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Abstract: Seismic vulnerability assessment in urban areas would, in principle, require the detailed
modeling of every single building and the implementation of complex numerical calculations. This
procedure is clearly difficult to apply at an urban scale where many buildings must be considered;
therefore, it is essential to have simplified, but at the same time reliable, approaches to vulnerability
assessment. Among the proposed strategies, one of the most interesting concerns is the application of
machine learning algorithms, which are able to classify buildings according to their vulnerability
on the basis of training procedures applied to existing datasets. In this paper, machine learning
algorithms were applied to a dataset which collects and catalogs the structural characteristics of a
large number of buildings and reports the damage observed in L’Aquila territory during the intense
seismic activity that occurred in 2009. A combination of a trained neural network and a random
forest algorithm allows us to identify an opportune “a-posteriori” vulnerability score, deduced from
the observed damage, which is compared to an “a-priori” vulnerability one, evaluated taking into
account characteristic indexes for building’s typologies. By means of this comparison, an inverse
approach to seismic vulnerability assessment, which can be extended to different urban centers,
is proposed.

Keywords: seismic vulnerability; urban areas; machine learning; risk maps

1. Introduction

Several countries around the world have large territories characterized by the presence
of buildings not designed according to seismic codes and, therefore, unsuitable to resist
possible earthquakes. Therefore, a crucial aspect lies in the assessment of the seismic
vulnerability of existing buildings, which can be performed by means of detailed individual
models or simplified methods at an urban scale. The seismic vulnerability assessment of
single buildings requires a deep knowledge of the structure and involves the construction
of accurate numerical models. Since the task is very demanding, several simplified models
of buildings have been analyzed in recent decades [1–5]. Although simplified, these
approaches involve the execution of difficult calculations and, therefore, cannot be applied
at the urban scale where a great number of buildings must be analyzed, and a fast, although
reliable, vulnerability assessment is crucial in identifying the areas most exposed to seismic
risk in which to intervene as a priority.

With this aim, many simplified methods for seismic vulnerability assessment at the
urban scale have been presented in the scientific literature. For example, rapid visual

Buildings 2024, 14, 309. https://doi.org/10.3390/buildings14020309 https://www.mdpi.com/journal/buildings

https://doi.org/10.3390/buildings14020309
https://doi.org/10.3390/buildings14020309
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/buildings
https://www.mdpi.com
https://orcid.org/0000-0003-2929-5044
https://orcid.org/0000-0001-9368-5800
https://orcid.org/0000-0001-8290-8183
https://doi.org/10.3390/buildings14020309
https://www.mdpi.com/journal/buildings
https://www.mdpi.com/article/10.3390/buildings14020309?type=check_update&version=1


Buildings 2024, 14, 309 2 of 17

screening (RVS) is a qualitative estimation procedure which can be used to classify the vul-
nerability of structures by means of observations made from the building exterior without
taking into consideration the building inside [6]. This visual survey can be considered the
first step in the vulnerability assessment for determining the risk priorities for buildings
before going into further detail and classifying them according to their construction ma-
terials and structural systems. Other methodologies, called vulnerability index methods
(VIM), are based on the estimation of some characteristic indexes. These approaches rely
on the knowledge of a large number of damage survey data and structural information
in order to investigate the influence of different parameters on the seismic vulnerability
of the building [7,8]. For instance, they have been applied to seven European cities [9].
The macro-seismic approach combines the vulnerability index method with an analytical
function which expresses the expected damage for a given earthquake intensity [10–13].
Another popular method is based on the damage probability matrix [14–16], which returns
an estimate of vulnerability in numeric form; in particular, it expresses the likelihood of
a certain level of damage for each seismic intensity. This method provides the seismic
vulnerability as an estimation of the probability of occurrence of damage in buildings in
terms of the intensity of the earthquake.

Several studies on seismic vulnerability at the urban scale follow a mechanical ap-
proach based on the consideration of ideal numerical models of existing building ty-
pologies [17] and aggregates of buildings [18]. Recurrent geometrical, structural, and
technological features of buildings can be identified using the geographic information
system [19]. Geometrical and mechanical uncertainties are modeled using information
derived from available databases.

Since seismic assessment at an urban scale involves the use of a great amount of data,
many of which are repeated for similar buildings, an interesting and promising approach is
based on machine learning algorithms (MLA). These algorithms allow us to produce reliable
results through a learning process applied to opportune training datasets, making precise
predictions about new data. MLA, formerly of specific interest to computer scientists, have
been largely developed in recent decades and applied to several engineering research fields.
In recent years, a wide range of applications have been found in structural engineering
since the algorithms are useful in dealing with problems associated with uncertainties due
to their effectiveness and robustness in dealing with noise.

Several applications of MLA to seismic vulnerability analyses at the urban scale have
been developed. For example, applications of an artificial neural network (ANN) model [20]
and of a SWOT-quantitative strategic planning matrix (QSPM) [21] have been recently de-
veloped for the evaluation of seismic vulnerability in different municipalities in Iran. Other
studies evaluated the seismic vulnerability of large sets of buildings in urban environments
through a procedure based on the fast calculation of capacity curves of low-rise reinforced
concrete buildings using neural networks [22]. Building capacity curves for 256 reinforced
concrete buildings with between four and seven floors were obtained in [23], where the
influence of the structural parameters on the seismic performance was quantified using
a set of artificial neural network algorithms. In [24], the assessment of the vulnerability
of urban blocks to earthquakes using an artificial neural network–multi-layer perceptron
(ANN-MLP) was presented. To train the neural network and compute earthquake vulner-
ability maps, a combined multi-criteria decision analysis (MCDA) process was adopted.
A combination of artificial neural network-based predictive models and decision-making
methods based on a hierarchy process with the aim of improving the earthquake risk
assessment was presented in [25,26] and applied to a city in Indonesia. They identified the
major indicators required to create reliable vulnerability maps in seismic risk assessment.
In particular, in [26], artificial neural networks were also used to train and optimize a
database of 145 damaged buildings from the Haiti earthquake. The comparison between
the performances of artificial neural networks and traditional regression models in the
evaluation of the seismic vulnerability of a large set of buildings was presented in [27].
A hybrid approach of machine learning (random forest) and hierarchical analysis (Saaty



Buildings 2024, 14, 309 3 of 17

matrix) was used for the seismic risk assessment of the Peruvian city of Pisco [28], and a
double-entry table relating hazard and vulnerability levels was presented. Frequency ratio
(FR), decision tree (DT), and random forest (RF) methods were also applied to seismic data
for Gyeongju, South Korea, in [29]. Machine learning techniques were recently applied
to define damage classification boundaries using data from six post-earthquake damage
surveys [30] and predict the level of damage to reinforced concrete buildings by means
of developed platform applications [31]. MLAs have also been applied to provide an
indication of the seismic vulnerability of urban areas by exploiting building data from
photographs [32]. Foresight into the damaged state of reinforced concrete buildings using
ANN using databases from the Nepal and Ecuador earthquakes was presented in [33].

In this paper, our main goal is to calculate, through an opportune combination of
a simple, fully connected ANN and a random forest classifier, a seismic vulnerability
score for the buildings in a specific urban area based on a dataset reporting the damages
produced by multiple seismic events. In particular, the region around the city of L’Aquila,
Italy, has been considered in relation to the devastating sequence of earthquakes that
occurred in April 2009. Our approach can be considered an inverse problem, according
to which the “a posteriori” vulnerability of the buildings is inferred from the observed
damages. The features of several buildings (such as date of construction, construction
material, number of floors, and floor area) have been identified according to accredited
building classification systems [34], and a thorough analysis of the contribution of each
feature to overall vulnerability is performed.

Further comparison with another vulnerability score, built according to the main
construction features of the buildings available in the chosen dataset and thus denoted
as “a priori”, will be performed. From the comparison between these two scores, we
can deduce some general trends that allow us to improve and enrich the estimate of the
seismic vulnerability of buildings at an urban scale. This proposed procedure represents
a flexible, feature-focused tool applicable to seismic vulnerability assessment of different
urbanized territories and could be extremely useful in planning appropriate measures
for risk management, particularly if combined with further information regarding road
infrastructures when available.

2. Buildings Dataset and “a priori” Seismic Vulnerability Estimation

In 2009, a long sequence of seismic events occurred in the Abruzzo region of central
Italy (see panels of Figure 1a,b), which can be attributed to its complex tectonic setting. In
fact, this region is characterized by the convergence of the African and Eurasian plates that,
accompanied by the extension of the Apennine Mountain range, generates significant seis-
mic activity. The considered sequence started in December 2008 and culminated on 6 April
2009, with a main shock of magnitude Mw 6.3 registered at 3:32 AM local time, followed by
several aftershocks. This earthquake had an epicenter located near the city of L’Aquila, the
capital of the Abruzzo region, and occurred at a shallow depth of approximately 8.8 km, a
detail which contributed to the significant damage experienced in the region.

In our analysis, we utilize the extensive Da.D.O. dataset [35], which includes a compre-
hensive record of 58,140 buildings in the proximity of L’Aquila. This dataset encompasses
pre-event characteristics such as age, construction material, and geometry of the buildings,
as well as post-event damage assessments following a series of the five most significant
earthquakes, each with a magnitude greater than 5 ML that occurred between 6 and 9
April 2009. The epicenters of these earthquakes are represented as red star symbols in the
panel of Figure 1b, while the main event of magnitude Mw 6.3 is marked with a circle.
The geographical positions of the buildings present in the dataset are depicted in panel
Figure 1c, highlighting their distribution in the affected area. Additionally, the data have
been georeferenced and converted into shapefile format for effective analyses.
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of the April 6th five main shocks, represented as star symbols (the main event is also marked with a
circle), (c) Geographical position of buildings present in the considered dataset [35].

Based on the information reported on the Da.D.O. dataset, an “a priori” vulnerability
score for each building in the considered area can be calculated based on the appropriate
structural features, as shown in Table 1. This is a categorical score ranging from the
maximum level A (highest vulnerability) to the minimum level D2 (lowest vulnerability).
This “a priori” score will be later compared with an “a posteriori” one, evaluated on the
basis of the observed damages, as explained in the following sections.

Table 1. “A priori” vulnerability classes of buildings evaluated on the basis of some of their structural
features, following the indications present on the Da.D.O web platform [35].

Vulnerability Class Vertical Structure: Masonry Horizontal Structure Chains

A Bad quality Vaults without chains, vaults with chains,
deformable slab, semi-rigid slab, unidentified No

A Bad quality Vaults without unidentified chains Yes

A Good quality Chain-free vaults, chain vaults, deformable slab,
unidentified No

B Bad quality Rigid slab No

B Bad quality Chain vaults, deformable slab Yes

B Good quality Semi-rigid slab No

B Good quality Vaults without chains, vaults with chains,
deformable slab, unidentified Yes
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Table 1. Cont.

Vulnerability Class Vertical Structure: Masonry Horizontal Structure Chains

C1 Good quality Rigid slab No

C1 Good quality Semi-rigid slab, rigid slab Yes

Vulnerability Class Other Vertical Structures Year of construction

C2 Reinforced concrete frame,
mixed frame-masonry <2001

D Reinforced concrete frame,
mixed frame-masonry ≥2001

D Steel frame Any

Unidentified Unidentified Any

3. Machine Learning Models and Dataset Pre-Processing

The aim of our work is to use the information reported on the dataset for assessing the
correlations of building features with damage levels and to propose a new vulnerability
score for each building evaluated “a posteriori” on the basis of the observed damage. In this
respect, we approached the problem of seismic vulnerability assessment as a multi-class
classification task which employs machine learning algorithms.

3.1. ANN and Random Forest Algorithms

We have chosen to focus our study on a classification approach involving two machine
learning models: a random forest classifier (RFC) and a custom-designed artificial neural
network (ANN) [36,37].

• Random Forest Classifier (RFC): This model is an ensemble learning technique, well-
regarded for its robustness and accuracy in various applications. The main key
strength of random forest algorithms lies in their ability to prevent overfitting, a
common challenge in machine learning models. This is achieved through its ensemble
nature (see Figure 2), where multiple trees, each trained on subsets of the data with
randomized feature selection, contribute to the final classification, thus ensuring a
very reliable performance.
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Figure 2. An example of a random forest classification tree [https://www.ibm.com/it-it/topics/
random-forest, accessed on 23 November 2023].

• Artificial Neural Network (ANN): This model is inspired by a brain’s neural networks,
comprising layers of interconnected nodes or neurons. Each node processes the input
data, which then travel through multiple layers, each altering the input uniquely.
ANNs excel in learning intricate patterns in data by modifying the weights of the
connections between neurons through backpropagation. Figure 3 shows the archi-
tecture of the ANN used in our work: after normalization, the data are passed onto

https://www.ibm.com/it-it/topics/random-forest
https://www.ibm.com/it-it/topics/random-forest
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the ‘Feature Augmentation’ module, which applies mathematical transformations to
the numeric values (building coordinates and distance to the five main epicenters) in
order to improve both the model’s ability to assign the correct vulnerability to each
location and the overall performance.
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Figure 3. Architecture of the ANN used in our work (numbers in <brackets> record the size of each
component): the input is a vector of 81 values combining numerical values with categorical ones. This
vector is normalized and passed to a series of general matrix multiplications (Gemm). The feature
augmentation module calculates squares and cubes of numeric values, as well as a selectable number
of sine and cosine transformations for which the parameters (amplitude, phase frequency, and bias)
are learned during training. We use a particular activation function (Relu) to introduce non-linearity
in the model. The last layer is a function (Softmax) that normalizes the output to represent probability
distribution across the 4 damage classes.

We also employed the one-hot encoding technique to represent categorical data within
these machine learning models. This method converts categorical variables into a form that
can be provided to ML algorithms to do a better job in prediction. It involves expanding
each categorical class into a new binary column, which increases the efficiency of the process.
This step is critical in ensuring that categorical data, such as building types or construction
materials, are effectively incorporated into our vulnerability assessment models.

3.2. Data Pre-Processing and Features Selection

In the following section, we detail the taxonomy of buildings in our dataset. In order
to ensure the compatibility of data with the analysis pipeline, we pre-processed them
opportunely. In addition to usual normalization and data cleaning, the main steps were the
following two:

1. Since the original dataset employs highly detailed damage categorization, some
simplification is necessary. First of all, we only refer to damage that occurred in
vertical structures. The level of damage was originally classified according to what
was proposed in the European Macroseismic Scale EMS-98, namely: D1 (light damage),
D2 (moderate damage), D3 (extensive damage), D4 (total damage), and D5 (collapse).
The zero damage class D0 was also added to the previous ones for completeness. Since,
in the database, damages are reported for different portions of each building, the
different combinations result in a complex matrix of 26 distinct damage classes with
a non-homogeneous number of elements. To circumvent this issue, we condensed
these classes, assuming the highest level of damage sustained by any of its portions
for each building. Finally, merging the three highest damage classes (D3, D4, and
D5) into a macro class representing general ‘high damage’ reduces the classification
to four ordinal damage categories, ranging from D0 to D3. Alternative strategies,
like assigning a numerical score to each of the 26 categories for regression analysis
or experimenting with different class counts, were explored but did not enhance
the model’s performance. This optimized approach is both efficient and practical,
ensuring a more balanced and manageable dataset for analysis.

2. Then, specific columns (Figure 4) from the original dataset were selected for analysis,
including geographic, structural, and damage-related information. The considered
characteristics of the buildings concern the following:

• Horizontal and vertical structure typologies;
• Chains, beams, or isolated columns;
• Year of construction or restructuring;
• Latitude and longitude of buildings;
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• Number of floors, basement floors, floor height, and area;
• Slope morphology and position in the complex.
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Figure 4. Impact of input features to the output of the proposed models, (a) random forest (RF)
and (b) neural network (NN), expressed by the mean of their SHAP values. The output classes are
reported in the legend from the one associated with the lower damage level (D0) to that associated
with the highest one (D3). For each row (feature) in the bar graph, the classes are ordered from the
one which, overall, has been mostly predicted from the model to the one which has been predicted
for the least amount of time.

Our goal was to understand how different features influence the decisions of various
models, particularly in classifying various levels of damage, in order to see if we can
streamline these features.

To select the top predictive features, preliminary models were trained, utilizing the
Shapley Additive exPlanations (SHAP) model for both a neural network and random forest.
This model, initially introduced by Lloyd Shapley [38], employs game theory to explain the
outputs of machine learning models. The core idea of SHAP is based on Shapley values,
which calculate the contribution of each subset of features (from a total of ‘m’ features) to
the model’s predictions [39]. Specifically, the impact of the ‘i-th’ feature is determined by
comparing the predictions of the original model with those of a model trained without the
‘i-th’ feature. Since removing a feature can also affect others, this comparison must be made
for every possible subset of features, excluding the ‘i-th’ one. The Shapley value is then
the average of these comparison scores. The output of this process is the bar plot shown in
Figure 4, where the overall impact of each feature on the prediction task is split into colors
representing the contribution to each damage class in the dataset. Thus, SHAP was used to
gain insight into which features are linked with specific damage levels, according to our
data dataset and models.

From these graphs, it is evident that the random forest model tends to underfit the
data and predict a lower level of damage compared to the neural network. Despite some
differences in the importance ranking of features, which are expected due to the distinct
nature of the two models, the top six influential features were the same for both. These
significant features were mainly structural, like the type of vertical and horizontal structures
and the construction year, aligning with the predefined vulnerability classes. On the other
hand, features like “Chains or Beams”, “Average Floor Height”, and “Isolated Columns”,
though part of the predefined vulnerability classes, were not influential in our models.
These three less influential features were consistent across both models, allowing us to
reduce the total number of input parameters from 13 to 10.
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Finally, the data were augmented by pre-calculating the distances of each building
from the five main epicenters to allow the model to easily learn the correct vulnerability of
each location in the dataset.

4. “A posteriori” Seismic Vulnerability Estimation and Numerical Results

As already anticipated, the core of our analysis is the evaluation, on the basis of the
observed damage levels, of an “a posteriori” vulnerability score for each feature present
in the dataset, and by extension, for each building. This score is derived from the neural
network and random forest models, with an average over the two models’ results taken to
mitigate model-specific biases.

The first preliminary step simply involved training these models to predict the damage
based on the available dataset information, dividing the data into training and validation
sets, and reporting the performance of both models on the validation set (20% of the data).

The results reported in Figure 5 show the performance of both models when tested on
the validation dataset; that is, on new data the models had not seen during training. One
can see that the ANN achieved higher precision and recall on all classes, being especially
capable of identifying the highest damage class (D3—severe damage) when compared to
the random forest.
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Figure 5. Performances on validation data (20% of original dataset): we evaluated the standard
metrics of precision, recall, and their geometric average, usually named F1 score; precision evaluates
the percentage of true positives in classification, while recall is the percentage of buildings of any
given class that were identified as such. We evaluated performance in each class and reported various
weighted averages.

The second step was dedicated to evaluating the predictive power of our models
and establishing the advantages of our vulnerability scoring method. In particular, we
introduced an innovative technique to derive an “a posteriori” vulnerability score for each
structural feature of the buildings in our dataset. In the following, we show how it works:

• Creation of dummy buildings: these are not real buildings but virtual ones created
only for analysis. Each dummy building mirrors the actual buildings in all respects
except for one chosen feature, which is held constant across the entire set. For instance,
we might simulate a group of buildings with exactly two floors, regardless of their
original design.

• Model predictions: we then input these dummy buildings into our pre-trained machine
learning models: the neural network and random forest. The models assess each
building and output a damage prediction, treating the fixed feature as a variable
of interest.
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• “A posteriori” vulnerability score derivation: by analyzing the predicted damage
across all dummy buildings with the fixed feature, we can calculate an average pre-
dicted damage value. This average becomes a numerical representation, a score, of the
vulnerability contributed by that specific feature (e.g., having two floors).

• Comprehensive feature analysis: this procedure is methodically applied to each cate-
gorical feature within our dataset. As a result, we establish a continuous “a posteriori”
vulnerability score for every characteristic examined.

• Score averaging for robustness: to ensure our findings are not skewed by the id-
iosyncrasies of a single model, we further average the results of the “a posteriori”
vulnerability scores obtained with both the neural network and the random forest
models. This step enhances the reliability of our results, yielding a more balanced and
comprehensive “a posteriori” vulnerability score for each building feature.

By systematically applying this method, we not only assigned a quantifiable score to
the elements that contribute to building vulnerability but also provided a scalable approach
to assess any number of features. The main advantage of this approach, when compared to
traditional Bayesian analysis, is the ability to simultaneously deal with both numeric and
categorical data in the evaluation of risk. For example, traditional probabilistic methods
require discretization of the coordinate space into finite bins in order to properly define
a probability space; instead, our method directly incorporates numerical and categorical
variables into the model, bypassing the need for such discretization. This provides a
more nuanced and detailed analysis of each feature’s impact on building vulnerability
and increases the capability to interpolate a continuous vulnerability map with arbitrary
resolution, as detailed in Section 4.1. Furthermore, our approach offers a significant
advantage in handling large datasets. Where traditional methods may struggle with
computational requirements and scalability issues, our machine learning models, especially
the neural network one, can efficiently process and analyze vast amounts of data, allowing
for quick fine-tuning in the optimization stage.

4.1. Demonstrating Spatial Independence in Seismic Vulnerability Prediction

As the first application, we showed that this method can be applied to continuous
input features, such as building coordinates, by virtually ‘placing’ a batch of dummy
buildings across a geographical grid and evaluating their average predicted damage for
each location, thus interpolating a continuous vulnerability map that highlights the impact
of seismic events within the urban area. The point of this was to show the model’s capacity
to differentiate between the inherent vulnerability of individual buildings and the spatial
dependency typically associated with seismic risk.

In Figure 6, we show the results of applying this method to our dataset. Maps (A)
and (B) represent the vulnerability interpolation across a geographic grid by evaluating the
average predicted damage at each grid point using our artificial neural network (ANN)
model. The red crosses denote the epicenters of seismic events, with their size proportional
to the magnitude of each event. Map (A) shows the results obtained without using the
Feature Augmentation module (Figure 3). This provides us with a coarse macroscopic
view of risk, highlighting a single zone of high vulnerability correlated with the main
epicenters without distinguishing the impact of each one but still validating the model’s
effectiveness in recognizing spatial patterns in seismic risk. Map (B) shows the effect of
using the feature augmentation module described in Figure 3 to improve mapping ability.
This produces a more refined vulnerability map that is able to resolve and distinguish the
main epicenters, effectively capturing details that the simpler model misses. The result is a
nuanced view of the risk distribution, with the gradations in color on the map indicating
varying levels of vulnerability with greater precision. Finally, map (C) overlays the better
vulnerability map (B) onto the geographical area. This overlay provides valuable insights
into the correspondence of the model’s outputs with real-world locations.
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Figure 6. Vulnerability maps interpolated using the ANN model shown in Figure 3. By placing
dummy buildings across a grid and averaging the predicted damage for each location, it is possible
to identify high-risk zones, with brighter zones representing high vulnerability (A); vulnerability
map interpolated feeding the raw data to the model with no numerical feature augmentation (B): by
pre-calculating nonlinear transformations of both the coordinates of buildings and distances from
epicenters, using the ‘Feature augmentation’ module described in Figure 3, our model is able to learn
a more detailed vulnerability map which is overlayed on the geographical map (C).

4.2. Feature Analysis and A-Posteriori Vulnerability Score

By leveraging the model’s ability to separate spatial dependencies from building
vulnerability, we can now finally evaluate a new continuous vulnerability score for each
building, which does not depend on its position with respect to the epicenters but exploits
the information about observed damages. This point is critical because it allows such
“a posteriori” vulnerability score to be potentially useful outside of the location and the
events considered in the present study. As already explained, our approach consists of
using virtual (dummy) buildings in order to extrapolate the impact of each feature for
the prediction of damage. We do this by focusing on one feature at a time and averaging
the prediction over a large sample of different buildings with different characteristics and
positions but with the same chosen feature. Figure 7 provides a detailed view of the “a
posteriori” vulnerability scores for each feature calculated by both the random forest (green
bars) and the neural network (red bars) algorithms alongside their average (blue bars).
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Figure 7. “A posteriori” vulnerability scores for the 8 considered building features, calculated by both
random forest (RF, green bars) and artificial neural network (ANN, red bars) models, highlighting
the impact of specific attributes on overall building vulnerability. For each feature, the average score
of the two models is also reported (blue bars), representing a more reliable measure of the true
features’ vulnerability.

This analysis is instrumental in isolating the contribution of individual building
attributes, ranging from the year of construction to employed materials, towards the overall
vulnerability. By comparing the scores between models, we can evaluate the consistency
of our predictive features, ensuring that our vulnerability assessment is both accurate
and reliable.

4.3. Correlation Analysis at Fixed Distance

We aimed to analyze the correlation between various vulnerability metrics and ob-
served damage. To achieve this, we focused on a subset of 13,678 buildings located within
6 km of the five major epicenters. We compared our continuous “a posteriori” vulnerability
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score with the “a priori” one, which categorizes buildings into five levels of vulnerabil-
ity, scaled from the maximum level A (highest vulnerability) to the minimum level D2
(lowest vulnerability). This analysis is presented through separate graphical representa-
tions due to the different nature (continuous and categorized, respectively) of the two
vulnerability scores.

In the bar chart distributions of Figure 8, the frequency of buildings for each damage
level is plotted against both our derived “a posteriori” vulnerability score (a) and the “a
priori” vulnerability one (b), which can be considered a benchmark. The “a posteriori”
vulnerability score typically exhibits a continuous distribution that is more closely aligned
with the actual damage levels. This alignment is especially pronounced for the extremes
of the damage spectrum (damage levels D0 and D3), showing our method’s enhanced
capability to differentiate between the most and least vulnerable structures.
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Figure 8. Distribution bar chart comparing our continuous “a posteriori” vulnerability score (a) with
the established categorical “a priori” classification method (b) for the four levels of damage, with a
focus on 13,678 buildings within a distance of 6 km from the major epicenters.

In Figure 9, we compare the predictive power of the two methods in a more quan-
titative way. In panel Figure 9a, the violin plot allows us to appreciate the good linear
correlation between the “a posteriori” vulnerability distributions and the observed damage
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classes, confirmed by the values of both the Spearman and Kendall coefficients reported in
the box. On the other hand, in panel Figure 9b, the contingency matrix for the “a priori”
vulnerability is reported, where the color gradient of each cell reflects the corresponding
number of buildings in the dataset. The matrix shows a less evident correlation with
the observed damage, confirmed again by the lower values of the considered coefficients
with respect to the “a posteriori” ones. This result further identifies the “a posteriori”
vulnerability score as a better predictor of damage, particularly at higher damage levels.
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Figure 9. (a) Violin plot showing the linear correlation between the “a posteriori” vulnerability scores
and the observed damage, with good values for both Spearman (0.62) and Kendall (0.48) coefficients.
(b) A less evident correlation with the damage emerges from the contingency matrix of the “a priori”
vulnerability score, where darker colors indicate a higher percentage of buildings: lower values of
Spearman (0.52) and Kendall (0.44) confirm the worse predictive power of this score with respect to
the “a posteriori” one.

4.4. Correlation Analysis over Distance

In contrast to the previous section, where we focused on buildings within a 6 km
radius of any epicenter, let us now explore the impact of varying this maximum distance.
By plotting the Spearman and Kendall correlation coefficients as a function of increasing
distances from the epicenters in Figure 10, we effectively illustrate the enhanced accuracy
of our vulnerability scoring system.

Looking at the figure, both the “a priori” scores and the derived “a posteriori” ones ex-
hibit a predictable correlation decrease with the increases of the distance from the epicenter,
aligning with the expected lower impact of the earthquake. However, our “a posteriori”
vulnerability score consistently maintains a notably higher correlation with the damage
level, even at large distances. This trend not only underlines the robustness of our approach
but also highlights its predictive power in assessing earthquake vulnerability across varying
proximities to epicenters.
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Figure 10. Spearman and Kendall correlation coefficients plotted against increasing distances from
the main earthquakes’ epicenters, illustrating the robustness and accuracy of our “a posteriori”
vulnerability scoring system (orange continuous lines) over different proximities, also compared with
the “a priori” scores (blue dashed lines).

5. Discussion and Conclusions

Our methodology, as explained in detail in the previous sections, offers a novel and
promising approach to seismic vulnerability assessment of buildings in urban areas. The
procedure was developed on the basis of the results obtained from a large dataset reporting
the damage that occurred in the buildings in the region around L’Aquila (Italy) after the dev-
astating sequence of earthquakes that occurred in April 2009. By focusing on the generation
of an “a posteriori” vulnerability score based on the observed damage for each building,
we developed a more refined and adaptable tool for seismic vulnerability assessment.

The core of our method lies in the use of machine learning models, specifically a neural
network and a random forest classifier, to predict damage based on building features. This
approach relies on the introduction of virtual dummy buildings able to assess the impact
of individual features on the overall vulnerability, ensuring spatial independence and
broad applicability across diverse locations. After a preliminary training of the models
with the observed damage data, where geographical information has been used as a
bias for separating spatial dependency from building feature analysis, we introduced our
“a posteriori” scoring system through the analysis of simulated buildings over various
distances from any epicenter. Such an approach showed an improved performance with
respect to a more traditional “a priori” method, which assigns categorical vulnerability
scores based only on the building’s characteristics. On the contrary, our “a posteriori”
method assigns continuous numerical scores to each building, thus allowing for a more
detailed and dynamic representation of vulnerability.

Finally, to better appreciate the difference between the two approaches, in Figure 11,
we plot the distribution of our “a posteriori” vulnerability score within each “a priori”
vulnerability class, from the least vulnerable (D2) to the most vulnerable (A). This visual
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data representation enables us to discern the considerable improvement in both the quality
and the quantity of information yielded by our novel scoring system.

Buildings 2024, 14, x FOR PEER REVIEW 16 of 18 
 

data representation enables us to discern the considerable improvement in both the qual-

ity and the quantity of information yielded by our novel scoring system. 

 

Figure 11. The distribution of the “a posteriori” vulnerability score is reported for each predefined 

“a priori” vulnerability category. Here, we clearly observe a wide spectrum of “a posteriori” scores 

for each “a priori” vulnerability one. This pattern indicates that the “a priori” classification may lack 

the granularity inherent to the different building features, which could reflect different degrees of 

seismic resilience. 

In fact, looking at the various panels, it becomes evident that a significant number of 

buildings classified as highly vulnerable based on their categorical “a priori” score (see 

classes A, B, and C1) can be identified as slightly vulnerable by our continuous “a poste-

riori” score, which always shows a broad distribution of values, and vice versa (see classes 

D2 and C2). 

In conclusion, the flexibility of our approach, which focuses on building features ra-

ther than specific geographic locations, makes it highly transferable to various urban set-

tings with different building typologies and seismic histories. The presented machine 

learning method, calibrated and trained on our dataset, can, in fact, be applied to other 

urbanized contexts where information about seismic damages is not available, thus allow-

ing us to obtain a vulnerability ranking of buildings based on our “a posteriori” score. 

Figure 11. The distribution of the “a posteriori” vulnerability score is reported for each predefined “a
priori” vulnerability category. Here, we clearly observe a wide spectrum of “a posteriori” scores for
each “a priori” vulnerability one. This pattern indicates that the “a priori” classification may lack
the granularity inherent to the different building features, which could reflect different degrees of
seismic resilience.

In fact, looking at the various panels, it becomes evident that a significant number
of buildings classified as highly vulnerable based on their categorical “a priori” score
(see classes A, B, and C1) can be identified as slightly vulnerable by our continuous “a
posteriori” score, which always shows a broad distribution of values, and vice versa (see
classes D2 and C2).

In conclusion, the flexibility of our approach, which focuses on building features rather
than specific geographic locations, makes it highly transferable to various urban settings
with different building typologies and seismic histories. The presented machine learning
method, calibrated and trained on our dataset, can, in fact, be applied to other urbanized
contexts where information about seismic damages is not available, thus allowing us to
obtain a vulnerability ranking of buildings based on our “a posteriori” score. This could
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help urban planners and policymakers to develop effective vulnerability management
strategies in the corresponding regions.
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