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Abstract—Assistive technology (AT) helps to assess the
daily living of frail people and may have a strategic role
to detect and prevent falls. In this article, the task of clas-
sifying different classes of postural sway behaviors has
been addressed by developing a neuro-fuzzy (NF) infer-
ence approach that is robust against noise. The proposed
approach classifies four different postural behaviors, namely,
stable standing (ST), anteroposterior (AP), mediolateral, and
unstable (UNST). The strategy exploits data generated by a
wearable sensor node, to be positioned on the user chest.
A dedicated experimental setup has been realized to emulate
the postural dynamics and generate the dataset. Two novel
indices to assess the robustness of the system have been
proposed. The first index is a measure of residuals between the predicted and the expected postural status, which equally
weights estimations with respect to expected classes. The second metric is a reliability index, which allows for assessing
the degree of trust of each estimation performed by the NF inference. Results obtained demonstrate the suitability of
the proposed methodology, showing a capability of almost 100% to correctly classify patterns among different allowed
classes, with reliability indexes of 97.56% and 98.50% for the training and test patterns, respectively. Also, the robustness
of the NF classification algorithm against noisy data has been demonstrated.

Index Terms— Inertial unit, neuro-fuzzy (NF) inference, postural sway behavior classification, system assessment.

I. INTRODUCTION

ASSISTIVE technology (AT) has been applied to address
different healthcare needs in the aging population [1].

Several solutions have been developed for monitoring frail
subjects’ mobility as well as for detecting and preventing
falls in different settings [2], [3]. In particular, AT has
been proposed for assessing and monitoring elderly sub-
jects suffering from neurodegenerative disorders, including
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Parkinson’s disease (PD), in which different factors may
contribute to subjects’ health and well-being perception [4].
Postural instability represents a cardinal clinical feature of
patients affected by PD. The applications of AT for con-
tinuous monitoring of postural instability in frail subjects,
particularly in patients affected by neurodegenerative disorders
associated with Parkinsonism, focus on: 1) providing objective
evaluations on motor disability, response to treatment, and
differential diagnosis, which is principally based on diagnostic
standardized techniques [5], [6] and 2) the detection and
prevention of serious events including falls.

Traditional approaches for the assessment of postural insta-
bility are based on the analysis of the time variation of the
body’s center of pressure (CoP) [7]. For such an analysis,
neurologists often adopt clinical tools such as force platforms
and vision systems [8], [9]. Unfortunately, such analyses
can be performed no more than a couple of times per year
and usually in structured environments (e.g., hospitals), thus
requiring skilled supervision.

Conversely, the need for monitoring elderly people on their
own premises is important as aging seniors prefer to age in
place, in the comfort of their homes. This requires the devel-
opment of low-cost and reliable solutions for the monitoring
of postural behaviors in nonstructured environment. Moreover,
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in order to perform a continuous monitoring of the postural
sway, a different approach is required, which may conveniently
use wearable devices, [10]. Such a monitoring approach will
lend itself to an effective strategy for fall prediction.

Although literature may contain a wide variety of
approaches to address postural monitoring, no two approaches
can be compared due to different modes of data acquisition
and lack of any benchmark data. However, when restricted to
instability detection or postural sway classification, monitor-
ing strategies may be broadly divided into two approaches,
namely, threshold-based algorithms and machine learning
methods. Section I-A will discuss the state-of-the-art available
in the literature to highlight the contribution of the proposed
work.

A. Advancement With Respect to the State-of-the-Art
In [11], a low-cost architecture, based on a Kalman filter

approach, is used to analyze the 3-D angular position in
eight different locations on the body of the user. Investigation
of postural status in patients with Alzheimer disease under
different postural stress conditions, with the aim to predict
falls, has been carried out in [12], by using data acquired
from wearable sensing nodes. In [13], a threshold algorithm
to distinguish stable and unstable (UNST) postural using
features based on the time evolution of the user’s body sway
is presented.

A well-elaborated review of the main approaches exploiting
inertial measurement units for fall risk assessment is presented
in [14]. Neville et al. [15] proposed an inertial sensor node
positioned on the posterior trunk, with a specific focus on
the system validation against standard approaches, such as
using force plate. In order to classify PD patients into motor
subtypes, in [16], a system based on a triaxial accelerometer
is proposed. A head-mounted wearable IMU, with the aim
to provide different measures of postural sway, is investi-
gated in [17]. Lyu et al. [18] performed the validation of an
IMU-based solution housed in a pendant worn around the
neck. Sensing features embedded in tablet or smartphone have
also been explored in the literature [19], as effective tools for
posture monitoring.

Several studies have been conducted to assess the best met-
rics for qualifying and quantifying postural behaviors using the
data produced by (inertial) sensing units. In this framework,
both time- and frequency-based features have been investi-
gated [20], [21]. As outlined in [21] and [22], time-based
features directly estimated by triaxial inertial sensors have
been widely used in the literature. Although the time-domain
approach has provided good performance, to better character-
ize the postural dynamics, the frequency content of inertial
dynamics has also been investigated [23], [24]. In [25],
a comparison among different approaches to detect potential
postural instability with a wearable inertial system is provided.
In this study, threshold-based algorithms and neuro-fuzzy
(NF) models, both processing time-based features or discrete-
wavelet-transform-based features, have been compared.

The main limitations of the threshold-based approaches are
related to finding a stable separation among different classes of
postural behaviors, especially in the presence of noise. Noise

affects the assessment reliability; therefore, alternative robust
strategies are required. To alleviate this problem, machine
learning approaches have been investigated in the literature.
Different ML solutions have been adopted for fall detec-
tion [26], [27] and posture monitoring [28], [29]. In [28],
performances of decision tree classifiers against random forest
are investigated to monitor pressure during sitting posture.
Sun et al. [29] presented an ML approach to measure the
accuracy and feature importance of various postural sway
metrics to differentiate individuals with multiple sclerosis
from healthy users, as a function of physiological fall risk.
A smartphone-based solution, exploiting ML techniques to
classify the severity of the motor part of PD patients from
their gait, is addressed in [30].

Among other techniques, the use of fuzzy paradigms in
the field of posture analysis is well documented in the litera-
ture. Associations between gait performance, postural stability,
and depression in patients with PD are investigated in [31],
by using an adaptive NF system. A fuzzy logic algorithm
aimed to investigate users’ postures by processing CoP, posture
adoption time, and other related features is proposed in [32].
The approach proposed allows for assessing the user posture
for well-defined time periods, thus enabling the possibility to
perform prompt correction of the user posture.

In [33], a comparative analysis between NF and threshold-
based algorithms has been performed, with the aim of classify-
ing the stable and UNST behaviors. While performing postural
sway analysis, the possibility to classify among different pos-
tural sway behaviors (e.g., standing, anteroposterior (AP) and
mediolateral movements, as well as UNST) could represent
an added value than merely providing binary discrimina-
tion among stable and UNST behaviors. A threshold-based
algorithm to accomplish this kind of classification task (four-
way classification) has been addressed in [34]. The solution
proposed shows a suitable tradeoff between performance and
computational requirement. As discussed earlier, such solu-
tions generally lack robustness to noise and perform poorly
when presented with noisy data.

In this article, an NF approach aimed to classify among
four different postural sway behaviors (stable standing (ST),
AP, mediolateral (ML), and UNST) is proposed. This activity
represents a meaningful extension to the NF binary classifier
provided in [33]. The NF classifier shows better performance
in the presence of noise when compared to the threshold-based
algorithm provided in [34]. Such an improvement in robustness
is achieved at the expense of implementation complexity.

The proposed methodology exploits data generated by a
wearable sensor node, to be positioned on the user chest.
The aim of this work is to assess the performances of the
classification methodology through a set of dedicated metrics,
such as the accuracy in properly assigning an unknown pattern
to the expected classification task, the reliability of such
classification, and the robustness of the approach proposed
against noisy data.

The main novelties introduced by this work are summarized
as follows.

1) The approach proposed allows for classifying among
four different behaviors (ST, AP, ML, and UNST), with
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respect to the binary discrimination between stable or
UNST behaviors addressed in [33].

2) The use of an NF classification algorithm performs bet-
ter than the threshold-based algorithm presented in [34],
especially in the presence of noisy data.

3) Stabilogram-based features have been used, which
implicitly embed subject specification information, such
as height or weight or node positioning of the sensors.

4) New metrics are proposed for the assessment of the
classification strategy and for the estimation of the
reliability associated with each prediction.

5) The robustness of the proposed NF inference has been
demonstrated, especially if compared to threshold-based
strategies, as supported by results shown in Section V.

6) The use of a wider dataset, including noisy data, with
respect to [33], allowing to perform a better assessment
of the proposed methodology.

From an application point of view, it is important to note
that, although the implementation of the proposed paradigm
in embedded systems is out of the scope of this work, the
methodology developed is compliant with low-cost solutions
running machine learning-based paradigms. The approach pro-
posed will enable the realization of low-cost solutions for the
continuous monitoring of the users’ postural sway behavior,
as the user goes about performing their own everyday activi-
ties, thus enabling a home-based (non-structured) monitoring
mode. Data provided by the system could be used not only
for the prompt monitoring of the user postural sway, thus
also enabling fall prediction, but also to assess the degree of
severity of potential UNST behaviors (occurrence-frequency
analysis) and to define their main characteristics (analysis of
recurring postural sway classes).

II. SENSING SYSTEM AND THE DATASET

The sensing node used in this work consists of a triax-
ial accelerometer and a microcontroller-based architecture.
The node is based on an STM32 platform, exploiting an
ultralow-power ARM Cortex-M4 microcontroller with DSP,
and the LIS2DW12 MEMS accelerometer, both by STMicro-
electronics. The latter is a 16-bit ultralow-power three-axis
linear accelerometer, with output data rates from 1.6 to
1600 Hz and selectable full scales of ±2/±4/±8/±16 g.
A sampling rate of 100 Hz is adopted to acquire data,
which are then stored to a memory card. The sensing node
performs a continuous acquisition on a 10-s window segment
with a 1-s advancement for the next 10-s window segment.
The observed time window is well substantiated by findings
in the literature [35], affirming that this represents a good
compromise between the need for continuous postural sway
monitoring and the required computational power.

In order to perform the experimental survey, the dedicated
architecture shown in Fig. 1(b) has been adopted. The struc-
ture, equipped with the sensor node, allows for mimicking ST,
AP, ML, and UNST behaviors. As it can be observed from
Fig. 1(a), the sensor node is positioned at a distance from the
floor corresponding to standard chest heights. For the sake of
clarity, it must be declared that the structure is manually han-
dled to mimic above mentioned postural behaviors of interest.

Fig. 1. Architecture, including the sensor node, adopted to simulate
different postural sways. (a) Corresponding node position on the human
body. (b) Structure, equipped with the sensor node and joints, adopted
to reproduce the desired dynamics.

In particular, tilting movements around the belt-positioned
joint have been accomplished to emulate mediolateral dis-
placement, while oscillations around the bottom joint have
been used to accomplish AP movements. Stable dynamics have
been simulated by small displacements around all directions.
During the development phase of the postural classification
methodology, it has been considered advantageous to use
such a structure than using data acquired from real subjects.
This helped in building a dataset and quick development of
algorithms for appropriately identifying and assessing the NF
classification model. Future developments will be dedicated to
perform a wide experimental survey by involving end users.
However, the suitable robustness of the system to noisy data,
discussed in Section V, allows for confirming the validity of
the approach proposed through this work, against possible
artifacts introduced by the use of a rigid structure compared
to human body dynamics.

By exploiting the abovementioned experimental setup,
a dataset has been created by mimicking ST, AP, ML, and
UNST behaviors. Five different cases have been considered
by varying the height of the sensor node. Each case is hence
defined by the following two quantities.

H1: The distance between the node and the bottom joint (on
the floor).

H2: The distance between the node and the belt joint.
The representation of the dataset is given in Fig. 2(a),

showing the number of patterns and their distributions among
different kinds of postural sway. The dataset has been ran-
domized and, as evidenced in Fig. 2(b), then divided into a
training set and a test set. The nonuniform distribution of
training and test patterns among classes is motivated by the
different complexity associated with classification tasks for
each postural dynamic, which increases from ST to UNST
behaviors. Since the dataset is quite populated with many
examples for each class, it has been decided to stress the
prediction capability of the NF model, during the test phase,
for those classes presenting dynamics with a higher degree of
complexity.
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Fig. 2. Representation of the adopted dataset. (a) Number of patterns
for each postural sway class and for each considered case. (b) Number
of patterns in the training and test datasets per each class.

Moreover, in order to contrast the risk for data leakage
between training and test sets, the adopted algorithm has been
constrained, thus assuring an equal distribution of patterns
coming from different cases between the two abovementioned
datasets.

Each pattern is tagged by a code (class, Ci , i = [0, 2, 4, 6] :

0 for ST behavior, 2 for AP movements, 4 for ML movements,
and 6 for UNST behaviors. The realized dataset has been used
to set and test the proposed NF classification algorithm.

III. POSTURAL SWAY CLASSIFICATION STRATEGY
The methodology investigated through this work aims to

classify among the following four different postural dynamics:
ST, AP, ML, and UNST. The first step accomplished toward
the achievement of this task was dedicated to estimate the
time evolution of the AP and mediolateral displacement (DAP
and DML) [25], [33], from the three acceleration components
provided by the sensor node. Starting from such dynamics
(whose combination is called stabilogram), it is possible to
define a set of features that are strategic for the implementation
of the classification task.

A. Adopted Set of Features
To assess the user postural behavior, different characteristics

can be extracted from the stabilograms. The main features
considered in this work are summarized in Table I [21]. Such
quantities have been selected among others available in the
literature, based on: 1) the criterion of easy implementation
on embedded systems [25] and 2) the study presented in [34]

TABLE I
FEATURES EXTRACTED BY STABILOGRAM

to assess the reliability associated with the use of different fea-
tures, which demonstrated that maximum AP and mediolateral
displacements, the confidence ellipse area, and the root-mean-
square displacement are the most convenient features.

It must be considered that the estimation of features requires
the implementation of basic equations shown in Table I,
whose computational timings are negligible with respect to
the adopted classification rate, which represents the dominant
time scale.

As discussed in [13], since the postural sway should be
assessed during the static posture of the user, it is important
to highlight that the effects of dynamics introduced by daily
activities, such as walking, must be identified and removed.

B. NF Postural Sway Classification Approach
The procedure adopted for both the identification of the NF

algorithm and its assessment is shown in Fig. 3(a). A Sugeno-
type Fuzzy inference system is used, which is computationally
efficient and shows good performances in performing classi-
fication tasks [36]. As shown in Fig. 3(b), the NF model uses
the four features shown in Table I as inputs and provides at
the output the predicted class of postural sway, CPred

i .
The model has been implemented by using dedicated

libraries available in MATLAB. In particular, the “genfis”
function allows for generating an initial structure by extracting
a set of rules that model the data behavior. A subtrac-
tive clustering is exploited to fix the number of rules and
antecedent membership functions, while a linear least-squares
estimation is used to determine each rule’s consequent equa-
tions. The training step has been implemented through the
“anfis” function. The latter generates a single-output Sugeno
fuzzy inference system and tunes the system parameters
on input–output training data through a combination of the
least-squares and backpropagation gradient descent methods.
A grid partitioning approach is used to finalize the model. The
paradigm, by exploiting the “evalfis” function, provides the
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Fig. 3. Approach adopted to identify and assess the NF postural sway classification paradigm. (a) Flow diagram of the approach developed.
(b) Adopted NF model.

TABLE II
DETAILS OF THE FUZZY MODEL ADOPTED FOR THE POSTURAL SWAY

BEHAVIORS ASSESSMENT

predicted postural status, CPred
i . Moreover, the latter is rounded

to the closest class, thus defining the rounded prediction of the
postural status, CRound

i . Further specifications of the NF model
are given in Table II.

Once the model has been estimated, the test dataset has been
used to assess the performance of the proposed methodology
during the development phase. To such aim, the following
index has been used, which exploits residuals between the
predicted and the expected postural status, equally weighting
estimations’ divergence with respect to the expected class:

Q = 100

[
1 −

∑N
i=1 γi

N

]

γi =

{
0, if

∣∣CRound
i − CExp

i

∣∣ = 0

1, if
∣∣CRound

i − CExp
i

∣∣ > 0
(1)

where N is the number of the considered patterns.
Since the index in (1) is computable only during the training

phase, where the expected class, CExp
i , is known, in real cases,

where unknown patterns are processed, a different index is

required. To such aim, the following quantity has been defined,
which allows for assessing the reliability of each estimation
performed by the NF inference:

RI = 100
[
1 − min

∣∣CPred
i − Ci

∣∣]. (2)

The index RI computes the minimum distance among the
NF estimation, CPred, and all the possible classes, Ci . Since
classes, Ci , are separated by a distance equal to 2, the RI
collapses to very small values in case the NF estimation is
very close to the separation element among two consecutive
classes.

In order to estimate the overall performances of the devel-
oped methodology, the following indexes have also been
computed for the whole datasets:

RIMean = mean(RI) (3)
RIStd = std(RI) (4)

where mean(.) and std(.) are the average and standard deviation
operators, respectively.

The above indexes will be used in Section IV to assess the
performances of the NF classification tool. While interpreting
results, it must be highlighted that RI values are bounded to
100%.

IV. RESULTS

In order to estimate the optimal behavior of the NF model,
different values of the “range of influence of the cluster center”
have been investigated. This quantity defines the range of the
search for clusters in a dataset.

The behavior of indices given in (1), (3), and (4) for
influence range values belonging to (0.1–0.6) is shown in
Fig. 4 for the training and test datasets. As it can be observed,
the optimal value of the range of influence optimizing the Q
and RI indices is 0.18.
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Fig. 4. Behavior of the performance indexes versus the “influence
range,” for (a) training and (b) test dataset.

Performances of the classification algorithm, in case of a
range of influence equal to 0.18, are shown in Fig. 5. In par-
ticular, the comparison between the expected postural sway
(represented by the “circle” symbol) and the one predicted
by the NF algorithm (represented by the “cross” symbol) is
shown, along with residuals between expected classes, CExp,
and predicted classifications, CPred, the reliability index, RI,
and the rounded classification index, CRound. Obtained results,
shown in Fig. 5 both for the training and test datasets, provide
a clear representation of NF algorithm performances, in terms
of accuracy in predicting the correct class for each pattern and
the corresponding reliability of each prediction.

Values of indices given by (1), (3), and (4) are reported in
Table III, both for the training and test datasets. As it can be
observed, the NF model shows suitable performances, both in
terms of the system capability to correctly classify the postural
sway behavior, Q, and the associated RI.

The latter, for the test dataset, shows a mean value of
98.50% with a standard deviation of 5.38%.

Table III also shows the performances obtained by feeding
the threshold-based algorithm discussed in [34] with the same
dataset adopted through this work. The obtained results allow
to affirm better performances of the NF inference system pro-
posed with respect to traditional threshold-based algorithms.
It is worth noticing that the obtained results are comparable
to ones provided by the NF algorithm presented in [33],

Fig. 5. Behaviors of the proposed methodology in the optimal case
(influence range of 0.18). (a) Training dataset. (b) Test dataset. Each
frame presents, from the top to the bottom: the comparison between
the expected postural behavior (circles) and the one predicted by the
NF algorithm (crosses), the residuals, the reliability index RI, and the
rounded postural classification, Cround.

TABLE III
PERFORMANCES OF THE CLASSIFICATION ALGORITHMS

addressing the task of binary discrimination between stable
and UNST dynamics.

The postural sway classification strategy has also been
investigated against a noisy dataset. To such aim, the original
dataset has been corrupted by different levels of Gaussian
noise. In order to ensure that the noise produces a homogenous
effect for all considered features, each feature has been added
with a noise level whose standard deviation is expressed
as the percentage of the maximum value assumed by that
feature through the whole dataset. The following levels of
noise have been used: 0.1%, 0.2%, 0.3%, 1.0%, 5.0%, 7.0%,
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Fig. 6. Investigation on the robustness of the postural sway classifica-
tion methodology against noisy data. (a) NF model. (b) Threshold-based
algorithm.

10.0%, 15.0%, and 20.0%. Results of this analysis are given in
Fig. 6(a), showing the effect of the noise on Q and RI indices.
As it can be observed, the NF algorithm is quite robust against
the noisy dataset, especially in terms of reliability associated
with estimated classes.

For the sake of completeness, the same analysis has been
performed by using the same dataset with the threshold-based
algorithm presented in [34]. Results, shown in Fig. 6(b),
clearly highlight that the NF approach performs better than
the threshold-based algorithm, of course at the expense of an
increased implementation complexity.

In terms of computational timing, once the inference model
has been trained, the prediction is very fast and negligi-
ble with respect to the adopted postural sway classification
rate of 1 Hz. Of course, such performances also depend
on the characteristics of the computing device. A dedicated
test has been accomplished by using an 11th Gen Intel1

Core2 i7-1195G7@2.90 GHz and 16.0-GB RAM. This test
revealed computational timings, for predicting the whole test
dataset, equal to 0.0037 and 8.5888 ms for threshold and NF
algorithms, respectively. Although the NF inference is more
time-demanding, the obtained results demonstrate that this
approach is fully compliant with real applications requiring
the classification among different kinds of postural dynamics,
especially considering the adopted classification rate of 1 Hz.

1Registered trademark.
2Trademarked.

V. CONCLUSION AND FUTURE WORK

In this work, a neuro-fuzzy approach is proposed to per-
form a reliable classification among different postural sway
behaviors.

The main reasons driving the choice of using an NF
approach rely on the consideration that it is not easy to identify
reliable separation elements, especially in the presence of
noise, to implement threshold-based classification of different
postural behaviors. This has been already demonstrated in
the literature and explicitly discussed in [33]. In particular,
the NF approach has been chosen against other machine
learning-based strategies due to the auto-setting characteristics
of NF algorithms. Results obtained in this article demonstrate a
good performance of the NF inference system for the postural
sway classification task. Indices have been defined to assess
the behavior of the proposed approach.

A near-perfect classification has been demonstrated both for
the training and test datasets, with a reliability index of 97.56%
and 98.50%, respectively.

The robustness against noisy data has also been investigated,
which revealed a remarkable performance of the NF algorithm
both in terms of the proposed Q and RI indices.

Moreover, results obtained by using the NF inference
have been compared to performances of the threshold-based
algorithm investigated in [34], clearly demonstrating the
advantages of the NF approach.

The results obtained using the proposed approach confirm
the reliability of the system to perform well in the presence
of noise. This encourages one to extend the approach to fall
prediction, along with reliable monitoring of users’ postural
behaviors.

The main limitation of the proposed study is related to the
choice of emulating postural dynamics by using the dedicated
set-up, which has been considered a convenient approach
during the development phase of the postural classification
methodology. The main reasons are related to the difficulty and
risks associated with the involvement of real users, which can
be avoided during the development phase, with the advantage
of rapidly generating a wide dataset. Of course, validation
and refinement of the proposed approach by tests with real
users are the mandatory steps, which will be accomplished as
a further development of this work. It must be highlighted that
the results shown in Section IV, investigating the methodology
robustness against noisy dataset, support the reliability of
assessment performed by emulated patterns.

Future efforts will also be dedicated to the implementa-
tion of the proposed approach by embedded architectures,
compliant with the need for wearable and low-cost monitor-
ing system. Actually, such systems would enable real-time
estimation of the postural sway and provide alerts in the
case of UNST behaviors. Such a strategy would allow also
for assessing the degree of severity of potentially UNST
behaviors, performing analytics on occurrence frequency and
characteristics of detected postural sways.

Although NF inference shows the add value of
self-generating an initial structure by extracting a set of
rules that models the data behavior, the investigation of other
machine learning methods, such as multilayer perceptron,
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deep learning, or meta learning, will be considered as possible
benchmarks.
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