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Abstract: Duchenne muscular dystrophy (DMD) is a progressive hereditary muscular disease caused
by a lack of dystrophin, leading to membrane instability, cell damage, and inflammatory response.
However, gene-editing alone is not enough to restore the healthy phenotype and additional treat-
ments are required. In the present study, we have first conducted a meta-analysis of three microarray
datasets, GSE38417, GSE3307, and GSE6011, to identify the differentially expressed genes (DEGs) be-
tween healthy donors and DMD patients. We have then integrated this analysis with the knowledge
obtained from DisGeNET and DIAMOnD, a well-known algorithm for drug–gene association discov-
eries in the human interactome. The data obtained allowed us to identify novel possible target genes
and were used to predict potential therapeutical options that could reverse the pathological condition.

Keywords: Duchenne muscular dystrophy; microarray analysis; network medicine; protein–protein
interactions; drug discovery; drug repurposing; computational biology

1. Introduction

The dystrophinopathies are a spectrum of X-linked muscle diseases that include
Duchenne muscular dystrophy (DMD), Becker muscular dystrophy (BMD), and DMD-
associated dilated cardiomyopathy (DCM) [1].

The lack of functional dystrophin leads to membrane instability that alters the normal
muscle development, causing structural and metabolic changes and, consequently, leading
to a chronic inflammatory response [2,3]. DMD usually presents in early childhood with
delayed motor milestones, including delays in walking independently and standing up
from a supine position. However, this clinical feature rapidly evolves, forcing affected chil-
dren to be wheelchair-dependent by the age of 12 years. The natural course of the disease is
characterized by impairment of the cardiac muscle that leads to a dilated cardiomyopathy,
with congestive heart failure responsible for premature patient death [4,5]. The standard
of care treatment is represented by corticosteroids [6]; however, new lines of research
are currently being explored and applied, such as the possibility to restore the function
of dystrophin with gene addition, exon skipping [7–9], stop codon readthrough [10,11],
microdystrophin transfer with adeno-associated virus [12], and genome-editing thera-
pies [13]. However, it is still very important to find new additional treatments that can
reduce the symptoms, slow disease progression, and increase overall survival. To achieve
this goal, the repurposing of drugs currently used for other clinical indications repre-
sents an attractive option in drug discovery, reducing development costs and time [14].
Computational approaches and network analysis have been extensively and successfully
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applied to find new gene–disease associations [15,16] and to propose new mechanisms of
action for known drugs [17,18].

Here, we have first defined the disease module for DMD, by extracting 375 gene–
disease associations from DisGeNET [19], and then, by using this module as input for
DIAMOnD [20], we were able to discover new gene–disease associations that we integrated
with transcriptomic expression obtained by the meta-analysis of three microarray datasets—
GSE38417, GSE3307, and GSE6011. After this, we focused our attention on the hubs of
this overlap, considering them as possible drug targets. Finally, we explored potential
therapeutical options using a transcriptomic anti-signature approach (via L1000FDW [21])
and gene–drug interactions (via DGIdb [22], DrugBank [23], and the Comparative Toxi-
cogenomics Database [24]). A summary pipeline of the study is presented in Figure 1.

Figure 1. Study layout.

2. Materials and Methods
2.1. Dataset Selection and Analysis

The NCBI Gene Expression Omnibus (GEO) database (http://www.ncbi.nlm.nih.gov/
geo/; accessed on 2 February 2021) was used to identify high-throughput gene expres-
sion datasets comparing muscle transcriptomic profiles from healthy donors vs. DMD

http://www.ncbi.nlm.nih.gov/geo/
http://www.ncbi.nlm.nih.gov/geo/
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patients. Inclusion criteria for the selection of the datasets were as follows: (i) whole-
genome gene expression data; (ii) the datasets should contain both cases and matched
controls; (iii) human muscle samples. Three datasets were included in the meta-analysis:
GSE38417, GSE3307, and GSE6011 (Table 1). Briefly, the GSE38417 dataset included 6 sam-
ples of skeletal muscle biopsy from healthy people and 16 samples from DMD patients.
The GSE3307 dataset included 17 samples of skeletal muscle biopsy from healthy people
and 10 samples from DMD patients. Biopsies were taken at the time of diagnosis and
were from the vastus lateralis muscle [25,26]. Normal muscle biopsies were from healthy
donors participating in exercise physiology studies [25,26]. The GSE6011 dataset included
14 samples of controls and 23 samples from DMD patients [27]. None of the patients were
or had been under corticosteroid treatment at the time of biopsy. All samples were taken
from the quadriceps. DMD patients’ age was 14.9 ± 14.6 months, while control donors
were 25.7 ± 29.9 months old [27]. Control samples did not have signs of muscle pathology
as determined by histological and histochemical analysis [27].

For the meta-analysis of GSE38417, GSE3307, and GSE6011, a random-effects model of
effect size was used to integrate gene expression patterns from the two datasets. Genes with
an adjusted p value (FDR) < 0.05 and an |effect size| > 2 were identified as differentially
expressed genes (DEGs) and selected for further analysis. The random-effects model
allows the effect size to vary from study to study by incorporating unknown cross-study
heterogeneities in the model. The meta-analysis was performed using the web utility,
NetworkAnalyst (https://www.networkanalyst.ca/; accessed on 2 February 2021) [28],
which uses the metaMA package [29].

Table 1. Datasets included in the meta-analysis.

Accession
Number Tissue Samples Platform

GSE38417 Muscle 16 DMD patients and 6
healthy controls

Affymetrix Human Genome U133
Plus 2.0

GSE3307 Muscle 10 DMD patients and 17
healthy controls

Affymetrix Human Genome U133A
and U133B

GSE6011 Muscle 23 DMD patients and 14
healthy controls Affymetrix Human Genome U133A

2.2. Enrichment Analysis and Sub-Cluster Identification

Functional enrichment analysis was conducted using the web-based utility, Metas-
cape [30]. Metascape analysis is based on publicly available databases, e.g., Kyoto Ency-
clopedia of Genes and Genomes (KEGG), Gene Ontology, MSigDB (Molecular Signatures
Database), and Reactome [30]. Metascape automatically aggregates enriched terms into
non-redundant groups by calculating the pairwise similarity between any two terms [30].

Relationships among the enriched terms were visualized as a network in Cytoscape [31],
considering an edge between two terms if they showed a similarity score > 0.3. No more
than 15 terms per cluster and no more than 250 terms in total were considered.

2.3. Network Construction, Seed Gene Identification, and Disease Propagation Algorithms

The STRING [32] database was used to construct the protein–protein interaction
network. Interaction data were defined as physical interaction, co-expression, predicted,
co-localization, pathway, genetic interactions, and shared protein domains. An interaction
score of 0.7 was used as a threshold to build the network (high confidence). The seed genes
associated with DMD were selected from DisGeNET [19] (https://www.disgenet.org/;
accessed on 2 February 2021), considering a gene disease association (GDA) score > 0.01,
in order to obtain a DMD disease module. DisGeNET is one of the largest publicly available
databases containing collections of genes and variants associated with human diseases [19].
DisGeNET integrates data from expert-curated repositories, GWAS catalogues, animal mod-

https://www.networkanalyst.ca/
https://www.disgenet.org/
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els, and the scientific literature. The DMD disease module was compared with the DEGs,
and the hubs (defined as nodes with at least 20 interactions in the disease module) were se-
lected (seed candidate genes). The DMD disease module was used as input for DIAMOnD
to obtain a ranking of the STRING interactome based on the strength of association with
DMD (DMD interactome). DIAMOnD [20] is an algorithm used to propagate the disease
module in the network and find new gene–disease associations, computing a particular
quantity, defined as connectivity significance, which provides a ranking of all the genes
in the network based on the strength of association with the seed genes. The DEGs over-
lapping with the highest-ranked genes in the DMD interactome were selected (predicted
candidate genes). The seed candidate genes and the predicted candidate genes were used
for the generation of the DMD signature network. A layout of the experimental design is
presented in Figure 1.

2.4. Drug Identification

For the prediction of drugs potentially repurposable for use in DMD, three different
approaches were used in the present study.

First, the L1000FDW web-based utility was used to identify potential drugs for the
treatment of DMD, based on the anti-signature perturbation analysis [21]. L1000FWD com-
putes the anti-similarity between an input gene expression profile and data from the Library
of Integrated Network-based Cellular Signatures (LINCS)-L1000, in order to prioritize
drugs potentially able to reverse the input transcriptional feature [21]. The genes belonging
to the DMD signature network were used as input genes.

Secondly, the last updated version of the gene–drug interaction dataset from DGIdb [22]
(https://www.dgidb.org/; accessed on 2 February 2021) was downloaded and queried
(Nov 2020) in order to select the drugs that can modulate the DMD signature genes.
DGIDb is a comprehensive, free-to-access, online database containing information on
drugs and drug targets and their interactions. The whole database was divided in two
different sub-tables, collecting the drugs that have an upregulated action and the ones that
instead downregulate, respecting the following filtering. Drugs with one of the follow-
ing types of interactions were considered with a downregulated action: “agonist, inhibitor”,
“allosteric modulator, antagonist”, “antagonist”, “antagonist, activator”, “antagonist,
agonist”, “antagonist, allosteric modulator”, “antagonist, antibody”, “antagonist, binder”,
“antagonist, blocker”, “antagonist, inducer”, “antagonist, inhibitor”, “antagonist, inverse
agonist”, “antagonist, ligand”, “antagonist, ligand, partial agonist”, “antagonist, multi-
target”, “antagonist, partial agonist”, “antagonist, potentiator”, “antagonist, substrate”,
“antibody, inhibitor”, “binder, inhibitor”, “blocker”, “blocker, inhibitor”, “cleavage”,
“inhibitor”, “inhibitor, activator”, “inhibitor, antibody”, “inhibitor, inducer”, “inhibitor,
substrate”, “inhibitory allosteric modulator”, “inhibitory allosteric modulator,
antagonist”, “inverse agonist”, “ligand, inhibitor”, “modulator, antagonist”, “modulator,
inhibitor”, “negative modulator”, “negative modulator, agonist”, “negative modulator,
agonist, antagonist”, “negative modulator, agonist, inhibitor”, “negative modulator, antag-
onist”, “negative modulator, binder, inhibitor”, “negative modulator, inhibitor”, “partial
antagonist”, “suppressor”. Drugs that were classified with the following mode of action
were considered as activating drugs: “activator”, “activator, inducer”, “adduct”, “ago-
nist”, “agonist, activator”, “agonist, allosteric modulator”, “agonist, inducer”, “agonist,
positive modulator”, “agonist, potentiator”, “agonist, stimulator”, “binder, activator”,
“inducer”, “inducer, substrate”, “ligand, inducer”, “modulator, activator”, “modulator,
inducer”, “modulator, ligand”, “positive modulator”, “potentiator”, “potentiator, activa-
tor”, “potentiator, binder”, “stimulator”.

These data sources were used to select the drugs that can modulate our gene candi-
dates in DMD.

Finally, a network-based approach for drug identification was applied to the DMD
signature network. A drug–gene network was first constructed by mapping the DMD
signature genes to the molecular interaction databases, DrugBank (Version 5.0) and Com-

https://www.dgidb.org/
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parative Toxigenomics Database (CTD) (November 2016). The drugs were then ranked on
the basis of their degree of distribution in the drug–gene network and the top 50 drugs
were selected for further analysis.

Only drugs and molecules already approved for clinical use or registered in clinical
trials were included in all the analyses.

2.5. Statistical Analysis

Drugs from the DGIDb database were selected based on a hypergeometric test assess-
ing the significance of the overlap between the DMD signature and the total number of
target genes of each drug, considering as background the number of genes in common
between the meta-analysis and the STRING database (n = 10,575). An adjusted p value
(FDR) < 0.05 was considered for statistical significance.

For the network-based prediction of the drugs, we first computed for each drug the
expected mean and standard deviation of the degree of distribution by generating random
gene lists of the same size of the input list. Then, we computed a z-score for deviation from
the expected value, and the significance was calculated. An adjusted p value (FDR) < 0.05
was considered for statistical significance.

3. Results
3.1. Meta-Analysis of Gene Expression in DMD

A total of 37 samples from healthy controls and 49 skeletal muscle biopsies from
DMD patients were used in the meta-analysis. The meta-analysis identified 735 DEGs
between healthy and DMD samples, among which 234 were downregulated and 501 were
upregulated in DMD (the complete list of DEGs is available in Table S1).

3.2. DMD Module Identification and New Associated Gene Prediction

Genes associated with DMD were selected from DisGeNET, considering a GDA
score > 0.01. We found 375 genes associated with DMD, which were used as seed genes
(input) for DIAMOnD. These 375 genes were used to create the disease module for
DMD. Its largest connected component is represented by 260 nodes and 1101 interac-
tions (Supplementary Figure S1). When compared to a 10.000 subnetwork of the same size,
the largest connected component for DMD was much higher compared to the expectation
(z-score: 8.9), proving its higher clustering compared to random sampling and validating
the common biological role of the disease module (Supplementary Figure S2).

3.3. Candidate Gene Identification

Using the DMD disease module network identified from DisGeNET as input,
DIAMOnD was applied to obtain a ranking of the whole STRING interactome based
on the strength of association with the respective disease. We then computed the overlap
between the DEGs from the meta-analysis and the DMD disease module, obtaining 46 genes.
Among these 46 genes, we found five hubs (SPP1, IGF1, FN1, TIMP1, MMP2) in the DMD
disease module network, defined as seed candidate genes. Additionally, the DEGs in
common with the first 735 predicted genes from DIAMOnD were considered as predicted
candidate genes and included 75 genes, among which 72 were hubs in the general STRING
interactome. Among the predicted candidate genes, only five genes were downregulated
(STAT5B, CRKL, TRIP10, EPS15L1, CNKSR1) and 67 upregulated in DMD. Overall, the seed
candidate genes and the predicted candidate genes defined the DMD signature network
(Figure 2A). The comprehensive list of the genes forming the DMD signature network is
presented in Table S2.

MCODE clustering analysis of the DMD signature network revealed significant enrich-
ment for the terms related to post-translational modifications (MCODE1), clathrin-mediated
endocytosis (MCODE2), platelet degranulation (MCODE3), ubiquitination and proteaso-
mal degradation (MCODE5), and immune response (MCODE4 and 6) (Figure 2B,C).



Genes 2021, 12, 543 6 of 16

Figure 2. DMD signature network and MCODE analysis. (A) Network of the seed and predicted candidate genes (77 genes).
Red nodes are the upregulated genes in the DMD signature, while blue nodes are the downregulated genes in the DMD
signature; (B) MCODE analysis of the genes in the DMD signature network (seed and predicted candidate genes); (C) Gene
ontology annotation for the MCODE clusters identified in the DMD signature network. The top three significant terms
are indicated.

3.4. Drugs Associated with DMD

Three different methodologies were applied for the prediction of potential repurpos-
able drugs for DMD. First, the up- and downregulated genes from the predicted candidate
genes and the seed candidate genes were used to perform the anti-signature perturbation
analysis. We enlisted the potential drugs identified by the L1000FWD analysis in Table 2.
Among them, the top drugs with clinical application were emetine and homoharringtonine,
followed by prednisolone and testosterone (Table 2).

Next, the DGIDb database was used for drug prediction, by identifying drugs able
to modulate the genes belonging to the DMD signature. When considering the drugs
that could have a specific action to reverse the DMD phenotype, 27 drugs were found
to reach statistical significance (Table 3). Most of these drugs are used or under study
for their use in oncology, mainly in hematological cancers. They share many of their
targets, so that, in total, only nine genes are effectively drug targets (ITGB2, ITGAM, LYN,
CSF1R, FYN, AXL, CD74, ERBB3, A2M). The top three drugs were Rovelizumab, Dasatinib,
and Ilorasertib (these last two share the same gene targets).
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Table 2. Drugs predicted by the L1000FDW software.

Sig_ID Drug Drug Category Indication Similarity
Score p-Value q-Value Z-Score Combined

Score

CPC007_A375_24H:BRD-
K03067624-003-19-3:10 emetine emetine alkaloids anti-protozoal −0.1948 1.40 × 10−11 2.85 × 10−8 1.78 −19.35

CPC017_A375_6H:BRD-
K76674262-001-01-7:10 homoharringtonine cephalotaxus alkaloids CML −0.1818 1.32 × 10−10 1.49 × 10−7 1.71 −16.86

CPC004_VCAP_24H:BRD-
A01643550-001-03-1:10 prednisolone synthetic glucocorticoid anti-inflammatory or

immunosuppressive agent −0.1688 2.09 × 10−9 1.01 × 10−6 1.81 −15.74

CPC002_VCAP_24H:BRD-
K90553655-001-03-6:10 testosterone anabolic steroid hypogonadism −0.1688 2.42 × 10−9 1.12 × 10−6 1.83 −15.77

CPC017_HT29_6H:BRD-
K07691486-001-04-9:10 roscovitine synthetic organic kinase inhibitor −0.1558 1.58 × 10−8 4.10 × 10−6 1.67 −13.04

CPD002_PC3_24H:BRD-
K08547377-394-01-9:10 irinotecan DNA replication inhibitor colon cancer −0.1429 1.39 × 10−7 2.06 × 10−5 1.66 −11.38

CPC006_PC3_6H:BRD-
K82135108-001-01-9:10 elesclomol sulfur compounds anti-cancer activity −0.1429 1.36 × 10−7 2.06 × 10−5 1.77 −12.16

PCLB002_A375_24H:BRD-
K02130563:1.11 panobinostat

non-selective histone
deacetylase (HDAC)

inhibitor

multiple myeloma and
other cancers −0.1429 2.04 × 10−7 2.55 × 10−5 1.59 −10.64

MUC.CP006_MCF7_6H:BRD-
K77987382-001-08-2:10 mebendazole benzimidazole antihelmintic −0.1429 1.22 × 10−7 1.97 × 10−5 1.63 −11.26

CPC005_PC3_24H:BRD-
A07000685-001-03-6:10 hydrocortisone adrenal glucocorticoid

immune and allergic
disorders, adrenal

insufficiency disorders
−0.1429 1.92 × 10−7 2.45 × 10−5 1.78 −11.93
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Table 3. Drugs predicted using the DGIDb database.

Drugs Indication Number of Target Genes among
the Predicted Candidate Genes

Predicted Candidate
Genes

Number of Total
Target Genes p-Value FDR

ROVELIZUMAB Hemorrhagic shock, multiple
sclerosis, stroke 2 ITGB2, ITGAM 3 1.37 × 10−4 0.012558

DASATINIB Chronic myelogenous leukemia,
acute lymphoblastic leukemia 3 LYN, CSF1R, FYN 23 4.86 × 10−4 0.014904

ILORASERTIB Phase II Study for CDKN2A deficient
solid tumors 3 LYN, CSF1R, FYN 21 3.69 × 10−4 0.014904

NINTEDANIB Idiopathic Pulmonary Fibrosis,
NSCLC 2 LYN, FYN 19 0.007 0.029273

JNJ-26483327 Phase I study for solid tumors 2 LYN, FYN 9 0.002 0.029273

ACALABRUTINIB Mantle cell lymphoma 2 LYN, FYN 14 0.004 0.029273

IBRUTINIB B cell cancers 2 LYN, FYN 16 0.005 0.029273

XL-228 Phase I study for chronic myeloid
leukemia 2 LYN, FYN 16 0.005 0.029273

PEXMETINIB Hematological cancers 2 LYN, FYN 12 0.003 0.029273

TG100-801 Diabetic macular edema and
proliferative diabetic retinopathy 2 LYN, FYN 16 0.005 0.029273

ENMD-981693 Phase II study for solid cancers 2 LYN, FYN 19 0.007 0.029273

GALLAMINE Non-depolarizing muscle relaxant 1 CHRNA1 1 0.007 0.029273

AME-133V
Phase III study for follicular
lymphoma and Phase I for

rheumatoid arthritis
1 ITGB2 1 0.007 0.029273

ERLIZUMAB Heart attack, stroke, and traumatic
shock 1 ITGB2 1 0.007 0.029273

BEMCENTINIB Phase II study for solid and
hematological tumors 1 AXL 1 0.007 0.029273
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Table 3. Cont.

Drugs Indication Number of Target Genes among
the Predicted Candidate Genes

Predicted Candidate
Genes

Number of Total
Target Genes p-Value FDR

MILATUZUMAB Multiple myeloma and other
hematological tumors 1 CD74 1 0.007 0.029273

ARRY-382 Phase II study for advanced solid
tumors 1 CSF1R 1 0.007 0.029273

MM-121 Phase II study for lung and breast
cancer 1 ERBB3 1 0.007 0.029273

PATRITUMAB Phase II study for squamous cell
cancer of the head and neck 1 ERBB3 1 0.007 0.029273

BOSUTINIB Chronic myelogenous leukemia 2 LYN, FYN 23 0.011 0.044

BAFETINIB Phase II study for chronic
myelogenous leukemia 1 LYN 2 0.014 0.046

BACITRACIN Polypeptide antibiotic 1 A2M 2 0.014 0.046

EFALIZUMAB psoriasis 1 ITGB2 2 0.014 0.046

LIFITEGRAST Keratoconjunctivitis sicca 1 ITGB2 2 0.014 0.046

BPI-9016 Phase I study for NSCLC 1 AXL 2 0.014 0.046
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Finally, a network-based approach, using the DrugBank and CTD databases, was ap-
plied (Figure 3). The complete list of the identified drugs is presented in Table 4. The top
three drugs were: Cytarabine, an antimetabolite; entinostat, a synthetic benzamide deriva-
tive histone deacetylase (HDAC) inhibitor; and isotretinoin, a stereoisomer of all-trans
retinoic acid (Table 4). Interestingly, besides entinostat, other HDAC inhibitors were
identified, i.e., trichostatin A, vorinostat, and panobinostat (also found in the L1000FDW
analysis). Additionally, testosterone was found in both the L1000FDW-based and in the
DrugBank/CTD-based analyses (Tables 2 and 4). Moreover, corticosteroids were commonly
identified by L1000FDW (prednisolone and hydrocortisone) and in the network-based
analysis (dexamethasone) (Tables 2 and 4).

Table 4. Predicted drugs using the DrugBank and the CTD databases.

Rank Drug Degree FDR

1 Cytarabine 12 0
2 Entinostat 32 0
3 Isotretinoin 21 0
4 Paclitaxel 15 0
5 Tretinoin 48 0
6 Mitoxantrone 8 8.45 × 10−9

7 Raloxifene Hydrochloride 14 2.54 × 10−8

8 Doxorubicin 15 4.6 × 10−8

9 Indomethacin 8 2.15 × 10−7

10 Simvastatin 8 2.7 × 10−7

11 Decitabine 20 1.01 × 10−6

12 Curcumin 12 1.53 × 10−6

13 Cisplatin 24 2.53 × 10−6

14 Dexamethasone 15 2.96 × 10−6

15 Ethinyl Estradiol 10 3.51 × 10−6

16 Azacitidine 9 4.2 × 10−6

17 Trichostatin A 37 4.82 × 10−6

18 Aspirin 10 6.71 × 10−6

19 Vorinostat 25 9.95 × 10−6

20 Ascorbic Acid 8 1.25 × 10−5

21 Zoledronic acid 19 1.25 × 10−5

22 Resveratrol 24 2.22 × 10−5

23 Sulforafan 13 2.3 × 10−5

24 Tamoxifen 12 2.82 × 10−5

25 Tamibarotene 19 4.06 × 10−5

26 Carmustine 8 5.77 × 10−5

27 Vitamin E 17 5.77 × 10−5

28 Cyclosporine 44 0.000133
29 Etoposide 9 0.000134
30 Carbamazepine 20 0.000136
31 Methotrexate 22 0.000136
32 Panobinostat 14 0.000136
33 Phenobarbital 14 0.000136
34 Calcitriol 21 0.000243
35 Valproic Acid 60 0.000383
36 Genistein 14 0.000496
37 Testosterone enanthate 9 0.00079
38 Fulvestrant 7 0.0013
39 Progesterone 18 0.0013
40 Acetylcysteine 8 0.002457
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Table 4. Cont.

Rank Drug Degree FDR

41 Catechin 8 0.002534
42 Rosiglitazone 9 0.00257
43 Estradiol 30 0.003208
44 Quercetin 20 0.006024
45 Afimoxifene 8 0.013992
46 Troglitazone 8 0.034244
47 Vincristine 8 0.037712
48 Bortezomib 7 0.037951
49 Fluorouracil 12 0.040236

Figure 3. Network analysis of the drug–gene interactome. A network-based approach, based on the
DrugBank and CTD databases, was applied for the prediction of drugs potentially repurposable for
DMD. Red nodes represent genes belonging to the DMD signature, blue nodes represent drugs from
the DrugBank database, and violet nodes represent chemicals from the CTD database.

4. Discussion

DMD is the most common dystrophy in children, with a worldwide prevalence of
approximately 0.5 cases per 10,000 male births [33]. Current treatments manage only to
alleviate the symptoms and are based on a multidisciplinary approach. For this reason,
new therapeutical options are required. Here, we use computational techniques to predict
new potential drugs to be tested and validated in the future.

We defined a DMD disease module, consisting of 375 genes, which of 326 appear in
the STRING network. We then found that the largest connected component of this module
(260 genes) was bigger compared to a random expectation of a 10.000 gene set of the same
size (z-score: 8.9) (Supplementary Figure S1). This finding validates the common biological
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role of the selected genes and so also the choice of our disease module. We then compared
the DMD module with the 735 DEGs from the meta-analysis, obtaining an overlap of
46 genes, of which five were hubs in the sub-network (more than 20 interactors) and all
of them were upregulated in the meta-analysis (SPP1, IGF1, FN1, TIMP1, and MMP2).
We defined these five genes as seed candidate genes and further analyzed them to find
new drugs that can invert their expression.

We used the DMD disease module as input for DIAMOnD. This algorithm is very
useful to find new gene–disease associations and it has largely proven its efficacy in other
diseases [34–36]. However, DIAMOnD alone has the limitation of basing its ranking on
the connectivity properties of the network, ignoring additional biological information.
For this reason, we overlapped the 735 DEGs with the 735 highest-ranked genes from
DIAMOnD, integrating the transcriptional expression into our predictions. We found
75 genes in common, of which 72 were hubs in the STRING interactome, which we defined
as predicted candidate genes. Among these 72 genes, only five were downregulated
(STAT5B, CRKL, TRIP10, EPS15L1, and CNKSR1). Seed and predicted candidate genes
formed together the DMD signature network (Figure 2B).

The gene ontology enrichment analysis of the DMD signature network showed that
a major role in the development of the disease is played by the immune responses and
immunological activation (Figure 2C). This is in agreement with our previous findings,
showing the involvement of the proinflammatory cytokine Macrophage Migration In-
hibitory Factor (MIF) in DMD pathogenesis [37]. In accordance with our previous data,
in this study, we found that two receptors for MIF (CD74 and CD44) are hubs in the DMD
signature network and could hence represent potential drug targets. Indeed, milatuzumab,
a monoclonal antibody directed against CD74, was predicted by our analysis.

We provide here the first attempt to integrate different data sources and methods
to predict new drugs that can be helpful for DMD. By employing different approaches,
we cover different biological aspects that take into account transcriptomic expression (via
L1000FWD) and pharmacokinetics and pharmacodynamics information, via DGIDb and
DrugBank/CTD.

We found new possible drugs useful to reverse the transcriptomic changes of the
genes in the DMD signature network using the L1000FWD (Table 3). Emetine and ho-
moharringtonine are the top two drugs that have been predicted to be able to modulate
these pathological genes. It should be noted that homoharringtonine has never been
previously associated with DMD and muscular dystrophies in general. On the other
hand, it is surprising that we observed that emetine was the top predicted drug in the
L1000FDW analysis, as it was previously associated with myopathy, both in rats [38] and
in humans [39]. However, we may speculate that emetine could exert beneficial effects in
DMD as it strongly induces PGC-1α [40], and transgenic expression of PGC-1α in skeletal
muscle has been indeed shown to ameliorate muscle damage and to improve locomotive
function in mdx mice, a model for DMD [41].

Considering the top drugs able to modulate the predicted candidate genes, both Dasa-
tinib and Ilorasertib share the same target genes (LYN, CSF1R, FYN) and are used as
anti-cancer drugs. On the other hand, Rovelizumab is a humanized monoclonal antibody
studied for hemorragic shock, stroke, and multiple sclerosis. Rovelizumab has not been pre-
viously associated with DMD; however, we show that it is able to modulate two predicted
candidate genes (ITGB2, ITGAM) that are associated with DMD in mdx mice [42,43].

Interestingly, Dasatinib has already been previously studied as a potential treatment
for DMD [44], decreasing the levels of β-dystroglycan phosphorylation on tyrosine and
increasing performance on dystrophies animal models (zebrafish and mice) [44,45]. Most of
the drugs predicted using the DGIDb database are used in hematological cancers and
disorders, in line with the findings of the MCODE enrichment analysis, showing the crucial
role of platelet degranulation and Interleukin-3, Interleukin-5, and GM-CSF signaling.

We also interrogated the DrugBank and the CTD databases in order to predict drugs
that can modulate the genes in the DMD signature by performing a network analysis
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(Figure 3). Interestingly, three HDAC inhibitors were predicted, namely entinostat, tricho-
statin A, and Panobinostat. This is in line with a previous report from Bajanca and Vandel,
who showed that trichostatin A prevents early muscle damage in a zebrafish model of
DMD [46].

Among the predicted drugs, we also found valproic acid, which is reported to have
a particularly increased muscular tropism acting as a negative modulator for GSK3b and
ABCB1 and as a positive regulator of CASP8 and ESR2. This could be a good resource for
DMD, since ESR2 induces muscular differentiation in facioscapulohumeral muscular dys-
trophy [47] and GSK3b could help to reduce muscular degeneration [48,49]. Furthermore,
due to its neurotropism, valproic acid was also reported to improve neural damage in
DMD [50].

In line with the immunological activity in DMD, corticosteroids are currently used
for DMD [6] and, along the same line, also other immunomodulators have been recently
tested for their possible efficacy. For instance, Cyclosporine A was previously suggested
and tested for its potential ability to increase muscular force in DMD. However, contrasting
results have been obtained [51,52]. Here, we identified Cyclosporine A as a drug candidate
from DrugBank, and corticosteroids were found among the top predicted drugs—more
specifically, prednisolone and hydrocortisone in the L1000FDW analysis, and dexametha-
sone in the network-based analysis.

Moreover, both our approaches (L1000FDW-based and the DrugBank/CTD-based
analyses) have identified testosterone as a beneficial treatment in DMD (Tables 2 and 4).
Testosterone administration was recently tested in a small cohort study of 15 adolescents
affected by DMD, giving positive results [53].

The unsupervised prediction of drugs currently used for the treatment of DMD is
worth mentioning, as it underlines the validity of our methodological approach and of the
obtained results.

We found a significant (p < 0.001) overlap (49.3%) between the genes in the DMD
signature network and the genes altered in BMD (Supplementary Figure S3). For this
reason, we believe that these findings can be helpful not only for DMD but also for other
similar diseases, such as BMD, where there is a common genetic origin.

This study represents the first attempt to integrate different data sources and ap-
proaches to find new, efficient drugs for DMD. Due to the high number of existing drugs,
computational approaches are very helpful to test millions of possible associations and
perform a pre-screening to be validated then in biological experiments [14]. In the past,
network approaches alone have been used to reach the goal of drug repurposing [18].
There are some limitations in our study; for example, a better annotation of the metadata of
the biological samples would help to cluster together similar biological patterns, reducing
the heterogeneous complexity (adjustment for different types of mutations and for previous
treatments). We are also aware that further biological knowledge should be considered
and biological validation is necessary to prove our findings. However, we believe that our
approach is a good proof of concept to combine different biological types of information
and lead to new insights to be then validated in vivo.

5. Conclusions

In the last decade, new therapeutic perspectives have been explored and used for
dystrophinopathies. Although improvements in patient treatment and management have
been able to slow down disease progression [13], DMD still represents an unmet medical
need. For this reason, new types of treatments are required. Computational techniques
and big data analysis are very helpful to reach the aim of drug discovery and repurposing.
In this work, we have explored existing gene–disease associations and predicted new
ones, combining techniques of network analysis and transcriptomic expression to identify
possible drug targets. To accomplish this aim, we have integrated many different databases
and techniques, taking into account drug–gene relationships and transcriptomic changes
(L1000FWD, DGIdb, DrugBank, and CTD). From our findings, we have identified simi-
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larities with hematological diseases and highlight 77 possible gene targets, among which
nine (ITGB2, ITGAM, LYN, CSF1R, FYN, AXL, CD74, ERBB3, A2M) are already druggable.
We present here the first attempt to create a comprehensive overview of the possible drugs
that can be beneficial for DMD and potentially for other diseases with the same genetic
background, such as BMD.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/genes12040543/s1, Figure S1: DMD module network, Figure S2: DMD module network is
more connected than a random module of the same size, Figure S3: Shared genes between BMDand
DMD signature, Table S1: List of differentially expressed genes in DMD as determined by the meta-
analysis of the GSE38417, GSE3307, and GSE6011 datasets, Table S2: List of genes belonging to the
DMD signature network.
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