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Abstract: How nice would it be to obtain the size distribution of a nanoparticle dispersion fast and
without electron microscope measurements? UV-Vis-NIR spectrophotometry offers a very rapid
solution; however, the spectra interpretation can be very challenging and needs to take into account
the size distribution of the nanoparticles and agglomeration. This work suggests a Monte Carlo
method for rapid fitting UV-Vis-NIR spectra using one or two size distributions starting from a
dataset of precomputed spectra based on Mie theory. The proposed algorithm is tested on copper
nanoparticles produced with Pulsed Laser Ablation in Liquid and on gold nanoparticles from the
literature. The fitted distribution results are comparable with Transmission Electron Microscope
results and, in some cases, reflect the presence of agglomeration.

Keywords: nanoparticles; plasmonic; Monte Carlo; simulations; copper; gold; Mie theory; laser ablation

1. Introduction

Nowadays, nanoparticles (NPs) are used in a wide range of applications and devices
thanks to the combination of classical and quantum effects in optical, conductive, magnetic
properties, and so forth. In particular, copper and gold NPs are widely used in plasmonic
devices due to their optical properties in the visible light range. The UV-Vis-NIR spectra of Cu
and Au NPs present a typical peak, called plasmonic peak, in a specific wavelength range,
depending on the material, that can be used for various devices and applications [1–10].

The plasmonic peak position and shape strictly depend on the NPs size and shape [11,12],
so knowing the particle size distribution is very important. Transmission Electron Mi-
croscopy (TEM) analysis gives detailed information about the particle size distribution
but does not give appreciable information on the aggregation status, and both the sample
preparation and analysis require a long time [13]. Also, sample preparation can alter it,
especially for copper and other non-precious metals that can oxidize. Scanning Electron Mi-
croscopy (SEM) analysis is faster, and the sample preparation is easier, but a size resolution
under ∼10 nm is commonly hard to obtain. UV-Vis-NIR spectrophotometry can perform
rapid measurements of particle suspension without altering the sample. In particular, the
extinction cross section (given by absorption plus scattering) is related to the particles’
shape and size through Mie scattering theory [11,12,14]. A fitting routine that uses Mie
scattering is not easy to implement, and for the few works present in the scientific literature,
everyone considers a constant refractive index for the solvent. An efficient fitting routine is
proposed in Refs. [13,15] for monodisperse spheroidal gold NPs using the Mie–Gans model.
Other approaches of fitting or simulation are proposed in the scientific literature mainly
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for gold monodispersed NPs or spheroids, like Machine Learning [16], Least Squares Ap-
proximation combined with matrix formalism [17], Discrete Dipole Approximation [18]
and Effective Medium theories for NP clusters [19].

The aim of this work is to develop a versatile computational method to easily extract
metal NPs size distribution from an optical spectrum using a fast Monte Carlo technique (in
terms of the number of iterations) that can work both with monodisperse and polydisperse
nanoparticles in a wide range of wavelengths (250–1100 nm). In particular, a dataset will
be previously computed to fit the experimental data using some physical considerations as
an alternative to a mathematical or Machine Learning approach. Firstly, the code is first
used on experimental spectra of some copper NPs dispersions produced with Pulsed Laser
Ablation in Liquid (PLAL) and then on the gold literature data.

2. Materials and Methods
2.1. Experimental section

Copper NPs were synthesized using an Nd:YAG ns-pulsed laser (Quanta-Ray PRO-
Series Nd:YAG with wavelength λ = 1064 nm, pulse length = 12 ns, mean power = 5 W, and
repetition rate = 10 Hz) with the methodology described in Ref. [20]. A lens (focal length
of 10 cm) focused the laser beam on a copper target at the bottom of a Teflon vessel, filled
with 8 mL of liquid (acetone, methanol, and ethanol). The ablated mass was measured with
a Sartorius M5 microbalance (sensitivity 0.01 mg) by weighting the target before and after
the ablation, resulting, respectively, in 0.07 mg, 0.13 mg, and 0.70 mg for acetone, methanol,
and ethanol with an accuracy of 0.02 mg.

The obtained NPs colloidal solutions were sonicated for 15 min and optically ana-
lyzed with a PerkinElmer LAMBDA 1050+ UV-Vis-NIR Spectrophotometer, measuring the
absorbance from 200 nm to 1100 nm. A baseline correction was performed using the
measured absorbance of the relative solvent for each solution.

2.2. Computational Section

Computational analysis is performed using two codes developed on Wolfram Mathe-
matica 13 software [21]. The overall process is schematically represented in Figure 1.

Figure 1. Schematic description of the software developed.

The first code (Dataset_creation.nb, described in Appendix C), uses the results of
the Mie scattering theory to create a dataset containing the spectrum of spherical particles
having a different size. The starting point for these simulations is the material’s and
medium’s refractive index, which can be easily found in an online database [22] or in
the Palik Handbook [23]. Unfortunately, more than ten refractive indexes for copper are
available in the literature, in the visible range, with slight differences among them. So
the copper refractive index was experimentally evaluated (see Appendix A). This code
should work also in the UV region, where the refractive index of the solvents cannot
be considered a constant, so their formulas are taken from the online database [22] and
reported in Appendix B. A database is computed for each solvent for various radii and
wavelength ranges.

The second code comes in two versions: one is for monosdispersed NPs colloidal
solution (Mono_Fitting.nb) and the other is for polydispersed ones (Poly_Fitting.nb
algorithm presented in Figure 2). Firstly, both the experimental data and cross section from
the dataset are acquired. The experimental data are usually reported in arbitrary units, and
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the computed cross sections present values of the order of magnitude less than 10−13 m2.
Working with these values is computationally inconvenient; for this reason, they will be
rescaled. The total absorption spectrum of a given particle distribution f (r) is obtained by
integrating over the full particle radius in the range, but when computed, the integral must
be discretized:

σtot(λ) =

∫ ∞

0
f (r)σ(λ, r)dr∫ ∞

0
f (r)dr

→

rmax

∑
ri=r0

f (ri)σ(λ, ri)

rmax

∑
ri=r0

f (ri)

(1)

The denominator ∑ri
f (ri) does not depend on the wavelength and acts like a scale

parameter, so it is ignored to lighten the computational burden. The colloidal solutions
usually are characterized by monodisperse or polydisperse nanoparticles [24]. In the most
simple case (monodisperse NPs), the size distribution follows a lognormal distribution:

f (ri, a1, µ1, w1) = a1
1

riw1
√

2π
exp

(
−1

2

(
log(ri/µ1)

w1

)2
)

(2)

with three parameters θ = {a1, µ1, w1}. Polydisperse solutions present at least two separate
size distributions. In this case, a lognormal size distribution for smaller particles is used,
while for bigger particles or aggregates, a Gaussian size distribution is chosen. This choice
is due to the random particle aggregation process [13]. Therefore, the assumption is that
the global distribution is:

f (ri, a1, a2, µ1, µ2, w1, w2) = a1
1

riw1
√

2π
exp

(
−1

2

(
log(ri/µ1)

w1

)2
)
+ a2

1
w2
√

2π
exp

(
−1

2

(
ri − µ2

w2

)2
)

(3)

with six parameters θ = {a1, a2, µ1, µ2, w1, w2}. A fitting routine for f (ri, θ) is manually
implemented to find the optimal parameter set θ that minimizes the mean squared error
(MSE) between the simulation Xi and the experimental data Yi. The MSE is defined as:

MSE =
1
n

n

∑
i=1

(Xi −Yi)
2 → ERROR =

λmax

∑
λi=λmin

(σtot(λi)− σdata(λi))
2 (4)

where σtot contains a sum over all the radii (Equation (1)) and the multiplication factor
1/n is ignored. This new quantity ERROR is proportional to MSE and will be minimized.
The fitting routine is divided into three steps:

1. Files reading: Experimental data are acquired, sorted, and normalized. The dataset
is acquired at the same wavelengths as the experimental points, and it is also rescaled.
This automatically leads to the use of the wavelength range in which both the experi-
mental data and the computed dataset are defined.

2. Assign starting point parameters: choosing the starting point parameters for a
function of three or six parameters is crucial. Starting with some random parameters
can lead the gradient to descend toward a local minimum without specific physical
significance. It is known that “With four parameters I can fit an elephant, and with five
I can make him wiggle his trunk—E. Fermi” [25]. To pursue this aim, two strategies
are followed:

• Monodisperse NPs: The ERROR is evaluated between the experimental data
and every spectrum in the dataset. The spectrum that produces the minimum
ERROR gives the starting point for the distribution centroid µ1 and the scale
parameter a1. This evaluation is performed in a small range (a convenient one
can be 400 nm ≤ λ ≤ 700 nm because gold and copper have their plasmonic
peak within this range).
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• Polydisperse NPs: The ERROR is evaluated between the experimental data and
every spectrum in the dataset in two different ranges. Small particles strongly
contribute in the UV, so a1 and µ1 (lognormal distribution) are assigned by finding
the minimum ERROR among the computed spectra for λ ≤ 350 nm. Bigger
particles and aggregates strongly contribute in the IR, so a2 and µ2 (Gaussian
distribution) are assigned by finding the minimum ERROR among the computed
spectra for λ ≥ 700 nm.

These edge values for λ are purely indicative and can easily be changed in the code
to find the optimal starting point for each sample. The initial values of w1 = 0.5 and
w2 = 3 are assigned arbitrarily.

3. Monte Carlo step: A cycle where a new set of parameters θ is randomly generated
each time within a range of the initial parameter. Whenever the ERROR obtained
with the new set of parameters is lower than the initial ERROR, the parameters
are updated, and the process is repeated for a fixed number of iterations, but new
parameters can now vary in a smaller range than the previous one:

θj := θj(1 + Range · Random[−1, 1]) (5)

where Random[−1, 1] indicates a random number generated between −1 and 1, and
Range = 1/(2 + Count) is the range in which the new parameter is generated,
with Count = 0 that increases at every successful parameter update (the symbol
:= is used to indicate a variable update). A visual representation of this process is
given in Figure 3. The relative error associated with each parameter is given by 1/

√
m,

where m is the number of iterations. At the end of the cycle, a plot and a text file
are exported.

This approach of separating the theoretical computation (first code) and the curve fit-
ting (second code) represents an alternative to the methods proposed in the literature [13,15],
where the cross section is computed time by time. Computing the dataset separately from
the fitting allows to use the dataset multiple times without recomputing it. The dataset
computing time and the use of computational resources depend on the wavelength range
and the radius range. In this work, the Mie scattering theory is used to compute the
dataset instead of the Gans theory used in the other work because this code is supposed
to work with particles of a radius up to 250 nm (see Ref. [11] Section 9.1.2 and Ref. [12]
Section 2.1.4.a). The calculations regarding Mie scattering are more complex concerning
the ones of Gans scattering and so require more time and CPU, but allow to work without
NPs size limitation, and the calculations are computed only once, lightening the com-
putational burden in the long term. As compared to Machine Learning [16], this Monte
Carlo approach allows to extract a size distribution and also results in being faster than
a classical gradient descent calculation both in terms of time and computational burden.
Using gradient descent, every parameter update will contain a sum over all the radii and
all the wavelengths will be iterated m times as follows:

θj := θj − α
∂

∂θj
ERROR = θj − 2α

λmax

∑
λi=λmin

(σtot(λi)− σdata(λi))
∂

∂θj
σtot(λi) =

= θj − 2α
λmax

∑
λi=λmin

rmax

∑
rk=r0

( f (rk, θ)σdatabase(λi, rk)− σdata(λi))σdatabase(λi, rk)
∂

∂θj
f (rk, θ) (6)

where α is the learning rate (using the Machine Learning formalism) and this will require at
least number_dataset_elements× number_o f _wavelengths×m× j operations. The specific
operation is described by Equation (6) that contains the derivative of the distribution. This
can be evaluated numerically in every cycle or pre-computed, increasing the computa-
tional burden. The computational burden of the Monte Carlo fitting depends instead
only on some simple mathematical operation (exponentials in distribution evaluation in
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Equation (2) or (3) and squaring in Equation (4)) and two summations (over the radii in
Equation (1) and over the wavelength in Equation (4)) iterated m times. The parameter
update of Equation (5) recalls only a random number generation, so the computational
burden depends linearly on the radius range chosen in the dataset, on the wavelength
range of the experimental data, and on the chosen number of iterations. Both methods were
tested on the same machine (Intel Core i7 11th Gen, 16 GB RAM, data file 351 elements,
radius dataset 500 elements): the Monte Carlo method with 900 iterations was executed in
only 45 seconds, while the gradient descent required at least 40 seconds each iteration.

Figure 2. Schematic description of the fitting algorithm with example graphics of polydisperse copper
NPs produced in ethanol with PLAL.

Figure 3. Example of the same Monte Carlo gradient descent implemented on a two-variable function
for a schematic visualization. On the left, the numbered boxes indicate the parameter values and the
range in which random number generators work. On the right, the same numbered points descend
toward the minimum of an example function.

3. Results

The experimental extinction spectra of the copper solutions (dotted lines in Figure 5)
present the typical copper plasmonic peak at ∼600 nm [4,11] and a strong absorbance in
the UV region that goes to zero in the IR. The spectra of copper NPs produced in methanol
and ethanol present also a hint of a large shoulder between 600 and 800 nm and a plateau
between 400 and 500 nm, suggesting the presence of agglomerates or particles in the order
of 100 nm radius. Bimodal distribution is reported to be intrinsic on the PLAL technique [24]
and also a previous study on copper NPs [20] confirms this trend, so with these samples,
the bimodal distribution was used. Also, the mono distribution fitting was tested, leading,
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while the mono distribution fitting lead no appreciable results. Copper NPs produced in
acetone were fitted with a mono distribution.

The Monte Carlo algorithm was iterated for 400 or 900 cycles. Figure 4 shows how the
error rapidly decreases in the first ∼200 steps and then remains stable for each colloidal
solution, except for some fine adjustments, proving that the algorithm is fast and converges
and justifying the choice to tighten the range at each iteration.

Figure 4. Computed MSE through the various Monte Carlo iteration for copper NPs solu-
tion (this work) and gold NPs solution (adapted from Ref. [13]). The points indicate the it-
eration in which there was a parameter update. The label in the legend indicates both if it
refers to a monodispersion or a polydispersion and the used refractive index: “This Work”—
Appendix A; “Hagemann”—Refs. [22,26], “Palik”—Ref. [23]; “JohnosnChristy”—Refs. [22,27];
“Olmon”—Refs. [22,28]; “BabarWeaver”—Refs. [22,29]. The fitting routine is iterated 400 times
on gold NPs and 900 times on copper NPs. All the fitting results are presented in Appendix D.

The wavelength range in which the fit is performed and the initial parameter choice
are crucial. Fitting tests were conducted down to 200 nm in wavelength, resulting in values
µ1 around ∼0.1 nm. This value has no physical meaning because it corresponds to the
copper atomic radius [30] and may come from some instrument artifacts in the UV region.
For this reason, the fitting range was restricted to 250–1000 nm.

Each graph of Figure 4 represents the MSE behavior of four refractive indexes through
the algorithm iterations. The fitting of copper NPs produced in methanol and acetone using
the copper refractive index evaluated in this work apparently are the worst, even if the
obtained refractive index is very close to the literature ones. These discrepancies in terms
of final MSE are very low (0.002 for methanol and 0.01 for acetone) and come from the
intrinsic differences of the refractive indexes available in the literature.

Figure 5 and the tables in Appendix D report the obtained best-fitting parameters.
The fit curves strongly adapt to the data in the Vis-IR region (λ > 600 nm), while the fit is
not satisfying in the Vis-UV region. Despite these discrepancies, the algorithm applied on
copper NPs produced in methanol converges on µ1 ∼ 2.5 nm, w1 ∼ 0.4, µ2 ∼ 85 nm, w2 ∼
5 nm with all the used refractive indexes. Copper NPs produced in ethanol results in
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µ1 ∼ 2 nm, w1 ∼ 0.3, µ2 ∼ 108 nm, w2 ∼ 2 nm, and copper NPs produced in acetone results
in µ1 ∼ 2.1 nm, w1 ∼ 0.2.

In Refs. [20,31], the same NPs are produced with slightly the same process parameters
and analyzed with TEM, resulting in µ1 = 2.1 nm, w1 = 0.62 for Cu NPs in methanol,
µ1 = 3.3 nm, w1 = 0.52 for Cu NPs in ethanol and µ1 = 2.6 nm, w1 = 0.14 for Cu NPs
in acetone. For NPs dispersion produced with PLAL, the mean radius value is strongly
dependent on the laser fluence, and some casual fluctuations may occur; in fact, the algo-
rithm finds very similar values. The distribution width (w1) instead maintains the same
trend wMethanol > wEthanol > wAcetone in both the fitted and measured distributions. For the
polydispersed fitted distributions, the ratio a1/a2 order of magnitude is 103 (methanol) and
105 (ethanol), indicating that the number of small particles is greater than that of the bigger
ones. The latter majorly contributes to the total cross section, especially in the IR region.

Figure 5. Best-fitting extinction of copper NPs produced in (a) methanol, (b) ethanol, (c) acetone, and
(d) gold NPs produced in water. In each graph, the blue dots represent the experimental cross section,
and the yellow line represents the best fit. In (a–c), the experimental data are obtained using the
methodology described in Section 2.1. In (d), the data are adapted from Ref. [13]. The inset reports
the fitting MSE and distribution parameters.

Lastly, the algorithm is tested on the spectra of gold NPs produced in water with PLAL
adapted from Ref. [13], obtaining µ = 3.4 nm, w = 0.2 compared to µ = 3.5 nm, w = 0.05
obtained in their work using the same gold refractive index. Using some other works in
the literature and measured refractive indexes, the algorithm converges to the values of
µ = 3 nm, w ∼ 0.3.

As the values obtained are comparable, the competitiveness of the developed algo-
rithm, for copper NPs or other metals, is validated. However, the percentage error associ-
ated with the parameters (less than 5% for more than 400 iterations) is an underestimation.
The main source of error is not the precision of the algorithm but the refractive index itself.
The final values of size and distribution spread (µ and w in Tables of Appendix D) . can
be comparable to each other independent of the used refractive index if an error of 10%
is considered. This value has no catastrophic consequence for the possible applications
(for example, an uncertainty of 0.2 nm for the value of 2 nm of the distribution peak) and
proves the algorithm’s robustness against the biggest source of error.
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4. Conclusions

The need to create a versatile instrument that can be easily adapted to every metallic
material, changing a few operational parameters, is not expected to produce a perfect fit for
several reasons: (i) The starting point is the particle refractive index, but for each material,
many different refractive indexes are available in the literature in different wavelength
ranges and resolutions as seen in the case of copper in Figure A1 (Appendix A). (ii) A
potential layer of coating material (adsorbed solvent, surfactants, oxides, . . . ) is not con-
sidered. (iii) Mie scattering theory was used in this work. This theory is related only to
spherical particles, while Gans theory provides information on spheroidal particles only in
the quasi-static limit. NPs can assume complicated shapes, depending on the production
technique, but still, the sphere remains the best approximation. An ideal scenario is the
one with spherical particles of the same size, but the reality usually is far away, and the
algorithm applied on the spectrum of elongated structures with a high aspect ratio or sharp
edges can produce results with no physical significance. (iv) The dielectric correction due
to the small size of nanoparticles (Appendix C, Equations (A9) and A10)) is not unique:
many are proposed, and the most generic one for a sphere [12] is used. Also, parameters
such as the plasma frequency ωp, the electron Fermi velocity vF, and the electron mean free
path l∞ are not univocal in the literature for the studied material [12,32,33].

The algorithm was tested on metallic NPs but can ideally work also with semiconduc-
tor or insulating material. In this case, the correction described in Appendix C involving
Equations (A9) and (A10) can be neglected.

Nonetheless, a small variation of these parameters or refractive index produces a small
variation of the simulated cross sections, but the general trend remains unchanged. So,
even if the fitted distribution apparently differs from the experimental data in some wave-
length ranges, the obtained distribution parameters are reliable. This makes the proposed
approach useful for extracting information from a simple and quick optical measurement.
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Appendix A. Copper Refractive Index

The copper refractive index used for this work was obtained by fitting the reflectance
spectrum of copper, using as a sample the same target used for PLAL polished with
isopropyl alcohol and rinsed with N2.

Fitting was performed using Gnuplot 5 software [34] in the wavelength range 190–850
nm, using a Drude dielectric function:

ε(ω) = ε0 +
ω2

p

−ω2 − iΓω
+ ∑

j

ω2
pj

ω2
0j
−ω2 − iΓjω

(A1)

The reflectivity then was obtained as follows:

λ[nm] =
1239[eV/nm]

ω[eV]
n(λ) =

√
ε(λ) R =

∣∣∣∣n(λ)− 1
n(λ) + 1

∣∣∣∣2 (A2)

The free electron oscillator (the one outside the sum in Equation (A1)) was forced
with ωp = 8.76 eV and Γ = 95.5 · 10−3 eV [32,35]. Then ε0 and the parameters of seven
additional oscillators were fitted. The resulting refractive index is comparable to the one
reported in literature [22] as seen in Figure A1. The same procedure was repeated to obtain
the gold refractive index, using the free electron oscillator forced with ωp = 8.89 eV and
Γ = 70.88 · 10−3 eV [32,35] and four additional oscillators.

Figure A1. (a) Copper reflectivity measured and fitted. (b) Copper refractive index from the literature
with the addition of the one in this work.

Appendix B. Solvent Refractive Indexes

Usually, organic solvents have a constant refractive index in the Vis-IR range that
strongly increases in the UV range. Formulas for the used solvent refractive index are
taken from the online refractive index database [22]. In particular, the methanol refractive
index [36]:

n = 1.3195 + 3.05364419 · 10−3λ−2 − 3.41636393011 · 10−5λ−4 + 2.62128 · 10−6λ−6 (A3)

Ethanol refractive index [36]:

n = 1.34959 + 4.0147128 · 10−3λ−2 − 5.9411155 · 10−5λ−4 + 3.04975 · 10−6λ−6 (A4)

Acetone refractive index [37]:

n = 1.34979 + 0.00306λ−2 + 0.00006λ−4 (A5)

Water refractive index is taken from a list of points [22,38].

Appendix C. Mie Scattering cross Section Simulation

The file Dataset_creation.nb is structured as follows.
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First, Riccati–Bessel functions are defined as:

ψL(x) = x
√

π

2x
Bessel J

(
L +

1
2

, x
)

(A6)

ηL(x) = x
√

π

2x

(
Bessel J

(
L +

1
2

, x
)
+ iBesselY

(
L +

1
2

, x
))

(A7)

where Bessel J and BesselY are the Bessel function [39]. Then, two functions are defined:

k(λ) =
2π

λ
ω(λ) = k(λ)c (A8)

where c is the speed of light. The following part is repeated in a cycle for every radius in a
range (from 0.5 nm to 200 nm, 0.5 nm step is used, and from 0.1 nm to 30 nm, 0.1 nm step is
used). At the cycle beginning, the correction to the dielectric function is applied [12]:

ε(λ) = n(λ)2

ε := ε + ω2
p

(
1

ω2 + Γ2
B
− 1

ω2 + Γ(R)2

)
+ i

ω2
p

ω

(
1

ω2 + Γ(R)2 −
1

ω2 + Γ2
B

)
(A9)

n(λ) :=
√

ε(λ)

where ωp is the plasma frequency (Cu:8.76, Au:8.89 [eV] [32,35]), and the dumping fre-
quency ΓB = v f /l∞ is defined as the ratio between the electron Fermi velocity v f (Cu:1.57 ·
106, Au:1.40 · 106 [m/s] [33,40]) and the electron mean free path l∞ (Cu:42, Au:42 [10−9m] [12]).
The new dielectric function is size dependent with Γ(R):

Γ(R) = ΓB + A
v f

R
(A10)

where R is the particle radius and A = 3/4 [12]. Then, the cross section is evaluated in a
cycle for each wavelength within a range (the used one is from 250 nm to 1000 nm, 1 nm
step). The ratio between the refractive index of the nanoparticles n(λ) and the medium
nm(λ) is computed at a given wavelength, and so the adimensional quantity X:

m =
n(λ)

nm(λ)
X = k(λ)R (A11)

where R is the nanoparticle radius (in nanometers). Then, two functions are computed:

aL =
mψL(mX)ψ′L(X)− ψ′L(mX)ψL(X)

mψL(mX)η′L(X)− ψ′L(mX)ηL(X)
(A12)

bL =
ψL(mX)ψ′L(X)−mψ′L(mX)ψL(X)

ψL(mX)η′L(X)−mψ′L(mX)ηL(X)
(A13)

And finally, the cross sections are computed:

• The scattering cross section: σsca =
2π

k(λ)2

Lmax

∑
L=1

(|aL|2 + |bL|2).

• The extinction cross section: σext =
2π

k(λ)2

Lmax

∑
L=1

(2L + 1)Re(aL + bL).

• The absorption cross section: σabs = σext − σsca.

The cross sections are defined by a sum over multipole L up to Lmax. The cross section
calculated on small particles (radius < 50 nm) converges with just Lmax = 3, while on
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bigger particles (radius up to 250 nm), at least Lmax = 10 is necessary to converge, especially
in the UV as reported in Figure A2. In this work, Lmax = (2(Integer_part[R/50] + 1) + 1)
is used, so the multipole order starts from Lmax = 3 for smaller particles and increases by 2
every 50 nm radius. This approach is more precise but requires a lot of computational time,
especially with bigger particles. At the end of the cycle, the dataset file is exported.

Figure A2. Computed extinction cross section for particle of 150 nm and 200 nm radius truncated at
different multipole order (Lmax).

Appendix D. Results of Fitting with Different Refractive Indexes

Table A1. Best-fitting parameters and MSE copper NPs produced in methanol, dataset computed
with various refractive indexes and various radius ranges.

Particle
Refractive Index

Dataset Range
[nm]

(Start:Step:Stop)
Parameter

Error MSE a1 µ1 [nm] w1 a2 µ2
[nm]

w2
[nm]

This work 0.5:0.5:250 3.3% 0.0004 3.6 · 103 3.9 0.289 0.90 84 4.5

[22,26] 0.5:0.5:250 3.3% 0.0002 4.3 · 103 2.90 0.37 1.06 83 8.9

[23] 0.5:0.5:250 3.3% 0.0002 8.8 · 103 2.20 0.43 0.99 88 2.36

[22,27] 0.5:0.5:250 3.3% 0.0002 7.2 · 103 2.48 0.39 1.05 83 5.6

This work 0.1:0.1:30 5% 0.01 1.25 · 104 0.50 0.0.25

[22,26] 0.1:0.1:30 5% 0.01 1.12 · 103 1.13 0.150

TEM distribution from Ref. [20] 2.1 0.62

Table A2. Best-fitting parameters and MSE copper NPs produced in ethanol, dataset computed with
various refractive indexes and various radius ranges.

Particle
Refractive Index

Dataset Range
[nm]

(Start:Step:Stop)
Parameter

Error MSE a1 µ1 [nm] w1 a2 µ2
[nm]

w2
[nm]

This work 0.5:0.5:250 3.3% 0.0002 5.9 · 104 1.37 0.37 0.53 108 4.2

[22,26] 0.5:0.5:250 3.3% 0.0002 4.2 · 104 1.63 0.31 0.53 108 2.43

[23] 0.5:0.5:250 3.3% 0.0002 8.8 · 103 2.20 0.43 0.99 88 2.36

[22,27] 0.5:0.5:250 3.3% 0.0002 8.7 · 103 2.60 0.087 0.55 107 0.96

This work 0.1:0.1:30 5% 0.01 310 1.50 0.22

[22,26] 0.1:0.1:30 5% 0.01 1.19 · 103 0.99 0.20

TEM distribution from Ref. [20] 3.3 0.52
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Table A3. Best-fitting parameters and MSE copper NPs produced in acetone, dataset computed with
various refractive indexes and various radius ranges.

Particle Refractive
Index

Dataset Range [nm]
(Start:Step:Stop)

Parameter
Error MSE a1 µ1 [nm] w1

This work 0.1:0.1:30 3.3% 0.01 128 2.32 0.225

[22,26] 0.1:0.1:30 3.3% 0.006 172 2.15 0.288

[23] 0.1:0.1:30 3.3% 0.006 216 2.00 0.291

[22,27] 0.1:0.1:30 3.3% 0.007 294 1.96 0.227

TEM distribution from Ref. [31] 2.6 0.14

Table A4. Best-fitting parameters and MSE gold NPs produced in Water (data adapted from Ref. [13]),
dataset computed with various refractive indexes and various radius ranges.

Particle Refractive
Index

Dataset Range [nm]
(Start:Step:Stop)

Parameter
Error MSE a1 µ1 [nm] w1

This work 0.1:0.1:30 5% 0.004 90 3.0 0.20

[22,28] 0.1:0.1:30 5% 0.001 72 3.4 0.196

[22,29] 0.1:0.1:30 5% 0.004 119 2.8 0.32

[22,27] 0.1:0.1:30 5% 0.001 41 3.2 0.41

Fitted with code adapted from Ref. [13] 3.5 0.05
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