowledge proof systems. A zero-knowledge proof system (P, V)
for a language L is an interactive protocol between two probabilistic algorithms: a prover
P and a polynomial-time verifier V . Informally P , detaining a witness for a given state-
ment, must convince V that it is true without revealing anything other to V . A more
formal definition is provided in Section 1.5.

Ideal functionalities. In Chapter 1 we discussed the simulation real/ideal paradigm
and we saw what it is an hybrid model and how a proof by simulation intuitively works.
Our protocol for two-party ECDSA is proved secure in this model and before going

2For Paillier’s scheme, used in [Lin17], this is not an issue: every ciphertext is valid

64

• Upon receiving (prove, sid, x, w) from a party Pi (for i ∈ {1, 2}): if (x,w) /∈
R or sid has been previously used then ignore the message. Otherwise, send
(proof, sid, x) to party P3−i

Figure 3.1: The FR
zk functionality

deeply in the protocol description and its security proof, we have to describe func-
tionalities that compose our model. We will use ideal functionalities for commitments,
zero-knowledge proofs of knowledge (ZKPoK) and commitments to non interactive zero-
knowledge (NIZK) proofs of knowledge between two parties P1 and P2.
The intuition behind these ideal functionalities can be described taking the case of ZKPoK
as an example. It is straightforward how adapting to other functionalities. Consider the
case of a prover Pi with i ∈ {1, 2} who wants to prove the knowledge of a witness w
for an element x which ensures that (x,w) satisfy the relation R, i.e. (x,w) ∈ R. In an
ideal world we can imagine an honest and trustful third party, which can communicate
with both Pi and P3−i. In this ideal scenario, Pi could give (x,w) to this trusted party,
the latter would then check if (x,w) ∈ R and tell P3−i if this is true or false. In the real
world we do not have such trusted parties and must substitute them with a cryptographic
protocol between P1 and P2. Roughly speaking, the ideal/real paradigm requires that
whatever information an adversary A (corrupting either P1 or P2) could recover in the
real world, it can also recover in the ideal world. The trusted third party can be viewed
as the ideal functionality and we denote it by F . If some protocol satisfies the above
property regarding this functionality, we call it secure.

Formally, we denote F〈x1;x2〉 → 〈y1; y2〉 the joint execution of the parties via the
functionality F , with respective inputs xi, and respective private outputs at the end of
the execution yi. Each transmitted message is labelled with a session identifier sid, which
identifies an iteration of the functionality. The ideal ZKPoK functionality [HL10, Sec-
tion 6.5.3], denoted Fzk, is defined for a relation R by Fzk〈(x,w); ∅〉 → 〈∅; (x,R(x,w))〉,
where ∅ is the empty output, signifying that the first party receives no output (cf. Fig-
ure 3.1).

The ideal commitment functionality, denoted Fcom, is depicted in Figure 3.2. We also
use an ideal functionality FR

com−zk for commitments to NIZK proofs for a relation R (cf.
Figure 3.3). Essentially, this is a commitment functionality, where the committed value
is a NIZK proof.

The ideal functionality for two-party ECDSA. The ideal functionality FECDSA
(cf. Figure 3.4) consists of two functions: a key generation function, which is called once,
and a signing function, called an arbitrary number of times with the generated keys.

65

• Upon receiving (commit, sid, x) from party Pi (for i ∈ {1, 2}), record (sid, i, x)
and send (receipt, sid) to party P3−i. If some (commit, sid, ∗) is already stored,
then ignore the message.

• Upon receiving (decommit, sid) from party Pi , if (sid, i, x) is recorded then send
(decommit, sid, x) to party P3−i.

Figure 3.2: The Fcom functionality

• Upon receiving (com− prove, sid, x, w) from a party Pi (for i ∈ {1, 2}): if (x,w) /∈
R or sid has been previously used then ignore the message. Otherwise, store
(sid, i, x) and send (proof − receipt, sid) to P3−i.

• Upon receiving (decom− proof, sid) from a party Pi (for i ∈ {1, 2}): if (sid, i, x)
has been stored then send (decom− proof, sid, x) to P3−i

Figure 3.3: The FR
com−zk functionality

3.2 Background on HPS, a HPS-based PKE scheme
and ECDSA-friendly HPS

In this section, we recall Hash Proof System and we present the properties required to
build a homomorphic encryption scheme from them. Next, we will look at the additional
properties which adapt the construction to ECDSA parameters. In Subsection 3.2.1, we
first recall the HPS framework from [CS02], before defining basic properties required for
our construction in Subsection 3.2.2. In particular, to guarantee correctness of the proto-
col (in order for party P2 to be able to perform homomorphic operations on ciphertexts
provided by P1, which are encryptions of elements in Z/qZ) the HPS must be homomor-
phic; and for security to hold against malicious adversaries we also require that the subset
membership problem underlying the HPS be hard, and that the HPS be smooth. We note
that diverse group systems (often used as a foundation for constructions of HPSs) imply
all the aforementioned properties. In Subsection 3.2.3 we present homomorphic proper-
ties of HPS. Such HPSs define linearly homomorphic encryption schemes as described in
Subsection 3.2.4. In Subsection 3.2.5, we summarise all the properties required to build
a simulation secure two party ECDSA from hash proof systems. This includes two new
definitions. The first, decomposability, imposes some requirement on the structure of the
HPS. It holds for a variety of HPSs (such as the Decision Diffie Hellman based HPS of
[CS02], and the class group based HPS presented in Section 3.4). The second, called
the double encoding assumption, is slightly more ad-hoc, and is necessary to capture
the information leaked from the public parameters of centralised ECDSA. We also back
that this assumption seems hard. Finally, before presenting the overall two party signing
protocol in next Section 3.3 and proving its security, we describe zero-knowledge proofs

66

Consider an Elliptic-curve group G of order q with generator a point P , then:
• Upon receiving KeyGen(G, P, q) from both P1 and P2:

1. Generate an ECDSA key pair (Q, x), where x $←− (Z/qZ)∗ is chosen ran-
domly and Q is computed as Q← x · P .

2. Choose a hash function Hq : {0, 1}∗ → {0, 1}blog |q|c, and store
(G, P, q,Hq, x).

3. Send Q (and Hq) to both P1 and P2.
4. Ignore future calls to KeyGen.

• Upon receiving Sign(sid,m) from both P1 and P2, where keys have already been
generated from a call to Keygen and sid has not been previously used, compute
an ECDSA signature (r, s) on m, and send it to both P1 and P2. (To do this,
choose a random k

$←− (Z/qZ)∗, compute (rx, ry)← k ·P and set r ← rx mod q.
Finally, compute s← k−1(Hq(m) + rx) and output (r, s).)

Figure 3.4: The FECDSA functionality

(ZKP) related to the aforementioned HPSs, and justify that they fulfil the Fcom/Fcom-zk
hybrid model.

3.2.1 Defining HPS and PHF
To define a HPS, the initial ingredients we need to consider are a language L, an instance
of a subset membership problem and a projective hash family (PHF). Informally, a subset
membership problem consists in deciding if a given random element from some set S
belongs to a certain subset S ′ of S, where S and S ′ are specified by the instance of the
problem. Formally,

Definition 3.2.1. Let X be a set of words, L ⊂ X be an NP language such that L :=
{x ∈ X | ∃w ∈ W : (x,w) ∈ R} where R is the relation defining the language, L be the
language of true statements in X , and for (x,w) ∈ R, let w ∈ W be a witness for x ∈ L.
The set (X ,L,W ,R) defines an instance of a subset membership problem, i.e. the problem
of deciding if an element x ∈ X is in L or in X\L.

We denote GenSM an instance generator, i.e. an algorithm which on input a parameter
1λ, outputs the description (X ,L,W ,R) of a subgroup membership problem.

As pointed above, the second ingredient we require is a projective hash family. The
following definitions come from [CS02] and their re-adaptation in the context of [CCL+19].

Definition 3.2.2 (Hash family, [CS02]). Let X and Π be finite, non-empty sets. Let Khk
be a set, Dhk be a distribution over Khk and hk be a key sampled in Khk with distribution
Dhk. We call Khk an hash key space and hk a secret hash key. Let {hashhk}hk∈Khk be a
collection of functions indexed by hk, so that for every hk ∈ Khk, hashhk is a function
from X into Π (note that we may have hashhk = hashhk′ for hk 6= hk′).
We call ({hash}hk∈Khk , Khk,X ,Π) a hash family, and each hashhk a hash function.

67

Definition 3.2.3 (Projective Hash Families). Let ({hash}hk∈Khk , Khk,X ,Π) be a hash fam-
ily and consider a key generation algorithm PHF.KeyGen which outputs a secret hashing
key hk sampled from distribution of hashing keys Dhk over a hash key space Khk. Let
hp ← projkg(hk) be a public projection key in projection key space Khp. A projective
hash family PHF is defined by a tuple PHF := ({hashhk}hk∈Khk , Khk,X ,L,Π, Khp, projkg),
where:

• Khk and Khp are defined as above

• X and L are defined as in Definition 3.2.1

• projkg : Khk 7→ Khp is an efficient auxiliary function

• hashhk : X 7→ Π is an hash function defined by the secret hashing key hk and Π is
its range as in Definition 3.2.2

An Hash Proof System (HPS) associates an instance of a subset membership problem
to a projective hash family. In addition, a HPS provides efficient algorithms to compute
basic operations: sampling an element hk ∈ Khk, computing projkg(hk) ∈ Khp given
hk ∈ Khk and computing hashhk(x) given hk ∈ Khk and x ∈ X . hashhk(x) can be
computed essentially in two ways, which depends on x ∈ X or x ∈ L. Computing
hashhk(x) given hk ∈ Khk and x ∈ X is called a private evaluation and it can be done for
every x ∈ X . If x ∈ L, there exists a witness w ∈ W such that (x,w) ∈ R. Computing
projhashhp(x,w) := hashhk(x) for (x,w) ∈ R given hp ∈ Khp is a public evaluation. Since
hk defines a hash function hashhk : X 7→ Π and hp, public and private evaluation coincide
if both restricted to x ∈ L, and then projhashhp(x,w) is correctly defined for (x,w) ∈ R.
Several properties can be satified by Hash Proof Systems, and in particular by the PHF
on which they are built upon. In this subsection, we introduce and discuss standard prop-
erties for PHFs and HPSs and other useful ones for the usage of HPS in our two-party
construction built upon them. In particular, the aim of this section is to analyze the
necessary properties to adapt Hash Proof Systems to ECDSA. To give a brief introduc-
tion to what we need, first players in our scheme works homomorphically on encrypted
messages, then to use HPS to encrypt messages we require some homomorphic properties.
Second, we can construct an ECDSA-friendly PHF such that the order of message space
is the same as the order of the Elliptic Curve and then extending to ECDSA friendly
HPS when putting together the resulting PHF with a subset membership problem. A
description of some standard hard assumptions for PHF are given in Subsection 3.2.2.
In Subsection 3.2.3 we discuss homomorphic properties of PHF. In Subsection 3.2.4 we
present the resulting encryption scheme from HPS. Finally, a detailed explanation about
the construction of an ECDSA-friendly PHF is given in Subsection 3.2.5.

3.2.2 Hard assumptions for PHF
δs−smoothness. The standard smoothness property of a PHF requires that for any
element x /∈ L outside the language and for each secret key hk, the value hashhk(x) is
uniformly distributed knowing hp← projkg(hk). As introduced in the previous subsection,
we require that the order q of the Elliptic curve is part of the parameters and then, that
the PHF is adapted to q. First of all, we consider sets X and Π that are finite abelian

68

groups. The space where messages are encoded is a subgroup F of Π such that F is cyclic
of order q and its generator is f . Of course, a necessary condition for the existence of such
a group is that the order of Π is a multiple of q. For now suppose this is the case. Once we
have a cyclic subgroup F of order q, it is clear how a correspondence one-by-one with the
elliptic curve G of ECDSA may be built. Indeed, for m ∈ Z/qZ the enconding of m in F
is fm, which is an induced efficient isomorphism. The inverse isomorphism logf : fm 7→ m
must also be efficiently computable. We assume that the discrete logarithm is easy in
F . Even if it seems a non trivial construction, there exists examples of a group with a
subgroup of given order q in which it is easy to compute the discrete logarithm, while it
is not easy to compute it outside the subgroup. The encryption scheme CL built from
class groups that we saw in Chapter 2 is a clear example of how to generate a group with
a subgroup where discrete logarithm is easy and such that this subgroup is the space of
encoded messages. We will consider a instantiation of our two-party scheme with CL in
the dedicated Section 3.4.
Remark 11. In some instantiations F = Π, but F may also be a strict subgroup of Π.
If we are in the latter case, i.e. F (Π, we require smoothness over X on F ([CS02,
Subsection 8.2.4]).
In the above description, smoothness property takes in account the uniformity of hashhk(x)
for x /∈ F . We introduced informally the smoothness property of an PHF, formally it is
as follows:
Definition 3.2.4. A projective hash family is δs-smooth over X on F if for any x ∈ X\L
(i.e. x /∈ X), a random π ∈ F and a randomly sampled hashing key hk ←↩ Dhk , the
distributions U := {x, projkg(hk), hashhk(x) · π} and V := {x, projkg(hk), hashhk(x)} are
δs-close.

δL−hard subset membership problem. For security to hold (X ,L,W ,R) must be
an instance of a hard subset membership problem, i.e. no polynomial time algorithm
can distinguish random elements of X\L from those of L with significant advantage. We
introduced this problem as part of Definition 3.2.1, and a formal definition is:
Definition 3.2.5. Consider a positive integer λ. We say GenSM is a generator for a δL(λ)-
hard subset membership problem if for any (X ,L,W ,R)← GenSM(1λ), δL is the maximal
advantage of any polynomial time adversary in distinguishing random elements of X\L
from those of L. For conciseness, we often simply say (X ,L,W ,R) is a δL−hard subset
membership problem.

3.2.3 Homomorphic Properties
In the introduction we talked about proposed solutions for building a distributed
DSA/ECDSA protocol and we saw that a strategy is using an homomorphic encryp-
tion scheme as a building block. We follow the same direction, but to do that our PHF
should be homomorphic too. This is a necessary property, but alone is not enough. In-
deed, we have to define the remaining properties our PHF should have to be adaptable to
ECDSA, or simply to be ”ECDSA-friendly”. In this subsection we continue in defining
properties that are necessary for our PHF.

69

Linearly homomorphic PHF. In order for the homomorphic operations performed
to hold in the two party ECDSA protocol, we require that the projective hash family also
be homomorphic as defined in [HO09].
Definition 3.2.6 ([HO09]). The projective hash family PHF := ({hashhk}hk∈Khk , Khk,X ,
L,Π, Khp, projkg) is homomorphic if (X , ?) and (Π, ·) are groups, and for all hk ∈ Khk,
and u1, u2 ∈ X , we have hashhk(u1) · hashhk(u2) = hashhk(u1 ? u2), that is to say hashhk is
a homomorphism for each hk.
Linearly homomorphic properties are also valid for the public projective hash function.
Indeed, for hp← projkg(hk) and for elements u1, u2 ∈ L:

projhashhp(u1, w1) · projhashhp(u2, w2) = hashhk(u1) · hashhk(u2)
= hashhk(u1 ? u2) = projhash(u1 ? u2, w),

for some witness w.

Homomorphically extended PHF. We notice that the co-domain of projkg, which
specifies the set of valid projection keys, may not be efficiently recognisable. Though
we do not require – as did the protocol of [Lin17] – a costly ZKPoK of the secret key
associated to the public key, it is essential in our protocol that even if a public key is
chosen maliciously (i.e. there does not exist hk ∈ Khk such that hp ← projkg(hk), which
may go unnoticed to honest parties in the protocol), the homomorphic properties of the
public projective hash function still hold. We thus require that the co-domain of projkg,
which defines valid projection keys, be contained in an efficiently recognisable space K ′hp,
such that for all hp′ ∈ K ′hp, hashhp′ is a homomorphism (respectively to its inputs in L).
Definition 3.2.7 (Homomorphically extended PHF). We say that the projective hash fam-
ily PHF := ({hashhk}hk∈Khk , Khk,X , L,Π, Khp, K

′
hp, projkg) is homomorphically extended

if PHF := ({hashhk}hk∈Khk , Khk,X , L,Π, Khp, projkg) is a homomorphic PHF and that
there exists an efficiently recognizable space K ′hp ⊇ Khp such that for any hp′ ∈ K ′hp, the
function projhashhp′ is a homomorphism (respectively to its inputs in L).

Key homomorphic PHF. Our security proofs also requires that projective hash fam-
ilies are linearly homomorphic with respect to the hashing keys.
Definition 3.2.8. A projective hash family PHF is key homomorphic if Khk is a cyclic
additive Abelian group, Π is a multiplicative finite Abelian group; and ∀x ∈ X and
∀hk0, hk1 ∈ Khk, it holds that hash(hk0, x) · hash(hk1, x) = hash(hk0 + hk1, x).
Remark 12. We note that for correctness and security of our construction, it is not
necessary that Khk be cyclic. However imposing this greatly simplifies presentation. It
can be verified that our results hold even without this requirement on Khk. We also
point out that if one does not require Khk to be cyclic, the resulting definition is that of
[BBL17, Definitions 6 and 7].

3.2.4 Resulting Encryption Scheme
We use the standard chosen plaintext attack secure encryption scheme which results from
a HPS [CS02]. It consists of the following algorithms:

70

KeyGen The key generation algorithm runs PHF.KeyGen and sets hk ∈ Khk as the secret
key, and the associated public key is hp← projkg(hk)

Enc The encryption algorithm takes in input a plaintext message m in Z/qZ and a public
key hp output by the key generation. m is encrypted by sampling a random pair
(u,w) ∈ R and computing Enc(hp,m)← (u, projhashhp(u,w)fm). We sometimes use
the notation Enc((u,w); (hp,m)) to specify the randomness used in the encryption
algorithm

Dec The decryption algorithm takes in input a ciphertext (u, e) ∈ X × Π and a secret
key hk. To decrypt c = (u, e) it computes:

Dec(hk, (u, e))← logf (e · hashhk(u)−1)

If e · hashhk(u)−1 /∈ F = 〈f〉, the decryption algorithm returns the special error
symbol ⊥.

Theorem 3.2.1. The scheme is semantically secure under chosen plaintext attacks as-
suming both the smoothness of the HPS and the hardness of the underlying subset
membership problem.

Homomorphic properties. Given encryptions (u1, e1) and (u2, e2) of respectively m1
and m2, and an integer a, we require that there exist two procedures EvalSum and EvalScal
such that

Dec(hk,EvalSum(hp, (u1, e1), (u2, e2))) = m1 +m2

Dec(hk,EvalScal(hp, (u1, e1), a)) = a ·m1

which is the case if the projective hash family is homomorphic. This definition is in line
with Definition 1.2.4.

Invalid ciphertexts. In the description of the HPS based encryption scheme, it is
important to note that the decryption of (u, e) ends with a valid message m 6= ⊥ if
e · hashhk(u)−1 ∈ F , i.e. if it is possible to compute the discrete logarithm in base
F of e · hashhk(u)−1. Indeed, if before the computation of the logarithm the element
M := e · hashhk(u)−1 does not belong to F , then it does not exist an exponent α such
that M = fα. However, even if the encryption of a plaintext m is done taking a couple
(u,w) ∈ R, i.e. u ∈ L, it is possible to encrypt m in a decryptable ciphertext using the
secret key hk and u ∈ X\L from the private evaluation procedure. From this observation,
we define the notion of invalid ciphertexts as these will be useful in our security proofs.
Definition 3.2.9 (Invalid ciphertexts). A ciphertext is said to be invalid if it is of the form
(u, e) := (u, hashhk(u)fm) where u ∈ X\L, i.e. if it comes from an element which is not
in the language.
Notice that one can compute an invalid ciphertext given the secret hashing key hk, but
not the public projection key hp, since u /∈ L and then it does not exist a witness w
for u. Moreover, the decryption algorithm applied to (u, e) with secret key hk recovers a
valid message m, then an invalid ciphertext is indistinguishable of a valid one under the
hardness of the subset membership problem.

71

Homomorphic properties over invalid ciphertexts. It is easy to verify that ho-
momorphic operations hold even if a ciphertext is invalid, whether this be between two
invalid ciphertexts or between a valid and invalid ciphertext. This is true since the ho-
momorphic properties we required of the PHF hold over the whole group X (and not only
in L).

3.2.5 ECDSA friendly Projective Hash Families
We defined HPS, PHF and part of the properties we need to build our two-party signature
scheme. We said that the security of the resulting protocol relies on several assumptions,
where two of them are the δs−smoothness and the δL−hard subset membership problem,
and the encryption scheme we consider must be linearly homomorphic with respect to
both group elements and keys. The last step to complete the description of the properties
a PHF has to satisfy for our construction is looking at how to adapt it to ECDSA. In
addition, in this section we formalise new properties for PHFs which contribute to the
clarity of our security proofs. A fundamental property we require is the decomposability
of element in X . To understand the decomposability property, it is enough to think that
in general in a group X there is not a way to represent elements in a specific form. For
example, suppose that x ∈ X = G × H, where × denotes the direct product of two
subgroups G and H of X . It is clear that x = a · b, where a ∈ G and b ∈ H in a unique
way. Then, if the group has a known specific form, even its elements have a known specific
form.

(Υ, F)-Decomposability. We informally introduced the idea of a decomposable PHF
at the beginning of this subsection. In this paragraph we formalize this property. The
decomposability property states that the domain X of hash is the direct product of the
language L and some cyclic subgroup of X . Since – given the projection key – one can
publicly compute hash values over elements in L, decomposability allows us to have a
clear separation between the part of a given hash value which is predictable (whose pre-
image is in L), and the part which appears random. Though the definition is new, many
well known PHFs arising from groups satisfy this property (e.g. the original DDH and
DCR based PHFs of [CS02]).
Definition 3.2.10 (Decomposability). Let SM := (X ,L,W ,R) be a subgroup membership
problem, and consider the associated projective hash family PHF, such that the co-domain
Π of hash is a finite Abelian group which contains a cyclic subgroup F . We say that PHF
is (Υ, F)-decomposable if there exists Υ ∈ X s.t.:

• X is the direct product of L and 〈Υ〉;

• ∀hk ∈ Khk, hashhk(Υ) ∈ F .

Remark 13. In what follows F is a cyclic subgroup of Π, generated by f and of prime
order q, and the PHFs we consider are homomorphic and key homomorphic. For hk ←↩
Dhk, if hashhk(Υ) = 1 smoothness does not hold, hence we assume this is not the case.
Throughout the rest of the chapter, we denote Ψ the considered generator of Khk, which
satisfies hashΨ(Υ) = f . Consequently, for any hk ←↩ Dhk, where hk = c · Ψ (for some
c ∈ Z), and for any y = Υb (for some b ∈ Z), one has hashhk(y) = f bc.

72

Finally, the third security assumption3 we require is the difficulty of the double encoding
problem. Unlike smoothness and the hard subset membership problem, the double en-
coding problem is not a standard property of PHF, but it is introduced in our context.
A definition of this problem and the motivation behind its difficulty are given in the
following two paragraphs.

The Double Encoding Problem. A two-party signing protocol involves two parties
that interactively compute the signature of a message. What can happen is, essentially,
that the protocol aborts or ends successfully. Anyway, a party can behave maliciously to
obtain information leaked by the interactive protocol. To ensure security of our protocol,
we need a notion which deals with these leaked information revealed by the situation in
which the protocol concludes. To understand better which situation can occur, in the
overall protocol some of the steps are:

• P1 sends an encryption c1 of its secret share x1 of what will be the secret signing
key, along with the elliptic curve point Q1 := x1P to P2.

• P2 sends a ciphertext c2 (which should be homomorphically computed from c1) in
response to P1.

If at the end of the last step the protocol stops, the HPS’s smoothness would suffice to
prove the security of the protocol, since the encrypted value is perfectly masked. The next
step for P1 is decrypting the received value, i.e. c2 which comes from P2. This is the last
step to compute the overall signature. The problem we focus on the successful ending or
abort of the protocol. Indeed, a malicious P2 would send an encryption c2 that reveals one
bit of information from the fact the protocol aborts or not. It is thus necessary to ensure
that a corrupted P2 can not devise malformed ciphertexts which allows it to distinguish
real and ideal executions. Indeed, a distinction between real and ideal executions could be
caused by a different ending in the two executions, one successful and the other aborting.
The idea behind the double encoding assumption is motivated by a potential point of
failure in the security proof. Indeed, in the security proof there is an hard case to cover
where it is possible to distinguish between real and ideal executions without assuming the
hardness of the double encoding. Fortunately, under the hardness of the double encoding
assumption, the proof works. As said above, next paragraph is dedicated on the hardness
of this assumption, where its validity is motivated.
Having given a motivation behind the necessity of a new definition, we can formally define
it. To this end, we require that – given a one way function (OWF) evaluated in x ∈ Z/qZ
(in our protocol this is the elliptic curve point Q := xP) – no polynomial time adversary
can produce two invalid encryptions of x. Though the following assumption may seem
quite ad-hoc, in the following paragraph we motivate that intuitively it seems a least as
hard as inverting the one way function.
Definition 3.2.11 (Double encoding assumption [CCL+19]). Let λ ∈ N be a security
parameter and q be a λ-bit prime. Consider a collection of one way functions sampled from
an efficient algorithm GenOW , such that for h ←↩ GenOW (1λ, q), h has input space Z/qZ
(and arbitrary output space). Let GenSM be a subset membership problem generator

3The other two assumption are the smoothness and the hard subset membership.

73

such that the resulting projective hash family PHF is (Υ, F)-decomposable, for F of
prime order q. The double encoding (DE) problem is δDE(λ)-hard for (GenSM, GenOW)
if, given (X ,L,W ,R)←↩ GenSM(1λ, q), h← GenOW (1λ, q), and y := h(x) for a randomly
sampled x ∈ Z/qZ, no algorithm A running in time polynomial in λ can output two
invalid encryptions of x, with probability greater than δDE(λ). More precisely,

δDE(λ) > Pr
[
u1, u2, u2u

−1
1 ∈ X \ L and hp = projkg(hk) :

SM←↩ GenSM(1λ, q), h←↩ GenOW (1λ, q), x $←− Z/qZ, y ← h(x),
(hp, (u1, hashhk(u1)fx), (u2, hashhk(u2)fx))← A(h,SM, y)

]
.

The DE assumption holds if for any λ-bit prime q, δDE is negligible in λ.

On the hardness of the double encoding problem. In this paragraph we motivate
the hardness of our new assumption. We premise that breaking the double encoding
assumption seems to be a similar problem to inverting a one-way function. We start giving
a look at the relation between an HPS and a OWF. If the HPS and the OWF arise from
independent structures, it seems unlikely that one could solve the DE problem without
breaking the one wayness of h, and subsequently computing two invalid encodings of x.
Even if they arise from the same structures, it is not clear how one problem implies the
other. Of course we need to pay attention on the considered OWF, indeed if for example
the OWF were the mapping of x to fx, the DE problem would be easy. However, since in
our applications we specifically require that it is easy to compute discrete logarithm in
the group of encoded messages, i.e. computing x from fx ∈ F , that mapping is not one
way. The intuition about the hardness of the double encoding assumption can be given by
the foolowing two examples. Consider two PHF instantiations which are relevant for our
purposes. The first is build from the DCR assumption (cf. [CS02]), while the other from
class group cryptography (and the HSM assumption4). Let us first recall the definition
of a subgroup decomposition problem.
Definition 3.2.12. Consider a finite abelian group G, and subgroups G1 and G2 such that
G is the direct product of G1 and G2. An algorithm A solves the subgroup decomposition
(SD) problem in (G,G1, G2) if, given input x←↩ G, A outputs y ∈ G1, z ∈ G2 such that
x = yz.
In PHFs arising from DCR and HSM, one has Khk = Z, and for a hashing key hk←↩ Dhk,
and x in the finite abelian group X , one has hashhk(x) = xhk. This implies that the
output space of the hashing algorithm is Π := X = L × 〈Υ〉, and in fact Υ = f and
〈Υ〉 = F . Furthermore computing x from fx can be done efficiently. Clearly these PHFs
are homomorphic and key homomorphic (multiplicative homomorphic with respect to the
base with the same key, additive homomorphic in the exponent with respect to the keys).

We want to prove that for both these PHFs, the problem of inverting the OWF can
be reduced to the hardness of solving the SD problem in (X ,L, F) and the hardness of
solving the DE problem. We can cope with the two different PHFs in a similar way, with
the difference that for the HSM based PHF, the order of f is a prime q, while for the DCR
based PHF, the order of f is an RSA integer N . As a consequence, when building two-
party ECDSA from DCR, the order q of the one way function’s input space and the order

4See Section 3.4 or Chapter 2

74

N of f are different, where N � q. Hence we modify slightly the assumption, so that A
must output (hp, (u1, hashhk(u1)fx), (u2, hashhk(u2)fx)), with x ∈ Z and 0 ≤ x ≤ q − 1
(this suffices to instantiate our generic construction of Section 3.3).

The following lemma proves the statement about the reduction of the problem of
inverting OWF to a solution of the SD problem and of the DE problem.

Lemma 3.2.2 ([CCL+19]). Consider PHFs arising from DCR and from HSM (Section
3.4). Further consider a one way function h. Suppose there exists a PPT algorithm B1
solving the DE problem with non negligible probability; and a PPT algorithm B2 solving
the SD problem with non negligible probability; then one can build a PPT algorithm
breaking the one wayness of h with non negligible probability.

Proof. Consider h ←↩ GenOW (1λ, q), an adversary A attempting to invert h, and algo-
rithms B1 and B2 as described in the lemma. A gets as input a value y := h(x) for x $←−
Z/qZ. A runs SM = (X ,L,W ,R) ← GenSM(1λ, q), and sends (h,SM, y) to B1. With
significant probability B1 outputs (hp, (u1, u

hk
1 f

x), (u2, u
hk
2 f

x)) where u1, u2, u2u
−1
1 ∈ X \L

and hp = projkg(hk).

HSM There exist unique values z1, z2 ∈ L and b1, b2 ∈ Z/qZ such that u1 = z1f
b1 and

u2 = z2f
b2 . Let us denote e1 := uhk

1 f
x = zhk

1 f
b1hk+x and e2 := zhk

2 f
b2hk+x. A calls

upon B2 four times, with inputs u1, u2, e1 and e2 respectively (these inputs can
be re-randomized, but for simplicity we omit this level of detail), to obtain z1, z2 ∈
L; f b1 , f b2 ∈ F ; zhk

1 , z
hk
2 ∈ L; and f b1hk+x, f b2hk+x. Now A can efficiently compute

(b1 mod q), (b2 mod q), (b1hk+x mod q) and (b2hk+x mod q). Since u2u
−1
1 ∈ X\L,

b1 6= b2 mod q, and so there exists a unique solution for (x mod q) which A can
efficiently compute from the aforementioned equations, thereby breaking the one
wayness of h.

DCR There exist unique values z1, z2 ∈ L and b1, b2 ∈ Z/NZ such that u1 = z1f
b1 and

u2 = z2f
b2 . Let us denote e1 := uhk

1 f
x = zhk

1 f
b1hk+x and e2 := zhk

2 f
b2hk+x. A

calls upon B2 four times, with inputs u1, u2, e1 and e2 respectively (as we have
seen in the previous item for HSM), to obtain z1, z2 ∈ L; f b1 , f b2 ∈ F ; zhk

1 , z
hk
2 ∈

L; and f b1hk+x, f b2hk+x. Now A can efficiently compute (b1 mod N), (b2 mod N),
(b1hk + x mod N) and (b2hk + x mod N). Since u2u

−1
1 ∈ X\L, b1 6= b2 mod N ,

and so there exists a unique solution for (x mod q) which A can efficiently compute
from the aforementioned equations, thereby breaking the one wayness of h.

Note that for the DCR based PHF there exists a trapdoor which renders the SD
problem easy, which can be efficiently computed when generating the subset membership
problem instance. Thus if the HPS arises from DCR, the DE problem is at least as hard
as inverting the one way function.

For our HPS from the HSM assumption (resulting from class group cryptography) in
Subsection 3.4.1, best known algorithms for solving the SD problem are sub-exponential,
whereas for computing discrete logarithms in elliptic curves (which is the OWF we will
consider in our construction) there currently exist only exponential algorithms. Conse-
quently for this application the DE problem must have an exponential complexity.

75

ECDSA-friendly HPS. We conclude this section with the definition of an ECDSA-
friendly HPS. We defined all the properties an HPS has to satisfy to be compatible with
the ECDSA scheme. Essentially, the notion of an ECDSA-friendly HPS is a HPS which
meets all of the aforementioned properties. This notion suffices to ensure simulation
based security in the protocol of Section 3.3.

Definition 3.2.13 ((Υ,F , δs, δL, δDE)-ECDSA-friendly HPS, [CCL+19]). Let X ,Π and F
be groups such that F is a cyclic subgroup of Π of prime order q, generated by f ,
and such that there exists an efficient isomorphism from (Z/qZ,+) to (F, ·), mapping
m ∈ Z/qZ to fm, whose inverse logf is also efficiently computable. Let expG be the
function which to x ∈ Z/qZ maps the elliptic curve point xP . An (Υ, F, δs, δL, δDE)-
ECDSA-friendly hash proof system is a hash proof system which associates to a δL−hard
subset membership problem a homomorphically extended projective hash family PHF :=
({hashhk}hk∈Khk , Khk,X , L,Π, Khp, K

′
hp, projkg) which is (Υ, F)-decomposable, δs-smooth

over X on F , and such that the DE problem is δDE-hard for (PHF, expG).

3.2.6 Zero-Knowledge Proofs
Proofs of knowledge. We use the Fzk, Fcom-zk hybrid model. Ideal zero-knowledge
functionalities are used for the relations below, where the parameters of the elliptic curve
(G, P, q) are implicit public inputs. We did not present them in the section dedicated
to the model and the functionalities (Section 3.1) because one of the relation, RHPS−DL,
requires the background on HPS from Section 3.2 and for clarity it is better to put the
relations together. The relations we are interested in are:

1. RDL := {(Q,w)|Q = wP}, proves the knowledge of the discrete log of an elliptic
curve point.

2. RHPS−DL := {(hp, (c1, c2), Q1); (x1, w)|(c1, c2) = Enc((u,w); (hp, x1)) ∧ (c1, w) ∈ R ∧
Q1 = x1P}, proves the knowledge of the randomness used for encryption, and of
the value x1 which is both encrypted in the ciphertext (c1, c2) and the discrete log
of the elliptic curve point Q1.

The functionalities FRDL
zk , FRDL

com-zk can be instantiated using Schnorr proofs [Sch91]. For
the RHPS−DL proof, Lindell in [Lin17] uses a proof of language membership as opposed
to a proof of knowledge. Though his technique is quite generic, it cannot be used in our
setting. Indeed, his approach requires that the ciphertext be valid, which means that
the element c must be decryptable. As Lindell uses Paillier’s encryption scheme, the
surjectivity of the scheme implies that any element of (Z/N2Z)× is a valid ciphertext.
This is not the case for a HPS-based encryption scheme, since it incorporates redundancy
so that any pair in X × Π is not a valid ciphertext.

For our instantiations, we will introduce specific and efficient proofs. From the reason-
ing done in Section 3.2, using ECDSA-friendly HPS we need not to prove that x1 ∈ Z/qZ,
since both the message space of our encryption scheme and the elliptic curve group G are
of order q. This is an advantage compared with [Lin17] because we do not need a range
proof for x1.

76

3.3 Two-Party ECDSA Signing Protocol with
Simulation-Based Security

In this Section we provide our generic construction for two-party ECDSA signing resulting
from hash proof systems. The scheme is depicted in Figure 3.6. Next in Theorem 3.3.1,
we present a proof that the protocol is secure in the ideal/real paradigm. As already
pointed, we must argue the indistinguishability of an adversary’s view – corrupting ei-
ther party P1 or P2 – in real and simulated executions. Before going deeper in the
description is necessary to focus on a particular aspect of the simulation in the proof. In
Cramer-Shoup like encryption schemes (resulting from HPSs as described in paragraph
Resulting Encryption Scheme from Subsubsection 3.2.3), the chosen plaintext attack
indistinguishability of ciphertexts allows for the simulator in the security game to sample
the secret hashing key hk, and compute the resulting projection key hp. Thus hk is known
to the simulator. Indeed here, in order to prove indistinguishability, the simulator first
replaces the random masking element u ∈ L in the original encryption scheme with an
element sampled outside the language u′ ∈ X\L. Note that in order to perform this
change the simulator must know the secret hashing key, since a private evaluation is the
way to compute the encryption of an element outside the language. Under the hardness
of the subset membership problem this change goes unnoticed to any polynomial time
adversary. Then to guarantee the indistinguishability of the resulting encryption scheme
we rely on the smoothness of the projective hash family which allows one to replace the
plaintext value by some random element from the plaintext space. This observation is
of particular importance and we insist on this point since in Lindell’s protocol [Lin17],
many issues arise from the use of Paillier’s cryptosystem, for which the indistinguisha-
bility of ciphertexts no longer holds if the simulator knows the secret key. In particular
this implies that in Lindell’s game based proof, instead of letting the simulator use the
Paillier secret key to decrypt the incoming ciphertext (and check the corrupted party P2
did not send a different ciphertext c than that prescribed by the protocol), the simulator
guesses when the adversary may have cheated by simulating an abort with a probability
depending on the number of issued signatures. This results in a proof of security which
is not tight (the reduction implies a factor of the order of the inverse of the number of
the issued signatures).

Lindell presents two proofs, a game-based one and a simulation-based one. The tech-
nique adopted by Lindell in its game based proof suffices for a game-based definition, but
surely it is not enough for simulation-based security definitions. In the latter case, [Lin17]
presents a proof which proves that their protocol is secure using simulation, but in order
to prove security of the protocol it required the introduction of a new rather non-standard
and interactive assumption called Paillier-EC assumption, which we report here for com-
pleteness. Paillier-EC assumption is defined via the experiment in Figure 3.5, where O
is an oracle such that 1 ← Oc?(c′, α, β) if and only if Paillier.Dec(1λ, sk, c′) = α + βωb?
mod q, where c′ = Paillier.Enc(1λ, pk, ωb?), and O stops after the first time it returns 0.
The Paillier-EC assumption is hard if for every probabilistic polynomial-time adversary A
there exists a negligible function ν such that Pr[ExpA(1λ) = 1] ≤ 1

2 + ν(n).

In our context, the framework we have chosen to adopt helps us to avoid such an interac-

77

Experiment ExpA(1λ)
(pk, sk)← Paillier.KeyGen(1λ)
(ω0, ω1) $←− Z/qZ, Q← ω0P

b?
$←− {0, 1}, c? ← Paillier.Enc(1λ, pk, ωb?)

b← AOc? (·,·,·)(pk, c?, Q)
if b = b? then return 1

else return 0

Figure 3.5: Paillier-EC assumption from [Lin17]

tive assumption. Moreover, should one write a game based proof for our construction, the
security loss present in [Lin17] would not appear. Finally we note that the correctness of
our protocol follows from the correctness of the underlying public key encryption scheme
and from the fact the hash function is linearly homomorphic for any public key in the
efficiently recognisable space K ′hp.

3.3.1 The Two-Party ECDSA protocol

We present in this subsection our two-party ECDSA protocol. The protocol is depicted
in figure 3.6. We give a description of the it below.

IKeyGen In the interactive key generation subprotocol, initially player P1 chooses a share
x1 ∈ Z/qZ for the secret signing key and the associated public share Q1 = x1P .
Then P1 commits to a proof of knowledge of the discrete logarithm of Q1 and sends
the commitment and Q1 to P2. After that P2 chooses its share x2 ∈ Z/qZ and Q2 =
x2P , where x2 is unrelated to x1 for the hiding property of the commitment scheme.
P2 answers to P1 with Q2 and a proof of knowledge of the discrete logarithm of Q2.
Then P1 checks the validity of the proof on P2 values and sends the decommitment.
Otherwise, it aborts. After that, P1 sends an encryption of its share x1 with a proof
for the relation RHPS−DL and P2 checks the validity of the proof. If it does not pass,
P2 aborts. In the end, both players can compute the public key Q = x1Q2 for P1
and Q = x2Q1 for P2. The encryption of x1 will be used in the signing part by P2
to compute homomorphic operation and computing its share of the signature5.

ISign In the interactive signing subprotocol, P1 and P2 run a protocol for computing the
ECDSA nonce R as done with Q. After that, P2 computes homomorphic operations
on Enc(x1) to generate the part of the signature which is dependent from its private
values. Finally, P2 sends to P1 the resulting ciphertext c3, P1 decrypts and complete
the signature with its private values. If the signature does not pass the ECDSA
verification algorithm, P1 aborts.

5Sending an encryption of x1 is an idea which comes from [Lin17].

78

P1 IKeyGen(G, P, q) P2

x1
$←− Z/qZ

Q1 ← x1P
(com-prove,1,Q1,x1)−−−−−−−−−−−→ FRDL

com-zk
(proof-receipt,1)−−−−−−−−−→

x2
$←− Z/qZ

P1 aborts if
(proof, 2, Q2)
not received.

(proof,2,Q2)←−−−−−−− FRDL
zk

(prove,2,Q2,x2)←−−−−−−−− Q2 ← x2P

(decom-proof,1)−−−−−−−−−→ FRDL
com-zk

(decom-proof,1,Q1)−−−−−−−−−−−→
hk←↩ Dhk

hp← projkg(hk)
Sample (u,w) ∈ R

ckey ← Enc((u,w); (hp, x1)) (prove,3,(hp,ckey,Q1),(x1,w))−−−−−−−−−−−−−−−→ FRHPS−DL
zk

(proof,3,(hp,ckey,Q1))−−−−−−−−−−−→

P2 aborts unless
(decom-proof, 1, Q1),

(proof, 3,
(hp, ckey, Q1))
received and

hp ∈ K ′hp.
Q← x1Q2 Q← x2Q1

P1 ISign(m, sid) P2

k1
$←− Z/qZ

R1 ← k1P
(com-prove,sid||1,R1,k1)−−−−−−−−−−−−−→ FRDL

com-zk
(proof-receipt,sid||1)−−−−−−−−−−−→ k2

$←− Z/qZ
R2 ← k2P

P1 aborts if
(proof, sid||2, R2)

not received.

(proof,sid||2,R2)←−−−−−−−−− FRDL
zk

(prove,sid||2,R2,k2)←−−−−−−−−−−

(decom-proof,sid||1)−−−−−−−−−−−→ FRDL
com-zk

(decom-proof,sid||1,R1)−−−−−−−−−−−−−→
P2 aborts if

(decom-proof, sid||1, R1)
not received.

m′ ← H(m)
R = (rx, ry)← k1R2 R = (rx, ry)← k2R1
r ← rx mod q r ← rx mod q

c1 ← Enc(hp, k−1
2 ·m′)

c2 ← EvalScal(hp, ckey, k
−1
2 rx2)

α← Dec(hk, c3) c3←−−−−−−−−− c3 ← EvalSum(hp, c1, c2)
ŝ← α · k−1

1
s← min(ŝ, q − ŝ)

If not Verif(Q,m, (r, s))
P1 aborts

else Return (r, s)

Figure 3.6: Two-Party ECDSA Key Generation and Signing Protocols from HPSs

79

3.3.2 Simulation-based security of the Two-Party ECDSA
scheme

Theorem 3.3.1. Assume HPS is a (Υ, F, δs, δL, δDE)−ECDSA-friendly HPS; and that
no polynomial time algorithm can compute discrete logarithms in G with probability
greater than δDL; then the protocol of Figure 3.6 securely computes FECDSA in the
(Fzk,Fcom-zk)−hybrid model in the presence of a malicious static adversary (under the
ideal/real definition). Indeed there exists a simulator for the scheme such that no polyno-
mial time adversary – having corrupted either P1 or P2 – can distinguish a real execution of
the protocol from a simulated one with probability greater than 2δL+δDE+2δDL+1/q+δs.

Proof. In this proof, the simulator S only has access to an ideal functionality FECDSA for
computing ECDSA signatures, so all it learns in the ideal world is the public key Q which
it gets as output of the KeyGen phase from FECDSA and signatures (r, s) for messages
m of its choice as output of the Sign phase. However in the real world, the adversary,
having either corrupted P1 or P2 will also see all the interactions with the non corrupted
party which lead to the computation of a signature. Thus S must be able to simulate
A’s view of these interactions, while only knowing the expected output. To this end S
must set up with A the same public key Q that it received from FECDSA, in order to be
able to subsequently simulate interactively signing messages with A, using the output of
FECDSA from the Sign phase.

S simulates P2 – Corrupted P1: We first show that if an adversary A1 corrupts P1,
one can construct a simulator S s.t. the output distribution of S is indistinguishable
from A1’s view in an interaction with an honest party P2. The main difference here
with the proof of [Lin17] arises from the fact we no longer use a ZKP from which S
can extract the encryption scheme’s secret key. Instead, S extracts the randomness used
for encryption and the plaintext x1 from the ZKPoK for RHPS−DL, which allows it to
recompute the ciphertext and verify it obtains the expected value ckey. Moreover since
the message space of our encryption scheme is Z/qZ, if A1 does not cheat in the proofs
(which is guaranteed by the (Fzk,Fcom-zk)-hybrid model), the obtained distributions are
identical in the ideal and real executions (as opposed to statistically close as in [Lin17]).

Key Generation Phase

1. Given input KeyGen(G, P, q), the simulator S sends KeyGen(G, P, q) to the ideal
functionality FECDSA and receives back a public key Q.

2. S invokes A1 on input IKeyGen(G, P, q) and receives the commitment to a proof of
knowledge of x1 such that Q1 = x1P denoted (com-prove, 1, Q1, x1) as A1 intends
to send to FRDL

com-zk, such that S can extract x1 and Q1.

3. Using the extracted value x1, S verifies that Q1 = x1P . If so, it computes Q2 ←
x−1

1 Q (using the value Q received from FECDSA); otherwise S samples a random
Q2 from G.

4. S sends (proof, 2, Q2) to A1 as if sent by FRDL
zk thereby S simulating a proof of

knowledge of x2 s.t. Q2 = x2P .

80

5. S receives (decom− proof, 1) as A1 intends to send to FRDL
com-zk and simulates P2

aborting if Q1 6= x1P . S also receives (prove, 3, (hp, ckey, Q1), (x1, w)) as A1 intends
to send to FRHPS−DL

zk .

6. S computes u from w such that (u,w) ∈ R, and using the extracted value x1 verifies
that ckey = Enc((u,w); (hp, x1)), and simulates P2 aborting if not.

7. S sends continue to FECDSA for P2 to receive output, and stores (x1, Q, ckey).

When taking Fzk and Fcom−zk as ideal functionalities, the only difference between the
real execution as ran by an honest P2, and the ideal execution simulated by S is that
in the former Q2 ← x2P where x2

$←− Z/qZ, whereas in the latter Q2 ← x−1
1 Q, where

Q is the public key returned by the ideal functionality FECDSA. However since FECDSA
samples Q uniformly at random from G, the distribution of Q2 in both cases is identical.

Signing Phase

1. Upon input Sign(sid,m), simulator S sends Sign(sid,m) to FECDSA and receives
back a signature (r, s).

2. S computes the elliptic curve point R = (r, ry) using the ECDSA verification algo-
rithm.

3. S invokes A1 with input ISign(sid,m) and simulates the first three interactions such
that A1 computes R. The strategy is similar to that used to compute Q, in brief,
it proceeds as follows:

(a) S receives (com-prove, sid||1, R1, k1) from A1.
(b) If R1 = k1P then S sets R2 ← k−1

1 R; otherwise it chooses R2 at random. S
sends (proof, sid||2, R2) to A1.

(c) S receives (decom-proof, sid||1) from A1. If R1 6= k1P then S simulates P2
aborting and instructs the trusted party computing FECDSA to abort.

4. S computes c3 ← Encpk(k1 · s mod q), where s was received from FECDSA, and
sends c3 to A1.

As with the computation of Q2 in the key generation phase, R2 is distributed iden-
tically in the real and ideal executions since R is randomly generated by FECDSA.
The zero-knowledge proofs and verifications are also identically distributed in the Fzk,
Fcom-zk-hybrid model. Thus, the only difference between a real execution and the
simulation is the way that c3 is computed. In the simulation it is an encryption of
k1 · s = k1 · k−1(m′ + r · x) = k−1

2 · (m′ + r · x) mod q, whereas in a real execution
c3 is computed from ckey, using the homomorphic properties of the encryption scheme.
However, notice that as long as there exist (u,w) such that ckey = Enc((u,w); (hp, x1))
where Q = x1P – which is guaranteed by the ideal functionality FRHPS−DL

zk – and as long
as the homomorphic operations hold – which is guaranteed for any hp in the efficiently
verifiable ensemble K ′hp (cf. Subsection 3.2.2) – the c3 obtained in the real scenario is

81

also an encryption of s′ = k−1
2 · (m′ + r · x) mod q. Thus c3 is distributed identically in

both cases.
This implies that the view of a corrupted P1 is identical in the real and ideal executions

of the protocol (in the Fzk, Fcom-zk-hybrid model), i.e., the simulator perfectly simulates
the real environment, which completes the proof of this simulation case.

S simulates P1 – Corrupted P2: We now suppose an adversary A2 corrupts P2 and
describe the simulated execution of the protocol. We demonstrate via a sequence of games
– where the first game is a real execution and the last game is a simulated execution –
that both executions are indistinguishable. This proof methodology differs considerably
to that of [Lin17] since the main differences between a real and simulated execution are
due to the ciphertext ckey, so the indistinguishability of both executions reduces to the
hardness of the hash proof system, the smoothness of the underlying projective hash
family, and the hardness of the double encoding problem. We first describe an ideal
execution of the protocol:

Key Generation Phase

1. Given input KeyGen(G, P, q), the simulator S sends KeyGen(G, P, q) to the func-
tionality FECDSA and receives back Q.

2. S invokes A2 upon input IKeyGen(G, P, q) and sends (proof-receipt, 1) as A2 expects
to receive from FRDL

com-zk.

3. S receives (prove, 2, Q2, x2) as A2 intends to send to FRDL
zk .

4. Using the extracted value x2, S verifies that Q2 is a non zero point on the curve and
that Q2 = x2P . If so it computes Q1 ← (x2)−1Q and sends (decom-proof, 1, Q1) to
A2 as it expects to receive from FRDL

com-zk. If not it simulates P1 aborting and halts.

5. S samples hk ←↩ Dhk and computes hp ← projkg(hk). It also samples x̃1
$←− Z/qZ

and (u,w) ∈ R and computes ckey ← Enc((u,w); (hp, x̃1)).

6. S sends (proof, 3, (hp, ckey, Q1)) to A2, as A2 expects to receive from FRHPS−DL
zk .

7. S sends continue to FECDSA for P1 to receive output, and stores Q.

Signing Phase

1. Upon input Sign(sid,m), simulator S sends Sign(sid,m) to FECDSA and receives
back a signature (r, s).

2. S computes the point R = (r, ry) using the ECDSA verification algorithm.

3. S invokes A2 with input ISign(sid,m) and sends (proof-receipt, sid||1) as A2 expects
to receive from FRDL

com-zk.

4. S receives (prove, sid||2, R2, k2) as A2 intends to send to FRDL
zk .

82

Game0 Game1
Q← x1x2P Q← x1x2P

... ...
hk←↩ Dhk hk←↩ Dhk

hp← projkg(hk) hp← projkg(hk)
Sample (u,w) ∈ R

ckey ← Enc(hp, x1) ckey ← (u, hashhk(u) · fx1)
Send ckey to A2 Send ckey to A2

... ...
R← k1k2P , r ← rx mod q R← k1k2P , r ← rx mod q

... ...
Receive c3 = (u3, e3) from A2 Receive c3 = (u3, e3) from A2

Let α← logf
(
e3 · hashhk(u3)−1

)
Let α← logf

(
e3 · hashhk(u3)−1

)
s← α · k−1

1 s← α · k−1
1

If not Verif(Q,m, (r, s)) then abort If not Verif(Q,m, (r, s)) then abort
else Return (r, s) else Return (r, s)

5. Using the extracted value k2, S verifies that R2 is a non zero point and that R2 =
k2P . If so it computes R1 ← k−1

2 R and sends (decom-proof, sid||1, R1) to A2 as it
expects to receive from FRDL

com-zk. If not it simulates P1 aborting and instructs the
trusted party computing FECDSA to abort.

6. S receives c3 = (u3, e3) from A2, which it can decrypt using hk, i.e.

α← logf
(
e3 · hashhk(u3)−1

)
.

If α = k−1
2 · (m′ + r · x2 · x̃1) mod q then S sends continue to the trusted party

FECDSA, s.t. the honest party P1 receives output. Otherwise it instructs FECDSA
to abort.

We now describe the sequence of games. Game0 is the real execution of the protocol
from P1’s view, and we finish in Game6 which is the ideal simulation described above. In
the following intermediary games, only the differences in the steps performed by S are
depicted.

Let us now demonstrate that each game step is indistinguishable from the view of A2.
Intuitively, in Game1 the simulator uses the secret hashing key hk instead of the public
projection key hp to compute ckey. Though the values are computed differently, they are
distributed identically, and are perfectly indistinguishable. Next in Game2 we replace the
first element of the ciphertext (in Game1 this is u ∈ L) with an element u ∈ X\L. By
the hardness of the subset membership problem Game1 and Game2 are indistinguishable.
Next in Game3 we switch to the ideal world, so Q and R are received from FECDSA.
The value x1 such that Q = x1x2P is unknown to S simulating P1, and the value x̃1
encrypted in ckey is sampled uniformly at random from Z/qZ, and is unrelated to Q.
Proving indistinguishability between Game2 and Game3 is the most involved analysis of
all our game steps. The smoothness of the PHF ensures that the ciphertext ckey follows
identical distributions in both games from A2’s view; however difficulties arise due to the
check performed by S on α after decrypting c3. Indeed if A2 produces a ciphertext c3
which passes the check in one game, but not in the other, clearly A2 can distinguish both

83

Game2 Game3
Q← x1x2P Q← FECDSA

Extract x2 from (prove, 2, Q2, x2)
x̃1

$←− Z/qZ
... ...

hk←↩ Dhk hk←↩ Dhk
hp← projkg(hk) hp← projkg(hk)

u
$←− X\L u

$←− X\L
ckey ← (u, hashhk(u) · fx1) ckey ← (u, hashhk(u) · f x̃1)

Send ckey to A2 Send ckey to A2
... ...

R← k1k2P , (r, s)← FECDSA
r ← rx mod q r ← rx mod q

Extr. k2 from (prove, sid||2, R2, k2)
... ...

Receive c3 = (u3, e3) from A2 Receive c3 = (u3, e3) from A2
... ...

Let α← logf
(
e3 · hashhk(u3)−1

)
Let α← logf

(
e3 · hashhk(u3)−1

)
s← α · k−1

1 (1) If α 6= k−1
2 (m′ + rx̃1x2) then

If not Verif(Q,m, (r, s)) then abort (2) If (αk2)P 6= mP + rQ abort
else Return (r, s) else Return (r, s)

Game4 Game5 Game6
Q← FECDSA Q← FECDSA Q← FECDSA

Extract x2 from (prove, 2, Q2, x2) Extract x2 from (prove, 2, Q2, x2) Extract x2 from (prove, 2, Q2, x2)
x̃1

$←− Z/qZ x̃1
$←− Z/qZ x̃1

$←− Z/qZ
...

hk←↩ Dhk hk←↩ Dhk hk←↩ Dhk
hp← projkg(hk) hp← projkg(hk) hp← projkg(hk)

u
$←− X\L Sample (u,w) ∈ R

ckey ← (u, hashhk(u) · f x̃1) ckey ← (u, hashhk(u) · f x̃1) ckey ← Enc(hp, x̃1)
Send ckey to A2 Send ckey to A2 Send ckey to A2

...
(r, s)← FECDSA (r, s)← FECDSA (r, s)← FECDSA
r ← rx mod q r ← rx mod q r ← rx mod q

Extr. k2 from (prove, sid||2, R2, k2) Extr. k2 from (prove, sid||2, R2, k2) Extr. k2 from (prove, sid||2, R2, k2)
...

Receive c3 = (u3, e3) from A2 Receive c3 = (u3, e3) from A2 Receive c3 = (u3, e3) from A2
...

Let α← logf
(
e3 · hashhk(u3)−1

)
Let α← logf

(
e3 · hashhk(u3)−1

)
Let α← logf

(
e3 · hashhk(u3)−1

)
If α 6= k−1

2 (m′ + rx̃1x2) If α 6= k−1
2 (m′ + rx̃1x2) If α 6= k−1

2 (m′ + rx̃1x2)
then abort then abort then abort

Check (2) removed

84

games. To deal with this, in Game3 we introduce an additional check (2). Check (2) is
performed using the elliptic curve point Q, and compares α to k−1

2 (m′ + rx1x2). On the
other hand check (1) is performed using the randomly sampled x̃1, and compares α to
k−1

2 (m′ + rx̃1x2). This extra check allows us to ensure that if A2 can cause one game to
abort, while the other does not, it has either broken the double encoding challenge, or
fixes the value of x̃1. Since from the smoothness of the PHF, x̃1 follows a distribution
δs-close to U(Z/qZ) from A2’s view, this cannot occur with probability greater than
1/q + δs. So Game2 and Game3 are indistinguishable. In Game4 we remove check (2),
and demonstrate that if A2 could distinguish both games, one could use A2 to break the
discrete logarithm problem in G.

Next we use the hardness of the subset membership problem again to hop from Game4
to Game5, such that in the latter the first element of the ciphertext is once again in L;
and finally Game5 and Game6 are identical from an adversary’s point of view since we
simply use the public evaluation function of the hash function instead of the private one.

We denote Ei the event an algorithm interacting with S in Gamei outputs 1. Thus by
demonstrating that |Pr[E0]− Pr[E6]| is negligible, we demonstrate that, from A2’s view,
the real and ideal executions are indistinguishable.

Game0 to Game1. The only difference here is the way ckey is computed, namely we use
the secret hashing key hk instead of the public projection key hp and the witness w to
compute ckey. Though the values are computed differently, they are identical from A2’s
point of view:

|Pr[E1]− Pr[E0]| = 0.

Game1 to Game2. Suppose that an algorithm D is able to distinguish, with non
negligible advantage, between the distribution generated in Game1 from that generated
in Game2. Then we can devise Ŝ that uses D to break the hard subset membership
assumption, i.e., distinguish random elements of L from those of X\L. The input of Ŝ
is a hard subset membership challenge x∗ which is either an element in L or an element
of X\L. Precisely Ŝ works as S would in Game1, interacting with D instead of A2, the
only difference being that instead of sampling (u,w) ∈ R it sets u := x∗ and computes
ckey := (u, hashhk(u) · fx1). When D returns a bit b (relative to Gameb+1), Ŝ returns the
same bit, where 0 represents the case x∗ ∈ L and 1 represents the case x∗ ∈ X\L.

Analysis – Case x∗ ∈ L: There exists w ∈ W such that (x∗, w) ∈ R and
projhashhp(x∗, w) = hashhk(x∗). So ckey = (u, e) is an encryption of x1 as com-
puted in Game1.
Case x∗ ∈ X\L: The ciphertext is (x∗, hashhk(x∗)fx1), which is exactly the distribution
obtained in Game2. So the advantage of Ŝ in breaking the hard subset membership
assumption is at least that of D in distinguishing both games. Thus:

|Pr[E2]− Pr[E1]| 6 δL.

Game2 to Game3. In Game3 the points Q = x1x2P and R come from the functionality
FECDSA, while in Game2 they are computed as in the real protocol. As a result, the value
x̃1 encrypted in ckey is unrelated to x1.

85

Let us denote ckey := (u, e), where e = hashhk(u)f x̃1 , the invalid ciphertext which the
simulator sends to A2 in Game3. Using the fact PHF is decomposable, and since u ∈ X\L,
we can write u = zy, for unique z ∈ L and y ∈ 〈Υ〉. Recall that Ψ is a generator for
Khk such that that hashΨ(Υ) = f (cf. Remark 13). We denote b ∈ Z/qZ the unique
value such that hashΨ(y) = f b. Note that since u /∈ L, it holds that b 6= 0 mod q. Now
to demonstrate that Game2 and Game3 are indistinguishable from A2’s view, we start by
considering a fixed hk′ ∈ Khk satisfying the following equations:projkg(hk′) = hp = projkg(hk),

hashhk′(y)fx1 = hashhk(y)f x̃1 .

Note that the smoothness of PHF over X on F ensures that such a hk′ exists (it is not
necessarily unique). We now see that in Game3, ckey is an invalid encryption of both x1
and of x̃1, for respective hashing keys hk′ and hk, but for the same projection key hp,
indeed:

ckey = (u, hashhk(u)f x̃1) = (u, projhashhp(z, w)hashhk(y)f x̃1)
= (u, projhashhp(z, w)hashhk′(y)fx1) = (u, hashhk′(u)fx1).

Let us denote γ and γ′ ∈ Z the values such that hk = γ · Ψ and hk′ = γ′ · Ψ, such that
hashhk(Υ) = fγ and hashhk′(Υ) = fγ

′ . Now since hashΨ(y) = f b, it holds that

bγ + x̃1 = bγ′ + x1 mod q ⇔ γ′ − γ = b−1(x̃1 − x1) mod q. (3.1)

The adversary A2 receives the ECDSA public key Q, the public projection key
hp = projkg(hk), and ckey from S (at this point its view is identical to its’ view in Game2).
Then A2 computes c3 = (u3, e3), which it sends to S. The difference between Game2 and
Game3 appears now in how S attempts to decrypt c3. In Game2 it would have used hk′,
whereas in Game3 it uses hk.

Notation. We denote α the random variable obtained by decrypting c3 (received in
Game3) with decryption key hk; we denote α′ the random variable obtained by decrypting
c3 (received in Game3) with decryption key hk′; we introduce a hypothetical Game3

′,
which is exactly as Game3, only one decrypts c3 (received in Game3) with decryption key
hk′, thus obtaining α′, and check (1) of Game3 is replaced by ‘If α 6= k−1

2 (m′ + rx1x2)’.
Since both tests of Game3

′ are redundant, we only keep check (2).

Observation. The view of A2 in Game2 and in Game3
′ is identical. We demonstrate that

the probability A2’s view differs when S uses α in Game3 from when it uses α′ in Game3
′

is negligible. This allows us to conclude that A2 cannot distinguish Game2 and Game3
except with negligible probability.

Let us consider the ciphertext c3 = (u3, e3) ∈ X × Π sent by A2. By the de-
composability of PHF we know there exist unique z3 ∈ L, y3 ∈ 〈Υ〉 such that u3 = z3y3.
Moreover there exists a unique b3 ∈ Z/qZ such that hashΨ(y3) = f b3 . By the homo-
morphic properties of PHF the decryption algorithm applied to c3 with decryption key
hk (resp. hk′) returns ⊥ if e3 · hashhk(u3)−1 = e3 · hashhk(z3)−1 · hashhk(y3)−1 /∈ F (resp.

86

e3 · hashhk′(u3)−1 = e3 · hashhk′(z3)−1 · hashhk′(y3)−1 /∈ F). However since z3 ∈ L, and
projkg(hk′) = projkg(hk), by correctness of PHF it holds that hashhk′(z3) = hashhk(z3);
while hashhk′(y3) = fγ

′·b3 and hashhk(y3) = fγ·b3 live in F . Consequently the decryption
algorithm applied to c3 with decryption key hk returns ⊥ if and only if it does so with
decryption key hk′ (i.e. α =⊥ if and only if α′ =⊥). In this case Game3 is identical to
Game3

′ from A2’s view (S aborts in both cases). We hereafter assume decryption does
not fail, which allows us to adopt the following notation:

e3 = hashhk(z3)fh3 = hashhk′(z3)fh3 with h3 ∈ Z/qZ

We thus have:

α := logf (e3 · hashhk(u3)−1) = h3 − b3 · γ mod q
α′ := logf (e3 · hashhk′(u3)−1) = h3 − b3 · γ′ mod q

such that, injecting Equation (3.1), one gets:

α− α′ = b3(γ′ − γ) = b3b
−1(x̃1 − x1) mod q.

We now consider four cases:

1. (α = α′ mod q). This case occurs if b3 = 0 mod q, i.e. u3 ∈ L and so u3 is a valid
ciphertext; or if x̃1 = x1 mod q. If this occurs Game2 and Game3 are identical from
A2’s view. Note that this is the only case where all checks pass for both α and α′.

2. (α 6= α′ mod q) but (α − α′ = k−1
2 rx2(x̃1 − x1) mod q). This occurs if b3 =

k−1
2 rx2b mod q, i.e. A2 performed homomorphic operations on ckey, and the differ-

ence between α and α′ is that expected by the simulator. This results in identical
views from A2’s perspective since α causes check (1) to pass if and only if α′ causes
check (2) to pass:

α = k−1
2 (m′+rx̃1x2)⇔ α′+k−1

2 rx2(x̃1−x1) = k−1
2 (m′+rx̃1x2)⇔ α′ = k−1

2 (m′+rx2x1).

3. (α 6= α′ mod q) and (α − α′ 6= k−1
2 rx2(x̃1 − x1) mod q). We here consider three

sub-cases:

(a) Either both tests fail for α and test (2) fails for α′; i.e. α 6= k−1
2 (m′+rx̃1x2) mod

q; and α, α′ 6= k−1
2 (m′+rx1x2) mod q. This results in identical views from A2’s

perspective.
(b) Either the check on α′ passes. This means that:

α′ = k−1
2 (m′ + rx1x2) mod q.

Since α−α′ 6= k−1
2 rx2(x̃1−x1) mod q necessarily check (1) on α fails; and since

α 6= α′ mod q necessarily check (2) on α fails. Consequently if this sub-case
occurs, A2’s view differs. We demonstrate that if the DE problem is hard, this
case occurs with negligible probability.
Suppose that an algorithm B is able to cause this case to occur with non
negligible probability p. Then we can devise an algorithm Ŝ which uses B

87

to break the DE assumption for (PHF, expG). Algorithm Ŝ gets as input a
DE challenge point Q = xP and the description SM of a subset membership
problem, and must output hp, (u1, hashhk′(u1)fx) and (u2, hashhk′(u2)fx) where
hp = projkg(hk′); u1, u2 ∈ X\L; u1 6= u2; and u1/u2 ∈ X\L. Precisely
Ŝ works as S would in Game3, interacting with B instead of A2, the only
difference being that instead of using the ECDSA public key it receives from
FECDSA, Ŝ uses the DE challenge Q. When B sends c3 to Ŝ, Ŝ computes
c1 := EvalScal(hp,EvalSum(hp, c3,−k−1

2 m′), k2r
−1). Finally Ŝ computes the

component-wise product c2 := ckey� (1, fx2) and outputs hp, c1, c2 to its’ own
DE challenger.
Analysis. Let us denote x2, k2 the values Ŝ extracts from its interactions with
B. We further denote x1 := x x−1

2 (which is unknown to Ŝ). Ŝ samples hk←↩
Dhk, and computes hp← projkg(hk). It then samples x̃1

$←− Z/qZ and computes
ckey := (u, hashhk(u)f x̃1) which can be interpreted as (u, hashhk′(u)fx1). Let us
denote (u2, e2) the components of c2 = ckey� (1, fx2) such that c2 = (u2, e2) =
(u, hashhk′(u) · fx), where u2 ∈ X\L by construction.
When Ŝ receives c3 from B, with probability p, using decryption key hk′,
c3 decrypts to α′ = k−1

2 (m′ + rx1x2) mod q. S does not know hk′, but us-
ing the homomorphic properties of the PKE, S computes c1 := (u1, e1) =
(u1, hashhk′(u1)fx). Since we ruled out the case 1. (where α = α′ mod q),
necessarily u1 ∈ X\L. And since we ruled out the case 2. (where α − α′ =
k−1

2 rx2(x̃1 − x1) mod q), necessarily u1/u2 ∈ X\L. Thus with probability p,
Ŝ breaks the DE assumption, and consequently p 6 δDE, which concludes that
this case occurs with probability 6 δDE.

(c) Else one of the checks on α passes.
i. If (α = k−1

2 (m′ + rx1x2) mod q), then since (α 6= α′ mod q) necessarily
check (2) on α′ fails. However if this occurs, since S has extracted k2,
x2 from the zero knowledge proofs, it can compute x1 from α, thereby
breaking the DL problem in G. This occurs with probability 6 δDL.

ii. If α = k−1
2 (m′+ rx̃1x2) mod q, then since α−α′ 6= k−1

2 rx2(x̃1− x1) mod q
necessarily check (2) on α′ fails. Let us prove that information theoret-
ically, this can not happen with probability greater than 1/q + δs. For
clarity, we first recall the expression of ckey received by A2:

ckey = (zy, projhashhp(z)hashhk(y)f x̃1) = (zy, projhashhp(z)f (x̃1+bγ))
where z ∈ L, y ∈ 〈Υ〉, and b ∈ (Z/qZ)∗ are unique, and hashΨ(y) = f b.
We also recall the expression of c3, sent by A2 to S. Since c3 decrypts to
α with decryption key hk, we can write:

c3 = (z3y3, projhashhp(z3)fα+b3γ)
where z3 ∈ L, y3 ∈ 〈Υ〉, and b3 ∈ (Z/qZ)∗ are unique, and hashΨ(y3) = f b3 .
Let us denote π0 := x̃1 + bγ mod q, and π1 := α+ b3γ mod q. For this case
to occur, it must hold that α = k−1

2 (m′ + rx̃1x2) mod q, so
π1 = k−1

2 (m′ + rx̃1x2) + b3γ mod q
⇔ x̃1 = (k2π1 −m′ − k2b3γ)(x2r)−1 mod q

88

Substituting γ for b−1(π0 − x̃1) yields:

x̃1 = (k2π1 −m′ − k2b3b
−1(π0 − x̃1))(x2r)−1 mod q

⇔ x̃1(1− k2b3(bx2r)−1) = (k2π1 −m′ − k2b3b
−1π0)(x2r)−1 mod q

As we dealt with b3 = k−1
2 rx2b mod q in case 2, here b3 6= k−1

2 rx2b mod q,
and 1− k2b3(bx2r)−1 is invertible mod q so we can write:

x̃1 = (k2π1 −m′ − k2b3b
−1π0)(x2r)−1(1− k2b3(bx2r)−1)−1 mod q, (3.2)

where π0, b are fixed by ckey; π1, b3 are fixed by c3; and m′, r, k2, x2 are
also fixed from A2’s view. So given A2’s view and A2’s output c3, all the
terms on the right hand side of equation (3.2) are fixed. However, given
Q, hp and ckey (which is all the information A2 gets prior to outputting
c3), the δs-smoothness of the projective hash family ensures that x̃1 fol-
lows a distribution δs-close to U(Z/qZ). For the current case to occur,
equation (3.2) must hold, thus from being given a view where x̃1 follows a
distribution δs-close to U(Z/qZ), A2 has succeeded in fixing this random
variable to be the exact value sampled by S. This occurs with probability
6 1/q + δs.

Combining the above, we get that Game2 and Game3 differ from A2’s view if and only if
we are in case 3. (b) or 3. (c), which occur with probability 6 1/q+ δs+ δDE + δDL. Thus:

|Pr[E3]− Pr[E2]| 6 1/q + δs + δDE + δDL.

Game3 to Game4. In Game4 check (2) is removed. Both games differ if and only if check
(1) fails in both of them, while check (2) passes. If this happens S has decrypted c3 to the
value α = k−1

2 (m′+rx1x2) mod q. Since S has extracted k2, x2 from the simulated proofs
of knowledge, r from the ECDSA signature it received and knows m′, it can compute x1
from α, thereby computing the discrete logarithm of point Q. Thus distinguishing these
games reduces to the hardness of breaking the DL problem in G. We conclude that:

|Pr[E4]− Pr[E3]| 6 δDL.

Game4 to Game5. The change here is exactly that between Game1 and Game2, thus both
games are indistinguishable under the hardness of the subset membership problem and:

|Pr[E5]− Pr[E4]| 6 δL.

Game5 to Game6. The change here is exactly that between Game0 and Game1, thus both
games are perfectly indistinguishable, even for an unbounded adversary, thus:

|Pr[E6]− Pr[E5]| = 0.

89

Real/Ideal executions. Putting together the above probabilities, we get that:
|Pr[E6]− Pr[E0]| 6 2δL + δDE + 2δDL + 1/q + δs,

and so, assuming the hardness of the subset membership problem, the smoothness of PHF,
and the hardness of the DE problem for PHF, it holds that the real and ideal executions
are computationally indistinguishable from A2’s view, which concludes the proof of the
theorem.

3.4 Instantiation from Class Group of Imaginary
Quadratic Fields

In this section, we give an instantiation of a hash proof system with the required properties
in order to apply the generic construction of the previous section. Our instantiation
relies on the CL encryption scheme which we explained in detail in Chapter 2, Section
2.2. We recall the useful properties of this encryption scheme seeing how it satisfies the
construction from HPS. CL is a linearly homomorphic scheme modulo a prime number
p which can be chosen equal to the order of the Elliptic Curve group. We also saw
that messages in CL are encoded in a cyclic subgroup F of the class group (implicitly
defined by its discriminant ∆) of order q and with generator f . Furthermore, we also
saw that in F it is easy to compute the discrete logarithm. In addition, from the result
of [CLT18a], we discussed how to enhance the CL framework with their introduction of
an hard subgroup membership assumption (HSM) applied to G and its subgroup Gq of
order s.

A Hard Subgroup Membership Assumption In this paragraph we refer to previ-
ously defined definitions. Indeed, we have discussed about hard assumptions for CL in
Chapter 2. We give only a brief recap of what we need for our instantiation from CL,
previously discussed in Section 2.2. First, we need to define an HSM problem, and to
do the task we refer to the algorithm GenGroup (see Definition 2.2.5), which consists in
a pair of algorithm (Gen, Solve). The former Gen is a group generator that outputs a
group with a subgroup where the discrete logarithm is easy. The latter Solve computes
the discrete logarithm in the subgroup where it is easy. In Section 2.2 we presented a
slightly different definition (see Definition 2.2.5) of the original GenGroup in [CLT18a],
i.e. its version given in our [CCL+19] GenGroup thought to take in input q. We use this
last modification in our instantiation, motivated by the choice of q as the order of the
subgroup F .
Remark 14. We already noted from the definition of GenGroup that it is easy to recognise
valid encodings of Ĝ while it will be not so for elements of G ⊂ Ĝ. This is an important
difference with Paillier’s encryption, and one of the reason why Lindell’s LPDL proof does
not work in our setting6.

We do not give details about the HSM assumption here, we have already presented
it in Definition 2.2.6. From Definition 2.2.5, one has G = F × Gq. Informally, the HSM
assumption says that it is hard to distinguish the elements of Gq in G.

6See 3.2.6 for RHPS−CL. LP DL is the proof of membership used in [Lin17] with Paillier encryption and
the elliptic point Q.

90

Class groups Our instantiation makes use of class groups of orders of imaginary
quadratic fields (see Chapter 2) 7. We discussed in details the construction of CL scheme,
then we limit ourselves to recall only the necessary properties and results. Let q be a
prime. We construct a fundamental discriminant ∆K := −q · q̃ where q̃ is a prime such
that q · q̃ ≡ −1 mod 4 and (q/q̃) = −1. We then consider the non-maximal order of dis-
criminant ∆q := q2 ·∆K and its class group Ĝ := Cl(∆q) whose order is h(∆q) = q ·h(∆K).
This number is known to satisfy the following inequality (see [Coh00, p. 295] for instance):
h(∆K) < 1

π
log |∆K |

√
|∆K | which is the bound we take for s̃ (a slightly better bound can

be computed from the analytic class number formula). Elements of Ĝ are classes of ideals
of the order of discriminant ∆q. Such classes can be represented by a unique reduced
ideal. Moreover, ideals can be represented using the so-called two elements representa-
tion which correspond to their basis as a lattice of dimension two. Then, classes can be
uniquely represented by two integers (a, b), a, b <

√
|∆q| and one can efficiently verify

that this indeed defines an element of Ĝ (by checking if b2 ≡ ∆q mod 4a). The arithmetic
in class groups (which corresponds to reduction and composition of quadratic forms) is
very efficient: the algorithms have a quasi linear time complexity using fast arithmetic
(see [Coh00]). We build a generator gq of a cyclic subgroup of q−th powers of Ĝ, and
denote Gq := 〈gq〉. Then we build a generator f for the subgroup F of order q, and then
set g := f · gq as a generator of a cyclic subgroup G of Cl(∆q) of order q · s, where s is
unknown. Computing discrete logarithms is easy in F thanks to the following facts. We
denote the surjection ϕ̄q : Cl(∆q) −→ Cl(∆K). From [CL09, Lemma 1]8, its kernel is
cyclic of order q and is generated by f represented by (q2, q). Moreover, if 1 6 m 6 q− 1
then, once reduced, fm is of the form (q2, L(m)q) where L(m) is the odd integer in [−q, q]
such that L(m) ≡ 1/m mod q, which gives the efficient algorithm to compute discrete
logarithms in 〈f〉. The Gen algorithm can be found in Figure 2.1.

3.4.1 A Smooth Homomorphic Hash Proof System from HSM
We set X := G and L := Gq then X ∩ L = Gq and the HSM assumption states that
it is hard to distinguish random elements of G from those of Gq. This clearly implies
the hardness of the subset membership problem, i.e., it is hard to distinguish random
elements of G\Gq from those of Gq. We see below how the properties we discussed in
Section 3.2 are satisfied by CL.

Let D be a distribution over the integers such that the distribution {gw, w ←↩ D} is
at distance δD ≤ 2−λ of the uniform distribution in G.

Associated projective hash family. Let PHF be the projective hash family associated
to the above subset membership problem, the description of which specifies:

• A hash key space K := Z.

• A keyed hash function, with input and output domain G, s.t., for hk←↩ D, and for
x ∈ G, hashhk(x) := xhk.

7We also refer the interested reader to [BH01] for background on this algebraic object and its early
use in cryptography

8We recall it in Proposition 2.2.11

91

• An auxiliary function projkg : K 7→ Gq such that for hk ∈ K, projkg(hk) :=
hashhk(gq) = ghk

q . Notice that for a hash key hk, and for x ∈ Gq, the knowledge of
projkg(hk) completely determines the value hashhk(x).

• An efficient public evaluation function, such that, for x ∈ Gq with witness w such
that x = gwq one can efficiently compute hashhk(x) = projkg(hk)w = xhk knowing
only the value of the auxiliary function projkg(hk) (but not hk).

Before proving the lemma about the smoothness, we need the following preliminar result
about distributions.

Lemma 3.4.1. Let X be a discrete random variable at statistical distance ε from the
uniform distribution over Z/abZ for positive integers a and b such that gcd(a, b) = 1. And
let Xa (resp. Xb) be the random variable defined as Xa := X mod a (resp. Xb := X
mod b). Then the random variables Xa and Xb are less than ε close to the uniform
distributions in Z/aZ and Z/bZ respectively. Moreover, even knowing Xb, Xa remains
at statistical distance less than 2ε of the uniform distribution in Z/aZ (and vice versa).

Proof. Let C be an algorithm which takes as input a tuple (a, b, x) ∈ N2×Z/abZ, which
can either be a sample of the distribution:

U := {a, b, x| gcd(a, b) = 1 ∧ x $←− Z/abZ}

or a sample of:

V := {a, b, x| gcd(a, b) = 1 ∧ x←↩ D},

where D is a distribution at statistical distance ε of the uniform distribution over Z/abZ,
and outputs a bit. Since distributions U and V are at statistical distance ε, for any such
algorithm C, it holds that:

|Pr[C(U)→ 1]− Pr[C(V)→ 1]| ≤ ε.

We further denote UA := {a, b, xb, xa|(a, b, x) ←↩ V ; xb ← x mod b; xa $←− Z/aZ} and
VA := {a, b, xb, xa |(a, b, x) ←↩ V ; xb ← x mod b; xa ← x mod a}. Consider any
algorithm A which takes as input a sample (a, b, xb, x∗a) of either UA or VA, and outputs
a bit β′. A’s goal is to tell whether x∗a is sampled uniformly at random from Z/aZ or if
x∗a ← x mod a. We demonstrate that if A has significant probability in distinguishing
both input types, then C can use A to distinguish distributions U and V . We describe
the steps of C below:

92

C(a, b, x) :

1. Set xb ← x mod b

2. Sample β∗ $←− {0, 1}

3. If β∗ = 0, then x∗a
$←− Z/aZ

4. Else if β∗ = 1, then x∗a ← x
mod a

5. β′ ← A(a, b, xb, x∗a)

6. If β = β′ return 1

7. Else return 0.

If C gets as input an element of U whatever the value of β∗, x∗a follows the uniform
distribution modulo a and is independent of xb. So A’s success probability in outputting
β′ equal to β∗ is 1/2.

Pr[A(a, b, xb, x∗a)→ β∗|(a, b, x)←↩ U] = 1/2

and so
Pr[C(U)→ 1] = 1/2

On the other hand if (a, b, x) ←↩ V , then C outputs 1 if A guesses the correct bit β∗
(when its inputs are either in UA or VA as expected).

Pr[C(V)→ 1] = Pr[A → β∗|(a, b, x)←↩ V]

And so

|Pr[C(U)→ 1]− Pr[C(V)→ 1]| = |Pr[A → β∗|(a, b, x)←↩ V]− 1/2|
= 1/2 · |Pr[A(UA)→ 1]− Pr[A(VA)→ 1]|.

Since distributions U and V are at statistical distance ε, it holds that |Pr[C(U) →
1]− Pr[C(V)→ 1]| ≤ ε, and so for any algorithm A as above:

|Pr[A(UA)→ 1]− Pr[A(VA)→ 1]| ≤ 2ε.

Thus the statistical distance between UA and VA is smaller than 2ε, which implies
that even given x mod b, the value of x mod a remains at negligible statistical distance
2ε of the uniform distribution modulo a, which concludes the proof.

Lemma 3.4.2 (Smoothness). The projective hash family PHF is δs-smooth over G in F ,
with δs 6 2δD, i.e., for any x ∈ G\Gq, π ← fγ ∈ F ⊂ G where γ $←− Z/qZ and k ←↩ D,
the distributions D1 := {x, gkq , π · xk} and D2 := {x, gkq , xk} are less than 2δD-close.

Proof. For x ∈ G\Gq, there exist a ∈ Z/sZ and b ∈ (Z/qZ)∗ such that x = gaqf
b. Thus

we can write D1 = {gaqf b, gkq , ga·kq f b·k+γ} and D2 = {gaqf b, gkq , ga·kq f b·k}. It remains to study

93

the statistical distance of the third coordinates of the two distributions, given the two first
coordinates, i.e, if (a mod s), (b mod q), and (k mod s) are fixed. This is the statistical
between X := b · k + γ and Y := b · k in Z/qZ. Since γ is uniform in Z/qZ, X is the
uniform distribution. As D is by definition at statistical distance δD from the uniform
distribution modulo q · s, and gcd(q, s) = 1, one can prove (cf. Lemma 3.4.1) that even
knowing (k mod s), the distribution of (k mod q) is at distance less than 2δD from the
uniform distribution over Z/qZ. As a result, the distance between X and Y is bounded
by 2δD, which concludes the proof.

Linearly homomorphic. For all hk ∈ Z, and u1, u2 ∈ G, hashhk(u1) · hashhk(u2) =
uhk

1 · uhk
2 = (u1 · u2)hk = hashhk(u1 · u2). Thus hashhk is a homomorphism for each hk.

Key homomorphic. The hash key space (Z,+) is an Abelian group, (G, ·) is a
multiplicative finite Abelian group; and ∀x ∈ G and ∀hk0, hk1 ∈ Z, it holds that
hash(hk0, x) · hash(hk1, x) = xhk0 · xhk1 = xhk0+hk1 = hash(hk0 + hk1, x).

(f, F)-Decomposability. The group G is the direct product of Gq and F = 〈f〉.
Moreover ∀hk ∈ Z, hashhk(f) = fhk ∈ F . Thus we set Υ := f , such that PHF is
(f, F)-decomposable.

Resulting encryption scheme. A direct application of the resulting scheme in Sec-
tion 3.2 can be instantiead with the HSM − CL scheme in [CLT18a], which is linearly
homomorphic modulo q and ind − cpa under the HSM assumption (see Section 2.2).
We already discussed this scheme and we refer to Figure 2.2 in Section 2.2. Note that
here the secret key x (and the randomness r) is drawn with a distribution Dq such that
{gxq , x←↩ Dq} is at distance less than 2−λ from the uniform distribution in Gq, this does
not change the view of the attacker. Let S := 2λ−2 · s̃. In practice, we will use for Dq the
uniform distribution on {0, . . . , S}.

The double encoding problem. In this context, the DE problem is δDE-hard for the
one way function expG : x 7→ xP if for any PPT A, it holds that:

δDE > Pr

u1, u2 ∈ G \Gq, ppG := (G, P, q)
u2 · u−1

1 ∈ G \Gq ppG := (s̃, f, gq, G, F)← Gen(1λ, q)
and hp = ghk

q x
$←− Z/qZ, Q := x · P

(hp, (u1, u
hk
1 · fx), (u2, u

hk
2 · fx))← A(ppG, ppG, Q)

 .

On the hardness of the DE problem for the HSM-CL encryption scheme. As
explained in Lemma 3.2.2, breaking the DE problem in sub-exponential time would give
a sub-exponential algorithm to compute discrete logarithms in elliptic curves (for which
there exist only exponential algorithms).

3.4.2 A zero-knowledge proof for RCL−DL

We describe here the ZKPoK for RHPS−DL used for our instantiation with the encryption
scheme of Fig. 2.2 and denote it RCL−DL. It relies on the Schnorr-like GPS (statistically)

94

Input : (r, x1) and (pk, c1, c2, Q, P) Input : (pk, c1, c2, Q, P)
Repeat ` times

r1
$←− [0, A[; r2

$←− Z/qZ

t1 ← pkr1f r2 ; t2 ← r2P ; t3 ← gr1q
t1, t2, t3−−−−−−−−→

k←−−−−−−−− k
$←− {0, 1}

u1 ← r1 + kr in Z
u2 ← r2 + kx1 mod q u1, u2−−−−−−−−→ Check u1 ∈ [0, A+ S[

t1 · ck2 = pku1 · fu2

t2 + [k]Q = [u2]P
t3 · ck1 = gu1

q

Figure 3.7: The zero-knowledge proof of knowledge for RCL−DL

zero-knowledge identification scheme [GPS06] that we turn into a zero-knowledge proof
of knowledge of the randomness used for encryption and of the discrete logarithm of an
element on an elliptic curve, using a binary challenge. This proof is partly performed in
a group of unknown order.

We denote ckey := (c1, c2). If ckey is a valid encryption of x1 under public key pk it
holds that ckey = (grq , fx1pkr) for some r ∈ {0, . . . , S}. The protocol in Figure 3.7 provides
a ZKPoK for the following relation:

RCL−DL := {(pk, (c1, c2), Q1); (x1, r) | c1 = grq ∧ c2 = fx1pkr ∧Q1 = x1G}.

The following theorem states the security of the zero-knowledge proof of knowledge for
relation RCL−DL.

Theorem 3.4.3. The protocol described in Figure 3.7 is a statistical zero-knowledge
proof of knowledge with soundness 2−`, as long as ` is polynomial and `S/A is negligible,
where A is a positive integer.

Proof. We prove completeness, soundness and zero-knowledge. Completeness follows
easily by observing that when ((pk, (c1, c2), Q1); (x1, r)) ∈ RCL−DL, for any k ∈ {0, 1} the
values computed by an honest prover will indeed verify the four relations checked by
the verifier. For soundness, the protocol is in fact special sound. Indeed notice that for
committed values t1, t2, t3, if a prover P ∗ can answer correctly for two different values
of k, he must be able to answer to challenges 0 and 1 with u1, u2 and u′1, u

′
2, where u1

and u′1 are smaller than A + S − 1, such that u2P = u′2P −Q, pku1fu2c2 = pku′1fu′2 and
gu1
q c1 = g

u′1
q . Let σ1 ← u′1 − u1, σ2 ← u′2 − u2 mod q; we obtain gσ1

q = c1, σ2P = Q and
pkσ1fσ

′
2 = c2. Thus P ∗ can easily compute x1 ← σ2 mod q and r ← σ1 in Z.

While this gives a soundness error of 1/2, the soundness is amplified to 2−` by repeat-
ing the protocol sequentially ` times.

For zero-knowledge, we must exhibit a simulator S which, given the code of some
verifier V ∗, produces a transcript indistinguishable from that which would be produced

95

between V ∗ and an honest prover P (proving the knowledge of a tuple in RCL−DL) without
knowing the witnesses (x1, r) for (pk, (c1, c2), Q1) in the relation RCL−DL.

The potentially malicious verifier may use an adaptive strategy to bias the choice of
the challenges to learn information about (r, x1). This implies that challenges may not
be randomly chosen, which must be taken into account in the security proof.

We describe an expected polynomial time simulation of the communication between
a prover P and a malicious verifier V ∗ for one round of the proof. Since the simulated
round may not be the first round, we assume V ∗ has already obtained data, denoted by
hist, from previous interactions with P . Then P sends the commitments t1, t2, t3 and V ∗
chooses – possibly using hist and t1, t2, t3 – the challenge k(t1, t2, t3, hist).

Description of the simulator: Consider the simulator S which simulates a given round of
identification as follows:

1. S chooses random values k̄ ∈ {0, 1}, ū1 ∈ [S − 1, A− 1] and ū2 ∈ Z/qZ.

2. S computes t̄1 ← pkū1f ū2/ck̄2; t̄2 ← [ū2]P − [k̄]Q and t̄3 ← gū1
q /c

k̄
1, and sends t̄1, t̄2

and t̄3 to V ∗.

3. S receives k(t̄1, t̄2, t̄3, hist) from V ∗.

4. If k(t̄1, t̄2, t̄3, hist) 6= k̄ then return to step 1, else return (t̄1, t̄2, t̄3, k̄, ū1, ū2).

To demonstrate that the proof is indeed zero-knowledge, we need to justify that the
distribution output by the simulator is statistically close to that output in a real execution
of the protocol, and that the simulation runs in expected polynomial time.

Intuitively, sampling the randomness r from a large enough distribution – i.e. as long
as S << A – ensures that the distribution of t1, t2, t3 in a real execution is statistically
close9 to that in a simulated execution.

The analysis of the above statistical distance Σ between the distribution of tuples
output by the simulator and that of tuples output by a real execution of the protocol
is quite tedeous and similar to that of [GPS06]. We do not provide the details here but
applying their analysis to our setting allows us obtain the following bound:

Σ <
8S
A
.

Thus the real and simulated distributions are statistically indistinguishable if S/A is
negligible.

Running time of the Simulator: We now need to ensure that the simulator runs in ex-
pected polynomial time. To see this, notice that step 3 outputs a tuple (t̄1, t̄2, t̄3, k̄, ū1, ū2)
if k(t̄1, t̄2, t̄3, hist) = k̄ . Since k̄ is sampled at random from {0, 1}, the expected number
of iterations of the loop is 2. Therefore the complexity of the simulation of all ` rounds
is O(`).

Thus if `S/A is negligible and ` is polynomial, the protocol is statistically zero-
knowledge.

9The distributions cannot be distinguished by any algorithm, even using an infinite computational
power, but only accessing a polynomial number of triplets of both distributions

96

Further improvements The proof for RCL−DL in Figure 3.7, which uses binary chal-
lenges, has been improved in our work [CCL+20]. In particular, with the introduction of
a trick based on the lowest common multiple, it is possible to obtain a new ZKPoK for a
slightly different relation RCL−lcm which is more efficient than the previous one. Indeed,
the new ZKPoK works with an extended challenge space, which is {0, 1}10 instead of
{0, 1}. As a consequence, the proof has to be repeated λ/10 times for a soundness of 2−λ,
instead of λ times. Furthermore, in [CCL+20] we presented a ZKAoK for a slightly differ-
ent relation R̃CL−DL which relies on two hard assumptions, the strong root assumption and
the low order assumption. This ZKAoK is significantly more efficient than the ZKPoK,
however it requires that the deterministic generator gq is randomized. For several reasons
we will discuss these improvements in Section 4.4. First, it is because Chapter 4 is com-
pletely dedicated to our work [CCL+20] and the introduction of the ZKAoK for R̃CL−DL
is a consequence of one of the main contributions in that work, and second because we
introduce and discuss the strong root assumption and the low order assumption for the
first time in Chapter 4. Then, we decided to put the discussion on the new proof and the
improvements on the proof for R̃CL−DL together in only one section.

3.4.3 Two-Party Distributed ECDSA Protocol from HSM
The protocol results from a direct application of Subsection 3.3 using the HPS defined in
Subsection 3.4.1, an the RCL−DL proof of the previous subsection. Therefore we present
the protocol in Figure 3.8 and state the following theorem.

Theorem 3.4.4. Assuming GenGroup is the generator of a HSM group with easy
DL subgroup F , then the protocol in Figure 3.8 securely computes FECDSA in the
(Fzk,Fcom−zk)−hybrid model in the presence of a malicious static adversary (under the
ideal/real definition).

3.5 Efficiency comparison
In this section we compare an implementation of our protocol with Lindell’s protocol of
[Lin17]. For fair comparison, we both protocols are implemented with the Pari C Library
([PAR18]), as this library handles arithmetic in class groups, Z/nZ and elliptic curves. In
particular, in this library, exponentiations in Z/nZ and in class groups both use the same
sliding window method. The running times are measured on a single core of an Intel(R)
Core(TM) i7-7700 CPU @ 3.60GHz (even if key generation can easily be parallelized).
We do not implement commitments (this does not bias the comparison as they appear
with equal weight in both schemes), and we only measure computation time and do not
include communication (again this is fair as communication is similar).

As in [Lin17], we ran our implementation on the standard NIST curves P-256, P-384
and P-521, corresponding to levels of security 128, 192 and 256. For the encryption
scheme, we start with a 112 bit security, as in [Lin17], but also study the case where its
level of security matches the security of the elliptic curves.

Again as in [Lin17], we fixed the number of rounds in zero knowledge proofs to reach
a statistical soundness error of 2−40. For the distributions we also set the parameters to

97

P1 IKeyGen(G, P, q, Ĝ, gq) P2

x1
$←− Z/qZ

Q1 ← x1P
(com-prove,1,Q1,x1)−−−−−−−−−−−→ FRDL

zk−com
(proof-receipt,1)−−−−−−−−−→

x2
$←− Z/qZ

P1 aborts if
(proof, 2, Q2)
not received.

Q2 ← x1P

(proof,2,Q2)←−−−−−−− FRDL
zk

(prove,2,Q2,x2)←−−−−−−−−
(decom-proof,1)−−−−−−−−−→ FRDL

zk−com
(decom-proof,1,Q1)−−−−−−−−−−−→

x, ρ←↩ Dq
h← gxq

ckey = (ckey,1, ckey,2)
= (gρq , hρfx1)

(prove,3,(h,ckey ,Q1),(x1,ρ)−−−−−−−−−−−−−−−→ LCL−DL
(proof,3,(h,ckey ,Q1))−−−−−−−−−−−→

P2 aborts unless
(decom-proof, 1, Q1),

(proof, 3, (h, ckey, Q1))
received and h ∈ Ĝ.

Q← x1Q2 Q← x2Q1

P1 ISign(m, sid) P2

k1
$←− Z/qZ

R1 ← k1P
(com-prove,sid||1,R1,k1)−−−−−−−−−−−−−→ FRDL

zk−com
(proof-receipt,sid||1)−−−−−−−−−−−→

k2
$←− Z/qZ

R2 ← k2P
P1 aborts if

(proof, sid||2, R2)
not received.

(proof,sid||2,R2)←−−−−−−−−− FRDL
zk

(prove,sid||2,R2,k2)←−−−−−−−−−−

(decom-proof,sid||1)−−−−−−−−−−−→ FRDL
zk−com

(decom-proof,sid||1,R1)−−−−−−−−−−−−−→
P2 aborts if

(decom-proof, sid||1, R1)
not received.
m′ ← H(m)

R = (rx, ry)← k1R2 R = (rx, ry)← k2R1
r ← rx mod q r ← rx mod q

τ ←↩ Dq
c1 = (c1,1, c1,2)← (gτq , hτfk

−1
2 m′)

c2 = (c2,1, c2,2)← (ck
−1
2 rx2
key,1 , c

k−1
2 rx2
key,2)

c3 = (c3,1, c3,2)← (c1,1c2,1, c1,2c2,2)
c3←−−−−−−−−−−−−−−−−−−−−−−−−−−

α← Solve(c3,2/c
x
3,1)

ŝ← α · k−1
1

s← min(ŝ, q − ŝ)
If not Verif(Q,m, (r, s)) P1 aborts

Else Return (r, s)

Figure 3.8: Two-Party ECDSA from HSM

98

get statistical error of 2−40. The zero knowledge proofs for RDL are implemented with the
Schnorr protocol.

In the following, we review the theoretical complexity and experimental results of both
schemes, before comparing them. In terms of theoretical complexity, exponentiations in
the encryption schemes dominate the computation as elliptic curve operations are much
cheaper. Thus, we only count these exponentiations; we will see this results in an accurate
prediction of experimental timings.

3.5.1 Lindell’s Protocol with Paillier’s Encryption Scheme
The key generation uses on average 360 Paillier exponentiations (of the form rN mod N2)
but not all of them are full exponentiations. The signing phase uses only 2 Paillier
exponentiations.
The timings corresponds to the mean of several experiments (30 to 1000 depending on
the security level). The timings are quite stable other than the generation of the RSA
modulus in the key generation. We use standard RSA integers (i.e., not strong prime
factors) as this would be too slow for high security levels. For example, for 256 bits
security (15360 bits modulus), the generation of the modulus takes 95 seconds (mean
of 30 experiments) with a standard deviation of 56s. For the rest of the protocol the
experimental timings are roughly equal to the number of exponentiations multiplied by
the cost of one exponentiation.
The results are summarized in Figures 3.9a and 3.9b. Timings are given in milliseconds
and sizes in bits. The columns corresponds to the elliptic curve used for ECDSA, the
security parameter in bits for the encryption scheme, the corresponding modulus bit size,
the timings of one Paillier exponentiation, of the key generation and of the signing phase
and the total communication in bits for two phases. Modulus sizes are set according to
the NIST recommendations.
Note that for the first line, we use a 2048 bits modulus as in [Lin17] and we obtain a
similar experimental result.

3.5.2 Our Protocol with HSM− CL Encryption Scheme
The key generation uses a total of 160 class group exponentiations (of the form grq in
the class group of discriminant ∆q = −q3 · q̃). This corresponds to the 40 rounds of the
RCL−DL zero-knowledge proof of knowledge of Figure 3.7. Note that exponentiations in
〈f〉 are almost free. Signing uses 3 class group exponentiations (one encryption and one
decryption).
We use the same number of experiments as for Lindell’s protocol. Here timings are very
stable. Indeed during key generation, we only compute the public key h ← gxq with one
exponentiation, as the output of Gen (mainly the discriminant ∆q of the class group and
the generator gq) is a common public parameter that only depends on the cardinality q
of the elliptic curve. As a result this can be considered as an input of the protocol, as
the same group can be used by all users. Moreover, doing this does not change the global
result of the comparison with Lindell’s protocol: the running time of Gen is dominated
by the generation of q̃, a prime of size much smaller than the factor of the RSA modulus.
So even if we add this running time in the Keygen column, this does not affect the results

99

Curve Sec. Param. Modulus Expo. (ms) Keygen (ms) Signing (ms)
P-256 112 2048 7 2 133 20
P-256 128 3072 22 6 340 49
P-384 192 7680 214 65 986 437
P-521 256 15360 1196 429 965 2 415

(a) Lindell’s Protocol with Paillier - Timing
Curve Sec. Param. Modulus Keygen (b) Signing (b)
P-256 112 2048 881 901 5 636
P-256 128 3072 1 317 101 7 684
P-384 192 7680 3 280 429 17 668
P-521 256 15360 6 549 402 33 832

(b) Lindell’s Protocol with Paillier - Communication

Curve Sec. Param. Discriminant Expo. (ms) Keygen (ms) Signing (ms)
P-256 112 1348 32 5 521 101
P-256 128 1827 55 9 350 170
P-384 192 3598 212 35 491 649
P-521 256 5971 623 103 095 1 888

(c) Our Protocol with HSM− CL - Timing

Curve Sec. Param. Discriminant Keygen (b) Signing (b)
P-256 112 1348 178 668 4 748
P-256 128 1827 227 526 5 706
P-384 192 3598 427 112 10 272
P-521 256 5971 688 498 16 078

(d) Our Protocol with HSM− CL - Communication

Figure 3.9: Experimental results (timings in ms, sizes in bits)

100

of our comparisons for any of the considered security levels.
The results are summarized in Figures 3.9c and 3.9d. Timings are given in milliseconds

and sizes in bits. The columns correspond to the elliptic curve used for ECDSA, the
security parameter in bits for the encryption scheme, the corresponding fundamental
discriminant ∆K = −q · q̃ bit size, the timings of one class group exponentiation, of the
key generation and of the signing phase and the total communication in bits for two
phases. The discriminant sizes are chosen according to [BJS10].

3.5.3 Comparison
Figure 3.9 shows that Lindell’s protocol is faster for both key generation and signing for
standard security levels for the encryption scheme (112 and 128 bits of security) while
our solution remains of the same order of magnitude. However for high security levels,
our solution becomes faster (in terms of key generation from a 192-bits security level and
for both key generation and signing from a 256-bits security level).

In terms of communications, our solution outperforms the scheme of Lindell at all
levels of security by a factor 5 to 10 for Keygen. For Signing, we gain 15% for basic
security to a factor 2 at 256-bits security level. In terms of rounds, our protocol uses 126
rounds for Keygen and Lindell’s protocol uses 175 rounds, so we get a 28% gain. Both
protocol use 7 rounds for Signing.

This situation can be explained by the following facts. Firstly we use less than half
the number of exponentiations in the key generation as we do not need a range proof:
our message space is Z/qZ as the CL encryption scheme is homomorphic modulo a prime.
Secondly, with class groups of quadratic fields we can use lower parameters than with
Z/nZ (as said in Subsection 2.2.4.2, the best algorithm against the discrete logarithm
problem in class groups has complexity O(L[1/2, o(1)]) compared to an O(L[1/3, o(1)])
for factoring). However, the group law is more complex in class groups. By comparing
the Expo. time columns in the tables, we see that exponentiations in class groups are
cheaper from the 192 bits level. So even if we use half as many exponentiations, the
key generation for our solution only takes less time from that level (while being of the
same order of magnitude below this level). For signing, we increase the cost by one
exponentiation due to the Elgamal structure of the CL encryption scheme. However, one
can note that we can pre process this encryption by computing (gτq , hτ) in an offline phase
and computing c1 ← (gτq , hτfk

−1
2 m′) which results in only one multiplication in the online

phase (cf. Subsection 3.4.3, Figure 3.8). As a result we will have only one exponentiation
in the online signing for the decryption operation. The same holds for Lindell’s protocol
with Paillier. Using that both protocols take the same time for signing at the 192 bits
level.

Increasing the number of rounds to obtain a 2−60 soundness error. This impacts
only KeyGen, where the [Lin17] scheme and ours both use 40 iterations of ZK proofs
to achieve a 2−40 soundness error. Lindell’s protocol performs 9 exponentiations per
iteration while ours performs 4. All timings will thus be multiplied by 3/2 to achieve
a 2−60 soundness error, and indeed this is what we observe in practice. Complexity is
linear in the number of iterations and the ratio between our timings and those of [Lin17]
remains constant.

101

3.6 Instantiation of our Generic Construction Using
DCR

We can instantiate the generic construction of Section 3.3 with the hash proof system
built upon Paillier’s decision composite residuosity assumption (DCR).

This yields the Elgamal Paillier encryption scheme of [CS03] that closely resembles
the HSM − CL encryption scheme. However, the message space is Z/nZ as in Lindell’s
protocol, so in addition to the RHPS−DL proof, P1 has to prove that x1 is an element of Zq

with a range proof. For the same reason, one must slightly adapt the double encoding
problem, s.t. given input challenge the elliptic curve point Q := xP , no adversary can
output two invalid encryptions of x ∈ Z, with x < q (otherwise the assumption does not
rule out an adversary which outputs invalid encryptions of x, x′ ∈ Z where x 6= x′ mod N
but x = x′ mod q). Moreover, this encryption scheme uses two exponentiations instead of
one for Paillier. This being said a gain arrises from the fact that following the techniques
of [CS03] one can make a sound proof for RHPS−DL in a single round by relying on the
strong RSA assumption. This means that one should use safe primes that can be very
costly to generate at high security level. However, for 112 and 128 bits of security this
should give a competitive solution compared to Lindell’s with a simulation based security
relying on the hardness of classical problems, the DCR and the strong RSA assumptions.

102

Chapter 4

Bandwidth-efficient Threshold
ECDSA from Class Groups

In Chapter 3 we proposed a two-party ECDSA protocol from the HPS framework and
an efficient instatiation of it from Class Groups of Imaginary Quadratic Fields. An
advantage of using CL is that the ciphertexts and the keys are shorter with respect to the
security parameter, compared to Paillier cryptosystem. In a more general context where
the signature task is done by a set of more than two parties, the cost of communication
plays a crucial role. Motivated by the reduction of communication using CL, our starting
idea in [CCL+20] was to see how CL encryption could improve the existing solutions for
Threshold ECDSA.

Towards Threshold ECDSA from CL In this chapter we explain in details the
main points and contributions of our work [CCL+20]. We present new techniques to
realize efficient threshold variants of the ECDSA signature scheme. Our protocol has
better efficiency for what concerns bandwidth consumption compared to recent works
(e.g. [GG18]) and it allows to consider any threshold t such that t ≤ n − 1. As already
discussed in previous chapters, using CL allow us to avoid expensive range proofs (Paillier
modulus vs ECDSA modulus). Indeed, from this idea, our main contribution in [CCL+20]
is a new variant of the Gennaro and Goldfeder protocol [GG18] that exploits the advantage
of CL while retaining comparable overall (computational) efficiency.

Multiplicative to Additive sharing In our two party ECDSA we worked with multi-
plicative shares of ECDSA public key Q and nonce R. When thinking about a threshold
variant of this scheme we face with the difficulty to compute both R = k−1P and a
multiplication of the two secret values k, x. Gennaro and Goldfeder proposed a solution
for this issue. These authors thought about a conversion about multiplicative shares of a
value to additive shares of the same one. The idea is the following: consider two secrets
a = a1 + · · · + an, b = b1 + · · · + bn additively shared among the parties (i.e. Pi holds
ai and bi). The product ab can be seen as the sum of the products of each couple of
addendum in a and in b, i.e. ab = ∑

i,j aibj, and parties can compute a and b by comput-
ing additive shares of each aibj. This can be achieved via a simple two party protocol,
originally proposed by Gilboa [Gil99] in the setting of two party RSA key generation,
which parties execute in a pairwise way. Slightly more in detail, this latter protocol relies

103

on linearly homomorphic encryption and Gennaro and Goldfeder opted to implement it
using Paillier’s cryptosystem.

On inconsistencies of moduli We have already discussed differences between Pail-
lier encryption and CL encryption regarding the issues that arise when used with ECDSA
signature in Chapter 3. To fix the problem, we rely again on class groups based encryp-
tion. Before publishing our result [CCL+20], known techniques to prove the validity of a
CL ciphertext were that of [CCL+19], which are rather inefficient as they all use binary
challenges. This means that to get soundness error 2−t the proof needs to be repeated t
times. The lack of a more efficient technique introduces one of the main contributions of
[CCL+20].

A new efficient zero-knowledge Switching from Paillier to CL carry some issues.
Using CL we saw it is required to prove the vailidty of a ciphertext. Second main con-
tribution in our [CCL+20], is the developing of new techniques that address exactly this
issue. We presented indeed a new efficient zero knowledge argument of knowledge to prove
that a ciphertext is well-formed. This result is not specific to ECDSA or our threshold
setting considered, but is more general and it could be used in other kind of applications.
For example, as we will see in Subsection 4.2.1 and already announced in Subsection
3.4.2, this ZKAoK and other techniques can be used to improve the efficiency of our two
party protocol in Chapter 3. We will detail about this in Subsection 4.2.1.

New assumptions for CL Our constructions rely on two recently introduced as-
sumptions on class groups. Informally, given a group Ĝ the first one states that it
is hard to find low order elements in Ĝ (low order assumption) while the latter as-
sumes that it is hard to find roots of random elements in Ĝ (strong root assumption).
Both these assumptions are believed to hold in class groups of imaginary quadratic fields
([BH01, DF02, BBHM02, Lip12]) and were recently used in, e.g. [BBF18, Pie19, Wes19b].

Resorting to these assumptions allows us to dramatically improve the efficiency of the
(zero knowledge) arguments of knowledge needed by our protocols. Informally this can
be explained as follows. In the class group setting, the order of the group Ĝ is unknown
(to all parties, even to those who set up the parameters). This is typically a bad thing
when doing arguments of knowledge as, unless one restricts to binary challenges, it is not
immediate how to argue the extractability of the witness.

In our proofs, we manage to prove that, no matter how big the challenge space is,
either one can extract the witness or one can find a root for some given (random) element
of the group, thus violating the strong root assumption. Our argument is actually more
convoluted than that as, for technical reasons that won’t be discussed here, we still
need to make sure that no undetected low order elements are maliciously injected in
the protocols (e.g. to extract unauthorized information). This is where the low order
assumption comes into play and allows us to avoid hard to handle corner cases in our
proofs. Challenges also arise from the fact that in order to reduce to the hardness of
finding roots, our reduction should output eth roots where e is not a power of two, since,
as observed in concluding remarks of [CCL+19] and also discussed in Subsection 2.2.2,
computing square roots or finding elements of order 2 can be done efficiently in class
groups knowing the factorization of the discriminant (which is public in our case).

104

We also provide in Section 4.4 a zero knowledge proof of knowledge (without compu-
tational assumptions) for groups of unknown order in order to improve our setup. That
proof can also be of independent interest and actually improves the key generation of
[CCL+19] for two party ECDSA.

4.1 Preliminaries
Part of the tools required to understand the results on the construction of the Threshold
ECDSA from CL are introduced in Chapter 1, other are specific of this chapter. For the
former we only recall the references to the dedicated sections in this manuscript, for the
latter we will give more details.

Zero-knowledge proofs. See Section 1.5

Computationally convincing proofs of knowledge. See Section 1.5

Threshold secret sharing. See Section 1.6

Feldman verifiable secret sharing. See Section 1.6

Equivocable Commitments Schemes. See Section 1.4

The elliptic curve digital signature algorithm See Subsection 1.3.1

(t, n)−threshold EC-DSA. See Subsection 1.3.1

4.1.1 Building blocks from Class Groups
An instantiation of the CL framework. We will rely again on the CL framework,
but this time we need to consider a slightly different version of the algorithm for the
task of generating an instance. We refer to the two-party case (see Section 3.4) for the
framework and we explain how to modify it and why it is necessary.

After a run of the Gen algorithm, we obtain a deterministic generator ĝq of Gq 1. We
will then consider an element gq built as a random power of ĝq. This slightly changes
the construction of [CCL+19] (Section 3.4), in order to make a reduction to a strong root
problem for the soundness of the argument of knowledge of Subsection 4.2.1. As usual,
one can compute the upper bound s̃ for the order of ĝq, using 1

π
log |∆K |

√
|∆K | as an upper

bound for h(∆K) or a slightly better bound from the analytic class number formula, as
done for the two-party instantiation from Class Groups of the previous chapter. For our
application the prime q will have at least 256 bits, in that case q is prime to h(∆K) except
with negligible probability. Therefore q will be prime to the order of ĝq which is a divisor
of h(∆K), except for a negligible probability.

1ĝq has the same role of gq in the definition of Gen in Section 2.2. We use the ”hat” notation because
ĝq is an intermediate step to compute the generator we need in the modified version.

105

Notation. The notation we use is the same as we saw in Subsection 2.2.4 when dis-
cussing GenGroup. The only difference with the definition we presented there is that we
need to modify the deterministic generation of the parameters to use our efficient ZKAoK.
Then, we introduce new elements for the discussion here. For a random power gq of ĝq we
will denote Gq the subgroup generated by gq, g = gqf and G the subgroup generated by
g. This time we do not consider a deterministic group Gq, but we use the same notation
”Gq” to denote a subgroup Gq generated by a random power of the deterministic genera-
tor ĝq output by Gen, and the same for G. We further denote Ĝq the subgroup consisting
of all q-th powers in Ĝ, and it’s order ŝ. It holds that Ĝ is the direct product of Ĝq and
F . We denote $:= ŝd the group exponent of Ĝq, i.e. the least common multiple of the
orders of its elements. Clearly, the order of any element in Gq divides $. In the following
the distribution D from which exponents are sampled is chosen to be close to uniform
mod q · s̃, where s̃ is an upper bound for ŝ. This means that exponents sampled from
D follow a distribution close to uniform mod q, and mod any divisor of ŝ. In particular
mod $.

HSM for a random generator We have already discussed the definition of a HSM in
Section 2.2. Anyway, we need to slightly modify the assumption to take in account a
random power of the deterministic generator ĝq and the hardness to recognize elements
in 〈gq〉 = 〈ĝtq〉 for some integer t, instead of 〈ĝq〉. For a random power gq of ĝq the HSM
assumption states it is hard to distinguish the elements of Gq in G, where Gq and G are
computed from the random power gq.
Definition 4.1.1 (HSM assumption, [CCL+20] version). For (s̃, f, ĝq, Ĝ, F) an output of
Gen, gq a random power of ĝq and g := gqf , we denote D (resp. Dq) a distribution over
the integers such that the distribution {gx, x ←↩ D} (resp. {ĝxq , x ←↩ Dq}) is at distance
less than 2−λ from the uniform distribution in 〈g〉 (resp. in 〈ĝq〉). Let A be an adversary
for the HSM problem, its advantage is defined as:

AdvHSM
A (λ) :=

∣∣∣∣∣2 · Pr
[
b = b? : (s̃, f, ĝq, Ĝ, F)← Gen(1λ, q), t←↩ Dq, gq = ĝtq,

x←↩ D, x′ ←↩ Dq, b
$←− {0, 1}, Z0 ← gx, Z1 ← gx

′

q ,

b? ← A(q, s̃, f, ĝq, gq, Ĝ, F, Zb, Solve(.))
]
− 1

∣∣∣∣∣
The HSM problem is said to be hard in G if for all probabilistic polynomial time algorithm
A, AdvHSM

A (λ) is negligible.

A remark on the HSM − CL scheme We introduced the HSM − CL in Subsection
2.2.4 and we refer to it for details. The original scheme is depicted in Figure 2.2. We
use the output of Gen(1λ, q) and as in Definition 4.1.1, we set gq = ĝtq for t ←↩ Dq. The
public parameters of the scheme are pp := (s̃, f, ĝq, gq, Ĝ, F, q). To instantiate Dq, we
set Ã ≥ s̃ · 240 such that {grq , r ←↩ [Ã]} is at distance less than 2−40 from the uniform
distribution in Gq. Conversely to the original scheme of [CLT18a], we do not sample
secret keys from Dq. This is due to the way we use the encryption scheme in the signature
protocol of Section 4.2. For security to hold, we need secret keys to be sampled from

106

a distribution D such that {(gqf)r, r ←↩ D} is at distance less than 2−λ of the uniform
distribution in G = F ×Gq. The plaintext space is Z/qZ.

We recall a lemma about the distribution followed by the secret keys from [CCL+19]
(see Lemma 3.4.1 for the proof). In our specific case the lemma can be written as:
Lemma 4.1.1. Let D be a distribution which is δ-close to U(Z/ŝqZ). For any x ∈ G\Gq,
π ← fγ ∈ F where γ $←− Z/qZ and k ←↩ D, the distributions D1 := {x, (k mod $), π ·xk}
and D2 := {x, (k mod $), xk} are 2δ-close.

We can also write the smoothness property as below. This is somewhat an abuse of
denotation, since smoothness usually refers to the projective hash family underlying an
encryption scheme as we saw in Section 3.2.
Definition 4.1.2 (Smoothness). The CL encryption scheme of Figure 2.2 is said to be δs-
smooth if the distribution D from which secret keys are sampled is δ-close to U(Z/ŝqZ),
where δs = 2δ.
Finally, the notion of invalid ciphertexts is the same in Subsection 3.2.4.

4.1.2 Algorithmic assumptions
We here provide further definitions for the algorithmic assumptions on which the security
of our protocol relies. As for the two-party construction (Chapter 3), we need the HSM
assumption guaranteeing the ind-cpa-security of the linearly homomorphic encryption
scheme. We also use two additional assumptions: one which states that it is hard to find
low order elements in the group Ĝ, and one which states that it is hard to find roots in
Ĝ of random elements of the subgroup 〈ĝq〉. These assumptions allow us to significantly
improve the efficiency of the ZKAoK needed in our protocol. Indeed, as the order of the
group we work in is unknown, we cannot (unless challenges are binary as done for our
proof for RCL−DL in Subsection 3.4.2) immediately extract the witness from two answers
corresponding to two different challenges of a given statement. However we show in the
ZKAoK of Section 4.2.1 that whatever the challenge space, if one cannot extract the
witness, then one can break at least one of these two assumptions. Consequently these
assumptions allow us to significantly increase the challenge space of our proofs, and reduce
the number of rounds in the protocol to achieve a satisfying soundness, which yields an
improvement both in terms of bandwidth and of computational complexity.

Using such assumptions in the context of generalized Schnorr Proofs in groups of
unknown order is not novel (cf. e.g. [DF02, CKY09]). We adapt these techniques for our
specific subgroups of a class group of an imaginary quadratic field, and state them with
respect to Gen.
Definition 4.1.3 (Low order assumption). Consider a security parameter λ ∈ N, and
γ ∈ N. The γ-low order problem (LOPγ) is (t(λ), εLO(λ))-secure for Gen if, given the
output of Gen, no algorithm A running in time ≤ t(λ) can output a γ-low order element
in Ĝ with probability greater than εLO(λ). More precisely,

εLO(λ) := Pr[µd = 1, 1 6= µ ∈ Ĝ, 1 < d < γ :

(s̃, f, ĝq, Ĝ, F) $←− Gen(1λ, q); (µ, d) $←− A(s̃, f, ĝq, Ĝ, F)].

The γ-low order assumption holds if t = poly(λ), and εLO is negligible in λ.

107

We now define a strong root assumption for class groups. This can be seen as a gen-
eralisation of the strong RSA assumption. We specialise this assumption for class groups
where computing square roots is easy knowing the factorisation of the discriminant, and
tailor it to our needs by considering challenges in a subgroup.

Definition 4.1.4 (Strong root assumption for Class Groups). Consider a security param-
eter λ ∈ N, and let A be a probabilistic algorithm. We run Gen on input (1λ, q) to get
(s̃, f, ĝq, Ĝ, F) and we give this output and a random Y ∈ 〈ĝq〉 as an input to A. We
say that A solves the strong root problem for class groups (SRP) if A outputs a positive
integer e 6= 2k for all k and X ∈ Ĝ, s.t. Y = Xe. In particular, the SRP is (t(λ), εSR(λ))-
secure for Gen if any adversary A, running in time ≤ t(λ), solves the SRP with probability
at most εSR(λ).

On the hardness of these assumptions in class groups. For our applications,
we will use the strong root assumption and the low order assumption in the context of
class groups. These assumptions are not completely novel in this setting: Damg̊ard and
Fujisaki ([DF02]) explicitly consider variants of these assumptions in this context. Then,
Lipmaa used a strong root assumption in class groups to build accumulators without
trusted setup in [Lip12]. Recently, an interactive variant of the strong root assumption
was used, still in the context of class groups, by Wesolowski to build verifiable delay
functions without trusted setup. Furthermore, the low order assumption is also used to
implement Pietrzak’s verifiable delay functions with class groups (see [BBF18, Pie19]).
In the following, we advocate the hardness of these assumptions in the context of class
groups.

The root problem and its hardness was considered in [BH01, BBHM02] in the context
of class groups to design signature schemes. It is similar to the RSA problem: the
adversary is not allowed to choose the exponent e. These works compare the hardness of
this problem with the problem of computing the group order and conclude that there is
no better known method to compute a solution to the root problem than to compute the
order of the group.

The strong root assumption is a generalisation of the strong RSA assumption. Again,
the best known algorithm to solve this problem is to compute the order of the group to
be able to invert exponents. For strong RSA this means factoring the modulus. For the
strong root problem in class groups, this means computing the class number, and best
known algorithms for this problem have worst complexity than those to factor integers.

Remark 15. Note that in Definition 4.1.4, we presented the definition of the strong root
assumption in the context of class groups specialized for exponents e which are not powers
of 2. This is motivated by the fact that one can compute square roots in polynomial time
in class groups of quadratic fields, knowing the factorisation of the discriminant (which
is public in our setting). We discussed about this task in Subsection 2.2.1 (for details on
the algorithm and its analysis, see [Lag80]).

Concerning the low order assumption, we need the γ−low order problem to be hard in Ĝ,
where γ can be up to 2128. As we discussed in Subsection 2.2.2, in our instantiation the
discriminant is chosen such that the 2−Sylow subgroup is isomorphic to Z/2Z. It is well
known that the element of order 2 can be computed from the (known) factorisation of

108

∆q. However, we work with the odd part, which is the group of squares in this context,
so we do not take this element into account.

Let us see that the proportion of such elements of low order is very low in the odd
part. From the Cohen Lenstra heuristics (see Subsubection 2.2.2.2), the odd part of a
class group Cl(∆) of an imaginary quadratic field is cyclic with probability 97.75%. In
[HS06], extending the Cohen Lenstra heuristics, it is conjectured that the probability an
integer d divides the order h(∆) of Cl(∆) is less than:

1
d

+ 1
d log d.

As a consequence, if the odd part of Cl(∆) is cyclic then the expected number of elements
of order less than γ is less than

∑
d6γ

(
1
d

+ 1
d log d

)
ϕ(d),

which can be bounded above by 2γ. For 128 bits of security, our class number will have
around 913 bits, so the proportion of elements of order less than 2128 is less than 2−784.

Moreover, if the odd part of the class group is non cyclic, it is very likely that it is of
the form Z/n1Z⊕Z/n2Z where n2|n1 and n2 is very small. Still from the Cohen Lenstra
heuristics, the probability that the p−rank (the number of cyclic factors in the p−Sylow
subgroup) of the odd part is equal to r is equal to

η∞(p)
pr2ηr(p)2 where ηr(p) =

r∏
k=1

(1− p−k).

If we have two cyclic factors, and p|n2, then the p−rank is 2. If p > 220 the probability
of having a p−rank equal to 2 is less than 2−80. Similarly, we cannot have many small
cyclic components: the 3−rank is 6 with probability less than 2−83. Actually, we know
only 3 class groups of such 3 ranks [Que87].

There have been intense efforts on the construction of families of discriminants such
that there exist elements of a given small order p or with a given p−rank. However,
these families are very sparse and will be reached by our generation algorithm of the
discriminant only with negligible probability. The basic idea of these constructions is to
build a discriminant ∆ in order to obtain solutions of a Diophantine equation that gives
m and the representation of a non principal ideal I of norm m such that Ip is principal,
and I has order p in Cl(∆) (see eg [Bue76] or [Bel04] for more references).

Solving such a norm equation for a fixed discriminant has been mentioned as a starting
point for an attack in [BBF18] combined with the Coppersmith’s method, but no concrete
advances on the problem have been proposed.

4.2 Threshold EC-DSA protocol
We here provide a construction for (t, n)-threshold ECDSA signing from the CL frame-
work. Security – which does not degrade with the number of signatures queried by the
adversary in the tu-cma game (cf. Definition 1.3.3) – relies on the assumptions and tools
introduced in Section 4.1.

109

As in many previous works on multiparty ECDSA (e.g. [MR01, Lin17, GG18], which
we briefly discussed in the introduction chapter), we use a linearly homomorphic encryp-
tion scheme. This enables parties to perform operations collaboratively while keeping
their inputs secret. Explicitly a party Pi sends a ciphertext encrypting its secret share
(under its own public key) to party Pj, Pj then performs homomorphic operations on this
ciphertext (using its own secret share), and sends the resulting ciphertext back to Pi –
intuitively Pi should learn nothing more about the operations performed by Pj than that
revealed by decrypting the ciphertext it receives. To ensure this, Pi must prove to Pj that
the ciphertext it first sent is ‘well formed’. To this end in Subsection 4.2.1, we provide an
efficient zero-knowledge argument of knowledge of the plaintext and of the randomness
used to compute a CL ciphertext. This ZKAoK is essential to secure our protocol against
malicious adversaries. Next, in Subsection 4.2.2 we explain how parties interactively set
up the public parameters of the CL encryption scheme, so that the assumptions underlying
the ZKAoK hold. Though – for clarity – we describe this interactive set up as a separate
protocol, it can be done in parallel to the IKeyGen protocol of threshold ECDSA, thereby
only increasing by one the number of rounds of the threshold signing protocol. Finally, in
Subsection 4.2.3 we present our (t, n)-threshold ECDSA signing protocol, whose security
will be demonstrated in Section 4.3.

4.2.1 ZKAoK ensuring a CL ciphertext is well formed
Consider a prover P having computed an encryption of a ∈ Z/qZ with randomness
r

$←− [Ã], i.e. c := (c1, c2) with c1 := grq , c2 := pkrfa. We present a zero knowledge
argument of knowledge for the following relation:

REnc := {(pk, c); (a, (ρ0, ρ1)) | pk ∈ Ĝ; a ∈ Z/qZ; ρ0 ∈ N,

ρ1 ∈ [−ÃC(240 + 1) · 2ρ0 , ÃC(240 + 1) · 2ρ0]; c1 = g2−ρ0 ·ρ1
q ∧ c2 = pk2−ρ0 ·ρ1fa}.

Though the relation REnc ensures a ciphertext is well formed, and allows to extract the
plaintext, it does not allow to extract an integer value of the encryption randomness
r. However, for our applications this will be sufficient. For example, this proves that
c1 ∈ 〈gq〉 and one can also recompute in polynomial time c1 from ρ0 and ρ1, by computing
ρ0 successive square roots of gq and taking the result to the power ρ1. The interactive
protocol is given in Figure 4.1. Note that the honest prover knows and uses the integer
value of the randomness r in this protocol. We denote C the challenge set, and C := |C|.
The only constraint on C is that the C-low order assumption holds. We further assume
that C < q, which is not a restriction for our applications.
Theorem 4.2.1. If the strong root assumption is (t′(λ), εSR(λ))-secure for Gen,
and the C-low order assumption is (t′(λ), εLO(λ))-secure for Gen, denoting ε :=
max(εSR(λ), εLO(λ)), then the interactive protocol of Figure 4.1 is a computationally con-
vincing proof of knowledge for REnc with knowledge error κ(λ), time bound t(λ) and failure
probability ν(λ), where ν(λ) = 3ε, t(λ) < t′(λ)/448 and κ(λ) = max(4/C, 448t(λ)/t′(λ)).
If r is an integer in [s̃ · 240] (it is so when the prover is honest), the protocol is honest
verifier statistical zero-knowledge.
Proof. We prove the properties of soundness, completeness and (honest verifier) zero-
knowledge.

110

Setup:

1. (s̃, f, ĝq, Ĝ, F)← Gen(1λ, q).

2. Let Ã := s̃ · 240, sample t $←− [Ã] and let gq := ĝtq.

Prover Verifier
(pk, c), a ∈ Z/qZ; r ∈ [Ã] s.t. c1 = grq ∧ c2 = pkrfa (pk, c)

r1
$←− [240ÃC] Check that pk, c1, c2 ∈ Ĝ

r2
$←− Z/qZ

t1 := gr1q
t2 := pkr1f r2 t1,t2−−−−−−−−−−−→

k←−−−−−−−−− k
$←− C

u1 := r1 + kr ∈ Z
u2 := r2 + ka ∈ Z/qZ u1,u2−−−−−−−−−−−→ Check u1 ∈ [ÃC(240 + 1)]

and u2 ∈ Z/qZ
and gu1

q = t1c
k
1

and pku1fu2 = t2(c2)k

Figure 4.1: Zero-knowledge argument of knowledge for REnc.

Soundness. Let us analyse to what extent the protocol of Figure 4.1 satisfies the notion
of soundness defined in Def. 1.5.4, in particular for which knowledge error functions κ()
is the definition satisfied. Accordingly, let κ() be any knowledge error function, such
that κ(λ) ≥ 4/C for all λ. We then must define an extractor M . Let a PT prover P ∗
be given and let view be any view P ∗ may have after having produced (pk, c). Now, it
can be shown that since there are C different challenges, then if εview,P > κ(λ) ≥ 4/C,
standard rewinding techniques allow us to obtain in expected PT a situation where, for
given (t1, t2), P ∗ has correctly answered two different values k and k′. We call u1, u2 and
u′1, u

′
2 the corresponding answers, so we get:

• gu1
q = t1 · ck1 and g

u′1
q = t1 · ck

′
1 s.t. gu1−u′1

q = ck−k
′

1 ,

• pku1fu2 = t2 · ck2 and pku′1fu′2 = t2 · ck
′

2 s.t. pku1−u′1fu2−u′2 = ck−k
′

2 .
Let Rewind be a (probabilistic) procedure that creates k, k′, u1, u2, u

′
1, u
′
2 in this way.

A concrete algorithm for Rewind is given in [DF02, Appendix A]. It runs in expected
time 56/εview,P , counting the time to do the protocol once with P ∗ as one step. Denote
d := gcd(k − k′, u1 − u′1) and

ν1 := g(u1−u′1)/d
q c

−(k−k′)/d
1 and ν2 := pk(u1−u′1)/df (u2−u′2)/dc

−(k−k′)/d
2 .

Clearly νd1 = νd2 = 1. We suppose in the following that ν1 = ν2 = 1. Further suppose
that e := (k − k′)/d = 2ρ0 for some ρ0 ∈ N. We have

g(u1−u′1)/d
q = c2ρ0

1 and pk(u1−u′1)/df (u2−u′2)/d = c2ρ0
2 .

Now, as the verifier checks that pk, c1, c2 ∈ Ĝ, as by definition gq, f ∈ Ĝ, and as the order
of Ĝ is odd, we get that

g2−ρ0 (u1−u′1)/d
q = c1 and pk2−ρ0 (u1−u′1)/df 2−ρ0 (u2−u′2)/d = c2.

111

The check of V on the size of u1, u
′
1 implies that ρ1 := (u1 − u′1)/d is in the required

interval. One can now easily verify that P ∗ knows ((pk, c); ((u2−u′2)/d mod q, (ρ0, ρ1))) ∈
REnc, so from values k, k′, u1, u2, u

′
1, u
′
2 one can extract a witness for the statement. Note

that in our applications C < q, so as k 6= k′ < C and as q is prime, d, which is a divisor
of k − k′, is invertible mod q.

A set of values k, k′, u1, u2, u
′
1, u
′
2 is said to be bad if it does not enable extraction, i.e.,

one of the following holds

1. ν1 6= 1 or ν2 6= 1

2. ν1 = ν2 = 1, but e is not a power of 2.

The extractor M repeats calling Rewind (for the same (pk, c)) until it gets a set of good
values. We will analyse knowledge soundness with this M and the polynomial p(λ) from
the definition set to the constant of 112. We start with a lemma that gives an exact
bound on the security.

Lemma 4.2.2. Let R, (P, V), κ(), M and p() be as defined above. Given any prover P ∗,
there exists an algorithmA(P ∗) that solves either the strong root problem for class groups
with input (Ĝ, Ĝq, gq), or the low order problem in Ĝ with probability Advκ,M,p(P ∗, λ)/3,
and runs in time 448 · tP ∗(k)/κ(λ) where tP ∗(k) denotes the running time of P ∗.

Proof. A does the following: receive (s̃, f, ĝq, Ĝ, F, gq) as an input and accordingly set
the public parameters for the CL encryption scheme as: (s̃, f, ĝq, gq, Ĝ, F, q) as described
in Section 4.1.1. Send (s̃, f, ĝq, gq, Ĝ, F, q) to P ∗, and hope to get a set of bad values.
However, if Rewind runs more than 448/κ(λ) times with P ∗, we abort and stop. If we
obtained a set of bad values, we attempt to compute a root of gq as described below.

Clearly A runs in time 448 · tP ∗(k)/κ(λ). We now look at its’ success probability.
Note that the distribution of (s̃, f, gq, Ĝ, G, F,Gq) that P ∗ receives here is exactly the
same as in a real execution of the protocol. Hence the probability of producing a view
for which M fails, is exactly Advκ,M,p(P ∗, λ). Note also that given any view view where
M fails, it must be the case that the values produced by Rewind are bad with probability
of at least 1/2. If this was not the case, then M could expect to find a witness for (pk, c)
after calling Rewind twice, which takes expected time 112

εview,P∗
≤ p(λ)

εview,P∗−κ(λ) which would
contradict the fact M fails on view. So let E be the event that M fails on view and Rewind
has returned a set of bad values.
Claim 1. Given that E occurs, we can solve either the root problem or the C−low order
problem in Ĝ.

Rewind returns a set of bad values k, k′, u1, u2, u
′
1, u
′
2 s.t. g

u1−u′1
q = ck−k

′

1 and
pku1−u′1fu2−u′2 = ck−k

′

2 . Denoting ν1, ν2, d and e as above; two cases may occur:

1. ν1 6= 1 or ν2 6= 1. As we have seen, νd1 = νd2 = 1. And since d|(k − k′) < C, and
one can check that ν1 and ν2 are elements of Ĝ (as c1, pk, c2 are checked to be in
Ĝ) this solves the C-low order problem in Ĝ.

112

2. ν1 = ν2 = 1 and e is not a power of 2. Choose γ and δ s.t. γ(k−k′)+δ(u1−u′1) = d.
Then gdq = g

γ(k−k′)+δ(u1−u′1)
q = (gγq cδ1)k−k′ .

Now let:
µ := (gγq cδ1)

(k−k′)
d g−1

q .

Clearly µd = 1, so since d < C, if µ 6= 1, we again have a solution to the C-low
order problem in Ĝ. Now suppose that µ = 1. We can rewrite the above as:

gq = (gγq cδ1)(k−k′)/d,

which gives a solution for the SRP with input gq, which is e = (k − k′)/d and
X := gγq c

δ
1, s.t. gq = Xe, e > 1 and e is not a power of 2. The claim above now

follows.

Summarizing, we therefore have that for every view view where M fails, the values
produced by Rewind are bad with probability ≥ 1/2, and so running Rewind will fail
to solve either the strong root problem or the low order problem with probability at
most 1/2. The expected number of executions of P ∗ needed to run Rewind is at most
56/εview,P ∗ ≤ 56/κ(λ). Thus Rewind is allowed to run for at least 8 times its expected
running time, and so by the Markov rule it will run for longer with probability at most
1/8. As a result, for every view where M fails, A fails to solve either the strong root
problem or the low order problem with probability at most 1/8 + 1 · 1/2 = 9/16.

Since the probability that view makes M fails is Advκ,M,p(P ∗, λ), the success proba-
bility of A(P ∗) is at least Advκ,M,p(P ∗, λ) · 7/16 ≥ Advκ,M,p(P ∗, λ)/3. This finishes the
proof.

Completeness. If P knows r ∈ [Ã] and a ∈ Z/qZ s.t. (pk, c); (a, r) ∈ REnc and both
parties follow the protocol, one has u1 ∈ [ÃC(240 + 1)] and u2 ∈ Z/qZ; pku1fu2 =
pkr1+k·rf r2+k·a = pkr1f r2(pkrfa)k = t2c

k
2; and gu1

q = gr1+k·r
q = t1c

k
1.

Honest verifier zero-knowledge. Given pk, c = (c1, c2) a simulator can sample k $←− [C[,
u1

$←− [ÃC(240 + 1)] and u2
$←− Z/qZ, compute t2 := pku1fu2c−k2 and t1 := gu1

q c
−k
1 such

that the transcript (pk, c, t2, t1, k, u1, u2) is indistinguishable from a transcript produced
by a real execution of the protocol.

4.2.2 Interactive set up for the CL encryption scheme
Generating a random generator gq. In order to use the above ZKAoK it must hold
that gq is a random element of the subgroup 〈ĝq〉 where (s̃, f, ĝq, Ĝ, F) ← Gen(1λ, q).
Precisely if a malicious prover P ∗ could break the soundness of the ZKAoK, an adversary
S trying to break the SRP, given input a random gq, should be able to feed this input to
P ∗, and use P ∗ to solve it’s own challenge. Consequently, as the ZKAoK will be used peer-
to-peer by all parties in the threshold ECDSA protocol, they will collaboratively generate
– in the interactive IKeyGen – the public parameters (s̃, f, ĝq, Ĝ, F), and a common gq
which is random to each party. We call this interactive sub-protocol ISetup, since it allows
parties to collaboratively set up the public parameters for the CL encryption scheme.
ISetup algorithm is shown in 4.2. All parties then use this gq to compute their public keys
and as a basis for the CL encryption scheme. As pointed in Section 4.1.1, discussed in

113

Section 2.2, the generation of (s̃, f, ĝq, Ĝ, F) is deterministic from a pair of primes q̃ and q.
To refer to this deterministic setup, we can use the notation (s̃, f, ĝq, Ĝ, F)← Gen(q̃, q),
which use (q, q̃) to identify the output. We first define the functionality computed by
ISetup, running in two steps.

Definition 4.2.1. For a number of parties n, ISetup consists of the following interactive
protocols:

Step 1 〈k; . . . ; k〉 → 〈q̃〉 or 〈⊥〉 where ⊥ is the error output, signifying the parties may
abort the protocol, and q̃ is a random k bit prime.

Step 2 〈(q̃, q); . . . ; (q̃, q)〉 → 〈(s̃, f, ĝq, Ĝ, F, gq, t1); . . . ; (s̃, f, ĝq, Ĝ, F, gq, tn)〉 or 〈⊥〉 where
(s̃, f, ĝq, Ĝ, F) ← Gen(q̃, q), and values t1, . . . , tn ∈ [240s̃] constitute additive shares
of t such that gq = ĝtq.

For n parties to collaboratively run ISetup, they proceed as depicted in Figure 4.2,
performing the following steps:

Step 1 – Generation of random public prime q̃ of bit-size k.

1. Each Pi samples a random ri
$←− {0, 1}k, computes (ci, di) ← Com(ri) and

broadcasts ci.
2. After receiving {cj}j 6=i, each Pi broadcasts di thus revealing ri.
3. All players compute the common output q̃ := next-prime(⊕n

j=1 rj).

Step 2 – Generation of gq.

1. From q̃, (and the order of the elliptic curve q) all parties can use the deter-
ministic set up of [CL15, CCL+19] (see Section 2.2), which sets a generator
ĝq.

2. Next each player Pi performs the following steps:

(a) Sample a random ti
$←− [240s̃]; compute gi := ĝtiq ; (c̃i, d̃i) ← Com(gi), and

broadcast c̃i.
(b) Receive {c̃j}j 6=i. Broadcast d̃i thus revealing gi.
(c) Perform a ZKPoK of ti such that gi = ĝtiq .If a proof fails, abort.

3. Each party computes gq := ∏n
j=1 gj = ĝ

∑
tj

q , and has output
(s̃, f, ĝq, Ĝ, F, gq, ti).

Theorem 4.2.3 states the security of the interactive protocol ISetup of Figure 4.2.

Theorem 4.2.3. If the commitment scheme is non-malleable and equivocal; and the
proofs π〈ĝq〉−DL

i are zero knowledge proofs of knowledge of discrete logarithm in 〈ĝq〉, then
the protocol of Figure 4.2 securely computes ISetup with abort, in the presence of a
malicious adversary corrupting any t < n parties, with point-to-point channels.

114

Pi ISetup(k) All players {Pj}j 6=i
ri

$←− {0, 1}k
[ci, di]← Com(ri)

ci=====⇒
di=====⇒ ri ← Open(ci, di)

q̃ := next-prime(⊕n
j=1 rj)

Compute ĝq from q, q̃

ti
$←− [240s̃] and gi ← ĝtiq
(c̃i, d̃i)← Com(gi)

c̃i=====⇒
d̃i=====⇒ gi ← Open(c̃i, d̃i)

π
〈ĝq〉−DL
i := ZKPoKgi{(ti) : gi = ĝtiq }

πi←−−−→ if a proof fails abort
gq ←

∏n
j=1 ĝ

tj
q = ∏n

j=1 gj

Figure 4.2: Threshold CL setup used in IKeyGen

Proof. We here demonstrate that for each execution of ISetup (cf. Figure 4.2), which
interactively sets the public parameters of the CL framework, our reduction for the strong
root problem can program the outputs q̃ and gq if the reduction controls at least one
uncorrupted player.

Indeed consider an adversary S for the SRP for generator Gen. S gets as input a
description of (s̃, f, ĝq, Ĝ, F) output by Gen(1λ, q), which includes q̃ and the order of the
elliptic curve q, and a random element Y ∈ 〈ĝq〉. S must simulate Step 1 so that all
players output the same q̃ as S received in the description of G. Next S must simulate
Step 2 so that each player Pi outputs s̃, f, ĝq, Ĝ, F, gq = Y – of which S must find a root
– and some ti ∈ [s̃ · 240]. We describe S simulating P1 against all the other (potentially
corrupted) parties, since all parties play symmetric roles, this is without loss of generality.

Simulating step 1 — Generation of q̃.

1. S samples r1
$←− {0, 1}k, computes (c1, d1) := Com(r1) and broadcasts c1.

2. S broadcasts d1, revealing r1, and receives {rj}j>1.

3. S samples r′1 uniformly at random in {0, 1}k, subject to the condition q̃ =
next prime(r′1⊕

⊕n
j=2 rj). Then S computes an equivocated decommitment d′1 which

opens to r′1, rewinds the adversary to item 2. and broadcasts d′1 instead of d1.

4. All players compute the common output q̃ := next prime(r′1 ⊕
⊕n

j=2 rj).

Simulating step 2 — Generation of Y = gq.

1. From q̃ and q all parties use the deterministic set up of [CCL+19] to set generator
ĝq.

2. S (simulating P1) does the following:

115

(a) Sample t1 $←− [240s̃]; compute g1 := ĝt1q ; (c̃1, d̃1) = Com(g1), and broadcast c̃1.
(b) Receive {c̃j}j 6=1. Broadcast d̃1 thus revealing g1.
(c) Perform a ZKPoK for π〈ĝq〉−DL

1 := ZKPoKg1{(t1) : g1 = ĝt1q }.
(d) Receive {c̃j}j 6=1, recover gj ← Open(c̃j, d̃j) for each j.
(e) Let h := ∏n

j=2 gj. Compute g′1 := Y · h−1 and an equivocated decommitment
d′1 which opens to g′1, rewind the adversary to 2. (b) and broadcast d′1 instead
of d̃1. In 2. (b) simulates the ZKPoK.

3. If all the proofs are correct, the protocol goes along with gq := g′1h = Y .
Lemma 4.2.4. If the commitment scheme is non-malleable and equivocal; and the proofs
π
〈ĝq〉−DL
i are zero knowledge proofs of knowledge then, a simulated execution of steps 1 and

2 above is – from the view of (potentially corrupted) parties P2, . . . , Pn – indistinguishable
from a real execution. Moreover when the simulation – on input (G, gq), where G is
computed deterministically from a prime q̃ – does not abort, all parties output q̃ in step
1, and gq in step 2.

Proof. Step 1: The only difference between real and simulated protocols is the way
r1 is computed. In the simulation S does not know r1, but it chooses a r′1 such that
q̃ = next prime(r′1 ⊕

⊕n
j=2 rj). Let R = ⊕n

j=2 rj and Hq = {x ∈ {0, 1}k : prev-prime(q̃) ≤
x ⊕ R ≤ q̃ − 1} be the set of all the elements x such that q̃ = next prime(x ⊕ R). Since
r1 belongs to the set Hq, and it has been chosen uniformly at random, as long as r′1
is chosen uniformly at random in the same set, the real and simulated executions are
indistinguishable.
Step 2: The only difference is in point 2.(e), where the simulator computes g′1 instead of
using g1. Since g1 and Y ·h−1 follow the same distribution, real and simulated executions
are indistinguishable.

Moreover, we observe that the simulation can fail in three points: in step 1 if someone
refuses to decommit after rewinding and in step 2, if some π〈ĝq〉−DL

i fails or if someone
refuses to decommit after rewinding. Since the commitment scheme is non-malleable and
equivocal, in Step 1 the simulator can rewind and equivocate the commitment to r1, and
if there are not aborts, all parties decommit to their correct values. As a consequence, all
parties output q̃ at the end of Step 1. In step 2, all parties compute the correct ĝq using
q̃ from the deterministic setup of CL, if not there is an abort caused by the soundness of
the proof π〈ĝq〉−DL

i corresponding to the corrupted Pi. Finally, if no abort has occurred,
in step 2, point e), the simulator can equivocate the decommitment to g1 and all parties
decommit to the correct values thanks to the non-malleability of the scheme. If no party
refuses to decommit after rewinding, the protocol ends with gq = Y (and q̃ from step
1).

Remark 16. The randomness of q̃ is not crucial to the security of the ECDSA protocol:
conversely to RSA prime factors, here q̃ is public. However traditionally, class group
based crypto uses random discriminants; we provide a distributed version of the setup of
[CL15] – recalled in Section 2.2 – in which the prime q̃ is random. In our ISetup algorithm,
the output of next-prime is biased. To patch this, for the same complexity, parties could
jointly generate a seed for a prime pseudo-random generator to generate q̃; such a source
of randomness would be sufficient in this context.

116

Pi IKeyGen(G, P, q) All players {Pj}j 6=i
ui

$←− Z/qZ
[kgci, kgdi]← Com(uiP)

(ski, pki)← CL.KeyGen(1λ) pki and kgci=======⇒
kgdi==⇒

Perform (t, n)-VSS share of ui: Qi ← Open(kgci, kgdi)
pi(X) = ui +∑t

k=1 ai,kX
k mod q s.t. Qi = uiP

Denote {σi,j := pi(j)}j∈[n] Q = ∑n
i=1Qi

and {Vi,k := ai,kP}k∈[t]
Send σi,j to Pj−−−−−−−−→
{Vi,k}k∈[t]======⇒

{σk,i}k are additive shares of xi := ∑
k∈[n] pk(i)

where {xi}i∈[n] are (t, n) Shamir shares of x.

πkg
i := ZKPoKXi{(xi) : Xi = xiP}

πkg
i←→

Figure 4.3: Threshold Key Generation

4.2.3 Resulting threshold ECDSA protocol
We now describe the overall protocol. Participants run on input (G, q, P) used by the
ECDSA signature scheme. In Figure 4.3, and in phases 1, 3, 4, 5 of Figure 4.4, all players
perform the same operations (on their respective inputs) w.r.t. all other parties, so we
only describe the actions of some party Pi. In particular if Pi broadcasts some value vi,
implicitly Pi receives vj broadcast by Pj for all j ∈ [n], j 6= i. Broadcasts from Pi to
all other players are denoted by double arrows, whereas peer-to-peer communications are
denoted by single arrows.

On the other hand, Phase 2 of Figure 4.4 is performed by all pairs of players
{(Pi, Pj)}i 6=j. Each player will thus perform (n − 1) times the set of instructions on
the left (performed by Pi on the figure) and (n− 1) times those on the right hand side of
the figure (performed by Pj).

4.2.3.1 Key generation.

We assume that prior to the interactive key generation protocol IKeyGen, all parties run
the ISetup protocol of Subsection 4.2.2 s.t. they output a common random generator gq.
Each party uses this gq to generate its’ CL encryption key pair, and to verify the ZKAoK
in the ISign protocol. Although IKeyGen and ISetup are here described as two separate
protocols, they can be ran in parallel. Consequently, in practice the number of rounds
in IKeyGen increases by 1 broadcast per party if the ZK proofs are made non interactive,
and by 2 broadcasts if it is performed interactively between players.
The IKeyGen protocol (also depicted in Fig 4.3) proceeds as follows:

1. Each Pi samples a random ui
$←− Z/qZ; computes [kgci, kgdi] ← Com(uiP) and

generates a pair of keys (ski, pki) for the CL encryption scheme. Each Pi broadcasts
(pki, kgci).

117

2. Each Pi broadcasts kgdi. Let Qi ← Open(kgci, kgdi). Party Pi performs a (t, n)
Feldman-VSS of ui, with Qi as the free term in the exponent. The ECDSA public
key is set to Q = ∑n

i=1Qi. Each player adds the private shares received during
the n Feldman VSS protocols. The resulting values xi are a (t, n) Shamir’s secret
sharing of the secret signing key x. Observe that all parties know {Xi := xi ·P}i∈[n].
Indeed,

Xi = xi · P =
∑
k∈[n]

pk(i) · P =
∑
k∈[n]

uk +
t∑

j=1
ak,j · ij

 · P
=
∑
k∈[n]

uk · P +
t∑

j=1
ak,j · ij · P

 =
∑
k∈[n]

Qk +
t∑

j=1
ij · Vk,j

 = Q+
t∑

j=1
ij · Vk,j

where each addendum is public.

3. Each Pi proves in ZK that he knows xi using Schnorr’s protocol [Sch91].

4.2.3.2 Signing.

The signature generation protocol runs on input m and the output of the IKeyGen protocol
of Fig 4.3. We denote S ⊆ [n] the subset of players which collaborate to sign m. Assuming
|S| = t one can convert the (t, n) shares {xi}i∈[n] of x into (t, t) shares {wi}i∈S of x using
the appropriate Lagrangian coefficients. Since the Xi = xi ·P and Lagrangian coefficients
are public values, all parties can compute {Wi := wi · P}i∈S. We here describe the steps
of the algorithm. A global view of the interactions is also provided in Figure 4.4.

Phase 1: Each party Pi samples ki, γi
$←− Z/qZ and ri

$←− [Ã] uniformly at random. It
computes cki ← Enc(pki, ki; ri), a ZKAoK πi that the ciphertext is well formed, and
[ci, di]← Com(γiP). Each Pi broadcasts (ci, cki , πi).

Phase 2: Intuition: denoting k := ∑
i∈S ki and γ := ∑

i∈S γi it holds that kγ = ∑
i,j∈S kjγi

and kx = ∑
i,j∈S kjwi. The aim of Phase 2 is to convert the multiplicative shares

kj and γi of (kjγi) (resp. kj and wi of (kjwi)) into additive shares αj,i + βj,i = kjγi
(resp. µj,i + νj,i = kjwi). Phase 2 is performed peer-to-peer between each pair
{(Pi, Pj)}i 6=j, s.t. at the end of the phase, Pi knows {αi,j, βj,i, µi,j, νj,i}j∈S,j 6=i.
Each peer-to-peer interaction proceeds as follows:

(a) Pi samples βj,i, νj,i $←− Z/qZ, and computes Bj,i := νj,i · P . It uses the homo-
morphic properties of the encryption scheme and the ciphertext ckj broadcast
by Pj in Phase 1 to compute ckjγi and ckjwi : encryptions under pkj of kjγi−βj,i
and kjwi − νj,i respectively.

(b) Pi sends (ckjγi , ckjwi , Bj,i) to Pj, who decrypts both ciphertexts to recover re-
spectively αj,i and µj,i.

(c) Since Wi is public, Pj verifies that Pi used the same share wi as that used to
compute the public key Q by checking µj,i · P + Bj,i. If the check fails, Pj
aborts.

Pi computes δi := kiγi +∑
j 6=i(αi,j + βj,i) and σi := kiwi +∑

j 6=i(µi,j + νj,i).

118

ISign
Pi Phase 1 All players {Pj}j 6=i

ki, γi
$←− Z/qZ

ri
$←− [Ã]

cki ← Enc(pki, ki; ri)
[ci, di]← Com(γiP)

ci,cki===⇒ if a proof fails, abort
πi := ZKAoKpki,cki{(ki, ri) : ((pki, cki); (ki, ri)) ∈ REnc}

πi←−−−→
Pi Phase 2 Pj

βj,i, νj,i
$←− Z/qZ

Bj,i := νj,i · P
cβj,i ← Enc(pkj,−βj,i)
cνj,i ← Enc(pkj,−νj,i)

ckjγi ← EvalAdd(EvalScal(ckj , γi), cβj,i)
ckjwi ← EvalAdd(EvalScal(ckj , wi), cνj,i)

ckjγi ,ckjwi ,Bj,i−−−−−−−−−→
αj,i ← Dec(skj, ckjγi)
µj,i ← Dec(skj, ckjwi)

If µj,i · P +Bj,i 6= kj ·Wi then abort
δi := kiγi +∑

j 6=i(αi,j + βj,i)
σi := kiwi +∑

j 6=i(µi,j + νj,i)
Pi Phase 3 All players {Pj}j 6=i

δi=====⇒ δ = ∑
i∈S δi = kγ

Pi Phase 4 All players {Pj}j 6=i
di=====⇒ Γi := Open(ci, di) =γiP

πγi := ZKPoKΓi{(γi) : Γi = γiP}
πγi←−−−→ if a proof fails, abort

R := δ−1(∑i∈S Γi) and r := H ′(R)
Pi Phase 5 All players {Pj}j 6=i

si := mki + rσi

`i, ρi
$←− Z/qZ

Vi := siR + `iP and Ai := ρiP

[ĉi, d̂i]← Com(Vi, Ai)
ĉi=====⇒

π̂i := ZKPoK(Vi,Ai){(si, `i, ρi) : Vi = siR + `iP ∧ Ai = ρiP}
d̂i=====⇒
π̂i←−−−→ if a proof fails, abort

V := −mP − rQ+∑
i∈S Vi

Ui := ρiV and Ti := `iA and A := ∑
i∈S Ai

[c̃i, d̃i]← Com(Ui, Ti)
c̃i=====⇒
d̃i=====⇒ if ∑i∈S Ti 6=

∑
i∈S Ui then abort.

si=====⇒ s := ∑
i∈S si,

if (r, s) is not a valid signature, abort,
else return (r, s).

Figure 4.4: Threshold signature protocol

119

Phase 3: Each Pi broadcasts δi. All players compute δ := ∑
i∈S δi.

Phase 4: (a) Each Pi broadcasts di which decommits to Γi.
(b) Each Pi proves knowledge of γi s.t. Γi = γiP . All players compute R :=

δ−1(∑i∈S Γi) = k−1 · P and r := H ′(R) ∈ Z/qZ.

Phase 5: (a) Each Pi computes si = kim+σir, samples `i, ρi $←− Z/qZ uniformly at random,
computes Vi := siR + `iP ; Ai := ρiP ; and [ĉi, d̂i] ← Com(Vi, Ai). Each Pi
broadcasts ĉi.

(b) Each party Pi decommits by broadcasting d̂i along with a NIZKPoK of
(si, `i, ρi) s.t. (Vi = siR + `iP) ∧ (Ai = ρiP). It checks all the proofs it
gets from other parties. If a proof fails Pi aborts.

(c) All parties compute V := −mP − rQ+∑
i∈S Vi, A := ∑

i∈S Ai. Each party Pi
computes Ui := ρiV , Ti := `iA and the commitment [c̃i, d̃i]← Com(Ui, Ti). It
then broadcasts c̃i.

(d) Each Pi decommits to (Ui, Ti) by broadcasting d̃i.
(e) All players check ∑i∈S Ti = ∑

i∈S Ai. If the check fails they abort.
(f) Each Pi broadcasts si s.t. all players can compute s := ∑

i∈S si. They check
that (r, s) is a valid ECDSA signature, if so, they output (r, s), otherwise they
abort the protocol.

4.3 Security
The security proof is a reduction to the unforgeability of standard ECDSA. We demon-
strate that if there exists a PPT algorithm A which breaks the threshold ECDSA protocol
of Figure 4.3 and 4.4, then we can construct a forger S which uses A to break the unforge-
ability of standard ECDSA. To this end S must simulate the environment of A, so that
A’s view of its interactions with S are indistinguishable from A’s view in a real execution
of the protocol. Precisely, we show that if an adversary A corrupts {Pj}j>1, one can con-
struct a forger S simulating P1 s.t. the output distribution of S is indistinguishable from
A’s view in an interaction with an honest party P1 (all players play symmetric roles in
the protocol so it is sufficient to provide a simulation for P1). S gets as input an ECDSA
public key Q, and has access to a signing oracle for messages of its choice. After this
query phase, S must output a forgery, i.e. a signature σ for a message m of its choice,
which it did not receive from the oracle.

Simulating the key generation protocol
On input a public key Q := x · P , the forger S must set up in its simulation with
A this same public key Q (w/o knowing x). This will allow S to subsequently simulate
interactively signing messages with A, using the output of its’ (standard) ECDSA signing
oracle.

The main differences with the proof of [GG18] arise from the fact S knows it’s own
decryption key sk1, but does not extract that of other players. As in [CCL+19], the

120

encryption scheme we use results from hash proof systems, whose security is statistical,
thus the fact S uses its’ secret key does not compromise security, and we can still reduce
the security of the protocol to the smoothness of the CL scheme. However as we do not
prove knowledge of secret keys associated to public keys in the key generation protocol,
S can not extract the decryption keys of corrupted players. The simulation is described
below.

Simulating P1 in IKeyGen

1. S receives a public key Q from it’s ECDSA challenger.

2. Repeat the following steps (by rewinding A) until A sends correct decommitments
for P2, . . . , Pn on both iterations.

3. S selects a random value u1 ∈ Z/qZ, computes [kgc1, kgd1] ← Com(u1P) and
broadcasts kgc1. S receives {kgcj}j∈[n],j 6=1.

4. S broadcasts kgd1 and receives {kgdj}j∈[n],j 6=1. For i ∈ [n], let Qi ← Open(kgci, kgdi)
be the revealed commitment value of each party. Each player performs a (t, n)
Feldman-VSS of the value Qi, with Qi as the free term in the exponent.

5. S samples a CL encryption key pair (pk1, sk1) $←− KeyGen(1λ).

6. S broadcasts pk1 and receives the public keys {pkj}j∈[n],j 6=1.

7. S rewinds A to the decommitment step and

• equivocates P1’s commitment to k̂gd so that the committed value revealed is
now Q̂1 := Q−∑n

j=2Qj.

• simulates the Feldman-VSS with free term Q̂1.

8. A will broadcast the decommitments {k̂gdj}j∈[n],j 6=1. Let {Q̂j}j=2...n be the commit-
ted value revealed by A at this point (this could be ⊥ if A refuses to decommit).

9. All players compute the public signing key Q̂ := ∑n
i=1 Q̂i. If any Qi = ⊥ in the

previous step, then Q̂ := ⊥.

10. Each player Pi adds the private shares it received during the n Feldman VSS pro-
tocols to obtain xi (such that the xi are a (t, n) Shamir’s secret sharing of the
secret key x = ∑

i ui). Note that due to the free term in the exponent, the values
Xi := xi · P are public.

11. S simulates the ZKPoK that it knows x1 corresponding to X1, and for j ∈ [n],
j 6= 1, S receives from A a Schnorr ZKPoK of xj such that Xj := xj · P . S can
extract the values {xj}j∈[n],j 6=1 from these ZKPoK.

121

Simulating the signature generation
On input m, S must simulate the interactive signature protocol from A’s view.

We define k̃i := Dec(ski, cki), which S can extract from the proofs Π, and k̃ := ∑
i∈S k̃i.

Let k ∈ Z/qZ denote the value s.t. R := k−1 ·P in Phase 4 of the signing protocol. Notice
that if any of the players mess up the computation of R by revealing wrong shares δi,
we may have k 6= k̃ mod q. As in [GG18], we distinguish two types of executions of
the protocol: an execution where k̃ = k mod q is said to be semi-correct, whereas an
execution where k̃ 6= k mod q is non semi-correct. Both executions will be simulated
differently. At the end of Phase 4, when both simulations diverge, S knows k and k̃, so
it can detect if it is in a semi-correct execution or not and choose how to simulate P1.

We point out that S does not know the secret share w1 of x associated with P1, but
it knows the shares {wj}j∈S,j 6=1 of all the other players. Indeed S can compute these
from the values {xj}j∈[n],j 6=1 extracted during key generation. It also knows W1 = w1 · P
from the key generation protocol. Moreover S knows the encryption keys {pkj}j∈S of all
players, and it’s own decryption key sk1.

In the following simulation S aborts whenever A refuses to decommit any of the
committed values, fails a ZK proof, or if the signature (r, s) does not verify.

Simulating P1 in ISign

Phase 1: As in a real execution, S samples k1, γ1
$←− Z/qZ and r1

$←− [Ã] uniformly at
random. It computes ck1 ← Enc(pk1, k1; r1), the associated ZKAoK π1, and
[c1, d1] ← Com(γ1P). It broadcasts (c1, ck1 , π1) before receiving {cj, ckj , πj}j∈S,j 6=1
from A. S checks the proofs are valid and extracts the encrypted values {kj}j∈S,j 6=1
from which it computes k̃ := ∑

i∈S ki.

Phase 2: (a) For j ∈ S, j 6= 1, S computes βj,1, ckjγ1 as in a real execution of the protocol,
however since it only knows W1 = w1P (but not w1), it samples a random
µj,1

$←− Z/qZ and sets ckjw1 ← Enc(pkj, µj,1), and Bj,1 := kj ·W1 − µj,1 · P . S
then sends (ckjγ1 , ckjw1 , Bj,1) to Pj.

(b) When it receives (ck1γi , ck1wj , B1,j) from Pj, it decrypts as in a real execution
of the protocol to obtain α1,j and µ1,j

(c) S verifies that µ1,jP + B1,j = k1Wj. If so, since S also knows k1 and wj, it
computes ν1,j = k1wj − µ1,j mod q

S computes δ1 := k1γ1 +∑k 6=1 α1,k+∑k 6=1 βk,1. However S cannot compute σ1 since
it does not know w1, but it can compute∑

i>1
σi =

∑
i>1

(kiwi +
∑
j 6=i

µi,j + νj,i) =
∑
i>1

∑
j 6=i

(µi,j + νj,i) +
∑
i>1

kiwi

=
∑
i>1

(µi,1 + ν1,i) +
∑

i>1;j>1
kiwj

since it knows all the values {kj}j∈S, {wj}j∈S,j 6=1, it chooses the random values µi,1
and it can compute all of the shares ν1,j = k1wj − µ1,j mod q.

Phase 3: S broadcasts δ1 and receives all the {δj}j∈S,j 6=1 from A. Let δ := ∑
i∈S δi.

122

Phase 4: (a) S broadcasts d1 which decommits to Γ1, and A reveals {dj}j∈S,j 6=1 which de-
commit to {Γj}j∈S,j>1.

(b) S proves knowledge of γ1 s.t. Γ1 = γ1P , and for j ∈ S, j 6= 1, receives the PoK
of γj s.t. Γj = γjP . S extracts {γj}j∈S,j 6=1 from which it computes γ := ∑

i∈S γi
mod q and k := δ · γ−1 mod q.

(c) If k = k̃ mod q (semi-correct execution), S proceeds as follows:
• S requests a signature (r, s) for m from its ECDSA signing oracle.
• S computes R := s−1(m · P + r ·Q) ∈ G (note that r = H ′(R) ∈ Z/qZ).
• S rewinds A to the decommitment step at Phase 4. (a) and equivocates
P1’s commitment to open to Γ̂1 := δ · R −∑i>1 Γi. It also simulates the
proof of knowledge of γ̂1 s.t. Γ̂1 = γ̂1P . Note that δ−1(Γ̂1 +∑

i>1 Γi) = R.
Phase 5: Now S knows ∑j∈S,j 6=1 sj held by A since sj = kjm+ σjr.

– S computes s1 held by P1 as s1 := s−∑j∈S,j 6=1 sj.
– S continues the steps of Phase 5 as in a real execution.

(d) Else k 6= k̃ mod q (non-semi-correct), and S proceeds as follows:
• S computes R := δ−1(∑i∈S Γi) = k · P and r := H ′(R) ∈ Z/qZ.
• Phase 5: S does the following

– sample a random s̃1
$←− Zq.

– sample `1, ρ1
$←− Z/qZ, compute V1 := s1R+`1P ; A1 := ρ1P ; [ĉ1, d̂1]←

Com(V1, A1) and send ĉ1 to A.
– receive {ĉj}j 6=1 and decommit by broadcasting d̂1. Prove knowledge of

(s1, `1, ρ1) s.t. (V1 = s1R + `1P) ∧ (A1 = ρ1P).
– For j ∈ S, j 6= 1, S receive d̂j and the ZKPoK of (sj, `j, ρj) s.t.
Vj = sjR + `jP ∧ Aj = ρjP .

– Compute V := −mP − rQ + ∑
i∈S Vi, A := ∑

i∈S A1, T1 := `1A and
sample a random U1

$←− G.
– Compute [c̃1, d̃1] ← Com(U1, T1) and send c̃1 to A. Upon receiving
{c̃j}j 6=1 from A, broadcast d̃1 and receive the {d̃j}j 6=1.

– Now since ∑i∈S T1 6=
∑
i∈S U1 both A and S abort.

The simulation of a semi-correct execution

Lemma 4.3.1. Assuming the strong root assumption and the C-low order assumption
hold for Gen; the CL encryption scheme is δs-smooth ; and the commitment scheme is
non-malleable and equivocable; then on input m the simulation either outputs a valid
signature (r, s) or aborts, and is computationally indistinguishable from a semi-correct
real execution.

Proof. The differences between the real and simulated views are the following:

1. S does not know w1. So for j > 1 it cannot compute ckjw1 as in a real execution
of the protocol. However under the strong root and C-low order assumption in Ĝ,
S can extract kj from proof πj in Phase 1. It then samples a random µj,1 ∈ Z/qZ,

123

computes Bj,1 := kj ·W1 − µj,1 · P , and ckjw1 ← Enc(pkj, µj,1). The resulting view
of A is identical to an honestly generated one since both in real and simulated
executions µj,1 is uniformly distributed in Z/qZ, while Bj,1 follows the uniform
distribution in G and passes the check Bj,1 + µj,1 · P = kj ·W1 performed by A.
Moreover ckj was proven to be a valid ciphertext, so ciphertexts computed using
homomorphic operations over ckj and fresh ciphertexts computed with pkj follow
identical distributions from A’s view.

2. S computes Γ̂1 := δ · R − ∑
i>1 Γi, and equivocates its commitment c1 s.t. d1

decommits to Γ̂1. Let us denote γ̂1 ∈ Z/qZ the value s.t. Γ̂1 = γ̂1P , where γ̂1 is
unknown to S, but the forger can simulate the ZKPoK of γ̂1.
Let us further denote k̂ ∈ Z/qZ the randomness (unknown to S) used by its’ signing
oracle to produce (r, s). It holds that δ = k̂(γ̂1 +∑

j∈S,j>1 γj). Finally, let us denote
k̂1 := k̂ −∑j∈S,j>1 kj.
Since δ was made public in Phase 3, by decommiting to Γ̂1 = γ̂1P instead of
Γ1 = γ1P , S is implicitly using k̂1 6= k1, even though A received an encryption of
k1 in Phase 1. However, from the smoothness of the CL scheme, and the hardness
of the HSM problem, this change is unnoticeable to A.
Claim 2. If the CL encryption scheme is δs-smooth and the HSM problem is δHSM-
hard, then no probabilistic polynomial time adversary A – interacting with S –
can notice the value of k1 in the computation of R being replaced by the (implicit)
value k̂ with probability greater than 2δHSM + 3/q + 4δs.

Proof. To see this consider the following sequence of games. We denote Ei the
probability A outputs 1 in Gamei.
Game0 to Game1. S uses the secret key sk1 instead of the public key pk1 and r1
to compute ck1 ← (u1, u

sk1
1 fk1) where u1 = gr1q . Both games are perfectly indistin-

guishable from A’s view:
|Pr[E1]− Pr[E0]| = 0.

Game1 to Game2. In Game2 one replaces the first element of ck1 (in Game1 this is
u1 ∈ Gq) with ũ1 ∈ G\Gq. There exists a unique r1 ∈ Z/sZ and b1 ∈ Z/qZ such
that ũ1 = gr1q f

b1 . And ck1 = (ũ1, ũ
sk1
1 fk1). Under the δHSM-hardness of HSM both

games are indistinguishable:

|Pr[E2]− Pr[E1]| 6 δHSM.

Game2 to Game3. In Game3 the points Q = x · P and R = k̂−1 · P come from
the ECDSA oracle, while in Game2 they are computed as in the real protocol. As
a result, the value k1 encrypted in ck1 is unrelated to k̂. Let us denote k̂1 :=
k̂ −∑j>1 kj, this is the value that – if used by S instead of k1 – would lead to the
joint computation of R = k̂−1P .
To demonstrate that Game2 and Game3 are indistinguishable from A’s view, we
start by considering a fixed ŝk1 ∈ Z satisfying the following equations:ŝk1 ≡ sk1 mod $,

ŝk1 ≡ sk1 + b1
−1(k1 − k̂1) mod q,

124

where $ is the group exponent of Ĝ (cf. Subsubection 4.1.1), such that the order
s of gq divides $. Note that the smoothness of the CL encryption scheme ensures
that such a ŝk1 exists (it is not necessarily unique). We can now see that in Game3,
ck1 is an invalid encryption of both k̂1 and of k1, for respective secret keys ŝk1 and
sk1, but for the same public key pk1, indeed:

ck1 = (ũ1, ũ
sk1
1 fk1) = (gr1q f b1 , (gr1q f b1)sk1 · fk1)

= (gr1q f b1 , pkr11 f
ŝk1·b1+k̂1) = (ũ1, ũ

ŝk1
1 f k̂1).

Adversary A receives the point Q, the encryption key pk1 = gsk1
q , and ck1 from S

(at this point A view is identical to that in Game2). Now A corrupting Pj computes
ck1γj which we denote cα = (uα, eα), and ck1wj which we denote cµ = (uµ, eµ). A
then sends cα and cµ to S. The difference between Game2 and Game3 appears now
in how S attempts to decrypt cα and cµ. In Game2 it would have used ŝk1, whereas
in Game3 it uses sk1.

Notation. We denote α (resp. µ) the random variable obtained by decrypting
cα (resp. cµ) (received in Game3) with decryption key sk1; we denote α′ (resp. µ′)
the random variable obtained by decrypting cα (resp. cµ) (received in Game3) with
decryption key ŝk1; we introduce a hypothetical Game3

′, which is exactly as Game3,
only one decrypts cα (resp. cµ) (received in Game3) with decryption key ŝk1, thus
obtaining α′ (resp. µ′). Moreover in Game 3′ the check performed on the curve is
‘If µ′ · P +B1,j 6= k̂1 ·Wj then abort’.

Observation. The view of A in Game2 and in Game3
′ is identical. By demon-

strating that the probability A’s view differs when S uses α, µ in Game3 from when
it uses α′, µ′ in Game3

′ is negligible, we can conclude that A cannot distinguish
Game2 and Game3 except with negligible probability.
The smoothness of the CL encryption scheme tells us that given pk1, which fixes
(sk1 mod s), the value of (sk1 mod q) remains δ-close to the uniform distribution
modulo q. In particular this ensures that A’s view of α and α′ are δ-close. Indeed,
A receives an invalid encryption of k1, which information theoretically masks k1.
At this point A’s view of k1 is that of a random variable δ-close to the uniform
distribution modulo q. A then computes cα which it sends to S. Finally A receives
either (a one way function of) k1, or (a one way function of) some random value
which is unrelated to k1, and must decide which it received.
For µ and µ′, the indistinguishability of A’s view of both random variables is a
little more delicate, since A gets additional information from the check on the curve
performed by S, namely in Game3 if µ · P + B1,j 6= k1 ·Wj the simulator aborts.
We call the output of this check test. And in Game3

′, if µ′ · P + B1,j 6= k̂1 ·Wj the
simulator aborts. We call the output of this check test′. Notice that if test = test′,
both games are δs-close from A’s view (the only change is in the ciphertext ck1).
Let us bound the probability p that test 6= test′. This will allow us to conclude that

|Pr[E3]− Pr[E2]| ≤ p + δs.

125

Let us consider the ciphertext cµ = (uµ, eµ) ∈ Ĝ× Ĝ sent by A. There exist unique
zµ ∈ Ĝq, yµ ∈ F such that uµ = zµyµ. Moreover there exists a unique bµ ∈ Z/qZ
such that yµ = f bµ .
Since sk1 = ŝk1 mod $, µ =⊥ if and only if µ′ =⊥, and this occurs when
eµ · z−sk1

µ = eµ · z−ŝk1
µ /∈ F . In this case Game3 is identical to Game3

′ from A’s view
(S aborts in both cases). We hereafter assume decryption does not fail, which
allows us to adopt the following notation eµ = zsk1

µ fhµ = z ŝk1
µ fhµ with hµ ∈ Z/qZ.

We thus have:

µ := logf
(
eµ
usk1
µ

)
= hµ − bµsk1 mod q,

µ′ := logf

 eµ

uŝk1
µ

 = hµ − bµŝk1 mod q

Thus we have

µ− µ′ ≡ bµ(ŝk1 − sk1) ≡ bµb1
−1(k1 − k̂1) mod q.

We consider three cases:

(a) µ = µ′ mod q. This may happen for two reasons:
i. If k1 ≡ k̂1 mod q, then Game2 and Game3 are identical.

ii. Else bµ = 0 mod q, i.e. cµ is a valid ciphertext. Since we ruled out
k1 ≡ k̂1 mod q in the previous case, if test=true, necessarily test’=false,
and vis versa. Both cases being symmetric, we consider the case test=true.
From A’s view, before outputting cµ the only fixed information relative
to k1 is that contained ck1 = (gr1q f b1 , (gr1q f b1)sk1fk1). This fixes π0 :=
b1 ·sk1 +k1 mod q. However from A’s view, given pk1, the random variable
sk1 follows a distribution δs-close to U(Z/qZ). Thus k1 also follows a
distribution δs-close to U(Z/qZ). Now suppose A returns cµ = (zµ, zsk1

µ fµ)
where zµ ∈ Ĝq. If test = true, then µ · P + B1,j = k1Wj, and A has fixed
the correct value of k1, this occurs with probability 6 1/q + δs.

(b) µ 6≡ µ′ mod q but µ − µ′ = wj(k1 − k̂1) mod q, i.e. bµ = wjb1 mod q. This
results in S aborting on µ′ in Game2 if and only if S aborts on µ in Game3.
This occurs if the adversary performs homomorphic operations on ck1 , and the
difference between the random variables is that expected by S. Indeed:

µ = k1wj − ν1,j ⇔ µ′ + wj(k1 − k̂1) = k1wj − ν1,j ⇔ µ′ = k̂1wj − ν1,j.

(c) (µ 6≡ µ′ mod q) and (µ − µ′ 6≡ wj(k1 − k̂1) mod q). We here consider three
sub-cases:

i. Either test = test′ = false; this results in identical views for A.
ii. Either test′ = true; this means that:

µ′ = k̂1wj − ν1,j mod q.

126

Now since µ−µ′ 6= wj(k1−k̂1) mod q necessarily test = false. Consequently
if this event occurs, A’s view differs. Let us prove that information theo-
retically, this can not happen with probability greater than 1/q + δs. For
clarity, we first recall the expression of ck1 received by A:

ck1 = (gr1q f b1 , pkr11 f
ŝk1b1+k̂1)

where b1 6= 0 mod q. We also recall the expression of cµ, sent by A to S.
Since cµ decrypts to µ′ with decryption key ŝk1, we can write:

cµ = (zµf bµ , z ŝk1
µ fµ

′+bµ ŝk1).

Let us denote π0 := ŝk1b1 + k̂1 mod q and π1 := µ′ + bµŝk1. For this case
to occur, it must hold that µ′ = k̂1wj − ν1,j mod q, so

π1 = k̂1wj − ν1,j + bµŝk1 mod q.

Substituting ŝk1 for (π0 − k̂1)b−1
1 yields:

π1 = k̂1wj − ν1,j + bµb
−1
1 (π0 − k̂1) mod q

⇔ π1 + ν1,j − bµb−1
1 π0 = k̂1(wj − bµb−1

1) mod q

As we dealt with bµ = wjb1 mod q in case (b), here wj− bµb−1
1 is invertible

mod q so we can write:

k̂1 = (π1 + ν1,j − bµb−1
1 π0)(wj − bµb−1

1)−1 mod q (4.1)

where π0, b1 are fixed by ck1 ; π1, bµ are fixed by cµ; wj is fixed by Wj; and
ν1,j is fixed by B1,j. So given A’s view and A’s output (B1,j and cµ), all the
terms on the right hand side of Eq. 4.1 are fixed. However, given pk1, ck1

and Wj (which is all the relevant information A gets prior to outputting
cµ), the δs-smoothness of the projective hash family ensures that k̂1 follows
a distribution δs-close to U(Z/qZ). If the current case occurs, Eq. 4.1 must
hold, thus from being given a view where k̂1 follows a distribution δs-close
to U(Z/qZ), A succeeds in fixing this random variable to be the exact
value used by S. This occurs with probability 6 1/q + δs.

iii. Else test = true; this means that µ = k1wj − ν1,j mod q. Since (µ − µ′ 6=
wj(k1−k̂1) mod q) necessarily test′ fails, andA’s view differs. Reasoning as
in the previous case, but setting π0 := sk1b1+k1 mod q and π1 := µ+bµsk1,
one demonstrates that this case occurs with probability 6 1/q + δs.

Combining the above, we get that test′ 6= test if and only if we are in case (a) ii.
(c) ii. or (c) iii., which occurs with probability 6 3(1/q + δs). Thus:

|Pr[E3]− Pr[E2]| 6 3/q + 4δs.

Game3 to Game4. In Game4, the first element u1 of ck1 is once again sampled in Gq.
Both games are indistinguishable under the hardness of HSM and:

|Pr[E4]− Pr[E3]| ≤ δHSM.

127

Game4 to Game5. In Game5 S uses the public key pk1 to encrypt k1. The change
here is exactly that between Game0 and Game1, both games are perfectly indistin-
guishable, and:

|Pr[E5]− Pr[E4]| = 0.

Real/Ideal executions. Putting together the above probabilities, we get that:

|Pr[E6]− Pr[E0]| ≤ 2δHSM + 3/q + 4δ,

which concludes the proof of the claim.

3. We now tackle the third and last difference between the real and simulated execu-
tions of the signature protocol. Justifying that this difference is unnoticeable to the
adversary will allow us to conclude the proof of Lemma 4.3.1. Notice that S does
not know σ1, and thus cannot compute s1 as in a real execution. Instead it computes
s1 = s−∑j∈S,j 6=1 sj = s−∑j∈S,j 6=1(kjm+σjr) where (implicitly) s = k̂(m+rx). So
s1 = k̂1m + r(k̂x −∑j∈S,j 6=1 σj), and S is implicitly setting σ̂1 := k̂x −∑j∈S,j 6=1 σj
s.t. k̂x = σ̂1 +∑

j∈S,j 6=1 σj.
We note that, since the real execution is semi correct, the correct shares of k for
the adversary are the ki that the simulator knows and R = k̂P = (k̂1 +∑j∈S,j 6=1 kj).
Therefore the value s1 computed by S is consistent with a correct share for P1 for a
valid signature (r, s), which makes Phase 5 indistinguishable from the real execution
to the adversary.
In particular, observe that if none of the parties aborted during Phase 2, the output
shares are correct. So if A here uses the values {σj}j∈S,j>1 as computed in a real
execution of the protocol, it expects the signature generation protocol to output a
valid signature. And indeed with S’s choice of σ̂1 and k̂1, the protocol will terminate,
outputting the valid signature (r, s) it received from its signing oracle. Conversely, if
A attempts to cheat in Phase 5 by using a different set of σj’s than those prescribed
by the protocol, the check ∑i∈S Ti = ∑

i∈S Ui will fail, and all parties abort, as in a
real execution of the protocol.

Non semi-correct executions

Lemma 4.3.2. Assuming the strong root assumption and the C-low order assumption
hold for Gen; the DDH assumption holds in G; and the commitment scheme is non-
malleable and equivocable; then the simulation is computationally indistinguishable from
a non-semi-correct real execution.

Proof. We construct three games between the simulator S (running P1) and the adversary
A (running all other players). In G0, S runs the real protocol. The only change between
G0 and G1 is that in G1, S chooses U1 as a random group element. In G2 the simulator
S runs the simulation described in Section 4.3.

128

Indistinguishability of G0 and G1. We prove that if there exists an adversary A0
distinguishing games G0 and G1, A0 can be used to break the DDH assumption in Ĝ. Let
Ã = a·P , B̃ = b·P , C̃ = c·P be the DDH challenge where c = ab or c is random in Zq. The
DDH distinguisher S0 runs A0, simulating the key generation phase s.t. Q = B̃. It does
so by rewinding A0 in step 7 of the IKeyGen simulation and changing the decommitment
of P1 to Q1 := B̃ −∑j∈[n],j 6=1Qj. S0 also extracts the values {xj}j∈[n],j 6=1 chosen by A0

from the ZKPoK of step 11 of the IKeyGen simulation. Note that at this point Q = B̃
and S0 knows xi and the decryption key sk1 matching pk1, but not b and therefore not
x1.

Next S0 runs the signature generation protocol for a non-semi-correct execution. Re-
call that S ⊆ [n] denotes the subset of players collaborating in ISign. Denoting t := |S|,
the (t, n) shares {xi}i∈[n] are converted into (t, t) shares {wi}i∈S as per the protocol.
Thus b = ∑

i∈S wi where S0 knows {wj}j∈S,j 6=1 but not w1. We denote wA := ∑
j∈S,j 6=1wj

(which is known to S0) s.t. w1 = b − wA. S0 runs the protocol normally for Phases
1, 2, 3, 4. It extracts the values {γj}j∈S,j 6=1 from the proof of knowledge in Phase 4, and
knows γ1 since it ran P1 normally. Therefore S0 knows k such that R = k−1 · P since
k = (∑i γi)−1δ mod q. It also knows k1 (chosen normally according to the protocol) and
{kj}j∈S,j 6=1 which it can extract from the proofs in Phase 1.

Before moving to the simulation of Phase 5, let’s look at Phase 2 of the protocol for
the computation of the shares σi. We note that since S0 knows sk1 it also knows all the
shares µ1,j since it can decrypt the ciphertext ck1wj it receives from Pj. However S0 does
not know w1 therefore it sends the encryption of a random µj,1 to Pj and sets (implicitly)
νj,1 = kjw1 − µj,1. At the end the share σ1 held by P1 is

σ1 = k1w1 +
∑

j∈S,j 6=1
(µ1,j + νj,1) = k̃w1 +

∑
j∈S,j 6=1

(µ1,j − µj,1) where k̃ =
∑
i∈S

ki.

Recall that since this is a non-semi-correct execution k̃ 6= k where R = k−1 · P . Since
w1 = b − wA we have σ1 = k̃b + µ1 where µ1 = ∑

j∈S,j 6=1(µ1,j − µj,1) − k̃wA with µ1, k̃

known to S0. This allows S0 to compute the correct value σ1 · P = k̃B̃ + µ1 · P and
therefore the correct value of s1 ·R as:

s1 ·R = (k1m+ rσ1) ·R = k−1(k1m+ rσ1) · P
= k−1(k1m+ rµ1) · P + k−1(k̃r) · B̃ = µ̂1 · P + β̂1 · B̃

where µ̂1 = k−1(k1m+ rµ1) and β̂1 = k−1k̃r are known to S0.
In the simulation of Phase 5, S0 selects a random `1 and sets V1 := s1 · R + `1 · P,

A1 = ρ1 · P = Ã = a · P . It simulates the ZK proof (since it does not know ρ1 or s1).
It extracts si, `i, ρi from A0’s proofs s.t. Vi = si · R + `i · P = k−1si · P + `i · P and
Ai = ρi · P . Let sA = ∑

j∈S,j 6=1 k
−1sj. Note that, substituting the above relations (and

setting ` = ∑
i∈S `i), we have: V = −m·P−r·Q+∑i∈S Vi = `·P+s1·R+(sA−m)·P−r·Q.

Moreover Q = B̃ so −r ·Q = −r · B̃, and:

V = ` · P + µ̂1 · P + β̂1 · B̃ + (sA −m) · P − r · B̃ = (`+ θ) · P + κ · B̃

where S0 knows θ = µ̂1 + sA −m and κ = β̂1 − r. Note that for executions that are not
semi-correct κ 6= 0.

129

Next S0 computes T1 := `1 ·A (correctly), but computes U1 as U1 := (`+θ) · Ã+κ · C̃,
using this U1 it continues as per the real protocol and aborts on the check ∑

i∈S Ti =∑
i∈S Ui.

Observe that when C̃ = ab · P , by our choice of a = ρ1 and b = x, we have that
U1 = (`+ θ)ρ1 ·P + κ · ρ1B̃ = ρ1 · V as in Game G0. However when C̃ is a random group
element, U1 is uniformly distributed as in G1. Therefore under the DDH assumption G0
and G1 are indistinguishable.

Indistinguishability of G1 and G2. In G2, S broadcasts a random Ṽ1 = s̃1 ·R+`1 ·P .
This is indistinguishable from the correct V1 = s1 · R + `1 · P thanks to the mask `1 · P
which (under the DDH assumption) is computationally indistinguishable from a random
value, since the adversary only knows A1. To be precise, let Ã = (a − δ) · P, B̃ = b · P
and C̃ = ab ·P be the DDH challenge where δ is either 0 or random in Zq. The simulator
proceeds as in G0 (i.e. the regular protocol) until Phase 5. In Phase 5 S0 broadcasts
V1 = s̃1 · R + Ã and A1 = B̃. It simulates the ZKPoK (it does not know `1 or ρ1), and
extracts si, `i, ρi from the adversary s.t. Vi = si · R + `i · P = k−1si · P + `i · P and
Ai = ρi · P .

Next S0 samples a random U1 and sets T1 := C̃+∑j∈S,j 6=1 ρj · Ã before aborting. Note
that when Ã = a ·P , we implicitly set a = `1 and b = ρ1 and have V1 = s1 ·R+ `1 ·P and
T1 = `1 ·A as in Game G1. However when Ã = a ·P − δ ·P with a random δ, then this is
equivalent to having V1 = s̃1 ·R+ `1 ·P and T1 = `1 ·A with a randomly distributed s̃1 as
in Game G2. Therefore under the DDH assumption G1 and G2 are indistinguishable.

Concluding the proof
As mentioned at the beginning of Section 4.3 in the simulation of the signing subprotocol,
the forger S simulating A’s environment can detect whether we are in a semi-correct-
execution or not, i.e. whether A decides to be malicious and terminate the protocol
with an invalid signature. Consequently S always knows how to simulate A’s view and
all simulations are indistinguishable of real executions of the protocol. Moreover if A,
having corrupted up to t parties in the threshold ECDSA protocol, outputs a forgery,
since S set up with A the same public key Q as it received from its’ ECDSA challenger,
S can use this signature as its own forgery, thus breaking the existential unforgeability
of standard ECDSA.

Denoting Advtu-cma
Π,A , A’s advantage in breaking the existential unforgeability of our

threshold protocol, and Adveu-cma
ecdsa,S the forger S’s advantage in breaking the existential

unforgeability of standard ECDSA, from Lemmas 4.3.1 and 4.3.2 it holds that if the DDH
assumption holds in G; the strong root assumption and the C-low order assumption hold
for Gen; the CL encryption scheme is ind-cpa-secure; and the commitment scheme is non-
malleable and equivocable then: |Adveu-cma

ecdsa,S − Advtu-cma
Π,A | ≤ negl(λ). Under the security of

the ECDSA signature scheme, Adveu-cma
ecdsa,S must be negligible, which implies that Advtu-cma

Π,A
should too, thus contradicting the assumption that A has non-negligible advantage of
forging a signature for our protocol. We can thus state the following theorem, which
captures the security of the protocol.
Theorem 4.3.3. Assuming standard ECDSA is an existentially unforgeable signature
scheme; the DDH assumption holds in G; the strong root assumption and the C-low order

130

P (x, h := gxq) public: gq V (h)

r
$←− [0, s̃ · 290]
t := grq

t−−−−−−−−−→
k←−−−−−−−−− k

$←− {0, 1}10

u := r + kx ∈ Z u−−−−−−−−−→
Check guq = t · hk

Figure 4.5: ZKPoK of z s.t. hy = gzq where y = lcm(1, 2, 3, . . . , 210)

assumption hold for Gen; the CL encryption scheme is ind-cpa-secure; and the commitment
scheme is non-malleable and equivocable, then the (t, n)-threshold ECDSA protocol of
Figure 4.3 and 4.4 is an existentially unforgeable threshold signature scheme.

4.4 Further improvements

4.4.1 An improved ZKPoK which kills low order elements.
We here provide a proof of knowledge of discrete logarithm in a group of unknown order.
Traditionally, if one wants to perform such a proof, the challenge set must be binary,
which implies expensive protocols as the proof must be repeated many times to achieve
a satisfying (non computational) soundness error. Here using what we call the lowest
common multiple trick, we are able to significantly increase the challenge set, and thereby
reduce the number of repetitions required of the proof. We first present the resulting
proof, before providing two applications: one for the CL.ISetup protocol of Section 4.2.2,
and another for our two party ECDSA protocol in [CCL+19], which we presented in
Subsection 3.4.2. Throughout this subsection we denote y := lcm(1, 2, 3, . . . , 210).

The lowest common multiple trick. For a given statement h, the proof does not
actually prove knowledge of the DL of h, but rather of hy. Precisely, the protocol of
Figure 4.5 is a zero knowledge proof of knowledge for the following relation:

Rlcm−DL := {(h, gq); z | hy = gzq}.

Correctness. If h = gxq , then guq = gr+kxq = grq · (gxq)k = t · hk and V accepts.
Special soundness. Suppose that for a committed value t, prover P ∗ can answer correctly
for two different challenges k1 and k2. We call u1 and u2 the two answers. Let k := k1−k2
and u := u1 − u2, then since gu1

q = t · hk1 and gu2
q = t · hk2 , it holds that guq = hk. By

the choice of the challenge set, y/k is an integer and so (guq)y/k = (hk)y/k = hy. Denoting
z := uy/k, P ∗ can compute z such that gzq = hy, so if P can convince V for two different
challenge values, then P ∗ can compute a z satisfying the relation.
Zero knowledge. Given h a simulator can sample k $←− {0, 1}10 and u

$←− [0, s̃ · (290 + k)],
compute t := guq · h−k, such that distribution of the resulting transcript (h, t, k, u) is
statistically close to those produced by a real execution of the protocol (this holds since

131

an honest prover samples x from [s̃ ·240], the challenge space is of size 210 and r is sampled
from a set of size s̃ · 290, which thus statistically hides kx).

Application to the CL interactive set up. In the ISetup protocol of Section 4.2.2,
in Step 2. 2. (c) each Pi computes π〈ĝq〉−DL

i := ZKPoKgi{(ti) : gi = ĝtiq }. In fact it suffices
for them to compute ZKPoKgi{(zi) : gyi = ĝziq }, where y := lcm(1, 2, 3, . . . , 210) using the
lcm trick. Then in Step 2. 3. all players compute gq := (∏n

j=1 gj)y. The resulting gq has
the required properties to be plugged into the IKeyGen protocol. We use this modified
interactive set up for our efficiency comparisons of Section 4.5.

Application to the [CCL+19] interactive key generation. In Subsection 3.4.2 we
presented a ZKPoK for the relation RCL−DL which is at the basis of our two party ECDSA
protocol. That interactive proof uses binary challenges, consequently in order to achieve
a satisfying soundness error of 2−λ, the proof must be repeated λ times. Using the lcm
trick one can divide by 10 this number of rounds, though we obtain a ZKPoK for the
following relation:

RCL−lcm := {(pk, (c1, c2), Q); (x, z) | cy1 = gzq ∧ c
y
2 = fx·ypkz ∧Q = xP}.

In our two-party protocol this ZKPoK is computed by Alice, who sends this proof to Bob
such that he is convinced her ciphertext c = (c1, c2) is well formed. Bob then performs
some homomorphic operations on c and sends the result back to Alice. Now since with
the proof based on the lcm trick, Bob is only convinced that cy is a valid ciphertext,
Bob raises c to the power y before performing his homomorphic operations2. When Alice
decrypts she multiplies the decrypted value by y−1 mod q (this last step is much more
efficient than Bob’s exponentiation).
Remark 17. The size of the challenge set C from which k is sampled determines the number
of times the protocol needs to be repeated in order to achieve a reasonable soundness
error. Consequently it is desirable to take C as large as possible. However, at the end of
the protocol, V is only convinced that hy is well formed, where y = lcm(1, . . . , |C|). So if
V wants to perform operations on h which are returned to P , without risking leaking any
information to P , V must raise h to the power y before proceeding. When plugged into
our two-party ECDSA protocol this entails raising a ciphertext to the power y at the end
of the key generation phase. So |C| must be chosen small enough for this exponentiation
to take reasonable time. Hence we set C := {0, 1}10, and y = lcm(1, . . . , 210), which is
a 1479 bits integer, so exponentiating to the power y remains efficient. To achieve a
soundness error of 2−λ the protocol must be repeated λ/10 times.

4.4.2 Assuming a standardised group
If we assume a standardised set up process, which allowed to provide a description of Ĝ,
of the subgroups F and Gq and of a random generator gq of Gq, one could completely
omit the interactive set up phase for the CL encryption scheme and have all parties use

2For correctness Bob also needs to multiply the signed message m′ by y mod q, during the signature
algorithm.

132

the output of this standardised process. This significantly improves the IKeyGen protocol,
as mentioned in Section 4.5.

Furthermore, assuming such a set up, we can replace the most expensive ZKPoK in
[CCL+19] by an argument of knowledge using similar techniques to those of Section 4.2.1,
and relying on the strong root and low order assumptions in Ĝ. We detail this improve-
ment in the following paragraph.

Efficient ZKAoK for our two party protocol ([CCL+19]). Consider again the
relation RCL−DL from Subsection 3.4.2. Using similar techniques to those proposed in
Subsection 4.2.1, and relying on the strong root and low order assumptions in Ĝ, we
describe in Figure 4.6 a much more efficient ZKAoK, which can be plugged into our overall
two-party protocol so as to further improve its’ overall computational and communication
costs. Though the relation R̃CL−DL proved by our proof system is slightly different, it is
sufficient for application in our work [CCL+19]. Precisely, our ZKAoK proves knowledge
of a witness for the following relation:

R̃CL−DL := {(pk, (c1, c2), Q); (x, (ρ0, ρ1)) | c1 = g2−ρ0 ·ρ1
q ∧ c2 = fxpk2−ρ0 ·ρ1 ∧Q = xP}.

We emphasise that in order for security of this proof to hold, gq must be a random
generator of Gq. Since the set up described in [CCL+19] outputs a deterministic gq, in
order to plug the following proof in their protocol, we need to assume some standardised
set up process as mentioned in Section 4.4.2. Theorem 4.4.1 states the security of the
ZKAoK for R̃CL−DL.

Theorem 4.4.1. Let C be the challenge set for the interactive protocol of Fig. 4.6, and
C := |C|. If the strong root assumption is (t′(λ), εSR(λ))-secure for Gen, and the C-low
order assumption is (t′(λ), εLO(λ))-secure for Gen, denoting ε := max(εSR(λ), εLO(λ)), then
the interactive protocol of Fig. 4.6 is a computationally convincing proof of knowledge
for R̃CL−DL with knowledge error κ, time bound t and failure probability ν(λ), where
ν(λ) = 3ε, t(λ) < t′(λ)/448 and κ(λ) = max(4/C, 448t(λ)/t′(λ)). If r, x ∈ [s̃ · 240] (it is
so when the prover is honest), the protocol is honest verifier statistical zero-knowledge.

Proof. Completeness. If P knows r ∈ [Ã] and x ∈ Z/qZ s.t. c1 = grq , c2 = fxpkr and
Q = xP , and if both parties follow the protocol, one has u1 ∈ [ÃC(240+1)] and u2 ∈ Z/qZ;
pku1fu2 = pkr1+k·rf r2+k·x = pkr1f r2(pkrfx)k = t2 · (c2)k; u2 ·P = (r2 + k ·x)P = T + k ·Q;
and gu1

q = gr1+k·r
q = t1 · (c1)k.

Honest verifier zero-knowledge. Given pk, c = (c1, c2) and Q a simulator can sam-
ple k

$←− [C[, u1
$←− [ÃC(240 + 1)] and u2

$←− Z/qZ, compute t1 := gu1
q · (c1)−k,

t2 := pku1 · fu2 · (c2)−k and T := u2 · P − k ·Q such that the transcript (t1, t2, T, k, u1, u2)
is indistinguishable from a transcript produced by a real execution of the protocol where
V runs on input (pk, c1, c2, Q, P).
Computational soundness. Let us analyse for which knowledge error functions κ() the
protocol of Figure 4.6 satisfies the notion of soundness defined in Definition 1.5.4. Ac-
cordingly, let κ() be any knowledge error function, such that κ(λ) ≥ 4/C for all λ. As
in proof of Theorem 4.2.1, consider a malicious prover P ∗. Since there are C different
challenges, if εview,P > κ(λ) ≥ 4/C, one can obtain in expected PT a situation where, for
given (t1, t2, T), P ∗ has correctly answered two different challenges k and k′. Let Rewind

133

Setup:

1. (s̃, f, ĝq, Ĝ, F)← Gen(1λ, q).

2. Let Ã := s̃ · 240, sample t $←− [Ã] and let gq := ĝtq.

Input : (r, x) and (pk, c1, c2, Q, P) Input : (pk, c1, c2, Q, P)
r1

$←− [Ã · C · 240] Check that pk, c1, c2 ∈ Ĝ
r2

$←− Z/qZ
t1 := gr1q
t2 := pkr1f r2

T := r2P
t1, t2, T−−−−−−−−→

k←−−−−−−−− k
$←− C

u1 := r1 + k · r ∈ Z
u2 := r2 + k · x ∈ Z/qZ u1, u2−−−−−−−−→ Check u1 ∈ [ÃC(240 + 1)]; u2 ∈ Z/qZ

and gu1
q = t1 · (c1)k

and T + k ·Q = u2 · P
and pku1fu2 = t2 · (c2)k

Figure 4.6: Zero-knowledge argument of knowledge for R̃CL−DL.

be a (probabilistic) procedure that creates k, k′, u1, u2, u
′
1, u
′
2 in this way. We call u1, u2

and u′1, u
′
2 the corresponding answers, so we get:

gu1−u′1
q = ck−k

′

1 ; pku1−u′1fu2−u′2 = ck−k
′

2 ; and (u2 − u′2)P = (k − k′)Q.

The rest of the proof is similar to the proof of Theorem. 4.2.1: from these equations one
can extract a witness for R̃CL−DL otherwise one shows that there exists an algorithm that
solves either the strong root problem for class groups or the low order problem.

Remark 18. In our two-party protocol ([CCL+19]), when proving the security of the over-
all two party ECDSA protocol, the simulator must simulate the above proof of knowledge
without knowing (r, x), to a malicious adversary. Consequently to be used in our protocol,
the above ZKAoK must be secure against malicious adversaries.

In order to attain security against malicious verifiers V ∗, which may deviate from the
protocol, a simulator simulating P chooses a random kP ∈ C, computes t1, t2 and T as in
the proof of zero-knowledge against honest verifiers, and sends them to V ∗, hoping that
the challenge kV chosen by V ∗ will be s.t. kV = kP . If so the simulated view of V ∗ is
indistinguishable from V ∗’s view in a real execution, if not S rewinds V ∗ and starts again
until kV = kP . Consequently for the simulation to run in polynomial time we cannot
chose C arbitrarily big. In practice one could take C := [240] and repeat the protocol
λ/40 times to achieve a satisfying soundness error of 2−λ. We emphasise that this is still
considerably better than the proof used in our two-party protocol for which C = {0, 1}.

134

4.5 Efficiency comparisons
In this section, we analyse the theoretical complexity of our protocol by counting the
number of exponentiations and communication of group elements. We compare the com-
munication cost of our protocol to that of [GG18, LN18] for the standard NIST curves
P-256, P-384 and P-521, corresponding to levels of security 128, 192 and 256. For the en-
cryption scheme, we start with a 112 bit security, as in [GG18, LN18]’ implementations,
but also study the case where its level of security matches the security of the elliptic
curves.

We chose to compare our work to best performing protocols using similar construc-
tion techniques (from homomorphic encryption) which achieve the same functionality,
i.e. (t, n)-threshold ECDSA for any t s.t. n ≥ t + 1. We do not provide a com-
parison to [DKLs18], [DKLs19] as they use OT which leads to protocols with a much
higher communication cost. Similarly, and as noted in [DKO+19] a direct comparison
to [DKO+19, SA19] is difficult as they rely on preprocessing to achieve efficient sign-
ing, which is a level of optimisation we have not considered. We don’t compare to
[GGN16, BGG17] as [GG18] is already faster and cheaper in terms of communication
complexity.

The computed communication cost is for our protocol as described in Section 4.2, and
as such is provably secure. Conversely the implementation which [GG18] provided omits
a number of range proofs present in their described protocol. Though this substantially
improves the efficiency of their scheme, they themselves note that removing these proofs
creates an attack which leaks information on the secret signing key shared among the
servers. They conjecture this information is limited enough for the protocol to remain
secure, however since no formal analysis is performed, the resulting scheme is not proven
secure. For a fair comparison we estimate the communication cost and timings of both
their secure protocol and the stripped down version. In terms of bandwidth we outperform
even their stripped down protocol.

In both protocols, when possible zero knowledge proofs are performed non interac-
tively, replacing the challenge by a hash value, whose size depends on the security param-
eter λ. We note that our interactive set up for the CL encryption scheme uses a ZKPoK
where challenges are of size 10bits (using the lcm trick), it must thus be repeated λ/10
times. We note however that the PoK of integer factorization used in the key generation
of [GG18] has similar issues.

For non-malleable equivocable commitments, we use a cryptographic hash function
H and define the commitment to x as h = H(x, r), for a uniformly chosen r of length λ
and assume that H behaves as a random oracle.

The comm. cost comparison is done by counting the number of bits that are both
sent and received by a given party throughout the protocol3. In terms of timings, we
count the number of exponentiations in the class group (for our protocol), the bit size of
the exponent, and multiply this by 3/2 of the cost of a multiplication in the group. We
compare this to an equivalent computation for [GG18], where we count exponentiations
modulo N and N2, the bit size of the exponent, and multiply this by 3/2 of the cost of a
multiplication modulo N (resp. N2). We do not count exponentiations and multiplica-
tions over the group of points of the elliptic curve as these are very cheap compared to the

3Broadcasting one element is counted as sending one element.

135

aforementioned computations, furthermore both protocols essentially perform identical
operations on the curve.

The [LN18] protocol with Paillier encryption. We use the figures Lindell et al.
provide in [LN18, Tab. 1] to compare our protocol to theirs. We note that – to their
advantage – their key generation should include additional costs which are not counted
in our figures (e.g. local Paillier key generation, verification of the ZKP of correctness of
the Paillier key). The resulting costs are given in Tab.4.7a

The [GG18] protocol with Paillier encryption. The main cost in their key gener-
ation protocol is the ZKPoK of integer factorization, which is instantiated using [PS00,
Thm. 8]. Precisely each prover commits to K values mod N , the challenge lives mod B,
the final opening is an element of size A, where, as prescribed by Poupard and Stern,
we take log(A) = log(N), log(B) = λ and K = λ+log(|N |)

log(C) where C := 260 is chosen s.t.
Floyd’s cycle-finding algorithm is efficient in a space of size smaller than C. For their
signature protocol, the cost of the ZK Proofs used in the MtA protocol are counted using
[GG18, Appendix A].

The results are summarized in Fig. 4.7b. Since the range proofs (omitted in the
stripped down version) only occur in the signing protocol, the timings and comm. cost
of their interactive key generation is identical in both settings, we thus only provide
these figures once. The comm. cost of each protocol is given in Bytes. The columns
correspond to the elliptic curve used for EC-DSA, the security parameter λ in bits for
the encryption scheme, the corresponding bit size of the modulus N , the timings of one
Paillier exponentiation, of the key generation and of the signing phase and the total
comm. in bytes for each interactive protocol. Modulus sizes are set according to the
NIST recommendations.

Our protocol with the CL encryption scheme. For key generation we take into
account the interactive key generation for the CL encryption scheme, which is done in
parallel with IKeyGen s.t. the number of rounds of IKeyGen increases by only one broadcast
per player. In IKeyGen, each party performs 2 class group exponentiations of log(s̃) + 40
bits (where s̃ ≈

√
q · q̃), to compute generators gi and public keys pki, and λ/10 × n

exponentiations of log(s̃) + 90 bits for the proofs and checks in the ISetup sub-protocol.
Note that exponentiations in 〈f〉 are almost free. Signing uses 2+10t exponentiations

of log(s̃) + 40 bits (for computing ciphertexts and homomorphic operations), 2(t+ 1) of
log(s̃)+80+λ (for the ZKAoK) and 2t exponentiations of size q (for homomorphic scalar
multiplication of ciphertexts).

The results for our protocols are summarized in Fig. 4.7c. The columns correspond
to the elliptic curve used for EC-DSA, the security parameter λ in bits for the encryption
scheme, the corresponding fundamental discriminant ∆K = −q · q̃ bit size, the timings
of one class group exponentiation (for an exponent of λ + 40 bits, i.e. that used for
encryption), of the key generation and of the signing phase and the total comm. in bytes
for IKeyGen and ISign. The discriminant sizes are chosen according to [BJS10].

136

Curve λ (bits) N (bits) Mult. (ms) IKeyGen (ms) ISign (ms) IKeyGen (Bytes) ISign (Bytes)
P-256 112 2048 0.0023 > 52n+ 52 99t > 6 336(n− 1) 16 064t
P-256 128 3072 0.0048 > 162n+ 162 310t > 9 152(n− 1) 22 208t
P-384 192 7680 0.0186 > 1 571n+ 1571 3 000t > 22 176(n− 1) 51 744t
P-521 256 15360 0.0519 > 8 769n+ 8 769 16 741t > 43 672(n− 1) 99 845t

(a) [LN18]’s secure t out of n protocol.
Provably secure (with range proofs) Stripped down

Curve λ (bits) N (bits) Mult. (ms) IKeyGen (ms) ISign (ms) IKeyGen (Bytes) ISign (Bytes) ISign (ms) ISign (Bytes)
P-256 112 2048 0.0023 64n+ 7 140t 32(n+ t) + 9 990n− 64 23 308t+ 588 28t 4 932t+ 588
P-256 128 3072 0.0048 293n+ 22 428t 32(n+ t) + 21 392n− 64 33 568t+ 608 88t 7 008t+ 608
P-384 192 7680 0.0186 7 017n+ 214 4 071t 48(n+ t) + 128088n− 96 81 072t+ 912 857t 16 656t+ 912
P-521 256 15360 0.0519 77 725n+ 1196 22 528t 65(n+ t) + 503 591n− 130 159 391t+ 1 232 4783t 32 470t+ 1 231

(b) [GG18]’s t out of n protocol.

Curve λ (bits) ∆K (bits) Mult. (ms) IKeyGen (ms) ISign (ms) IKeyGen (Bytes) ISign (Bytes)
P-256 112 1348 0.029 366n+ 62 430t+ 137 32(n + t) + 2951n− 64 3 670t + 1 747
P-256 128 1827 0.038 744n+ 109 730t+ 237 32(n + t) + 4 297n− 64 4 455t + 2 052
P-384 192 3598 0.077 4 145n+ 424 2 780t + 903 48(n + t) + 10 851n− 96 8 022t + 3 560
P-521 256 5971 0.137 16 432n+ 1 243 8 011t + 2,608 65(n + t) + 22 942n− 130 12 576t + 5 433

(c) Our secure t out of n protocol – With an interactive CL setup.

Figure 4.7: Comparative sizes (in bits), timings (in ms) & comm. cost (in Bytes)

Rounds. In terms of the number of rounds, we perform identically to [LN18]. Our
IKeyGen requires 5 rounds (only 4 assuming a standardised set up), compared to 4 in
[GG18]. Our signing protocol requires 8 rounds as opposed to 9 in [GG18].

Comparison. Fig. 4.7 shows that the protocols of [LN18, GG18] are faster for both key
generation and signing for standard security levels for the encryption scheme (112 and
128 bits of security) while our solution remains of the same order of magnitude. However
for high security levels, our signing protocol is fastest from a 192-bits security level.

In terms of communications, our solution outperforms the other two protocols for
all levels of security, factors vary according to the number of users n and the desired
threshold t. In terms of rounds, both our protocols use the same number of rounds as
Lindell’s. For key generation we use one more than [GG18], whereas for signing we use
one less.

This situation can be explained by the following facts. Firstly with class groups of
quadratic fields we can use lower parameters than with Z/nZ (as said in Subsubsection
2.2.4.2, the best algorithm against the discrete logarithm problem in class groups has
complexity O(L[1/2, o(1)]) compared to an O(L[1/3, o(1)]) for factoring). However, the
group law is more complex in class groups, indeed exponentiations in class groups are
cheaper than those modulo N2 from the 192 bits level. So even if removing range proofs
allows us to drastically reduce the number of exponentiations, our solution only takes
less time from that level (while being of the same order of magnitude below this level).

We note that assuming a standardized set up for CL (as mentioned in Section 4.4.2),
one would reduce the bandwidth consumption of IKeyGen by a factor varying from 6 to 16
(for increasing levels of security). Moreover in terms of timings, the only exponentiation
in the class group would be each party computing its own ciphertext, and so the only

137

operations linear in the number of users n would be on the curve (or integers modulo q),
which are extremely efficient.

138

Chapter 5

Improvements on Threshold ECDSA

In Chapter 4 we proposed an efficient instantiation based on class groups of a full
(t, n)−threshold ECDSA protocol involving n players and with any threshold t ≤ n− 1.
Recently, Canetti et al. [CGG+20] departs from previous threshold realizations in that it
offers several additional features. They propose a new threshold ECDSA scheme which
is proven secure against adaptive adversaries in the UC model, which achieves account-
ability (if some parties causes an abort during the generation of the signature, at least
one misbehaving player is recognized) and uses an interesting online/offline optimization
which allows to perform the heaviest part of the computation in a pre-signing step, i.e.
before the message to be signed is known. Furthermore, their protocol allows for non
interactive online signing (assuming the offline preprocessing) and it is proactive. Com-
pared to our proposal in [CCL+20], they are considerably heavier, especially in terms of
overall communication cost. In practice, looking at the bandwidth consumption, having
a lighter communication cost when coping with more parties is preferable. Improving our
protocol from Chapter 4 with the new features discussed above brings to a new enhanced
scheme that at the same time inherits part of the bandwidth efficiency from our threshold
ECDSA from Chapter 4.
In this chapter we present and discuss this improved protocol, i.e. our work [CCL+21].
In that work, we departs from the construction in Chapter 4, and we present a new con-
struction which satisfy the additional properties just defined and which is proven secure
against a static adversary. Finally, we prove security against adaptive adversary for the
specific case t = n − 1. The motivation behind this choice and more details about the
properties we want to satisfy are given in paragraphs below. In the technical part, we
omit the details about the construction of our basic threshold construction from [CCL+20]
since already explained in Chapter 4 and we refer to that chapter.

Online/Offline Before [CGG+20] was public, the authors published their result in two
separate works ([GG20],[CMP20]), then they proposed a unique result. Our construction
follows some of the ideas initially proposed in [GG20] as the online/offline and the ac-
countability properties and we adapted them to our threshold construction. In a similar
fashion, we can split our protocol in a offline phase and in a online one. Informally,
shares of k−1 and of kx are computed by players in the offline phase. Once the mes-
sage m is available and known by signers, they can compute their shares of signature
si = kiH(m) + r(kx)i locally from public known information, i.e. non interactively, and

139

finally they broadcast their own si. Having received the shares, they can compute the
signature of m. The online phase consists only in broadcasting si, which is an improve-
ment on our basic threshold scheme since it avoids its long interactive signing. Another
substantial difference with our basic threshold protocol is in the role of the nonce R.
Indeed, since R is made public before the message is chosen, to guarantee the security of
the scheme we need a modification of the definition of security of ECDSA which takes in
account this fact. This modified ECDSA assumption is called enhanced existential un-
forgeability ECDSA, it is presented in Definition 1.3.4 and it is necessary in online/offline
setting. This definition was independently proposed by the authors of [CGG+20], and
considered in that work1.

Identifying aborts Our improved protocol from [CCL+21] is proven secure against
a corruption of a majority of the players and also relies on aborts. This means that
the protocol ends prematurely if a malicious behaviour of some player is detected. Such
protocols are susceptible to “denial of service” attacks, allowing even a single malicious
party to force the protocol to abort. An additional part of our protocol is an identification
sub-protocol which is run after an abort occurs to identify at least one of the misbehaving
parties which caused the abort. Anyway, it can result in a challenging task, and as a
result it is seems to be not possible to exclude any cheater from future computation
of the signature. Looking at public operations done by a single party, e.g. proving in
zero-knowledge some calculation to everyone, it could be easy in some cases to detect a
cheater if a proof fails. However, looking at previous solutions in [GG18] or in [CCL+20],
in those protocols some specific operations done by parties are not publicly verifiable,
as for example the computation of a common R. In cases where it is not possible to
publicly verify operations which brought to abort, it is quite hard to detect a cheater
since there are not enough information about who did not follow instructions. An easy
way to identify players that behave maliciously would be to force them to prove in zero
knowledge that they followed the protocol correctly. A negative consequence of this
solution is that it typically induces significant communication overhead, thus making the
resulting protocol impractical. One of the improvements present in [CGG+20] and in
our enhanced protocol, is the ability of identifying cheaters and then excluding them
from future executions. [GG20] follows a different approach specifically tailored to their
online/offline solution. In strategy followed by [GG20] it is possble to detect misbehaving
parties checking shares of the signature from public values for the online phase, and
revealing some private values in the offline phase observing that there is not a security
issue since the signature is not yet generated. In our setting a technical problem prevents
the resulting proof to go through. Informally this has to do with the fact that the security
of our protocol crucially relies on some properties of hash proof systems.2 The technical
complication in the proof arises when the simulator needs to switch from valid ciphertexts
to invalid ones (see Subsection 3.2.4 for the definition of invalid ciphertext) that perfectly
hide the underlying plaintext. This step is crucial for the proof in [CCL+20] to go through

1Actually, the definition comes from the two independent works [GG20],[CMP20]. The authors of
both papers then decided to present a unique work, which is [CGG+20].

2The connection with hash proof systems comes from the fact that the underlying linearly homo-
morphic encryption in [CCL+20] scheme is the one resulting from hash proof systems when using CL as
underlying building block. We saw this link in Section 3.4.

140

but becomes problematic here as the simulator cannot provide the randomness used to
create the ciphertexts, as no valid ciphertexts exist anymore. Indeed, an invalid ciphertext
of the CL encryption scheme has the form (u, e) where u ∈ G \Gq. Then, u = gαq f

β and
it does not exist an integer r such that u = grq (if such r exists, then Gq ∩F 6= {1}, which
is absurd by construction). Another relevant point is that revealing the randomness used
and the message permits to verify the decryption of a ciphertext by re-encryption. If
the ciphertext is a fresh one, we incur in the simulation problem above, then suppose
the randomness is not known as when the ciphertext is computed from homomorphic
operations. With CL we cannot extract the randomness used even knowing the secret
key. The reason is that in the class group the order of the group is unknown even to
who set the parameters, while in Paillier encryption it can be extracted using the secret
key. To overcome this problem, we designed a new zero-knowledge proofs that manage
to let the simulator complete the proof without compromising the overall efficiency of
the protocol. The new zero-knowledge proves that a ciphertext decrypts to some value
or not, without the knowledge of randomness.
This stronger model is referred to as secure multi-party computation with identifiable
aborts (ID-MPC) [IOZ14, CL14]. It ensures that all honest parties learn the identity
culprit if some party causes an abort.

Proactivity Our basic protocol can also easily be modified to achieve proactive security.
Informally, proactivity is the property to resist against an attack which can compromise
all the parties, corrupting part of them at any time period. It is usual to consider
adversaries that can corrupt at most t parties during the entire lifetime of the execution,
but this is not considered too realistic when a protocol is run for a long time. The idea
of proactivization is born with the introduction of mobile adversary in [OY91]. A mobile
adversary represents a more realistic situation where the adversary A is able to corrupt at
most t < n new parties during a time period called epoch, where n is the total number of
parties. An epoch is defined as the time period between the beginning of a key refreshing
and the end of the next key refreshing. The security of a proactive threshold signature
scheme is based on the security of the scheme against at most t corruption during an
epoch. Our key refreshing protocol has the advantage to be very efficient, much more
efficient than the corresponding protocol from [CGG+20], when considering a number of
players one would expect in real applications. protocol. To understand why ours has
better efficiency, it is enough to see that the role of a key refreshing protocol is to refresh
the used keys, where these key come from two different settings (CL for us, Paillier for
[CGG+20]). When using Paillier encryption scheme, parties should generate an (RSA)
modulus N together with a proof that it has been constructed correctly, where this proof
is known to be very expensive. In our case it is enough to generate a couple of the form
(hi = gsk) where g is a public, fixed parameter. As we saw in previous chapter, we do
not prove that the key is constructed correctly. In a concrete comparison, e.g. for n = 5
and a 112-bit level of security, the total data sent and received between players in our
key refresh protocol is 15 times less than theirs (28 KBytes as opposed to 420 KBytes).
Our solutions reduce the bandwidth consumption of [CGG+20] by up to a factor 10.
We compare the communication cost of our signature protocol to those of Canetti et al.
for the standard NIST curve P-256 corresponding to a 128 bit security level. Regarding
encryption, we start with a 112 bit security, as in their implementations, but also study

141

the case where its level of security matches that of the elliptic curve. In both cases, our
comparison shows that our signing protocol is an order of magnitude more efficient. More
details about the efficiency are given in the final section of this chapters.

A (n−1, n)−threshold adaptive secure proposal Our most basic construction works
for any t < n and it is proved secure against static adversaries. Next, we prove security of
our protocol against adaptive corruptions for the special case when t = n−1. That choice
of t = n−1 is motivated by the difficulties to cope with an adaptive adversary, which are
argued in Subsection 5.3.2. However, even the whole work of Canetti et al. focuses on
the n-out-of-n3 case and does not explicitly consider more general (t, n)−thresholds. In
[CGG+20], the authors suggest to apply the tecniques of [GG18] to extend their protocol
to the general t ≤ n − 1 case, however in Subsection 5.3.2 we look at difficulties in
proving our protocol secure against an adaptive adversary for t < n. How to extend to
more general threshold t < n is left as a future work and then not considered in this
thesis document. In brief, both the protocol achieve security against adaptive adversary
for the case t = n − 1, i.e. when the adversary has the power to corrupt all the parties
except one at each time period.

Adversary model. The kind of adversary we consider is active (or malicious) and it
is computationally bounded. Furthermore, we consider two settings, static and adaptive.
For an informal description, see Section 1.1.1.

Communication model As for [CCL+20] and [GG18], we consider a broadcast chan-
nel and peer-to-peer channels between parties.

On composability. Our results are proven secure in the Random Oracle Model (see
Section 1.5). We implicitly use the Fiat-Shamir transform to convert our honest-verifier
sigma protocols into extractable non-interactive proofs. Extractability in the Fiat-Shamir
paradigm relies on rewinding, which in the UC setting results in the running time of the
simulator blowing up exponentially. One way to avoid the blow-up while allowing for
extractability is to run proofs interactively, in which case they must be secure against
malicious verifiers. Such an approach would lead to a large increase in the number of
rounds of our protocol. Hence, motivated by efficiency, the definitions we adopt are
game-based and do not guarantee composability.

Building from class groups Because of our new threshold proposal is an extension
of the previous one from Chapter 4, the choice of the parameters of CL are essentially the
same. We then refer to Subsection 4.1.1 for the setup of CL
Remark 19. Dobson et al. [DGS20] suggested a new formula to estimate security in a
setting where a large set of users (say a billion) share common parameters. In such a
setting, public parameters may be targeted by an adversary. They suggest that in this
context, an attack with 2λ running time and a 2−λ success probability equates to λ bits of
security. This leads to estimates on sizes of the discriminant which are much larger than

3It is usual in literature to call n-out-of-n the case where the threshold is t = n− 1. However, we use
the term (n− 1, n)−threshold to refer to this specific case.

142

traditionally used. However, this formula is not relevant for our application where there
won’t be billions of users. Here the standard definition (2λ running time for a probability
of success 1/2 or close to 1) seems more appropriate. As a side note, these estimates
in the ’large set of users’ context also apply to applications based on an RSA modulus
N , as there exists an algorithm which efficiently factors N given the class number of
discriminant −N or −4N .

Hard assumptions No new assumptions with regards to the construction in Chapter
4 are required. We refer to Section 4.1.2 for the low order assumption and the strong
root assumption.
Remark 20. Belabas et al. in [BKSW20] show that if the discriminant belongs to some
class of weak primes, then computing small order elements is easy. They also demonstrate
that one can easily construct discriminants together with a low order element in their
class group without computing the class number. However the likelihood that such a
discriminant is chosen at random is negligible. On the other hand, given a discriminant,
it seems hard to prove that it is not of such a weak form. Though in our case the
discriminant is not prime (∆K = −qq̃), their ideas can be extended to this setting. Hence
when relying on the low order assumption, particular attention must be paid in ensuring
that discriminants are generated randomly (in our case q̃ must be so), and in particular
that special primes are not chosen to meet specific optimization requirements.
Differences with the eprint version. The relevant differences between this chapter and
the eprint version ([CCL+21]) are:

• A little change in ISetup protocol which splits the ZK proofs of the knowledge of
the discrete logarithm in the curve and in the class group in two separate proofs (it
is only a little improvement in efficiency).

• A new proof for a slightly different RDec similar to the REnc relation from Subsection
4.2.1 which takes in account the difficulty of extracting an integer value of the
randomness in a ciphertext. Section 5.2.1 is dedicated to the new RDec.

• Two small additional notes: On the impossibility of re-encryption at the end of
Section 5.2 and On the number of rewindings in Subsection 5.3.2.

5.1 Improved Threshold ECDSA protocol
We here present our (t, n)−threshold ECDSA protocol with the addtional properties. It is
divided into five sub-protocols for ease of readability. The first sets up public parameters
for the CL encryption scheme, and a common random elliptic curve point H ∈ G. We
then present the key generation sub-protocol for IKeyGen and a key refresh sub-protocol
IKeyRefresh. Next we provide our protocol for signing, this is divided into two sub-
protocols: an offline protocol PreSign allowing to pre-compute a number of pre-signatures
before knowing the message to be signed, and an online protocol ISign which takes as
input shares of a pre-signature and a message, and outputs a signature. The protocol is
similar to that one in Chapter 4, except for the key refresh subprotol which is new, and
some additional steps required to identifying parties which cause an abort. Furthermore,

143

Pi ISetup(k, ppG) All players {Pj}j 6=i
ri

$←− {0, 1}k
[ci, di]← Com(ri)

ci=====⇒
di=====⇒ ri ← Open(ci, di)

q̃ := next-prime(⊕n
j=1 rj)

Compute ĝq from q, q̃

ti
$←− [240s̃] and gi ← ĝtiq

hi
$←− Z/qZ and Hi ← hi · P

(c̃i, d̃i)← Com((gi, Hi))
c̃i=====⇒
d̃i=====⇒ (gi, Hi)← Open(c̃i, d̃i)

π
〈ĝq〉−DL
i := ZKPoKgi{ti : gi = ĝtiq }

πDL
i := ZKPoKHi{hi : Hi = hi · P}

πDL
i ,π̂i=======⇒ if a proof fails abort

gq ←
∏n
j=1 ĝ

tj
q = ∏n

j=1 gj
Erase all data other than (gq, H, ppG)

Figure 5.1: Threshold CL setup used in IKeyGen

unlike the last Phase of the signature protocol of [CCL+20] in Section 4.2 (Figures 4.2, 4.3
and 4.4), the computation of the signature from shares consists only in one step, because
of preprocessed values and checks that make sure the operations done before putting
together the shares of the signature were correct. This makes unncecessary to run the
zero-knowledge proofs of Phase 5 (see Figure 4.4). The similarity between protocols in
[CCL+20] and in [CCL+21] – which is the topic of this Chapter – is useful to understand
the ideas behind the new protocol, and we refer to the detailed explanation of threshold
protocol in Chapter 4. The procedure for identifying misbehaving players is given in
Section 5.2.

Interactive Set Up Sub-Protocol. Our protocol requires a set up, as did that of
[CCL+20] in Chapter 4, to ensure that the generator gq used by all parties in the CL
encryption scheme is a random generator. We already discussed the necessity of a random
generator in Subsection 4.1.1. Our ISetup protocol is that of [CCL+20], with the slight
difference that parties also set up a random elliptic curve point H which will be used
in the pre-signing protocol. As usual, we denote ppG := (G, P, q) the description of the
elliptic curve used in ECDSA. For n parties to collaboratively run ISetup, they proceed
as depicted in Figure 5.1.

Key Generation Sub-Protocol. After running the ISetup protocol of Figure 5.1, all
parties possess (gq, H, ppG). All parties use this as input for the interactive key generation
protocol IKeyGen. Note that in practice ISetup and IKeyGen would be ran in parallel, and
are only here presented separately for ease of readability. As it is exactly the IKeyGen
protocol of [CCL+20], we do not detail the steps of the sub-protocol. Its description is
given in Figure 4.3 in Chapter 4, we recall it in Figure 5.2 only for ease of readability.

144

Pi IKeyGen(gq, H, ppG) All players {Pj}j 6=i
ui

$←− Z/qZ and Qi := uiP
[kgci, kgdi]← Com(Qi)

(ski, pki)← CL.KeyGen(1λ) pki and kgci=======⇒
kgdi==⇒ Qi ← Open(kgci, kgdi)

Perform (t, n)-VSS share of ui: Q := ∑n
i=1Qi

pi(X) = ui +∑t
k=1 ai,kX

k mod q
Let {σi,j := pi(j)}j∈[n] and {Vi,k := ai,kP}k∈[t]

Send σi,j to Pj−−−−−−−−→
{Vi,k}k∈[t]======⇒

{σk,i}k are additive shares of xi := ∑
k∈[n] pk(i)

where {xi}i∈[n] are (t, n) Shamir shares of x.

πkg
i := ZKPoKXi{(xi) : Xi = xiP}

πkg
i←→

Store (Q, ui, xi)

Figure 5.2: Threshold Key Generation

Notice that in this work, as already said we use Fiat-Shamir transform for proofs, then
πkg
i is assumed non interactive.

Key Refresh Sub-Protocol. This protocol allows players to generate new shares of
the ECDSA secret signing key x and public verification key Q. Each party Pi for i ∈ [n]
runs on input it’s previous ECDSA key shares (ui, Qi) satisfying Qi = uiP ; the public
parameters ppG = (G, P, q); the verification key Q; and the public parameters ppCL for
the CL encryption scheme.

Note that upon key refresh all pre-signatures computed in the previous epoch are
erased. This is crucial to ensure that – in our security proof – an adversary can not
obtain signatures on two different messages for the same randomness R.

Furthermore, after each execution of Key Refresh, note that the shares unew
i are (n−

1, n)−additive shares of x. These can be converted into (t, n)−shares xi of x via. a VSS
as in IKeyGen.

Offline Pre-Signature Sub-Protocol. We now present the Pre-Signing sub-protocol
which pre-processes signatures before the messages are known. For i ∈ [n], let xi denote
Pi’s (t, n)−share of x output by the IKeyGen sub-protocol of Figure 5.2 (or the output
of the latest key refresh, cf. Figure 5.3); and let Xi := xiP . For each execution a set
S of players (satisfying |S| > t) is chosen and the secret values {wi}i∈S constitute a
(t, t)−additive secret sharing of the secret signing key x. Each wi is computed from xi
using Lagrangian coefficients. Furthermore the associated elliptic curve point Wi := wiP
is known to all parties (as Wi can be computed from Xi). The offline Pre-Signing sub-
protocol is depicted in Figure 5.4.

As in [CCL+20], Phase 2 of the Pre-Signing protocol is a peer-to-peer sub-protocol
between each pair of players Pi and Pj, for i, j ∈ S, j 6= i. For private shares γi, wi ∈ Z/qZ
owned by Pi and kj ∈ Z/qZ owned by Pj, it allows to convert multiplicative shares kjγi

145

Pi(ui, Qi, Q, ppG, ppCL) Key Refresh All players
(ski, pki)← CL.KeyGen(1λ) pki==⇒

vi,1, . . . , vi,n
$←− Z/qZ s.t ∑j vi,j = 0

For j ∈ [n] let Qi,j := vi,j · P
Yi = {Qi,j}j∈[n]

Sample ρj $←− [Ã]
Ci,j := Enc(pkj, vi,j; ρj)

{Ci,j}j∈[n],Yi========⇒ if ∑j∈[n] Qi,j 6= 0G

πkr
i,j := ZKAoKCi,j ,Qi,j ,P{(vi,j, ρj) : then abort

Ci,j = Enc(pkj, vi,j; ρj) ∧Qi,j = vi,j · P}
{πkr
i,j}j∈[n]======⇒ if a proof fails abort

Overwrite old shares with:
unew
i := ui +∑

j∈[n] Dec(ski, Cj,i) mod q
Qnew
i := Qi +∑

j∈[n] Qj,i

Erase previously computed pre-signatures
and all Key Refresh data except unew

i , Q, {pkj}j∈[n], ski

Figure 5.3: Key Refresh

and kjwi into additive shares αj,i, βj,i, µj,i, νj,i ∈ Z/qZ satisfying αj,i + βj,i = kjγi mod q
and µj,i + νj,i = kjwi mod q. Since a check on values µj,i, νj,i ensures they are consistent
with Pi’s secret key share wi, the sub-protocol computing µj,i, νj,i is referred to as MtAwc
(Multiplicative to Additive with check), whereas that computing αj,i, βj,i is referred to as
MtA.

Online Signature Sub-Protocol. Our sub-protocol computing signature-shares once
the message is known is depicted in Figure 5.5. This sub-protocol is executed between
the same set S of players that interacted in the Pre-Signing sub-protocol of Figure 5.4,
all running on input a message m to be signed and a precomputed pre-signature.

5.2 Identifying Aborts
In this section we show how to identify at least one misbehaving player if an abort occurs
during an execution of the protocol. We follow a similar idea to that in [CGG+20] and in
[CCL+20], adapting their techniques to take into account the fact we use a class group
based encryption scheme. Indeed in some specific cases, to identify aborts, we require
that parties prove that a ciphertext decrypts to a given value using their decryption key.
To ensure this, a player must prove that the ciphertext it first sent decrypts to some
message or to nothing (this happens if the ciphertext is not well-formed). To this end, we
provide an efficient zero-knowledge argument of knowledge of some information related
to the secret key used to decrypt a CL ciphertext. The proof we provide is specific to our
considered encryption scheme, precisely, it is for the following relation:

RDec := {(pk, (c1, c2),M); (σ0, σ1); | c1, c2,M ∈ Ĝ; σ0 ∈ N,

146

PreSign
Pi(wi, Q, ppG, ppCL, ski, {pkj}j∈S) Phase 1 All players {Pj}j 6=i

ri
$←− [Ã]

ki, γi
$←− Z/qZ

cki ← Enc(pki, ki; ri)
[ci, di]← Com(γiP)

ci,cki===⇒
πi := ZKAoKpki,cki{(ki, ri) :

((pki, cki); (ki, ri)) ∈ REnc}
πi←−−−→ if a proof fails, abort

Pi Phase 2 Pj

βj,i, νj,i
$←− Z/qZ

Bj,i := νj,i · P
cβj,i ← Enc(pkj,−βj,i)
cνj,i ← Enc(pkj,−νj,i)

ckjγi ← EvalAdd(EvalScal(ckj , γi), cβj,i)
ckjwi ← EvalAdd(EvalScal(ckj , wi), cνj,i)

ckjγi ,ckjwi ,Bj,i−−−−−−−−−→ αj,i ← Dec(skj, ckjγi)
µj,i ← Dec(skj, ckjwi)

If µj,i · P +Bj,i 6= kj ·Wi then abort
δi := kiγi +∑

j 6=i(αi,j + βj,i)
σi := kiwi +∑

j 6=i(µi,j + νj,i)
Pi Phase 3 All players {Pj}j 6=i

δi=====⇒ δ = ∑
i∈S δi = kγ

`i
$←− Z/qZ

Ti = σi · P + `i ·H
Ti=====⇒

π̃i := ZKPoKTi{(σi, `i) : Ti = σi · P + `i ·H ∈ G} π̃i←−−−→ if a proof fails, abort
Pi Phase 4 All players {Pj}j 6=i

di=====⇒ Γi := Open(ci, di)

πγi = ZKPoKΓi{γi : Γi = γi · P}
πγi←−−−→ if a proof fails, abort

R := δ−1(∑i∈S Γi)
Let R = (rx, ry) and r := rx mod q

Pi Phase 5 All players {Pj}j 6=i
R̄i = ki ·R

R̄i=====⇒
π′i = ZKPoKpki,cki ,R̄i,R

{
(ki, ri) :

cki = Enc(pki, ki; ri) ∧ R̄i = ki ·R
} π′i←−−−→ if a proof fails, abort

if P 6= ∑
i∈S R̄i abort

Erase all data except for (`i, ki, σi) and (Q, ui, xi)
Pi Phase 6 All players {Pj}j 6=i

Si = σi ·R
π′′i = ZKAoKSi,Ti,R{(σi, `i) : Ti = σi · P + `i ·H ∧ Si = σi ·R}

Si=====⇒
π′′i←−−−→ if a proof fails, abort

if Q 6= ∑
i∈S Si abort

Erase all data except for:
(Q, ui, xi) and pre-signature share (R, ki, σi)

Figure 5.4: Offline Threshold Pre-Signature Protocol

147

ISign
Pi Phase 7 All players {Pj}j 6=i

si := mki + rσi
si=====⇒

s := ∑
i∈S si,

Erase (R, ki, σi) if (r, s) is not a valid signature, abort,
else return (r, s).

Figure 5.5: Online Threshold Signature Protocol

σ1 ∈ [−ÃC(240 + 1) · 2σ0 , ÃC(240 + 1) · 2σ0]; c2 ·M−1 = c2−σ0σ1
1 ∧ pk = g2−σ0σ1

q }.
To understand why such a proof is necessary, let us compare Paillier and CL decryp-
tions. With Paillier’s cryptosystem, one can extract the encryption randomness from a
ciphertext given the decryption key. So if an abort occurs in the protocol, players can
publish both the plaintext and encryption randomness underlying ciphertexts which were
encrypted using their public key. They can thereby convince other players that the ci-
phertext is an encryption of the announced plaintext by re-encryption. However, due of
the unknown order of Gq, in CL it is not possible to efficiently compute the encryption
randomness, even knowing the decryption key.
Consequently parties must prove ciphertexts decrypt to a given value (this may be ⊥ if
decryption fails) in another way.

5.2.1 Arguing knowledge of a decrypted message
In this subsection we present a proof for the relation RDec. The reason why we need such
a proof is motivated by the fact that some ciphertexts in the resulting signature scheme
are not fresh ciphertexts, but they are obtained from homomorphic operations. If a party
P encrypts a message m in a ciphertext c, it is clear that P knows the randomness used
and after publishing the message and the randomness everyone can check the validity
of c by re-encryption. However, when a party P receives a homomorphically computed
ciphertext c′ from c, we saw it cannot compute the randomness from the ciphertext and
neither the sender knows the randomness of the original c.
Consider a party P with encryption key pair (pk, sk) and suppose P has received a
ciphertext c = (c1, c2) ∈ Ĝ2, encrypted under pk. The following proof allows P to
convince a verifier that decrypting c with some information of the secret key (sk if P is
honest) yields m, which may either be ⊥ if c fails to decrypt, or some value in Z/qZ.

Note that c may or may not be valid (i.e. c1 ∈ Gq); this is irrelevant, indeed P himself
may not know if it is the case, so there is no way P can prove it is so.

Let M := c2 · c−sk
1 . Note that if M = fa for some a ∈ Z/qZ, the decryption algorithm

returns a, otherwise it returns ⊥. Observe that when P is proving that ~c decrypts to a
given value, P can reveal M to all players, so everyone can compute c2 ·M−1. We present
a ZKAoK for the relation RDec and the interactive protocol is given in Figure 5.6.
This proof does not allow the extraction of an integer value of the secret key, however it
is enough to prove that pk ∈ 〈gq〉 and that the exponent of c1 w.r.t. to c2 ·M−1 and of
pk in base gq is the same when the decryption is m 6=⊥. Furthermore an honest prover

148

Setup:

1. (s̃, f, ĝq, Ĝ, F)← Gen(1λ, q).

2. Let Ã := s̃ · 240, sample t $←− [Ã] and let gq := ĝtq.

Prover (pk, (c1, c2),M ; sk) Verifier (pk, (c1, c2),M)

r
$←− [240ÃC]

t1 := cr1 and t2 := grq
t1,t2−−−−−−−−−−−→

k
$←− C

k←−−−−−−−−−
u := r + k · sk ∈ Z

u−−−−−−−−−→ Check u ∈ [ÃC(240 + 1)]
and cu1 = t1 · (c2 ·M−1)k

and guq = t2 · pkk

Figure 5.6: Zero-knowledge argument of knowledge for RDec.

knows and uses its secret key in the protocol.

The interactive protocol is given in Figure 5.6. We denote C the challenge set, and C := |C|
as usual. The only constraint on C is that the C-low order assumption holds in Ĝ. The
protocol is complete, honest verifier zero-knowledge, and sound under the assumption the
strong root problem for class groups with input (Ĝ, Ĝq, gq), and the C-low order problem
in Ĝ are hard. The proof is essentially that of the ZKAoK for relation REnc in Subsection
4.2.1 (from [CCL+20]) with very minor variations. Formally, the following theorem is
valid for RDec.

Theorem 5.2.1. If the strong root assumption is (t′(λ), εSR(λ))-secure for Gen,
and the C-low order assumption is (t′(λ), εLO(λ))-secure for Gen, denoting ε :=
max(εSR(λ), εLO(λ)), then the interactive protocol of Figure 5.6 is a computationally con-
vincing proof of knowledge for RDec with knowledge error κ(λ), time bound t(λ) and failure
probability ν(λ), where ν(λ) = 3ε, t(λ) < t′(λ)/448 and κ(λ) = max(4/C, 448t(λ)/t′(λ)).
If r ∈ [s̃ ·240] (it is so when the prover is honest), the protocol is honest verifier statistical
zero-knowledge.

Proof. The proof is very similar to that for REnc in Subsection 4.2.1.

5.2.2 Aborting and detection of misbehaving parties
As the authors do in [CGG+20], we suppose that all the messages are signed from the
sender and as a result all the players know the identity of the sender when a message is
published. This is important to identify bad behaviours. We also consider a local timeout
in case of delays in sending. After this timeout a player which has not sent the requested
message for a specific phase is considered corrupted. We can list all the possible situations

149

in which the protocol ends with an abort, giving the corresponding solution to identify
a misbehaving player. Of course, there can be more than one cheater player, however
the aim of identifiable aborts is to detect at least one of them and exclude her from next
executions of the protocol. We give below the list of cases in which the protocol aborts
and a way to detect who caused the failure of the procedure.

Setup In the set up phase, an abort occurs if a player refuses to decommit, if a proof fails
or if a signature on a published value fails. In each case all the players know who
the faulty player is, since commitments and proofs are signed.

Key Generation Aborts in key generation may occur due to a player refusing to decommit,
or a proof πkg

i failing to verify. For such types of abort, the culprit is immediately
identified. Aborts may also occur if a player complains that the share it received
from a Feldman-VSS is inconsistent (i.e. does not verify correctly). In this case the
player raising the complaint can publish the received private share and all players
can check consistency. If the check passes and the sender’s signature is valid, the
misbehaving player is the receiver, otherwise it is the sender. After the misbehaving
player is identified, the key generation protocol is re-ran with fresh randomness to
establish a secure key.

Key Refresh In a key refresh, an aborts occurs if the sum of the points received from a
player is not equal to 0G or a proof πkr

i,j fails to verify. In both cases, the sender is
detected as the misbehaving player because the proofs or the points are signed.

Pre-Signing and Signing These protocols may abort for various reasons. When a proof
fails or some player refuses to decommit, others can immediately detect the cheater.
However, in some cases it is not clear who led the protocol to an end. To have an
idea of what can happens, notice that in the previous subprotocols each player
sends values whom consistency is directly verifiable. But when it is necessary to
compute a common value by putting together players’ choices and this value is not
consistent, it could be hard to detect which is the wrong share. In these specific
cases players have to publish private data used in the computation. We will see
that these published values do not reveal information about secret signature key
shares. We hereafter list the problematic reasons these protocols may abort.

Problematic types of abort in Pre-Sign and Sign:

1. Phase 2. If a player cannot decrypt the message received (α or µ).

2. Phase 2. If the check on µ fails.

3. Phase 5. If P 6= ∑
R̄i.

4. Phase 6. If Q 6= ∑
Si.

5. Phase 7. If the signature (r, s) is not valid for the message m.

150

From now, we refer to the items #τ of the previous list as ”type τ”. Furthermore,
notice that a type of abort is reached by the protocol if previous types in the list do not
occur. We analyze types of abort.

For an abort of type 5, if the protocol reached this point, then P = ∑
R̄i andQ = ∑

Si.
Furthermore, all the players know the shares si = mki + rσi mod q of the signature. To
detect the cheater, it suffices to verify for which index si · R 6= m · R̄i + r · Si. For the
remaining four types of abort a more involved discussion is required.

For aborts occurring in the Pre-Sign protocol, parties may be required to publish their
private shares ki, γi and other values depending on the considered case. We emphasize
that this does not compromise the secret signing key. Indeed, these aborts occur before
revealing the shares si of the signature, and as a result publishing ki or γi does not give
information on s or si, since they are not revealed yet. With this observation, we can
present the strategy used to detect cheaters in these remaining cases.

Abort of type 1: Assume Pj is complaining that a ciphertext it received from
Pi does not decrypt. Then Pj publishes the faulty ciphertext c := (c1, c2) along with Pi’s
signature. Party Pj also reveals M := c2 · c

−skj
1 , and proves that (pkj, (c1, c2),M) ∈ RDec,

using the proof of Subsection 5.2.1. If this proof fails, or if M ∈ F , then Pj is lying.
Otherwise all parties are convinced that Pi is the cheater.

Abort of type 2: Assume Pj is complaining that µj,i · P + Bj,i 6= kjWi. Then Pj
publishes:

1. kj and proves that (pkj, ckj = (ckj ,1, ckj ,2), fkj) ∈ RDec, so that all the parties can
check that kj is the right decryption of ckj .

2. µj,i, the ciphertext ~ckjwi := (c1, c2) and the elliptic curve point Bj,i along with Pi’s
signatures on the latter two elements. Party Pj also proves that (pkj, (c1, c2), fµj,i) ∈
RDec, using the proof of Subsection 5.2.1. If this proof fails then Pj is lying. Oth-
erwise all parties are convinced that ciphertext ~ckjwi received by Pj decrypts to µj,i
using Pj’s decryption key.

All parties now check that µj,i · P +Bj,i 6= kjWi; if so Pi is identified as the cheater, else
it is Pj.

Abort of type 3 and 4: Since one can not identify the cheater directly from
P 6= ∑

R̄i or from Q 6= ∑
Si, in these cases identifying a misbehaving player requires a

more convoluted list of actions. To detect who misbehaved, let us consider the protocol
steps leading up to an abort of type 3. Note that aborts of type 3 occur after proofs
{πkg

i }i∈[n] and {πi, π̃i, πγi , π′i}i∈S have been accepted, and also after proofs {π′′i }i∈S have
been accepted for aborts of type 4.

The identification protocol uses new techniques, and requires the use of a zero-
knowledge proof for RDec to prove ciphertexts decrypt to a given value (e.g. the proof of
Subsection 5.2.1). In order to prove that the players indeed ran the protocol correctly,
it is necessary and sufficient to prove that for i ∈ S all the following consistency items
hold:

151

(i) The value ki input to the MtA protocol is consistent with that input to the MtAwc
protocol. This holds unconditionally since only a single encryption of ki is broadcast
in Phase 1.

(ii) The value wi input to the MtAwc protocol is consistent with the public value Wi =
wi ·P that is associated with player Pi. Under the soundness of the Schnorr ZKPoK
used for πkg

i in IKeyGen, this item holds.

(iii) The value γ̃i input to the MtA protocol is consistent with Γi = γi · P that is
decommitted to in Phase 4, i.e. γi = γ̃i.

(iv) The value δi published in Phase 3 is consistent with the shares received during the
MtA protocol. In particular, the following should hold:

δi = kiγi +
∑
j 6=i

αij +
∑
j 6=i

βji.

(v) The value Si published in Phase 6 is consistent with the shares received during the
MtAwc protocol. In particular, it must hold that

Si = σi ·R and σi = kiwi +
∑
j 6=i

µij +
∑
j 6=i

νji.

We now distinguish aborts of type 3 and 4.

Identification - Abort of type 3 in Phase 5. For this to occur, either consistency
item (iii) or (iv) does not hold (since Si has not been computed yet, item (v) is not
relevant here). We hereafter explain how, for both of these inconsistency types, parties
can identify a cheating player.

(iii) Each party Pj publishes (in order):

(a) For i 6= j, βi,j and γj. All players then check that Γj revealed in Phase 4
satisfies Γj = γj · P . If the check fails, Pj is identified as a cheater.

(b) After all β`,i and γi, for i 6= j and for ` 6= i have been published, i.e. after Pj
sees all the βs and γs from other parties, Pj reveals kj and performs a ZK proof
that (pkj, ckj , fkj) ∈ RDec. If the proof is accepted, all parties are convinced
ckj decrypts to kj using Pj’s decryption key; else Pj is identified as a cheater.

(c) For i 6= j, reveal αj,i and ckjγi . Then perform a ZK proof that (pkj, ckjγi ,
fαj,i) ∈ RDec. If the proof is accepted, all parties are convinced ckjγi decrypts
to αj,i using Pj’s decryption key; else Pj is identified as a cheater.

Then for i 6= j, all players can compute:

β̃i,j := kiγj − αi,j and check if βi,j = β̃i,j. If it is not true for some index i,
then Pj is the cheater (for using γ̃j 6= γj in the MtA protocol).

152

We now argue that if all such checks pass, item (iii) holds, i.e., all players are
convinced that γ̃j 6= γj. Observe that if Pj used a different value γ̃j in the
MtA than the γj published in step (a) satisfying Γj = γj · P , then to have
βi,j = β̃i,j, party Pj must have predicted the value kiγj −αi,j without knowing
αi,j or ki. Under the smoothness of the encryption scheme, the distribution
followed by ki is uniformly random in Z/qZ from Pj’s view in step (a), hence
Pj (who only knows βi,j = kiγ̃j − αi,j) cannot predict β̃i,j = kiγj − αi,j with
probability significantly greater than 1/q.

(iv) Now if consistency of (iii) holds, all parties can check that δj = kjγj + ∑
i 6=j αj,i +∑

i 6=j βi,j; if not Pj is identified as the cheater. If equality holds then consistency of
(iv) holds (i.e. consistency of δj).

Identification - Abort of type 4 in Phase 6. Since this failure occurs in Phase 6,
we know that consistency of (i), (ii), (iii) and (iv) hold. The abort must hence be due to
(v) not holding. To detect a cheater, each Pj does the following:

1. Publish kj and perform a ZK proof that (pkj, ckj , fkj) ∈ RDec. If the proof is
accepted, all parties are convinced ckj decrypts to kj using Pj’s decryption key; else
Pj is identified as a cheater.

2. For all i 6= j, publish µj,i and ckjwi . Perform a ZK proof that (pkj, ckjwi , fµj,i) ∈ RDec.
If the proof is accepted, all parties are convinced ckjwi decrypts to µj,i using Pj’s
decryption key; else Pj is identified as a cheater.

3. For all i 6= j, publish the elliptic curve point Bj,i received from Pi (and the
signature). Notice that since checks of Phase 2 passed, for all i, j it holds that
µj,i · P +Bj,i = kj ·Wi and so Bj,i = νj,i · P .

If the above checks passed, all parties can compute:

Σj = σj · P := kiWi +
∑
i 6=j

µj,i · P +
∑
i 6=j

Bi,j.

Finally, Pj performs a ZK proof that the discrete log in base P of Σj is equal to the
discrete log in base R of Sj. Precisely, let for public parameters (G, P, q), let Rlog :=
{(R, S, T) ∈ G3;σ | R = σ · S ∧ T = σ · P}. Then Pj performs a ZKPoK πlog

j that
(R, Sj,Σj) ∈ Rlog; this can be done as described in [CP93]. If this proof fails, Pj is
identified as a cheater.

Note that if none of these proofs fail, under the soundness of the aforementioned
ZK proofs it holds that, for i ∈ S, consistency of (v) holds, and no aborts occur. This
concludes the description of the identification procedure.

On the impossibility of re-ecnryption From the analysis of aborts of types 2 and
4 we notice that after revealing kj, Pj run a proof that (pkj, ckj , fkj) ∈ RDec. Since ckj
is a fresh ciphertext computed by Pj, it is clear that Pj knows the randomness rj used
to compute ckj and it seems that is sufficient that Pj reveals kj and rj and other parties

153

can check the validity of ckj by re-encryption, instead of running a ZK for RDec. However,
it is not possible to reveal the randomness used for security reasons as we will see from
the simulation in the proof of security in Section 5.3. However, we give here the idea
behind this fact. The proof is divided in games, and there is a switch between two games
where a valid ciphertext is converted into an invalid one. From the definition of an invalid
ciphertext, we know that the first component is an element of Ĝ instead of Gq and then
it does not exist an r such that grq = ckj ,1. As a consequence, revealing the randomness in
ckj permits to distinguish between games, since the randomness as intended in CL exists
only in the case of valid ciphertexts.

5.3 Security
To prove that our protocol is secure, we demonstrate that if there exists a PPT algorithm
A which breaks enhanced unforgeability of the threshold ECDSA protocol of Fig. 5.2,
5.3, 5.4 and 5.5, then one can devise an algorithm S using A to break the enhanced
unforgeability of centralised ECDSA. To this end S simulates the environment of A, so
that A’s view of its interactions with S are indistinguishable from A’s view in a real
execution of the protocol.

In Subsection 5.3.1, we first prove our (t, n)−threshold protocol, for any t < n, secure
against static corruptions. Next, in Subsection 5.3.2 we show that if all players participate
in the signing algorithm (t = n− 1) one can easily adapt the proof for static corruptions
to the adaptive case. We note that [CGG+20] also only prove their protocol secure for
t = n−1. They state that using techniques of Gennaro et al. [GG18] one can immediately
derive a full threshold protocol. We emphasize that in order to build our (t, n)−protocol,
for any t < n, we do use the techniques of [GG18], hence it may be the case that it is
also secure against active adversaries. However, as we will detail in Subsection 5.3.2, it
remains unclear to us how one can claim security against adaptive adversaries in this
setting. Indeed, after proving the security of the protocol against static corruptions for
any threshold t < n, we will present the proof of security against adaptive corruptions
only for the special case t = n− 1 and we will explain the difficulties that occur for other
values t < n− 1 of the threshold.

In both adversarial settings, S gets as input an ECDSA public key Q, where Q = x·P ,
and can query oracles OR and OSign(x,·;·) of Definition 1.3.4. After this query phase, S
must output a forgery, i.e. a signature s for a message m of its choice, which it did not
receive from the oracle4.

5.3.1 Security of the Full Threshold Protocol with Identifiable
Aborts against Static Adversaries

As all players play symmetric roles in the protocol, it suffices to demonstrate that if A
corrupts {Pj}j>1, one can construct S simulating P1 such that the output distribution
of S is indistinguishable from A’s view in an interaction with an honest party P1. The
simulation is similar to that one in Section 4.3, but takes in account the simulation of

4Recently, in [GS21] the authors provide an analysis of variants of ECDSA in the Generic Group
Model, including the case of ECDSA with presignatures

154

the key refresh subprotocol, of the identification of misbehaving players in case of aborts
and of the additional steps required – as we argued in Section 5.2 – to guarantee that
the identification is possible. It is obvious that S must be able to simulate identification
procedures even not knowing some of the values. This changes the way one defines
semi correct executions with regard to the protocol in Chapter 4 (see proof of security
in Section 4.3 for semi correct execution original definition). Another difference with
our protocol in Chapter 4 is the way it is simulated the long interactive procedure after
sharing the signature. Here, we do not have this interactive step. We see how S works
in the following paragraphs.

Simulating the Key Generation Protocol On input Q = x · P , the forger S must
set up in its simulation with A this same verification key Q (without knowing x). This
will allow S to subsequently simulate interactively signing messages with A, using the
output of its’ (enhanced) ECDSA signing oracle.

The main differences with the proof of [GG20]5, arises from the fact S knows it’s
own decryption key sk1, but does not extract that of other players. As in [CCL+20], the
linearly homomorphic encryption scheme we use results from projective hash functions,
whose security is statistical, thus the fact S uses its’ secret key does not compromise
security, and we can still reduce the security of the protocol to the smoothness of the CL
scheme. However, we do not need to prove knowledge of secret keys associated to public
keys in the key generation protocol, and then S can not extract the decryption keys of
corrupted players. The simulation is described below.
Simulating Key Generation - Description of S:

1. S receives a public key Q from it’s ECDSA challenger.

2. S samples a CL encryption key pair (pk1, sk1) $←− KeyGen(1λ), and a random value
u1 ∈ Z/qZ. It computes [kgc1, kgd1]← Com(u1P) and broadcasts pk1 and kgc1. In
return, S receives the public keys {pkj}j∈[n],j 6=1 and commitments {kgcj}j∈[n],j 6=1.

3. S broadcasts kgd1 and receives {kgdj}j∈[n],j 6=1. For i ∈ [n], let Qi ← Open(kgci,
kgdi) be the revealed commitment value of each party. Each player performs a
(t, n) Feldman-VSS of the value Qi, with Qi as the free term in the exponent.

4. S rewinds A to the decommitment step and

• equivocates P1’s commitment to k̂gd so that the committed value revealed is
now Q̂1 := Q−∑n

j=2Qj.

• simulates the Feldman-VSS with free term Q̂1.

5. A will broadcast the decommitments {k̂gdj}j∈[n],j 6=1. Let {Q̂j}j=2...n be the commit-
ted value revealed by A at this point (this could be ⊥ if A refuses to decommit).

6. All players compute the public signing key Q̂ := ∑n
i=1 Q̂i. If any Q̂i = ⊥, then

Q̂ := ⊥.
5We recall from the introduction of this chapter, that for identifying aborts we follow the construction

of [GG20] which composed to [CMP20] brought to [CGG+20]

155

7. Each player Pi adds the private shares it received during the n Feldman VSS pro-
tocols to obtain xi (such that the xi are a (t, n) Shamir’s secret sharing of the
secret key x = ∑

i ui). Note that due to the free term in the exponent, the values
Xi := xi · P are public.

8. S simulates πkg
1 (the ZKPoK that it knows x1 corresponding to X1). Then, for

j ∈ [n], j 6= 1, S receives from A a ZKPoK of xj satisfying Xj := xj ·P ; from which
S can extract xj.

Simulating the Key Refresh Protocol. For all honest players Pi, S runs the pre-
scribed steps of the Key Refresh protocol.

Simulating Protocols Pre-Sign and Sign. After the key generation is over, the
simulator must handle the signature queries issued by A. Recall that A can issue two
types of queries:

• oracle OR to obtain a uniformly random point R = (rx, ry) in G :

• oracle OSign(sk,m;R) which on input a message m chosen by A, returns a valid sig-
nature (r, s) for m where r := rx mod q if R = (rx, ry) was queried to OR; else it
returns ⊥.

The simulator simulates P1 in the threshold signature protocol on input R for the offline
phase (Phases 1-6), and a correct signature (r, s) for m under the public key Q for the
online phase (Phase 7). We stress that though the simulator knows the decryption key
sk1, and P1’s ECDSA “public key share” W1 = w1 · P ; it does not know the secret value
w1 associated with P1. However it does know the shares wj, j > 1 of all other players
(extracted from the Schnorr proofs in the Key Generation phase).

The simulation of the Pre-Signing and Signing protocols is based on [GG20] and
[CCL+20]. In the following simulation S aborts whenever the protocol is supposed to
abort, i.e., whenever A refuses to decommit a committed value, a ZK proof fails, a check
does not pass or if the signature (r, s) does not verify.
Simulating Pre-signing and Signing - Description of S:

Phase 1: As in a real execution, S samples k1, γ1
$←− Z/qZ, r1

$←− [Ã] uniformly at ran-
dom. It computes ck1 ← Enc(pk1, k1; r1), the associated ZKAoK π1, and [c1, d1] ←
Com(γ1P). It broadcasts c1, ck1 , π1 before receiving {cj, ckj , πj}j∈S,j 6=1 from A. S
checks the proofs are valid and extracts the encrypted values {kj}j∈S,j 6=1 from which
it computes k := ∑

i∈S ki.

Phase 2: Recall that during the regular run of the protocol, P1 will engage in two MtA
protocols and two MtAwc protocols with each other player Pj, j ∈ S, j 6= 1. S runs
the protocol for P1 as follows:

(a) Initiator for MtA with k1 and γj: Since S knows k1, it runs the protocol as
would an honest P1; it also decrypts ck1γj received from Pj thereby obtaining
α1,j mod q.

156

(b) Respondent for MtA with kj and γ1: Since S knows γ1, it runs the protocol
as would an honest P1. Recall that S extracted kj from πj in Phase 1, it
also knows βj,1 (as S chose it), hence S can compute Pj ’s share αj,1 :=
kjγ1 − βj,1 mod q.

(c) Initiator for MtAwc with k1 and wj (note that the first message sent in this
sub-protocol is common to all players in both MtA (item (a)) and MtAwc (item
(c))): Since S knows k1, it runs the protocol as would an honest P1; decrypting
ck1wj to obtain µ1,j; and checking that µ1,jP+B1,j = k1Wj. Furthermore, recall
that S extracted xj from πkg

j in KeyGen, hence it knows wj, so S can compute
ν1,j = k1wj − µ1,j mod q.

(d) Respondent for MtAwc with kj and w1: Here, S only knows W1 = w1 · P (but
not w1). So it samples a random µj,1

$←− Z/qZ and sets ckjw1 ← Enc(pkj, µj,1),
and Bj,1 := kj ·W1 − µj,1 · P . Finally S sends the ciphertexts and the point.

Note that at this point S knows:

– ki for each i ∈ S, wj for each j ∈ S, j 6= 1
– α1,j, j ∈ S, j 6= 1 as initiator for MtA, αj,1, βj,1, j ∈ S, j 6= 1 as respondent

for MtA. Indeed, α1,j is a value decrypted by S; βj,1 is chosen by S; and
αj,1 = kjγ1 − βj,1, where S knows all the values on the right, and so can
compute αj,1.

– µ1,j, ν1,j, j ∈ S, j 6= 1 as initiator for MtAwc, µj,1, νj,1 ·P = Bj,1, j ∈ S, j 6= 1 as
respondent for MtAwc. Indeed, µ1,j is a value decrypted by S; µj,1 is chosen
by S in (d); ν1,j = k1wj − µ1,j, where S knows all the values on the right.

After all these sub-protocols, S computes δ1 := k1γ1 +∑
j∈S,j 6=1 α1,j +∑

j∈S,j 6=1 βj,1.
Note that S does not know the internal values from the MtA and MtAwc protocols
executed by two players that are both controlled by the adversary. Hence S is not
able to compute the values σj and δj for j ∈ S, j 6= 1. Furthermore S cannot
compute σ1 since it doesn’t know the value w1, but it can compute

σC :=
∑
i>1

σi =
∑
i>1

(kiwi +
∑
j 6=i

µi,j +
∑
j 6=i

νj,i) =
∑
i>1

∑
j 6=i

(µi,j + νj,i) +
∑
i>1

kiwi

=
∑
i>1

(µi,1 + ν1,i) +
∑

i>1;j>1
kiwj

since it knows all the values {kj}j∈S, {wj}j∈S,j 6=1, it chooses the random values µi,1
and it can compute all of the shares ν1,j = k1wj − µ1,j mod q.
Furthermore, as S knows W1, it can compute Σ1 := σ1 · P = k1W1 + ∑

j 6=1(µ1,j +
νj,1)P .

Phase 3: S broadcasts δ1 and receives all the {δj}j∈S,j 6=1 from A. Let δ̃ := ∑
i∈S δi. Next

S samples a random `1
$←− Z/qZ and broadcasts T1 := Σ1 + `1 · H. Note that

157

S does not know σ1, so it simulates the ZK proof π̃1. Then, from the proofs π̃j
received from A, S extracts the values (σ̂j, `j) for j ∈ S, j 6= 1. We hereafter denote
σ̂C := ∑

j∈S,j 6=1 σ̂j.

Phase 4: S broadcasts d1 which decommits to Γ1, and A reveals {dj}j∈S,j 6=1 which decommit
to {Γj}j∈S,j 6=1. From the proofs πγj on Γj, S can extract γj for each j ∈ S, j 6= 1;
these are consistent with the values used in Phase 1 thanks to the binding property
of the commitment scheme. Now S can compute

δ = (
∑
i∈S

ki) · (
∑
i∈S

γi) = kγ,

where γ = ∑
i∈S γi. Note that A may have used different values γ̃i in the MtA

protocol than the γi committed to in Phase 1, hence we denote them with a tilde.
At this point S can detect if the values published so far by A are consistent; note
that S will behave differently in Phases 5, 6 and 7 depending on this detection.
To detect inconsistencies, S first computes R̃ := δ̃−1(∑i Γi).
Then using the values ki extracted in Phase 1, S checks that ∑i ki · R̃ = P . Notice
that if

∑
i

ki · R̃ = k · R̃ = kδ̃−1∑
i∈S

γi · P = kδ̃−1γ · P = P ⇒ δ̃ = kγ = δ

The simulator can also detect if the values σj computed in Phase 2 are consistent
with those used to compute points Tj in Phase 3; in particular S checks that
σ̂C = σC . We thus distinguish two types of executions: an execution is said to be
semi-correct if ∑

i

kiR̃ = P and σ̂C = σC

which, as explained above, implies that δ = δ̃ and σ̂C = σC . If either of the above
equalities do not hold, the execution is said to be non semi-correct.
Now S adapts its behaviour depending on the type of execution:

– Semi-correct execution:
1. S invokes oracle OR to obtain R = (rx, ry).
2. S sets Γ̂1 := δ̃ ·R−∑i∈S,i6=1 Γi, so that R = δ̃−1

(
Γ̂1 +∑

i∈S,i6=1 Γi
)
.

Then S rewinds A to the decommitment step in Phase 4, equivocates P1’s
commitment so that it decommits to Γ̂1 instead of Γ1.

– Non semi-correct execution: S simply moves on to Phase 5.

Phase 5: – Semi-correct execution: S publishes R̄1 := P −∑i∈S,i6=1 ki ·R together with
π′1: a simulated ZKP of consistency with ck1 = Enc1(k1) (note that in this case
R̄1 6= k1 ·R due to the rewinding).

– Non semi-correct execution: S publishes R̄1 := k1 ·R together with π′1: a
real ZKP of consistency with ck1 = Enc1(k1) (this proof needn’t be simulated).

158

Phase 6: – Semi-correct execution: S publishes S1 := Q−∑j∈S,j 6=1 σjR together with
π′′1 : a simulated ZKP of consistency with T1 (again in this case the simulated
S1 6= σ1 ·R due to the rewinding).

– Non semi-correct execution: S has P1 publish S1 := σ1R together with
π′′1 : a real ZKP of consistency with T1 (this proof needn’t be simulated).

In a non semi-correct execution, at least one of the the adversary’s proofs π′j or π′′j
for some j > 1 will fail, and the protocol will abort.

Phase 7: S invokes the second oracle OSign(sk,m;R) with input m. In return, S receives the
valid signature (r, s) on m, where r = rx mod q, for some R = (rx, ry) computed in a
previous offline phase (in particular in one that was semi-correct, since it concluded
successfully).
Now S knows sC = ∑

j∈S,j 6=1 sj because sC = m
∑
j∈S,j 6=1 kj + σCr where σC is as

defined in the simulation of Phase 2 (Note: if A cheats in Phase 7 – denoting {s̃i}i>1
the values S receives from A in Phase 7, and s̃C := ∑

i>1 s̃i – it is possible that
sC 6= s̃C). So S computes the share s1 consistent with (r, s) and sC as s1 := s− sC .
Finally, S broadcasts this value s1.

Simulating Identification.

Simulating Identification of aborts in Key Generation. If an abort occurs in the Key
Generation protocol, S runs the identification protocol as would P1 in a real execution.
Furthermore, if some player P raises a compliant against P1 (simulated by S), then P
is detected as a cheater since the simulation of Feldman VSS is done in such a way that
corrupted players receive values which pass the verification check.

Simulating Identification of aborts in Pre-Sign and Sign. For any of the trivial
types of abort allowing to immediately detect the faulty player, S has nothing to
simulate. Consider the problematic types of abort listed on page 150:

• Abort of type 1: if S cannot decrypt another player’s ciphertext, since S knows
sk1, it can run the proof for relation RDec as would P1.

• Abort of type 2: if S announces that the check on µ1,j fails (for some j > 1), it
runs the identification protocol as would P1. Conversely, if some player Pj for j > 1
complains about the µj,1 it received, observe that: if µj,1 is the real decryption of
ckjw1 (which it must be if the proof for RDec provided by Pj is valid), then since the
point Bj,1 sent by S to Pj was computed as Bj,1 := kj ·W1 − µj,1, necessarily the
equality test will pass. Observe that the value νj,1 is not revealed; hence no other
(corrupted) party can check that S knows νj,1 such that Bj,1 = νj,1 · P . Hence the
simulation ends correctly.

• Abort of type 3: S follows the real identification procedure (see page 152).

• Abort of type 4: S follows the real identification procedure, up until it needs to
prove knowledge of σ1 satisfying S1 = σ1 ·R. Since S does not know σ1, it simulates
the proof πlog

1 .

159

• Abort of type 5: here an abort occurs if the computed signature (r, s) is not valid,
as no extra values need to be published to identify the cheater, S has nothing to
simulate.
Let us denote {si}i>1 the values computed during the pre-sign protocol (which
are correct since no abort occurred), and let us denote {s̃i}i>1 the values that A
broadcasts in Phase 7. Let us further denote sC := ∑

i>1 si and s̃C := ∑
i>1 s̃i. Now

observe that – as long as sC = s̃C – from the way S computes s1 (i.e. s1 := s− sC),
since the signature it receives from its oracle is valid for verification key Q, the
computed signature is necessarily valid. Conversely, if sC 6= s̃C , S sets s1 := s− sC
and aborts. To identify the cheater, everyone checks si · R = m · R̄i + r · Si for all
i. From the way S computed s1R, it will not be identified as the cheater.

5.3.1.1 Indistinguishability of Real and Simulated Environments

We here argue that a static adversary A can not distinguish a real execution of the
protocol – interacting with P1 – from a simulated execution. We distinguish semi-correct
and non semi-correct executions.

Semi-Correct Executions

Lemma 5.3.1 states the assumptions under which indistinguishability holds. Regarding
the key generation, pre-signing and signing sub-protocols, the proof resembles that of
Lemma 4.3 ([CCL+20]). Furthermore the simulator runs the key refresh sub-protocol as
in a real execution, hence the simulation there is perfect.

Lemma 5.3.1. Assuming the strong root assumption and the C-low order assumption
hold for Gen; the CL encryption scheme is δs-smooth; the HSM problem is δHSM-hard; and
the commitment scheme is non-malleable and equivocable; then on inputm the simulation
either outputs a valid signature (r, s) or aborts, and is computationally indistinguishable
from a semi-correct real execution.

The proof is very similar to that in [CCL+20], the main difference being that S now
also simulates the identification procedure when the protocol aborts.

Indistinguishability of pre-signing and signing protocols. The differences be-
tween A’s real and simulated view are the following:

1. S does not know w1. So for each j ∈ S, j 6= 1 it cannot compute ckjw1 as in a
real execution of the protocol. However under the strong root and C-low order
assumption in Ĝ, S can extract kj from proof πj in Phase 1 for each j ∈ S, j 6= 1.
S needs to simulate P1 as a respondent in MtAwc protocols, then it chooses a
random µj,1 and encrypt it as we have seen in Phase 2 simulation. The resulting
view of A is identical to an honestly generated one since both in real and simulated
executions µj,1 is uniformly distributed in Z/qZ. Moreover ckj was proven to be a
valid ciphertext, so ciphertexts computed using homomorphic operations over ckj
and fresh ciphertexts computed with pkj follow identical distributions from A’s
view.

160

2. S computes Γ̂1 := δ̃ · R − ∑i∈S,i6=1 Γi, and equivocates its commitment c1 s.t. d1

decommits to Γ̂1. Let us denote γ̂1 ∈ Z/qZ the value s.t. Γ̂1 = γ̂1P , where γ̂1 is
unknown to S, but the forger can simulate the ZKPoK of γ̂1.
Let us further denote k̂ ∈ Z/qZ the randomness (unknown to S) used by its’ signing
oracle to produce R. It holds that δ̃ = k̂(γ̂1 + ∑

j∈S,j 6=1 γj), where Γi = γi · P , to
distinguish them from the γ̃is which are used in MtA protocols. Finally, let us
denote k̂1 := k̂−∑j∈S,j 6=1 kj. S is implicitly using k̂1 6= k1, even though A received
an encryption of k1 in Phase 1. However, from the smoothness of the CL scheme,
and the hardness of the HSM problem, this change is unnoticeable to A.
Claim 3. If the CL encryption scheme is δs-smooth and the HSM problem is δHSM-
hard, then no probabilistic polynomial time adversary A – interacting with S –
can notice the value of k1 in the computation of R being replaced by the (implicit)
value k̂ with probability greater than 2δHSM + 3/q + 4δs.

Proof. To see this consider the following sequence of games. We denote Ei the
probability A outputs 1 in Gamei.
Game0 to Game1. S uses the secret key sk1 instead of the public key pk1 and r1 to
compute ck1 ← (u1, u

sk1
1 fk1) where u1 = gr1q . The simulation of honest players uses

the public key as usual. Both games are perfectly indistinguishable from A’s view:

|Pr[E1]− Pr[E0]| = 0.

Game1 to Game2. In Game2 one replaces the first element of ck1 (in Game1 this is
u1 ∈ Gq) with ũ1 ∈ G\Gq. There exists a unique r1 ∈ Z/sZ and b1 ∈ Z/qZ such
that ũ1 = gr1q f

b1 . And ck1 = (ũ1, ũ
sk1
1 fk1). Under the δHSM-hardness of HSM both

games are indistinguishable:

|Pr[E2]− Pr[E1]| 6 δHSM.

Game2 to Game3. In Game3 the points Q = x · P and R = k̂−1 · P come from
the EC-DSA oracle, while in Game2 they are computed as in the real protocol.
As a result, the value k1 encrypted in ck1 is unrelated to k̂. Let us denote k̂1 :=
k̂ −∑j∈S,j 6=1 kj, this is the value that – if used by S instead of k1 – would lead to
the joint computation of R = k̂−1P .
To demonstrate that Game2 and Game3 are indistinguishable from A’s view, we
start by considering a fixed ŝk1 ∈ Z satisfying the following equations:ŝk1 ≡ sk1 mod $,

ŝk1 ≡ sk1 + b1
−1(k1 − k̂1) mod q,

where $ is the group exponent of Ĝ, such that the order s of gq divides $. Note
that the smoothness of the CL encryption scheme ensures that such a ŝk1 exists (it is
not necessarily unique). We can now see that in Game3, ck1 is an invalid encryption
of both k̂1 and of k1, for respective secret keys ŝk1 and sk1, but for the same public
key pk1, indeed:

ck1 = (ũ1, ũ
sk1
1 fk1) = (gr1q f b1 , (gr1q f b1)sk1 · fk1)

= (gr1q f b1 , pkr11 f
ŝk1·b1+k̂1) = (ũ1, ũ

ŝk1
1 f k̂1).

161

Adversary A receives the point Q, the encryption key pk1 = gsk1
q , and ck1 from S

(at this point A view is identical to that in Game2). Now A corrupting Pj computes
ck1γj which we denote cα = (uα, eα), and ck1wj which we denote cµ = (uµ, eµ). A
then sends cα and cµ to S. The difference between Game2 and Game3 appears now
in how S attempts to decrypt cα and cµ. In Game2 it would have used ŝk1, whereas
in Game3 it uses sk1.

Notation. We denote α (resp. µ) the random variable obtained by decrypting
cα (resp. cµ) (received in Game3) with decryption key sk1; we denote α′ (resp. µ′)
the random variable obtained by decrypting cα (resp. cµ) (received in Game3) with
decryption key ŝk1; we introduce a hypothetical Game3

′, which is exactly as Game3,
only one decrypts cα (resp. cµ) (received in Game3) with decryption key ŝk1, thus
obtaining α′ (resp. µ′). Moreover in Game 3′ the check performed on the curve is
‘If µ′ · P +B1,j 6= k̂1 ·Wj then abort’.

Observation. The view of A in Game2 and in Game3
′ is identical. By demon-

strating that the probability A’s view differs when S uses α, µ in Game3 from when
it uses α′, µ′ in Game3

′ is negligible, we can conclude that A cannot distinguish
Game2 and Game3 except with negligible probability.
The smoothness of the CL encryption scheme tells us that given pk1, which fixes
(sk1 mod s), the value of (sk1 mod q) remains δ-close to the uniform distribution
modulo q. In particular this ensures that A’s view of α and α′ are δ-close. Indeed,
A receives an invalid encryption of k1, which information theoretically masks k1.
At this point A’s view of k1 is that of a random variable δ-close to the uniform
distribution modulo q. A then computes cα which it sends to S. Finally A receives
either (a one way function of) k1, or (a one way function of) some random value
which is unrelated to k1, and must decide which it received. For µ and µ′, the
indistinguishability of A’s view of both random variables is a little more delicate,
since A gets additional information from the check on the curve performed by S,
namely in Game3 if µ · P +B1,j 6= k1 ·Wj the simulator aborts. We call the output
of this check test. And in Game3

′, if µ′ · P + B1,j 6= k̂1 ·Wj the simulator aborts.
We call the output of this check test′. Notice that if test = test′, both games are
δs-close from A’s view (the only change is in the ciphertext ck1). Let us bound the
probability p that test 6= test′. This will allow us to conclude that

|Pr[E3]− Pr[E2]| ≤ p + δs.

Let us consider the ciphertext cµ = (uµ, eµ) ∈ Ĝ× Ĝ sent by A. There exist unique
zµ ∈ Ĝq, yµ ∈ F such that uµ = zµyµ. Moreover there exists a unique bµ ∈ Z/qZ
such that yµ = f bµ .

Since sk1 = ŝk1 mod $, µ =⊥ if and only if µ′ =⊥, and this occurs when eµ ·z−sk1
µ =

eµ · z−ŝk1
µ /∈ F . In this case Game3 is identical to Game3

′ from A’s view (S aborts in

162

both cases). We hereafter assume decryption does not fail, which allows us to adopt
the following notation eµ = zsk1

µ fhµ = z ŝk1
µ fhµ with hµ ∈ Z/qZ. We thus have:

µ := logf
(
eµ
usk1
µ

)
= hµ − bµsk1 mod q

µ′ := logf

 eµ

uŝk1
µ

 = hµ − bµŝk1 mod q

Thus we have

µ− µ′ ≡ bµ(ŝk1 − sk1) ≡ bµb1
−1(k1 − k̂1) mod q.

We consider three cases:

(a) µ = µ′ mod q. This may happen for two reasons:
i. If k1 ≡ k̂1 mod q, then Game2 and Game3 are identical.

ii. Else bµ = 0 mod q, i.e. cµ is a valid ciphertext. Since we ruled out
k1 ≡ k̂1 mod q in the previous case, if test=true, necessarily test’=false,
and vis versa. Both cases being symmetric, we consider the case test=true.
From A’s view, before outputting cµ the only fixed information relative
to k1 is that contained ck1 = (gr1q f b1 , (gr1q f b1)sk1fk1). This fixes π0 :=
b1 ·sk1 +k1 mod q. However from A’s view, given pk1, the random variable
sk1 follows a distribution δs-close to U(Z/qZ). Thus k1 also follows a
distribution δs-close to U(Z/qZ). Now suppose A returns cµ = (zµ, zsk1

µ fµ)
where zµ ∈ Ĝq. If test = true, then µ · P + B1,j = k1Wj, and A has fixed
the correct value of k1, this occurs with probability 6 1/q + δs.

(b) µ 6≡ µ′ mod q but µ − µ′ = wj(k1 − k̂1) mod q, i.e. bµ = wjb1 mod q. This
results in S aborting on µ′ in Game2 if and only if S aborts on µ in Game3.
This occurs if the adversary performs homomorphic operations on ck1 , and the
difference between the random variables is that expected by S. Indeed:

µ = k1wj − ν1,j ⇔ µ′ + wj(k1 − k̂1) = k1wj − ν1,j ⇔ µ′ = k̂1wj − ν1,j.

(c) (µ 6≡ µ′ mod q) and (µ − µ′ 6≡ wj(k1 − k̂1) mod q). We here consider three
sub-cases:

i. Either test = test′ = false; this results in identical views for A.
ii. Either test′ = true; this means that:

µ′ = k̂1wj − ν1,j mod q.

Now since µ − µ′ 6= wj(k1 − k̂1) mod q necessarily test = false. Conse-
quently if this event occurs, A’s view differs. Let us prove that infor-
mation theoretically, this can not happen with probability greater than
1/q + δs. To this end we consider the distribution followed by the point

163

P := (sk1, ŝk1, k1, k̂1) ∈ (Z/qZ)4, conditioned on A’s view. For clarity, we
first recall the expression of ck1 received by A:

ck1 = (gr1q f b1 , pkr11 f
ŝk1b1+k̂1)

where b1 6= 0 mod q. We also recall the expression of cµ, sent by A to S.
Since cµ decrypts to µ′ with decryption key ŝk1, we can write:

cµ = (zµf bµ , z ŝk1
µ fµ

′+bµ ŝk1).

Let us denote π0 := ŝk1b1 + k̂1 mod q and π1 := µ′ + bµŝk1. For this case
to occur, it must hold that µ′ = k̂1wj − ν1,j mod q, so

π1 = k̂1wj − ν1,j + bµŝk1 mod q.

Substituting ŝk1 for (π0 − k̂1)b−1
1 yields:

π1 = k̂1wj − ν1,j + bµb
−1
1 (π0 − k̂1) mod q

⇔ π1 + ν1,j − bµb−1
1 π0 = k̂1(wj − bµb−1

1) mod q

As we dealt with bµ = wjb1 mod q in case (b), here wj− bµb−1
1 is invertible

mod q so we can write:

k̂1 = (π1 + ν1,j − bµb−1
1 π0)(wj − bµb−1

1)−1 mod q (5.1)

where π0, b1 are fixed by ck1 ; π1, bµ are fixed by cµ; wj is fixed by Wj;
and ν1,j is fixed by B1,j. So given A’s view and A’s output (B1,j and
cµ), all the terms on the right hand side of Eq. 5.1 are fixed. However,
given pk1, ck1 and Wj (which is all the relevant information A gets prior
to outputting cµ), the δs-smoothness of the CL scheme ensures that k̂1
follows a distribution δs-close to U(Z/qZ). If the current case occurs, Eq.
5.1 must hold, thus from being given a view where k̂1 follows a distribution
δs-close to U(Z/qZ), A succeeds in fixing this random variable to be the
exact value used by S. This occurs with probability 6 1/q + δs.

iii. Else test = true; this means that µ = k1wj − ν1,j mod q. Since (µ − µ′ 6=
wj(k1−k̂1) mod q) necessarily test′ fails, andA’s view differs. Reasoning as
in the previous case, but setting π0 := sk1b1+k1 mod q and π1 := µ+bµsk1,
one demonstrates that this case occurs with probability 6 1/q + δs.

Combining the above, we get that test′ 6= test if and only if we are in case (a) ii.
(c) ii. or (c) iii., which occurs with probability 6 3(1/q + δs). Thus:

|Pr[E3]− Pr[E2]| 6 3/q + 4δs.

Game3 to Game4. In Game4, the first element u1 of ck1 is once again sampled in Gq.
Both games are indistinguishable under the hardness of HSM and:

|Pr[E4]− Pr[E3]| ≤ δHSM.

164

Game4 to Game5. In Game5 S uses the public key pk1 to encrypt k1. The change
here is exactly that between Game0 and Game1, both games are perfectly indistin-
guishable, and:

|Pr[E5]− Pr[E4]| = 0.
Real/Ideal executions. Putting together the above probabilities, we get that:

|Pr[E5]− Pr[E0]| ≤ 2δHSM + 3/q + 4δ,

which concludes the proof of the claim.

3. As a consequence of the different values k and k̂, there is also a difference in the
values k1 · R and k̂1 · R = P −∑i∈S,i6=1 ki · R after rewinding in phase 4. However,
they follow the same distribution, and they can be distinguished if k1 and k̂1 are
distinguishable in MtAwc protocols. As we have seen in point 2. this happens
with negligible probability. Furthermore, since we are in a semi-correct execution,
in the real protocol P1 runs normally the zero-knowledge proof for the consistency
between k1 ·R and ck1 . In the simulated protocol, the simulator just simulates the
proof for cki1 and k̂1 ·R. In each case the two worlds are indistinguishable.

4. The same reasoning in previous item can be applied to S1 = σ1 and S1 = Q −∑
i∈S,i6=1 Si

5. S does not know σ1, and thus cannot compute s1 as in a real execution. Instead
it computes s1 = s − ∑

j∈S,j 6=1 sj = s − ∑
j∈S,j 6=1(kjm + σjr) where (implicitly)

s = k̂(m + rx). So s1 = k̂m + r(k̂x − ∑
j∈S,j 6=1 σj), and S is implicitly setting

σ̂1 := k̂x−∑j∈S,j 6=1 σj s.t. k̂x = σ̂1 +∑
j∈S,j 6=1 σj.

We note that, since the real execution is semi correct, the correct shares of k for the
adversary are the ki that the simulator knows and R = k̂−1P = (k̂1+∑j∈S,j 6=1 kj)−1 ·
P . Therefore the value s1 computed by S is consistent with a correct share for P1
for a valid signature (r, s), which makes Phase 7 indistinguishable from the real
execution to the adversary.

Indistinguishability of identification procedure. We just proved that except with
negligible probability, a simulated execution results in an abort if and only if a real
execution would (this must be true for real and simulated views of the adversary to
be indistinguishable). Of course if no abort occurs, the simulation of the identification
procedure is not an issue. Now assuming there is an abort, consider the problematic
types of abort listed on page 150. For an abort of type 5, identifying the culprit is trivial,
and there is no impact on the view A has of real and simulated executions. If an abort
of type 1 or 2 occurs, in all of our considered game steps S can honestly perform the
proof for relation RDec as would P1, hence A’s view of these identification procedures is
identical in all game steps, and therefore in real and simulated executions.

Finally, as we are here considering the simulation of semi-correct executions aborts
of type 3 and 4 do not occur (indeed, the occurrence of such aborts means we are in
a non-semi-correct executions). Hence any abort which may occur in a semi-correct
execution is perfectly simulated.

165

Non Semi-Correct Executions

Lemma 5.3.2. If the strong root assumption and C-low order assumptions hold for Gen
then the simulation is computationally indistinguishable from a non-semi-correct real
execution.

Proof. In this case both real and simulated executions of the protocol abort before Phase
7; so in all situations where semi-correct and non semi-correct simulations differ, in a non
semi-correct execution S follows the protocol as would P1; hence the non semi-correct
simulation of the pre-signing sub-protocol is indistinguishable from a non semi-correct
real execution.
Identification procedures. Here aborts are either of type 3 or 4. For type 3, S follows
the real identification procedure, hence the simulation is perfect. For type 4 the only
difference is that S simulates πlog

j , so A’s view is indistinguishable.

Concluding the proof.

The forger S simulating A’s environment can detect whether we are in a semi-correct
execution or not. Consequently S always knows how to simulate A’s view and all simu-
lations are indistinguishable from real executions of the protocol. Moreover if A, having
corrupted up to t parties in the threshold ECDSA protocol, outputs a forgery, since S set
up with A the same public key Q it received from its’ ECDSA challenger, and randomness
R it received from OR, S can use this signature as its own forgery, thus breaking the
enhanced existential unforgeability of centralised ECDSA. Hence the following theorem,
which captures the protocol’s security, follows from Lemmas 5.3.1 and 5.3.2.

Theorem 5.3.3. Assuming ECDSA is enhanced existentially unforgeable under chosen
message attacks; the strong root and C-low order assumptions hold for Gen; the CL
encryption scheme is ind-cpa-secure; and the commitment scheme is non-malleable and
equivocable, it holds that the (t, n)-threshold ECDSA protocol of Fig. 5.2-5.3-5.4-5.5 is
enhanced existentially unforgeable against static adversaries.

5.3.2 Security Against Adaptive Adversaries
Our protocol can further be proved secure against adaptive corruptions in the specific
case t = n− 1, i.e. all parties must participate in the signing phases (we leave the study
of adaptive security for any t ≤ n− 1 for future work).

Theorem 5.3.4. Assuming ECDSA is e− eu− cma; the DL assumption holds in G;
the strong root and C-low order assumptions hold for Gen; the CL encryption scheme
is ind-cpa-secure; and the commitment scheme is non-malleable and equivocable, then
the (n−1, n)-threshold ECDSA protocol of Figure 5.7-5.3-5.4-5.5 is e− tu− cma against
adaptive corruptions.

As explained hereafter, in the specific case t = n − 1, the security proof very much
resembles that against static adversaries. We present the details below.

166

Proof strategy. In the context of adaptive corruptions the adversary A can choose
to corrupt players throughout the execution of the protocol. When such a corruption
occurs, A is given the corrupted party’s internal state: A learns the party’s secret values,
randomness, and any other information the party may have stored from previous interac-
tions. Hence to ensure A is unable to distinguish between real and simulated executions,
one must ensure that A can not detect any inconsistencies when it chooses to corrupt
a new party P . If A corrupts a player which does reveal inconsistencies, the simulator
S rewinds the protocol. One should thus minimise the number of players possessing in-
consistent values, so as to reduce the number of rewinds. In particular, if a player P is
simulated as an honest player following the real protocol, then it can only give consistent
values to A if it is corrupted. A crucial point of using the CL encryption scheme is that
S knows the decryption keys of honest players; so if an honest player is corrupted, S can
give this secret key to A, which is consistent with the encryption key. This is not imme-
diate in a situation where the secret key is not known by S. In our proof, S simulates the
behaviour of each honest player, revealing the relevant internal states upon corruption;
it also chooses a single special player among all the honest ones. For all honest players
which are not special, S runs the protocol normally. On the other hand, the role of the
special player is to fix values as did P1 in the case of static corruptions (Subsection 5.3.1).
This explains why the security proof against adaptive corruptions very much resembles
that for the static case, with some adaptations to deal with the dynamic corruption of
players. As hinted previously, if the special player is corrupted, S rewinds the protocol;
this rewind goes back to the beginning of the previous key refresh, where S chooses a
new special player. Since there is only one special player, S rewinds at most n− 1 times.
If such a switching of special players (SSP) occurs, we assume that, for the duration of
the Key Refresh, both the previous special player, and at least one of the remaining n−1
players remain uncorrupted. Indeed while handing over the inconsistent values from the
old special player to the new one, both players possess values that are inconsistent with
publicly available information. However by the end of the Key Refresh in which the SSP
occurs, only the new special player is inconsistent; and we can thereafter again handle
n− 1 corruptions.

We stress that since all precomputed pre-signatures are erased at every Key Refresh,6
the aforementioned rewind does not introduce the risk that A may request the signature
of two different messages with the same randomness.

Key Generation for t = n − 1. As suggested in [CGG+20], for t = n − 1, key
generation can be simplified by using an additive sharing instead of a Feldman-VSS. This
improves the protocols’ communication cost, speed, and simplifies the security proof.
This simplified Key Generation sub-protocol is depicted in Figure 5.7.

On the adaptive security of Feldman-VSS. We here give an idea why attaining
security against adaptive adversaries for our full threshold protocol (any t < n) is
considerably more challenging. As mentioned above, to guarantee adaptive security, S
must be capable of providing a consistent internal state whenever A corrupts an honest

6In fact all randomness and data used in the previous refreshment phase is erased, except for the
information that the protocol specifies should be used afterwards.

167

Pi IKeyGen(G, P, q) All players {Pj}j 6=i
wi

$←− Z/qZ; Wi ← wiP
[kgci, kgdi]← Com(Wi)

(ski, pki)← CL.KeyGen(1λ) pki and kgci=======⇒
kgdi==⇒ Q = ∑n

i=1Wi

πkg
i := ZKPoKWi

{(wi) : Wi = wiP}
πkg
i==⇒

Figure 5.7: Key Generation protocol when t = n− 1

player. We point out that using Feldman-VSS causes issues in the simulation, since the
simulator – simulating the special player P∗ – computes a polynomial p∗(X), for which
it can give at most t consistent shares which pass the verification check. Indeed, t + 1
shares define in a unique way p∗(X), which has an unknown degree zero coefficient. As
a result, S will send t consistent shares and n− t inconsistent shares with overwhelming
probability. In the case of static corruptions this is not a problem since the consistent
shares are given to the adversary, while the inconsistent ones are given to the honest
players, that will not be corrupted. In contrast, if the adversary is adaptive, S does
not know which players A will corrupt, so it sends the t consistent values to t random
players. If the t players A chooses to corrupt do not coincide with the t players having
received consistent values, then A has corrupted a player with an inconsistent internal
state and hence distinguishes real and simulated executions. As explained in the previous
proof strategy paragraph, each time an honest player is corrupted revealing inconsistent
values, S rewinds the protocol. Therefore S’s running time (which must be polynomial
for security to hold) grows exponentially with n − t, reaching its maximum in t = n/2.
For t = n− 1 (the setting we consider), there is only one inconsistent share, that of the
special player, hence the number of potential rewinds is n in expectation, i.e. it remains
reasonable.

On the number of rewindings. To understand why the number of rewindings is exponen-
tial with respect to the number of parties and the threshold, consider initially the case
t = n/2. S can select n/2 players in

(
n
n/2

)
= n!

(n/2!)2 . Using Stirling approximation of the
binomial coefficient, i.e. n! ≈

√
2πn · (n

e
)n, we have

(
n
n/2

)
= n!

((n/2)!)2 ≈
√

2
π
· 2n√

n
= Θ

(
2n√
n

)
,

which is esponential with respect to n − t = n/2. If we consider a more general
case t = n/α, α ∈] n

n−1 , n] ∩ R, i.e. representing t as a fraction of n, the resulting
approximation is α√

2π
αn√

n(α−1)n−n/α+1/2 . Just to give an example, if we consider n = 128
and t = 4 (⇒ α = 32), t = 16 (⇒ α = 8) and t = 64 (⇒ α = 2), we need in expectation
about 224, 266 and 2124 rewindings, respectively. Since we consider a threshold of t = n−1
parties for our security against adaptive corruption, then

(
n
t

)
= n.7

7The calculation is easy to do manually, it is not necessary to use Stirling approximation.

168

Proof of Theorem 5.3.4

Notation. Before proving the theorem, let us introduce some notations. The sets of the
indices of all players and all corrupted players are denoted P and C respectively. At the
beginning of the experiment, the simulator randomly chooses an honest player P∗ that
is henceforth referred to as the special player. The set H contains indices of all honest
players except P∗, while NC contains indices of all non corrupted players including P∗.
Hence H = P\(C∪{P∗}) and NC = P\C. The sets H,C,NC are dynamically updated
with new corruptions throughout the protocol. In particular, C grows in size with the
condition that |C| 6 n− 1, taking elements from NC. Note that if P∗ is corrupted, the
simulator will rewind the protocol and choose a different special player. Clearly if some
P is corrupted and NC ← NC \ {P} then H ← H \ {P}. Finally, all values belonging
to the special player P∗ are indexed with the symbol ∗.

Simulating Key Generation.

1. S receives a public key Q from it’s ECDSA challenger.

2. For i ∈ NC, S samples wi $←− Z/qZ and computes [kgci, kgdi]← Com(wiP).

3. For i ∈ NC, S samples CL encryption key pairs (pki, ski)
$←− KeyGen(1λ).

4. S broadcasts {kgci}i∈NC and {pki}i∈NC, before receiving {kgcj}j∈C and the public
keys {pkj}j∈C from A.

5. S broadcasts {kgdi}i∈NC and receives {kgdj}j∈C. For i ∈ P, let Wi ← Open(kgci,
kgdi) be the revealed commitment value of each party.

6. S chooses a special player P∗ and rewinds A to the decommitment step, so as to
equivocate P∗’s commitment to k̂gd∗ which decommits to Ŵ∗ := Q−∑j 6=∗Wj.

7. S simulates πkg
∗ (the ZKPoK that it knows w∗ corresponding to Ŵ∗) and honestly

performs the proofs πkg
i for i ∈ H. Then, for j ∈ C, S receives from A a ZKPoK of

wj satisfying Wj := wj · P ; from which S can extract wj.

Simulating Key Refresh. In the event of a normal Key Refresh (i.e. which is not
due to S rewinding to switch special players), S simply runs the real Key Refresh
sub-protocol for all players in NC.

Switching Special Players in Key Refresh. As explained in the paragraph entitled
Proof Strategy of Subsection 5.3.2, if at any point during the simulation A corrupts
the special player P∗, then S rewinds the adversary and chooses a new special player
P new
∗ among the honest parties Pi for i ∈ H. We will hereafter refer to this particular

simulation of the Key Refresh protocol as Key Refresh with special player switch (KRSS).
At the end of the KRSS, the previous special player P∗ has consistent values, so that
P new
∗ is the unique inconsistent (i.e. special) player. Note that throughout KRSS, we

169

assume P∗ is not corrupted, and A can corrupt at most n − 2 of the remaining n − 1
players.

Without loss of generality we set P1 := P∗ and P2 := P new
∗ . For i ∈ P we denote

ui ∈ Z/qZ the secret share of the ECDSA signing key x owned by Pi from the previous
Key Refresh; and Qi := uiP . Recall that S does not know u1. If a KRSS occurs, S
simulates P1 and P2 in the following way (the simulation remains the same for other
players):

• Sample v1,1, . . . , v1,n and v2,1, . . . , v2,n as per the protocol.

• Sample a random α
$←− Z/qZ and let β := v1,1 + v1,2 − α.

Then set Q1,1 := −Q1 + αP , Q1,2 := Q1 + β · P and for each j ∈ P, j > 2 set
Q1,j := v1j · P .

• Compute Q2,j := v2,j · P for all j ∈ P, j 6= 2 as in the real protocol.

• For j ∈ P compute ciphertexts C1,j ← Enc(pkj, v1,j) and C2,j ← Enc(pkj, v2,j) as
per the protocol. Simulate proofs πkr

1,1 and πkr
1,2, but run all other proofs {πkr

1,j}j∈P,j>2
and {πkr

2,j}j∈P as in the real protocol.

• After having received all the {Qi,j}i∈P,i>2,j∈P, S computes Qnew
i = Qi + ∑

j∈P Qj,i

for each i 6= 2. It then rewinds the sub-protocol and changes Q2,2 to

Q2,2 := Q−
∑
i 6=2

Qnew
i −Q2 −

∑
i 6=2

Qnew
i,2

With this choice of Q2,2, Qnew
2 = Q2 +∑

iQi,2 is such that Q = ∑
i∈P Q

new
i .

• Erase all values vi,j and Qi,j

Notice that with this choice of Qnew
1 , there are no inconsistencies for P1 and it knows the

discrete log of its’ point. Furthermore, thanks to the values α and β the elliptic curve
points computed in an unusual way are distributed as in a real execution of the protocol.

Simulating protocols Pre-Sign and Sign. After the key generation is over, the
simulator must handle the signature queries issued by A. Recall that A can issue two
types of queries:

• oracle OR to obtain a uniformly random point R = (rx, ry) in G :

• oracle OSign(sk,m;R) which on input a message m chosen by A, returns a valid sig-
nature (r, s) for m where r := rx mod q if R = (rx, ry) was queried to OR; else it
returns ⊥.

The simulator simulates Pi for each i ∈ NC in the threshold signature protocol on input
R for the offline phase (Phases 1-6), and a correct signature (r, s) for m under the public
key Q for the online phase 7. We stress that though the simulator knows the decryption
key sk∗, and P∗’s ECDSA public key share W∗ = w∗ · P ; it does not know w∗. However
the simulator knows the shares wi of all other players (i ∈ P \ {∗}) from the Schnorr
proofs in Key Generation phase (for i ∈ C) or because it computed them (for i ∈ H).

170

The simulation of the Pre-Signing and Signing protocols is based on [CGG+20]
and [CCL+20], with adaptations considering previously defined dynamic sets of players
(NC,H,C). For each execution all parties in P participate. This implies that {wi}i∈[n]
are long term secrets. In the following simulation S aborts whenever the protocol is
supposed to abort, i.e., whenever A refuses to decommit a committed value, a ZK proof
fails, a check does not pass or if the signature (r, s) does not verify.
Simulating Pre-signing and Signing - Description of S: For all i ∈ H, i.e. honest – but
not special – players Pi, S just runs the protocol as would Pi in a real execution. Hence
in the following phases we only describe how S simulates P∗.

Phase 1: S samples k∗, γ∗ $←− Z/qZ, r∗ $←− [Ã] uniformly at random. It computes ck∗ ←
Enc(pk∗, k∗; r∗), the associated ZKAoK π∗, and [c∗, d∗]← Com(γ∗P). It broadcasts
c∗, ck∗ , π∗ before receiving {cj, ckj , πj}j∈C from A. S checks the proofs are valid and
extracts the encrypted values {kj}j∈C from which it computes k := ∑

i∈P ki.

Phase 2: Recall that during the regular run of the protocol, P∗ will engage in two MtA
protocols and two MtAwc protocols with each other player Pj, j ∈ P \ {∗} (the
corrupted players and other honest players in P). S runs the protocol for P∗ as
follows:

(a) Initiator for MtA with ki, i ∈ NC and γj, j ∈ P \ {i}: S runs the real sub-
protocol, as it knows ki. For j ∈ P \ {∗}, S decrypts the ciphertext received
from Pj obtaining α∗,j mod q (for j ∈ NC ⊂ P it already knows the values,
however Pj may be corrupted in this phase, so S runs the real protocol, even
between non corrupted parties).

(b) Respondent for MtA with kj, j ∈ P \ {∗} and γ∗: S runs the real sub-protocol,
as it knows γ∗.
Recall that S knows kj from extraction in Phase 1, it also knows its own shares
βj,i for i ∈ NC, hence S can compute Pj’s shares αj,i = kjγi − βj,i mod q.

(c) Initiator for MtAwc with k∗ and wj, j ∈ P \ {∗}: S runs the real sub-protocol,
as it knows ki for i ∈ NC. Notice that S chose wi for i ∈ H as in the real
protocol, while for j ∈ C, S extracted wj from πkg

j in KeyGen. The only
unknown share of x is the special player’s w∗. For j ∈ P\{∗}, S runs the real
sub-protocol; decrypting ck∗wj to obtain µ∗,j; and checking that µ∗,jP +B∗,j =
k∗Wj. If so, since S also knows k∗ and wj, it computes ν∗,j = k∗wj − µ∗,j
mod q.

(d) Respondent for MtAwc with kj, j ∈ P \ {∗} and w∗: S knows W∗ = w∗ ·P but
not w∗, so it samples a random µj,∗

$←− Z/qZ and sets ckjw∗ ← Enc(pkj, µj,∗),
and Bj,∗ := kj ·W∗ − µj,∗ · P . Finally S sends the cipertexts and the point.

Note that at this point S knows:

• ki for each i ∈ P, wj for each j ∈ P \ {∗}
• αi,j, i ∈ NC, j ∈ P \ {i} as initiator for MtA, αj,i, βj,i, i ∈ NC, j ∈ P \ {i} as

respondent for MtA

171

• µi,j, νi,j, i ∈ NC, j ∈ P\{i} as initiator for MtAwc, µj,i, νj,i, i ∈ NC, j ∈ P\{i}
as respondent for MtAwc

S computes δ∗ for the special player and δi for i ∈ H as per protocol.
Note that S does not know the internal values from the MtA and MtAwc protocols
executed by two players that are both controlled by the adversary. Thus S is not
able to compute the individual values σj and δj for j ∈ C; nor can S compute σ∗
since it doesn’t know the value w∗. However S can compute:

σC =
∑
i∈C

σi =
∑
i∈C

(kiwi +
∑

j∈P\{i}
µi,j +

∑
j∈P\{i}

νj,i)

=
∑
i∈C

∑
j∈P\{i}

(µi,j + νj,i) +
∑
i∈C

kiwi

=
∑
i∈C

∑
j∈C,j 6=i

(µi,j + νj,i) +
∑
i∈C

∑
j∈NC

(µi,j + νj,i) +
∑
i∈C

kiwi

=
∑
i∈C

∑
j∈C,j 6=i

(µi,j + νi,j) +
∑
i∈C

∑
j∈NC

(µi,j + νj,i) +
∑
i∈C

kiwi

=
∑
i∈C

∑
j∈C,j 6=i

kiwj +
∑
i∈C

∑
j∈NC

(µi,j + νj,i) +
∑
i∈C

kiwi

=
∑
i∈C

∑
j∈NC

(µi,j + νj,i) +
∑
i∈C

∑
j∈C

kiwj

since it knows all the values {kj}j∈P, {wj}j∈P,j 6=∗, µi,j and νj,i in MtAwc with the
honest players and µi,∗, ν∗,i from special player.
Furthermore, up until the moment σC is used to check whether the execution is
semi-correct or not, every time a player Pi for some i ∈ NC is corrupted, S updates
σC ← σC + σi. If the special player is corrupted, the simulator rewinds, and σC is
recomputed.

Phase 3: S broadcasts δ∗ and receives {δj}j∈C from A. Let δ̃ := ∑
i∈P δi. S broadcasts

T∗ = σ∗ · P + `∗ ·H (S can compute T∗ since it knows σ∗ · P). As S does not know
σ∗, it simulates the ZK proof π̃∗. Next, S extracts values σ̂j, ̂̀j for j ∈ C from the
proofs π̃j received from A. Let σ̂C := ∑

j∈C σ̂j. Here again σ̂C is updated to include
σ̂i if a player Pi is adaptively corrupted for i ∈ H.

Phase 4: S broadcasts d∗ which decommits to Γ∗, and for all j ∈ C, A reveals dj which
decommits to Γj. S honestly performs the ZK proof πγ∗ ; and receives πγj , from
which S can extract γj. These are consistent with the values used in Phase 1
thanks to the binding property of the commitment scheme. Now S can compute

δ = (
∑
i∈P

ki) · (
∑
i∈P

γi) = kγ, where γ =
∑
i∈P

γi · P.

Note that A may have used different values γ̃j in the MtA protocol than the γj
extracted here, hence we denote them with a tilde. At this point S can detect if the
values published so far by A are consistent (the sum of the γj, not each individual

172

γj); note that S will behave differently in Phases 5, 6 and 7 depending on this
detection. To detect inconsistencies, S first computes

R̃ = δ̃−1 ·
∑
i∈P

Γi.

Then using the values {kj}j∈C extracted in Phase 1, and its own values {ki}i∈NC,
S checks if ∑i∈P ki · R̃ = P . If equality holds then R̃ = k−1 · P and δ̃ = kγ = δ.
The simulator can also detect if the values σj computed in Phase 2 are consistent
with those used to compute points Tj in Phase 3; in particular S checks that
σ̂C = σC. We thus distinguish two types of executions: an execution is said to be
semi-correct if ∑

i∈P
kiR̃ = P and σ̂C = σC.

Conversely, if either of the above equalities do not hold, the execution is said to be
non semi-correct.
Note that using EC points to check the consistency of δ and δ̃ avoids the need for
proofs of affine transformation which were necessary in [CGG+20] to attain security
against malicious adversaries.
Now S adapts its behaviour depending on the type of execution:

• Semi-correct execution:
(a) S invokes oracle OR to obtain R = (rx, ry).
(b) S sets Γ̂∗ := δ̃ ·R−∑i∈P,i 6=∗ Γi, so that R = δ̃−1

(
Γ̂∗ +∑

i∈P,i 6=∗ Γi
)
.

Then S rewinds A to the decommitment step in Phase 4, and equivocates
P∗’s commitment so that it decommits to Γ̂∗ instead of Γ∗.

• Non semi-correct execution: S simply moves on to Phase 5.

Phase 5: • Semi-correct execution: S publishes R̄∗ = P −∑i∈P\{∗} ki ·R together with
π′∗: a simulated ZKP of consistency with ck∗ = Enc(pk∗, k∗; r∗) (note that in
this case R̄∗ 6= k∗ ·R due to the rewinding).

• Non semi-correct execution: S publishes R̄∗ := k∗ ·R together with π′∗: a
real ZKP of consistency with ck∗ (this needn’t be simulated).

Phase 6: • Semi-correct execution: S publishes S∗ := Q−∑j∈P\{∗} σjR together with
π′′∗ : a simulated ZKP of consistency with T∗ (again in this case the simulated
S∗ 6= σ∗ ·R due to the rewinding).

• Non semi-correct execution: S publishes S∗ := σ∗R together with π′′∗ : a
real ZKP of consistency with T∗ (this needn’t be simulated).

In a non semi-correct execution, at least one of the the adversary’s proofs π′j or π′′j
for some j 6= ∗ will fail, and the protocol will abort.

Phase 7: S invokes the second oracleOSign(sk,m;R) with input m and R, where R was computed
in one of the previous offline phases (in particular in one that was semi-correct,
since it concluded successfully). In return, S receives the valid signature (r, s) on
m, where r = rx mod q.

173

At this point S knows sC = ∑
j∈C sj (i.e., the summed value of all the sj held

by the corrupted players) because sC = kCm + σCr where σC is as defined in the
simulation of Phase 2 and kC = ∑

j∈C kj. As in the static case, if A cheats in Phase
7 – denoting {s̃i}i∈C the values that S receives fromA in Phase 7, and s̃C := ∑

i∈C s̃i
– it is possible that sC 6= s̃C. S also knows sH = ∑

i∈H si since it honestly ran the
protocol for i ∈ H. So S computes the share s∗ consistent with (r, s) and sH∪C as
s∗ := s− sH∪C. Finally, S broadcasts this value s∗.

Note on the dynamic sets. Since the set of honest and corrupted players may
change throughout the protocol, if S has computed σi as an honest Pi, and Pi
is subsequently corrupted, one can simply consider i ∈ C, instead of i ∈ H and
nothing changes. This is because once Pi is corrupted, it will be considered as
malicious, with the difference that its σi was computed by S as opposed to being
extracted. The proofs and checks of Phases 4, 5, and 6 ensure that σi does not
change before Phase 7.

Simulating Identification of aborts in Key Generation – Description of S. If
an abort occurs in the Key Generation protocol, S runs the identification protocol as
would an honest Pi for each i ∈ NC (i.e. as described in Section 5.2). Furthermore, if
some player P raises a compliant against P∗ (simulated by S), then P is detected as a
cheater since the simulation key generation is done in such a way that corrupted players
receive values which pass the verification check.

Simulating Identification of aborts in Pre-Sign and Sign – Description of S.
For all i ∈ H, i.e. honest – but not special – players Pi, S just runs the identification
procedure as would Pi in a real execution. Hence in the following phases we only describe
how S simulates P∗. Consider the problematic types of abort listed on page 150. For an
abort of type 1, 3 or 5 occurs, S runs the real identification procedure.

If an abort of type 2 occurs due to S announcing that the check on µ∗,j fails (for some
j ∈ C), it runs the real identification procedure. Conversely, if some player Pj for j ∈ C
complains about the µj,∗ it received, observe that: if µj,∗ is the real decryption of ckjw∗
(which it must be if the proof for RDec provided by Pj is valid), then since the point Bj,∗
sent by S to Pj was computed as Bj,∗ := kj ·W∗ − µj,∗, necessarily the equality test will
pass. Observe that the value νj,∗ remain secret in this identification protocol; hence no
other (corrupted) party can check that S knows νj,∗ such that Bj,∗ = νj,∗ · P , and the
simulation remains undetected.

If an abort of type 4 occurs, S follows the real procedure for aborts up until it needs
to prove knowledge of σ∗ such that S∗ = σ∗ · R. Since S does not know σ∗, it simulates
the proof π∗log.

5.3.2.1 Indistinguishability of real and simulated executions against adaptive
adversaries

The simulation of a semi-correct execution

174

Lemma 5.3.5. Assuming the strong root and C-low order assumptions hold for Gen; the
CL encryption scheme is δs-smooth; the HSM problem is δHSM-hard; and the commitment
scheme is non-malleable and equivocable; then on input m the simulation either outputs
a valid signature (r, s) or aborts, and is computationally indistinguishable from a real
semi-correct execution.

The proof of Lemma 5.3.5 very much resembles that of Lemma 5.3.1. Hence many
details are here omitted.

Proof. Since, in all considered protocols, S simulates parties Pi for i ∈ H by running the
real protocol exactly as would Pi one only needs to prove that S’s simulation of P∗ is
indistinguishable from a real execution.

Indistinguishability of identification procedure in semi-correct executions.
This follows immediately from the static case; it suffices to replace P1 with P∗ in the
relevant paragraph in proof of Lemma 5.3.1.

Indistinguishability of Key Generation and Key refresh. For Key Generation,
indistinguishability follows immediately from the static case (replacing 1 with *). Re-
garding Key Refresh, as long as there is no switching of special player, the simulator
runs the real protocol, and the simulation is perfect. Conversely, in a KRSS, all players
which are not the old or new special player are consistent; as long as neither of these
is corrupted during KRSS, the simulation is perfect. If the newly chosen special player
is corrupted, S rewinds again. And it is assumed that during a KRSS, the old special
player is not corrupted.

Indistinguishability of signature protocol in semi-correct executions. The dif-
ferences between A’s real and simulated views are the following:

1. S does not know w∗ so it cannot compute {ckjw∗}j∈P\{∗} as in a real execution of the
protocol. However as in the static case (replacing ’1’ with ’*’), S can extract kj from
πj for each j ∈ C and it knows kj for each j ∈ H. It then computes the problematic
ciphertexts as in the static case (cf. Lemma 5.3.1), and – as argued there – A’s real
and simulated view of these ciphertexts follow identical distributions.

2. S computes Γ̂∗ := δ̃ · R − ∑
i 6=∗ Γi, and equivocates its commitment c∗ s.t. d∗

decommits to Γ̂∗. Once again, the proof that this change is not noticeable to A is
identical to the static case (replacing ’1’ with ’*’, and the set S with all players P).
And using the same reasoning as in proof of Lemma 5.3.1, one can demonstrate
that the following claim holds:
Claim 4. If the CL encryption scheme is δs-smooth and the HSM problem is δHSM-
hard, then no probabilistic polynomial time adversary A – interacting with S –
can notice the value of k∗ in the computation of R being replaced by the (implicit)
value k̂ with probability greater than 2δHSM + 3/q + 4δs.

Hence from the smoothness of the CL scheme, and the hardness of the HSM problem,
this change is unnoticeable to A.

175

3. Let us denote k̂ ∈ Z/qZ the randomness (unknown to S) used by oracle OR to
produce R. With overwhelming probability, k 6= k̂. Hence there is also a difference
in the values k∗ ·R and k̂∗ ·R = P −∑i 6=∗ ki ·R after the rewind in phase 4. For the
same reasons as discussed in proof of Lemma 5.3.1, item 3. (i.e. smoothness of en-
cryption scheme and simulatability of the ZKP π∗), this change is indistinguishable
to A.

4. The same reasoning as in the previous item can be applied to S∗ = σ∗ · R and
S∗ = Q−∑i 6=∗ Si.

5. S does not know σ∗, and thus cannot compute s∗ as in a real execution. However,
as in the static case, since we are in a semi-correct execution the value s∗ computed
by S is consistent with a correct share for P∗ for a valid signature (r, s), which
makes the simulation of Phase 7 indistinguishable from a real execution from A’s
view.

Non semi-correct executions

Once again, the proof of Lemma 5.3.6 is essentially identical to that in the static
case, substituting P1 for P∗.

Lemma 5.3.6. Assuming the strong root and C-low order assumptions hold for Gen; it
holds that the view of the simulation, from an adaptive adversary’s view, is computa-
tionally indistinguishable from a non-semi-correct real execution.

5.3.2.2 Concluding the proof

Combining Lemmas 5.3.5 and 5.3.6, it holds that if the strong root an C-low order
assumptions hold for Gen; the CL encryption scheme is ind-cpa-secure and the commitment
scheme is non malleable and equivocable, then the (n− 1, n) ECDSA protocol described
in Figures 5.7, 5.3, 5.4 and 5.5 is enhanced threshold existentially unforgeable against
adaptive adversaries.

5.4 Efficiency comparisons
We here compare the theoretical complexity of our protocol to that of [CGG+20] for
the standard NIST curve P-256 corresponding to 128 security level. For the encryption
scheme, we start with a 112 bit security as in [CGG+20], but also study the case where
its level of security matches that of the elliptic curve.

The figures we provide count the number of group and ring elements which are both
sent and received from a given party, including broadcasts; whereas the figures provided
in [CGG+20, Fig 1] only include the data sent from one player to another. We focus on
pre-signing and signing sub-protocols; these are the most critical as they will be most
frequently executed.

We compute the communication costs for both protocols presented in [CGG+20]; one
which benefits of only having three rounds, and their six round protocol which benefits

176

Protocol Curve size λ (bits) ∆K (bits) N (bits) Total Signing (KBytes)
Canetti et al.’s 6 rounds 256 112 - 2048 31.3t+ 1.0
Canetti et al.’s 3 rounds 256 112 - 2048 31.6t+ 1.3

Ours 256 112 1348 - 3.4t + 2.0
Canetti et al.’s 6 rounds 256 128 - 3072 45.1t+ 1.5
Canetti et al.’s 3 rounds 256 128 - 3072 45.3t+ 1.8

Ours 256 128 1827 - 4.1t + 2.3

Figure 5.8: Comparative sizes (in bits) & comm. cost (in Bytes)

of a more efficient identification procedure if an abort occurs. Regarding our work,
computations are based on the sub-protocols described in Section 5.1. The resulting
figures are provided in Fig. 5.8. For our choice on the size of the discriminant ∆K defining
the class group and the resulting number of bits required to represent elements, we refer to
[CCL+20] (see Section 4.5). We further reduce the representation of class group elements
by a factor 3/4 by relying on the simple yet elegant compression technique presented by
Dobson et al in [DGS20]. Figure 5.8 clearly demonstrates the impressive efficiency gains
we attain, reducing by a factor 10 the bandwidth consumption compared to [CGG+20].

Comparing Key Refresh. One of the main benefits of our protocol compared to that
of Canetti et al. is the huge improvement provided by our Key Refresh protocol for
reasonable numbers of users. Precisely, in [CGG+20] each player is required to generate a
new Paillier’s (RSA) modulus N together with a proof that this was constructed correctly.
For a 112 bits level of security, in their n out of n Key Refresh protocol requires essentially
5n2 +n elements of size |q| and n2 +163n ring elements (of size 2|N | to be sent between all
players. Whereas our Key Refresh requires 3(n2 + n) elements of size |q|; 4n2 + 5n group
elements from the class group and n2 +n challenges, of size |∆K |/2 + 80 +λ. Concretely,
for n = 5, λ = 112 this results in 420KBytes of data being transmitted in their protocol,
as opposed to 28KBytes in ours; i.e. a reduction by a factor 15.

177

178

Conclusion

We presented and analyzed our series of works concerning distributed ECDSA for the
specific two-party case and the more general threshold case. We are not the first ones
that present simple and efficient solutions for distributed ECDSA, but we improved on
the state of art for what concerns bandwidth consumption in general and efficiency when
considering high levels of security (from 192-bit security for both two-party and threshold
signing). The contribution of our works presented in this manuscript is twofold, since we
did not only propose new schemes, but we also proposed solutions to several problems
regarding proving statements about elements of the underlying encryption scheme, which
is of independent interest and useful for future works built upon it, even in contexts
different from ECDSA.
First, in Chapter 3, we discussed our two-party ECDSA scheme (in [CCL+19]) inspired
by the idea of the two-party ECDSA scheme of [Lin17]. The solution we proposed is the
first generic construction for two-party ECDSA signing which is build from hash proof
systems which are homomorphic with respect to a prime number modulus. Compared
with [Lin17], we proved that also our scheme has simulation-based security, but we do not
need to rely on some interactive ad hoc assumption (as [Lin17] did) and the reduction of
security is tight. That is a consequence of the structure of the underlying homomorphic
encryption schemes based on hash proof systems (HPS). Furthermore, all the required
properties of our general framework from HPS are satisfied by the Castagnos-Laguillaumie
encryption scheme (CL) – which is built from class groups of imaginary quadratic fields –
and we gave a concrete instatiantion of the two-party ECDSA scheme using CL. Indeed,
we observed the compatibility of the linear homomorphic CL scheme – which work modulo
a prime of our choice – and the structure of ECDSA.
In Chapter 4, inspired by the work of Gennaro and Goldfeder ([GG18]), we discussed
our class group based instantiation of full threshold ECDSA (in [CCL+20]). Our solution
presents a lower bandwidth consumption and it avoids expensive zero-knowledge range
proof inherent to the usage of Paillier encryption with ECDSA. The usage of CL instead
of Paillier completely changed the issues regarding efficiency in the threshold ECDSA
scheme, even if the structure is similar. Indeed, we had to cope with the efficiency issues
in the proofs of statements in the CL scheme. Finally, we were able to propose new
efficient proofs regarding CL ciphertexts.
About the bandwidth consumption, our scheme rely on the shorter representation of
ciphertexts in CL compared with the widely used Paillier encryption scheme in the context
of linear homomorphic operations on ciphertexts. This choice puts a step stone in the
design of bandwidth efficient constructions which rely on linear homomorphic encryption.
At the same time, we also observed the pros and cons of using CL encryption together
with other objects, as an Elliptic curve. Indeed, we can choose any prime number as the

179

size of the group of encoded messages where it is easy to compute discrete logarithms.
This construction is independent from the context, but it presents issues in proving the
validity of operations done. We analyzed them in this manuscript giving a description of
the zero-knowledge protocols necessary to prove that things work. This completes the set
of tools of independent interest useful to use class group cryptography in other situations.
Furthermore in Chapter 2, i.e. the chapter dedicated to the mathematical background
about class groups, we gave an explanation of the structural choice we have to pay
attention to avoid destructive attacks. Putting together the previous points, in summary
we propose a new line of work in distributed ECDSA using class groups. Furthermore,
this direction is also motivated by the recent growing interest in class group cryptography
(for example [YCX21]8,[DMZ+21],[XAX+21]).
In Chapter 5, taking inspiration from the recent work of Canetti et al. ([CGG+20]), we
discussed our extended threshold ECDSA solution in [CCL+21]. This solution extends the
previous one in [CCL+20]) to a new scheme which reduces the number of communication
rounds required to check the validity of a signature and such that it guarantee practical
properties of interest in applications. Indeed, in our improved scheme it is possible
to identify bad behaviours and the scheme is proactive. About the technical aspect, we
generalized Canetti et al. solution to class groups, and again we took in account the issues
inherent to working with a group of unknown order. Indeed, to identify a misbehaving
player with CL it is necessary to know if a ciphertext decrypts to a valid message (CL
is not surjective). Differently from Paillier encryption where knowing the decryption
key is enough to extract the randomness which brings to a certain ciphertext, with CL
this is not possible. For solving this problem, we introduced a new ZK to prove that a
ciphertext decrypts to a message or not. The efficiency and the bandwidth consumption
of the resulting ECDSA scheme is comparable with our base threshold construction (in
[CCL+20]) and it inherits the bandwidth efficiency pros.

A summary of the ZKs In our two-party proposal, we originally proposed a ZKPoK
to prove the knowledge of an encrypted value which is also the discrete logarithm of a
elliptic point. The main issue of our instantiation relies on the use of binary challenges in
that ZKPoK, since it requires more repetitions to guarantee a certain level of soundness.
A binary challenge space is necessary because we work in a cyclic subgroup of a group
of unknown order, which implies that it is not possible for us to check if an element
comes from the subgroup. We took inspiration from proposals to deal with generalized
Schnorr proofs in groups of unknown order (for instance the framework of [CKY09], or
[TW12]). If we consider the case of subgroups of (Z/nZ)×, efficient solutions for this
type of proofs extend the dimension of the challenge space, and they are build upon
variants of the strong RSA assumption. In the case of class groups, informal proposals
were given ([DF02]). As discussed deeply in Chapter 2, we saw that if the factorization of
the discriminant (which is public in our case) is known, then computing square roots or
finding elements of order 2 in the class group are easy tasks, i.e. we are able to compute
them efficiently. In addition, [BBF18] suggests that there may be other approaches to
find elements with low order in class groups.

8Authors in this work improve the state of our ZKP for well-formness of CL ciphertexts and of the two-
party/threshold ECDSA protocols, but they prove security in the General Group Model since ECDSA
is proved secure in this model and the authors exploit this fact to improve overall efficiency

180

Inspired by the framework of the work cited above ([CKY09]) for groups of unknown order
and assuming two not novel assumptions – the low order assumption and the strong root
assumption – we proposed a new zero-knowledge arguments of knowledge which improves
dramatically the state of art of proofs in class groups. This new ZKAoKs are necessary to
obtain a bandwidth efficient distributed ECDSA schemes and they also improve the ZKs
in our two-party schemes extending the challenge space from size 2 to size 2λ. Indeed,
we presented in Chapters 4 and 5, new efficient proofs for proving the validity of a CL
ciphertext, if a CL ciphertext decrypts to some value (since differently from Paillier, CL
is not surjective) and we improved the efficiency of our proof with binary challenges
assuming the new additional assumption and the state of the ZKPoK without relying on
them using the least common multiple trick (which reduces the number of repetitions of
the proof by a factor of 10).

181

182

Bibliography

[Atk90] O. Atkin. Composition of binary quadratic forms. 1990.

[BBBF18] D. Boneh, J. Bonneau, B. Bünz, and B. Fisch. Verifiable delay functions. In
CRYPTO 2018, Part I, LNCS 10991, pages 757–788. Springer, Heidelberg,
August 2018.

[BBF18] D. Boneh, B. Bünz, and B. Fisch. A survey of two verifiable delay functions.
Cryptology ePrint Archive, Report 2018/712, 2018. https://eprint.iacr.
org/2018/712.

[BBHM02] I. Biehl, J. Buchmann, S. Hamdy, and A. Meyer. A signature scheme based
on the intractability of computing roots. Designs, Codes and Cryptography,
25(3):223–236, Mar 2002.

[BBL17] F. Benhamouda, F. Bourse, and H. Lipmaa. CCA-secure inner-product func-
tional encryption from projective hash functions. In PKC 2017, Part II,
LNCS 10175, pages 36–66. Springer, Heidelberg, March 2017.

[BCP03] E. Bresson, D. Catalano, and D. Pointcheval. A simple public-key cryptosys-
tem with a double trapdoor decryption mechanism and its applications. In
ASIACRYPT 2003, LNCS 2894, pages 37–54. Springer, Heidelberg, Novem-
ber / December 2003.

[Bel04] K. Belabas. On quadratic fields with large 3-rank. Mathematics of Compu-
tation, 73(248):2061–2074, 2004.

[BGG17] D. Boneh, R. Gennaro, and S. Goldfeder. Using level-1 homomorphic en-
cryption to improve threshold DSA signatures for bitcoin wallet security.
In LATINCRYPT 2017, LNCS 11368, pages 352–377. Springer, Heidelberg,
September 2017.

[BH01] J. Buchmann and S. Hamdy. A survey on IQ cryptography. In Public Key
Cryptography and Computational Number Theory, pages 1–15. De Gruyter
Proceedings in Mathematics, 2001.

[BJS10] J.-F. Biasse, M. J. Jacobson, and A. K. Silvester. Security estimates for
quadratic field based cryptosystems. In ACISP 10, LNCS 6168, pages 233–
247. Springer, Heidelberg, July 2010.

183

https://eprint.iacr.org/2018/712
https://eprint.iacr.org/2018/712

[BKSW20] K. Belabas, T. Kleinjung, A. Sanso, and B. Wesolowski. A note on
the low order assumption in class group of an imaginary quadratic num-
ber fields. Cryptology ePrint Archive, Report 2020/1310, 2020. https:
//eprint.iacr.org/2020/1310.

[Boy86] C. Boyd. Digital multisignature. Cryptography and Coding, pages 241–246,
1986.

[BR93] M. Bellare and P. Rogaway. Random oracles are practical: A paradigm for
designing efficient protocols. In ACM CCS 93, pages 62–73. ACM Press,
November 1993.

[Bro00] D. Brown. The exact security of ecdsa. December 2000.

[Bro02] D. R. L. Brown. Generic groups, collision resistance, and ECDSA. Cryp-
tology ePrint Archive, Report 2002/026, 2002. https://eprint.iacr.org/
2002/026.

[Bue76] D. A. Buell. Class groups of quadratic fields. Mathematics of Computation,
30(135):610–623, 1976.

[BV07] J. Buchmann and U. Vollmer. Binary Quadratic Forms: An Algorithmic
Approach, Algorithms and Computation in Mathematics 20. Springer-Verlag,
Berlin, Heidelberg, 1 edition, 2007.

[CCL+19] G. Castagnos, D. Catalano, F. Laguillaumie, F. Savasta, and I. Tucker.
Two-party ECDSA from hash proof systems and efficient instantiations. In
CRYPTO 2019, Part III, LNCS 11694, pages 191–221. Springer, Heidelberg,
August 2019.

[CCL+20] G. Castagnos, D. Catalano, F. Laguillaumie, F. Savasta, and I. Tucker.
Bandwidth-efficient threshold EC-DSA. In PKC 2020, Part II, LNCS 12111,
pages 266–296. Springer, Heidelberg, May 2020.

[CCL+21] G. Castagnos, D. Catalano, F. Laguillaumie, F. Savasta, and I. Tucker.
Bandwidth-efficient threshold EC-DSA revisited: Online/offline extensions,
identifiable aborts, proactivity and adaptive security. Cryptology ePrint
Archive, Report 2021/291, 2021. https://eprint.iacr.org/2021/291.

[CGG+20] R. Canetti, R. Gennaro, S. Goldfeder, N. Makriyannis, and U. Peled. UC
non-interactive, proactive, threshold ECDSA with identifiable aborts. In
ACM CCS 2020, pages 1769–1787. ACM Press, November 2020.

[CGH04] R. Canetti, O. Goldreich, and S. Halevi. The random oracle methodology,
revisited. J. ACM, 51(4):557–594, July 2004.

[CH89] R. A. Croft and S. P. Harris. Public-key cryptography and reusable shared
secret. Cryptography and Coding, pages 189–201, 1989.

184

https://eprint.iacr.org/2020/1310
https://eprint.iacr.org/2020/1310
https://eprint.iacr.org/2002/026
https://eprint.iacr.org/2002/026
https://eprint.iacr.org/2021/291

[CH94] R. Canetti and A. Herzberg. Maintaining security in the presence of transient
faults. In CRYPTO’94, LNCS 839, pages 425–438. Springer, Heidelberg,
August 1994.

[CIL17] G. Castagnos, L. Imbert, and F. Laguillaumie. Encryption switching proto-
cols revisited: Switching modulo p. In CRYPTO 2017, Part I, LNCS 10401,
pages 255–287. Springer, Heidelberg, August 2017.

[CKY09] J. Camenisch, A. Kiayias, and M. Yung. On the portability of generalized
Schnorr proofs. In EUROCRYPT 2009, LNCS 5479, pages 425–442. Springer,
Heidelberg, April 2009.

[CL84] H. Cohen and H. W. Lenstra Jr. Heuristics on class groups. In Number
Theory, pages 26–36, Berlin, Heidelberg, 1984. Springer Berlin Heidelberg.

[CL09] G. Castagnos and F. Laguillaumie. On the security of cryptosystems with
quadratic decryption: The nicest cryptanalysis. In EUROCRYPT 2009,
LNCS 5479, pages 260–277. Springer, Heidelberg, April 2009.

[CL14] R. Cohen and Y. Lindell. Fairness versus guaranteed output delivery in
secure multiparty computation. In ASIACRYPT 2014, Part II, LNCS 8874,
pages 466–485. Springer, Heidelberg, December 2014.

[CL15] G. Castagnos and F. Laguillaumie. Linearly homomorphic encryption from
DDH. In CT-RSA 2015, LNCS 9048, pages 487–505. Springer, Heidelberg,
April 2015.

[CLT18a] G. Castagnos, F. Laguillaumie, and I. Tucker. Practical fully secure
unrestricted inner product functional encryption modulo p. In ASI-
ACRYPT 2018, Part II, LNCS 11273, pages 733–764. Springer, Heidelberg,
December 2018.

[CLT18b] G. Castagnos, F. Laguillaumie, and I. Tucker. Practical fully secure unre-
stricted inner product functional encryption modulo p. Cryptology ePrint
Archive, Report 2018/791, 2018. https://eprint.iacr.org/2018/791.

[CMP20] R. Canetti, N. Makriyannis, and U. Peled. Uc non-interactive, proactive,
threshold ecdsa. Cryptology ePrint Archive, Report 2020/492, 2020. https:
//eprint.iacr.org/2020/492.

[Coh00] H. Cohen. A course in computational algebraic number theory. Springer-
Verlag, 2000.

[Cox14] D. A. Cox. Primes of the Form x2 + ny2: Fermat, Class Field Theory, and
Complex Multiplication, Pure and Applied Mathematics: A Wiley Series of
Texts, Monographs and Tracts 119. John Wiley & Sons, 2nd edition, 2014.

[CP93] D. Chaum and T. P. Pedersen. Wallet databases with observers. In
CRYPTO’92, LNCS 740, pages 89–105. Springer, Heidelberg, August 1993.

185

https://eprint.iacr.org/2018/791
https://eprint.iacr.org/2020/492
https://eprint.iacr.org/2020/492

[CS97] J. Camenisch and M. Stadler. Efficient group signature schemes for large
groups (extended abstract). In CRYPTO’97, LNCS 1294, pages 410–424.
Springer, Heidelberg, August 1997.

[CS98] R. Cramer and V. Shoup. A practical public key cryptosystem provably
secure against adaptive chosen ciphertext attack. In CRYPTO’98, LNCS
1462, pages 13–25. Springer, Heidelberg, August 1998.

[CS02] R. Cramer and V. Shoup. Universal hash proofs and a paradigm for adap-
tive chosen ciphertext secure public-key encryption. In EUROCRYPT 2002,
LNCS 2332, pages 45–64. Springer, Heidelberg, April / May 2002.

[CS03] J. Camenisch and V. Shoup. Practical verifiable encryption and decryption of
discrete logarithms. In CRYPTO 2003, LNCS 2729, pages 126–144. Springer,
Heidelberg, August 2003.

[DDN00] D. Dolev, C. Dwork, and M. Naor. Nonmalleable cryptography. SIAM
Journal on Computing, 30(2):391–437, 2000.

[Des88] Y. Desmedt. Society and group oriented cryptography: A new concept. In
CRYPTO’87, LNCS 293, pages 120–127. Springer, Heidelberg, August 1988.

[DF90] Y. Desmedt and Y. Frankel. Threshold cryptosystems. In CRYPTO’89,
LNCS 435, pages 307–315. Springer, Heidelberg, August 1990.

[DF02] I. Damg̊ard and E. Fujisaki. A statistically-hiding integer commitment
scheme based on groups with hidden order. In ASIACRYPT 2002, LNCS
2501, pages 125–142. Springer, Heidelberg, December 2002.

[DGS20] S. Dobson, S. D. Galbraith, and B. Smith. Trustless groups of unknown order
with hyperelliptic curves. Cryptology ePrint Archive, Report 2020/196, 2020.
https://eprint.iacr.org/2020/196.

[DH76] W. Diffie and M. E. Hellman. New directions in cryptography. IEEE Trans-
actions on Information Theory, 22(6):644–654, 1976.

[DKLs18] J. Doerner, Y. Kondi, E. Lee, and a. shelat. Secure two-party threshold
ECDSA from ECDSA assumptions. In 2018 IEEE Symposium on Security
and Privacy, pages 980–997. IEEE Computer Society Press, May 2018.

[DKLs19] J. Doerner, Y. Kondi, E. Lee, and a. shelat. Threshold ECDSA from ECDSA
assumptions: The multiparty case. In 2019 IEEE Symposium on Security
and Privacy, pages 1051–1066. IEEE Computer Society Press, May 2019.

[DKO+19] A. P. K. Dalskov, M. Keller, C. Orlandi, K. Shrishak, and H. Shulman.
Securing dnssec keys via threshold ecdsa from generic mpc. IACR Cryptology
ePrint Archive, 2019:889, 2019.

186

https://eprint.iacr.org/2020/196

[DMZ+21] Y. Deng, S. Ma, X. Zhang, H. Wang, X. Song, and X. Xie. Promise σ-
protocol: How to construct efficient threshold ecdsa from encryptions based
on class groups. In Tibouchi M., Wang H. (eds) Advances in Cryptology –
ASIACRYPT 2021. ASIACRYPT 2021. Springer-Verlag, 2021.

[Fel87] P. Feldman. A practical scheme for non-interactive verifiable secret sharing.
In Proc. of FOCS 87, pages 427–437. IEEE Computer Society, 1987.

[FS87] A. Fiat and A. Shamir. How to prove yourself: Practical solutions to identi-
fication and signature problems. In CRYPTO’86, LNCS 263, pages 186–194.
Springer, Heidelberg, August 1987.

[GG18] R. Gennaro and S. Goldfeder. Fast multiparty threshold ECDSA with fast
trustless setup. In ACM CCS 2018, pages 1179–1194. ACM Press, October
2018.

[GG20] R. Gennaro and S. Goldfeder. One round threshold ECDSA with identifiable
abort. Cryptology ePrint Archive, Report 2020/540, 2020. https://eprint.
iacr.org/2020/540.

[GGN16] R. Gennaro, S. Goldfeder, and A. Narayanan. Threshold-optimal
DSA/ECDSA signatures and an application to bitcoin wallet security. In
ACNS 16, LNCS 9696, pages 156–174. Springer, Heidelberg, June 2016.

[Gil99] N. Gilboa. Two party RSA key generation. In CRYPTO’99, LNCS 1666,
pages 116–129. Springer, Heidelberg, August 1999.

[GJKR96a] R. Gennaro, S. Jarecki, H. Krawczyk, and T. Rabin. Robust and efficient
sharing of RSA functions. In CRYPTO’96, LNCS 1109, pages 157–172.
Springer, Heidelberg, August 1996.

[GJKR96b] R. Gennaro, S. Jarecki, H. Krawczyk, and T. Rabin. Robust threshold DSS
signatures. In EUROCRYPT’96, LNCS 1070, pages 354–371. Springer, Hei-
delberg, May 1996.

[GM82] S. Goldwasser and S. Micali. Probabilistic encryption and how to play mental
poker keeping secret all partial information. In 14th ACM STOC, pages 365–
377. ACM Press, May 1982.

[GM02] S. Goldwasser and D. Micciancio. Complexity of Lattice Problems. Kluwer
Academic Publishers, USA, 2002.

[GMR88] S. Goldwasser, S. Micali, and R. L. Rivest. A digital signature scheme se-
cure against adaptive chosen-message attacks. SIAM Journal on Computing,
17(2):281–308, April 1988.

[GMR89] S. Goldwasser, S. Micali, and C. Rackoff. The knowledge complexity of
interactive proof systems. SIAM Journal on Computing, 18(1):186–208, 1989.

[Gol01] O. Goldreich. Foundations of Cryptography: Basic Tools. Cambridge Uni-
versity Press, Cambridge, UK, 2001.

187

https://eprint.iacr.org/2020/540
https://eprint.iacr.org/2020/540

[Gol04] O. Goldreich. Foundations of Cryptography: Basic Applications. Cambridge
University Press, Cambridge, UK, 2004.

[GPS06] M. Girault, G. Poupard, and J. Stern. On the fly authentication and sig-
nature schemes based on groups of unknown order. Journal of Cryptology,
19(4):463–487, October 2006.

[GS21] J. Groth and V. Shoup. On the security of ECDSA with additive key deriva-
tion and presignatures. Cryptology ePrint Archive, Report 2021/1330, 2021.
https://eprint.iacr.org/2021/1330.

[HJPT98] D. Hühnlein, M. J. Jacobson Jr., S. Paulus, and T. Takagi. A cryptosys-
tem based on non-maximal imaginary quadratic orders with fast decryp-
tion. In EUROCRYPT’98, LNCS 1403, pages 294–307. Springer, Heidelberg,
May / June 1998.

[HL10] C. Hazay and Y. Lindell. Efficient Secure Two-Party Protocols - Techniques
and Constructions. ISC. Springer, Heidelberg, 2010.

[HM00] S. Hamdy and B. Möller. Security of cryptosystems based on class groups
of imaginary quadratic orders. In ASIACRYPT 2000, LNCS 1976, pages
234–247. Springer, Heidelberg, December 2000.

[HO09] B. Hemenway and R. Ostrovsky. Lossy trapdoor functions from smooth
homomorphic hash proof systems. Electronic Colloquium on Computational
Complexity (ECCC), 16:127, 01 2009.

[HS06] S. Hamdy and F. Saidak. Arithmetic properties of class numbers of imaginary
quadratic fields. JP Journal of Algebra, Number Theory and Application,
6(1):129–148, 2006.

[IOZ14] Y. Ishai, R. Ostrovsky, and V. Zikas. Secure multi-party computation with
identifiable abort. In CRYPTO 2014, Part II, LNCS 8617, pages 369–386.
Springer, Heidelberg, August 2014.

[Jac00] M. J. Jacobson Jr. Computing discrete logarithms in quadratic orders. Jour-
nal of Cryptology, 13(4):473–492, September 2000.

[Kap78] P. Kaplan. Divisibilité par 8 du nombre des classes des corps quadratiques
dont le 2−groupe des classes est cyclique, et réciprocité biquadratique. J.
Math. Soc. Japan, 25(4):574–733, 1978.

[KL14] J. Katz and Y. Lindell. Introduction to Modern Cryptography, Second Edi-
tion. Chapman & Hall/CRC, 2nd edition, 2014.

[Lag80] J. Lagarias. Worst-case complexity bounds for algorithms in the theory of
integral quadratic forms. Journal of Algorithms, 1(2):142 – 186, 1980.

[Lin16] Y. Lindell. How to simulate it - A tutorial on the simulation proof technique.
Cryptology ePrint Archive, Report 2016/046, 2016. https://eprint.iacr.
org/2016/046.

188

https://eprint.iacr.org/2021/1330
https://eprint.iacr.org/2016/046
https://eprint.iacr.org/2016/046

[Lin17] Y. Lindell. Fast secure two-party ECDSA signing. In CRYPTO 2017, Part II,
LNCS 10402, pages 613–644. Springer, Heidelberg, August 2017.

[Lip12] H. Lipmaa. Secure accumulators from euclidean rings without trusted setup.
In ACNS 12, LNCS 7341, pages 224–240. Springer, Heidelberg, June 2012.

[LN18] Y. Lindell and A. Nof. Fast secure multiparty ECDSA with practical dis-
tributed key generation and applications to cryptocurrency custody. In ACM
CCS 2018, pages 1837–1854. ACM Press, October 2018.

[MR01] P. D. MacKenzie and M. K. Reiter. Two-party generation of DSA signatures.
In CRYPTO 2001, LNCS 2139, pages 137–154. Springer, Heidelberg, August
2001.

[MR04] P. D. MacKenzie and M. K. Reiter. Two-party generation of DSA signatures.
Int. J. Inf. Sec., 2(3-4):218–239, 2004.

[OY91] R. Ostrovsky and M. Yung. How to withstand mobile virus attacks (extended
abstract). In 10th ACM PODC, pages 51–59. ACM, August 1991.

[Pai99] P. Paillier. Public-key cryptosystems based on composite degree residuosity
classes. In EUROCRYPT’99, LNCS 1592, pages 223–238. Springer, Heidel-
berg, May 1999.

[PAR18] PARI Group, Univ. Bordeaux. PARI/GP version 2.11.1, 2018. available
from http://pari.math.u-bordeaux.fr/.

[Ped92] T. P. Pedersen. Non-interactive and information-theoretic secure verifiable
secret sharing. In CRYPTO’91, LNCS 576, pages 129–140. Springer, Heidel-
berg, August 1992.

[Pie19] K. Pietrzak. Simple verifiable delay functions. In ITCS 2019, pages 60:1–
60:15. LIPIcs, January 2019.

[PR05] R. Pass and A. Rosen. Concurrent non-malleable commitments. In 46th
FOCS, pages 563–572. IEEE Computer Society Press, October 2005.

[PS00] G. Poupard and J. Stern. Short proofs of knowledge for factoring. In
PKC 2000, LNCS 1751, pages 147–166. Springer, Heidelberg, January 2000.

[PT00] S. Paulus and T. Takagi. A new public-key cryptosystem over a quadratic
order with quadratic decryption time. Journal of Cryptology, 13(2):263–272,
March 2000.

[Que87] J. Quer. Corps quadratiques de 3-rang 6 et courbes elliptiques de rang 12.
C. R. Acad. Sci., Paris, Sér. I, 305:215–218, 1987.

[SA19] N. P. Smart and Y. T. Alaoui. Distributing any elliptic curve based protocol:
With an application to mixnets. IACR Cryptology ePrint Archive, 2019:768,
2019.

189

http://pari.math.u-bordeaux.fr/

[Sch90] C.-P. Schnorr. Efficient identification and signatures for smart cards. In
CRYPTO’89, LNCS 435, pages 239–252. Springer, Heidelberg, August 1990.

[Sch91] C.-P. Schnorr. Efficient signature generation by smart cards. Journal of
Cryptology, 4(3):161–174, January 1991.

[Sep] Sepior. http://www.sepior.com.

[Ser] I. D. P. Services. https://security.intuit.com/.

[SG98] V. Shoup and R. Gennaro. Securing threshold cryptosystems against chosen
ciphertext attack. In EUROCRYPT’98, LNCS 1403, pages 1–16. Springer,
Heidelberg, May / June 1998.

[Sha79] A. Shamir. How to share a secret. Communications of the Association for
Computing Machinery, 22(11):612–613, November 1979.

[Sho97] V. Shoup. Lower bounds for discrete logarithms and related problems. In
EUROCRYPT’97, LNCS 1233, pages 256–266. Springer, Heidelberg, May
1997.

[Sho00] V. Shoup. Practical threshold signatures. In EUROCRYPT 2000, LNCS
1807, pages 207–220. Springer, Heidelberg, May 2000.

[TW12] B. Terelius and D. Wikström. Efficiency limitations of S-protocols for group
homomorphisms revisited. In SCN 12, LNCS 7485, pages 461–476. Springer,
Heidelberg, September 2012.

[Unb] Unboundtech. https://www.unboundtech.com/.

[Van92] S. Vanstone. Responses to nist’s proposal. Communications of the ACM,
35:50–52, July 1992. (communicated by John Anderson).

[Wes19a] B. Wesolowski. Efficient verifiable delay functions. In Advances in Cryptology
– EUROCRYPT 2019, pages 379–407, Cham, 2019. Springer International
Publishing.

[Wes19b] B. Wesolowski. Efficient verifiable delay functions. In EUROCRYPT 2019,
Part III, LNCS 11478, pages 379–407. Springer, Heidelberg, May 2019.

[XAX+21] H. Xue, M. H. Au, X. Xie, T. H. Yuen, and H. Cui. Efficient online-friendly
two-party ecdsa signature. In Proceedings of the 2021 ACM SIGSAC Con-
ference on Computer and Communications Security, CCS ’21, page 558–573,
New York, NY, USA, 2021. Association for Computing Machinery.

[YCX21] T. H. Yuen, H. Cui, and X. Xie. Compact zero-knowledge proofs for threshold
ECDSA with trustless setup. In PKC 2021, Part I, LNCS 12710, pages 481–
511. Springer, Heidelberg, May 2021.

190

http://www.sepior.com
https://security.intuit.com/
https://www.unboundtech.com/

Acknowledgment
I would like to thank several people which I talk with during my Ph.D. First of all, a
thanks go to my two examiners Michel Abdalla and Manuel Barbosa for having read this
manuscript and for having suggested to me relevant corrections. Then, I thank my super-
visor Dario Catalano for having guided me during my Ph.D and for his suggestions. I also
thank other people from the team I work with: Guilhem Castagnos, Fabien Laguillaumie
and Ida Tucker, in particular for the hospitality in Lyon. A special thanks goes to Ida for
her availability and for her great help both in the academic side and in the human side.
If I forgot someone, do not worry since I chose to write only academic acknowledgement
here, the complete version will be present only in the printed version of this manuscript.

191

	Introduction
	Preliminaries
	Introduction to Public Key Cryptography
	Security model

	Public Key Encryption
	Homomorphic Encryption

	Digital Signatures
	The elliptic curve digital signature algorithm

	Equivocable commitment schemes
	Zero-knowledge proofs
	Sigma protocols
	Zero Knowledge Proofs concerning DL

	Verifiable secret sharing

	Background on Class Group of Imaginary Quadratic Fields
	Towards the definition of the Ideal Class Groups: the Algebraic Part
	Binary Quadratic Forms
	The reduction algorithm
	The composition of forms
	The Form Class Group

	Imaginary Quadratic Fields, Orders and Fractional Ideals
	Maximal and non-maximal orders
	Representation and inclusions of orders
	Fractional ideals
	Product of ideals

	The Ideal Class Group
	Relations between the ideal class group and the form class group

	Class groups in Cryptography: the Castagnos-Laguillaumie encryption scheme
	Computing square roots in
	The odd part of the Class Group
	A choice for a Sylow of order
	The Cohen-Lenstra Heuristic

	Switching between a maximal order and a non maximal suborder
	A subgroup with an easy discrete logarithm problem
	Additional modification to
	Construction of the direct product and

	Two-Party ECDSA from Hash Proofs Systems
	Ideal functionalities
	Background on HPS, a HPS-based PKE scheme and ECDSA-friendly HPS
	Defining HPS and
	Hard assumptions for
	Homomorphic Properties
	Resulting Encryption Scheme
	ECDSA friendly Projective Hash Families
	Zero-Knowledge Proofs

	Two-Party ECDSA Signing Protocol with Simulation-Based Security
	The Two-Party ECDSA protocol
	Simulation-based security of the Two-Party ECDSA scheme

	Instantiation from Class Group of Imaginary Quadratic Fields
	A Smooth Homomorphic Hash Proof System from HSM
	A zero-knowledge proof for
	Two-Party Distributed ECDSA Protocol from HSM

	Efficiency comparison
	Lindell's Protocol with Paillier's Encryption Scheme
	Our Protocol with Encryption Scheme
	Comparison

	Instantiation of our Generic Construction Using

	Bandwidth-efficient Threshold ECDSA from Class Groups
	Preliminaries
	Building blocks from Class Groups
	Algorithmic assumptions

	Threshold EC-DSA protocol
	ZKAoK ensuring a ciphertext is well formed
	Interactive set up for the encryption scheme
	Resulting threshold ECDSA protocol
	Key generation.
	Signing.

	Security
	Further improvements
	An improved ZKPoK which kills low order elements.
	Assuming a standardised group

	Efficiency comparisons

	Improvements on Threshold ECDSA
	Improved Threshold ECDSA protocol
	Identifying Aborts
	Arguing knowledge of a decrypted message
	Aborting and detection of misbehaving parties

	Security
	Security of the Full Threshold Protocol with Identifiable Aborts against Static Adversaries
	Indistinguishability of Real and Simulated Environments

	Security Against Adaptive Adversaries
	Indistinguishability of real and simulated executions against adaptive adversaries
	Concluding the proof

	Efficiency comparisons

	Conclusion
	References
	Acknowledgement

