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1. Introduction 

In the last years, the number of cancer diseases is steadily growing into the 

worldwide population. According to the statistical report of Siegel et al. (2021) of 

January 2021, it was estimated to detect 1,898,160 new cases in 2021 in the United 

States. Due to these numbers, the demand of healthcare services in the oncology 

centres is higher, but often such increasing demand is not properly compensated by 

an improvement in the service level of the oncology department. The outcomes of 

this dichotomy are a higher workload for staff in the oncology units and, above all, a 

dramatic growth of the patient waiting time for receiving the treatment. Reducing 

patient waiting time was recognized as an important factor to increase the patient 

satisfaction and well-being. Considering that cancer strongly affects the physical and 

emotional status of the patient, it is necessary to realize a patient-centred service in 

the oncology department for making the daily experience of the patient better and 

less stressful. Therefore, reducing the patient waiting time has to be the leading 

objective for improving the quality level in the outpatient cancer treatment facilities 

(Gesell and Gregory, 2004). 

The oncology patients can undergo different types of treatment, including the 

chemotherapy one. When chemotherapy treatment is required, the patient spends 

lots of time in the oncology department, since the therapy administration can vary 

from few minutes to more than 6 hours. The chemotherapy oncology process also 

includes the medical consultation with an oncologist and the therapy preparation 

performed by a pharmacy department. When the oncology departments daily receive 

several patients, there are high probabilities to generate bottlenecks in the process 

and delays in healthcare service delivery. Furthermore, chemotherapy delivery is 

challenging due to the wide variation of chemotherapy treatments to be scheduled 

and the collaboration with the pharmacy department. Due to aforementioned 

features of the process, the oncology department can be considered as a complex 

system. Therefore the healthcare managers have to face several challenges to 

enhance the performance of the oncology units. These operational challenges are 

consequences not only of an imbalance between resource capacity of the oncology 

unit and increasing demand of patients but also a result of inefficient process 

configuration and chemotherapy appointment scheduling (Liu et al., 2019a). 
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In order to address the complexity of the oncology process and to enhance the 

patient satisfaction in the oncology units, in the last years, the healthcare managers 

are looking at the operations management field. The operations management 

concerns with managing the operations and process of a system to achieve the 

highest level of efficiency of the organization. In the oncology units, the operations 

management faces different type of problems, which can be classified in five groups: 

1. Planning problem: it determines the days in which the patient has to 

undergo to the oncology unit to receive the treatment;  

2. Scheduling problem: it consists of defining the appointment time for each 

patient in a specific single day; 

3. Patient flow management problem: it aims at studying the current 

configuration of the investigated oncology department and finding new 

corrective actions that allow managers to improve the performance of the 

unit. 

4. Healthcare system design problem: it deals with identifying the optimal 

number of resources that characterize the oncology departments; 

5. Healthcare supply chain problem: it concerns with improving the flow 

management of medical materials and services in the healthcare network 

from manufacturer to patients.  

The aim of the thesis is to cope with all the problems of the operations management 

in chemotherapy oncology units with the aim of proposing innovative techniques and 

guidelines for healthcare managers and stakeholders. In particular, the thesis 

discusses the outcomes arising from two projects with the oncology units of Catania 

and Ragusa (both in Southern Italy), in which it was addressed the patient flow 

management problem for reducing the patient waiting time. These real-life case 

studies represented a source of inspiration during the doctoral research. In fact, the 

research works dealing with scheduling and healthcare design system were 

developed as a straight continuation of the previous works in patient flow 

management. The planning problem was not studied since, in the real-life case 

studies, the patient appointment days are decided by the oncologists in respect of the 

chemotherapy protocol.  

Finally, the supply chain problem is arising a growing attention in the healthcare 

context due to the high complexity of the problem compared to the other industries 

(Chen et al., 2013). Kochan et al. (2018) identified four sources of complexity, which 
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are the following: i) the high value of healthcare material and services (such as 

therapys, vaccines or medical devices); ii) the inventory management decisions taken 

by multiple healthcare stakeholders that have no experience with supply chain 

management; iii) the uncertain delivery lead-time of healthcare material and 

services; iv) the increasing and unpredictable patient demand. Therefore, it was 

pointed out the importance of enhancing the operations management in the 

healthcare supply chain. We faced the supply chain topic in collaboration with the 

Industrial Management Research Group of the University of Seville and, in 

particular, with Prof. Jose M. Framinan, which published several scientific articles 

and a seminal book in the supply chain dynamics field (Framinan, 2022). The 

partnership was also enriched by a 4-months visiting research period of the PhD 

candidate and author of the thesis. The thesis also presents the findings arising from 

the research works concerning the supply chain dynamics problem in which the 

analytical models of the literature were enriched by providing models that considers 

new constraints related to the production tasks and uncertainties of the system. The 

future objective will be to adapt these new supply chain models to the healthcare 

operations management field.  

1.1 Research objectives 

The research objectives (RO) of the thesis can be summarized as follows: 

RO1: systematically studying the literature related to the operations 

management of chemotherapy oncology departments; 

RO2: solving the patient flow management problem by identifying the best 

techniques and methodologies to evaluate the current process and proposing 

new configurations of oncology units; 

RO3: solving the outpatient chemotherapy appointment scheduling problem in 

oncology departments; 

RO4: providing guidelines to support managers in the decision-making process 

related to healthcare system design of oncology units; 

RO5: proposing a new realistic supply chain dynamic model that will be used 

for the healthcare context. 
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1.2 Summary of research contributions 

With regard to the research objectives outlined in Section 1.1, the contributions of 

this thesis are the following: 

• A systematic literature review regarding the papers tackling the operations 

management in the chemotherapy oncology units was proposed. Firstly, all 

the key performance indicators utilized by academics and practitioners were 

classified and described. Then, some statistical analysis about the state of art 

were accomplished to demonstrate the increasing attention of managers in 

the topic under investigation. Finally, the papers were briefly described based 

on the specific problem addressed; 

• A novel perspective of lean application on the specific case of the oncology 

units is proposed. The oncology department of a hospital located in Catania 

(Southern Italy) was studied to find lean improvement solutions. A Value 

Seam Map (VSM) integrated with a Discrete Event Simulation (DES) model 

is proposed, called as DVSM. The DVSM was used to study the service 

improvement of the oncology department with the objective of increasing the 

patient satisfaction. A Design of Experiments (DOE) was developed and, 

then, 72 Future Dynamic Value Stream Maps (FDVSM) were evaluated. 

Finally, an ANOVA analysis allowed us to statistically study the impact of all 

the factors in the system and to identify the best FDVSM; 

• Simulation models are considered an effective tool for identifying potential 

ways to improve the patient flow in an oncology unit. To this end, we present 

a new agent-based simulation model designed to be configurable and 

adaptable to the needs of the oncology departments that have to interact with 

an external pharmacy. When external pharmacies are utilized, a courier 

service is needed to deliver the individual therapies from the pharmacy to the 

oncology department. An oncology unit located in Ragusa (Southern Italy) 

was studied through the simulation model and different scenarios were 

compared with the aim of selecting the ward configuration capable of 

reducing the waiting time of patients;  

• Inspired by a real-world context and differently from the other studies, we 

modelled a multi-stage chemotherapy ward for the chemotherapy outpatient 

scheduling (COS) problem in which the pharmacy is located away from the 
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treatment area and therapies are delivered by batch. Processes in oncology 

wards are characterized by several sources of uncertainty that increases the 

complexity of the problem; thus, a stochastic approach was preferred to study 

the outpatient scheduling problem. To generate effective appointments 

schedules, we moved in two directions. First, we adopted a late-start 

scheduling strategy to reduce the idle times within and among the different 

stages, namely medical consultation, therapy preparation and treatment 

administration. Then, since the problem is NP-hard in strong sense, we 

developed a novel self-adaptive harmony search metaheuristic whose 

effectiveness was proved through an extended numerical analysis involving 

the standard harmony search and another optimization technique from the 

relevant literature. Also, a stochastic programming model of the problem 

under investigation was provided to preliminarily validate the attitude of the 

tested metaheuristics in solving the problem at hand. The outcomes from the 

numerical experiments confirmed the efficacy of the proposed scheduling 

model and the self-adaptive metaheuristic algorithm as well; 

• The healthcare system design problem of outpatient chemotherapy oncology 

departments was investigated with the aim of providing guidelines for the 

decision-makers. Precisely, the goal is to drive the healthcare managers 

towards the selection of the alternative resource configurations able to assure 

a target level in terms of average number of patients cared in a given day and 

patient waiting time as well. A stochastic simulation model based on discrete 

time recursive equations was developed to emulate the patient flow in the 

oncology units. The simulation model was combined with a DOE to evaluate 

the impact of several different configurations on three key performance 

indicators: the patient waiting time, the number of patients and a trade-off 

indicator. The analysis of variance and Tukey tests were used to identify the 

influence of each experimental factors on the performance measures. 

Furthermore, we adopted a multi-objective Pareto approach and a well-

detailed abacus of results to identify the non-dominated Pareto solutions and 

to easily evaluate the performances provided by each specific configuration 

considered in the experimental campaign. Finally, a multiple non-linear 

regression model was defined to estimate the performance of the outpatient 

chemotherapy oncology units; 
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• We investigated a two-echelon, two-product Supply Chain (SC) inspired by a 

real-world production/distribution firm, in which the product changeover 

time, necessary to switch from a product to another, induces a variable 

capacity in the factory. Such a varying production capacity is further 

exacerbated by the machine breakdowns that may occur in the 

manufacturing system. Since the two products share the same production 

system, a production control policy (PCP) has to be executed to decide the 

changeover, i.e. to select the product to be manufactured over time. An 

extended experimental campaign and ANOVA analysis were performed to 

investigate how the Fill Rate (FR) of the SC and the standard deviation of 

inventories vary as a series of operational and tactical parameters changes. 

Furthermore, we investigated the impact in terms of FR of four PCPs in the 

two-product, two-echelon supply chain dynamic problem with production 

capacity. We compared the well-known Hedging Corridor Policy (HCP) with 

two variants, namely Modified Hedging Corridor Policy (MHCP) and 

Improved Modified Hedging Corridor Policy (IMHCP), and Demand-Driven 

Material Requirements Planning (DDMRP) policy. Firstly, we used the 

Response Surface Methodology to calibrate the endogenous factors for each 

strategy. Then, through an extended full-factorial Design Of Experiments, we 

evaluated the effectiveness of the production control policies for several 

operational and market scenarios defined by varying exogenous factors. 

Finally, we proposed a new production control strategy, named Adaptive 

Hedging Corridor Policy (AHCP), which was compared with the well-

established HCP. 

1.3 Organization of the thesis 

This section describes the structure of the thesis. Chapter 2 deals with the 

systematic literature review of the papers dealing with the operations management 

in chemotherapy oncology units. Chapter 3 describes the oncology process and 

provide a mathematical formalization of the problem at hand. Chapter 4 presents 

how lean methodology and simulation model can be combined to improve the 

performance of an oncology unit located in Catania (Southern Italy). This chapter is 

based on the following paper: 
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Fichera, S., Costa, A., Corsini, R. R., & Parrinello, V. (2021). “Application of lean 

techniques and simulation to improve efficiency of oncology department.” 

International Journal of Services and Operations Management, In Press. 

Chapter 5 presents a new configurable agent-based simulation model developed with 

the aim of being used by the managers for the patient flow management problem. 

The chapter also discusses of how the simulation model was used to identify the best 

configuration of an oncology unit situated in Ragusa (southern Italy). This chapter 

is based on the following paper: 

Corsini, R. R., Costa, A., Fichera, S., & Pluchino, A. (2022). “A configurable 

computer simulation model for reducing patient waiting time in oncology 

departments.” Health Systems, 1-15. 

Chapter 6 reports the mathematical model and metaheuristic algorithm developed 

to face the chemotherapy outpatient scheduling problem in the oncology department. 

This chapter is based on the following paper: 

Corsini, R. R., Costa, A., Fichera, S., & Parrinello, V. (2021). “Scheduling 

chemotherapy outpatient appointments: a self-adaptive metaheuristic approach.” 

Annals of Operations Research, Under Review. 

Chapter 7 reports the guidelines for healthcare managers that have to face the 

healthcare system design problem in the oncology units. This chapter is based on the 

following paper: 

Corsini, R. R., Costa, A., Fichera, S., Pluchino, A., & Parrinello, V. (2021). “System 

design of outpatient chemotherapy oncology departments through simulation and 

design of experiments.” Operations Management Research, Under Review. 

Chapter 8 describes the new two-product two-echelon supply chain dynamics model 

and reports the findings arising from the comparison between the production control 

policies in a supply chain context. This chapter is based on the following papers: 

Costa, A., Cannella, S., Corsini, R. R., Framinan, J. M., & Fichera, S. (2020). 

Exploring a two-product unreliable manufacturing system as a capacity constraint 

for a two-echelon supply chain dynamic problem. International Journal of 

Production Research, 1-29. 
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Corsini, R. R., Costa, A., & Fichera, S. (2021, August). Comparing production 

control policies in two-product supply chain dynamics. In 2021 IEEE 17th 

International Conference on Automation Science and Engineering (CASE) (pp. 

1002-1007). IEEE. 

Corsini, R. R., Costa, A., Cannella, S., Framinan, J. M. (2021). Analyzing the 

impact of production control policies on the dynamics of a two-product supply chain 

with capacity constraints, International Journal of Production Research. Under 

Review 

Corsini, R. R., Fichera, S., & Costa, A. (2022). Assessing the Effect of a Novel 

Production Control Policy on a Two-Product, Failure-Prone 

Manufacturing/Distribution Scenario. In Selected Topics in Manufacturing (pp. 1-

20). Springer, Cham. 

Finally, Chapter 9 provides concluding remarks and new prospective for future 

research. 
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2. State of the art 

Cancer patients can be treated from different specialists with different types of 

treatments. The chemotherapy is one of the major methods used to cure the cancer 

patients (Liang et al., 2015). Specifically, the chemotherapy treatment consists of 

using drugs to treat cancer patients with the aim of: i) stopping or slowing the 

tumour growth, ii) controlling or preventing the spread of cancer cells, iii) alleviating 

the cancer symptoms (Turkcan et al., 2012). However, the chemotherapy drugs not 

only destroy the cancer cells, but also affect the healthy cells. For this reason, 

chemotherapy drugs are administered in cycles with periods of recovery for the 

patient before the next treatment is given (Barton-Burke et al., 2002). In order to 

plan these cycles, the oncologists define a specific chemotherapy protocol for each 

patient on the basis of different factors such as the type of disease or the patients' 

health status. The protocol provides several information as for example the 

frequency of the chemotherapy appointments, the type of drugs and doses to be used. 

In particular, the protocol determines the days in which the patient has to undergo 

the treatment. The directions of the protocol have to be strictly respected.  

In the treatment days, the patients undergo personalized drug therapy, 

administered in the oncology department under the care of a nurse, and, when the 

treatment is finished, he/she returns home. In brief, the main steps of the daily 

process in an outpatient chemotherapy oncology clinic are: i) the medical 

consultation with the oncologist; ii) the therapy preparation performed by the 

pharmacy; iii) the therapy administration monitored by the nurse. Specifically, in 

the first step, during the medical consultation, the oncologist monitors the health 

status of the patient and evaluates the results coming from the blood exams. After 

that, the oncologist sends to the pharmacy the information about the type and dose 

of the therapy to be prepared. When the pharmacy receives the request, the 

pharmacy technicians start the therapy preparation process. Therefore, the patient 

has to wait that the therapy was delivered from the pharmacy to the oncology 

department for starting the treatment. Moreover, a nurse has to be available since 

she/he has to prepare and monitor the patient. Finally, when the therapy process is 

completed, the same nurse releases the patient who can leave the oncology 

department and come back home. 
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On the basis of the day in which the patients undergo the medical consultation, 

there exist two different strategies that characterize the process of the oncology unit: 

1. Next-day: the medical consultations are processed the day before the 

treatment. In this case, whether the results of the blood tests of the patients 

executed in the previous days in an external laboratory are acceptable, the 

pharmacy department prepared some doses in advance. Furthermore, 

another condition to prepare the therapies in advance depends on the cost of 

the therapy. In fact, the therapy can be prepared in advance only if it is not 

too expensive (Lamé et al., 2020). Although this strategy apparently enables 

reducing the patient waiting time, it is worth noting that patients have to go 

to the clinic on two consecutive days and that could be not so practical if they 

live far from the clinic; 

2. Same-day: the medical consultations are carried out on the same day of the 

treatment administration. This strategy is quite diffused in the real-world 

oncology clinics as it is also preferred by patients (Lau et al., 2014) and 

prevents any waste of expensive drugs in case of deferral of patients or no-

show at the infusion stage (Benzaid et al., 2020). 

If the same-day strategy is adopted, some patients do not need to undergo all the 

stages of the oncology process (i.e., medical consultation, therapy preparation and 

treatment administration). Indeed, patients can be classified into three categories 

depending on their daily pathway (Liang et al., 2015; Baril et al., 2017): 

1. Standard patients or patients POC: go through all the stage of the oncology 

unit; 

2. Repetitive patients or patients PC: are allowed to skip the medical 

consultation, since they have already met the oncologist and have received 

the treatment the day before; 

3. Control patients or patients PO: do not need any treatment since they have 

successfully completed the provided chemotherapy protocol and they only 

require a periodical medical consultation. 

Finally, the patients are also classified as new patients, i.e., patients that go to 

the oncology unit to receive the treatment for the first time, or follow-up patients, 

i.e., patients that have underwent the treatment at least once (Gocgun and 

Puterman, 2014; Le et al., 2015). 
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2.1 Performance measures 

The problem of improving the operations in the chemotherapy oncology outpatient 

oncology departments can be faced by evaluating different performance measures, 

also called as key performance indicators (KPIs). Based on the stakeholder that can 

benefit from the KPIs improvement, the performance measure can be classified as 

patient perspective KPIs and management perspective KPIs (Alvarado et al., 2018).  

Intuitively, the patient perspective KPIs are the performance measures aiming at 

enhancing the patient perception of the quality service in the oncology units. There 

are two performance measures that are classified as patient perspective KPIs, i.e., 

treatment delay and flowtime (or waiting time). The treatment delay indicates the 

delay between the day of the patient appointment and the target day recommended 

by the oncologist in the protocol. This performance measure has to be minimized 

since if the treatment is not administered in the recommended day, the effectiveness 

of the therapy could be reduced negatively affecting the patient health status. 

However, in some situations, the protocol provides some tolerance limits for each 

treatment. Then, the treatment could be administered some days in delay by 

respecting the tolerance limit indicated by the oncologist. The flowtime derives from 

the manufacturing context and consists of the time a job (e.g., raw material or semi-

product) spends in the production system, i.e., it represents the time between arrival 

and departure of the job from the manufacturing system (Baker and Trietsch, 2013). 

Likewise in healthcare system, the flowtime, also named in literature as length of 

stay, is the total time a patient spends in the oncology unit, i.e., the time interval 

ranging from the time the patient is registered at the reception to the end of the 

chemotherapy treatment. Since the flowtime considers the entire patient flow in the 

oncology units, minimizing the flowtime corresponds to the reduction of the patient 

waiting time, which is the main cause of patient complaints. Some works adopted 

directly the patient waiting time as KPI and it measures the total time a patient 

waits for a medical consultation and for a treatment administration in the oncology 

unit. 

In a managerial point of view, the oncology departments have to provide a cost-

efficient service that simultaneously guarantees quality of care for the patient and 

employee satisfaction. To this end, five different management perspective KPIs can 

be pursued, i.e., patient throughput, chair utilization, nurse utilization, nurse 
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overtime and makespan. The patient throughput indicates the number of patients 

cared in the chemotherapy oncology outpatient unit in a day. It represents a measure 

of the daily capacity of the system. It can be also considered as a patient perspective 

KPIs since a higher patient throughput allows the scheduler to reduce the 

postponement of patient appointments. The chair utilization, also denoted as 

bedload, measures the utilization time in percentage of the chairs in respect of the 

total working hours. Similarly, the nurse utilization, also denoted as workload, 

represents the utilization time in percentage of the nurses in respect of the total 

working hours. These two KPIs allow also understating if the number of chairs or 

the number of nurses are adequate to fulfil the daily patient demand. Notably, the 

nurse utilization can be also measured by referring to the total acuity level of the 

system, which is a measure related to the attention required by a patient treatment 

during the monitoring performed by the nurse. The nurse overtime is the extra 

working time of the nurses in respect to the standard working hours. The makespan 

is the closing time which consists of the completion time of the last treatment in a 

day. A reduction of these two last management perspective KPIs allow the managers 

to not pay the cost of work for the extra-hours and, simultaneously, to increase the 

nurse satisfaction and reduce the resource idle time. Finally, the total completion 

time is the total sum of the treatment completion time of the patients received in a 

day. Table 2.1 sums up the performance measures described above and used in the 

chemotherapy oncology outpatient units. Interestingly, Figure 2.1 depicts the 

number of articles that decided to adopt each KPI. It can be noticed that the patient 

waiting time is the most utilized performance measure. This trend of the literature 

justifies the objective of the thesis of reducing the patient waiting time by improving 

the operations management of oncology units. 
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Performance measures Description 

Patient perspective KPIs  

    Treatment delay Delay between the day of the patient appointment and the 

target day recommended by the oncologist in the protocol. 

    Flowtime or waiting time The flowtime is the total time a patient spends in the 

oncology unit, while the waiting time is the total time a 

patient waits for a medical consultation and for a treatment 

administration in the oncology unit. 

Management perspective KPIs  

    Patient throughput Number of patients cared in the chemotherapy oncology 

outpatient unit in a day. 

    Chair utilization or bedload Utilization time in percentage of the chairs in respect of the 

total working hours. 

    Nurse utilization or workload Utilization time in percentage of the nurses in respect of 

the total working hours or the total acuity level. 

    Nurse overtime Extra working time of the nurses in respect to the standard 

working hours. 

    Makespan Closing time which consists of the completion time of the 

last treatment in a day. 

    Total completion time Total sum of the treatment completion time of the patients 

received in a day. 

Table 2.1 Performance measure to evaluate the service in the oncology units 

 

Figure 2.1 Frequency related to the key performance indicators 
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2.2 Background and related works 

Managing the process of a chemotherapy oncology unit is challenging due to several 

factors that was thoroughly explained by Liu et al. (2019a). First of all, there exist 

several chemotherapy protocols that differ from each other. The chemotherapy 

treatment must be administered in the indicated days and only a short tolerance 

limit is accepted whether approved by the oncologist (Gocgun and Puterman, 2014). 

Any treatment administered in days outside the tolerance limit can undermine the 

effectiveness of the cure. Consequently, the wide variations resulting from the 

amount of different protocols complicate the operations required to indicate for each 

patient the days and times for administering the chemotherapy treatment. On the 

other hand, the oncology unit is coordinated with the operations carried out by the 

pharmacy. This interdependency between the departments increases the complexity 

of the problem since there are also variable conditions that affects the therapy 

preparation process performed by the pharmacy. In turn, possible delays on delivery 

the therapies from the pharmacy to the oncology department have a negative impact 

on the performance of the oncology unit (e.g., a worsening of patient waiting time or 

an increase of clinic overtime) (Liu et al., 2019a). In the last years there was an 

increasing interest on applying Operation Research/Management Science (OR/MS) 

techniques to support the decision-making the problem at hand. On this regard, 

Sepúlveda et al. (1999) can be considered the pioneers of decision-making in oncology 

units. Nowadays, this study still represents a source of inspiration for researchers 

that aim to investigate the patient flow and operations in oncology departments.  

In order to summarize the previous works on the application of operation research 

to support the operations management in oncology units, a systematic literature 

review is here proposed. To do this, it was browsed the SCOPUS database by 

adopting keywords related to the problem at hand. A number of 65 articles emerged 

by the search and by investigating the related citations. Figure 2.2, Figure 2.3 and 

Figure 2.4 are provided to better interpret the results of that research. In particular, 

Figure 2.2 highlights the growing interest on that topic by showing the number of 

papers published per years. Figure 2.3 compares the 15 most cited works in terms of 

the citation score and the number of citations (recorded by SCOPUS on the date 

10/06/2021). The citation score is an indicator proposed by Glock and Grosse (2021), 

here calculated in Eq. 2.1 as follows: 
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 Citation score = 
Number of citations

Current year-Year of publication+1
  (2.1) 

As for example, the work of Santibáñez et al. (2009) was mentioned by 108 papers 

and was published in 2009, thus achieving a citation score of 8.31. Finally, Figure 

2.4 shows the countries where the problem at hand was investigated by studying and 

enhancing the operations management of real-life oncology unit. From this figure it 

can be noticed that Canada, France and USA are the countries that provided more 

contribution to this research area, while there are no academic papers related to case 

studies in Italy.  

 

Figure 2.2 Number of articles in the last 20 years 
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Figure 2.3 The most cited articles 

 

 

Figure 2.4 Countries of case studies in literature 

In general, the 68 articles founded through the SCOPUS database can be 

classified in accordance with the specific type of problem investigated in the oncology 

unit, i.e., planning, scheduling and patient flow management problem (see Chapter 
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1). Table 2.2 classifies the different sources of literature on the basis of the type of 

operations management problem addressed in chemotherapy oncology units. It can 

be noticed that some authors have faced different problems in the same work. The 

healthcare design system and supply chain problems are not discussed in this 

chapter since there is no relevant literature in chemotherapy oncology units. 

Chapter 7 and Chapter 8 report brief introductions of the state of art in healthcare 

regarding these two topics. 

Classification criteria Related sources 

Planning Alabdulkarim (2018); Gocgun and Puterman (2014); Gocgun (2018); 

Heshmat and Eltawil (2017, 2018); Ma et al. (2016); Mazier and Xie 

(2009); Sadki et al. (2010a, 2010b); Sadki et al. (2013). 

Scheduling Ahmed et al. (2011); Bouras et al. (2017, 2021); Castaing et al. (2016); 

Demir et al. (2021); Dobish (2003); Edwards et al. (2017); Garaix et al. 

(2020); Hahn-Goldberg et al. (2014); Hesaraki et al. (2019); Heshmat et 

al. (2017,2018); Huang et al. (2018, 2019); Huggins and Claudio (2019); 

Huggins et al. (2014); Liang and Turkcan (2016); Liang et al. (2015); Liu 

et al. (2019a); Mandelbaum et al. (2020); Sadki et al. (2011); Sevinc et al. 

(2013); Slocum et al. (2021); Suss et al. (2017, 2018); Yokouchi et al. 

(2012). 

Planning and 

scheduling 

Alvarado and Ntaimo (2018); Alvarado et al. (2018); Benzaid et al. (2020); 

Condotta and Shakhlevich (2014); Heshmat and Eltawil (2021); 

Hooshangi-Tabrizi et al. (2020); Issabakhsh et al. (2018, 2021); Le et al. 

(2015); Ramos et al. (2020); Santibáñez et al. (2012); Turkcan et al. 

(2012); Woodall et al. (2013). 

Patient flow 

management 

Aboumater et al. (2008); Ahmed et al. (2011); Alvarado et al. (2018); 

Arafeh et al. (2018); Baesler and Sepúlveda (2001); Baril et al. (2016a, 

2016b, 2017, 2020); Bernatchou et al. (2017a, 2017b); Gruber et al. (2003, 

2008); Hamad and El-Kilany (2020); Jane Vortherms et al. (2015); Kallen 

et al. (2012); Kang and Haswell (2020); Lamé et al. (2020); Liang et al. 

(2015); Liu et al. (2019a); Santibáñez et al. (2009); Suss et al. (2017); van 

Lent et al. (2009); Woodall et al. (2013); Yokouchi et al. (2012); Yu et al. 

(2021). 

Table 2.2 Classification of the scientific articles 
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2.3.1 Planning problem 

The chemotherapy planning decision problem determines the days in which the 

patient has to undergo to the oncology unit to receive the treatment. To guarantee 

the effectiveness of the treatment, these appointments should be planned as close as 

possible to the day indicated in the protocol. Only a short tolerance limit approved 

by the oncologist can be accepted (Alvarado et al., 2018; Gocgun and Puterman, 

2014). The planning problem assumes a finite time horizon of several days or 

months. Optimization methods and heuristic algorithms were used by the literature 

to plan the treatment days according to protocol. Mazier and Xie (2009) are the firsts 

to solve the chemotherapy planning problem. They developed a mixed integer 

programming (MIP) model to construct a solution for achieving a better-balanced 

workload of physician and bedload. The works of Sadki et al. (2010a, 2010b) can be 

considered a continuation follow-up of the paper of Mazier and Xie (2009). In fact, 

they used the MIP model to define both oncologist and patient schedules with the 

objective of balancing the daily bedload. However, they stated that the MIP model 

requires high computational times to solve the problem due to large number of 

variables and constraints. To overcome this issue, they propose new heuristic 

algorithms as solving methodologies of the chemotherapy planning problem. 

Differently from the other works, Gocgun and Puterman (2014) focused only on the 

treatment administration stage, without considering the oncologists on the 

mathematical formalization of the problem. They used Markov decision process 

(MDP) for the chemotherapy planning problem. Due to the complexity of solving the 

problem with MDP, they employed linear-programming-based Approximate 

Dynamic Programming (ADP) to obtain approximate solutions. They also used a 

simulation model to demonstrate the effectiveness ADP by comparing it with easy-

to-use heuristic decision rules. The objective of their work was to define the day of 

the patient appointment respecting the tolerance limit of the protocol. The work was 

improved by the paper of Gocgun (2018) in which the uncertainties deriving from the 

possible cancellations of the appointment were added in the model. Another stream 

of the literature on the chemotherapy planning problem deals with the definition of 

the treatment day of new patients. Sadki et al. (2013) focused on the planning 

problem of the new patients without changing the schedule of the existing patients 

and assuming that the oncologist schedules is a-priori known. The planning problem 
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of new patients was addressed also in the work of Ma et al. (2016). They used a 

simulation model to compare different decision policies and oncologist specialization 

configurations with the aim of efficiently use the resources of the oncology unit. A 

mathematical model was also provided to optimally solve the problem. Heshmat and 

Eltawil (2017) studied the planning problem of new patients by neglecting the 

medical consultation stage and including the therapy preparation process performed 

by the pharmacy. They proposed a MIP model to assign the starting days of 

treatment of new patients with the aim of achieve two different objectives, i.e., 

minimizing the total completion time of the oncology unit and the treatment delay 

of the new patients. One year later, Heshmat and Eltawil (2018) published a new 

work that also addresses the problem of finding the optimum drug infusion doses to 

specify in the protocol. Finally, Alabdulkarim (2018) combined simulation and 

optimization to plan the starting days of the new patients. Specifically, they 

developed a system dynamics (SD) simulation model to find the critical days for the 

new patients and a mixed-integer programming (MIP) model to define the optimal 

start days.  

2.3.2 Scheduling problem 

The chemotherapy outpatient scheduling (COS) decision problem consists of defining 

the starting time of the appointment for each patient in a specific single day. In fact, 

the time horizon of the scheduling is of one day. Furthermore, the aim of the 

scheduling problem is to allocate the patients to the available resources of the 

oncology unit. The scheduling problem is strongly affected by the strategy that 

characterizes the process in the oncology unit, i.e., next-day or same-day (see Section 

2.1). In the next-day chemotherapy, the medical consultations are processed the day 

before the treatment. In this case, the scheduling problem just consists in allocating 

patients to chairs, assigning them a nurse and defining the starting times of the 

treatments. In the same-day chemotherapy strategy, the medical consultations are 

carried out on the same-day of the chemotherapy treatment and then it should be 

considered in the scheduling process.  

The literature background reveals that the COS problem can be viewed under two 

different perspectives, namely off-line or on-line scheduling. As for the off-line 

scheduling, the daily list of patients is known in advance and the scheduler usually 

generates the appointment schedule a few days before the treatment. Instead, in the 
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on-line scheduling the appointment time is communicated to the patient 

immediately after his request or shortly after (e.g., no later than 24 hours) by 

employing a properly designed template in which a series of vacant appointment 

slots, preliminarily generated on the basis of a specific criterion, have to be filled by 

the patient requests. Several solving approaches were employed by the literature to 

cope with the COS problem. The contribution by Dobish (2003) can be considered as 

the seminal research on the problem under investigation in which they adopted a 

next-day scheduling method based on a timetable for each day of the week. Similarly, 

Edwards et al. (2017) made use of a specific template or ad-hoc rules, based on the 

acuity level.  

From then on, most literature recognized the need of explicitly considering the 

patient flow to improve the performance of oncology units. Indeed, some works 

developed simulation models to investigate the effectiveness of diverse scheduling 

rules on the performance of the oncology units (Ahmed et al., 2011; Yokouchi et al., 

2012; Huggins et al., 2014; Liang et al., 2015; Liu et al., 2019a; Slocum et al., 2021). 

However, the mathematical programming was identified as the leading methodology 

for solving the COS problem. In this regard, Sadki et al. (2011) studied the same-day 

appointment scheduling problem with two major resources, namely oncologists for 

consultation and beds for injection, and proposed a combination of heuristics based 

on the Lagrangian relaxation to minimize patient waiting time and makespan. DES 

modelling and mathematical programming were used by Liang et al. (2015) to 

compare the proposed appointment scheduling tool with the current practice under 

a series of operational measures such as, patient waiting times, clinic total working 

time and resource utilization. Notably, they solved a linear programming model to 

schedule patient appointments according to a same-day off-line strategy. Liang and 

Turkcan (2016) distinguished between functional and primary care delivery models 

to provide chemotherapy treatments to cancer patients, depending on the 

availability of nurses. They considered a single-stage system where a set of patients 

have to be scheduled off-line on the same-day only for the infusion phase and 

proposed two multi-objective optimization models based on mathematical 

programming that ignore both oncology consultation and lab test. Suss (2017, 2018) 

proposed an algorithm that considers the classification of patient and the capacity of 

each stage of the process. Heshmat et al. (2017) improved the scheduling model 

proposed by Turkcan et al. (2012) in their hierarchical approach (see Section 2.3.3) 
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so that it can be solved in a smaller computational time also for larger-sized 

instances. Constraint programming was applied by Hahn-Goldberg et al. (2014) to 

the next-day outpatient scheduling problem considering the on-line approach. A 

similar approach for the same-day case can be attributed to Huang et al. (2018, 

2019), who developed a chemotherapy outpatient scheduling template by reducing 

the violation between resource assignment and treatment requirements. Bouras et 

al. (2017) introduced a mixed integer programming (MIP) model for reducing the 

patient waiting time of a same-day off-line COS problem on a real-life oncology unit. 

In particular, they modelled the whole set of system stages, namely oncology 

consultation, therapy preparation and injection, also considering the limited number 

of resources at the different stages. To reduce the number of binary variables and 

constraints, thus enhancing the computational efficiency of their COS approach, 

Heshmat et al. (2018) devised a two-stage COS method, properly inspired by cellular 

manufacturing systems, which involves a clustering phase and a mathematical 

programming phase, for the minimization of the total completion time referred solely 

to the injection stage of an oncology unit. Another valuable contribution in the COS 

scenario is attributable to Hesaraki et al. (2019), who focus on the infusion stage to 

generate an on-line scheduling method subject to the nursing constraint. They used 

integer programming to design a template of vacant appointment slots that follows 

a bi-criteria objective based on the combination of weighted flow time and makespan. 

A different perspective emerged from the research by Huggins and Claudio (2019). 

They presented a mathematical model for the next-day COS problem that manages 

the chemotherapy patient appointments while taking into consideration the 

workload of nurses and pharmacy technicians as a constraint of the optimization 

problem in a cancer clinic. Recently, Bouras et al. (2021) published a paper, which 

can be considered the straight continuation of their previous work (Bouras et al., 

2017), where a tabu search inspired metaheuristic algorithm was developed to 

overcome the computational time issue arising from the use of the MIP model.  

All the aforementioned works make use of deterministic model to solve the COS 

problem. However, human factor may have a notable impact on the chemotherapy 

path of oncology outpatients, so deterministic models could represent a strong 

simplification. Mandelbaum et al. (2020) exploited the principles of queueing theory 

for the off-line appointment sequencing problem by engaging a large number of 

servers (chairs) and customers (patients) in a stochastic system wherein service 
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duration and punctuality are subject to a significant uncertainty. They proposed a 

data-driven approach based on the infinite-server queues whose effectiveness was 

proved by testing their approach against near-optimal algorithms. Both in 

deterministic and in stochastic mathematical programming models, the time to 

converge drastically depends on the number of patients and on the number of 

resources as well. Hence, heuristic or metaheuristic algorithms may represent a 

valid alternative to achieve a perfect compromise between qualities of solutions and 

computational times in solving COS problems. To this end, Sevinc et al. (2013) 

proposed a two-phase approach for the next-day COS problem. They used a 

specifically devised heuristic algorithm for handling the appointment scheduling for 

the laboratory tests, and two heuristics based on the multiple knapsack problem for 

the second phase in which patients have to be on-line assigned to the infusion seats. 

Castaing et al. (2016) presented a two-stage stochastic programming (SP) model for 

the next-day COS problem of an oncology unit located in USA. Since this 

optimization method requires a prohibitive computational time to be solved, the 

authors introduce a heuristic algorithm to find approximate solutions in a 

reasonable time. The work of Garaix et al. (2020) represented a valuable contribution 

adopting a metaheuristic algorithm in the field of the stochastic COS problem. In 

fact, they developed a GRASP algorithm to generate sub-optimal lists of patients for 

consultation and treatment phases in a same-day chemotherapy treatment scenario. 

Finally, Demir et al. (2021) formulated a two-stage stochastic programming model 

for the same-day COS problem focusing only on the treatment stage, in order to 

optimize a multi-criteria objective function, i.e., the weighted sum of nurse overtime, 

chair idle time and patient waiting time. However, since they experienced high 

computational times to solve real-life instances, they developed a heuristic method 

based on a progressive hedging algorithm.  

2.3.3 Integrated planning and scheduling problem 

The previous sections discussed the methodological approach adopted by the 

literature to address the planning problem (in Section 2.3.1) and the scheduling 

problem (in Section 2.3.2). However, some works presented methodologies aiming at 

solving simultaneously both the planning and scheduling problem of the oncology 

units. In this end, some authors presented an integrated approach involving both 

planning and scheduling phases under a unique solving method. Le et al (2015) 
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proposed a tabu search based metaheuristic algorithm to solve the integrated 

planning and scheduling problem with the aim of maximizing the number of patients 

scheduled over a planning horizon, minimizing the overtime and finding a balanced 

nurse workload. Issabakhsh et al. (2018) developed a MIP model to reduce patient 

waiting time and makespan along several days planning horizon. This work was 

recently improved by the same authors in which they also proposed a robust 

scheduling heuristic based on adaptive large neighbourhood search to solve medium-

large instances problem (Issabakhsh et al., 2021). Finally, Hooshangi-Tabrizi et al. 

(2020) presented an adaptive and flexible procedure, which combines two 

optimization models. The first model is aimed at dynamically schedule incoming 

appointment requests, while the second model is utilized for rescheduling already 

booked appointments to better allocate resources.  

Other authors used a sort of hierarchical approach wherein the first stage is used 

to identify the day of the appointment while, in the second stage, the appointment 

starting time and the assignment of chairs and nurses are defined (Santibáñez et al., 

2012). Turkcan et al. (2012) was the first study that hierarchically solved the 

planning and scheduling problem for chemotherapy treatment. They used two 

diverse mathematical programming models to tackle both planning and scheduling 

of chemotherapy patients. They proposed a MIP model to define the treatment days 

of new patients without adjusting the plans of existing patients. In this stage, the 

performance measures are the minimization of treatment delays and the workload 

of resources. The second model was used to find the resource requirements and 

acuity level for the scheduling problem of new patients. Woodall et al. (2013) focused 

on the nurse assignment by making use of MIP model to optimize the weekly and 

monthly scheduling of different types of nurses. Then, they proposed a simulation-

optimization approach model to optimize the starting times of nurse shifts. Condotta 

and Shakhlevich (2014) exploited the mathematical programming for generating a 

multilevel template, which aimed at minimizing the patient waiting times and the 

nurse workload for an outpatient clinic. Notably, the template was specifically used 

to book new patient chemotherapy treatment. Alvarado and Ntaimo (2018) used a 

mean-risk SP model powered by a specific heuristic to schedule patient 

appointments and resources under uncertain conditions (such as acuity levels and 

availability of nurses) for reducing patient waiting time and nurse overtime. To 

evaluate the effectiveness of the solution arising from the SP model, they used the 
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simulation model developed by Alvarado et al. (2018). Benzaid et al. (2020) proposed 

a three-stage procedure to solve the planning and scheduling problem. Specifically, 

the first two stages address the problem of determining a date and start time for 

each new patient and assigning patients to nurses. The last stage is devoted to solve 

the scheduling problem by simulating last-minute changes due to cancellations and 

uncertainties on nurse availabilities. Similarly to the other works, Ramos et al. 

(2020) and Heshmat and Eltawil (2021)  proposed a two-stage solving approach for 

the planning and scheduling problem, but, interestingly, they included the therapy 

preparation process performed by the pharmacy in the problem formulation. In 

particular, Heshmat and Eltawil (2021) used a DES model for the scheduling 

problem considering the drug availability and pharmacy technicians working-hours. 

2.3.4 Patient flow management problem 

The literature focused also in studying the patient flow of the chemotherapy oncology 

units to propose corrective actions and new configurations of the process with the 

aim of enhancing the performance measures. In this context, Gruber et al. (2003) 

were one of the firsts to point out the need of redesign the patient flow in the 

chemotherapy oncology outpatient unit by leading a project (called “Perfect day”) 

which had the objective of improving the quality of the healthcare services provided. 

Some years later, Gruber et al. (2008) conducted a new project to enhance 

performance measure related to a managerial viewpoint. Precisely, they aimed at 

avoiding the barriers to increase patient throughput (i.e., total number of patients 

cared in a day) and resource utilization while not compromising patient safety. 

Aboumater et al. (2008) implemented an electronic system to decide the priority of 

therapies to be prepared by the pharmacy that based on anticipated patient arrival 

at the chemotherapy oncology outpatient unit. Kallen et al. (2012) delineated 

corrective actions to increase appointment process efficiency, enhance the 

communication between department and employ an information technology system 

in the pharmacy unit. Jane Vortherms et al. (2015) carried out a project to implement 

an oncology outpatient staffing system with the goals of maximizing patient 

satisfaction, employee engagement, and finding a balanced workload distribution.  

However, the works in literature mainly use DES modelling and compare 

alternative configurations by varying the number of resources, operational or 

scheduling policies and arrival rate for the patients. Sepúlveda et al. (1999) and 
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Baesler and Sepúlveda (2001) can be considered the pioneers of using simulation 

modelling for the patient flow management problem. On the other hand, considering 

that the paper of Santibáñez et al. (2009) is the most cited in this topic (108) and it 

has the highest value of citation score (8.31), their work is a seminal paper 

concerning the decision-making through simulation in oncology units. Nowadays, 

these studies still represent a source of inspiration for researchers that aim to 

investigate the patient flow in oncology departments. Some research work handle 

simulations to examine the performance of the ward by focusing primarily on the 

administration of chemotherapy treatment. Ahmed et al. (2011) and Yokouchi et al. 

(2012) employed simulation to propose new appointment scheduling rules with the 

aim of increasing both number of patients per day and bedload and reducing patient 

waiting time. Alvarado et al. (2018) developed a simulation model to analyse 

operational strategies related to the planning of patient appointments in an oncology 

clinic. Woodall et al. (2013) and Liu et al. (2019a) also included the activities of the 

pharmacy, which consists of preparing the therapies required by the oncology unit. 

The former considered the pharmacy operations in the simulation model to define 

the best daily shift start time in oncology unit. The latter performed a process 

analysis and a simulation study to evaluate the influence of simultaneous changes 

in demand level, chemotherapy staffing levels and appointment scheduling practice 

on the clinic overtime and patient waiting time. Baril et al. (2020) examined the 

workload of nursing staff in relation to the administration of patient treatments, 

considering both physical and mental workload. On the other hand, other works in 

the literature considered all the stage of the same-day oncology process (i.e., medical 

consultation, therapy preparation and therapy administration) to improve patient 

flow and balance resource utilization in oncology clinics. Interestingly, Liang et al. 

(2015) proposed a robust DOE so as to support healthcare managers in the decision-

making process by investigating the impact of various experimental factors on such 

things such as the number of patients per day or number of chairs. Baril et al. 

(2016b) combined simulations with a business game in a Kaizen event, i.e., a 

workshop whose goal is to encourage the continuous improvement of a specific area 

or process. The authors compared a series of alternative management configurations 

and pointed out the need to include pharmacy technicians in the Kaizen event. Baril 

et al. (2016a, 2017) studied the nurse tasks in an oncology department with the goal 

to reduce their workload. Bernatchou et al. (2017a, 2017b) developed a DES 
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simulation to emulate the actual configuration of an oncology department and to 

evaluate the effect of different arrival patterns on patient waiting time and resource 

utilization. Suss et al. (2017) constructed a DES model to identify the elements that 

cause long patient waiting time and of one another to test hypotheses about potential 

improvements. Hamad and El-Kilany (2020) built a simulation model to compare 

two different scenarios with the aim of avoiding unnecessary delays. Differently from 

the other works, Kang and Haswell (2020) developed the simulation model on the 

basis of real-time data, while Lamé et al. (2020) merged the DES model with soft 

system methodology and ethnographic observations. Interestingly, inspired by the 

work of van Lent et al. (2009) that applied lean thinking to increase the efficiency of 

oncology units, Arafeh et al. (2018) and Yu et al. (2021) are the unique to merge the 

methods of six sigma and lean manufacturing with simulation to study the patient 

flow and improve the performance of oncology units. 
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3. Problem statement 

3.1 Problem description 

The health service of the chemotherapy oncology departments considered in this 

thesis is defined as day-hospital and the patients are named as outpatients since 

they receive the treatment and leave the hospital in the same day. Furthermore, the 

thesis is focused on the same-day chemotherapy oncology units (see Chapter 2 for 

the difference between same-day and next-day). The same-day oncology process 

consists of three main steps, i.e., the medical consultation, the therapy preparation 

process and the chemotherapy administration. For this reason, it is usually 

considered as the counterpart of a three-stage hybrid flow shop of a manufacturing 

system (Bouras et al., 2017, 2021; Hahn-Goldberg et al., 2014) with limited human 

resources, denoted in literature as HFS/HR problem (Costa et al., 2013).  

Figure 3.1 shows the sequence of steps that a patient undergoes during the 

treatment day, which can be described in detail as follows: 

1. Medical consultation: Each patient arrives at the department and meets 

the nurse at reception for the registration. The first time a patient goes for a 

medical consultation, she/he is assigned a referee oncologist, which defines 

the chemotherapy protocol. From that moment on, every time the patient goes 

to the oncology unit, she/he always consults the same referee oncologist so as 

to be assured the continuity of care of the patient. During the medical 

consultation, the oncologist reviews the results of the blood test that the 

patient preliminary underwent in the same hospital or in an external 

laboratory. Then, the referee oncologist carries out a medical examination of 

the patient health status. Based on the outcomes coming from the blood test 

and the current health status of the patient, the oncologist decides if the 

patient is ready to receive the treatment in that working day. If the oncologist 

assesses that the patient is not able to undergo the treatment, the patient is 

deferred and the appointment is postponed to another day. Finally, based on 

the patient health conditions, the oncologist sends the request to the 

pharmacy of both type and doses of the therapy to be injected; 

2. Preparation of therapies: The requests of therapy are processed by the 

pharmacy.  In some cases, the pharmacy has to satisfy the orders coming from 
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different departments of the hospital. However, it usually gives priority to 

the preparation of chemotherapy therapies (Garaix et al., 2020; Lamé et al., 

2020). The requests sent by the oncologists are processed in chronological 

order. In general, the pharmacy disposes of pharmacy technicians, which are 

engaged to prepare the therapies, and pharmacy assistants, which have the 

role of processing the requests, picking up the drugs from the inventory and 

providing them to the pharmacy technicians for the preparation of the 

therapy. When the therapy is ready, it is delivered to the oncology 

department. The therapy delivery time is strictly related to the location of the 

pharmacy and, thus, on its distance from the oncology department. In fact, if 

the pharmacy is in-house, i.e., in the same floor or building of the oncology 

unit, the therapies are delivered by a nurse or through a conveyor belt as soon 

as they were prepared (Aboumatar et al., 2008). On the other hand, if the 

pharmacy is detached from the oncology unit, the therapies are gathered in 

several batches by the pharmacy assistants and a courier service is needed to 

transport the batch of therapies with a vehicle; 

3. Chemotherapy administration: The patients need two different resources 

to receive the treatment in the oncology department: i) the treatment chair 

or bed that accommodate the patient during the therapy administration; ii) a 

nurse that has to prepare and monitor the patient. Therefore, once the 

therapy was delivered to the oncology unit, the chemotherapy treatment of 

patient may start if both a nurse and a treatment chair are available. In this 

case, the setup task can be accomplished by a nurse, which prepares the 

patient for the chemotherapy treatment. Every nurse can prepare only one 

patient at a time. During the treatment time of patients, any nurse is in 

charge to simultaneously monitor more than one patient. The limit of number 

of patients that a nurse can monitor simultaneously in literature is usually 

set to four (see for example Baesler and Sepulveda, 2001 or Baril et al., 2020 

among the others). Finally, when the therapy process is completed, the 

patient discharges the oncology department. 
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Figure 3.1 Patient flow in the oncology unit 

3.2 Mathematical notation of the problem 

This section reports the mathematical notation that is used along the whole thesis:  

p Patient p=1,…,P, where P = POC + PO + PC 

POC Total number of standard patients 

PO Total number of control patients 

PC Total number of repetitive patients  

o Oncologist o=1,…,O 

d Pharmacy technician d=1,…,D 

a Auxiliary courier a=1,…,A 

b Batch b=1,…,B 

c Chair for the treatment c=1,…,C 

n Nurse n=1,…,N 

Clp Classification of patient p (Clp ∈ {POC; PC; PO}) 

Opp Oncologist assigned to the patient p (Opp ∈ O) 

Atoo Available time of oncologist o 

rp Arrival time of patient p 

Scp  Medical consultation starting time of patient p 

Dcp Duration of medical consultation of patient p 
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Ccp Medical consultation completion time of patient p 

Atdd Available time of pharmacy technician d 

Spp  Therapy preparation starting time of patient p 

Dpp Duration of therapy preparation of patient p 

Cpp Therapy preparation completion time of patient p 

Ataa Available time of auxiliary courier a 

Sbb Therapy delivery starting time of batch b 

CAPb Batch size of batch b 

TDb Therapy delivery duration of batch b 

Cbb  Therapy delivery completion time of batch b 

Atnsetn Available time of nurse n for the setup 

Atcc Available time of chairs for treatment c 

Nmax Maximum number of patients monitored by a nurse 

Ssetp  Setup starting time of patient p 

Dsetp Duration of setup of patient p 

Csetp Setup completion time of patient p 

Sip Treatment starting time of patient p 

Dip Duration of treatment of patient p 

Cip Treatment completion time of patient p 

3.3 General simulation pseudo-code of the problem 

The description of the problem can be formalized through a pseudo-code that is 

reported in Table 3.1. This pseudo-code was used to develop the simulation models 

described in the next chapters. A unique difference exists between the simulation 

models used for the patient flow management problem (see Chapter 4 and Chapter 

5) and the simulation model of the metaheuristic algorithms used for the patient 

appointment scheduling problem (see Chapter 6). In fact, in the first problem the 

patient arrival time is described by a stochastic distribution arising from the 

historical data collected in the real-life oncology units. In the second case, the 

decisional problem consists of indicating the arrival time to the patients (through 

scheduling algorithms) so as to enhance the performance of the oncology units. 

Firstly, the number of resources of the oncology units and pharmacy, i.e., number 

of oncologists O, number of pharmacy technicians D, number of auxiliary couriers A, 
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number of nurses N and number of chairs for the treatment C, have to be introduced 

in the algorithm. Based on the statistical analysis of the historical data of the 

problem, the total number of patients and the variables that vary for each patient or 

each batch have to be defined by using deterministic values stochastic distributions. 

Then, the available time variables (e.g., Atoo or Atcc), which indicated the time when 

the resources are available for the next patient, are set to zero.  

From rows 4 to 14 the table describes the code that computes the starting time 

and the completion time of the medical consultation. Precisely, for each patient p 

that is classified as standard patient (POC) or control patient (PO), the medical 

consultation starting time depends on the arrival time of patient p (the time in which 

the patient is available to meet the oncologist) and the available time of the 

oncologist assigned to the patient p. The medical consultation completion time is the 

sum of the starting time and the duration of the meeting with the oncologist. Once 

concluded the medical consultation of patient p, the available time of the oncologist 

assigned to patient p has to be updated. As for the repetitive patients (PC), they skip 

the medical consultation and, then, their medical consultation completion time is 

assumed to be equal to their arrival time. Finally, the patients are ordered using the 

First-In-First-Out (FIFO) policy that refers to the medical consultation completion 

time. 

From rows 15 to 23 the code describes the code that computes the starting time 

and the completion time of the therapy preparation process performed by the 

pharmacy technicians. This stage refers to the patients POC and PC since the control 

patients (PO) go back home after the medical consultation. The therapy preparation 

process can start as soon as the therapy request is sent by the oncologists. It is 

assumed that it happens when the medical consultation time is concluded (i.e., 

medical consultation completion time). Therefore, in order to start the therapy 

preparations process, the pharmacy has to have received the therapy request from 

the oncologist (i.e., Ccp) and one of the pharmacy technicians has to be available to 

prepare the therapy (i.e., min{Atdd}). The therapy preparation completion time is 

calculated by summing the starting time and the duration of the therapy preparation 

process and it is used to update the available time of the pharmacy technician. 

Finally, the patients are ordered using the FIFO rule based on the therapy 

preparation completion time. 
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From rows 24 to 36 the code evaluates the therapy delivery process for each 

patient that have to undergo the treatment administration (i.e., patients POC and 

PC). Firstly, an auxiliary variable ‘batch’ is initialized to record the patients’ 

therapies that compose the batch. The pharmacy has to follow a serial-batching 

delivery approach. Even if a therapy is ready, the therapy batch has to be filled 

before being delivered. Therefore, the batch will be delivered when the last therapy 

of the batch is ready. As in serial-batch scheduling problem, the completion times of 

the therapies in a batch correspond to the completion time of the last therapy of the 

batch (Shabtay, 2014). When the size of the batch coincides with the maximum batch 

size CAPb, then, the therapy delivery starting time is computed. It depends on the 

first available time between the couriers and the time in which the batch is 

completed. Then, the therapy delivery completion time is computed through the sum 

between the therapy delivery starting time and the therapy delivery duration of the 

batch b. The therapy delivery duration indicates the time spent by the courier to go 

from the pharmacy to the oncology unit. To update the courier available time, it has 

to be also considered the time needed to come back from the oncology unit to the 

pharmacy. Notably, if the pharmacy is in-house (i.e., it is situated in the same floor 

or building of the oncology unit), the therapies are delivered as soon as they are ready 

without being collected in batches. In this scenario, CAP is equal to one and, then, 

the batch is composed by only one therapy. 

Finally, from rows 37 to 48 the code describes the procedure of the treatment 

administration. For patients POC and PC, the chemotherapy treatment can start if 

the therapy was delivered in the oncology unit, a nurse is available to prepare and 

monitor the patient p and a chair is free for the treatment. Precisely, the nurse can 

prepare or setup one patient at a time and can monitor Nmax patients simultaneously. 

However, the number of nurses of the oncology unit is usually set equal or greater 

than C/Nmax. Therefore, a nurse will be always available to monitor a new patient. 

The setup duration (Dsetp) is used to compute the setup completion time (Csetp) and 

the time availability of the nurse n for the setup (Atnsetn), while, the treatment 

duration (Dip) is used to calculate the treatment completion time (Cip). The 

treatment completion time (Cip) also represents the time in which the patient p 

leaves the oncology unit and comes back home. As for the patient PO, the treatment 

completion time (Cip) is equal to the medical completion time (Ccp) since they go to 

the oncology unit only for the medical consultation.  
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Algorithm 6.1 Simulation pseudo-code 

1: Define the number of resources: O, D, A, N, C. 

2: Define the historical data: P, rp, Opp, Dcp, Dpp, CAPb, TDb, Dsetp, Dip 

3: Set the available time of the resources (i.e., Atoo, Atdd, Atad, Atnn, Atcc) equal to zero 

4: MEDICAL CONSULTATION 

5: for p = 1 to P 

6:  Scp = max {rp; Atoo} |o = Opp 

7:  if Clp = POC or Clp = PO 

8:   Ccp = Scp + Dcp 

9:  else 

10:   Ccp = Scp 

11:  end 

12:  Atoo = Ccp 

13: end 

14: Order the patients using the FIFO policy 

15: THERAPY PREPARATION 

16: for p = 1 to P 

17:  if Clp = POC or Clp = PC 

18:   Spp = max {Ccp; min{Atdd}} 

19:   Cpp = Spp + Dpp 

20:   min{Atdd} = Cpp 

21:  end 

22: end 

23: Order the patients using the FIFO policy 

24: THERAPY DELIVERY 

25: batch = 0 

26: for p = 1 to P 

27:  if Clp = POC or Clp = PC 

28:   batch = batch + p 

29:   if length(batch) = CAPb 

30:    Sbb = max{min{Ataa}; max{Cpp}} ∀ p=1,…,P |p ∈ b 

31:    Cbb = Sbb + TDb 

32:    min{Ataa} = Cbb + TDb 

33:    batch = 0 

34:   end 

35:  end 

36: end 

37: TREATMENT ADMINISTRATION 

38: for p = 1 to P 

39:  if Clp = POC or Clp = PC 

40:   Sip = max{Cbb; min{Atnsetn}; min{Atcc}} ∀ b=1,…,B |p ∈ b 

41:   Ssetp = Sip 

42:   Csetp = Ssetp + Dsetp 

43:   min{Atnsetn} = Csetp 

44:   Cip = Sip + Dip 

45:  else 

46:   Cip = Ccp 

47:  end 

48: end 

Table 3.1 Simulation pseudo-code  
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4. Patient flow management problem: the case 

study of Catania 

4.1 Introduction 

New technologies and new researches in the field of healthcare allow more effective 

treatments and have improved the quality of life of many patients. The improvement 

of the health system corresponds to a significant increase in investments to 

guarantee a high level of service accessible to the greatest number of people. 

Unfortunately, the frequent economic crises have limited or even reduced the 

resources available for public services, including health services. Managers study 

new solutions to make the healthcare system more efficient and find innovative tools 

for improvement (Patri and Suresh, 2019; Toussaint and Berry, 2013). The problem 

is therefore to reduce costs but, at the same time, improve services. This apparent 

contradiction is one of the basic principles proposed by Lean Manufacturing. 

Lean management basic assumptions originate from the Toyota Production 

System described in the famous book of Womack et al. (1991), i.e., “The Machine That 

Changed the World”. The core of the lean philosophy is to continually improve a 

process by either increasing customer value or reducing non-value adding activities 

(Muda), process variation (Mura), and poor work conditions (Muri) (Radnor et al., 

2012).  The basic principles of Lean management are six (Toussaint and Berry, 2013): 

1. Lean Is an Attitude of Continuous Improvement; 

2. Lean Is Value-Creating; 

3. Lean Is Unity of Purpose; 

4. Lean Is Respect for the People Who Do the Work; 

5. Lean Is Visual; 

6. Lean Is Flexible Regimentation. 

To implement these principles, quantitative and non-quantitative tools and methods 

were proposed that concern all levels of the organization (Henrique and Godinho 

Filho, 2020). Nowadays, it is more appropriate to speak of lean culture, which is the 

synthesis of different methods of improving production systems. An example is the 

Lean Six sigma that combines lean methodologies with the statistical process control 

(De Koning et al., 2006). Lean methodologies originating in the automotive sector 
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were applied in other sectors such as aerospace or garment industry (Kumar et al., 

2020b).  

Lean methodologies developed in an automotive industrial context have recently 

been applied in healthcare with significant success. First of all the Institute for 

Healthcare Improvement, USA (Womack et al., 2005) and the Institution for 

Innovation and Improvement supported the use of lean methodologies. Young et al. 

(2004) published one of the first papers about Lean Healthcare. They proposed the 

use of industrial process to improve patient care identifying the weak links or 

bottlenecks and take appropriate remedial action. Lean Healthcare was widely 

applied in public and private hospitals so as to improve the performance of the 

emergency care services (Oh et al., 2016), intensive care units (Trzeciak et al., 2018), 

operating room units (Collar et al., 2012) and gynaecologic oncology unit  (Kumar et 

al. 2019). The reviews of Augusto and Tortorella (2019) and D’Andreamatteo et al. 

(2015) demonstrate the widespread use of lean in the health sector. Robinson et al. 

(2012) classifies the lean tool utilised in the healthcare context into three groups. 

Assessment tools, such as process mapping, are used to review the performance of 

existing organisational processes in terms of their waste, flow or capacity to add 

value. Improvement tools are used to improve processes developing and redesigning 

processes through problem solving or housekeeping tools such as 5S (sorting, setting 

in order, sweeping, standardising and sustaining). Finally, monitoring tools, such as 

visual management, are used to measure and monitor the processes and their 

improvement. One of the most effective assessment lean tool is the Value Stream 

Map, VSM, used to identify all types of waste in the value stream and to take steps 

to try and eliminate these (Rother and Shook, 2003). VSM was successfully applied 

to analyse different healthcare organizations as Shou et al. (2017) highlighted in 

their cross-sector review on the use of value stream mapping. Lummus et al. (2006) 

studied a physician clinic, Cookson et al. (2011) studied an emergency department 

and Tortorella et al. (2017) provided a detailed description of VSM applied in a 

hospital sterilisation unit. An important support to help improve the delivery of 

healthcare is process simulation in particularly the DES. White et al. (2011) 

developed an empirically based discrete‐event simulation to examine the 

interactions between patient appointment policies and capacity allocation policies 

(i.e., the number of available examination rooms) and how they jointly affect various 

performance measures, such as resource utilization and patient waiting time. Baril 
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et al. (2014) used DES to model outpatient flows in an orthopaedic clinic. They 

simulated different scenarios in order to evaluate the best assignment of resource to 

each orthopaedist and the best appointment scheduling rules. Oh et al. (2016) used 

a simulation-based decision support model in the redesigning of an emergency 

department to improve the patient throughput time. Famiglietti et al. (2017) 

developed a DES to model a radiation oncology centre with the aim of increasing the 

efficiency of the system and achieving the quality improvement.  Recently, Robinson 

et al. (2012) demonstrated theoretically and empirically the complementary roles of 

simulation and lean in healthcare. They proposed a ‘SimLean’ framework and 

demonstrated that fusion of simulation with lean improves the impact of lean. In the 

literature the Value Stream Map is the lean tool that was mainly used to integrate 

simulation and lean methodologies. First of all, the common approach of the 

proposed papers is to evaluate the current and future Value Stream Map of the 

process under examination. Then, the effects of the Future Stream Map are 

simulated through a discrete event simulator to analyse and choose the best future 

scenarios. Abo-Hamad et al. (2012) applied Value Stream Mapping to analyse the 

therapy delivery process in a hospital, so they simulated the process to evaluate the 

performance of three possible improvement scenarios. The emergency departments 

are studied by Bal et al. (2017). They evaluate the impact of the Future Stream Map 

on emergency departments overcrowding and patient waiting times by means of a 

simulation model applied to two different scenarios. Doğan and Unutulmaz (2016) 

applied the Value Stream Map and simulation procedure at the Physical Therapy 

and Rehabilitation (PT&R) department of a public hospital.  

As for the outpatient chemotherapy oncology department, to the best of our 

knowledge, the Value Stream Map integrated with the discrete event simulation has 

not yet been studied to improve the activities of the oncology department (see Section 

2.3.4). It represents the aim of the proposed paper. According to Lean Healthcare, it 

is necessary to eliminate all that is waste or all those activities that do not have 

value for the patient such as waiting times for health services. The Value Stream 

Map (VSM) is a Lean technique that allows the decision-maker to focus on the 

activities that generate value and not value for the patient. It traces the flow of the 

patient and at the same time the patient information, such as medical reports. The 

VSM identifies the resources used during the health service and the patient waiting 

time and therefore, it permits to identify possible improvement actions. Healthcare 
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services can be interpreted as complex systems because there is a significant 

interaction between service actors, patients, nurses and doctors and all events are 

affected by significant variability such as, for example, the duration of a medical 

examination. Furthermore, the best tool for correctly analysing patient flow and 

evaluating performance indicators is the simulation modelling, since it permits to 

evaluate the effect of organizational changes or investments in new resources. One 

of the aims of the paper is to propose a methodology to define a Future Value Stream 

Map (FVSM) that represents a new possible configuration of the process that allows 

the health facility to improve the patient satisfaction. In some situations, FVSM can 

be developed with little effort, but, in complex cases such as the problem under 

investigation in an oncology department, it is not easy to predict future 

performances. The Discrete Event Simulation (DES) model, which is one of the 

simulation techniques, allows us to handle uncertainty and forecast events in the 

oncology department creating different FVSM (Abdulmalek and Rajgopal, 2007). 

In this paper a VSM integrated with a discrete event simulator is proposed and 

defined as Dynamic Value Stream Map (DVSM). DVSM was used to study the service 

improvement of an oncology department with the objective to increase the patient 

satisfaction. In the daily patient flow, the value time for the patient is the time spent 

on the medical consultation and the chemotherapy treatment, while, the non-value 

time is the waiting time. The Current Dynamic Value Stream Map (CDVSM) 

identifies the actual state of the oncology department under study so as to evaluate 

the patient waiting time by adopting the flowtime as KPI. All the alternative 

scenarios to improve the service were considered with several Future Dynamic Value 

Stream Maps (FDVSM) and the ANOVA analysis made it possible to identify the 

improvement actions with the greatest impact on the KPI. The best FDVSM was 

reported with all the identified changes and the new performances of the oncology 

department. Finally, we have developed a multiple non-linear regression model that 

supports the healthcare managers in the decision-making process, which allows 

them to easily evaluate all the proposed FDVSMs. The remainder of the paper is 

organised as follows. The problem statement is explained in detail in Section 4.2. In 

Section 4.3, the details of the dynamic value stream map are explained. The design 

of experiments, the results including statistical tests and a discussion are presented 

in Section 4.4. Section 4.5 provides the managerial implication, while Section 4.6 

summarizes the concluding remarks. 
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4.2 Problem statement 

This research was conducted for the oncology department of a hospital located in 

Catania (Southern Italy). The department provides health services for patients who 

need to receive chemotherapy treatment. The working day in the oncology unit starts 

at 08:00 AM and finishes when all the patients have left the department. We have 

conducted several audits and interviews with the staff of the department in order to 

well define the process under study. The oncology process under investigation can be 

classified as same-day. The description of the patient is reported in Chapter 3. It has 

to be specified that the oncology unit and the pharmacy unit are situated in two 

different buildings. Then, the pharmacy disposes of an auxiliary courier to deliver 

the therapies from pharmacy to the oncology department. He goes by walk and the 

absence of vehicle for transporting therapies involves long delivery time. In the real-

life scenario, the patients are classified as standard, repetitive or control. However, 

the approach described in this work focuses only on the standard patients, because 

the aim of the research is to improve the whole pathway in the oncology department. 

All the repetitive patients arrive at the opening hour of the department and, since 

they do not receive the medical examination, they directly wait for the therapy 

preparation process. They are scheduled in the first slots of the first come first served 

list of the pharmacy and, consequently, they are the first patients to receive the 

treatment. Then, their pathway is fast and the waiting times are not long. Moreover, 

the percentage of repetitive patients is a low value and, thus, the probability that a 

patient is classified as a repetitive is negligible. As for the control patients, they do 

not require the chemotherapy treatment. For the medical examination, the 

oncologists give priority to the standard patients in order to allow them to complete 

the treatment until the end of the working day. Consequently, the medical 

examinations of the control patients do not affect the waiting times of the patients 

that need the treatment. The research project aims at reducing the patient waiting 

time. Therefore, the mean flowtime (see Section 2.1) is used as key performance 

indicator. It is calculated in Eq. 4.1 as follows: 

 F̅ = 
∑ Cip-rp

P
p=1

P
   (4.1) 
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Other important indicators in the lean manufacturing philosophy is the mean Non-

Value Time (NVT̅̅ ̅̅ ̅̅ ̅). In Lean Manufacturing context, the Non-Value Time represents 

all the events in which the time is considered a waste for the customer. In the case 

under study, the Non-Value Time is the patient waiting time and, then, it can be 

also defined as mean Waiting Time (WT̅̅ ̅̅ ̅). The Non-Value Time (calculated in Eq. 

4.2) is the sum of the waiting time for the medical examination and the chair for 

treatment: 

 NVT̅̅ ̅̅ ̅̅ ̅ = 
∑ Sip-Ccp+Scp-rp

P
p=1

P
  (4.2) 

On the other hand, the mean Value Time, (VT̅̅ ̅̅ ), indicates all the events with value-

added for the patients. Then, it is the sum of the duration of medical examination 

and the duration of the treatment. It is calculated in Eq. 4.3 as follows: 

 𝑉𝑇̅̅̅̅ =  
∑ 𝐶𝑖𝑝−𝑆𝑖𝑝+𝐶𝑐𝑝−𝑆𝑐𝑝

𝑃
𝑝=1

𝑃
  (4.3) 

Finally, the efficiency of the Oncology Department is defined in Eq. 4.4 as follows: 

 Eff = 
VT̅̅ ̅̅

F̅
=

F̅-NVT̅̅ ̅̅ ̅̅ ̅

F̅
  (4.4) 

As it is possible to note since the times of medical examination, therapy preparation 

and treatment of each patient are fixed, minimizing the flow time means minimizing 

the Non-Value Time and, consequently, the waiting times of the patients. Moreover, 

in this case, the efficiency will increase because the mean Value Time will be the 

same. 

4.3 Dynamic Value Stream Map 

The objective of this work is the formulation of a methodology to decrease the 

duration of the patient recovery and, at the same time, increase the productivity of 

the department. The duration of the patient recovery can decrease thus minimizing 

the patient waiting time that represent time wasted for patients. This approach is a 

typical topic of Lean Management: the elimination of wasted time. The tool that 

permits to highlight the wasted time for the patients is the Value Stream Map. The 

oncology department consists of processes that are subject to variability and are 
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interconnected, which leads to complexity. Queues emerge within the process and 

the performance is difficult to predict. Simulation of process in particular DES 

modelling can allow a robust what-if analysis by changing the parameters of the 

system. In order to realize a simulator, a four-steps procedure was developed: i) 

collection all the data of the process; ii) model construction; iii) verification of the 

model; iv) model validation.  As described previously, in this work, VSM was 

integrated with DES and a Dynamic Value Stream Map (DVSM) was realized . 

4.3.1 Data collection 

All the activities of the oncology department were taken over for four weeks. During 

the four weeks, the activities were normally carried out and the number of 

oncologists and pharmacy technicians was normally in service. The patients 

observed had known pathologies and there were no particular cases. The data 

collected, in accordance with the mathematical model, are: 

• The total number of patients arriving each morning, considering all the 

categories; 

• The arrival time of each patient; 

• The number of oncologists; 

• The starting time and the durations of medical consultations; 

• The number of patients visited daily by each oncologists; 

• The number of pharmacy technicians; 

• The durations of therapy preparation; 

• The batch size of the therapies to deliver from the pharmacy to the oncology 

units; 

• The duration of the therapy delivery; 

• The number of chairs available for treatments; 

• The starting time and the durations of the oncology treatments; 

Some of the detected values are considered as simulator parameters, while other 

values are used to generate the input data and, then, to calculate the simulated 

performance and to verify if the simulator is actually able to replicate the activities 

of the oncology department. 
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4.3.2 Model construction 

All the stages of the oncology process, as the durations of treatments, are affected by 

a great variability. In order to correctly simulate the process, the input parameters 

are considered as determinations of stochastic distributions. The distribution of each 

parameter was estimated based on the data collected as described in the previous 

paragraph. Table 4.1 reports the stochastic distributions used in the simulation 

model. Firstly, Table 4.1 shows the distributions to generate the total number of 

patients. In the special case of the arrival time of the patients at the oncology unit, 

three distributions with an a priori probability level were considered. Therefore, the 

arrival time is randomly associated with one of the three distributions and, then, on 

the basis of the distribution considered, the value is determined. Notably, the first 

group represents all the patients that arrives at the opening hour of the department, 

i.e. at 08:00 AM. The oncologists present different duration of the medical 

examination and number of patients to visit daily. Then, each oncologist presents a 

normal distribution and a probability to be assigned to a patient. Finally, the table 

reports the duration of the medical consultation, the duration of the treatment and 

the data that describes the pharmacy process. 
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Processes Distribution 

Patients  

    Total number of patients Normal(30.87,2.02) 

Arrival time of the patients  

    Group 1 Deterministic(0) – probability = 46.62 % 

    Group 2 Normal(47.63,7.75) – probability = 32.54% 

    Group 3 Gamma(14.87,9.77) – probability = 20.84% 

Duration of medical consultations  

    Oncologist 1 Normal(27.54,4.11) – probability = 9.29% 

    Oncologist 2 Normal(14.21,3.02) – probability = 30.71% 

    Oncologist 3 Normal(18.32,3.81) – probability = 13.82% 

    Oncologist 4 Normal(22.45,3.98) – probability = 13.62% 

    Oncologist 5 Normal(27.04,4.09) – probability = 11.81% 

    Oncologist 6 Normal(27.79,4.16) – probability = 20.75% 

Therapy preparation process  

    Duration of the therapy preparation Deterministic(5) 

    Therapy batch size Uniform(4,11) 

    Duration of therapy delivery Deterministic(20) 

Treatment administration  

    Duration of oncology treatment Gamma(1.9,52.37) 

Table 4.1 Distributions of the simulation parameters 

4.3.3 Model verification and validation 

The model representative of the oncology department was coded on Arena® software 

platform. Figure 4.1 and Figure 4.2 depicts the graphic visualization in 2D and 3D 

of the simulation model. In order to verify that the simulator output results are 

representative of reality, a model verification and validation was performed. The 

verification was carried out by consulting the heads of the oncology unit to confirm 

the flow of patients and the interaction of the oncology department with the 

pharmacy. The logical model of the simulator was judged to be consistent with the 

actual reality of the department. As regards with the validation step, Sargent (2013) 

proposed several approaches to demonstrate the effectiveness of a simulation model, 
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particularly the “historical data validation” approach was considered. Validation 

was performed by comparing the values of the performance indicators measured in 

the real case study with those obtained from the simulator based on the input data 

collected and estimated statistically. Table 4.2 shows the real performances of the 

Oncology Department under study and those obtained from the simulation. The 

absolute deviations between the two values are always less than a few percentage 

points and, then, it is possible to state that the simulator correctly represents the 

real system. The validation of the DES model allows it to be used for the construction 

of CDVSM. 

 Real data Simulated data Error [%] 

Mean Flowtime 291.40 290.67 00.25 

Non-Value Time 170.30 171.17 00.51 

Value Time 121.10 119.50 01.32 

Efficiency [%] 41.56 41.10 01.10 

Table 4.2 Validation of the DES model 

 

Figure 4.1 2D graphic visualization of the simulation model developed in Arena® 
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Figure 4.2 3D graphic visualization of the simulation model developed in Arena® 

4.3.4 Current Dynamic Value Stream Map 

The Current Dynamic Value Stream Map (CDVSM) that represents the actual 

condition of the oncology department is built using simulator outputs. The DVSM 

allows us to easily evaluate the flow of the events in the process and, then, the flow 

of material and information through the value chain. It provides to all the 

stakeholders a global vision of the activities and it enables the decision-makers to 

easily identify the wasted sources (Lacerda et al., 2016). In the CDVSM (see Figure 

4.3) the physical flow of patients and therapies, and the information flow are 

reported. In particular, the rectangular boxes indicate the activities in the oncology 

department, the triangular boxes represent the waiting area of the patients. In the 

stage between the pharmacy and the chemotherapy treatment, two icons are 

reported representing the batch of therapies and the auxiliary worker that delivers 

the batch from the pharmacy to the oncology unit. The bottom line indicates the 

value and non-value time. The times corresponding to reception, medical 

consultation and chemotherapy treatment on the lower line are the value time. The 

other values on the upper line are the non-value times. All the values reported in 

CDVSM are the average values of all patients considered during the simulation 

period. 

As also depicted in Figure 4.3, currently, the mean flow time is 4 hours and 51 

minutes and the mean no value time is 2 hours and 50 minutes. The oncology 

department has an efficiency of 41.56%. This means that patients on average spend 
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58.44% of the total time waiting for the health services. Starting from actual 

organization of the oncology department it was necessary to evaluate the possible 

decision-making alternatives to improve the process. 

  



46 

 

 

Figure 4.3 Current Dynamic Value Stream Map 
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4.4 Experiments and Future Dynamic Value Stream Map 

The objective of the next step is to identify the corrective actions in order to enhance 

the performance of the oncology department and create the FDVSM. For this 

purpose, after a meeting with the oncologist of the department and the evidence of 

the CDVSM, the critical factors were identified. In order to evaluate their impact on 

the performance of the process, the mean flowtime, an appropriate Design of 

Experiments (DOE) was developed. All the results generated by several scenarios, 

each one simulated with the DVSM, are evaluated. Then, the best combination of 

the factors permits to define the FDVSM. Finally, we have proposed a regression 

model to support the optimization process of the system. 

4.4.1 Design of Experiments 

A full-factorial DOE (reported in Table 4.3) was developed in order to create a robust 

campaign of new possible processes of the oncology department. From the 

observation of the ward, in collaboration with the oncologists of the department, it 

was possible to identify five factors that can determine a decrease in terms of the 

mean flowtime and, therefore, an increase of the efficiency of the system and the 

quality of health service. Two or three different levels were identified for the five 

proposed factors corresponding to the different modalities to change the oncology 

department. Factors α and β concern the therapy preparation process performed by 

the pharmacy technicians. Specifically, factor α is the starting time of the activities 

of the pharmacy which can be at 8:30 or 9:30 AM. Factor β concerns the methodology 

adopted to deliver the therapies from pharmacy to the oncology unit. For this factor, 

level 1 is the current approach: the ready therapies are delivered in batch with 

random size and the auxiliary worker of the oncology department is called from 

pharmacy for delivering only when it is necessary. It involves a duration of the 

delivery equal to 20 minutes, Level 2 is a possible modification of this approach in 

which the size of the delivery batch is fixed a priori and equal to three therapies and 

the auxiliary worker is always available in pharmacy allowing to reduce the duration 

of the delivery from 20 minutes to 10 minutes. At level 3 the therapy is delivered 

when it is ready. Then, delivery batch is composed by only one therapy and the 
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auxiliary works can use a vehicle in order to deliver the therapies in only 3 minutes. 

The γ factor concerns the methods of arrival of the patients in the morning: level 1 

is the current situation and foresees a random arrival as previously explained. Level 

2, on the other hand, provides a calendar of appointments and, then, an arrival time 

is previously communicated to the patients. The δ factor concerns the priority rules 

for assigning precedence for the arrival of patients to the oncology department. The 

priority is assigned according to the expected duration of the chemotherapeutic 

treatment of each patient. Level 1, i.e., Long Processing Time rule (LPT), gives 

priority to patients with longer durations, while level 2, i.e., Short Processing Time 

rule (SPT), gives priority to patients with shorter durations. Level 3 represents the 

current situation that gives priority to patients with longer durations with some 

exceptions. The last factor ε concerns the number of chairs available for the 

treatment. Currently the oncology department dispose of 14 chairs, level 1, but, as 

reported by the level 2, in according to the layout of the department, an increase to 

17 chairs is possible. In total, we have evaluated 72 possible scenarios and, therefore, 

72 different FDVSMs. In order to evaluate the effect of the factors and define the 

best FDVSM, an Analysis of Variance (ANOVA) was carried out. For each scenario, 

1000 simulations were performed. Each simulation corresponds to a working day as 

the oncology department carries out the day-hospital service. At the end of each day, 

based on the DVSM, it is possible to calculate the mean flowtime. The performances 

of the scenario is evaluated considering the average of the mean flowtime of all 1000 

simulations. The simulation of each scenario was replicated five times. Then, 72 ∙ 

1000 ∙ 5 = 360000 simulations were launched. 

Notation Factors Level 1 Level 2 Level 3 

α Pharmacy starting time At 08:30 AM At 09:30 AM - 

β Pharmacy process Actual Batch prefixed Lean 

γ Patient’s arrival management Actual Appointments - 

δ Scheduling rules LPT SPT Actual 

ε Number of chairs 14 17 - 

Table 4.3 Design of Experiments 
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4.4.2 Analysis of variance 

In order to identify the impact of the proposed factor an ANOVA analysis at 95% 

level and a statistical analysis was executed through Minitab®17. The impact of each 

factor proposed in the DOE is reported in the ANOVA table, Figure 4.4. The Figure 

4.5 reports the main effect plots and the Figure 4.6 the interactions plots. 

Interestingly, the ANOVA table points out that the value of the R-squared is higher 

than the 95%. The R-squared is a statistical measure that represents the percentage 

of the response variables variation. When the value of R-squared is higher, it means 

that the model fits the data. In this case, the value of R-squared allows us to state 

the robustness of the proposed model. Moreover, the ANOVA table reports the p-

value of all the factors. All the p-values are equal to zero and, then, all the factors 

significantly impact on the mean flowtime. Instead, the F-value enables to identify 

the factors with the higher influence. The factors α and β report the highest F-value, 

respectively equal to 2204972.83 and 177358.97. With the main effect plots we have 

established the levels that enables the oncology department to achieve the best 

performance and, then, to define the best FDVSM. The level 1 of α and the level 3 of 

β significantly decrease the mean flowtime. It highlights the importance of the 

synchronization between the oncology department and pharmacy. The level 2 of γ 

points out the benefits to implement an appointment system to lead the time arrivals 

of the patients, while the SPT rules, i.e., the level 2 of δ, reduces the mean flowtime 

of the patients. Finally, an increase of number of chairs also improves the 

performances of the system. Then, the best FDVSM is defined as follow: level 1 of α, 

level 3 of β, level 2 of γ, level 2 of δ, level 2 of ε. As regards with the interactions, each 

of them is influent (p-values = 0) but no interesting trends were highlighted by the 

interaction plots. 
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Figure 4.4 ANOVA table 

 

Figure 4.5 Main effect plots 

Analysis of Variance 

 

Source                 DF  Adj SS  Adj MS     F-Value  P-Value 

Model                  71  477452    6725    37515.18    0.000 

  Linear                7  473199   67600   377121.23    0.000 

    α                   1  395246  395246  2204972.83    0.000 

    β                   2   63584   31792   177358.97    0.000 

    γ                   1    6733    6733    37559.57    0.000 

    δ                   2    5767    2883    16086.01    0.000 

    ε                   1    1869    1869    10426.24    0.000 

  2-Way Interactions   19    3580     188     1051.10    0.000 

    α*β                 2     128      64      358.41    0.000 

    α*γ                 1     262     262     1459.34    0.000 

    α*δ                 2     521     261     1453.61    0.000 

    α*ε                 1      60      60      335.94    0.000 

    β*γ                 2      60      30      168.72    0.000 

    β*δ                 4     161      40      224.48    0.000 

    β*ε                 2      37      19      103.89    0.000 

    γ*δ                 2     403     202     1124.31    0.000 

    γ*ε                 1       8       8       43.27    0.000 

    δ*ε                 2    1939     969     5408.26    0.000 

  3-Way Interactions   25     562      22      125.34    0.000 

    α*β*γ               2     100      50      279.85    0.000 

    α*β*δ               4     104      26      144.67    0.000 

    α*β*ε               2       2       1        5.95    0.003 

    α*γ*δ               2      67      33      186.17    0.000 

    α*γ*ε               1       5       5       29.23    0.000 

    α*δ*ε               2      66      33      184.48    0.000 

    β*γ*δ               4     132      33      184.53    0.000 

    β*γ*ε               2       1       1        3.87    0.022 

    β*δ*ε               4      43      11       59.65    0.000 

    γ*δ*ε               2      41      20      114.10    0.000 

  4-Way Interactions   16     110       7       38.47    0.000 

    α*β*γ*δ             4      95      24      133.02    0.000 

    α*β*γ*ε             2       1       0        1.99    0.139 

    α*β*δ*ε             4      11       3       15.48    0.000 

    α*γ*δ*ε             2       3       1        7.68    0.001 

    β*γ*δ*ε             4       0       0        0.56    0.691 

  5-Way Interactions    4       2       0        2.25    0.064 

    α*β*γ*δ*ε           4       2       0        2.25    0.064 

Error                 288      52       0 

Total                 359  477504 
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Figure 4.6 Interactions plots 

4.4.3 Future Dynamic Value Stream Map 

With the support of the ANOVA analysis, the best FDVSM is constructed. It is the 

value map that reports all the changes necessary to improve the performances of the 

oncology department. Table 4.4 compares the performance of the CDVSM with the 

FDVSM. In the first part, the table reports the levels of the factors that define the 

two DVSMs, while in the second part the performances are represented. The 

improvement in terms of reducing waiting time and the difference of the efficiency 

are highlighted. Through the implementation of the best FDVSM, the average 

patient waiting time will decrease by 112 minutes, i.e., almost 2 hours. This result 

can be obtained only reducing the non-value times with a better configuration of the 

system. Interestingly, the proposed approach allows improving the efficiency from 

41.56% to 67.72%. Finally, Figure 4.7 depicts the selected FDVSM. Differently from 

the CDVSM, the therapy delivery process is different. Indeed, the icons between the 

pharmacy stage and the treatment stage represent the delivery of therapies when it 

is ready and the vehicle that supports the auxiliary worker, reducing the 

transportation time from 20 minutes to 3 minutes. Moreover, the preparation of the 

therapies at pharmacy starts at 08:30 AM, the number of available chairs is equal 

to 17, the priority rules used for the arrival times of the patients is the SPT and the 

arrival times of the patients are managed with a schedule. Considering the high-
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value of the R-squared reported by the ANOVA table and the normal probability 

plots of the residuals considering the mean flowtime as response of the model (see 

Figure 4.8), a multiple non-linear regression model with categorical predictors and 

interactions of the second order (see Eq. 4.5) was developed: 

F̅=242.69+57.38∙α -17.63∙β -21.62∙γ -18.11∙δ -17.83∙ε -1.078∙α∙β +3.410∙α∙γ+ 

+1.738∙α∙δ 1.636∙α∙ε +0.951∙β∙γ +0.529∙β∙δ +0.395∙β∙ε+2.537∙γ∙δ+  

+0.587∙γ∙ε +4.576∙δ∙ε   (4.5) 

The model allows forecasting the mean flowtime each of the 72 different FDVSMs 

and supports the healthcare managers in order to improve the process.  

The multiple non-linear regression model was validated by comparing the 

performance of the regression model with 10 DVSMs. These are composed by the 

CDVSM, the best FDVSM and 8 FDVSMs randomly chosen. Table 4.5 reports the 

comparison. The values of the deviation are always less than a few percentage points, 

and, confirms the effectiveness of the proposed approach. Moreover, the table 

highlights the average error that is equal to 1.22% and then we can state that the 

regression model is effective for the real case study under investigation. 

DVSM Factors  KPIs 

α β γ δ ε  �̅� 𝑁𝑉𝑇̅̅ ̅̅ ̅̅  𝑉𝑇̅̅ ̅̅  Eff 

      [min] [min] [min] [%] 

CDVSM 2 1 1 3 1  291.40 170.30 121.10 41.56 

FDVSM 1 3 2 2 2  178.83 57.74 121.10 67.72 

 Improvement  112.57 min  26.16 

Table 4.4 Improvement with the Future Dynamic Value Stream Map 
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Figure 4.7 The best Future Dynamic Value Stream Map 
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Figure 4.8 Normal Probability Plot of the residuals 

Scenarios Factors  Mean Flowtime  Error 

 α β γ δ ε  DVSM Regression   

       [min] [min]  [%] 

1 2 1 1 3 1  291.40 289.26  0.73 

2 1 3 2 2 2  178.83 184.44  3.14 

3 2 2 1 1 2  287.91 276.73  0.78 

4 1 1 2 3 1  215.46 213.64  0.84 

5 2 3 2 3 2  249.91 253.34  1.37 

6 1 2 2 1 1  213.83 210.14  1.73 

7 2 1 2 3 2  282.5 284.35  0.65 

8 1 3 1 1 1  211.69 206.5  2.45 

9 2 3 1 3 1  256.47 255.48  0.35 

10 1 2 1 2 2  209.85 209.46  0.19 

Average 1.22 

Table 4.5 Validation of the regression model 
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4.5 Managerial implications 

Once completed the process of improvement and identified the actions for changing 

the process, the results were reported with the managers of the oncology department 

detailing the optimization approach and the future performances of the ward with 

the Lean actions. Moreover, according to the Lean Methodology, the whole proposal 

can be applied with minimal costs. The healthcare managers approved and decided 

to perform some improvement actions tests, considering the interactions between 

oncology department and pharmacy, before changing the system in accordance with 

the FDVSM. The ANOVA analysis has demonstrated that the lack of 

synchronization between the two departments negatively affects the outcomes of the 

whole system. Then, the working hour of the pharmacy technicians is changed for 

the tests in order to allow to setup the pharmacy workstations and start to prepare 

the therapies at 08:30 AM. Moreover, the auxiliary workers were supported by 

vehicles to reduce treatment delivery times. When these actions will become 

definitive part of the oncology department the managers will proceed with the other 

actions proposed with the FDVSM. The first results confirm the effectiveness of the 

new configuration. 

4.6 Conclusions 

In this work, a novel perspective of Lean application on the specific case of the 

oncology units was studied. The oncology department of a hospital located in Catania 

(Southern Italy) was studied to find lean improvement solutions. First of all, several 

audits and interviews with the oncologist to well define the process under 

investigation was conducted. A mathematical formulation is proposed to complete 

the description of the problem. Moreover, this formulation has supported the 

developing of the DES model. A combination of VSM with the stochastic simulation 

thus generating the DVSM was proposed. To allow this, a four-weeks campaign of 

collecting data was conducted. The data collected were statistically analysed and 

stochastic distributions were defined. A part of data, e.g., number of patients, 

number of oncologists, represent the parameters of the simulation model, while, 

other data represented by stochastic distribution generate the input data. The use 

of stochastic model allows to consider the strong variability of this complex system 

and to reduce the effect of randomness. After the validation of the DES model, the 
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CDVSM highlighted the actual performances of the oncology department and the 

sources of patient waiting times. In the actual situation, the mean flowtime is about 

5 hours and the efficiency is equal to 41.56%. It means that on average the patients 

spend more time on waiting than on receiving the health services. A DOE was 

developed and, then 72 FDVSMs were evaluated. The ANOVA analysis allows to 

statistically study the impact of all the factors in the system and to identify the best 

FDVSM. The best FDVSM was reported pointing out that with the Lean actions, the 

mean flowtime can be reduced by 112 minutes and the efficiency can increase with 

a value equal to 67.72%. To complete the improvement procedure, we have developed 

and validated a multiple non-linear regression model with categorical predictors that 

enables the managers to easily evaluate all the 72 FDVSM. Finally, through meeting 

with the managers, a gradual implementation procedure of the improvement actions 

was defined. 
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5. Patient flow management problem: the case 

study of Ragusa 

5.1 Introduction 

While tackling high healthcare costs and restricted budgets, oncology departments 

have had to face new managerial challenges, which stem from the need to satisfy 

ever increasing amount of patient demands. Moreover, the oncology process involves 

diverse resources, both human and none, along with cooperation from pharmacies 

all of which increases the complexity of the system. To this end, the healthcare 

community looks for an improvement of service levels, which in turn impacts on the 

life-quality of patients. Simulation modelling represents a risk-free and low budget 

method to assess the impact of potential changes on healthcare systems before 

implementing any intervention (Cassidy et al., 2019). Therefore, simulation 

modelling appears to be an effective tool to support decision-making policies. In fact, 

simulation tools were increasingly used in healthcare management, along with other 

Operational Research/Management Science (OR/MS) methods (as for example the 

dynamic optimization in the work of Hahn-Goldberg et al., 2014 or the stochastic 

programming in the work of Demir et al., 2021). Often, computer simulation is 

employed to virtually evaluate ‘what-if’ configurations of health departments, so that 

healthcare managers can assess the impact of potential changes on health systems 

without implementing them in the real systems (Cassidy et al., 2019; Gunal, 2012; 

Salleh et al., 2017). In general, computer simulation can be classified as: Discrete 

Event Simulation (DES), System Dynamics (SD) and Agent-Based Simulation 

(ABS).  

In healthcare environments, DES is widely used for modelling and optimizing 

hospital workflows and other processes. DES methodology deals with real systems 

which have a strong queue structure that can be modelled in discrete periods, where 

the process can be described stochastically. According to this approach, variables and 

states change after a set of events happen at discrete time points and entities are 

simply data objects influencing system decision processes. Patients are represented 

by ‘entities’ that go through different processes of the system. In the healthcare 

context, Abo-Hamad and Arisha (2014) and Demir et al. (2017) merged the DES 

model with typical decision support tools (e.g., balanced scorecard) in an emergency 
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department, while Luo et al. (2018) applied DES in a radiology department to study 

how to reserve capacity for emergency and non-emergency patients.  

On the other hand, SD technique is typically adopted to model health systems at 

an aggregate level. Introduced by Forrester (1958), it is based on differential 

equations and is used to capture the macro-level dynamics of a complex system under 

study. In this respect, Rashwan et al. (2015) modelled the flow of elderly patients to 

study the impact of various system parameters on the issue of acute bed blockage in 

the Irish healthcare system, while Edaibat et al. (2017) used SD simulations to 

assess the impact of health information exchange (HIE) adoption policies in hospitals 

located in the State of Maryland.  

Finally, a considerable attention has being focused on ABS modelling in the OR 

context (Abar et al., 2017; Siebers et al., 2010) and for health systems as well 

(Cassidy et al. 2019; Gunal, 2012; Sulis et al., 2020). ABS modelling allows users to 

write specific instructions that control the actions and interactions of autonomous 

agents, in order to handle the behaviour of a complex system (Gunal, 2012; Mustafee 

et al., 2010). In healthcare contexts, persons (e.g., patients, doctors) can be 

represented by agents with an individual behaviour, but it is also possible to model 

rescue service vehicles and other resources using agents (Djanatliev and German, 

2013). Several contributions reveal that ABS modelling is used to enhance the 

performance of healthcare departments, as follows. Yousefi and Ferreira (2017) 

combined ABS with decision-making techniques to re-allocate resources in an 

emergency department. Fragapane et al. (2019) developed an ABS model to enhance 

internal hospital logistics by examining the status of the goods’ delivery system and 

evaluating potential improvements. Saeedian et al. (2019) and Ajmi et al. (2019) 

used the ABS approach to reduce indicators related to patients’ pathways, such as 

total waiting time or length of stay, in surgery and emergency departments, 

respectively. As far as oncology departments are concerned, Sepúlveda et al. (1999) 

and Baesler and Sepúlveda (2001) can be considered the pioneers of decision-making 

through simulation in oncology units. Nowadays, these studies still represent a 

source of inspiration for researchers that aim to investigate the patient flow in 

oncology departments.  

Inspired by the studies performed on a real-life oncology unit located in Ragusa 

(Southern Italy), the work proposed in this chapter presents a novel computer 

simulation model, which is configurable and adaptable to the needs of oncology 
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departments cooperating with a pharmacy far from the oncology unit. To the best of 

our knowledge, the work proposed in this chapter is the first in which an agent-based 

simulation model was developed so as to investigate oncology chemotherapy 

departments where agents reproduce patients, doctors, nurses and auxiliary 

resources (see Section 2.3.4 for the state of art in the patient flow management 

problem). Although, several agent-based packages are available both in the market 

and in the web, we deployed Netlogo® modelling software as it is considered a user-

friendly tool that makes it possible for anyone to simulate any complex physical 

system (Cabrera et al., 2012; Chiacchio et al., 2014; Liu et al., 2017; Saeedian et al., 

2019; Sulis et al. 2020; Taboada et al., 2011, 2012; Yousefi & Ferreira, 2017). 

The presented model was designed to allow healthcare managers to recreate their 

oncology unit in a virtual environment and to easily test new configurations of the 

oncology process with the goal of reducing patient waiting time. The effectiveness of 

the proposed simulation model was verified through a case study of the oncology unit 

located in Ragusa. It is worth noting that, unlike similar configurations described in 

the literature, our model also considers the case in which the pharmacy unit is 

detached from the oncology department and, therefore, therapies are gathered in 

batches by pharmacy technicians and delivered through a courier. Once the proposed 

simulation model was validated, it was used to compare several ‘what-if’ 

configurations to identify better ward configurations that minimize the patient 

waiting times. The configurability and the free availability of the Netlogo® agent-

based framework as well as the validation based on a real-life case study all 

represent the strengths of the proposed research. As follows, this work provides 

several contributions to the scientific community. 

i) It represents the first attempt to use an agent-based simulation model to 

investigate outpatient flow in a multi-stage oncology department where the 

pharmacy is detached from the ward itself; 

ii) It provides a configurable and adaptable tool that easily can be used by 

stakeholders for investigating alternative ward configurations and for 

optimizing the service level as well; 

iii) A real-life situation is presented with the aim of testing and validating the 

effectiveness of the proposed approach;  
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iv) A series of findings arising from an ANOVA analysis allows the readers to 

assess how some organizational aspects may affect the performance of 

oncology departments. 

The work is organized as follows. The proposed simulation model is introduced and 

described in detail. Then, the application to the case study is presented and the 

model is validated by comparing the behaviour of the real oncology unit and the 

simulated one. Finally, a Design Of Experiments (DOE) was carried out with the 

aim of identifying more effective configurations of the oncology unit under 

investigation. The best configuration in terms of patient waiting time reduction was 

identified and the managerial implications resulting from the present study were 

further discussed. Finally, the conclusions were summarized. 

5.2 The agent-based simulation model 

The proposed simulation model refers to the problem described in Chapter 3. A 

healthcare setting can be seen as a complex system and the computer simulation 

represents a valued tool to support the decision-making since it allows users to 

identify the factors that influence the patient waiting time and possible bottlenecks 

in the systems under investigation. Figure 5.1 represents the graphical visualization 

of the proposed simulation model developed in the agent-based Netlogo® 

environment (Wilensky, 1999), including a key depicting the model agents. The main 

features are described in the next sections. 

5.2.1 Layout of the model 

A general layout of the model was defined to emulate the patient flow in the oncology 

departments. Considering that the patient waiting time does not depend on the 

location of the rooms in the ward, there is no need to import the exact layout of an 

oncology unit in the simulation model. To this end, two main assumptions can be 

considered in the model: i) the layout of the model is qualitative; ii) the time needed 

for each patient to reallocate from one room to another is negligible. The layout of 

the model includes the following main rooms: 

• The welcome room, where the patient meets the nurse at reception for the 

registration; 

• The first waiting room, where the patient waits for the medical consultation; 
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• The oncologist room, where the patient meets the oncologist for the medical 

examination; 

• The nurse room, where the courier delivers the batches of therapies; 

• The second waiting room, where the patient waits for the treatment; 

• The treatment room, where the patient undergoes the treatment monitored 

by the nurses. 

The object located in the top-right corner of the simulation framework is the 

pharmacy. Finally, the simulation time clock, of which the time unit is the second, 

is visible on the top-right side of the agent-based simulation model. 

 

Figure 5.1 Agent-based framework of the simulation model 
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5.2.2 Modelling agents 

Each simulation run represents a single day in the oncology unit, which starts at 

08:00 AM and ends when all the treatments are concluded, which is exactly the same 

thing that happens in a real-life scenario. Patients and human resources are 

represented by two types of agents: moving agents, i.e., agents that move freely 

within the system or fixed agents that occupy a specific location. Specifically, the 

patients and the courier act as moving agents, while the other resources play as fixed 

agents. For each simulation run, every patient agent is created in accordance with a 

vector of patient arrival times, defined as arrival_time_list. The patient p can move 

through the rooms previously described, following a path that depends on his/her 

classification, indicated by the agent’s colour. Red agents are the standard patients 

POC, the brown ones are the repetitive patients PC and the green ones are the 

control patients PO. Each patient may interact with four types of resources: a nurse 

at reception, the oncologist for the medical consultation, the chair and the nurse for 

the treatment. According to the problem formulation in Chapter 3, patients POC 

follow the whole therapy pathway, patients PO are discharged after the medical 

consultation and patients PC are allowed to skip the medical consultation. All the 

patients start the medical consultation or the treatment based on the status of the 

resources involved in the related processes, which can be denoted as ‘busy’ or 

‘available’. In the case of the medical consultation, a patient pk is allowed to enter 

his/her oncologist’s room oj (pk) only if the latter is available. The First In First Out 

(FIFO) policy is adopted to decide the order of patients for the oncologist visit. 

Finally, a patient of the POC or PC group goes to the treatment room if at least one 

chair c and one nurse n are ‘available’ and the courier has delivered the therapy as 

well. As described in the model description (see Section 3.1), the nurse can setup only 

one patient at a time and can simultaneously monitor up to Nmax persons. In this 

regard, the nurse’s agent is characterized by a setup_status and a monitor_status 

that can be ‘busy’ or ‘available’. In fact, a patient starts the treatment if both 

setup_status and monitor_status of a nurse are simultaneously ‘available’. A vector 

called monitoring_patient_list is created to record the patients monitored by the 

nurse. If the length of monitoring_patient_list is lower than provided limit, i.e., Nmax, 

then the monitor_status is ‘available’. With respect to pharmacy resources, each 

pharmacy technician, which is handled as a fixed agent, can prepare only one 
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therapy at a time and pre-emption is not allowed. In Figure 5.1, the pharmacy 

technicians are represented by three boxes, whose colour indicates when each of 

them is available/unavailable (i.e., green/red) to prepare therapies. The behaviour of 

agents related to the pharmacy strictly depends on the specific list of therapy 

requests coming from the oncologists, named request_list. If the list is empty, the 

agents are ‘available’ and the related box of the simulation framework becomes 

green. Otherwise, the agents status returns to ‘busy’ and the box are coloured to red. 

In this case, the therapy being prepared is registered in a vector called wip_list. 

When the preparation of a therapy is completed, another vector named ready_list is 

updated with the information of the therapies, which need to be delivered. Once the 

length of the ready_list equals the provided batch size, the courier picks up the ready 

batch and deliver it from the pharmacy to the oncology department. At this point, a 

new vector denoted as delivery_list contains the information of the therapies that are 

being transported by the courier. Simultaneously, these therapies are removed from 

the ready_list and a new batch size is defined for the next therapies to be prepared 

and delivered. As mentioned earlier, the courier for delivering the therapies is 

configured as a moving agent and is depicted in blue in Figure 5.1. It is assumed that 

the courier is exclusively engaged only to carry the therapy batches to the oncology 

department. The proposed simulation model also handles the round-trip of the 

courier from the oncology unit to the pharmacy. The courier delivery time TDb is an 

input variable, which must be set by the analyst. Interestingly, if TDb is set to zero, 

an in-house pharmacy could be modelled.  When the courier arrives to the oncology 

department, a specific therapy_flag becomes ‘true’ to indicate that the patient’s 

treatment may start. 

5.2.3 Communication between agents 

The simulation model is characterized by multiple interactions between agents. 

When communication exists between agents, one agent sends an input to another 

agent, causing an output, i.e., a certain behaviour of the latter agent. The model 

includes three types of communication (Yousefi & Ferreira, 2017): i) one-to-one; ii) 

one-to-n; iii) one-to-location. One-to-one communication happens when a single 

agent interacts with another agent, as in the case of the interaction between a 

patient and an oncologist. In this case, the arrival of the patient in the oncologist’s 

room (input) makes the status of the oncologist ‘busy’ (output). One-to-n 
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communication occurs when a single agent communicates with a group of agents (for 

example, the communication between the courier arriving in the department and the 

group of nurses to notify that the batch of therapies was delivered).  Finally, one-to-

location communication exists when an agent communicates with agents in a 

different location, such as when an oncologist communicates with the pharmacy 

technicians in the pharmacy in order to request the preparation of the patient’s 

treatment. Table 5.1 shows the kinds of communications involved in the simulation 

model for oncology units. 

Input agent Output agent 
Type of 

communication 
Description 

Nurse at reception Patient One-to-n The nurse at reception registers patients 

according to a FIFO rule. 

Oncologist Patient One-to-n Each oncologist receives a patient on the 

basis of the FIFO rule. 

Patient Oncologist One-to-one The arrival of the patient in the oncologist’s 

room makes the assigned oncologist busy. 

Oncologist Pharmacy One-to-location The oncologist sends a request for a new 

treatment preparation to the pharmacy.  

Pharmacy 

technician 

Courier One-to-one A pharmacy technician notifies the courier 

that the batch is ready to be delivered. 

Courier Nurse One-to-n The courier arrives at the department and 

notifies the group of nurses that the 

therapies were delivered. 

Nurse Patient One-to-n Nurses allow patients to start the 

treatment once the therapy is at the ward 

and a chair is available. Again, the first 

patient arrived at the waiting room is the 

first served.  

Patient Nurse One-to-one The arrival of the patient in the treatment’s 

room makes the nurse busy. 

Table 5.1 Communication between agents in the proposed simulation model 
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5.3 Case study 

The proposed simulation model was applied to improve the quality of services 

provided by a real-world oncology unit located in Ragusa (Southern Italy). The goal 

of the project is to analyse the performance of the oncology unit in its current 

configuration and, subsequently, to find new configurations capable of reducing the 

patient waiting times. The preliminary phases of the project were the following. 

First, briefings with the clinic’s employees were held to define: i) the features of the 

oncology unit; ii) the key performance indicators. Over a three-week period, the 

project team, which includes clinicians, members of the oncology department and 

developers of the simulation model, performed an intense time study on the tasks 

related to the different oncology processes described earlier. Once the data had been 

collected, a statistical analysis was performed with the aim of finding the stochastic 

distributions of the main input variables of the simulation model. 

5.3.1 Key Performance Indicators (KPIs) 

It is well known that cancer diseases dramatically affect the physical and emotional 

status of suffering individuals. In this context, reducing the patient waiting time is 

the main objective so as to enhance the quality of cancer treatment within facilities 

(Gesell and Gregory, 2004), which is recognized as the primary source of patient 

dissatisfaction (Aboumatar et al., 2008; Edwards et al., 2017; Gourdji et al., 2003). 

In light of the previous considerations, in this work the total flowtime F (i.e., the sum 

of the length of stay of patients) was adopted as a key performance indicator (KPI). 

The total flowtime consists of the total time a patient spends in the oncology unit, 

i.e., the time interval ranging from the time he/she is registered at reception to the 

end of the chemotherapy treatment. Particularly, the mean flow time, from now on 

denoted as F̅, was selected to measure the performance of any ward configuration in 

the successive analyses (see Section 4.3). Furthermore, two additional indicators 

were engaged to compare the status-quo of the oncology department with the 

simulated configurations, namely the mean patient waiting time WT̅̅ ̅̅ ̅, which 

corresponds to the Non-Value Time in the lean philosophy, and the system efficiency 

Eff.  
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5.3.2 Data collection and statistical distributions 

A time study covering three working weeks was carried out to collect the 

experimental data related to the ward status-quo. During that period, the healthcare 

unit, which consisted of 3 oncologists, 13 chairs, 1 nurse at reception and 3 nurses 

for the treatment, received 28 patients on average per day. Four patients who are 

receiving treatment simultaneously are monitored by one nurse. A single pharmacy 

technician working in an external pharmacy is dedicated to the preparation of the 

oncology therapies. A single auxiliary courier is employed to deliver the therapy 

batches from the pharmacy to the oncology department. Table 5.2 reports model 

parameters and stochastic distributions obtained by analysing the aforementioned 

status-quo related data. The number of patients per day is derived from a normal 

distribution with mean 28.07 and standard deviation 3.94. As stated above, usually 

these patients undergo two different processing stages: medical consultation and 

chemotherapy administration, which starts after the therapy delivery. Among the 

patients, 22.32% needs only the medical consultation (PO), while 6.18% attend only 

the chemotherapy’s administration monitored by the nurse (PC), while the 

remaining 71.50% are classified as standard patients (POC). The experimental 

analysis revealed that the arrival times for each type of patient can be handled by 

considering five time windows, each one related to a different occurrence probability. 

Therefore, once the time interval is selected, every patient arrival time is drawn from 

an uniform distribution U[0, 59] in minutes. For PO and POC, the oncologist is 

assigned to the patient by using a random criterion as soon as the patient agent is 

created. The duration of the medical consultation is derived from a uniform 

distribution U[5,35], in minutes. This uniform distribution is adopted for both 

patients POC and PO. The order of patients for the medical consultation is decided 

by using the FIFO policy. Regarding the therapy’s preparation, they can be classified 

into three typologies based on preparation time (short, medium and long); they are 

delivered in batch sizes, which may vary between 2 and 12 therapies, depending on 

courier availability and on pharmacy workload. A batch might contain any type of 

therapy, while the batch size may vary at every courier pick up. The courier takes 

10 minutes to deliver the therapies to the ward and another 10 minutes to return to 

pharmacy. However, a 26.53% probability of delay due to traffic congestion may 

happen in both directions. Finally, the experimental studies conducted on the ward 
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showed that the treatments can be classified into five types, each one involving a 

different time duration. Notably, each treatment can be executed according to a 

specific occurrence probability and its duration implies the setup time. It is assumed 

that there is no relationship between the treatment duration and the therapy’s 

preparation time. The time needed by a nurse to release a patient after the treatment 

can be considered negligible (Hesaraki et al., 2019). 
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Descriptors of process Values or probability distribution 

Patients  

     Number of patients N(28.07,3.94) 

     Classification of patient  

          Standard patient 71.50% 

          Repetitive patient 6.18% 

          Control patient 22.32% 

Arrival time  

     08:30-09:30 56.58% 

     09:31-10:30 12.54% 

     10:31-11:30 5.81% 

     11:31-12:30 13.76% 

     12:31-13:30 11.31% 

Registration  

     Number of nurses at reception 1 

     Duration (min) of registration 1 

Medical consultation  

     Number of oncologists  3 

     Duration (min) of medical consultation  U(5,35) 

     Assignment of patient-oncologist  Random 

Therapy preparation process  

     Number of pharmacy technician  1 

     Duration (min) of therapy’s preparation   

          Short preparation U(1,5) 

          Medium preparation U(6,10) 

          Long preparation U(11,27) 

     Probability of typology of therapy’s preparation  

          Short preparation 71.38% 

          Medium preparation 20.34% 

          Long preparation 8.28% 

Therapy delivery  

     Number of couriers  1 

     Batch size U(2,12) 

     Duration (min) of delivery   

          Delivery without delay 10 

          Delivery with delay 10 + U(2,10) 

     Probability of delay in delivery  

          Delivery without delay 73.47% 

          Delivery with delay 26.53% 

Treatment administration  

     Number of chairs  13 

     Number of nurses  3 

     Treatment duration (min)   

          Type 1 U(15,60) 

          Type 2 U(61,120) 

          Type 3 U(121,180) 

          Type 4 U(181,240) 

          Type 5 U(241,300) 

     Probability of treatment occurrence  

          Type 1 30.13% 

          Type 2 38.91% 

          Type 3 14.23% 

          Type 4 12.13% 

          Type 5 4.60% 

Table 5.2 Model descriptors 
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5.4 Experimental results 

The verification and validation processes were the first step of the project 

development. This was done to verify if the simulation model was consistent with 

the problem description and if the outcomes of the simulations reproduced the status 

quo of a typical day in the oncology unit. Then, a DOE was arranged so as to use the 

validated simulation model for testing different ward configurations and improving 

the performance of the unit. In light of the multitude of stochastic parameters, a 

stochastic simulation approach was adopted for all the numerical investigations to 

assure the robustness of the proposed analysis. Therefore, each KPI was evaluated 

in terms of its expected value as in Eq. 5.1: 

 E(KPI) = 
∑ KPI(ω)Ω

ω=1

Ω
 (5.1) 

where ω is the replicate of a certain ward configuration and Ω is the whole set of 

replicates. 

5.4.1 Verification and validation of the simulation model 

A preliminary step of any simulation model consists in demonstrating that it 

provides credible results (Balci, 2003; Roza et al., 2013). To this end, Verification and 

Validation (V&V) techniques are generally carried out to assure the effectiveness of 

a simulation model (Kleijnen, 1995). Specifically, the verification process assures 

that the conceptual model of the problem was transformed into a computer 

simulation model with sufficient accuracy (Robinson, 1997). The well-structured 

debug tool of NetLogo® and its model visualization were used to perform a dynamic 

verification test of the simulation model, which is widely used in literature (Sargent, 

2013). Validation is necessary to demonstrate the efficacy of the model in 

reproducing the actual performance of the system under investigation with a 

satisfactory approximation. Sargent (2013) classified several validation techniques 

that can be applied to a given simulation model. In this work we adopted the 

‘Historical data validation’ technique, which compares the key performance 

indicators obtained by the presented simulation model with one obtained by 

analysing the status-quo related configuration, as shown in Table 5.3. Looking at the 

numerical outcomes, the actual performance of the oncology unit in terms of the 

aforementioned KPIs are as follows:  
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• the mean flowtime F̅  is equal to 265.46 minutes, with a 95% confidence 

intervals (CI) equal to [243.00; 287.92]; 

• the mean patient waiting time WT̅̅ ̅̅ ̅ is equal to 138.28 minutes, with a 95% CI 

equal to [123.14; 153.42]; 

• the efficiency Eff is equal to 47.97%, with a 95% CI equal to [45.41%; 50.53%];   

For both the real and the simulation configurations, Table 5.3 reports the expected 

KPIs, the confidence intervals at 95% and the percentage deviation (Dev). Dev is 

calculated in Eq.5.2 as follows: 

 Dev = |
E(KPIsim) - KPIreal

KPIreal
∙100| (5.2) 

where E(KPIsim) is the expected KPI resulting from the simulation model, while 

KPIreal is the KPI’s value of the status-quo of the oncology unit.  Interestingly, the 

percentage deviation values (Dev) reported in Table 5.3 confirm the validity of the 

developed simulative procedure. To further strengthen this outcome, the last column 

of the table reports the p-values resulting from the paired t-tests carried out for each 

KPI. The paired t-tests are used in order to assess if there exists any statistically 

significant difference between the means of the real and simulated configurations; 

p-values greater than 0.05 for each test pointed out the effectiveness of the proposed 

simulation model in simulating the dynamics of the oncology unit under 

investigation. 

KPIs Real 95% CI Simulated 

(E(KPI)) 
95% CI Dev p-value 

Mean Flowtime  265.46 (243.00;287.92) 259.50 (242.30;276.70) 2.25% 0.684 

Mean Waiting 

Time  
138.28 (123.14;153.42) 133.99 (116.54;151.44) 3.10% 0.730 

Efficiency 47.91% (45.41;50.53) 48.84% (45.21;52.47) 1.94% 0.742 

Table 5.3 Validation of the simulation model with historical data (results from 15 working days of 

measurements) 
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5.4.2 Design of Experiments (DOE) 

In order to explore alternative configurations of the oncology department, a full-

factorial DOE was developed. DOE is a statistical method which enables the 

identification of the impact of a series of experimental factors on a response variable. 

The influence factors, shown in Table 5.4, were suggested by the medical staff and 

were taken into consideration since the costs of implementation were low or 

negligible. Briefly, such factors can be described as follows:  

• The number of couriers (α). It refers to the number of couriers employed 

to deliver the batches of therapies to the oncology unit. Since only one 

resource is currently available for this task (level A in Table 5.4), the aim is 

to evaluate how an additional resource (level B) would affect the patient 

waiting time; 

• The batch size (β). The second factor consists of the number of therapies 

that can be collected in a batch. Currently, the batch size is not fixed and the 

number of therapies can vary from two to twelve therapies. The objective is 

to assess if a fixed batch size can enhance the adopted KPIs and, at the same 

time, to evaluate if a smaller batch size is better than a larger one. To this 

end, three levels were considered: (A) fixed batch sized with three therapies; 

(B) fixed batch size with six therapies; (C) variable batch size (i.e., 

corresponding to the current configuration); 

• The appointment distribution (γ). The first level (A) provides three time-

windows of one hour and thirty minutes, each one with the same probability 

of occurrence equal to 33%. Similarly, the second level (B) consists of five 

time-windows of one hour, each with a probability of 20%. Level C entails the 

current case according to which patients arrive at the oncology unit 

conforming to five time-windows characterized by different occurrence 

probability (see Table 5.2); 

• The daily number of patients (δ). The last factor represents the average 

number of patients for each working day. Currently, every day the 

department takes care of about 28 patients (level A). The goal is to analyse 

how the performance changes considering a higher number of patients. To 

this end, an additional level (B) with 31 individuals is considered, which 

corresponds to an increase of about 10% of patients per day. It is worth 
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specifying that both levels refer to the mean of the normal distribution related 

to the number of patients per day (see Table 5.2) , while the standard 

deviation is kept constant at 3.94. 

Notably, the current configuration of the oncology unit is {A-C-C-A}, considering a 

one-to-one correspondence with the set of experimental factors {α-β-γ-δ}, respectively. 

We defined a full-factorial DOE, which involves 32 ∙ 22 = 36 different configurations 

of the oncology unit, in order to study the influence of the experimental factors on 

the performance of the ward. In addition, to make the statistical analysis robust 

enough, Ω = 5,000 different replicates at varying random seeds, each one simulating 

a different working day, were executed, thus achieving a number of 5,000 ∙ 36 = 

180,000 experiments. The DOE was performed by means of five virtual machines 

installed on a workstation equipped with an INTEL i9-9900 3.6 GHz 10 core CPU, 

32Gb DDR4 2,666MHz RAM and Win 10 PRO OS. Since the computational time 

required to simulate each configuration is equal about to 5 seconds, approximately 

two days were needed to accomplish the whole DOE. Only the expected mean 

flowtime E(F̅) was used as KPI, since the expected mean waiting time E(WT̅̅ ̅̅̅) and the 

expected efficiency E(Eff) are strictly related to the former. However, the KPIs will 

be used in the next analysis to stress the difference between the best configuration 

and the status quo. 

(*) time intervals with different occurrence probabilities as for the status quo configuration (see Table 

5.2).  

Factors Levels 

Symbols Description A B C 

α  Number of couriers 1 2 - 

β  Batch size 3 6 U(2,12) 

γ  Appointment distribution 3 5 5* 

δ  Capacity of the department 28 31 - 

Table 5.4 Factors/levels involved in the design of experiments 
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5.4.3 Analisys of results and managerial implications 

The analysis of variance (ANOVA) determines if the experimental factors 

statistically influence the key performance indicators. To this end, an ANOVA 

analysis at 95% level of confidence was carried out in Minitab® 2017 commercial 

package to evaluate the statistical significance of each factor. The numerical outputs 

from the ANOVA (see Table 5.5) show the results concerning the main effects. The 

plots related to the main effects are reported in Figure 5.2. The 2-way interactions 

are not reported in the table (but are available upon request) since no relevant 

findings were detected. Looking at the condensed ANOVA table, it is worth pointing 

out that the adjusted R-squared, i.e., the adjusted coefficient of determination, is 

larger than 95%. A higher value of the R-squared demonstrates that the model fits 

the data of the analysis thus confirming the robustness and the consistency of the 

proposed approach. With regards to the experimental factors, the p-value below 0.05 

implies that they are statistically significant for the expected mean flowtime E(F̅) at 

95% confidence level. The significance of the influencing factors on the mean 

flowtime is further exacerbated by related F-values. Indeed, the most important 

factors are usually identified by an F-value larger than 50 (Yu et al., 2018).  The very 

low F-value associated to factor α reveals that the number of couriers might have a 

weak effect on the performance of the system, as confirmed by the related main effect 

plots in Figure 5.2. To this end, a paired t-test at 95% confidence was performed and 

confirmed that the null hypothesis assuming that the mean difference between the 

paired samples is zero (i.e., H0: μd=0) can be rejected. In conclusion, the mean flow 

time is statistically insensitive to factor α. Interestingly, Figure 5.2related to factor 

β shows that fixing the batch size at the lowest value (level A) would favour the mean 

flow time reduction, while the current strategy based on a random batch size (level 

C) negatively biases the mean waiting time of patients. As for γ, rendering the arrival 

of the patients smoother by introducing new appointment distribution strategies 

(e.g., levels A and B) makes the service level better than the actual one (level C). In 

particular, the strategy corresponding to level B reduces patient waiting time by 

approximately 20 minutes on average. Finally, as for factor δ, an increment in the 

number of patients (level B) slightly increases the patient waiting time but, on the 

other hand, it can be adequately compensated by a larger number of patients that 

can be accepted daily without worsening the current performance of the oncology 
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unit. Table 5.6 shows the expected mean flowtime E(F̅) over the Ω = 5,000 simulation 

replicates, performed for each combination of experimental factors. Notably, the 

performance of the status quo configuration is illustrated in the first row of the table, 

while the other configurations were sorted in ascending order of expected mean 

flowtime. Also, the confidence intervals of the expected mean flowtime for each 

configuration are reported in the last column. Looking at the table, configuration 

number 21 indicates the ‘best configuration’ characterized by factors {B-A-B-A} and 

an expected mean flowtime E(F̅21) equal to 208.53. However, it is worth noting that 

the status quo configuration is one of the worst in terms of expected mean flowtime, 

along with the last four configurations in which the β factor always is set to the C 

level. To sum up, the following managerial implications would arise from the 

proposed numerical analysis: 

(1)  On the daily basis, the oncology unit could save 40 minutes of patient waiting 

time by passing from a random batch size to a fixed batch size with three 

therapies. This improvement could be realized without investing additional 

funds;  

(2)  Focusing on the patients’ appointments could also reduce the patient waiting 

time. A uniform distribution of patients’ arrival times through five time-

windows of one hour emerges as a valid alternative to enhance the 

performance of the ward without investing additional funds;  

(3)  Looking at the best configuration, an increase in the number of patients per 

day (configuration number 22) would involve a slight increment of expected 

patient waiting time to about ten minutes on average. However, configuration 

number 22 remains more successful than the status-quo configuration in 

terms of patient waiting time;  

 Since the number of couriers does not influence the expected mean flowtime, 

there would be no benefit from the addition of new resources dedicated to the 

therapy delivery. 

Finally, Table 5.7 compares the best simulated configuration and the simulated 

status quo in terms of expected mean flowtime E(F̅), expected mean waiting time 

E(WT̅̅ ̅̅̅) and expected efficiency E(Eff). Notably, Table 5.7 also report the related 95% 

confidence intervals (CI) and the percentage deviations (Dev). The percentage 

deviations reveal that the best configuration reduces the expected flowtime E(F̅) of 



75 

 

19.85%, the expected mean waiting time E(WT̅̅ ̅̅̅) of 37.73% and increases the expected 

efficiency E(Eff) of 24.77%. 

Source DF 𝐅-value 𝐩-value 

Model                  19   40299.03     0.000 

α  1 42.99 0.000 

β  2 292158.50 0.000 

γ  2 52500.10 0.000 

δ  1 73713.83 0.000 

  Adjusted R2 > 95% 

Table 5.5 ANOVA table 

 

Figure 5.2 Main Effect Plots 
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Configuration 

No. 

Factors E(F̅) 95% CI 

α β γ δ [minutes] [minutes] 

17 (status-quo) A C C A 260.17 (259.22;261.12) 

21 B A B A 208.53 (207.83;209.23) 

3 A A B A 209.05 (208.34;209.75) 

19 B A A A 216.07 (215.34;216.80) 

1 A A A A 216.61 (215.88;217.34) 

22 B A B B 218.16 (217.42;218.91) 

4 A A B B 218.71 (217.97;219.46) 

23 B A C A 223.29 (222.41;224.17) 

5 A A C A 223.81 (222.93;224.69) 

20 B A A B 226.71 (225.94;227.48) 

2 A A A B 227.27 (226.50;228.04) 

27 B B B A 231.02 (230.30;231.74) 

9 A B B A 231.13 (230.41;231.84) 

24 B A C B 237.48 (236.53;238.43) 

6 A A C B 238.05 (237.11;239.00) 

25 B B A A 238.34 (237.61;239.08) 

7 A B A A 238.46 (237.73;239.20) 

28 B B B B 240.09 (239.35;240.83) 

10 A B B B 240.2 (239.46;240.94) 

29 B B C A 244.69 (243.80;245.58) 

11 A B C A 244.78 (243.89;245.67) 

33 B C B A 247.5 (246.67;248.33) 

15 A C B A 247.64 (246.81;248.47) 

26 B B A B 248.45 (247.68;249.22) 

8 A B A B 248.56 (247.79;249.34) 

31 B C A A 253.99 (253.14;254.84) 

13 A C A A 254.13 (253.28;254.98) 

34 B C B B 255.93 (255.07;256.78) 

16 A C B B 256.05 (255.20;256.91) 

30 B B C B 257.66 (256.70;258.62) 

12 A B C B 257.76 (256.80;258.72) 

35 B C C A 260.17 (259.21;261.12) 

32 B C A B 263.63 (262.74;264.52) 

14 A C A B 263.76 (262.88;264.65) 

36 B C C B 272.56 (271.54;273.59) 

18 A C C B 272.69 (271.67;273.71) 

Table 5.6 Results of expected mean flowtime from the experimental campaign (5,000 replicates) 
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KPIs Simul. status quo 95% CI Simul. best config. 95% CI Dev 

E(F̅) 260.17 min (259.22;261.12) 208.53 min (207.83;209.23) 19.85% 

E(WT̅̅ ̅̅̅) 136.87 min (136.01;137.73) 85.23 min (84.66;85.80) 37.73% 

E(Eff) 47.39% (47.21;47.57) 59.13% (58.96;59.30) 24.77% 

Table 5.7 Simulation results: status quo Vs best configuration 

5.5 Conclusions 

In this study, we developed a computer agent-based simulation model explicitly 

designed to be configurable and adaptable to the needs of oncology departments. The 

case in which the pharmacy is detached from the oncology unit and, therefore, a 

courier service to deliver batches of therapies is used is considered. The validity of 

the proposed model was demonstrated through a statistical analysis based on a set 

of experimental data obtained by studying an oncology unit located in Ragusa 

(Southern Italy). Consequently, a series of alternative configurations was tested 

through a robust simulation campaign based on a full-factorial design of 

experiments. The results were evaluated through an ANOVA analysis, revealing 

that a fixed batch size with a low number of therapies and an effective appointment 

strategy significantly decrease the patient waiting time. The best simulated 

configuration was selected and compared with the status quo by means of three main 

key performance indicators. This comparison shows that the expected patient 

waiting time can be reduced by 37.7% in percentage deviation and the expected ward 

efficiency can be increased by 24.8%.   
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6. Chemotherapy outpatient appointment 

scheduling problem 

6.1 Introduction 

Oncology outpatients may often receive a series of treatments (e.g., chemotherapy or 

radiotherapy) for several periods, which in turns require different health services, 

such as physical and lab exams, therapy preparation and chemotherapy infusion. 

Despite the complexity and the multitude of tasks to be performed in a chemotherapy 

ward, reducing the patient waiting time is the leading objective for improving the 

quality level in the outpatient cancer treatment facilities (Gesell and Gregory, 2004). 

Scheduling outpatients that have to undergo chemotherapy treatments is a sensitive 

as much as challenging issue that was capturing the attention of both scholars and 

stakeholders in the healthcare landscape. In fact, building an effective schedule of 

patients allows reducing their waiting times on the one hand, and increasing the 

number of treatments in the working shift on the other hand. To strengthen this 

thought, the health wards may exploit an appointment scheduling approach to 

improve the efficiency of their services, thus increasing the patient satisfaction and 

the service rate as well (Gupta and Denton, 2008). 

In brief, the main steps to generate a daily schedule of appointments in an 

oncology clinic are the following. The oncologists plan the days of treatment for each 

patient through a specific medium-term care protocol that defines all the necessary 

information, e.g., date and duration of treatments, type and doses of drugs. 

Subsequently, the oncology unit communicates to the patients the appointment time 

for a given day. Since each patient may have a different disease history, thus 

requiring a different care path, the time she/he needs to receive the oncology 

treatment, which goes from the medical visit to the end of treatment, can be highly 

variable and the interaction with the other patients can strongly bias his/her length 

of stay in the clinic. Hence, an effective method for scheduling the patient 

appointments may positively impact on the performance of the clinic and on the 

patient satisfaction as well. 

This work is inspired to the health services provided by the oncology units 

described in Chapter 4 and Chapter 5. A simulation framework based on discrete 

time recursive equations was adopted for modelling the patient flow in the oncology 
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clinic. All the steps of the daily oncology process were handled as resource-

constrained stages since the number of oncologists, pharmacy technicians and 

nurses affect the service rate of their respective working areas. In particular, an 

eligibility constraint among patients and oncologists exists. Since the pharmacy and 

the oncology department are not located in the same building, the therapies are 

delivered by batches and, as a result, the delivery time may influence the system 

dynamics and the performance of the clinic as well. The simulation model works as 

an evaluative method embedded into a generative optimization technique consisting 

of a novel self-adaptive harmony search. It is noteworthy to highlight that the 

Chemotherapy Outpatient Scheduling (COS) problem in oncology clinics is 

stochastic in nature (Alvarado and Ntaimo, 2018), since some parameters of the 

problems, such as the deferral probability for each patient or the medical 

consultation time, are uncertain and cannot be exactly determined in advance. 

Therefore, a stochastic approach was formulated in order to properly run such 

sources of uncertainty. In brief, this work pursues a triple objective: 

i) introducing a Stochastic Programming (SP) model of a multi-stage oncology 

ward in which the pharmacy is detached from the oncology department and 

therapies are delivered by batches;  

ii) adopting a stochastic scheduling strategy able to reduce the idle times of 

patients among the stages;  

iii) developing a new metaheuristic algorithm to solve the COS problem for the 

minimization of the patient waiting time. 

To point out the novelty of the proposed work, Table 6.1 aims to retrieve the main 

literary contributions on the optimization of the COS problem (see also Section 2.3.2) 

and adopts a series of classification criteria to stress the difference among the 

different approaches with each other and the proposed study as well. The first two 

classification criteria refer to the way the medical consultation is run and to the 

scheduling strategy, respectively. A distinction between deterministic and stochastic 

approaches (type of model) is also indicated along with the adopted solving method. 

The objective function is defined as Key Performance Indicator (KPI). The kind of 

resources explicitly involved in the model can be the following: oncologists for the 

consultation phase (O), pharmacy technicians for the therapy preparation stage (D) 
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and nurse at the treatment stage (N). Finally, the last column points out the models 

able to run the therapy transportation time and the transportation batch as well. 

Notably, the proposed algorithm, namely a novel Self-Adaptive Harmony Search 

(SAHS), was compared with both a regular Harmony Search (HS) and a specific 

Greedy Randomized Adaptive Search Procedure (GRASP) algorithm already used by 

the literature in the same field of research. Preliminarily, the effectiveness of the 

aforementioned metaheuristics was properly validated by comparing the obtained 

solutions with the ones achieved by the SP model, considering a set of very small 

sized issues. Subsequently, a benchmark of larger-sized instances was generated, 

and an extended comparison analysis was carried out with the aim of demonstrating 

the outperformance of the proposed optimization technique over the other 

competitors. 

The rest of the work is organized as follows. The problem statement also including 

the basic assumptions and the objective function are described in Section 6.2, while 

the SP model is introduced in Section 6.3. Then, the major components 

characterizing the proposed self-adaptive harmony search are dealt with in Section 

6.4. Section 6.5 explains as the numerical experiments were handled. For a fair 

comparison analysis involving other metaheuristics two stopping criteria were 

calibrated on the basis of a proper analysis of convergence, as reported in Section 

6.6. The output from the comparison analysis are discussed in Section 6.7. Finally, 

conclusions are in Section 6.8. 

  



81 

 

Reference 
Medical 

consultation 

Scheduling 

strategy 

Type 

of 

model 

Solving 

method 
KPI 

Limited 

resources Therapy 

transp. 
O D N 

Alvarado and 

Ntaimo (2018) 

Next-day Off-line S SP WT, 

WL 

  ✓  

Bouras et al. 

(2017) 

Same-day Off-line D MP WT ✓ ✓ ✓  

Castaing et al. 

(2016) 

Next-day Off-line S SP, HE WT, 

TCT 

  ✓  

Condotta nad 

Shakhlevich 

(2014) 

Next-day Off-line D MP, T WT, 

WL 

  ✓  

Demir et al. 

(2021) 

Same-day Off-line S SP, HE WT, 

CU, 

OT 

  ✓  

Dobish (2003) Next-day Off-line D T WT, 

WL 

  ✓  

Edwards et al. 

(2017) 

Next-day Off-line D T CU, 

P 

  ✓  

Garaix et al. 

(2020) 

Same-day Off-line S SP, 

GRASP 

M ✓  ✓  

Hahn-Goldberg 

et al. (2014) 

Next-day On-line D CP, DT M  ✓ ✓  

Hesaraki et al. 

(2019) 

Same-day On-line D MP, DT FW, 

M 

  ✓  

Heshmat et al. 

(2017) 

Next-day Off-line D MP, CL TCT   ✓  

Heshmat et al. 

(2018) 

Next-day Off-line D MP, CL TCT   ✓  

Huang et al. 

(2019) 

Same-day Off-line D CP, T WL   ✓  

Huggins and 

Claudio (2019) 

Next-day Off-line D MP P  ✓ ✓  

Liang and 

Turkcan (2016) 

Same-day Off-line D MP WT, 

WL, 

OT 

  ✓  

Liang et al. 

(2015) 

Same-day Off-line D MP WL ✓  ✓  

Mandelbaum 

et al. (2020) 

Same-day Off-line S IR WT, 

OT 

    

Sadki et al 

(2011) 

Same-day Off-line D LR WT, 

M 

✓    

Sevinc et al. 

(2013) 

Next-day On-line D HE CU     

Turkcan et al. 

(2012) 

Same-day Off-line D MP TCT   ✓  

This study Same-day Off-line S SP, 

SAHS 

F ✓ ✓ ✓ ✓ 

Legend: CL: Clustering; CP: Constraint Programming; CU: Chair Utilization; DT: Dynamic Template; F: 

Flowtime; FW: Weighted Flowtime; GRASP: Greedy Randomized Adaptive Search Procedure; HE: Heuristics; IR: 

Infinite-server Relaxation; LR: Lagrangian Relaxation; M: Makespan; MP: Mathematical Programming; OT: 

Overtime of resources; P: Number of Patients; SAHS: Self-Adaptive Harmony Search; SP: Stochastic 

Programming; T: Template; TCT: Total Completion Time; WL: Work Load; WT: Waiting Time. 

Table 6.1 Optimizing the COS problem: classification of the relevant references 



82 

 

6.2 Problem statement 

The oncology department under consideration can be considered as the counterpart 

of a three-stage hybrid flow shop manufacturing system in which the first stage is 

related to the medical consultation, the second stage consists of the pharmacy 

laboratory and, finally, the third stage involves a set of chairs in parallel for the 

chemotherapy treatment (Bouras et al., 2017; Hahn-Goldberg et al., 2014). In 

general, the description of the problem is reported in Chapter 3. However, this work 

introduced a new feature of the problem regarding the medical consultation. A 

referee oncologist assists the patient during the whole therapeutic path, in 

accordance to the care protocol. Hence, the long/medium-term appointment-planning 

phase is managed by the referee oncologist, who decides upon the days any patient 

undergoes the therapy. For that reason, the set of patients to be treated every day is 

known a-priori. When the patient meet the oncologist for the medical consultation, 

a decision on the chemotherapy is taken by the assigned oncologist based on the 

health status of the patient and on the blood tests executed by the patient in the 

same hospital or in an external laboratory. Therefore, there exists a deferral 

probability (Heshmat and Eltawil, 2019; Garaix et al., 2020) that the patient is not 

ready to receive the chemotherapy on the same-day. In case the medical consultation 

is successful, the referee oncologist sends a request (i.e., a prescription) to the 

pharmacy, which includes type and doses of the therapy and the patient can undergo 

the treatment administration. Otherwise, the patient appointment is postponed 

since the patient health status was not evaluated properly good to receive the 

treatment. The objective is to minimize the average patient waiting time over the 

provided time horizon, which consists of one working day.  

6.2.1 Problem assumptions 

To thoroughly describe the problem under investigation, also in regard to the real-

life ward we observed, the following assumptions can be summarized as follows: 

1. The number of patients to be treated at a given day is known in advance as 

it arises from the planning phase, conforming to the patient care protocol 

decided by the oncologist; 

2. Arrival times of patients are initialized to zero (rp=0, ∀p=1,..,P); 

3. Each patient is assigned to a referee oncologist for the medical consultation; 
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4. Cancellations and no-shows at the consultation session are disregarded; 

5. The desk registration time is negligible; 

6. Therapy preparation devices never break down; 

7. Each pharmacy technician can prepare a therapy at a time; 

8. Pre-emption on the different activities is not allowed; 

9. Chairs are identical; 

10. Every chair can accommodate a patient at a time; 

11. Nurses have identical skills, i.e., each patient can be treated by any available 

nurse; 

12. Each nurse can prepare only a patient at a time; 

13. A nurse can monitor at most four patients simultaneously; 

14. The time any patient needs to leave the chair is negligible. 

However, most of these assumptions are common to several literary contributions 

(Baril et al., 2016a; Demir et al., 2021; Garaix et al., 2020; Hesaraki et al, 2019; 

Sadki et al., 2011). Due to the stochastic approach we adopted for coping with COS 

problem at hand, the way the uncertainty is modelled and the stochastic counterpart 

of the objective function are discussed in the following subsections. 

6.2.1 Modelling uncertainty 

The COS problem is characterized by several sources of uncertainty. To model the 

uncertainties of the problem, the Sample Average Approximation framework is 

adopted (Denton et al., 2007). It consists of generating a finite number of scenarios 

Ω in which stochastic parameters are independently sampled from the corresponding 

stochastic distributions, while deterministic parameters are kept unchanged for each 

scenario ω (ω=1,...,Ω). The same approach was already used for scheduling 

outpatient appointments in oncology units (Castaing et al., 2016). Four distinct 

sources of uncertainty characterize the problem under investigation. 

1. Every oncologist reviews the results of the patient blood test, carries out a 

medical examination of the patient health status and makes a decision on the 

dosage of the drugs to be prepared by the pharmacy. Therefore, the duration 

of each medical consultation cannot be determined a-priori and, as a 

consequence, it is a stochastic descriptor of the oncology process: Dcp
ω
 is the 

medical consultation time of patient p at scenario ω.  
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2. Based on the outcome of the visit, the oncologist may decide if the patient is 

able to receive the treatment or if she/he has to be deferred. The probability a 

patient p at scenario ω is deferred, is denoted as λp
ω 

∈ U[0,1]. If λp
ω
 is lower than 

or equal to λ̅, that is the experimental value arisen from the experimental 

observation, the patient is deferred, otherwise it is able to undergo the 

treatment. Hence, for each patient p and at each scenario ω the following 

deferral coefficient δp
ω
 can be introduced as in Eq. 6.1: 

 δp
ω
= {1

0
   

if λ p
ω

 ≤ λ̅ 

otherwise
 (6.1) 

3. Since the pharmacy is detached from the ward, the time required to deliver the 

therapies from the pharmacy to the oncology ward can be significantly 

uncertain due to several factors such as urban traffic. Particularly, therapies 

prepared by the pharmacy are gathered in batches and delivered to the 

oncology unit by means of a courier service. Thereby, the batch transportation 

time is a stochastic descriptor and TDb
ω
 denotes the time to deliver a batch b of 

therapies at scenario ω. 

4. Setup time of patients for the chemotherapy treatment may be subject to 

variability due to many factors. So, Dsp
ω is another stochastic descriptor 

denoting the setup time of patient p at scenario ω. 

Conversely, conforming to our experimental observations, the therapy preparation 

time Dp
p
 and the treatment time Dip are handled as deterministic factors, similarly 

being done by the relevant literature (Benzaid et al., 2020; Garaix et al., 2020; 

Hesaraki et al., 2019; Masini et al., 2014).  

6.2.2 Objective function 

The objective to be pursued consists of scheduling the outpatient appointments so as 

to reduce the patient waiting time. To this end, the total flow time was adopted, 

hereinafter denoted as F, that implies the reduction of the patient waiting time 

(Chonde et al., 2013; Hesaraki et al., 2019; Li and Chai, 2019; Taheri et al., 2012), 

and can be calculated as in Eq. 6.2: 

 F = ∑ (Cip-rp)P
p=1  (6.2) 
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As mentioned earlier, patients’ arrival times are initialized to zero (rp=0, ∀p=1,..,P). 

Then, once a sequence of patients was scheduled, the corresponding appointment 

schedule is generated and the total flow time can be calculated by replacing the 

release dates rp with the consultation starting time Scp, as in Eq. 6.3: 

 F = ∑ (Cip-Scp)P
p=1  (6.3) 

The stochastic counterpart of the total flow time is the expected total flowtime E(F), 

which depends on the set of scenarios Ω (ω=1,...,Ω), as in Eq. 6.4:  

 F =
1

Ω
∑ F(ω)Ω

ω=1  (6.4) 

6.3 Stochastic programming model 

In order to optimally solve small-sized instances of the COS problem under 

investigation, we used the sample average approximation method to develop a SP 

model working by means of a time-slot based technique. Each time-slot is set to 5 

minutes (Sadki et al., 2011). Notations and mathematical model are in the following: 

Parameters 

ω Scenario ω=1,...,Ω 

p Patient p=1,…,P 

o Oncologist o=1,…,O 

d Pharmacy technician d=1,…,D 

b Batch b=1,…,B 

c Chair c=1,…,C 

n Nurse n=1,…,N 

s Time slot s=1,…,S 

Op
p
  Oncologist assigned to patient p 

Dp Duration of therapy preparation 

Dip Duration of treatment for patient p 

CAP Batch size 

M A big number 

Stochastic parameters 

Dcp
ω
  Duration of medical consultation for patient p at scenario ω 

δp
ω
∈{0,1}  Deferral coefficient of patient p at scenario ω 
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TDb
ω
 Duration of therapy delivery for batch b at scenario ω 

Dsetp
ω
  Duration of setup for patient p at scenario ω 

Decision variables 

φ
p,o,s
ω ∈{0,1}   1 if the oncologist o starts the medical consultation of the patient p 

in the time slot s at scenario ω, 0 otherwise 

θ p,d,s,b
ω

∈{0,1}   1 if the pharmacy technician d starts to prepare the therapy of the 

patient p of the batch b in the time slot s at scenario ω, 0 otherwise 

α p,n,s
ω ∈{0,1}   1 if the nurse n starts the setup of the patient p in the time slot s at 

scenario ω, 0 otherwise 

β 
p,c,s

ω
∈{0,1}   1 if the treatment of the patient p starts in the chair c in the time 

slot s at scenario ω, 0 otherwise 

Auxiliary variables 

Sc p
ω
  Consultation starting time of the patient p at scenario ω 

Sp 
p,b

ω
   Therapy preparation starting time for the patient p of the batch b 

at scenario ω 

Cb b
ω
   Delivery completion time of the batch b at scenario ω 

Sset p
ω
   Setup starting time of the patient p at scenario ω 

Si p
ω
   Treatment starting time of the patient p at scenario ω 

 

Objective and constraints 

 min∑ (∑ [(Si p
ω
+Dip+ Dsetp

ω - Sc p
ω
)∙δp

ω
]P

p=1 )𝛺
𝜔=1 /𝛺  (6.5) 

Subject to 

 ∑ φ
p,Opp,s
ωS

s=1 = 1     ∀p=1,…,P,  ω ∈ Ω (6.6) 

 ∑ ∑ φ
p,o,t
ω  ≤ 1     ∀s=1,…,S, o=1,…,O|s-1

t=s-Dcp
ω

|t>0
P
p=1 Op

p
=o, ω ∈ Ω (6.7) 

 Sc p
ω
=∑ φ

p,Opp,s
ωS

s=1 ∙ s     ∀p=1,…,P,  ω ∈ Ω (6.8) 

 Sc p
ω
+Dcp

ω
≤ ∑ Sp 

p,b

ω
     B

b=1 ∀p=1,…,P,  ω ∈ Ω (6.9) 

 ∑ ∑ ∑ θ p,d,s,b
ω

=1     B
b=1

D
d=1

S
s=1 ∀p=1,…,P,  ω ∈ Ω (6.10) 
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 ∑ ∑ ∑ θ p,d,t,b
ω

 ≤ 1     ∀s=1,…,S, d=1,…,D, B
b=1

s-1
t=s-Dp∙δp

ω
|t>0

P
p=1 ω ∈ Ω (6.11) 

 Sp 
p,b

ω
=∑ ∑ θ p,d,s,b

ω
∙s     D

d=1
S
s=1 ∀p=1,…,P, b=1,…,B,  ω ∈ Ω (6.12) 

 ∑ ∑ ∑ (θ p,d,s,b
ω

∙δp
ω
) ≤ CAP     ∀b=1,…,B,  ω ∈ ΩS

s=1
D
d=1

P
p=1  (6.13) 

 Cb b
ω

 ≥ (Sp 
p,b

ω
+Dp)  ∙ δp

ω
+TDb

ω
     ∀p=1,…,P, b=1,…,B,  ω ∈ Ω (6.14) 

 M∙∑ ∑ θ p,d,s,b
ω

+S
s=1

D
d=1 Cb b

ω
-  Sset p

ω
 ≤ M          ∀p=1,…,P, b=1,…,B,  ω ∈ Ω (6.15) 

 ∑ ∑ α p,n,s
ω =1     N

n=1
S
s=1 ∀p=1,…,P,  ω ∈ Ω (6.16) 

 ∑ ∑ α p,n,t
ω  ≤ 1    ∀s=1,…,S, n=1,…,N, ω ∈ Ω  s-1

t=s-Dsetp
ω

∙δp
ω

P
p=1  (6.17) 

 ∑ α p,n,s
ω  ≤ 1     ∀s=1,…,S, n=1,…,N, ω ∈ ΩP

p=1  (6.18) 

 Sset p
ω
=∑ ∑ α p,n,s

ω ∙sN
n=1      S

s=1 ∀p=1,…,P,  ω ∈ Ω (6.19) 

 Sset p
ω
 ≤ Si p

ω
     ∀p=1,…,P,  ω ∈ Ω (6.20) 

 ∑ ∑ β 
p,c,s

ω
=1     C

c=1
S
s=1 ∀p=1,…,P,  ω ∈ Ω (6.21) 

 ∑ ∑ β 
p,c,t

ω
 ≤ 1     ∀s=1,…,S, c=1,…,C, ω ∈ Ω s-1

t=s-(Dip+Dsetp
ω

)∙δp
ω

|t>0
P
p=1  (6.22) 

 ∑ β 
p,c,s

ω
 ≤ 1     ∀s=1,…,S, c=1,…,C, ω ∈ ΩP

p=1  (6.23) 

 Si p
ω
=∑ ∑ β 

p,c,s

ω
 ∙ sC

c=1
S
s=1      ∀p=1,…,P,  ω ∈ Ω (6.24) 

 Si p
ω
+Dip ≤ S     ∀p=1,…,P,  ω ∈ Ω (6.25) 

The objective function (see Eq. 6.5) consists in the minimization of the total flowtime 

for a given scenario. Constraint 6.6 ensures that each patient receives only one 

medical consultation during the day. Constraint 6.7 states that each oncologist visits 

no more than one patient at a time. Constraint 6.8 calculates the medical 

consultation starting time. Constraint 6.9 ascertains that the completion time of the 

medical consultation is less or equal to the therapy preparation starting time. As 

regards the pharmacy stage, Constraint 6.10 assures that the pharmacy technicians 
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can prepare only one therapy for each patient and each patient can be assigned to 

only one batch. Constraint 6.11 guarantees that each pharmacy technician can 

prepare only a single therapy at time. Constraint 6.12 computes the therapy 

preparation starting time. Through the Constraint 6.13, the maximum capacity of a 

batch is respected, while the Constraint 6.14 states that the delivery completion time 

is equal to the completion time of the batch plus the delivery time of the considered 

batch. Specifically, the completion time of the batch is equal to the completion time 

of the last therapy loaded into the batch. Constraint 6.15 makes use of the big M to 

check out that the setup operations start if the therapies are shipped to the 

department. Constraint 6.16 affirms that each patient can be prepared for the 

treatment only one time, while Constraint 6.17 and Constraint 6.18 assures that 

each nurse can setup only one patient at time. Constraint 6.19 determines the setup 

starting time. As concerns the last stage, Constraint 6.20 creates the timing 

relationship between the setup operations and the starting time of the treatment. 

Constraint 6.21 specifies that each patient can receive only one chemotherapy 

administration, while Constraint 6.22 and Constraint 6.23 imposes that each chair 

can accommodate only one patient at time. Constraint 6.24 computes the treatment 

starting time. Finally, the Constraint 25 ascertains that the completion times of each 

patients respect the total number of slots. 

6.4 Metaheuristic algorithms for solving the COS problem 

As mentioned earlier, the COS problem can be considered as a deterministic hybrid 

flow shop problem, which is NP-hard in the strong sense, even when there are two 

resources at the first stage (Gupta et al., 1997). As a result, only very small-sized 

instances can be optimally solved with reasonable computational time. Besides, due 

to the stochastic configuration of the problem at hand, the computational time 

required to solve an instance dramatically increases with the number of scenarios 

(Birge and Louveaux, 2011; Demir et al., 2021). As a result, either heuristic or 

metaheuristic algorithms are needed to solve large-sized instances in a reasonable 

computational time (Costa et al., 2013).  

In this section, two metaheuristic algorithms are proposed, namely the Harmony 

Search (HS) algorithm and the Self-Adaptive Harmony Search (SAHS). The 

Harmony search (HS) is a metaheuristic algorithm inspired by the musical 
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performance process of a musician searching for a better state of harmony (Geem et 

al., 2001). It is an effective and efficient evolutionary technique able to solve different 

kinds of engineering problems (Manjarres et al., 2013), which showed better 

performance than other well-known optimization methods (Abdel-Raouf and 

Metwally 2013). Several research contributions also demonstrated that the 

evolutionary mechanism of HS is faster than genetic algorithms (Lee et al., 2005; 

Omran and Mahdavi, 2008). 

However, the calibration procedure needed to choose the optimal set of 

parameters for metaheuristic algorithms has a considerable impact on their search 

performance. Within the field of evolutionary algorithms, the “Self-Adaptation” 

approach becomes popular. This consists of encoding the algorithm’s parameters 

alongside the candidate solution that change with the evolution of the algorithm 

(Smith, 2008). To this end, a new self-adaptive version of the HS algorithm (namely 

SAHS) is here proposed to solve the COS problem. The following subsections deal 

with the rationale of the decoding procedure employed for evaluating any solution of 

the COS problem. Subsequently, the standard HS is presented, and the self-adaptive 

structure is thoroughly explained, respectively. 

6.4.1 Decoding procedure 

Any metaheuristic algorithm generates several candidate solutions for the problem 

under investigation with the aim of identifying the best near-optimal solution. In the 

case of the COS problem, any solution is represented by a permutation sequence of 

patients π to be processed for every scenario ω. Consequently, a decoding procedure 

is needed to evaluate the expected total flowtime associated to π. The decoding 

procedure for the multi-stage COS problem at hand entails two distinct phases: the 

Early-Start (ES) scheduling and the Late-Start (LS) scheduling. The former follows 

a regular scheduling strategy; every patient preliminarily assigned to a specific 

oncologist starts the visit as early as possible, when his/her referee oncologist is 

available for the medical consultation. Once all patients were processed at the 

consultation stage, the First Come First Served (FCFS) policy is applied to schedule 

therapy preparations at the pharmacy stage and again the patients at the treatment 

stage, conforming to the delivery time of the therapies arranged in batches. The 

latter phase aims at reducing the patients’ waiting time. In fact, the LS approach 

works by adjusting the ES schedule on the basis of a backward rule. In brief, the 
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activities scheduled at the treatment stage remain the same while, going backward 

from the therapy preparation to the consultation stage, the related operations are 

shifted as much as possible ahead, conforming to the provided constraints. As a 

result, the starting time of the medical consultation for some patients can be 

postponed, thereby favouring a consequent reduction of the total flowtime for each 

scenario. At the same time, the chemotherapy outpatient schedule is generated by 

matching the consultation starting time with the patient arrival times. Finally, the 

total expected flowtime E(F) can be computed by considering the single flowtime 

contributions pertaining to each scenario ω (see Eq. 6.4)  

6.4.2 The Harmony Search Algorithm 

In the HS algorithm, each harmony consists of an n-dimensional real-coded vector. 

Let us suppose a single harmony is denoted as x = (x1,...,xj,...,xn) such that each 

variable is defined in the domain [LBj,UBj]∈ℝ and f(x) is the related objective 

function value. Since the healthcare scheduling problem under investigation can be 

classified as a combinatorial issue, each real-coded solution has to be converted into 

a sequence of patients. To this end, we employed a well-known mechanism based on 

the smallest position value (SPV) rule (Komaki et al., 2014), which allows converting 

any real-valued harmony vector into a discrete job permutation. In brief, such rule, 

which works by means of a sorting procedure, enables the algorithm to switch from 

a conventional scheme to a discrete one. As for example, Table 6.2 shows a generic 

real-encoded harmony x corresponding to the permutation solution {7-6-2-1-8-4-3-5} 

after the SPV conversion is executed. The computational procedure of the basic HS 

algorithm is explicated by the pseudo-code in Table 6.3. After a preliminary 

initialization phase, in which a number of control parameters has to be set (namely 

harmony memory consideration rate HMCR, pitch adjustment PAR and bandwidth 

BW) a set of HMS randomly generated solutions (harmonies) are stored in the 

Harmony Memory (HM). The generation of the initial population, (i.e., the initial 

HM) may assume a strategic role for the search ability of an evolutionary algorithm. 

Conforming to the seminal paper of Geem et al. (2001) and after a series of trial-and-

error tests, we set the harmony memory size (HMS) to 60. The whole set of 

harmonies are randomly generated. However, to enhance the quality of the initial 

HM, two harmonies are replaced by two well-known heuristics, namely Short 
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Processing Time (SPT) and Long Processing Time (LPT), which consider only the 

treatment times. 

After the initial HM was created, the decoding procedure is employed by the 

Harmony Search for evaluating the HM. A variable evals is updated to record the 

number of evaluations carried out by the algorithm. Then, a new harmony vector 

xnew is stochastically generated by applying three operators (improvisation phase): 

harmony memory consideration, pitch adjustment and random selection. If the new 

candidate harmony performs better than the worst one xworst in the HM, then the 

latter is replaced by the new one. In this fashion, the harmony memory is constantly 

updated. A variable iter is used to record the number of improvisations. To boost the 

search ability of the proposed metaheuristic, two computational techniques were 

embedded into the HS structure, denoted as Local Search and Reinitialization, 

properly described in the following subsections. Finally, the HS algorithm stops once 

one of the termination criteria is satisfied (see Section 6.6). 

 1 2 3 4 5 6 7 8 

x 0.14 -0.74 1.11 0.98 2.32 -1.54 -2.24 0.78 

Table 6.2 Illustrative example of encoded solution x 
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Algorithm: Harmony Search 

1: Step 1: Initialization and setting of control parameters, namely HMS, HMCR, PAR, BW, 

(LBj,UBj)  2:  ∀ j=1,…,n; iter = 0 

3: Step 2: Generate the initial population, i.e., the HM, and calculate the objective function 

of each  4:  harmony vector 

5: Step 3: Improvise a new harmony xnew as follows: 

6:    for i = 1 : HMS 

7:     for j = 1 : n 

8:      if rand< HMCR 

9:       xij
new= xaj     where a ∈ (1,…, HMS) 

10:       if rand< PAR 

11:        xij
new= xij

new± rand ∙ BW  

12:       end 

13:      else           

14:       xij
new= LBj + rand ∙ (UBj - LBj)  

15:      end 

16:     end 

17:    end 

18: Step 4: Compute the objective function f(xnew) 

19: Step 5: Update HM by xworst ← xnew if f(xnew)< f(xworst) 

20: Step 6: iter = iter + 1 

21: Step 7: if the exit criterion is satisfied 

22:    Stop the algorithm; Return the best harmony vector xbest and f(xbest) 

23:   else 

24:    Goto Step 3 

25:   end 

Table 6.3 The Harmony Search algorithm 

6.4.2.1 Local search 

In the local search, at each iteration, a harmony xr is randomly extracted from the 

current harmony memory, thus working as starting seed of this procedure. Two well-

known perturbation methods, namely insertion and swap, are applied to the seed 

according to an adaptive probability equal to 1-[(iter/Max_iter)], where Max_iter is 

equal to (PAT ∙ 1000)/HMS. In brief, being the insertion method more explorative 

than swap, it has a higher probability to be used at the early stages of the 

evolutionary path. Insertion consists in randomly selecting a digit and inserting that 

into a random position of the harmony vector. Swap means to exchange two 

randomly selected digits of the harmony vector. If the perturbed harmony xs 
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performs better than the original one, then the seed is replaced. The local search is 

outlined in Table 6.4. Besides, if the new harmony improves the best solution 

achieved so far, the new local optimum is updated and the worst solution of the 

harmony memory is replaced by the new best solution properly reinitialized.  

Algorithm: Local Search 

1: Step 1: Select randomly a harmony in the current HM: xr|r ∈ int(U[1,HMS]) 

2: Step 2: flag_impr = 0 

3: Step 3: for q = 1 : n 

4:    if rand < 1-(iter/Max_iter) 

5:     xs ← insertion(xr) 

6:    else 

7:     xs ← swap(xr) 

8:    end 

9:    if f(xs) < f(xr) 

10:     xr ← xs; f(xr) ← f(xs) 

11:     if f(xs) < Fbest 

12:      flag_impr = 1 

13:      xbest ← xs; f(x
best) ← f(xs) 

14:      xs
* ← reinitialize(xs) 

15:      xworst ← xs
* 

16:      F
worst

 ← f(xs) 

17:     end 

18:    end 

19:   end 

Table 6.4 The local search algorithm 

6.4.2.2 Reinitialization 

Reinitialization is a novel strategy we propose to enhance the exploration ability 

of SAHS. Once a reference harmony is selected, it generates a random harmony and 

rearranges the digits so that the SPV rule yields the same permutation solution of 

the reference harmony. Whether the local search does not yield any improvement in 

the local optimum flag_impr=0, the whole harmony memory is reinitialized. The 

reinitialization strategy aims at regenerating the information stored in each 

harmony vector; thus, reinitializing the current HM would reduce the risk of 

remaining prematurely trapped into a local optimum. In fact, every permutation 

solution obtained by applying the SPV rule to the real encoded vector just depends 

on the sorted information and not on the specific values assumed by each digit. 
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Hence, similarly to a well-known restart mechanism often embedded in the 

metaheuristic algorithms (Dao et al., 2017), reinitialization would allow the 

algorithm to improve the exploration ability over the space of solutions. Table 6.5 

should clarify how a reference harmony x can be reinitialized by xrein, which in turn 

is obtained by sorting the information of a new randomly generated vector xr. For 

the sake of clarity, the reinitialization procedure is reported in Table 6.5. 

Algorithm: Harmony Reinitialization 

1: Step 1: Select a harmony x 

2: Step 2: Generate the corresponding permutation harmony by applyingi SPV on 

x:[~, xperm] = sort(x) 

3: Step 3: Generate a random harmony xr 

4: Step 4: Sort xr values: xr_sort = sort(xr) 

5: Step 5: Sort xr values through: xperm: xrein(xperm) = xr_sort 

6: Step 6: Reinitialize the harmony: x ← xrein 

Table 6.5 Harmony reinitialization 

Vectors Values 

x 0.45 0.62 -0.12 0.33 

xperm  3 4 1 2 

xr  0.61 0.27 0.82 -0.23 

xrein  0.61 0.82 -0.23 0.27 

Table 6.6 Example of Harmony reinitialization 

6.4.3 The proposed Self-Adaptive Harmony Search 

To assure the maximum performance, metaheuristics require a set of control 

parameters to be preliminarily set, according to the kind of problem to be addressed. 

An accurate selection of such control parameters allows metaheuristics to find the 

best balance between exploration and exploitation, also called intensification and 

diversification (Blum and Roli, 2003). During the diversification phase, different 

solutions are generated to support the exploration of the search space on a global 

scale, while intensification consists of a search in a smaller region pertaining to a 

local optimum. In order to overcome any trial-and-error approach as well as any 

tedious calibration analysis concerning the selection of control parameters, a self-
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adaptive harmony search algorithm (SAHS), inspired by the self-adaptive 

differential evolution proposed by Brest et al. (2006), was devised (the pseudo-code 

of SAHS is in Table 6.7). 

To configure a self-adaptive mechanism for tuning the provided control 

parameters, with exception of the population size, each harmony in the HM is 

extended by three values, namely HCMR, PAR and BW, as in Eq. 6.26: 

[
 
 
 

x1,1…x1,n|x1,n+1,x1,n+2,x1,n+3

x2,1…x2,n|x2,n+1,x2,n+2,x2,n+3

…
xHMS,1…xHMS,n|xHMS,n+1,xHMS,n+2,xHMS,n+3]

 
 
 
= [

x1|HMCR1,PAR1,BW1

x2|HMCR2,PAR2,BW2

…
xHMS|HMCRHMS,PARHMS,BWHMS

]  (6.26) 

The best values of control parameters lead to better harmonies, which in turn have 

much more chances to survive, thereby propagating such better parameter values in 

the next generations. For the sake of clarity, hereinafter the generic vector of control 

parameter [xi,n+1,xi,n+2,xi,n+3] will be denoted as y
i
 = [y

i1
,y

i2
,y

i3
]. 
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Algorithm Self-Adapative Harmony Search 

1: Step 1: Initialization and setting of the control parameters, namely HMS, HMCRmax, HMCRmin, PARmax, 

PARmin,  

2:  BWmax, BWmin, (LBj,UBj) ∀ j=1,…,n; Max_ev and Max_ct; iter = 0. 

3: Step 2: Generate randomly the initial harmony memory HM and calculate the objective function of each 

harmony  

4:  vector. Generate randomly a vector of control parameters related to each harmony vector: y
i1

 ∈ U 

5:  [HMCRmin, HMCRmax]; yi2
 ∈ U [PARmin, PARmax]; y

i3
 ∈ U [BWmin, BWmax], ∀ i=1,…,HMS ; initialize 

number 

6:  of evaluated solutions: evals = 0. 

7: Step 3: Replace 2 randomly selected harmonies with SPT, and LPT solutions. Convert the permutation 

solution into  

8:  real encoded solutions. Compute their fitness function of such heuristic solutions. Set the best solution 

xbest 

9:  and the best expected total flowtime E(Fbest). Set the worst solution xworst and the worst expected total 

10:  flowtime E(Fworst). Set control parameters associated to the best solution: ybest. 

11: Step 4: Improvise a new harmony xnew as follows: 

12:    for i = 1 : HMS 

13:     for j = 1 : n 

14:      if rand < y
i1

 

15:       xij
new= xaj,      where a ∈ (1, …, HMS) 

16.       if rand < y
i2

 

17:        xij
new= xij

new±  rand ∙ y
i3

  

18:       end 

19:      else 

20:       xij
new= LBj + rand ∙ (UBj - LBj)  

21:      end 

22:     end 

23:    end 

 

24: Step 5: Compute the objective function f(xnew) 

25: Step 6: Update control parameters (see Section 6.4.3.2) 

26: Step 7: Update HM as follows: 

27:   if f (xnew) < E(Fworst) 

28:    xworst ← xnew; E(Fworst) ← f (xnew) 

29:    if f (xnew) < E(Fbest) 

30:     xbest ← xnew; E(Fbest) ← f (xnew) 

31:    end             

32:   end              

33: Step 8: Local Search 

34: Step 9: Reinitialization 

35: Step 10: iter = iter + 1; Update evals 

36:   if evals ≤ Max_ev or time ≤ Max_ct 

37:    Stop the algorithm; return the best harmony vector xbest and E(Fbest) 

38:   else 

39:    Goto Step 4 

40:   end              

Table 6.7 Pseudo-code of SAHS 
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6.4.3.1 Setting control parameters 

In the proposed self-adaptive metaheuristic each harmony is composed by an n-

dimensional vector and three additional digits concerning HMCR, PAR and BW, 

respectively. Each control parameter may vary within a specific domain to be 

preliminarily defined on the basis of what the literature experienced so far. A large 

value of HMCR enhances the local search ability of HS, while a smaller value would 

raise the diversity of the harmony memory. Conforming to Luo (2013), HMCR should 

be chosen in the range [0.5, 1.0] even if most literature adopts a value greater than 

or equal to 0.9, as reported in Kattan and Abdullah (2013) and Omran and Mahdavi 

(2008). Consequently, we assumed HMCR varying in [0.70, 0.99] for the proposed 

SAHS. As far as PAR is concerned, it is in charge to tune the level of diversification 

of the harmony memory. Generally, it can be set in the range [0, 1] (Pan et al., 2010) 

even though intermediate values would be preferable, as indicated in the comparison 

analyses proposed by Kattan and Abdullah (2013) and Zhao et al. (2017). In this 

research, the PAR related domain is set to [0.40, 0.90]. A finer intensification of the 

search mechanism depends on the bandwidth parameter BW that frequently is set 

to very low positive values (Kattan and Abdullah, 2013; Mahdavi et al., 2007; Pan et 

al., 2010). To this end, it is varied in the range [0.001, 0.1], conforming to Pan et al. 

(2010). 

6.4.3.2 Updating control parameters 

Control parameters pertaining to each harmony vector are dynamically updated 

according to a twofold rule. Notably, a sort of global search mechanism drives the 

parameter updating with an adaptive probability equal to 1-(1/iter). The rationale is 

that control parameters of the best solution (y
1
best,y

2
best,y

3
best) should be able to bias 

much more those of the other harmonies as much as the iterations increases. 

Therefore, for a generic harmony vector xi, if rand ≤ 1-(1/iter): 

for k = 1:3 

 if y
ik

 ≤ y
k
best 

  y
ik
new = y

ik
+ rand ∙ (y

k
best- y

ik
) 

 else 

  y
ik
new = y

ik
-  rand ∙ ( y

ik
 - y

k

best) 

 end 

end 
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On the other hand, to avoid of being trapped into a premature uniformity of control 

parameters, a diversification strategy is assured when the aforementioned adaptive 

probability is not satisfied, as follows: 

for k = 1:3 

 if rand ≤ 0.5 

  y
ik
new = y

ik
+ rand ∙ ( max

i
y

ik
- y

ik
) 

 else 

  y
ik
new = y

ik
- rand ∙ ( y

ik
- min

i
 y

ik
) 

 end 

end 

6.5 Numerical experiments 

In order to prove the effectiveness of the proposed SAHS in solving the COS 

problem under investigation, several data sets of numerical instances were 

generated. We considered three classes of problems at varying problem size, namely 

small (P=15), medium (P=40) and large (P=70), where P indicates the number of 

patients. For each of them, a Design of Experiments (DOE) was performed by 

involving four factors (i.e., number of oncologists O, number of chairs C, therapy 

batch size CAP and the interval of the uniform distribution related to the batch 

delivery time U(TD)) varied at two levels, low (L) and high (H), respectively. Hence, 

a total amount 24=16 configurations for each class of problem were considered. Since 

ten instances were randomly generated for each configuration, 3 ∙16 ∙10 = 480 runs 

were executed. Table 6.8 reports the different factors/levels, whose values were fixed 

on the basis of the benchmark problems addressed by the literature so far (please 

see Castaing et al., 2016; Garaix et al., 2020; Heshmat and Eltawil, 2021; Heshmat 

et al., 2017,2018; Ramos et al., 2020; Yokouchi et al., 2012 among the others). Indeed, 

since both the therapy transportation and the batch size related issues never were 

investigated by literature so far, their values were set on the basis of a brief survey 

involving the medical staff. The number of nurses N was set by considering that the 

ratio N/C is usually fixed to 1/4 to respect the assumption that one nurse can 

monitor at most four patients simultaneously (Hesaraki et al., 2019; Benzaid et al., 

2020). Finally, to balance the pharmacy capability on the problem size, a different 

number of pharmacy technicians D={1,2,3}was assigned to each class of problems, 

respectively. The therapy preparation time Dp
p
 is set to 5 minutes for each patient, 

while the treatment time Dip is drawn from a gamma distribution (1.9, 52.37), 



99 

 

selected according to a series of empirical observations. Due to the stochastic feature 

of the proposed COS problem, the number of scenarios Ω to evaluate any candidate 

solution is set to 300, though it is reduced to 30 when the time-consuming SP model 

is used to solve small-sized issues (Liu et al., 2019b). The stochastic parameters of 

the COS problem under investigation were set as follows:  

- the medical consultation time Dcp
ω
 of the patient p at scenario ω depends on an 

N(22.83, 3.19) normal distribution; 

- the deferral coefficient δp
ω
 of the patient p at scenario ω arises from λp

ω
 ∈ U[0,1] 

with λ̅ equal to 0.20 (see Sec. 3.1); 

-  the delivery time TDb
ω
 of the batch b at scenario ω is derived from a uniform 

distribution as in Table 6.8; 

- the setup time Dsp
ω
 of the patient p at scenario ω is derived from an U(5, 15) 

uniform distribution; 

- at each scenario ω, every patient p is randomly assigned to a referee oncologist 

Op
p
. 

The type of the statistical distributions mentioned above refers to the results of an 

extensive time-study carried out in a chemotherapy unit located in the Southern 

Italy. Each metaheuristic algorithm was coded in Matlab®R2019b and executed on 

a 4GB RAM-2 processors virtual machine embedded on a workstation equipped with 

an INTEL i9-9900 3.6 GHz 10 core CPU, 32Gb DDR4 2,666MHz RAM and Win 10 

PRO OS. Although the expected total flowtime E(F) is the objective function of the 

COS problem under investigation, the Relative Percentage Deviation (RPD) function 

(see Eq.6.27) is handled to compare the results obtained by the tested optimization 

techniques. 

 RPD=
ALGsol - BESTsol

BESTsol
∙100  (6.27) 

where ALGsol is the 𝐸(𝐹) value achieved by a certain algorithm, while BESTsol is the 

best expected solution achieved by the algorithms related to the same instance. As 

concerns the exit criterion, we decided to implement two triggers, the former being 

the maximum number of evaluations (Max_ev), the latter depending on the 

maximum computational time (Max_ct). Both of them were fixed after a preliminary 

computational analysis described in the following section. 
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CLASS Small (P=15) Medium (P=40) Large (P=70) 

Factor/Levels L H L H L H 

O 2 3 4 6 6 9 

C 5 10 10 15 15 20 

CAP 2 4 2 4 2 4 

U(TD) U[8,12] U[18,22] U[8,12] U[18,22] U[8,12] U[18,22] 

Table 6.8 Classes of problems and related parameters 

6.6 Setting the exit criteria of the algorithms 

To establish the values to be assigned to Max_ev and Max_ct, we used a specific data 

set composed by 10 instances for each class of problems. Problem size and level of 

each factor related to each instance were randomly selected conforming to Table 6.8. 

The rationale to determine Max_ct is to launch the SAHS many times, by adopting 

a stopping criterion that varies with the maximum number of evaluations, and then 

to identify the value of Max_ev which assures the convergence of the proposed 

metaheuristic algorithm. Particularly, we used a parameterized exit criterion based 

on Max_ev(γ) = γ ∙ P, where P is the problem size and γ is varied in the set {30, 60, 

90, 120, 150, 180, 210, 240, 270, 300}. Once Max_ev is known, we determine Max_ct 

by rounding the maximum computational time down to the lowest integer value. 

Then, the values of Max_ev and Max_ct identified for each class of problems are 

adopted as exit criteria for each metaheuristic algorithm.  

For each class of problems, Figure 6.1 shows the box plots related to the RPD 

values as γ changes and, as expected, reveals that the number of evaluations 

required to reach the convergence as the problem size changes. Notably, the first flat 

boxplot on each diagram means that Max_ev(γ) does not yield any further significant 

variation on the RPD indicator and the convergence is achieved. Graphically, Figure 

6.1 allows detecting the γ values at varying the problem size. In fact, γ has to be set 

to 210 for small class of problems (Figure 6.1-a) and to 240 for medium and large-

sized problems (Figure 6.1-b and Figure 6.1-c). Figure 6.1 reports average and 

maximum computational times (in brackets) for each class of problem at varying γ 

values. The bold outputs highlight the values corresponding to the selected values of 

γ. Therefore, we decided to set Max_ct to 272, 1154 and 2674 seconds for the small, 

medium and large classes of problem, respectively. 
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Figure 6.1 The patient flow in the oncology department 

γ / Class Small Medium Large 

30 43.92 (50.71) 148.41 (155.57) 339.89 (366.24) 

60 80.34 (85.29) 282.45 (300.02) 664.20 (696.74) 

90 117.11 (125.54) 419.56 (4358.83) 981.68 (1025.38) 

120 156.38 (165.95) 557.58 (582.53) 1305.35 (1354.21) 

150 190.08 (197.42) 693.59 (723.13) 1629.79 (1683.50) 

180 231.29 (238.67) 832.80 (872.94) 1955.50 (2018.25) 

210 268.36 (272.22) 966.29 (1004.26) 2276.30 (2346.44) 

240 304.25 (317.16) 1105.71 (1154.21) 2593.21 (2674.36) 

270 341.81 (350.57) 1238.30 (1285.66) 2912.70 (3002.35) 

300 380.06 (384.77) 1377.84 (1435.81) 3233.32 (3330.08) 

Table 6.9 Average (maximum) computational time measure in seconds for each class of problems as 

parameter γ changes 
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6.7 Comparative analysis 

This section deals with the numerical analyses we performed to demonstrate the 

ability of the proposed SAHS in solving the stochastic COS problem. First, the design 

phase of HS and SAHS was performed. Since the proposed metaheuristics employ 

both a set of heuristics for improving the initial population and a specific local search 

during the evolutionary path, their effect on the quality of solutions was preliminary 

tested. Subsequently, to demonstrate both efficacy and efficiency of the self-adaptive 

mechanism embedded in the SAHS, we calibrated a static configuration of the 

proposed metaheuristic, in which any self-calibration of control parameters is 

disabled. Finally, once the ability of SAHS in solving the COS problem under 

investigation was proved, two comparison analyses involving SAHS, a static 

configuration of harmony search and a GRASP algorithm from the relevant 

literature on the same topic (Garaix et al., 2020) were carried out. The former 

analysis aims to compare the different algorithms with the solutions obtained by 

solving the SP model for a set of very-small scenario problems. The latter comparison 

consists in an extended experimental campaign where the full factorial experimental 

plans were employed for assessing the effectiveness of the tested metaheuristic 

algorithms in solving larger-sized instances. 

6.7.1 Comparing different variants of SAHS 

To support the choice of the proposed SAHS, three alternative configurations of 

SAHS were compared with the proposed metaheuristic. A benchmark of 15 instances 

involving three classes of problems and based on a full factorial experimental plan 

as in Table 6.8 was engaged. The first configuration denoted by SAHS_NH consists 

of the SAHS with no heuristic solutions in the initial population. In the second 

variant of SAHS, named SAHS_NL, the local search is disabled, while in the last 

algorithm denoted as SAHS_NHL both heuristic solutions and local search are 

excluded. Table 6.10 allows comparing the different algorithms in terms of RPD for 

each instance. Besides, regardless of the problem size, the global median on the 

RPDs (RPDmed), and the maximum RPD (RPDmax) are reported. As the reader can 

notice, the positive effect of heuristic solutions on the initial population is quite weak. 

On the other hand, the local search significantly affects the quality of solutions. 

However, bold values in Table 6.10 confirm the outperformance of SAHS with respect 
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to the rest of competitors and justify the use of heuristic solutions into the initial 

population and the local search as well. 

Instance SAHS [%] SAHS_NH [%] SAHS_NL [%] SAHS_NHL [%] 

1 0.00 0.00 0.05 0.01 

2 0.00 0.02 0.02 0.36 

3 0.03 0.02 0.04 0.00 

4 0.00 0.00 0.07 0.43 

5 0.00 0.00 0.04 0.04 

6 0.00 0.03 0.12 0.13 

7 0.08 0.00 0.49 2.37 

8 0.00 0.00 0.18 0.20 

9 0.00 0.02 0.17 0.14 

10 0.02 0.00 0.06 0.10 

11 0.00 0.00 0.80 6.06 

12 0.00 0.15 1.72 2.51 

13 0.00 0.00 0.07 0.06 

14 0.01 0.00 0.31 0.30 

15 0.00 0.00 0.13 0.55 

RPDmed   0.01 0.02 0.28 0.88 

RPDmax  0.08 0.15 1.72 6.06 

Table 6.10 Design of SAHS: RPD values 

6.7.2 Calibrating the static Harmony Search 

A major target of any self-adaptive metaheuristic is to achieve at least the same 

performance as the one working by static control parameters. Likewise, the 

effectiveness of any metaheuristic algorithm strongly depends on the values 

assigned to control parameters, which should assure a suitable balance between 

exploration and exploitation.  

This section aims to calibrate a static version of the proposed SAHS, hereinafter 

denoted as HS, which disregards any self-adaptive mechanism to regulate control 

parameters. The harmony memory size was fixed to 60, conforming to SAHS. The 

rest of control parameters, namely HMCR, PAR and BW, were varied at three levels, 
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as reported in Table 6.11, and a full factorial plan was engaged to select the most 

suitable control parameters. For each configuration and for each class of problems, 

three instances were randomly generated similarly to what we did for setting the 

exit criteria of SAHS (see Section 6.6) 

To sum up, 33∙ 3 ∙ 3 = 243 runs were executed for calibration purposes and the 

RPD measure was adopted as response variable. For the sake of brevity, the outputs 

from the ANOVA analysis, whose related model resulted significant with p-value = 

0.000, were omitted, while the main effects plot is depicted in Figure 6.2. The 

selected values are as follows: HMCR = 0.90; PAR = 0.20; BW = 0.10.  

Factor Description Values 

HMS HM Size 60 

HMCR HM Consideration Rate 0.50, 0.70, 0.90 

PAR Pitch Adjustment Rate 0.20, 0.50, 0.80 

BW Bandwidth 0.001, 0.01, 0.10 

Table 6.11 Experimental plan for the calibration of the Harmony Search 

 

Figure 6.2 Main effects plot of HS algorithm parameters 
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6.7.3 Comparison with the SP model 

A numerical analysis involving the SP model was accomplished to validate the 

effectiveness of the metaheuristic algorithms to be compared. Twenty very-small-

sized instances involving 10 and 12 patients, respectively, were considered. The low 

values of the smallest class of problems in Table 6.8 were selected to define the 

factors characterizing each instance, such as number of oncologists and number of 

chairs. The SP model was implemented on IBM Cplex12 Optimizer® installed on the 

workstation mentioned earlier. Due to the complexity of the problem under 

investigation, a time limit equal to 1,200 seconds was set. Once again, the RPD was 

used to compare the different algorithms. Table 6.12 shows the minimum expected 

total flowtime value (E(F)min), expressed in minutes, achieved either by the SP 

model or by a metaheuristic, the RPDs for the metaheuristic algorithms and the SP 

model, and the gap of the solution obtained by the SP model from the optimal 

solution. It is worth noting that the SP model never converges within the provided 

time limit (Gap greater than zero), thereby confirming the complexity of the 

combinatorial problem at hand and the need of a performing metaheuristic 

algorithm able to find a near optimal solution in a reasonable time. As for the 10 

patients related class of problem, SP assures the best performance as it reaches the 

best solution, likely the global optimum, seven times out of ten. The median values 

in italics confirm the outperformance of the SP approach, even if both HS and SAHS 

are quite effective. Looking at the numerical results involving 12 patients, HS and 

SAHS dominate the other approaches as they are not so dissimilar under the RPD 

viewpoint, while GRASP outperforms SP which likely would require a higher 

computational time to converge to better solutions. In fact, the percentage gap from 

the optimal solution (Gap[%]) of the SP optimization proves that the complexity of 

the problem strictly depends on the number of patients. On the other hand, the 

GRASP algorithm seems reducing the gap form the other competitors as the problem 

size grows, as emerges from the median values as the class of problem changes. 
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P Instance E(F)
min

 SAHS HS GRASP SP Gap [%] 

10 1 1361.67 0.05% 0.05% 0.47% 0.00% 19.39% 

 2 1078.00 0.00% 0.00% 0.28% 0.02% 24.72% 

 3 1133.67 0.01% 0.00% 0.04% 0.09% 22.51% 

 4 1370.67 0.64% 0.64% 0.79% 0.00% 12.07% 

 5 1080.83 0.49% 0.49% 0.65% 0.00% 11.63% 

 6 1129.33 0.28% 0.28% 0.30% 0.00% 25.50% 

 7 1187.83 0.01% 0.00% 0.03% 0.00% 19.23% 

 8 1160.83 0.00% 0.00% 0.23% 0.00% 20.41% 

 9 1152.33 0.01% 0.01% 0.30% 0.00% 26.62% 

 10 1275.33 0.00% 0.00% 0.25% 0.22% 18.18% 

 median  0.01% 0.01% 0.29% 0.00% 19.90% 

12 1 1558.33 0.02% 0.00% 0.20% 0.61% 34.98% 

 2 905.83 0.00% 0.03% 0.00% 0.06% 33.62% 

 3 1090.83 0.00% 0.00% 0.03% 0.06% 55.44% 

 4 1604.17 0.05% 0.00% 0.29% 0.94% 34.70% 

 5 1339.33 0.00% 0.00% 0.01% 0.41% 50.72% 

 6 1556.67 0.00% 0.00% 0.05% 1.03% 33.05% 

 7 1061.50 0.02% 0.00% 0.24% 0.24% 40.24% 

 8 1125.67 0.00% 0.00% 0.07% 0.13% 34.90% 

 9 1566.17 0.05% 0.00% 0.19% 1.21% 36.73% 

 10 1584.33 0.04% 0.00% 0.15% 1.42% 42.06% 

 median  0.01% 0.00% 0.11% 0.51% 35.85% 

Table 6.12 Comparison among the metaheuristics and the SP model 
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6.7.4 Extended comparison campaign 

After the validation phase involving the SP model, the different metaheuristics were 

compared on the basis of a newly generated full factorial experimental plan, as 

indicated in Table 6.8. To sum up, three classes of problem at varying P were 

considered, each one involving 16 factor configurations and ten numerical instances 

randomly generated. Hence, 480 runs were elaborated by each algorithm. For each 

class of problem, Table 6.13 reports the median RPD values each configuration, 

computed over the provided 10 instances, each one entailing 300 scenarios. 

The numerical outputs reveal the outperformance of SAHS and HS over the 

GRASP algorithm. The minimum RPD values for each configuration are highlighted 

in bold and all of them are in the SAHS or in HS related column. Regardless of the 

problem configurations, the median RPD (RPDmed) and the maximum 𝑅𝑃𝐷 (RPDmax), 

support the primacy of SAHS and HS over the GRASP algorithm. Moreover, both 

SAHS and HS achieve an RPDmed value equal to zero for each class of problems, 

revealing that the major target of SAHS to achieve at least the same performance of 

HS was reached. Looking at the RPDmax values it is clear that the SAHS algorithms 

slightly improves its performance as the problem size increases; conversely, the 

GRASP technique worsens as the complexity of the problem rises up. 

To infer about the statistical difference between SAHS and HS a series of non-

parametric tests were performed by means of Minitab17® statistical software. 

Figure 6.3 shows the output from a Mann-Withney test on the median RPDs related 

to the small (Figure 6.3-a), medium (Figure 6.3-b) and large (Figure 6.3-c) classes of 

problems and confirms there is not a statistical difference between the two 

algorithms. Interestingly, there is no configuration in which the GRASP algorithm 

is able to equal the two competitors, at least. Since the GRASP algorithm works by 

successive constructions of a greedy randomized solution, which in turn is improved 

by a semi-greedy constructive procedure, the time required to build a solution results 

considerably high. Therefore, the weakness of GRASP in comparison with the other 

techniques can be mostly explained by the lower number of solutions it evaluates 

within Max_ct.  

Finally, the SAHS algorithm was compared with the LPT rule, that is the strategy 

adopted by the staff of the oncology unit under investigation. For the sake of brevity, 

the numerical results from the LPT rule have not been included into the comparison 
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analysis. However, the experiments demonstrate that SAHS algorithm 

outperformances the LPT approximately of 7% on the average RPD. These results 

are consistent with the comparison between the metaheuristic algorithm and LPT 

method shown in the work of Garaix et al. (2020).  

Class 

Config./algo 

Small  Medium Large 

SAHS HS GRASP SAHS HS GRASP SAHS HS GRASP 

1 0.00% 0.00% 0.65% 0.00% 0.01% 0.91% 0.02% 0.00% 2.86% 

2 0.02% 0.00% 0.28% 0.00% 0.01% 0.85% 0.01% 0.00% 1.77% 

3 0.02% 0.00% 0.79% 0.00% 0.00% 1.11% 0.00% 0.00% 1.92% 

4 0.00% 0.00% 0.55% 0.00% 0.00% 1.21% 0.00% 0.03% 1.30% 

5 0.00% 0.01% 0.18% 0.00% 0.00% 0.11% 0.00% 0.00% 0.12% 

6 0.00% 0.00% 0.16% 0.00% 0.01% 0.12% 0.00% 0.00% 0.09% 

7 0.00% 0.00% 0.23% 0.02% 0.00% 0.24% 0.00% 0.00% 0.31% 

8 0.01% 0.00% 0.29% 0.02% 0.00% 0.19% 0.00% 0.00% 0.23% 

9 0.00% 0.00% 0.18% 0.00% 0.00% 0.52% 0.00% 0.03% 0.89% 

10 0.00% 0.00% 0.05% 0.00% 0.00% 0.56% 0.01% 0.00% 0.79% 

11 0.00% 0.00% 0.09% 0.00% 0.00% 0.51% 0.02% 0.00% 1.01% 

12 0.00% 0.00% 0.14% 0.00% 0.00% 0.65% 0.00% 0.00% 0.75% 

13 0.00% 0.00% 0.11% 0.01% 0.00% 0.11% 0.00% 0.00% 0.32% 

14 0.02% 0.00% 0.09% 0.00% 0.00% 0.12% 0.00% 0.00% 0.74% 

15 0.01% 0.00% 0.15% 0.00% 0.00% 0.15% 0.00% 0.00% 0.43% 

16 0.00% 0.00% 0.16% 0.00% 0.00% 0.18% 0.00% 0.01% 0.69% 

RPDmed  0.00% 0.00% 0.19% 0.00% 0.00% 0.27% 0.00% 0.00% 0.63% 

RPDmax  0.02% 0.01% 0.79% 0.02% 0.01% 1.21% 0.02% 0.03% 2.86% 

Table 6.13 Median RPDs and global indicators to compare SAHS, HS and GRASP 
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Figure 6.3 Mann-Withney non-parametric tests between HS and SAHS 

6.8 Conclusions 

In this work, the same-day off-line stochastic chemotherapy outpatient appointment 

scheduling problem inspired by a real-world oncology department was investigated. 

Differently from the rest of the literature on this topic, we stochastically modelled 

all the stages provided by the chemotherapy process and, in addition, several sources 

of uncertainty (e.g., deferrals and medical consultation times) were taken into 

account. Particularly, since the pharmacy is located far away from the treatment 

unit, we considered the real-life scenario in which a therapies delivery service is a 

time-consuming task needed to take the therapies to the ward. 

A stochastic scheduling approach was adopted to cope with the uncertainty of the 

problem. Since the problem under investigation can be assimilated to a hybrid flow 

shop scheduling problem with resource related constraints, several idle times may 

occur among the stages. Therefore, to improve the quality of any appointment 

        N   Median 

HS    160  0.00000 

SAHS  160  0.00000 

 

 

Point estimate for η1 - η2 is 0.00000 

95.0 Percent CI for η1 - η2 is (-0.00000;-0.00000) 

W = 25124.5 

Test of η1 = η2 vs η1 ≠ η2 is significant at 0.5024 

The test is significant at 0.4526 (adjusted for ties) 

        N   Median 

HS    160  0.00000 

SAHS  160  0.00000 

 

 

Point estimate for η1 - η2 is 0.00000 

95.0 Percent CI for η1 - η2 is (0.00000;0.00000) 

W = 25040.0 

Test of η1 = η2 vs η1 ≠ η2 is significant at 0.4396 

The test is significant at 0.3949 (adjusted for ties) 

        N   Median 

HS    160  0.00000 

SAHS  160  0.00000 

 

 

Point estimate for η1 - η2 is 0.00000 

95.0 Percent CI for η1 - η2 is (-0.00000;-0.00000) 

W = 25172.0 

Test of η1 = η2 vs η1 ≠ η2 is significant at 0.5198 

The test is significant at 0.4641 (adjusted for ties) 

a) 

b) 

c) 
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schedule, we implemented a LS scheduling strategy on the decoding algorithm for 

the minimization of the objective function, i.e., the expected total flowtime.  

The outpatients scheduling problem was extensively studied by literature and most 

authors used the mathematical programming applied to relaxed models for 

generating optimal solutions. Since the problem under investigation in NP-hard in 

strong sense, we developed a novel Self-Adaptive Harmony Search named SAHS that 

is able to auto-calibrate the control parameters during the evolutionary path. To 

demonstrate both efficacy and efficiency of the proposed metaheuristic, several 

comparison analyses, also involving a GRASP algorithm from the relevant literature 

on the same topic, were carried out. In addition, we performed a preliminary 

validation of the tested metaheuristics by solving a set of small instances through a 

SP model we developed ad-hoc for the problem under investigation.  

The quality of solutions assured by the new SAHS as well as its computational 

efficiency were tested by the staff of the chemotherapy clinic, which decided to 

replace the LPT appointment strategy adopted so far with the proposed self-adaptive 

metaheuristic approach.  
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7. Healthcare system design problem of the 

chemotherapy oncology departments 

7.1 Introduction 

Healthcare departments are complex to design due to the high amount of different 

resources involved in the processes and the uncertainties that characterize the 

healthcare systems (Young et al., 2009). The growing demand for healthcare services 

and rising costs are causing a situation of considerable pressure to the healthcare 

managers (Dabhilkar and Svarts, 2019). On the other hand, public healthcare 

systems should provide quality care as quickly as possible. It means that the 

healthcare managers and decision-makers have to design healthcare systems able to 

increase patient satisfaction by caring the highest number of patients in a given time 

period and, simultaneously, minimizing patient waiting time (Ahmed and Alkhamis 

2009). Therefore, the main goal of the healthcare system design is to enable 

continuous patient flow and efficient performance in terms of high quality patient 

care (Molema et al., 2007; McDermott et al., 2011; De Regge et al., 2015). To achieve 

this, healthcare managers and decision-makers are bringing attentions on new 

methods that allow them to assure quality healthcare in timely manner and enhance 

the efficiency of healthcare systems (Abo-Hamad and Arisha 2013; Dai and Tayur, 

2020). 

In particular, these increasing pressures to ensure the most efficient and effective 

healthcare services encourage the decision-makers to adopt Operations Research 

(OR) solutions (Pitt et al., 2016; Dhiaf et al., 2021). In fact, OR systematically support 

the decision-making process through efficient modelling techniques or methods of 

OR (e.g., linear programming, simulation models) or coming from related fields that 

can be integrated in the final solution (e.g., regression from statistics) (Capan et al., 

2017). Ahmed and Alkhamis 2009 were the firsts to adopt OR techniques in a 

healthcare system design problem. They combined system simulation with 

optimization to define the optimal number of resources in an emergency department, 

such as doctors and nurses, with the objectives of maximizing the number of patients 

cared in a day and reducing the patient time in the system. Baril et al. (2014) used 

a combination of design of experiments and discrete event simulation to design an 

outpatient orthopedic clinic and enhance its performance. Ghanes et al. (2015) 
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proposed a simulation-based optimization to find the optimal resource staffing levels 

in an emergency department where the performance indicators were the average 

length of stay and the average door-to-doctor time for urgent patients. Uriarte et al. 

(2017) discussed the benefits of supporting the decision-making in healthcare 

systems design through system modelling. They proved nearly optimal solutions and 

design rules for the optimal number of resources in an emergency department for 

reducing the patients’ time in the system. In the last years. Farid et al. (2020) 

provided a novel application of System Dynamics in healthcare in order to evaluate 

the relation between healthcare system design and nurses’ wellbeing, while Xiao and 

Yoogalingam (2021) adopted a solution approach that merges simulation and 

optimization to assess the operational impact of reserving capacity in operating 

rooms system for emergency patients. Finally, Ordu et al. (2021) made use of a 

hybrid model, which is a combination of forecasting, simulation and optimization, 

for identifying bed capacity and staff levels needed by a mid-size hospital in England. 

Among the healthcare departments, the oncology units have to face new managerial 

challenges due to the need of facing the increasing incidence of cancer and restricted 

budgets. Wilson et al. (2019) estimated that the incidence of cancer will rise from 17 

million to 26 million between 2018 and 2040, causing an increase of demand of 

oncology services. Moreover, the patient satisfaction in an outpatient oncology 

department is considered important for reducing the social burden of therapy and 

for maintaining the quality of life among these patients (Katayama et al. 2021). The 

oncology process involves several human and material resources and the cooperation 

with the pharmacy for the therapy preparation increases the complexity of the 

system. In brief, the main steps of the daily process in an outpatient chemotherapy 

oncology clinic are: i) the medical consultation with the oncologist; ii) the therapy 

preparation performed by the pharmacy; iii) the therapy administration monitored 

by the nurse. Specifically, in the first step, during the medical consultation, the 

oncologist monitors the health status of the patient and evaluates the results coming 

from the blood exams. After that, the oncologist sends to the pharmacy the 

information about the type and dose of the therapy to be prepared. When the 

pharmacy receives the request, the pharmacy technicians start the therapy 

preparation process. Therefore, the patient has to wait that the therapy was 

delivered from the pharmacy to the oncology department for starting the treatment. 

Moreover, a nurse has to be available since she/he has to prepare and monitor the 
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patient. Finally, when the therapy process is completed, the same nurse releases the 

patient who can leave the oncology department and come back home. 

The healthcare managers should consider several factors during the decision process 

of designing the best configuration of the oncology unit. The literature uses 

simulation techniques, particularly Discrete Event Simulation (DES), to identify 

opportunities of improvement for the investigated oncology unit. As for example, 

Liang et al., (2015) developed a mathematical programming model for the 

appointment scheduling problem of medical consultations and chemotherapy 

treatments and a DES model to identify initiatives for improvement in process flow 

and enhance the operational performance of the oncology clinic. Alvarado et al. 

(2018) proposed a configurable DES model that allows for assessing scheduling 

algorithms using both patient and management perspectives. Recently, Baril et al. 

(2020) combined design of experiments and simulation to study the relation between 

the physical and mental nurse workload with the administration of chemotherapy 

treatments. Finally, Fichera et al. (2021) and Yu et al. (2021) made use of lean 

techniques and simulation models to provide initiatives for improvement to 

healthcare managers of the oncology units investigated.  

To the best of our knowledge, there is no work in literature specifically dealing with 

the healthcare system design of oncology departments. This work, inspired to the 

healthcare services provided by an outpatient chemotherapy oncology unit of a 

hospital located in (to be revealed if the paper will be accepted in respect of the 

double-blind peer review policy of the journal), presents the results of a multi-

objective analysis conducted by means of a combination of stochastic simulation and 

experimental design, with the aim of working as a guideline for the healthcare 

managers and decision-makers. Notably, the outcomes from the aforementioned 

analysis would drive the stakeholders towards the selection of the alternative 

resource configurations able to assure a target level in terms of average number of 

patients cared in a given day and patient waiting time as well. 

Specifically, we developed a stochastic simulation model based on discrete time 

recursive equations able to emulate the daily patient flow in an outpatient 

chemotherapy oncology unit. To make a further contribution to scientific research 

and to elaborate the guideline for the decision-makers, we arranged a robust 

statistical analysis of the results obtained by combining a full-factorial Design Of 

Experiments (DOE) with simulations. We investigated how the resources of the 
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oncology department affect the performances of the department through an Analysis 

of Variance (ANOVA) analysis. Once identified the influence of the factors and their 

interactions, we established the multi-objective Pareto analysis and a well-detailed 

abacus. Interestingly, the firsts allowed us to identify the non-dominated Pareto 

solutions; the latter can be considered as a guideline for the healthcare managers, 

which enables them to easily estimate the performances of the oncology clinic for 

each specific configuration investigated. Finally, we defined the multiple non-linear 

regression model to estimate the performance of an outpatient oncology unit with an 

adequate approximation.  

The work is organized as follows. First, Section 7.2 describes the stochastic 

simulation model of the outpatient chemotherapy oncology unit. Section 7.3 defines 

the DOE and the response variables considered in the problem at hand. Section 7.4 

reports the analysis of the results coming from experimental campaign of 

simulations. Finally, the conclusions of the work are outlined in Section 7.5. 

7.2 Model development 

We developed a stochastic simulation model based on discrete time recursive 

equations using Matlab®2021 to study the healthcare system design problem of the 

oncology departments. The simulation model respects the features of the problem in 

the oncology department described in Chapter 3. The simulation model was verified 

and validated in the work of Chapter 4. For the healthcare system design problem, 

we assumed that the medical consultation can be carried out only in the morning 

(until the time indicated with T1), since usually the oncologists dedicates the 

afternoon to other activities, such as visiting the patients that need only a medical 

consultation for controlling their health status (Liang et al., 2015). As for the 

chemotherapy treatment, the oncology department works with work-shift equal to 

T2. In order to evaluate the maximum number of patient P cared in a day, the 

simulation model generates a large number M of patients. However, only the 

patients that conclude the medical consultation within T1 and the chemotherapy 

treatment within T2 are considered in the computation of the key performance 

indicators. The simulation model considers other assumptions that are the following: 

• The registration time is neglected; 
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• The blood exams are executed in the previous days and therefore the results 

are available for the medical consultation; 

• The deferral probability, i.e., the probability that the oncologist decides to 

postpone the treatment of the patient due to her/his weak health status 

(Garaix et al., 2020), is neglected; 

• The oncologists, the pharmacy technicians and the nurses are always 

available; 

• The devices for the therapy preparation process never break down during the 

given day;  

• The time needed by the nurse to release the patient after the therapy 

administration is considered negligible. 

In order to create a general model able to replace the overall process of an oncology 

department we used stochastic distributions derived from the seminal works of 

Liang et al. (2015) and Turkcan et al., (2012). Table 7.1 reports the stochastic 

distributions used in the simulation model. The assignment of the patient to an 

oncologist is random. The arrival time rp depends on the agenda of appointments of 

the assigned oncologist Opp, in which each appointment is scheduled with a time 

interval of 10 minutes (that is the minimum medical consultation time). During the 

chemotherapy treatment, the maximum number of patients that a nurse can 

simultaneously monitor Nmax is set to 4 (Baril et al., 2020). It can be noticed that 

distribution of the treatment time is divided in four groups (i.e., G1, G2, G3 and G4) 

depending on the type of patient disease. The probabilities that a patient can be 

associated with a group are as follows: i) 41.84% for group 1; ii) 25.40% for group 2; 

iii) 7.17% for group 3; iv) 25.59% for group 4. Finally, the total number of patients 

generated in the simulation model M is set to 300 and the work-shift of the oncology 

department is as follows: T1=240 minutes; T2=600 minutes (Hesaraki et al., 2019). 

Although one of the main goals in healthcare management is to guarantee a 

rewarding quality of service to patients, which also entails a reasonable waiting 

time, the daily number of patients that the department is able to receive is another 

undeniable indicator of its efficiency. For this reason, two main key performance 

indicators are pursued. The first indicator is the mean flowtime (also defined as 

length of stay) that allows evaluating how many times a patient spends in the 

department (Ghanes et al., 2015; Uriarte et al., 2017; Hesaraki et al., 2019). The 
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minimization of the mean flowtime F̅ directly involves the reduction of the mean 

patient waiting time (see Section 4.2). The second indicator is the throughput of the 

system, also indicated as the maximum number of patients P cared in the given day 

(Ahmed and Alkhamis 2009). Furthermore, a third key performance indicator is 

defined specifically for the problem at hand. It is a trade-off indicator to minimize 

that consists of the ratio between mean flowtime F̅ and number of patients P cared 

in the given day (F̅/P). 

Stage Distribution [min] 

Medical consultation Uniform (10,30) 

Therapy preparation time Weibull (10.5,1.42)-1.5 

Setup time Triangular (5,10,15) 

Therapy duration for group 1 Triangular (15,74,240) 

Therapy duration for group 2 Triangular (15,63,240) 

Therapy duration for group 3 Triangular (60,98,180) 

Therapy duration for group 4 Triangular (75,137,255) 

Table 7.1 Stochastic distributions used in the simulation model 

7.3 Design of Experiments 

We disposed a full-factorial DOE in which the experimental factors are: i) number of 

oncologists (O); ii) number of chairs for the treatment (C); iii) the ratio between the 

number of nurses and the number of chairs for the treatment (N/C); iv) number of 

pharmacy technicians (D); v) therapy transportation time (TD). Hence, we adopt five 

distinct factors as independent variables, wherein the first factor varies at four 

levels, the second factors at five levels, the third factors at two levels and the rest at 

three levels, as illustrated by Table 7.2. We set up the values of each level on the 

basis of real case studies addressed by the scientific literature so far (please see 

Alvarado et al. 2018; Garaix et al., 2020; Hesaraki et al., 2019; Turkcan et al., 2012 

among the others). Based on our experience on the field, there exist alternative 

scenarios for the delivery of therapies from the pharmacy to the oncology unit. When 

the oncology department disposes of an in-house pharmacy, the therapy 

transportation time TD is set to 3 minutes. When the pharmacy is situated in a 

different location from the oncology unit, there could be a medium or a high distance 
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between the departments. As for the medium distance, the therapy transportation 

time TD is set equal to 10 minutes and the batch size CAP is equal to 3 therapies. In 

the case of high distance, TD and CAP are equal to 20 minutes and 7 therapies, 

respectively (Fichera et al., 2021). As for the response variable, three key 

performance indicators are considered: i) the mean flowtime (F̅); ii) the number of 

patients (P); iii) a trade-off indicator (F̅/P). Then, the proposed approach involves 

5 ∙ 4 ∙ 32 ∙ 2 = 360 scenarios or different configurations of the oncology unit. To make 

the analysis robust enough, we consider 1,000 replicates of each scenario so as to 

achieve a total of 1,000 ∙ 360 = 360,000 experimental runs. The experimental 

campaign was launched on a 4GB RAM-2 processors virtual machine embedded on 

a workstation equipped with an INTEL i9-9900 3.6 GHz 10 core CPU, 32Gb DDR4 

2,666MHz RAM and Win 10 PRO OS. 

Factors Level 1 Level 2 Level 3 Level 4 Level 5 

Number of doctors (O) 4 6 8 10 - 

Number of chairs (C) 10 15 20 25 30 

Number of nurses / Number of chairs (N/C) 0.25 0.33 - - - 

Number of pharmacy technicians (D) 1 2 3 - - 

Therapy transportation time (TD) 3 10 20 - - 

Table 7.2 Design of Experiments 

7.4 Analysis of results 

This section reports the results arising from the experimental approach and 

arguments the findings related to the healthcare system design of the oncology 

departments. To individuate the impact of each factor on the three key performance 

indicators and to understand the interactions among them, we executed an ANOVA 

analysis described in Section 7.4.1. Subsequently, in Section 7.4.2 we analyse the 

outcomes through a multi-objective Pareto analysis so as to identify the non-

dominated solutions and the corresponding configurations. To further elaborate the 

discussion, in Section 7.4.3 we also provide an abacus of results, which would drive 

the stakeholders towards the selection of the alternative resource configurations. 

Finally, the multiple non-linear regression models for each performance measures 

are given in Section 7.4.4. 
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7.4.1 ANOVA analysis 

The ANOVA analysis allows determining if the experimental factors statistically 

bias the response variables. In this work, three ANOVA analyses at 95% confidence 

level were carried out to discuss the influence of each experimental factor on the 

three response variables. To do this, we have adopted Minitab 17® commercial 

package as statistical tool of the analyses. For the sake of brevity, the ANOVA 

analyses were limited until the second order interactions of the experimental factors. 

7.4.1.1 Patient flowtime 

Figure 7.1 reports the numerical outcomes resulting from the ANOVA analysis for 

the mean patient flowtime F performance measure. The ANOVA table shows that 

the model is statistically significant at 95% confidence level since the p-value of the 

model is equal to zero. The robustness of the model is also confirmed by the value of 

R-sq equal to 98.53%. All the independent variables significantly influence the 

performance measure with significance level of 0.05, except for N/C that reports a 

p-value equal to 0.42. Looking at the F-values, the number of oncologists O and the 

number of pharmacy technicians D are the experimental factors that have the most 

relevant impact on mean flowtime. In order to better interpret the results, Figure 

7.2 depicts the graphs related to the ANOVA analysis, i.e., the main effect plot in 

Figure 7.2-a, the Tukey pairwise comparison in Figure 7.2-b, the most interesting 

interactions plot that are between O and C in Figure 7.2-c and between C and D in 

Figure 7.2-d. 

These outcomes suggest that the patient waiting time mainly depends on the 

number of resources available in the first two stages of the oncology process: i.e., the 

medical consultation and the therapy preparation process. In particular, it can be 

deduced by the main effect plot (Figure 7.2-a) that high number of oncologists 

increases the mean patient flowtime. It means that there will be a high number of 

patients that wait for receiving the treatment, when the number of oncologists O is 

set to the highest level. Figure 7.2-b reports the Tukey test for each experimental 

factor to further support the ANOVA analysis. Specifically, when different levels of 

the same experimental factors do not share the same letter, it means that the levels 

are significant different. For the number of oncologists, the Tukey test points out 

that increasing the number of oncologists from 8 to 10 does not induce a significant 
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increase on mean flowtime. On the other hand, a high level of number of pharmacy 

technicians D improves the mean value of patient flowtime. Also, the therapy 

transportation time TD and the number of chairs for the treatment C have a relevant 

impact on mean flowtime. As expected, a low value of TD and a high value of C lead 

a reduction of the patient waiting time. Specifically, it can be noticed from the Tukey 

Test that a statistical reduction of patient waiting time is obtained passing from 20 

minutes to 10 minutes of TD and from 15 to 25 of C.  

Finally, Figure 7.2-c and Figure 7.2-d illustrate the most interesting 2-order 

interaction plots: i) the interaction between the number of oncologists and the 

number of chairs (O*C); ii) the interaction between the number of chairs and the 

number of pharmacy technicians (C*D). Interestingly, the interaction plots show 

that the impact of the number of chairs becomes relevant when the oncology unit 

disposes of a low number of oncologists. Indeed, if the oncology department disposes 

of 4 oncologists, the increase the number of chairs for treatment from 10 to 30 chairs 

allows reducing F of more than 50 minutes on average. Similarly, selecting the 

appropriate number of chairs is needed when the pharmacy is composed by 2 or more 

pharmacy technicians. If the pharmacy disposes of only one pharmacy technician, it 

becomes irrelevant for the patient flowtime to increase the number of chairs. 

 

Figure 7.1 ANOVA table for flowtime 

Analysis of Variance 

 

Source                 DF  Adj SS   Adj MS  F-Value  P-Value 

Model                  67  274396   4095.5   292.14    0.000 

  Linear               12  241328  20110.7  1434.54    0.000 

    O                   3   92154  30717.9  2191.18    0.000 

    C                   4   26261   6565.3   468.32    0.000 

    N/C                 1       9      9.1     0.65    0.420 

    D                   2   93276  46638.2  3326.81    0.000 

    TD                  2   29627  14813.7  1056.70    0.000 

  2-Way Interactions   55   33068    601.2    42.89    0.000 

    O*C                12   15230   1269.1    90.53    0.000 

    O*N/C               3       1      0.2     0.01    0.998 

    O*D                 6    3519    586.4    41.83    0.000 

    O*TD                6     454     75.7     5.40    0.000 

    C*N/C               4       8      2.1     0.15    0.964 

    C*D                 8   13255   1656.8   118.19    0.000 

    C*TD                8      28      3.5     0.25    0.981 

    N/C*D               2       1      0.4     0.03    0.973 

    N/C*TD              2       7      3.3     0.23    0.793 

    D*TD                4     567    141.8    10.11    0.000 

Error                 292    4094     14.0 

Total                 359  278490 

 

 

Model Summary 

 

      S    R-sq  R-sq(adj)  R-sq(pred) 

3.74418  98.53%     98.19%      97.77% 
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Figure 7.2 Analysis of results for flowtime 

7.4.1.2 Number of patients 

The second performance indicator analysed is the number of patients cared in a 

day in the oncology unit. Through the ANOVA analysis, we investigated how the 

experimental factors influence this performance measure. The ANOVA table is 

reported in Figure 7.3 and shows the validity of the model since the p-value is zero 

and the R-sq is equal to 98.53%. N/C is the unique experimental factor that does not 

have a relevant impact P, while all the other considered factors are statistically 

significant at 95% confidence level. The most relevant factor to increase the number 

of patients visited in the same day is the number of chairs for treatment C with a F-

value of 3159.51. Also, the number of pharmacy technicians has a strong impact on 

P performance indicator (F-value = 1708.28). 

Tukey Pairwise Comparisons: Response = F 
 

O    Inst    Mean  Grouping 

10     90  338.95  A 

8      90  332.86  A 

6      90  321.74    B 

4      90  297.09      C 

 

C    Inst    Mean  Grouping 

10     72  334.43  A 

15     72  329.22  A 

20     72  322.67  A B 

25     72  316.22    B 

30     72  310.75    B 

 

N/C  Inst    Mean  Grouping 

0.25  180  322.82  A 

0.33  180  322.50  A 

 

D    Inst    Mean  Grouping 

1     120  344.90  A 

2     120  315.72    B 

3     120  307.35      C 

 

TD   Inst    Mean  Grouping 

20    120  334.65  A 

10    120  320.62    B 

3     120  312.71    B 

(a) Main effect (b) Tukey pairwise 

(c) Interaction plot (d) Interaction plot 
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Figure 7.4-a and Figure 7.4-b show the main effect plot and the Tukey test, 

respectively, supporting the analysis of the experimental factors effects on P. As 

expected, a high number of oncologists allows increasing the number of patients 

cared in a day. However, the Tukey test demonstrates that increasing the number of 

oncologists from 8 to 10 does not involve a significant improvement of P. A high level 

of C allows increasing the P indicator. Looking at the Tukey test, it can be noticed 

that each level is classified in a different group. It means that each level of the 

number of chairs induces a significant increment on the number of patients cared in 

a day. As for the number of pharmacy technicians D, a significant increment of P is 

obtained by passing from 1 to 2 pharmacy technicians. On the other hand, the Tukey 

test suggests that it is not statistically significant to increase the number of 

pharmacy technicians from 2 to 3. Finally, the low value of TD involves a slight 

improvement on the response variable P. 

As for the mean flowtime indicator, the most relevant interaction plots (i.e., O*C 

and C*D) are reported (see Figure 7.4-c and Figure 7.4-d). Figure 7.4-c demonstrates 

that, when the oncology department disposes of 4 oncologists, the maximum number 

of patients care in a day can be obtained with 25 chairs. In this specific case, there 

is no statistical difference between 25 and 30 chairs. A similar trend can be observed 

in the interaction between the number of chairs C and the number of pharmacy 

technicians D. In fact, if the pharmacy is composed by only 1 pharmacy technician, 

there is no benefit in terms of P performance measure to have more than 20 chairs 

for the treatment. 
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Figure 7.3 ANOVA table for number of patients 

Analysis of Variance 

 

Source                 DF  Adj SS   Adj MS  F-Value  P-Value 

Model                  67  116142   1733.5   292.80    0.000 

  Linear               12   99718   8309.9  1403.61    0.000 

    O                   3    3803   1267.7   214.13    0.000 

    C                   4   74821  18705.3  3159.51    0.000 

    N/C                 1       0      0.1     0.01    0.910 

    D                   2   20227  10113.6  1708.28    0.000 

    TD                  2     866    433.2    73.17    0.000 

  2-Way Interactions   55   16424    298.6    50.44    0.000 

    O*C                12    3619    301.6    50.94    0.000 

    O*N/C               3       0      0.0     0.00    1.000 

    O*D                 6    1496    249.3    42.10    0.000 

    O*TD                6      28      4.7     0.80    0.570 

    C*N/C               4       0      0.1     0.01    1.000 

    C*D                 8   11238   1404.7   237.27    0.000 

    C*TD                8      17      2.1     0.36    0.940 

    N/C*D               2       0      0.0     0.00    0.996 

    N/C*TD              2       0      0.1     0.02    0.984 

    D*TD                4      26      6.4     1.09    0.364 

Error                 292    1729      5.9 

Total                 359  117871 

 

 

Model Summary 

 

      S    R-sq  R-sq(adj)  R-sq(pred) 

2.43317  98.53%     98.20%      97.77% 
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Figure 7.4 Analysis of results for number of patients 

7.4.1.3 Trade-off indicator 

In order to consider simultaneously both the patient and the managerial point of 

views, we have included a trade-off performance indicator in the analysis, defined as 

F̅/P. The ANOVA table in Figure 7.5 demonstrates the consistency of the model 

since it reports a p-value of the model equal to zero and a R-sq equal to 99.92%. With 

the exception of N/C, all the experimental factors are statistically significant since 

their p-values are equal to zero. The F-values suggest that C, D and TD are the most 

impacting experimental factors. On the other hand, the influence of the number of 

oncologists O on F̅/P can be considered weak in comparison with the other F-values. 

It can be also seen graphically through the mean effect plots in Figure 7.6-a. As for 

the number of chairs, a high number of chairs allows reducing the F̅/P indicator. It 

means that increasing the number of chairs for the treatment C allows enhancing 

the performance of the oncology unit both in a patient and managerial perspective. 

Tukey Pairwise Comparisons: Response = P 
 

O    Inst   Mean  Grouping 

10     90  58.52  A 

8      90  58.28  A 

6      90  57.09  A B 

4      90  50.56    B 

 

C    Inst    Mean  Grouping 

30     72   73.41  A 

25     72   67.27    B 

20     72  59.191      C 

15     72  47.743        D 

10     72  32.960          E 

 

N/C  Inst   Mean  Grouping 

0.33  180  56.13  A 

0.25  180  56.10  A 

 

D    Inst    Mean  Grouping 

3     120   62.31  A 

2     120   60.47  A 

1     120  45.568    B 

 

TD   Inst   Mean  Grouping 

3     120  57.82  A 

10    120  56.45  A 

20    120  54.07  A 

(c) Interaction plot 

(b) Tukey pairwise (a) Main effect plot 

(d) Interaction plot 
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However, the Tukey test in Figure 7.6-b suggests that there is no more benefits in 

terms of F̅/P when the oncology unit disposes of more than 25 chairs. Similarly, a 

higher number of pharmacy technicians D allows enhancing the F̅/P indicator, but 

there is no statistical difference between 2 and 3 pharmacy technicians. Finally, it 

can be denoted from both Figure 7.6-a and Figure 7.6-b that reducing the therapy 

transportation time is needed to reduce F̅/P. As concerns the 2-way interactions, 

Figure 7.6-c depicts the most significant interaction plot between the number of 

chairs and the number of pharmacy technicians (F-value=1264.22). Interestingly, it 

can be noticed that when the pharmacy disposes of only one pharmacy technician, 

there is no improvement in terms of F̅/P if the oncology unit has more than 20 chairs 

for the treatment. 

 

Figure 7.5 ANOVA table for trade-off indicator 

Analysis of Variance 

 

Source                 DF   Adj SS   Adj MS   F-Value  P-Value 

Model                  67  1980.34   29.557   5742.03    0.000 

  Linear               12  1909.00  159.084  30904.85    0.000 

    O                   3     3.09    1.030    200.04    0.000 

    C                   4  1490.34  372.585  72381.20    0.000 

    N/C                 1     0.02    0.020      3.81    0.052 

    D                   2   359.87  179.934  34955.39    0.000 

    TD                  2    55.69   27.845   5409.35    0.000 

  2-Way Interactions   55    71.33    1.297    251.96    0.000 

    O*C                12     2.81    0.234     45.43    0.000 

    O*N/C               3     0.00    0.001      0.17    0.918 

    O*D                 6     2.48    0.413     80.30    0.000 

    O*TD                6     0.04    0.006      1.21    0.300 

    C*N/C               4     0.04    0.009      1.72    0.145 

    C*D                 8    52.06    6.508   1264.22    0.000 

    C*TD                8     6.78    0.847    164.60    0.000 

    N/C*D               2     0.00    0.000      0.05    0.948 

    N/C*TD              2     0.01    0.006      1.23    0.293 

    D*TD                4     7.12    1.780    345.79    0.000 

Error                 292     1.50    0.005 

Total                 359  1981.84 

 

 

Model Summary 

 

        S    R-sq  R-sq(adj)  R-sq(pred) 

0.0717463  99.92%     99.91%      99.88% 
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Figure 7.6 Analysis of results for trade-off indicator 

7.4.2 Pareto analysis 

The managers may evaluate both mean flowtime, F̅, and the number of patients, 

P, so as to define the best configuration of the oncology department. However, the 

ANOVA analysis discussed above indicates that in some cases there is no 

configurations able to improve simultaneously the two performance measures. For 

this reason, a trade-off indicator, F̅/P, was introduced and evaluated. Now, we would 

further discuss this trade-off by employing the multi-objective Pareto approach. To 

this end, 360 scenarios investigated are graphically reported through the Pareto 

diagram (see Figure 7.7) in which the x and y axes are represented by P and F̅ 

indicators, respectively. A trading-off is necessary to move from one solution to 

another. This process obviously involves an improvement of a performance measure 

and, at the same time, the worsening of the other performance indicator. The Pareto 

Tukey Pairwise Comparisons: Response = F/P  
 

O    Inst   Mean  Grouping 

10     90  6.574  A 

8      90  6.492  A 

6      90  6.371  A 

4      90  6.344  A 

 

C    Inst    Mean  Grouping 

10     72  10.185  A 

15     72  6.9437    B 

20     72   5.563      C 

25     72   4.938        D 

30     72   4.597        D 

 

N/C  Inst   Mean  Grouping 

0.25  180  6.453  A 

0.33  180  6.438  A 

 

D    Inst   Mean  Grouping 

1     120  7.851  A 

2     120  5.872    B 

3     120  5.613    B 

 

TD   Inst   Mean  Grouping 

20    120  6.970  A 

10    120  6.343  A B 

3     120  6.023    B 

(a) Main effect (b) Tukey pairwise 

(c) Interaction plot 
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diagram is here adopted since it allows us to identify the non-dominated solutions 

(highlighted with the red points), also defined as Pareto solutions. Table 7.3 reports 

the values of the experimental factors for each non-dominated solution and the 

corresponding mean and standard deviation values of the performance indicators. In 

order to isolate the Pareto solutions and their standard deviations, Figure 7.8 shows 

merely their mean values and the error bars.  

As suggested by the ANOVA analysis of the trade-off indicator, i.e., F/P, the Pareto 

analysis points out the strong dependence of the performance of the oncology unit on 

the number of chairs (C), the number of pharmacy technicians (D) and the therapy 

transportation time (TD). In fact, the non-dominated solutions can be achieved only 

with the highest values of C and D (except for the second scenario wherein the 

number of chairs is set to 20) and the lowest values of TD. Furthermore, as 

previously suggested by the main effect plot and Tukey test of F̅/P, the number of 

oncologists (O), and the ratio between the number of nurses and chairs (N/C), are 

not significantly influent and there is no statistically difference in means among 

their levels. These results further confirm the validity of the proposed trade-off 

indicator F̅/P. 

 

Figure 7.7 Pareto diagram 
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Scenarios Factors KPIs 

 O C N/C D TD F̅ P F̅/P σ(F̅) σ(P) 

1 4 30 0.25 3 3 225.06 64 3.54 14.15 6.41 

2 6 20 0.33 3 3 272.81 90 3.03 14.22 5.29 

3 8 30 0.25 3 3 298.42 99 3.02 11.53 5.13 

4 10 30 0.33 3 3 309.96 100 3.11 9.58 5.05 

Table 7.3 Configurations and performances of the non-dominated solutions 

 

Figure 7.8 Error bars of the non-dominated solutions 

7.4.3 Abacus of results 

To further support the stakeholders in the decision-making process of the healthcare 

system design of an oncology unit, we provide an abacus of results reported in Table 

7.4. This abacus enables obtaining a comprehensive overview of the outcomes coming 

from the alternative configurations. The abacus is composed of two levels in the x-

axis and three levels in the y-axis. Precisely, in the first level of the x-axis there is 

the number of chairs (C), while in the second level there is the therapy transportation 

time (TD). As concerns the y-axis, it is composed by the number of oncologists (O) in 

the first level, the ratio nurses-chairs (N/C) in the second level and the number of 

pharmacy technicians (D) in the third level. For each configuration of the oncology 

unit, the abacus reports the mean and the standard deviation values of F̅ and P (the 

standard deviation values are recorded into the brackets). To facilitate the 

consultation of the abacus, we arrange the table with a scale of colors, which depends 
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on the values of P indicator (the explanation of the scale of colors is reported in the 

caption of Table 7.4). The findings arising from the abacus can be summarized on 

the basis of the colours as follows: 

• From P = 20 to P = 39 patients (yellow cells): these configurations strictly 

depend on the number of chairs. In fact, these values of P are obtained with 

C=10, regardless of the values of the other factors; 

• From P = 40 to P = 59 patients (green cells): as for the previous case, when 

the oncology unit disposes of 15 chairs, it will be not able to receive more than 

59 patients, independently from the values of the other experimental factors. 

Furthermore, if the oncology unit has more than 15 chairs and the pharmacy 

is composed of only one pharmacy technician (i.e., D = 1) the oncology 

department can receive at most 59 patients in a day. Another configuration 

able to care at most 59 patients in a day consists of 20 chairs, 4 oncologists, 

and therapy transportation time at least equal to 10 minutes. In this specific 

case, the performance in terms of number of patients is independent from the 

number of pharmacy technicians D; 

• From P = 60 to P = 79 patients (light blue cells): the oncology units can care 

a number of patients between 60 and 79, when the oncology unit disposes of: 

o 20 chairs, 2 or 3 pharmacy technicians, 4 oncologists and the therapy 

transportation time is equal to 3 minutes; 

o 20 chairs and the number of oncologists is equal to or more than 6; 

o 25 chairs, 6 oncologists, 2 pharmacy technicians and the therapy 

transportation time is equal to 3 minutes; 

o 25 chairs, 2 pharmacy technicians and the therapy transportation 

time is equal to or more than 10 minutes; 

o 25 chairs, at most 8 oncologists, 3 pharmacy technicians and the 

therapy transportation time is equal to 20 minutes; 

o 25 or 30 chairs, 2 or 3 pharmacy technicians and 4 oncologists; 

• P > 80 patients (dark blue cells): in all the other cases considered in the DOE, 

the oncology units are able to receive more than 80 patients in a given day. 

In particular, it can be noticed that O, C and D have to be at least equal to 6, 

25 and 2, respectively. 
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  C  10     15     20     25     30  

O 
N/

C 

D-

TD 
3 10 20   3 10 20   3 10 20   3 10 20   3 10 20 

1

0 

0.

33 

3 

327 

(9.3) 

332 

(9.7) 

343 

(10.4)  

323 

(6.2) 

328 

(6.5) 

337 

(6.9)  

318 

(4.7) 

323 

(4.8) 

333 

(5.1)  

314 

(3.7) 

320 

(3.9) 

329 

(4.1)  

310 

(3.1) 

316 

(3.2) 

326 

(3.5) 

35 

(15.4) 

34 

(15.5) 

33 

(16) 

52 

(13.4) 

51 

(13) 

49 

(12.7) 

68 

(11.6) 

67 

(11.9) 

65 

(11.5) 

84 

(10.7) 

83 

(10.7) 

80 

(10.6) 

99 

(10.3) 

98 

(9.9) 

94 

(10.8) 

2 

331 

(9.5) 

336 

(9.9) 

349 

(10.8)  

327 

(6.4) 

334 

(6.7) 

346 

(7.2)  

325 

(4.9) 

331 

(5.1) 

342 

(5.5)  

324 

(4) 

330 

(4.2) 

341 

(4.5)  

324 

(3.4) 

331 

(3.6) 

342 

(3.9) 

35 

(16.2) 

34 

(15.6) 

32 

(16.4) 

51 

(13.1) 

50 

(13.3) 

48 

(13.9) 

66 

(12.2) 

65 

(11.8) 

63 

(12.7) 

81 

(11.1) 

79 

(11.1) 

76 

(11.5) 

94 

(11.4) 

91 

(11.2) 

88 

(11.3) 

1 

341 

(10.2) 

349 

(10.8) 

368 

(12.4)  

345 

(7.4) 

354 

(7.9) 

371 

(8.8)  

348 

(6.6) 

357 

(7) 

372 

(7.8)  

348 

(6.5) 

356 

(6.9) 

371 

(7.6)  

348 

(6.5) 

357 

(6.9) 

371 

(7.6) 

33 

(17.2) 

32 

(16.3) 

30 

(17.6) 

47 

(15.1) 

45 

(15.5) 

42 

(16.2) 

53 

(15.4) 

51 

(15.8) 

48 

(16.4) 

54 

(15.9) 

52 

(16.3) 

49 

(17.2) 

54 

(15.6) 

52 

(16) 

49 

(16.8) 

0.

25 

3 

328 

(9.4) 

333 

(9.7) 

345 

(10.4)  

323 

(6.2) 

329 

(6.5) 

339 

(7)  

317 

(4.6) 

324 

(4.8) 

334 

(5.2)  

313 

(3.7) 

320 

(3.9) 

329 

(4.1)  

310 

(3.1) 

317 

(3.3) 

326 

(3.5) 

35 

(16.2) 

34 

(15.7) 

33 

(15.6) 

52 

(12.9) 

51 

(12.9) 

49 

(13.1) 

68 

(12.1) 

67 

(11.4) 

64 

(11.8) 

84 

(11.1) 

82 

(10.1) 

80 

(11.1) 

100 

(9.6) 

97 

(10.9) 

94 

(10.3) 

2 

330 

(9.5) 

337 

(10) 

349 

(10.8)  

327 

(6.4) 

334 
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80 or more patients 

60 – 79 patients 

40 – 59 patients 

20 – 39 patients 

Table 7.4 Abacus of results 

7.4.4 Multiple non-linear regression model 

The performances of the oncology unit can be estimated through a multiple non-

linear regression (MNLR) model. Specifically, a MNLR model is a mathematical 

function that non-linearly combines the experimental factor with different weight 
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coefficients to forecast the key performance indicator of the problem (Fan and Ding, 

2019). The adjusted R-squared indicator reported in the ANOVA analyses indicates 

how much the output data fit with the regression line. The values of the adjusted R-

squared for each response variable is higher than 95% demonstrating a high 

significance of the proposed regression model. As in the ANOVA analysis, only two 

orders of interactions are considered for each regression model. The experimental 

factor N/C is not included in the MNLR model since it does not affect the 

performances. In general, the response variables can be predicted using the model 

reported in Eq. 7.1: 

Y=w1+w2∙O+w3∙C+w4∙D+w5∙TD+w6∙O
2+w7∙C

2+w8∙D
2+w9∙TD

2+ 

w10∙O∙C+w11∙O∙D+w12∙O∙TD+w13∙C∙D+w14∙C∙TD+w15∙D∙TD  (7.1) 

wherein y indicates the response variables and wi stands for the weight coefficients 

of the experimental factors. The set of weight coefficients are reported in Table 7.5. 

Finally, the MNLR models were compared with the values of the KPIs of 10 random 

scenarios resulting from the simulation model. Table 7.6 shows the results and the 

deviation calculated as in Eq. 7.2: 

 Deviation = 
KPIMNLR - KPIsimulated

KPIsimulated
% (7.2) 

From the table it can be noticed that the average deviations (reported in the last 

row) present low values and, then, it can be stated that the regression models can be 

properly adopted for the problem under investigation. 
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y   F̅  P  F̅/P 

w1  329.40  2.13  18.23 

w2  13.44  1.839  0.1563 

w3  -1.856  1.534  -0.8424 

w4  -46.90  10.35  -2.899 

w5  1.770  -0.071  0.1325 

w6  -1.1598  -0.3936  0.00340 

w7  -0.00125  -0.05905  0.018734 

w8  10.405  -6.532  0.8602 

w9  0.01592  -0.00252  0.001008 

w10  0.3869  0.1640  -0.00406 

w11  1.312  0.908  -0.03779 

w12  -0.0665  -0.0158  -0.00060 

w13  -1.0171  0.8641  -0.05728 

w14  0.00225  -0.00366  -0.002512 

w15  -0.2124  0.0458  -0.02277 

Table 7.5 Coefficients of the regression models 

Scenarios Factors Simulation Regression Deviation 

 O C N/C D TD F̅  P F̅/P  F̅̅ P F̅̅/P 𝐹  P  F̅̅/P 

      [min]  [min] [min]  [min] [%] [%] [%] 

1 4 10 0.25 1 20 350.32 29.32 11.95 352.63 31.77 11.48 0.66 8.34 3.92 

2 4 20 0.33 2 10 283.47 59.14 4.79 288.40 58.36 4.72 1.74 1.32 1.38 

3 4 30 0.25 2 20 268.40 63.07 4.26 280.82 65.37 4.50 4.63 3.65 5.68 

4 6 30 0.33 3 20 294.89 87.35 3.38 288.54 83.99 3.47 2.15 3.84 2.52 

5 6 25 0.25 1 10 341.31 51.57 6.62 338.83 53.54 6.17 0.73 3.82 6.85 

6 8 15 0.33 3 10 322.92 50.96 6.34 327.60 52.59 6.67 1.45 3.20 5.17 

7 8 25 0.25 2 3 314.66 80.73 3.9 313.60 77.59 3.78 0.34 3.89 3.18 

8 10 15 0.33 3 10 328.00 50.77 6.46 330.88 52.15 6.74 0.88 2.72 4.37 

9 10 20 0.25 2 3 325.66 66.58 4.89 323.28 67.66 4.66 0.73 1.62 4.63 

10 10 30 0.33 3 3 309.91 99.37 3.12 309.60 99.88 3.22 0.10 0.51 3.11 

Average 1.34 3.29 4.08 

Table 7.6 Validation of the multiple non-linear regression model 
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7.5 Conclusions 

In this work, we addressed the healthcare system design problem of outpatient 

chemotherapy oncology departments. This work, inspired to the healthcare services 

provided by an outpatient chemotherapy oncology unit of a hospital located in (to be 

revealed if the paper will be accepted in respect of the double-blind peer review policy 

of the journal), presents the results of a multi-objective analysis conducted by means 

of a combination of stochastic simulation and experimental design, with the aim of 

working as a guideline for the healthcare managers and decision-makers. In order 

to consider both the quality of service to patients and the efficiency of the systems, 

the performances of the chemotherapy oncology units were evaluated based on three 

different key performance indicators: the patient waiting time, the number of 

patients and a trade-off indicator. A stochastic simulation model based on discrete 

time recursive equations was developed and combined with a DOE to emulate 

several different configurations. An ANOVA analysis, supported with main effect 

plots, Tukey tests and interaction plots, allows identifying the impact of each 

experimental factors on the performance of the oncology units. In general, the 

analysis pointed out that selecting the adequate number of chairs for treatment and 

the number of pharmacy technician are essential to achieve the best performance 

both in terms of patient waiting time and number of patients cared in a day. On the 

other hand, a high number of oncologists allow the oncology unit to increase the 

number of patient cared in a day. However, in this case, the oncology department 

has to dispose of an adequate number of pharmacy technicians and chairs for 

treatment to avoid that exists a bottleneck after the medical consultation. The 

analysis of results was also supported by a multi-objective Pareto approach, a well-

detailed abacus and a MNLR model. In particular the abacus of results was built to 

support the managers and to easily evaluate the performances provided by each 

specific configuration considered in the DOE. 
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8. Supply chain dynamics problem 

8.1 Introduction 

A supply chain (SC) can be defined as a network of firms that transmit goods to each 

other and share information on their capabilities and resources in order to provide 

value to the final consumer (Disney and Lambrecht, 2008). SCs are highly non-

linear, as they present the characteristics of complex systems, and evolve through 

non-trivial interactions between the nodes of the network (Surana et al., 2005). A 

source of complexity in the SC context is due to the capacity constraints that are 

widely usual in the real-world applications and may expose firms to unpredictable 

disturbances as well as to economic losses. For these reasons, such perturbations 

have to be promptly managed thorough specific protocols so to mitigate their impact 

on the whole distribution network (Shukla and Naim, 2017). Another perspective in 

terms of complexity is attributable to supply chain disruptions, i.e., events that 

temporarily change structural design and operational policies of SCs with significant 

resilience impact (Kinra et al., 2020). According to the definition of Chakraborty et 

al. (2020), a supply related disruption may occur when suppliers are unable to fulfil 

the orders placed with them. Likewise, the supply disruption can be considered as 

the risk of interrupting the supply of a product, which in turn may yield uncertainty 

and loss of balance between the supplied quantity and the order size placed. Over 

the past few years the management of supply chain disruption has gained a lot of 

attention from both practitioners and academics. Vulnerability of supply chains and 

propagation of a disruption through the distribution network, also denoted as ripple 

effect, were investigated by several authors (e.g., Dolgui et al., 2020, Hosseini et al., 

2020 and Xu et al., 2020).  

However, though the SC disruption surely represents a hot topic in the 

international research landscape, none of the aforementioned contributions 

explicitly considers the production planning issue in the factory node as a capacity 

constraint and a source of vulnerability for the entire supply chain as well. 

Production and distribution are the two primary internal elements of the supply 

chain and a proper integration between them plays a leading role in the development 

of quantitative approaches capable of accurately investigating the performance of 

supply chains (Kumar et al., 2020a). The research contributions investigating the 
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impact of capacity restrictions on SC performance are relatively scarce and most of 

them adopt a simplified approach to model the relationship between lead-times and 

capacity. The majority of the early studies considers the capacity limit implicitly 

connected to exogenous factors such as the order rate or to endogenous sources as 

production and transportation channels, also assuming that the lead time is an 

independent parameter. On the other hand, the emerging trend in modelling the 

capacity constraint bids on a more consistent approach focused upon a cause-effect 

relationship that treats lead times as load-dependent variables (Cannella et al., 

2018). Although these recent studies have remarkably improved the modelling 

assumptions related to the capacitated SC problems, the complexity of some real-

world manufacturing systems cannot be properly captured by relaxed or 

approximate approaches, thus requiring a more explicit capacity model to faithfully 

emulate the operational implications typical of the shop floors. In other words, an 

innovative methodology capable of accurately reproducing the realistic aspects of 

production capacity (such as the effects of multi-product processes, setup-times and 

machine breakdowns), would be necessary to go beyond the conventional models, 

most of which set the capacity limit to a constant value and use a single-product flow 

in an aggregate manner. As a matter of fact, Potter et al. (2009) encourage a multi-

product perspective for exploring bullwhip in SC. They state that various clusters of 

products may have quite different types of SC, depending upon either the customer 

or the product type and, as a result, each cluster can be subject to a different bullwhip 

phenomenon. 

In light of the previous considerations and inspired by the activities of local 

companies, to bridge the gap between the capacity modelling assumptions employed 

by literature so far and a novel approach able to stress the operational issues 

pertaining to the real-life manufacturing contexts, the following features should be 

explicitly modelled: i) different products or families of product sharing the same 

manufacturing system, ii) decision-making issues related to the selection of the 

product to be manufactured; iii) production planning and control strategies to run 

product changeovers; iv) machine/equipment breakdowns; and v) production lead 

times depending on both the work-in-progress and on the layout of the 

manufacturing system. Motivated by the aforementioned considerations, the 

following research questions motivate the present work: 
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1) Considering the methodologies proposed by literature so far, is there an 

alternative way consistently simulate the effects of a limited production capacity 

on the SC dynamics? 

2) Can a more realistic factory model, in which changeover tasks and machine 

breakdowns may occur, bring out new insights on the theme of capacitated SCs? 

3) Which variables connected to a holistic factory model should be explored to 

investigate the service levels as well as the variability of inventories in a multi-

echelon SC context? 

4) Is there a specific production control strategy that allows improving the 

performance of the whole SC? 

The research work presented in this chapter aims to answer to these challenging 

queries by adopting a new methodology, as follows. We explore a two-echelon (i.e., 

factory, retailer and customer), two-product SC in which the product changeover 

requirement acts as a variable capacity on the factory node. To this end, we explicitly 

consider a single-facility two-product manufacturing system subject to non-

negligible random breakdowns and product changeovers, which dynamically may 

generate considerable throughput reductions and stock-outs over time. Specifically, 

a well-established production control policy (PCP), named Hedging Corridor Policy 

(HCP, see Elhafsi and Bai, 1996) is engaged to simulate the decision-making issues 

connected to a two-product manufacturing environment, while the retailer generates 

orders according to a proportional controller-based Order-Up-To policy. Because of 

the exploratory nature of this study, we adopt a suitable methodology for studying 

the dynamics of SCs, i.e., computer simulation and more specifically the discrete-

time recursive equations modelling approach. Such an explicit two-product capacity 

model may induce a significant disturbance into the factory node, under several 

viewpoints. Indeed, deciding for a product changeover means to undergo a temporary 

production stoppage and a consequent throughput decay on the outgoing product. 

On the other hand, during any steady-state phase of production, failures may occur 

and the output rate of the factory temporarily decreases, thus affecting the 

replenishment of the downstream supply chain. In order to infer how such a realistic 

capacity model biases the whole supply chain, the effect of several operational 

parameters (e.g., inventory threshold to enable the changeover, changeover duration 

and failure rate) as well as their interactions with other leading factors (e.g., 



137 

 

customer demand, safety stock factor, proportional controller and so on) should be 

thoroughly investigated. To this end, an extended experimental campaign and a 

proper analysis of variance (ANOVA) were arranged with the aim of disclosing how 

these parameters, pertaining to both production control and replenishment policies, 

impact on three distinct performance indicators, i.e., the fill-rate and the standard 

deviations of inventory regarding to both the retailer and the factory.  

Furthermore, this chapter contributes to the literature of both supply chain 

dynamics and production control problem by comparing four PCPs, i.e. HCP, 

Modified-HCP (MHCP) (Gharbi et al., 2006), Improved Modified HCP (IMHCP) 

(Assid et al., 2014) and Demand Driven Material Requirements Planning (DDMRP) 

(Ptak and Smith, 2011). Specifically, we compare in depth the PCPs in a capacitated 

multi-echelon SC in terms of customer service level (i.e., fill rate) and internal 

operational performance of the factory. The aim is to assess both academics and 

industrial practitioners to select specific production control policy capable of properly 

supporting the SC strategy. Specifically, if the SC management strategy is oriented 

towards cost reduction, it should be preferred a PCP that can dampen both average 

and variability of the inventory level to generate lower holding costs. Conversely, if 

the SC strategy is focused on customer service level, it should be adopted a PCP able 

to increase the fill rate performance indicator.  

The performance of the SCs is influenced by endogenous factors (such as 

proportional controller, safety stock factor and so on), which can be adjusted by the 

SC manager (decision-maker), and exogenous factors (such as transportation lead-

time, production flow time, etc.), which are considered intrinsic features of the SC 

under investigation (Costas et al., 2015; Puche et al., 2019). In this regard, we 

conduct two sets of experiments to make the comparison as exhaustive as possible. 

First, a Response Surface Methodology (RSM) was used to identify the most suitable 

values of the endogenous factors for each PCP. Then, a full-factorial experimental 

design, which involves all exogenous factors, was carried out to investigate the 

effectiveness of each PCP with respect to several SC scenarios. All in all, we argue 

that the comparison of the PCPs extends the current state-of-art in the field of 

manufacturing systems and supply chain dynamics and provide practical guidelines 

for practitioners to adopt most appropriate PCPs, depending on the operational and 

market environment (e.g., turbulence of the customer demand, geographical 
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dispersion of the network, capacity dimension of the production system, etc.) and 

firm strategies (e.g., cost-reduction vs. customer-focus orientation). 

Finally, a new production control policy called Adaptive Hedging Corridor Policy 

(AHCP) is proposed. It can be considered as a variant of HCP, since it consists in 

building positive inventory levels through a variable inventory threshold that 

protects against inventory shortages due to production changeovers and failures. 

The adaptive aspect consists of continuously changing the inventory threshold by 

estimating the demand. For this purpose, the variable demand of the distribution 

chain is estimated using the exponential smoothing forecasting technique. AHCP 

was compared with HCP to maximize the fill rate when a highly variable demand 

arises from the downstream players. For this purpose, the two PCPs were compared 

through several scenarios and a proper ANOVA analysis and a series of interval 

plots at 95% confidence intervals were arranged to evaluate the impact and 

effectiveness of the two PCPs on the FR indicator as well as the interactions among 

the adopted experimental factors. 

The reminder of the work is as follows. Section 8.2 presents the review of 

literature related to the two main research streams involved in the work, namely 

SCs with capacity constraint and production planning and control policy. Section 8.3 

describes the proposed SC dynamic model wherein the capacity restrictions are 

motivated by an unreliable manufacturing system able to produce two distinct 

products. Section 8.4 explains the structure of each PCP. In Section 8.5 we present 

the numerical results and the findings arising from different experimental 

campaigns and provide research and managerial implications. Finally, Section 8.6 

deals with the conclusions. 

8.2 State of art 

This section presents the literature background regarding the two main research 

streams involved in this chapter, the former being related to the SC dynamics with 

capacity constraints, the latter concerning the optimal production planning and 

control policies, specifically oriented to failure-prone and multi-product scenarios. 

Due to their heterogeneous contents, two distinct sub-sections were provided, as 

follows. 
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8.2.1 The capacity constraint in SC dynamics 

Considering any capacity constraint in the study of SCs means introducing a source 

of non-linearity that significantly augments the complexity of the problem. Indeed, 

the study of capacitated SCs is still a poorly explored research stream, and most 

academics make full use of simulation-based techniques to investigate such a 

demanding issue. A way to model the capacity constraint in SC dynamics lies in 

limiting the transportation flows (e.g., Wilson, 2007; Juntunen and Juga, 2009; 

Spiegler and Naim, 2014; Spiegler et al., 2016a; Spiegler et al., 2016b; Shukla and 

Naim 2017). On the other hand, an alternative approach widely spread in the 

literature consists in assigning the capacity restriction to incoming orders or 

production flows. To better catch the added-value of the proposed research, Table 8.1 

retrieves the most relevant studies on the SC dynamics with capacity constraints at 

the factory level. Each reference is classified on the basis of two criteria, namely the 

way the capacity constraint is modelled, and the number of products distributed 

along the network. Notably, capacity constraints limiting that work by limiting 

orders or production rate to a constant value are denoted as Limits Orders (LO) 

constraints, while any capacity restriction depending on the accumulated work-in-

progress, which in turn may affect the lead-time, is indicated as a Load-Dependent 

Lead Times (LDLT) constraint.  

In other words, the research contributions adopting a LO method dictate a specific 

threshold to the production rate or to any order placed to the supplier (see e.g., Evans 

and Naim, 1994; Chen and Lee, 2012; Hussain et al., 2016; Ponte et al., 2017; Lin 

and Naim, 2019; Lin et al., 2020). In this area, to the best of our knowledge, the work 

of Evans and Naim (1994) represents the seminal study investigating the effect of 

capacity restrictions in the SC context. They compare eight three-echelon SCs with 

different assumptions regarding their capacity, and discover that the unconstrained 

configuration is unable to assure the best performance among the tested SCs. 

Likewise, subsequent studies point out the same finding, i.e., SC models adopting a 

capacity threshold on orders or production rate reveal a significant reduction of the 

bullwhip effect with respect to the unconstrained scenario. Such phenomenon was 

widely investigated by scholars and most of them claim that the capacity restriction 

applied to the order rate acts as a bullwhip damper, which also enable a smoothing 

effect upon orders and production flows (Evans and Naim, 1994; Cannella et al., 
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2008; Chen and Lee, 2012; Ponte et al., 2017). However, despite the capacity 

limitation exerts a positive influence under the bullwhip effect viewpoint, it usually 

deteriorates the SC performance in terms of inventory and customer service levels 

(Evans and Naim, 1994; Nepal et al., 2012; Hussain et al., 2016; Ponte et al., 2017). 

The LDLT models consider lead-times as a function of the load (i.e., orders and 

work-in progress) on the production-distribution system. As a result, such approach 

allows emulating the negative effect that the capacity saturation may induce on the 

lead-times, as experienced in the real-life networks wherein any decrease in the 

production capacity tends to increase the lead-times throughout the entire SC (Yang, 

2007; Orcun et al., 2009). To the best of the authors’ knowledge, only four studies 

explore the SC behavior under load-dependent lead times, namely Helo (2000), Boute 

et al. (2009), Framinan (2017) and Cannella et al. (2018). Specifically, Helo (2000) 

use a system dynamics based method to model the lead-time in terms of 

backlog/capacity ratio, and show that a lower capacity detriments the agility of the 

whole supply chain. Boute et al. (2009) study a two-echelon SC with the aim of 

analyzing the impact of the retailer replenishment policy on the performance of the 

distribution system. They find out that a lower flexibility under the capacity 

viewpoint implies stochastic lead times, which in turn increase inventory 

requirements and SC costs. Framinan (2017) provides an analytical model to derive 

the bullwhip effect considering that capacity depends on the current/past orders 

and/or demand. Finally, Cannella et al. (2018) make full use of a non-linear 

difference equations based model to emulate a single-echelon SC in which lead-times 

are derived by the well-known cycle time-throughput (CT-TP) curve (Mönch et al., 

2012). They show that capacity restrictions can have a detrimental impact in terms 

of both order variance, inventory stability and service level. Differently from the 

contributions adopting the LO capacity constraint policy, the LDLT models - which 

allow a more realistic representation of the capacitated distribution network - reveal 

that capacity restrictions negatively affect the operational cost and increase the 

bullwhip effect along the SC.  

Regardless of the conflicting results emerged from the two mentioned approaches, 

it is worth noting that both LO and LDLT models operate on a single-product 

environment. Although this assumption is largely adopted in the related literature 

and produced remarkable insights so far, a multi-product model would be able to 

accurately capture the dynamics of the real-life manufacturing environments such 
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as the one inspiring our research, in which decisional aspects, product changeovers 

and further operational issues may explicitly affect the production rate of a factory 

and its effect on the downstream flow. After a thorough review of literature, we may 

affirm that the work pertaining to Potter et al. (2009) is the only study that debates 

about the trade-off between bullwhip and inventory in a multi-product environment 

where some batching is inevitable. Properly supported by three case studies in UK 

and New Zealand, they focus on different SC scenarios, each one characterized by a 

number of different products sharing the same capacity asset, and assert that a 

significant difference in the level of bullwhip may exist for distinct clusters of 

products. However, that research consists of a pure empirical study and any insight 

about how the capacity constraint should be modelled in a multi-product SC context 

is out of the scope of their work. 

In light of the aforementioned considerations, and considering that, in many real-

life manufacturing environments, capacity limitations are strictly connected to a 

series of operational implications, the present study aims to propose a novel 

approach for modelling the capacity restrictions in SCs, hereinafter denoted as 

Explicit Production and Operations (EXPO) model. Table 8.1 summarizes the 

contributions on SC dynamics with capacity restrictions discussed above, and allows 

to easily detect the novelty of the proposed research with respect to existing ones. 
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Reference 
Capacity constraint 

modeling criterion 

Assumption on the 

number of product 

 LO LDLT EXPO SP MP 

Evans and Naim (1994)      

Helo (2000)      

Cannella et al. (2008)      

Boute et al. (2009)      

Chen and Lee (2012)      

Nepal et al. (2012)      

Hussain et al. (2016)      

Spiegler et al. (2016b)      

Framinan (2017)      

Ponte et al. (2017)      

Shukla and Naim (2017)      

Cannella et al. (2018)      

Lin and Naim (2019)      

Lin et al. (2020)      

This study      

- LO - Limiting Orders. Limitation on orders placed to suppliers or orders’ acceptance channel. Under 

this assumption, capacitated SCs may benefit from an improved dynamic performance in 

comparison to unconstrained systems 

- LDLT - Load-Dependent Lead Times. Modeling lead-times (production and/or transportation) as a 

function of the load (i.e., orders, work-in progress) of the production-distribution system (e.g., lead 

time modeled as a CT-TP curve, or as function of the current/past orders). Under this assumption, 

capacity restriction can deteriorate the operational cost and increase the bullwhip effect  

- EXPO - EXplicit Production and Operations. Emulating the capacity constraints by explicitly 

modeling operations typical of real-world production systems (e.g., product changeovers, failures 

and maintenance activities that may significantly reduce the nominal capacity of a production 

plant).  

- SP/MP. Single Product/Multi-Product SC modeling. 

Table 8.1 Review of capacity constraints in supply chain dynamics 
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8.2.2 The production control policies 

The production control problem consists of selecting the best strategy, or PCP, to 

carry out manufacturing activities in a production system subject to unforeseen 

events. The literature on the production control problem can be divided into two 

streams, depending on the number of products handled by the manufacturing 

system. The first stream refers to single-product manufacturing systems where in 

most contributions the unforeseen events are machine failures or breakdowns. In 

this respect, the Hedging Point Policy (HPP) was widely adopted in the literature 

(Kimemia and Gershwin, 1983; Restrepo et al., 2016; Hatami-Marbini et al., 2020) 

to properly set the production rate so as to avoid the risk of inventory shortages due 

to failures in single-product manufacturing system with a constant demand. HPP 

was also used to manage the production operations of a factory in a single-product 

SC scenario (Hajji et al., 2009; Turki and Rezg, 2017).  

The second stream concerns the production control problem of manufacturing 

systems that handle two different product types. In such circumstances, changeover 

operations, which are required to switch from one product type to another, represent 

the main source of disruption. In this case, the PCP adopted by the factory node must 

decide the product type to be manufactured and the sequence of product 

changeovers. The Hedging Corridor Policy (HCP) was developed by Elhafsi and Bai 

(1996) to conduct the decision-making process in two-product manufacturing 

systems. It can be considered as the multi-product version of HPP since, similarly, 

it aims at achieving a target inventory level or inventory threshold as soon as 

possible to protect against inventory and capacity shortages. The authors proved 

that HCP is optimal for minimizing the inventory costs of a single-machine two-

product manufacturing system with a constant demand. HCP was also proved to be 

optimal for a cost-based objective function, which indirectly considers changeover 

costs, for unreliable single-machine two-product manufacturing systems with 

constant demand (Bai and Elhafsi, 1997). Then, extended versions of HCP were 

proposed to manage production systems with non-negligible changeover times. 

Gharbi et al. (2006) proposed the Modified Hedging Corridor Policy (MHCP) for a 

single-echelon multiple-machine manufacturing system with constant demand, in 

which the objective was to minimize setup and inventory costs. In this case, MHCP 

allows anticipating the product changeovers when there subsist inventory shortages 
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for one product type. On the other hand, Assid et al. (2014) presented a new modified 

version of MHCP, named as Improved Modified Hedging Corridor Policy (IMHCP) 

in the work of Assid et al. (2015), with the aim of reducing the total costs incurred 

by a factory characterized by an unreliable manufacturing system with constant 

demand. Differently from MHCP, IMHCP triggers the changeover to a product 

before the inventory level of this product becomes negative. However, the majority 

of the works on the production control problem for a multi-product scenario deal with 

single-node manufacturing companies facing a constant demand.  

Recently, Polotski et al. (2020) pointed out that the production control problem 

with uncertain or variable demand can be faced through two different approaches. 

The first one, defined as ‘guaranteed approach’, consists of implementing production 

control policies, such as HPP and HCP, which can be considered ‘good on average’ 

solutions. This means that these policies guarantee the best possible results when 

applied several times. The second approach is defined as ‘adaptive approach’ and 

concerns with a strategy that uses some information about a source of uncertainty 

to create a rule that varies according to such information. In this regard, they 

propose an adaptive approach based on a Kalman filter-based technique as an 

estimator for a failure-prone single-machine single-product manufacturing system 

where the demand is uncertain. 

A never-ending interest towards new hybrid/integrated approaches, e.g., inspired 

to Theory Of Constraints (TOC) and Just-In-Time (JIT) paradigms, was emerging 

from the literature on production control and replenishment management. Recently, 

the Demand-Driven MRP (DDMRP) strategy proposed by Ptak and Smith (2011), 

which combines MRP logic, TOC and some principles of lean manufacturing and 

distribution resource planning, has captured the attention of both practitioners and 

academics (Velasco Acosta et al., 2020). The goal of this strategy is to manage the 

flow of materials in manufacturing systems exposed to uncertainties and high 

variability. DDMRP mainly consists of three steps (Ptak and Smith, 2016). The first 

step deals with decoupling and strategic positioning of buffers in order to cope with 

the variability along the whole manufacturing system. The second step involves 

defining the buffer profiles that are used to decide how to rebuild the inventory level. 

The third step refers to dynamically adjust the buffer profiles and levels to fit with 

the demand variability and market changes. The superiority of DDMRP was proved 

by the literature when applied to manufacturing systems characterized by high-
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volume production and subject to internal and external uncertainty. Particularly, 

Miclo et al. (2019) and Thürer et al. (2020) demonstrated that DDMRP performs 

better than other methods, e.g. MRP II and Kanban/Lean production or Optimized 

Production Technology (OPT). Velasco Acosta et al. (2020) used DDMRP in a complex 

manufacturing environment with the aim of reducing lead time and inventory level. 

However, they pointed out that the success of DDMRP strongly depends on the 

strategic positioning of the buffers. As for HCP and its variants, DDMRP was applied 

only in a single-echelon manufacturing system and, moreover, the relationship 

between changeover operations and DDMRP has never been studied.  

8.3 Modelling a multi-product supply chain model with 

capacity restrictions 

Figure 8.1 gives an overview of the proposed SC model reporting both material and 

information flows. The first node of the proposed SC involves a manufacturing plant 

able to manufacture two different products. In brief, two products or two families of 

products share the same manufacturing system and, as a consequence, a variable 

production capacity would fulfil the demand coming from the downstream node. The 

factory always has raw material for production; thus, it does not place any order. 

The retailer stage emits orders to the factory and upgrades its inventory. To place 

the orders, the retailer follows a smoothing replenishment rule (Boute et al., 2009). 

The following paragraphs introduce the general assumptions of the proposed SC 

model and later a detailed explanation of an analytical model based on discrete time 

difference equations will be presented. The nomenclature adopted along the chapter 

is reported in Table 8.2.  
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Figure 8.1 The two-product two-echelon supply chain model 

Indices, parameters and statistics 

αret Forecasting smoothing factor of retailer t time period 

αfact Forecasting smoothing factor of factory T Time horizon 

ap  
Minimum inventory threshold of product 

p 
TOG𝑝  Top of green of product p 

β Proportional controller TORp  Top of red of product p 

bp  Safety inventory threshold of product p TOYp  Top of yellow of product p 

δ Changeover time φ 
Factor of minimum inventory 

threshold 

ε Safety stock factor χ
p
  

Nominal production capacity of 

product p 

F Flow time z Threshold of inventory factor 

Fl  Flow time factor Zp  
Maximum inventory threshold 

of product p 

Fv  Variability factor μ
dp

  
Mean customer demand of 

product p 

i Echelon’s position σdp

2   
Variance customer demand of 

product p 

k Threshold of lost sales factor FR Fill Rate 

λ Failure rate μIfact 
Average value of factory 

inventory level 

LT Delivery lead-time ΣIfact 
Standard deviation of factory 

inventory level 

p Product type ΣIret 
Standard deviation of retailer 

inventory level 

p’ Alternative product type   
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Variables 

Ci,p(t) 
Units of product type p delivered to 

echelon i at time t 
O2,p(t) 

Order quantity of product type p 

issued by the retailer at time t 

CO1,p'p(t)  

Residual changeover time to switch from 

product type p’ to p in the factory at time 

t 

OUT1,p(t) 
Output quantity of product type 

p in the factory at time t 

di,p(t) 
Demand of product type p in echelon i at 

time t 
tR(t)  Repair time in the factory 

d̂i p(t) 
Demand of product type p forecasted by 

echelon i at time t 
TI2,p(t) 

Target inventory of product type 

p in the retailer at time t 

Ii,p(t) 
Inventory level of product type p in 

echelon i at time t 
TW2, p(t) 

Target work in progress of 

product type p in the retailer at 

time t 

Î1,p(t) 
Forecasted inventory level of product 

type p in the factory at time t 
Wi,p(t) 

Work in progress of product type 

p in echelon i at time t 

INP1,p(t)  
Input quantity of product type p in the 

factory at time t 
  

Table 8.2 Supply chain nomenclature 

8.3.1 Modelling the factory capacity 

Assuming a single product and a variable lead-time is a way to faithfully represent 

the sources of uncertainty typical of capacitated manufacturing environments (Boute 

et al., 2009; Cannella et al., 2018). Of course, such an aggregate approach could 

represent a too approximate perspective to investigate in-depth the SC dynamics, 

especially when two or more products share the same production equipment and 

machine breakdowns/failures may occur. To this end, the more realistic EXPO model 

was proposed in the present work. The following assumptions were considered to 

model the factory node at hand:  

• Let us suppose a process-oriented manufacturing system able to produce two 

distinct types of product or, alternatively, two different product families; thus, 

the two part-types share the same manufacturing equipment, which produces 

at maximum production rate. 

• A non-negligible setup time is required whenever a product changeover is 

needed. When a changeover occurs, the semi-finished product along the line 

has to be processed entirely. 

• Failures may randomly occur and production has to be temporary stopped.  

• A production planning strategy is employed to jointly cope with the capacity 

shortage deriving from both setups and failures. 
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• The time each product spends to go through the production line is the flow 

time, hereinafter denoted as F, also called production lead time. Thereby, it 

denotes the time interval between launching a workpiece down the line and 

removing the finished product from the line, and it is known in advance. As 

for example, that is the case of paced assembly lines (Scholl, 1999), textile 

industry (Aldas et al., 2018) and semi-conductors wafer fabrication (Haller et 

al., 2003; Lee et al., 2008). 

• At each time period t, a quantity of product INPp enters the production system 

and will take F time periods to be completed (Stadnicka and Litwin, 2019). 

Generally, the variable INPp equals the nominal production capacity χ
p
 and 

the maximum WIP level for each product can be computed as F ∙ χ
p
 , 

accordingly. Such maximum WIP level, that keeps unchanged until an 

adverse event such as failure or product changeover occurs, will be denoted 

as WIP-CAP hereinafter. 

To sum up, in steady-state conditions (if no adverse event such as failures or 

changeovers happen) the input rate INPp, i.e., the quantity of product feeding the 

system, is equal to the nominal production capacity χ
p
 and the WIP lays on the 

maximum value WIP-CAP. When a failure happens or a setup is required, both the 

WIP level of the in-process product and the throughput are reduced. Figure 8.2 

shows a graph wherein the WIP level Wp(t) of each product p varies over the time 

because of the product changeovers. Besides, the maximum WIP, i.e., the expected 

WIP-CAPp for each product p can be detected. When a changeover is needed, the WIP 

level of the outgoing product rapidly decreases while, once the provided setup time δ 

elapsed, the WIP related to the incoming product suddenly grows. 
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Figure 8.2 Variation of WIP level (when δ=F) 

To better explain the proposed factory model, Figure 8.3 refers to a production 

system able to produce two distinct products, denoted as A and B, respectively. Let 

us suppose 300 units of product A and 150 units of product B can be alternatively 

produced at each time period t (i.e., χ
A
=300, χ

B
=150), and both products have a flow 

time equal to two time units (F=2). At each time unit, the quantity of product in 

terms of work-pieces or raw materials feeding the production system is equal to the 

corresponding nominal capacity, that is Inp
p
(t)=χ

p
|p∈(A,B). Whether no changeover 

is required, the input quantity Inp
p
(t) will be processed and then released by the 

production system after F time units. Let us suppose product A is being processed as 

first. Whether a product changeover is needed (at time t=3), a setup time δ equal to 

one-time unit is required; thus, the production system cannot process any product 

and the WA(t) level of the outgoing product (i.e., the product A) decreases from 600 to 

300 units. At time t=4, once the changeover task is completed, i.e., after δ=1 time 

units, 150 work-pieces of product B enter the system and WB(t) starts to increase 

until the steady-state conditions are achieved. For the sake of clarity, Table 8.3 refers 

to the example described by Figure 8.3 and displays the following variables: Inp
p
(t), 

work in process W1,p(t), output quantity OUTp(t) as well as the changeover variable 
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COpp'(t), which assumes a value equal to one whenever a switch from product p=A 

to product p’=B (and vice-versa) is required. 

 

Figure 8.3 Example of manufacturing stage with changeover 

t COAB(t) COBA(t) INPA(t) INPB(t) WA(t) WB(t) OUTA(t) OUTB(t) 

0 0 0 0 0 0 0 0 0 

1 0 0 300 0 300 0 0 0 

2 0 0 300 0 600 0 0 0 

3 1 0 0 0 300 0 300 0 

4 0 0 0 150 0 150 300 0 

5 0 0 0 150 0 300 0 0 

6 0 0 0 150 0 300 0 150 

Table 8.3 Numerical example of product changeover 

Disregarding any preventive maintenance strategy, failures may occur randomly, 

according to a failure rate equal to δ. Conforming to Chiu et al. (2019), when a 

machine breakdown occurs, failures are instantaneously detected and the machine 

repair operation starts right away. The manufacturing process resumes to work 
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when the repair task is accomplished, i.e., after a certain amount of time called 

machine repair time tR(t). Failures are supposed to happen just at the first stage of 

the production line. Figure 8.4 illustrates how the proposed simulation approach 

runs a failure. Let us suppose the flow time is again F=2 and the nominal production 

capacities for the two products are χA=300 and χB=150, respectively. At time t=1 

product A is being processed and the related input quantity INPA(1) is equal to χA. 

At time t = 2 a failure happens. Whether the machine repair time tR(t) is equal to 

0.8, properly extracted by a uniform distribution U(0,1), since the failure is supposed 

to happen at the first production stage, the corresponding input quantity INPA(2) 

reduces to (1-tr(2))∙300=60 product units, which later will be processed by the 

downstream stages of the production system. 

 

Figure 8.4 Example of manufacturing stage with failures 

8.3.2 General assumption of the supply chain model 

To model the SC dynamics of the problem under investigation, a set of discrete time 

difference equations was developed and implemented by means of Matlab r2020®. 

The simulations were run on a workstation equipped with a INTEL i9-9900 3.6 GHz 

10 core CPU, 32Gb DDR4 2,666MHz RAM and Win 10 PRO OS. In order to fulfill 

both the dynamic feature of the proposed simulation approach as well as the aspects 

typical of real-life SCs, the following general assumptions, most of them employed 

by the relevant literature (Chatfield et al., 2004; Cannella et al., 2010; Dominguez 

et al., 2019), were considered: 

1. Two distinct types of product flow through the SC; 
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2. The downstream node places orders for each product to the next upstream 

node, which fulfills those orders. The customer node does not fill orders; 

3. The factory always has raw material for production. Thereby, it does not place 

any order; 

4. The factory has a constrained capacity as two products share the same 

manufacturing equipment; 

5. Stocking and transportation capacities are unlimited; 

6. For each product, the demand received by a node equals the orders received 

by the downstream stages; 

7. Lead time related to the last echelon is neglected. Conversely, the lead time 

from factory to retailer is the sum of two constant contributions, the former 

being the production flow time F, the latter being the transportation lead time 

LT. 

8. When the stock is not enough to completely fill an order, a stock-out is 

generated and partial replenishment is used; 

9. Backlogging is allowed as a consequence of stockholding; 

10. Returns of excess inventory to upstream partners are not permitted; 

11. At period t and for each product p, the customer places an independent 

stochastic demand following a normal distribution with mean μ
dp

, and 

variance σdp

2 ; 

12. At period t and for each product p, the throughput of the factory depends on 

the nominal production capacity χ
p
 and it is reduced in case of product 

changeovers or failures. 

13. The exponential smoothing is adopted as forecasting method for estimating 

demand. 

A production control policy (PCP) is employed to manage the product changeover 

decision-making issue (see Section 8.4). To this end, the decision on the product type 

to be manufactured and product changeovers depend on the PCP adopted. In order 

to match the recent studies on capacitated SC dynamics with a more realistic model 

of production capacity, this work proposes modified PCPs, in which both WIP and 

production flow time may affect the stock level of the two part-types. Therefore, a 

changeover from a generic product p to another p’ is performed by considering the 

forecasted inventory of finished products Î1,p(t). In turn, the WIP level as well as the 



153 

 

flow time of each product may significantly influence the mentioned forecasted 

inventory levels. 

8.3.3 Dynamic modelling 

This section deals with the time-dependent equations supporting the dynamic model 

of the proposed two-product SC with production capacity constraints. 

8.3.3.1 Factory related dynamics 

At each time period, the factory performs the following sequence of actions: 

1. Finished products OUT1,p(t). The output quantity of product p at time t is 

equal to the input quantity of the same product at time t-F, where F is the 

production flow time. 

 

 OUT1,p(t)=INP1,p(t-F) (8.1) 

 

2. Number of delivered units C1,p(t). It consists of the number of product p 

units delivered by the factory at period t to satisfy the retailer order quantity 

O2,p(t-1). Two events may occur: 

a. The factory inventory level is greater than the retailer order at time t: 

(I1,p(t-1)+OUT1,p(t) ≥ O2,p(t-1)). Therefore, it is capable to satisfy the 

retailer requests without generating any backorder. 

b. The factory has a lower inventory level and it is not able to satisfy the 

retailer order: (I1,p(t-1)+OUT1,p(t) < O2,p(t-1)). Then, it delivers the 

whole stock quantity. 

Whether the available inventory level assumes a negative value, that is a 

backlog, no finished products can be delivered to the retailer and the variable 

C1,p(t) will be equal to 0. 

 

 C1,p(t)=max{min[I1,p(t-1)+OUT1,p(t);O2,p(t-1)];0} (8.2) 

 

3. Inventory of final products I1,p(t). The inventory level at time t increases 

by the output quantity OUT1,p(t) and decreases by the order O2,p(t-1) coming 

from the retailer, as reported in Eq. 8.3. According to Sajadi et al. (2011), 
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stock-outs cannot be higher than a limit denoted as threshold of lost sales 

(k∙μ
dp

), so that orders from retailer cannot be accepted any more. This 

assumption can be further justified if cost of backorders is higher than the 

cost of lost sales.  

 

 I1,p(t)=max {I1,p(t-1)+OUT1,p(t)-O2,p(t-1);-k∙μ
dp

} (8.3) 

 

4. Forecast of future inventory levels  Î1,p(t). Differently from the canonical 

application of PCPs, the product changeover is enabled by the predicted 

inventory level, which in turn depends on the provided production lead time 

F. In particular, the difference between the nominal capacity χ
p
 and the 

expected demand of product p, i.e., d̂1,p(t), has to be added to the current stock 

level.  

 

 Î1,p(t)=max {I1,p(t)+F∙(χ
p
 - d̂1,p(t));-k∙μ

dp
} (8.4) 

 

The forecast demand coming from the retailer can be expressed by the 

following relation: 

 

 d̂1,p(t)= αfact ∙O2,p(t-1)+(1-αfact)∙ d̂1,p(t-1) (8.5) 

 

where the forecasting smoothing factor αfact is a design parameter ranging in 

[0,1] (Cannella et al., 2018).  

5. Input quantity  INP1,p(t). Generally, the quantity of product feeding the 

production system (INP1,p) fits the nominal production capacity (p). In turn, 

under these circumstances, the output rate OUT1,p, i.e., the throughput of 

product p, is equal to the nominal capacity if no adverse event happens. Two 

categories of events, namely changeovers and failures, may bias the 

productivity of the factory. Therefore, INP1,p(t) is equal to zero when a 

product changeover occurs or, alternatively, when a different product p’ is 

being processed. The failure repair time tR(t) reduces the input quantity 

accordingly.  
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 INP1,p(t) = {
 χ

p
 ∙ (1 - CO1,p'p(t)) ∙ (1 -tR(t)) if the system is producing p

0 otherwise
 (8.6) 

where, 

 CO1,p'p(t) = {
δ if a decision on changeover is made

max {CO1,p'p(t-1)-1; 0} otherwise
 (8.7) 

  tR(t)= {
U ∈ (0 ,1) if rand ≤ λ and no changeover event

0 otherwise
 (8.8) 

 

6. Work in process quantity W1,p(t). The work in process W1,p(t) consists of 

the in-process inventory at time t, as follows: 

 W1,p(t)=W1,p(t-1)+INP1,p(t)-OUT1,p(t) (8.9) 

8.3.3.2 Retailer related dynamics 

At each time period, the retailer performs the following sequence of actions, similarly 

being done by Cannella and Ciancimino (2010): 

1. Number of delivered units C2,p(t). It is the minimum between the demand 

required by the customer dp(t) and the available inventory 

I2,p(t-1)+C1,p(t-LT). Alternatively, in case of any backlog, it is equal to zero. 

 

 C2,p(t)=max{min[I2,p(t-1)+C1,p(t-LT); dp(t)]; 0} (8.10) 

 

2. WIP level  W2,p(t). It models the work in progress quantity W2,p(t)at time t. 

 

 W2,p(t)=W2,p(t-1)+C1,p(t)-C1,p(t-LT) (8.11) 

 

3. Inventory of final products I2,p(t). It is similar to the factory related rule 

(see Eq. 8.3), the only difference being that the retailer inventory at the 

previous time is increased by the units delivered by factory to retailer 

C1,p(t-LT) after the lead-time LT is elapsed.  

 

 I2,p(t)= max {I2,p(t‐1)+C1,p(t‐LT)‐dp(t); ‐k∙μdp
} (8.12) 
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4. Forecasting of the future demand d̂2,p(t). As in Eq. 8.5, the forecast 

demand can be expressed by: 

 

 d̂2,p(t)= αret∙ dp(t)+(1-αret)∙ d̂2,p(t-1) (8.13) 

 

5. Target inventory TI2,p(t) and Target work in progress TW2,p(t). 

 

 TI2,p(t)= ε ∙ d̂2,p(t) (8.14) 

 TW2,p(t)=LT ∙ d̂2,p(t) (8.15) 

 

The safety stock factor 𝜀 is a parameter to be a-priori defined by the analyst 

(Cannella et al., 2018). 

6. Replenishment order O2,p(t). It is the sum of three components: forecast 

demand d̂2,p(t); work in progress gap β∙ (TW2,p(t)-W2,p(t)) and inventory gap 

β∙(TI2,p(t)-I2,p(t) ), where the proportional controller parameter  ranges in 

[0,1]. If β=1 is equal to one the classical Order-Up-To policy holds, otherwise, 

the smoothing replenishment rule is enabled (Disney and Lambrecht, 2008). 

Furthermore, negative orders are not allowed (Chatfield and Pritchard, 

2013).  

 

 O2,p(t)=max {d̂2,p(t)+β∙ (TW2,p(t)-W2,p(t)+TI2,p(t)-I2,p(t)) ; 0} (8.16) 

8.4 Description of the production control policies 

A PCP is needed by the factory to address the inventory and capacity shortages due 

to changeover times and failure events. In fact, at each time t, the PCP makes 

decision on both the product type that has to feed the production line and 

consequently the product changeover. In this study, five PCPs are considered, 

namely the Hedging Corridor Policy (HCP) (Elhafsi and Bai, 1996), the Modified 

Hedging Corridor Policy (MHCP) (Gharbi et al., 2006), the Improved Modified 

Hedging Corridor Policy (IMHCP) (Assid et al., 2014), the Demand-Driven Material 

Requirement Planning (DDMRP) (Ptak and Smith, 2011), the Adaptive Hedging 

Corridor Policy (AHCP) (proposed in this work for the first time). Each PCP is 



157 

 

adapted in the SC context in order to respect the features and the assumptions of 

the EXPO SC model. In particular, the decision-making of each PCP is carried out 

using the forecasted inventory level Î1,p(t) since the manufacturing system is 

characterized by the production flow time F and the production work-in-progress in 

the production line. The PCPs are described in the following sections. 

8.4.1 Hedging Corridor Policy 

The Hedging Corridor Policy (HCP) consists of setting a target inventory level to be 

reached by the forecasted inventory level of a product type so as to switch to the 

production of the other product type. The target inventory level is defined as 

maximum inventory threshold (Zp) and depends on a control parameter, named the 

inventory threshold factor (z), and the mean value of the customer demand (μ
dp

): 

 Zp = z ∙ μ
dp

 (8.17) 

Figure 8.5 shows the variation of the current and forecasted inventory levels when 

HCP is used as PCP by the factory. The continuous line is the current inventory level 

I1,p(t), while forecasted inventory level Î1,p(t) is depicted with the dashed line. The 

blue bar indicates the changeover time to switch from product type A to product type 

B, while the yellow bar is for the changeover time to switch from B to A. As described 

in Eq. 8.7, when a decision on product changeover is made, the residual changeover 

time CO1,p'p(t)  is set equal to the changeover time δ. When the decision on product 

changeover is conducted by the HCP, the Eq. 8.7 can be expressed as follows: 

 CO1,p'p(t) = δ     if INP1,p' (t-1) > 0 and Î1,p' (t) ≥ Zp' (8.7.a) 

In fact, the decision to switch from product type p’ to product type p is made by 

comparing the forecasted inventory Î1,p' (t) of the product p’ being manufactured 

(verified by 𝐼𝑁𝑃1,p' (t-1) > 0) and the maximum inventory threshold Zp'. When the 

forecasted inventory Î1,p'(t) of the product p’ being manufactured exceeds the 

corresponding maximum inventory threshold Zp' (see mark 1 in the Figure 8.5), a 

decision on product changeover is made and, thus, CO1,p'p(t) assumes a value equal 

to δ (in this example, δ=1). Consequently, the output quantity OUT1,p' (t) turns to 

zero causing a decrease of both the current and the forecasted inventory level. On 
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the other hand, the production line is processing the other product type p (i.e., 

INP1,p(t)>0) and the related inventories increase after F time units (in this example, 

F=1). 

 

Figure 8.5 Variation of current and forecasted inventories of the factory by using HCP 

8.4.2 Modified Hedging Corridor Policy 

The Modified Hedging Corridor Policy (MHCP) is characterized by two thresholds: 

the maximum inventory threshold Zp and the minimum inventory threshold ap 

(where ap < Zp). The Zp is calculated as in Eq. 8.17. The minimum inventory 

threshold ap depends on a parameter φ in [0,1[. ap is calculated as follows: 

 ap = φ ∙ Zp (8.18) 

The value of φ used for MHCP is equal to 0.77 and coincides with the optimal value 

found in the work of Gharbi et al. (2006). Figure 8.6 shows the variation of the 

current and the forecasted inventory levels due to the usage of MHCP. The current 

inventory level I1,p(t) is represented by the continuous line, while the dashed one 

shows the variation of the forecasted inventory level Î1,p(t). The blue and yellow bars 

indicate the changeover time needed to switch from one product type to another. The 

decision on product changeover is made in accordance with two alternative 

conditions and, thus, in the case of MHCP, Eq. 8.7 can be described as follows:  
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 CO1,p'p(t) = δ     if INP1,p' (t-1) > 0 and {
 Î1,p' (t) ≥ ap' and I1,p(t) < 0

Î1,p' (t) ≥ Zp'

 (8.7.b) 

The first condition simultaneously considers the forecasted inventory of the product 

type p’ being manufactured (verified by INP1,p' (t-1) > 0) and the current inventory 

level of the alternative product type p. As indicated by mark 1 in Figure 8.6, a 

decision on product changeover is made when Î1,p' (t) exceeds the minimum 

inventory threshold ap' and, at the same time, the inventory level of the alternative 

product I1,p(t) becomes negative, involving a backlog scenario. The alternative 

condition, represented by the mark 2 in Figure 8.6, consists of comparing the 

forecasted inventory level of product type p’ being manufactured Î1,p' (t) with the 

maximum inventory threshold Zp'. In this respect, the changeover event occurs when 

Î1,p' (t) exceeds the maximum inventory threshold Zp'. During the changeover, the 

inventories of all the product types decrease since there is a production stoppage due 

to setup operations for a period equal to δ (in this example, δ=1). When the 

changeover procedure is finished, the inventory of the product being manufactured 

increases after F time units (in this example, F=1).  

 

Figure 8.6 Variation of current and forecasted inventories of the factory by using MHCP 

8.4.3 Improved Modified Hedging Corridor Policy 

The Improved Modified Hedging Corridor Policy (IMHCP) is described by three 

thresholds. The first threshold is the maximum inventory threshold Zp, which is 
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computed as in Eq. 8.17. The second is the minimum inventory threshold ap 

calculated as in Eq. 8.18. The value of φ used for IMHCP coincides with the optimal 

valued defined by the work of Assid et al. (2014) (i.e., φ = 0.63). Finally, a new 

threshold is named safety threshold bp, and is calculated by using δ and μ
dp

as 

follows: 

 bp = δ ∙ μ
dp

 (8.19) 

Figure 4 depicts the variation of the current and forecasted inventory levels by using 

IMHCP. The current inventory level I1,p(t) is depicted by the continuous line and the 

dashed line represents the variation of the forecasted inventory level Î1,p(t). The blue 

and yellow bars are the changeover time needed to switch from one product type to 

another, as in Figure 8.5 and Figure 8.6. The decision about product changeover is 

based on two alternative conditions: 

 CO1,p'p(t) = δ     if INP1,p' (t-1) > 0 and {
 Î1,p' (t) ≥ ap' and I1,p(t) < bp

 Î1,p' (t) ≥ Zp'

(2.c) 

The first condition enables conducting a changeover if the forecasted inventory level 

 Î1,p' (t) being manufactured (verified by Inp
1,p'

 (t-1) > 0) exceeds the minimum 

inventory threshold ap' and, simultaneously, the current inventory of finished 

product of the other product type I1,p(t) is less than the safety threshold bp (see mark 

1 in Figure 8.7). On the other hand, a decision on product changeover is made if the 

forecasted inventory level  Î1,p' (t) of the product being manufactured is equal to or 

larger than the maximum inventory threshold Zp' (see mark 2 in Figure 8.7). When 

the changeover procedure is triggered, the inventories decrease for a period equal to 

δ (in this example, δ=1) and, therefore, the inventories of the product being 

manufactured increase after F time units (in this example, F=1).  
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Figure 8.7 Variation of current and forecasted inventories of the factory by using IMHCP 

8.4.4 Demand Driven Material Requirements Planning 

DDMRP usually consists of three main steps: i) positioning the buffers; ii) defining 

the buffer profiles and levels; iii) dynamically adjusting the buffer profiles. However, 

in the problem at hand, the first step is not considered since the factory is only 

composed by a production line and an inventory of finished products. As for the 

second step, the DDMRP buffer, here denoted as inventory, is characterized by three 

profiles or zones, i.e., green, yellow and red zones. Specifically, the green zone 

represents the ideal factory inventory level, the yellow zone works as an alert 

advertising the need of rebuild the inventory level and the red zone indicates a 

scenario in which the inventory level is too high or it risks to collapse in a backlog 

situation (Ptak and Smith, 2011, 2016). Each zone in turn is limited by different 

thresholds, denoted as top of red (TORp), top of yellow (TOYp) and top of green 

(TOGp). These thresholds are defined according to the type of item, the lead time and 

the variability (Velasco Acosta et al., 2020). In this context, the lead time was 

configured as flow time. Finally, the thresholds are dynamically adjusted by using 

the forecasted demand computed through the exponential smoothing method. Then, 
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the thresholds are calculated as follows (see for example Ptak and Smith, 2016; Lee 

and Rim, 2019; Velasco Acosta et al., 2020): 

 TOR𝑝(t)  = [(d̂1,p(t) ∙ F) ∙ Fl] ∙ (1 + Fv)   (8.20) 

 TOYp(t) = TORp(t) + (d̂1,p(t) ∙ F) (8.21) 

 TOGp(t) = TOYp(t) + [(d̂1,p(t) ∙ F) ∙ Fl]  (8.22) 

where Fl is the flow time factor and Fv is the variability factor. The values of these 

factors were set to 1.00 after consulting the work of Ptak and Smith (2016) and on 

the basis of trial-and-error preliminary tests. Figure 8.8 shows the variation of both 

current and forecasted inventory levels by using the DDMRP strategy. As in the 

previous figures, the continuous line represents I1,p(t), the dashed line is for Î1,p(t) 

and blue and yellow bars are used to represent the changeover time. For the sake of 

clarity, Figure 8.8 reports only the thresholds related to product A. The decision 

concerning the product changeover is based on two alternative conditions: 

CO1,p'p(t) = δ     if INP1,p' (t-1) > 0 and {
 Î1,p' (t) ≥ TOYp'(t)  and I1,p(t) < TOYp(t) 

 Î1,p' (t) ≥ TOGp'(t) 
(8.2.d) 

Hence, the product changeover may occur when the forecasted inventory level  Î1,p' 

(t) being currently manufactured (verified by INP1,p' (t-1) > 0) exceeds TOYp'(t)  and, 

simultaneously, the current inventory level of the other product type I1,p(t) is lower 

than TOYp(t) (see mark 1 in Figure 8.8). Alternatively, a decision can be made when 

the forecasted inventory level  Î1,p' (t) of the product being manufactured risks to be 

too high since it exceeds TOGp'(t) (see mark 2 in Figure 8.8).  
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Figure 8.8 Variation of current and forecasted inventory levels of the factory by using DDMRP 

8.4.5 Adaptive Hedging Corridor Policy 

AHCP is a new version of HCP proposed in this work to deal with the uncertainty of 

the variable demand coming from the distribution chain. Different from HCP, Zp(t) 

is calculated at each time t and depends on the inventory threshold factor (z), which 

can be adjusted by managers, and the forecasted demand d̂1,p(t), which is calculated 

in each period by using the exponential smoothing method, as in Eq. 8.5. Therefore, 

the inventory threshold Zp,t is defined as: 

 Zp(t) = z ∙ d̂1,p(t) (8.23) 

Figure 8.9 shows the variation of the forecasted inventory level  Î1,p' (t) when AHCP 

is applied. When the decision on product changeover is conducted by the HCP, the 

Eq. 8.7 can be expressed as follows: 

 CO1,p'p(t) = δ     if INP1,p' (t-1) > 0 and Î1,p' (t) ≥Zp' (t) (8.7.e) 

It is noteworthy that the threshold is not linear but assumes a variable trend. As in 

HCP, when a decision on the product changeover is taken, the forecasted inventory 

level of product p’ decreases and, on the other hand, the forecasted inventory level of 

the other product type p increases. 
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Figure 8.9 Variation of current and forecasted inventory levels of the factory by using AHCP 

8.5 Experiments and analysis of results 

This section presents the experimental resolution approach adopted to address the 

two-product two-echelon SC dynamics problem with production capacity constraints. 

Three different specific problems were faced: 

1. The first step was to evaluate the performance of the proposed two-product 

SC with realistic capacity restrictions, in which the well-established HCP was 

selected as production control policy; 

2. The second step was to compare the four production control policies provided 

by the literature in order to identify the best policy based on the SC strategy 

(customer-oriented or focused on the minimization of operational cost); 

3. The last step was to evaluate the effectiveness of the new adaptive production 

control policy proposed for the first time in this work. The adaptive HCP was 

compared with the original HCP in terms of fill rate. 

8.5.1 Experimental campaign with the new SC model with realistic capacity 

constraints 

A full-factorial Design of Experiments (DOE) was arranged to evaluate the 

performance of the proposed two-product SC with realistic capacity restrictions. 

Notably, seven distinct factors, five of them varied at three levels and the rest at two 
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levels were adopted as independent variables. Hence, the influence of those factors 

on three dependent variables, namely, Fill Rate (FR), standard deviation of 

inventory of both retailer (∑Iret) and factory (∑Ifact), was investigated. The Fill Rate 

response variable refers to the customer service level, i.e., the percentage of orders 

delivered on time (Ponte et al., 2017). It is calculated as the ratio between the mean 

number of units of product delivered by the retailer C2,p(t) and the customer mean 

demand dp(t), as follows: 

 FRp= (
1

T
∑

C2,p(t)

dp(t)

T
t=1 ) % (8.24) 

The standard deviation of inventories, denoted as ∑Iret and ∑Ifact, was used for 

investigating the inventory level variability of factory and retailer over the time 

(Zanoni et al., 2006). It is able to measure the inventory holding cost at each stage of 

the SC, also capturing the detrimental consequences of the bullwhip effect 

(Dominguez et al., 2019; Hosoda and Disney, 2018). 

Table 8.4 reports the list of parameters and influencing factors considered in the 

DOE. Notably, the threshold factor of lost Kp sales was varied at 2 levels (1 and 2, 

respectively) since cost of backlogs were considered remarkably higher than cost of 

lost sales. Moreover, it is assumed that the values of αret and αfact are equal and, 

then, they can be generally expressed as α.  To make the analysis robust enough, the 

full factorial design was replaced five times for each experiment; thus, a total of 

35∙24= 3,888  scenarios were investigated, and 5∙3,888 = 19,440 runs were executed. 

The time length (T) of each simulation run consists of 2.000 periods and a warm-up 

period of 200 time units was excluded from the response variables computation. To 

assure the repeatability of the experiments, a set of variables has to be initialized as 

follows: 

• p at time t = 1 is randomly chosen between 1 or 2; 

• Ii,p(1) = ε ∙ μ
dp

; 

• Îi,p(1) = ε ∙ μ
dp

; 

• d̂i,p(1) = μ
dp

; 

• INP1,p(1) = χ
p
; 

• W1,p(1) = χ
p
; 

All the other variables were set to zero. 
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Parameters Values   

Lead time transportation (LT) 2   

Flow time (F) 2   

Mean demand product A (μ
dA

) 100   

Mean demand product B (μ
dB

) 50   

Machine repair time (tR(t)) 𝑈 ∈ (0,1)    

FACTORS Level 1 Level 2 Level 3 

Safety stock factor (ε)  1.00 1.50 2.00 

Proportional controller (β) 0.20 0.40 0.60 

Demand smoothing forecast factor (α) 0.30 - 0.60 

Nominal capacity / Mean demand (χ
p
/μ

dp
) 3.00 3.25 3.50 

St. Dev. Demand / Mean demand (σdp
/μ

dp
) 0.10 - 0.30 

Inventory threshold factor (z) 9.00 11.00 13.00 

Threshold factor of lost sales factor (k) 1.00 - 2.00 

Changeover time (δ) 0.50 1.00 2.00 

Failure rate (λ) 0.03 - 0.10 

Table 8.4 Parameters and factors involved concerning with the DOE 

8.5.1.1 Analysis of numerical results 

A series of analyses of variance (ANOVA) at 95% level of confidence were performed 

to infer about the statistical influence of several factors over the three response 

variables. Minitab®17 commercial package was engaged as statistical tool and 

interactions until the second order were assessed. Although the work deals with a 

two-products SC problem, the numerical analysis refers just to one product (product 

A), since no significant differences were detected for the other one 

As for the fill rate (FR) performance indicator, Figure 8.10 refers to the output 

from the ANOVA, while Figure 8.11 depicts the main effect plots. For the sake of 

brevity, a stepwise ANOVA table ignoring the statistically irrelevant first- and 

second-order factors is reported. All independent variables statistically bias the fill 

rate indicator, with exception of the demand smoothing forecast factor α. 

Interestingly, both the safety stock factor ε, that expands the target inventory 

TI2,p(t) (see Eq. 8.14), and even more the proportional controller β negatively 
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influences the fill rate; in fact, the customer satisfaction decreases as much as ε 

decreases and/or the replenishment policy of the retailer tends to the Order-Up-To 

strategy. Such an unpredictable result can be justified as follows. Whenever a higher 

proportional controller β is employed, the order to the factory not only consists of the 

expected customer demand, but also includes two contributions depending on the 

expected WIP level and the inventory level, respectively (see Eq. 8.16). This last 

implicitly depends on the safety stock factor that, in this case, works as an 

amplification factor of β, as emerges in the following. 
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Figure 8.10 ANOVA analysis for the fill rate 

Analysis of Variance 

Source                                 DF   Adj SS  Adj MS  F-Value  P-Value 

Model                                 104  1418160   13636   239.86    0.000 

  Blocks                                4       36       9     0.16    0.960 

  Linear                               14   535422   38244   672.73    0.000 

    ε                                   2     6513    3257    57.29    0.000 

    β                                   2   125236   62618  1101.47    0.000 

    α                                   1       14      14     0.25    0.615 

    χ_p/μ_(d_p )                        2   182150   91075  1602.04    0.000 

    σ_(d_p )/μ_(d_p )                   1     4941    4941    86.92    0.000 

    z                                   2    33786   16893   297.15    0.000 

    k                                   1   111947  111947  1969.18    0.000 

    δ                                   2    63669   31835   559.98    0.000 

    λ                                   1     7165    7165   126.03    0.000 

  2-Way Interactions                   86   882702   10264   180.55    0.000 

    ε*β                                 4    35892    8973   157.84    0.000 

    ε*α                                 2      360     180     3.17    0.042 

    ε*χ_p/μ_(d_p )                      4    34708    8677   152.63    0.000 

    ε*σ_(d_p )/μ_(d_p )                 2    21016   10508   184.84    0.000 

    ε*z                                 4      178      44     0.78    0.536 

    ε*k                                 2    20072   10036   176.54    0.000 

    ε*δ                                 4      344      86     1.51    0.195 

    ε*λ                                 2       91      46     0.80    0.448 

    β*α                                 2      209     105     1.84    0.159 

    β*χ_p/μ_(d_p )                      4   197493   49373   868.49    0.000 

    β*σ_(d_p )/μ_(d_p )                 2    34275   17138   301.46    0.000 

    β*z                                 4     3139     785    13.80    0.000 

    β*k                                 2   120157   60079  1056.80    0.000 

    β*δ                                 4     9188    2297    40.41    0.000 

    β*λ                                 2     2926    1463    25.74    0.000 

    α*χ_p/μ_(d_p )                      2      301     150     2.64    0.071 

    α*σ_(d_p )/μ_(d_p )                 1       59      59     1.03    0.310 

    α*z                                 2      170      85     1.49    0.225 

    α*k                                 1       56      56     0.98    0.322 

    α*δ                                 2      150      75     1.32    0.268 

    α*λ                                 1        7       7     0.12    0.735 

    χ_p/μ_(d_p )*σ_(d_p )/μ_(d_p )      2    39931   19965   351.20    0.000 

    χ_p/μ_(d_p )*z                      4    19579    4895    86.10    0.000 

    χ_p/μ_(d_p )*k                      2   162132   81066  1425.98    0.000 

    χ_p/μ_(d_p )*δ                      4    45785   11446   201.34    0.000 

    χ_p/μ_(d_p )*λ                      2     4553    2277    40.05    0.000 

    σ_(d_p )/μ_(d_p )*z                 2      102      51     0.90    0.406 

    σ_(d_p )/μ_(d_p )*k                 1    19074   19074   335.52    0.000 

    σ_(d_p )/μ_(d_p )*δ                 2     2416    1208    21.25    0.000 

    σ_(d_p )/μ_(d_p )*λ                 1        1       1     0.02    0.892 

    z*k                                 2    18363    9181   161.50    0.000 

    z*δ                                 4    41290   10322   181.58    0.000 

    z*λ                                 2     1664     832    14.63    0.000 

    k*δ                                 2    37804   18902   332.49    0.000 

    k*λ                                 1     4411    4411    77.58    0.000 

    δ*λ                                 2     4806    2403    42.27    0.000 

Error                               19335  1099183      57 

Total                               19439  2517343 

Model Summary 

      S    R-sq  R-sq(adj)  R-sq(pred) 

7.53985  56.34%     56.10%      55.86% 
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Figure 8.11 Main effect plots for the fill rate 

A higher value of β implies a greater demand from retailer to factory and, especially 

when the production capacity χ
p
/μ

dp
 is set to a lower value, the capacitated 

production system takes more time to achieve the changeover threshold Zp. Such 

situation makes the production runs longer (i.e., fewer changeovers) and, as a 

consequence, severe backlogs for the other (waiting) product may occur. To further 

infer about the aforementioned affirmation, a specific metric denoted as working rate 

(Wrate) was properly designed, as follows: 

 Wrate=
NCO*δ

T-Tw
  (8.25) 

where NCO is the number of changeover events occurred during the entire simulation 

time T, which has to be depurated of the warm-up time Tw. In words, it consists of 

the ratio between the total changeover time and the net simulation time. Figure 

8.12-a) shows the box plot related to the mean Wrate as the proportional controller 

value changes. As the reader can notice, Wrate decreases as β grows, thus confirming 

that a greater β would lead to fewer setups, i.e., longer production runs, to achieve 

the changeover threshold. Under this perspective, a higher safety stock factor would 

increase the target inventory and the replenishment order as well, thus reinforcing 
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the risk of incurring in a severe backlog. In other words, chasing the changeover 

threshold for a product implies to increase the risk of stock-out for the other one, 

thereby reducing the service level to customers. 

 

Figure 8.12 Box plot of mean Wrate as β changes a) and as σdp
/μ

dp
 changes b) 

No noteworthy effect merges for α, as depicted in the related main-plot diagram, 

while the ratio between input rate and mean customer demand 𝜒𝑝/𝜇𝑑𝑝
 significantly 

affects the FR response variable, as confirmed by the corresponding F-value in 

Figure 8.10. An appropriate production capacity allows the factory to better satisfy 

the retailer orders, also reducing the production runs and increasing the number of 

product changeovers. It is worth noting as the fill rate is less insensitive to higher 

values of 𝜒𝑝/𝜇𝑑𝑝
 (see Figure 8.11). Another unforeseen finding regards the variability 

of the customer demand ratio 𝜎𝑝/𝜇𝑑𝑝
that positively affects the fill rate objective. In 

fact, the fourth main plot in Figure 8.11 reveals that the higher is the standard 

deviation of the customer demand the better is the customer service level. To infer 

on such unexpected outcome, the working rate indicator was observed again. Figure 

8.12-b) points out that Wrate increases as much as the variability of the customer 

demand grows too. Briefly, when the customer demand has a lower variability, the 

HCP provides longer production runs and as smaller number of changeovers are 

executed. On the other hand, also supported by the provided limit on the backlogs, a 

higher demand variability favors the achievement of the changeover threshold, 

which reduces the production runs and improves the responsiveness to customers. 

The inventory threshold factor z, which drives the production control policy, 

positively biases the fill rate. In fact, the higher z the higher will be the factory 

inventory level, which allows to promptly satisfy the customer demand. 
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Looking at the F-values of Figure 8.10 the threshold factor of lost sales is the most 

influencing factor for the fill rate indicator. As expected, a higher value of k 

remarkably reduces the service levels since it controls the maximum stock-out 

quantity. In fact, under such a limited capacity condition, a higher k implies a higher 

allowed stock-out and a poorer service level as well. 

The last two factors, i.e., changeover time δ and failure rate λ remarkably 

influence the customer service level, as expected. Notably, the changeover time has 

a really negative impact on the fill rate, even though there is not a significant 

difference between δ=0.5 and δ=1.0. As for the failure rate, a greater value means a 

higher probability to reduce the throughput, which leads to a lower service level. 

 

Figure 8.13 Interaction plot for the fill rate 

As far as the second-order interactions are concerned, Figure 8.13 reports the most 

representative plots, most of them selected on the basis of the largest F-values from 

the ANOVA table (Figure 8.10). Lower values of β (i.e., 0.2 or 0.4) combined with any 

value of ε do not harm the fill rate significantly (see Figure 8.13-a). Conversely, 

whether β assumes the highest value (i.e., 0.6) the fill rate reduces as much as the 

a) b) c) 

d) e) f) 

g) h) i) 
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safety stock factor is set to a lower value. Similarly, the interaction plot between β 

and the nominal capacity/mean demand ratio 𝜒𝑝/𝜇𝑑𝑝
 (see Figure 8.13-b) shows that 

the fill rate drastically falls down if the proportional controller takes a high value 

and the nominal capacity is set at the lowest level. Another interesting insight 

concerns the interaction between the proportional controller β and the customer 

demand variability 𝜎𝑑𝑝
/𝜇𝑑𝑝

 (see Figure 8.13-c). In fact, regardless of the demand 

variability, a minor impact on the fill-rate appears when β assumes lower values, 

while the same response variable undergoes a strong degradation as the demand 

variability reduces and β takes the highest value. The negative effect of a lower 

demand variability can be observed in combination with the lowest nominal 

capacity/mean demand ratio 𝜒𝑝/𝜇𝑑𝑝
 (see Figure 8.13-d). Figure 8.13-e) depicts the 

joint role of changeover time δ and production capacity ratio 𝜒𝑝/𝜇𝑑𝑝
 on the fill-rate. 

As expected, the service level decreases as much as the nominal capacity reduces but 

a higher changeover time further encourages the degradation of the fill-rate. The 

strong effect of the lost sales threshold factor k on the FR can be observed in 

connection with the nominal capacity ratio. If k is set to the lowest value no 

significant impact occurs on the FR as the nominal capacity varies. Instead, a higher 

value of k has a detrimental influence on the fill rate as much as the manufacturing 

capacity reduces (see Figure 8.13-f). The harmful effect on the service level achieved 

by merging a lower nominal capacity with a higher proportional controller is visible 

in Figure 8.13-g). The implications of the customer demand variability on the fill rate 

depends on the value assumed by the threshold factor of lost sales (see Figure 8.13-

h). Finally, another interesting finding comes out by considering the interaction 

between the changeover threshold and its duration. In fact, the fill rate is almost 

insensitive to z except when δ assumes a higher value (see Figure 8.13-i).  

Figure 8.14 refers to the ANOVA table for the retailer inventory’s standard 

deviation, while Figure 8.15 depicts the related main effect plots. Differently from 

the fill rate analysis, the safety stock factor positively biases the standard deviation 

of the retailer inventory ∑Iret level. In fact, a lower safety stock factor, which also 

reduces the weight of the target inventory on the replenishment policy, determines 

a lower variability of the retailer stock level. Lower values of the proportional 

controller β generate a favorable effect on the fill rate and on the inventory standard 

deviation as well. So, a replenishment policy considerably far from the order-up-to 
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strategy would imply a lower variability of the stock level. When the production 

capacity decreases, the factory might not be able to properly support the incoming 

replenishment orders. As a consequence, the retailer inventory is subject to a higher 

variability, which in turn affects the fill rate, as mentioned in the previous analysis. 

As expected, the ratio 𝜎𝑑𝑝
/𝜇𝑑𝑝

 strongly impacts on ∑Iret; thus, the higher is the ratio 

between standard deviation and mean of customer demand 𝜎𝑑𝑝
/𝜇𝑑𝑝

 the greater the 

variability of the retailer inventory. The dependent variable ∑Iret seems to be 

remarkably sensitive to the changeover threshold 𝑍𝑝/𝜇𝑑; in fact, the retailer 

inventory variability reduces as much as such threshold rises. 

  



174 

 

 

Figure 8.14 ANOVA analysis of ∑Iret 

Analysis of Variance 

Source                                 DF    Adj SS   Adj MS   F-Value  P-Value 

Model                                 104  15773919   151672    800.28    0.000 

  Blocks                                4      8671     2168     11.44    0.000 

  Linear                               14  12304619   878901   4637.39    0.000 

    ε                                   2    288368   144184    760.77    0.000 

    β                                   2    982859   491429   2592.95    0.000 

    α                                   1     91398    91398    482.24    0.000 

    χ_p/μ_(d_p )                        2    789599   394800   2083.10    0.000 

    σ_(d_p )/μ_(d_p )                   1   8417425  8417425  44413.23    0.000 

    z                                   2    356334   178167    940.07    0.000 

    k                                   1    563619   563619   2973.85    0.000 

    δ                                   2    762493   381247   2011.59    0.000 

    λ                                   1     52523    52523    277.13    0.000 

  2-Way Interactions                   86   3460629    40240    212.32    0.000 

    ε*β                                 4     95252    23813    125.65    0.000 

    ε*α                                 2      1583      791      4.18    0.015 

    ε*χ_p/μ_(d_p )                      4     86827    21707    114.53    0.000 

    ε*σ_(d_p )/μ_(d_p )                 2     13113     6556     34.59    0.000 

    ε*z                                 4      4618     1154      6.09    0.000 

    ε*k                                 2     57309    28654    151.19    0.000 

    ε*δ                                 4     10867     2717     14.33    0.000 

    ε*λ                                 2       229      114      0.60    0.547 

    β*α                                 2     35412    17706     93.42    0.000 

    β*χ_p/μ_(d_p )                      4    525125   131281    692.69    0.000 

    β*σ_(d_p )/μ_(d_p )                 2     28508    14254     75.21    0.000 

    β*z                                 4      1656      414      2.18    0.068 

    β*k                                 2    394643   197322   1041.14    0.000 

    β*δ                                 4     15562     3891     20.53    0.000 

    β*λ                                 2      1301      651      3.43    0.032 

    α*χ_p/μ_(d_p )                      2       100       50      0.26    0.769 

    α*σ_(d_p )/μ_(d_p )                 1      9477     9477     50.00    0.000 

    α*z                                 2       339      169      0.89    0.409 

    α*k                                 1        32       32      0.17    0.681 

    α*δ                                 2       484      242      1.28    0.279 

    α*λ                                 1       131      131      0.69    0.407 

    χ_p/μ_(d_p )*σ_(d_p )/μ_(d_p )      2    125363    62682    330.73    0.000 

    χ_p/μ_(d_p )*z                      4     78137    19534    103.07    0.000 

    χ_p/μ_(d_p )*k                      2    580506   290253   1531.48    0.000 

    χ_p/μ_(d_p )*δ                      4    280505    70126    370.01    0.000 

    χ_p/μ_(d_p )*λ                      2      7024     3512     18.53    0.000 

    σ_(d_p )/μ_(d_p )*z                 2     12645     6322     33.36    0.000 

    σ_(d_p )/μ_(d_p )*k                 1     54459    54459    287.34    0.000 

    σ_(d_p )/μ_(d_p )*δ                 2      9046     4523     23.86    0.000 

    σ_(d_p )/μ_(d_p )*λ                 1       196      196      1.04    0.309 

    z*k                                 2     97150    48575    256.30    0.000 

    z*δ                                 4    553361   138340    729.93    0.000 

    z*λ                                 2     19463     9731     51.35    0.000 

    k*δ                                 2    276213   138107    728.70    0.000 

    k*λ                                 1     15292    15292     80.69    0.000 

    δ*λ                                 2     68702    34351    181.25    0.000 

Error                               19335   3664470      190 

Total                               19439  19438389 

Model Summary 

      S    R-sq  R-sq(adj)  R-sq(pred) 

13.7668  81.15%     81.05%      80.94% 
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Figure 8.15 Main effect plots of ∑Iret 

The whole set of independent variables affects the standard deviation of the retailer 

inventory ∑Iret. The variability of the customer demand exerts a strong influence, 

while this time the demand smoothing forecast factor weakly impacts on the 

performance measure at hand. Similarly, to the previous analysis on the fill rate, the 

first two levels of changeover time δ do not affect the standard deviation of the 

retailer inventory. On the other hand, a detrimental impact on the inventory 

variability emerges when δ is equal to its highest value. Finally, the probability of 

failure moderately impacts on the ∑Iret objective, as confirmed by the smallest F-

value in the ANOVA table. As expected, a higher failure rate implies a higher stock 

variability. 
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Figure 8.16 Interaction plot of ∑Iret 

Figure 8.16 retrieves the most interesting interaction plots concerning the highest 

F-values in Figure 8.14. The first plot regards the interaction between the nominal 

capacity/mean demand ratio 𝜒𝑝/𝜇𝑑𝑝
 and the changeover time δ (see Figure 8.16-a). 

The lower the production capacity the greater the standard deviation of the retailer 

inventory, though such phenomenon is amplified as the changeover time increases. 

It is worth noting how such factors working at the factory level significantly affect 

the variability of the retailer inventory. Figure 8.16-b) highlights that the negative 

influence of ε on ∑Iret increases as much as the proportional controller β grows. 

Similarly to what we described earlier for the FR performance measure, ∑Iret is 

almost insensitive to the changeover threshold if such task has a lower duration. The 

interval plot involving the changeover threshold 𝑍𝑝/𝜇𝑑𝑝
  and the changeover time δ 

are worthy to be investigated. Although both factors regard the production flow, their 

effect is remarkably reflected on the retailer level. Indeed, if the changeover time is 

set to a low or medium level, i.e., δ=0.5 or δ=1.0, ∑Iret is quite insensitive to the 

changeover threshold variability. Conversely, if δ takes the highest value (δ=2.0), the 

inventory variability drastically increases as much as 𝑍𝑝/𝜇𝑑𝑝
  reduces. (see Figure 

8.16-c). A similar effect on ∑Iret emerges from the interaction plots involving the 

nominal capacity with β and k, respectively (see Figure 8.16-d and Figure 8.16-e). 

Interestingly, β acts as an amplification factor of k for the objective function under 

consideration Figure 8.16-f). 

a) b) c) 

d) e) f) 
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Figure 8.17 shows the results from the analysis of variance on the factory 

inventory variability ∑Ifact. Again, the whole set of factors influences the factory 

inventory variability in a statistically significant manner. The main effect plots in 

Figure 8.18 are consistent with the ones observed in the retailer-related indicator 

∑Ifact. Therefore, most previous considerations about ∑Iret can be extended to the ∑Ifact 

indicator. The main differences concern the safety stock factor ε, the customer 

demand variability ratio 𝜎𝑑𝑝
/𝜇𝑑𝑝

 and the inventory threshold factor z, whose effects 

appear less significant than in the ∑Iret related analysis, as confirmed by the 

corresponding F-value in the ANOVA table (see Figure 8.17) and the main effect 

plots (see Figure 8.18). Interestingly, it is worth noting that the mean value of ∑Ifact 

(shown in dashed line in Figure 8.18) is roughly three times greater than the mean 

∑Iret (Figure 8.15); thereby, the inventory standard deviation can be considered as a 

way to assess the bullwhip effect. Since the changeover time δ takes the highest F-

values in the ANOVA table, it can be considered as the most influencing factor. In 

fact, whenever a changeover occurs, such stoppage generates a sudden reduction of 

the throughput and the factory stock level as well, which amplifies the variability of 

the factory inventory. The impact of the failure rate λ can be considered as 

comparable to the one observed for the ∑Iret performance indicator.  

In line with the previous analyses, only the main second-order interactions on the 

mean ∑Ifact will be investigated in the following. Considering the highest F-values of 

the 2-way interactions in Figure 8.17, Figure 8.19 depicts four interaction plots 

involving the following factors: proportional controller β, safety stock factor ε, 

nominal capacity/mean demand ratio 𝜒𝑝/𝜇𝑑𝑝
 and demand variability ratio 𝜎𝑝/𝜇𝑑𝑝

. 

The mean inventory standard deviation dramatically increases when the nominal 

production capacity is at the lowest level and the proportional controller at the 

highest one (see Figure 8.19-a). Large values of β yield a relevant increase in the 

standard deviation of factory inventory as the safety stock factor increases too 

(Figure 8.19-b). However, without loss of generality, it is possible to state that the 

combination of large values of β and small values of 𝜒𝑝 lead to critical conditions for 

the service level and variability inventories as well. Figure 8.19-c) highlights that 

the harmful effect of higher values of proportional controller on ∑Ifact is exacerbated 

by the threshold factor on lost sales. It is worthy to note that the safety stock factor 

has a different impact on ∑Ifact depending on the variability of the customer demand. 
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In particular, if 𝜎𝑝/𝜇𝑑𝑝
 assumes a lower value the effect of ε is quite uncertain, while 

∑Ifact almost linearly grows when 𝜎𝑝/𝜇𝑑𝑝
 and ε are set to the highest levels (Figure 

8.19-d). 

 

 

Figure 8.17 ANOVA analysis of ∑Ifact 

Analysis of Variance 

Source                                 DF    Adj SS    Adj MS   F-Value  P-Value 

Model                                 104  73294065    704751   1214.53    0.000 

  Blocks                                4     17557      4389      7.56    0.000 

  Linear                               14  68363628   4883116   8415.30    0.000 

    ε                                   2    188898     94449    162.77    0.000 

    β                                   2   2552243   1276121   2199.20    0.000 

    α                                   1    420055    420055    723.90    0.000 

    χ_p/μ_(d_p )                        2   3390870   1695435   2921.82    0.000 

    σ_(d_p )/μ_(d_p )                   1   3970695   3970695   6842.88    0.000 

    z                                   2     39061     19531     33.66    0.000 

    k                                   1    903619    903619   1557.25    0.000 

    δ                                   2  55793815  27896907  48076.05    0.000 

    λ                                   1   1104373   1104373   1903.22    0.000 

  2-Way Interactions                   86   4912879     57127     98.45    0.000 

    ε*β                                 4    121217     30304     52.22    0.000 

    ε*α                                 2      1197       599      1.03    0.356 

    ε*χ_p/μ_(d_p )                      4     88881     22220     38.29    0.000 

    ε*σ_(d_p )/μ_(d_p )                 2    100510     50255     86.61    0.000 

    ε*z                                 4      9083      2271      3.91    0.004 

    ε*k                                 2     54197     27098     46.70    0.000 

    ε*δ                                 4     23110      5777      9.96    0.000 

    ε*λ                                 2      3167      1584      2.73    0.065 

    β*α                                 2     26935     13467     23.21    0.000 

    β*χ_p/μ_(d_p )                      4   1007753    251938    434.18    0.000 

    β*σ_(d_p )/μ_(d_p )                 2    122693     61347    105.72    0.000 

    β*z                                 4     23230      5808     10.01    0.000 

    β*k                                 2    724902    362451    624.63    0.000 

    β*δ                                 4     30798      7700     13.27    0.000 

    β*λ                                 2       927       463      0.80    0.450 

    α*χ_p/μ_(d_p )                      2      4690      2345      4.04    0.018 

    α*σ_(d_p )/μ_(d_p )                 1    115198    115198    198.53    0.000 

    α*z                                 2      1337       669      1.15    0.316 

    α*k                                 1      1018      1018      1.75    0.185 

    α*δ                                 2      9270      4635      7.99    0.000 

    α*λ                                 1       126       126      0.22    0.641 

    χ_p/μ_(d_p )*σ_(d_p )/μ_(d_p )      2    104527     52263     90.07    0.000 

    χ_p/μ_(d_p )*z                      4     32967      8242     14.20    0.000 

    χ_p/μ_(d_p )*k                      2    911604    455802    785.50    0.000 

    χ_p/μ_(d_p )*δ                      4    949391    237348    409.03    0.000 

    χ_p/μ_(d_p )*λ                      2     13285      6642     11.45    0.000 

    σ_(d_p )/μ_(d_p )*z                 2      3481      1741      3.00    0.050 

    σ_(d_p )/μ_(d_p )*k                 1     22818     22818     39.32    0.000 

    σ_(d_p )/μ_(d_p )*δ                 2      2580      1290      2.22    0.108 

    σ_(d_p )/μ_(d_p )*λ                 1      2547      2547      4.39    0.036 

    z*k                                 2     27807     13903     23.96    0.000 

    z*δ                                 4     86112     21528     37.10    0.000 

    z*λ                                 2      2229      1114      1.92    0.147 

    k*δ                                 2    167813     83906    144.60    0.000 

    k*λ                                 1     12495     12495     21.53    0.000 

    δ*λ                                 2    102985     51492     88.74    0.000 

Error                               19335  11219448       580 

Total                               19439  84513513 

Model Summary 

      S    R-sq  R-sq(adj)  R-sq(pred) 

24.0887  86.72%     86.65%      86.58% 
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Figure 8.18 Main effect plots of ∑Ifact 

 

Figure 8.19 Interaction plots of ∑Ifact 

 

a) b) 

c) d) 
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8.5.1.2 Managerial and theoretical implications 

Most findings arising from the previous DOE are in line with the body of literature 

involved on both constrained and unconstrained SC dynamics. Failures can 

exacerbate the instability in the SC, and the high variability of the customer demand 

as well (Fan et al., 2010; Ivanov et al., 2015). In this fashion, this work reasserts that 

the assumption of a single product in the capacitated SC model works well and is 

able to capture the impact of both exogenous (e.g., parameters of the replenishment 

policy, capacity of the production line, changeover rule) and endogenous factors 

(variability of customer demand, failure rate) on the SC performance. On the other 

hand, the adopted replenishment rule, and specifically the proportional controller, 

reveal a peculiar effect on the performance of the proposed SC that, to the best of our 

knowledge, has not been detected so-far in single-product cases. 

According to the literature, properly tuning this the proportional controller is an 

effective bullwhip-limiter method, as it can smooth the members’ over-

reaction/under-reaction to the variability of demand and thus limit both the 

propagation of the amplification of orders in upstream direction and the variability 

of inventories (Disney and Lambrecht, 2008; Priore et al., 2019). However, it may 

have negative impact on the customer service level (Dominguez et al., 2019), as 

excessive smoothing of the order rate could generate several stock-out events 

(Cannella and Ciancimino, 2010). In this study, we note that, by reducing the 

smoothing effect produced by the proportional controller (i.e., shifting from β=0.1 to 

β=0.6), not only the variability of the inventory at the factory stage increases – 

confirming the literary findings – but also the customer service level remarkably 

deteriorates, in countertendency with the state-of-art in SC dynamics. This atypical 

phenomenon occurs because higher values of the proportional controllers induce 

longer production runs, thus reducing changeovers events and, as a consequence, 

increasing the risk of severe stock-outs for the other product. This result may have 

noteworthy implications for both practitioners and researchers. Specifically, from a 

theoretical viewpoint, we argue that modeling multi-product SCs may contribute to 

discover peculiar features of the inventory control policies that cannot emerge in 

single-product environments. Accordingly, this work would suggest that further 

efforts are needed to capture the dynamics of the advocated, novel and complex SCs 
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(i.e., closed-loop SCs, additive manufacturing-based SCs, industrial symbiosis 

networks, etc.). 

From a managerial perspective, this result would stimulate practitioners to pay 

special attention to the dynamics of the replenishment rule adopted downstream the 

SC. Depending on the typology of production system, decisions about the 

proportional controllers in the retailer may produce a detrimental effect for all 

members of the SC. To avoid this negative impact on the entire SC, a viable solution 

can be represented by the adoption of collaboration mechanisms such as the Vendor 

Managed Inventory VMI strategies (Yalcin et al., 2018), which allows to generate 

orders at the retailer stage on the basis of real-time operational data (e.g., customer 

demand, current inventories, availability of the production line). However, the 

practical implementation of collaboration in SC is often impractical, since it is 

deemed too costly or too risky (Geunes et al., 2016; Huang et al., 2016). Thus, an 

alternative strategy may consist in working with smaller product batches or 

according to a production leveling strategy, such as heijunka, – particularly when 

the nominal production capacity is quite limited – as this dangerous effect could be 

determined by a saturation of the production line generated by an overreaction to 

the demand variability at the retailer stage. In fact, heijunka (hi-JUNE-kuh) is a 

Japanese word that means leveling. It is a well-known paradigm of the lean 

manufacturing that helps organizations to fulfill unpredictable customer demand 

patterns and eliminate production waste by leveling both type and quantity of 

production output over a fixed period of time. 

8.5.2 Comparison between the production control policies 

In Section 8.4 HCP, MHCP, IMHCP and DDMRP were described and identified as 

PCPs that can be adopted by the factory to manage the production capacity 

constraint. This section addresses the experimental approach defined to investigate 

the impact of the selected PCPs on the two-product, two-echelon SC model under 

investigation. For this purpose, the main response variable considered is the Fill 

Rate (FR, see Eq. 8.24). The impact of each PCP on FR may depend on several factors 

that outlines the dynamics of the SC system. In fact, the SC is described by 

endogenous factors, i.e., control parameters whose value can be selected by the 

managers, and exogenous factors, which describe intrinsic features of the system. To 

make the comparison as exhaustive as possible, a two-stage experimental analysis 
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was performed. Depending on the values of the control parameters, each PCP can 

differently affect the FR indicator. Therefore, the first stage aims at selecting the 

most suitable values of the endogenous factors for each PCP. The second stage deals 

with the comparison between HCP, MCHP, IMHCP and DDMRP used with their 

own calibrated control parameters. This comparison is executed through an 

extended experimental campaign, involving several SC scenarios obtained by 

varying all the exogenous factors. In this last stage, the four PCPs were compared 

also by evaluating two further key performance indicators, i.e., the average value 

and the standard deviation of the factory inventory level, (respectively indicated as 

μIfact and ΣIfact). Each simulation should be long enough to ensure that the outcomes 

are not affected by the warm-up period. In this regard, as in the previous work, the 

time horizon T of each simulation is 2,000 periods and the warm-up period is equal 

to 200 time units. Moreover, in order to start the simulations successfully, a set of 

variables has to be initialised (see Section 8.5.1). The initial values of all other 

variables are set to zero. Finally, it should be noted that the statistical analysis 

discussed in the next subsection deals with the first product (A), since no significant 

difference was encountered between the results of the two products. 

8.5.2.1 Calibration of endogenous factors 

The SC model is characterized by four endogenous factors (employed as control 

parameters), i.e., the forecasting parameter used by the retailer αret, the forecasting 

parameter used by the factory αfact, the proportional controller β and the safety stock 

factor ε. In particular, αret and αfact are used in the smoothing method to forecast the 

demand coming from the downstream node, while β and ε are used to define the order 

quantity that the retailer places in accordance with the smoothing Order-Up-To 

policy. 

Each endogenous factor can assume different values within a certain range. 

Therefore, a set of experiments are required to identify the most suitable values of 

each endogenous factor that allows each PCP to enhance its effectiveness in a SC 

scenario. For this purpose, the Box-Behnken Design (BBD) was used to define a 

matrix of 29 experiments, as shown in Table 8.5. αret, αfact, and β are in the range of 

0.1 and 0.9, as they are used as “smoothing” techniques, while ε is in the range of 0.5 

and 2.5. For each experiment, 1,000 random combinations of exogenous factors, 
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properly drawn in the ranges indicated in the next section (see Table 8.5), were 

configured to consider their effect on the selection of the endogenous parameters. 

Therefore, Table 8.5 reports the mean value over the 1,000 combinations of the FR 

for each experiment. Since four PCPs have to be studied, the BBD matrix of 

experiments were used four times, one for each PCP. In order to distinguish the 

outcomes in relation to each PCP, the experiments are hereinafter denoted as 

follows: i) HCP model, ii) MHCP model, iii) IMHCP model, iv) DDMRP model. Design 

Expert 12® allowed carrying out the statistical study. 

Considering the experimental results coming from the simulation runs, the 

reduced cubic model was included in the statistical analysis. The ANOVA 

methodology, listed in Table 8.6, was used for each PCP to investigate the validity of 

the proposed SC model and to determine the influence of each endogenous factor on 

the FR. The statistical significance of the model is shown by the F-values (equal to 

117.63 for the HCP model, 119.39 for the MHCP model, 317.99 for the IMHCP model 

and 129.91 for the DDMRP model) and by the p-values (p < 0.0001 for each model). 

Focusing on the terms of the model, the endogenous factors are significant since their 

p-values are less than 0.05, except ε that is not statistically significant in the 

DDMRP model. Moreover, it can be noticed that αfact ∙ 𝛽 and β ∙ ε are the most 

interesting interactions to analyse. The values of the three R2 allow us to show that 

the model fit is effective. In fact, the values of R2 of 99.27% for the HCP model, 

99.28% for the MHCP model, 99.73% for the IMHCP and 99.34% for the DDMRP 

model imply that the predicted response and the experimental results are strongly 

correlated. This is also confirmed by the values of adjusted R2 and the predicted R2 

since their difference is less than 20% for each model. In this regard, RSM was 

employed to perform the statistical analysis, described in the next lines.  

The effects of each endogenous factor on the FR indicator are represented by the 

Main Effect Plots, which can be seen in Figure 8.20. Each column indicates the model 

under study, while each row represents the control parameters analysed. 

Specifically, the first row shows the effects of αret, the second row illustrates the 

influence of αfact, the third row reports the effects of β, and, finally, the last row 

illustrates the influence of ε. The figure reveals that higher values of αret allow 

achieving larger values of FR. Instead, when the value of αfact and ε are close to its 

lowest level, it increases the effectiveness of PCP in terms of FR. As for β, the highest 
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performance is guaranteed when it is set between 0.3 and 0.5 in the HCP and MHCP 

models, or between 0.5 and 0.7 in the case of the IMHCP and DDMRP models.  

To examine the interaction between the endogenous factors, the contours and 3D 

response surface plots of the significant interactions were presented in Figure 8.21-

a for the HCP model, Figure 8.21-b for the MHCP model, Figure 8.21-c for the 

IMHCP model and Figure 8.21-d for the DDMRP model. In these plots, the control 

parameters, which are not considered, were held constant at the mean value. These 

figures show that, if the interaction between the factors is significant, it is necessary 

to explore these curves to further identify the SC’s performance variation. Looking 

at the colour gradient, one can immediately deduce that the HCP is able to assure 

the best performance in comparison with the other PCPs. The curves related to the 

HCP and MHCP models are similar and, therefore, a single brief discussion can be 

conducted. Focusing on the first interaction, it can be deduced that the values of FR 

strictly depend on β. In fact, the best performances are obtained when β is in the 

range of 0.3 and 0.5. It is interesting to note that when αfact and β assume high values 

(e.g. 0.9), the FR decreases below 50%. A similar phenomenon is seen in the 

interaction between β and ε. However, high values of ε in combination with β, which 

is in the range of 0.2 and 0.5, allow the effectiveness of PCPs and, thus, the FR of 

the SC to be enhanced. As for HCP and MHCP, also IMHCP and DDMRP models 

report similar trends. In this case, the interaction strongly depends on the β values. 

In fact, the FR increases when β is in the range of 0.5 and 0.7.  

Once the effects of the endogenous factors and their interactions were studied, the 

final step of this analysis is to estimate the calibrated values of each control 

parameter. In this regard, the statistical tool generated a list of several potential 

values. A set of suitable values was selected considering the knowledge obtained 

through the RSM analysis as follows: αret=0.90, αfact=0.10, β=0.50 and ε=1.00 for the 

HCP model, αret=0.90, αfact=0.10, β=0.51 and ε=1.00 for the MHCP model, αret=0.90, 

αfact=0.13, β=0.28 and ε=1.16 for the IMHCP model,  αret=0.90, αfact=0.10, β=0.60 and 

ε=1.05 for the DDMRP model. A series of experiments were conducted with the 

random values and the calibrated values of the endogenous factors to validate the 

estimated set of optimal parameters.  
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No. 

experiment 

Endogenous factors FR (%) 

αret αfact β ε HCP MHCP IMHCP DDMRP 

1 0.5 0.5 0.1 0.5 43.00% 41.26% 30.41% 29.55% 

2 0.5 0.1 0.5 0.5 54.94% 52.61% 47.39% 50.52% 

3 0.1 0.5 0.5 0.5 54.30% 51.61% 47.15% 48.40% 

4 0.9 0.5 0.5 0.5 53.75% 51.19% 46.67% 47.74% 

5 0.5 0.9 0.5 0.5 53.04% 50.07% 45.51% 45.39% 

6 0.5 0.5 0.9 0.5 44.24% 42.00% 39.09% 40.14% 

7 0.5 0.1 0.1 1.5 50.18% 46.82% 34.28% 37.17% 

8 0.1 0.5 0.1 1.5 50.82% 47.60% 35.19% 38.54% 

9 0.9 0.5 0.1 1.5 50.53% 47.54% 35.46% 38.32% 

10 0.5 0.9 0.1 1.5 50.67% 47.50% 35.67% 38.39% 

11 0.1 0.1 0.5 1.5 52.96% 50.61% 46.08% 50.25% 

12 0.9 0.1 0.5 1.5 54.93% 52.42% 47.86% 51.99% 

13 0.5 0.5 0.5 1.5 52.66% 49.88% 46.14% 48.26% 

14 0.5 0.5 0.5 1.5 52.63% 49.89% 45.97% 48.18% 

15 0.5 0.5 0.5 1.5 52.69% 50.00% 45.96% 48.37% 

16 0.5 0.5 0.5 1.5 52.52% 49.95% 45.90% 48.26% 

17 0.5 0.5 0.5 1.5 52.38% 49.72% 45.98% 48.34% 

18 0.1 0.9 0.5 1.5 50.89% 48.06% 43.97% 45.36% 

19 0.9 0.9 0.5 1.5 52.39% 49.43% 45.11% 45.96% 

20 0.5 0.1 0.9 1.5 45.87% 44.29% 41.85% 44.95% 

21 0.1 0.5 0.9 1.5 43.55% 41.38% 39.09% 40.69% 

22 0.9 0.5 0.9 1.5 44.58% 42.38% 39.90% 41.43% 

23 0.5 0.9 0.9 1.5 42.76% 40.30% 37.81% 37.83% 

24 0.5 0.5 0.1 2.5 54.89% 50.84% 39.82% 45.07% 

25 0.5 0.1 0.5 2.5 51.40% 49.21% 45.62% 49.46% 

26 0.1 0.5 0.5 2.5 49.08% 46.85% 43.66% 45.80% 

27 0.9 0.5 0.5 2.5 50.92% 48.32% 45.16% 47.44% 

28 0.5 0.9 0.5 2.5 49.19% 46.43% 43.24% 44.75% 

29 0.5 0.5 0.9 2.5 43.67% 41.54% 39.61% 41.37% 

Table 8.5 Box-Behnken Design matrix of experiments and FR for each PCP 
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Source 

HCP model MHCP model IMHCP model DDMRP model 

F-value p-value F-value p-value F-value p-value F-value p-value 

Model 117.63 < 0.0001 119.39 < 0.0001 317.99 < 0.0001 129.91 < 0.0001 

αret 10.43 0.0066 10.66 0.0062 15.98 0.0015 3.22 0.0958 

αfact 44.19 < 0.0001 80.15 < 0.0001 87.31 < 0.0001 155.52 < 0.0001 

β 431.69 < 0.0001 351.11 < 0.0001 443.29 < 0.0001 82.12 < 0.0001 

ε 123.28 < 0.0001 128.50 < 0.0001 77.59 < 0.0001 6.97 0.0204 

αret ∙ αfact 0.2349 0.6360 0.2317 0.6383 0.7897 0.3903 0.8352 0.3774 

αret ∙ β 1.80 0.2031 1.36 0.2641 0.5376 0.4765 0.6113 0.4483 

αret ∙ ε 5.90 0.0304 4.27 0.0594 7.43 0.0173 3.45 0.0861 

αfact ∙ β 13.37 0.0029 25.96 0.0002 55.77 < 0.0001 45.70 < 0.0001 

αfact ∙ ε 0.1005 0.7563 0.0718 0.7929 0.4845 0.4986 0.1136 0.7415 

β ∙ ε 160.32 < 0.0001 120.72 < 0.0001 149.28 < 0.0001 134.05 < 0.0001 

αfact
2  0.3234 0.5793 0.5686 0.4643 0.2157 0.6501 0.0006 0.9814 

αfact
2  0.8122 0.3839 1.01 0.3327 1.60 0.2287 0.0013 0.9721 

β2 776.27 < 0.0001 891.21 < 0.0001 3511.61 < 0.0001 1249.28 < 0.0001 

ε2 12.21 0.0040 9.30 0.0093 4.76 0.0481 10.70 0.0061 

β2 ∙ ε 249.63 < 0.0001 215.86 < 0.0001 263.34 < 0.0001 158.71 < 0.0001 

R² 99.27%  99.28%  99.73%  99.34%  

Adjusted R² 98.42%  98.45%  99.41%  98.57%  

Predicted R² 93.77%  94.54%  98.34%  95.98%  

Table 8.6 ANOVA analysis 
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Figure 8.20 Main Effect Plots of the endogenous factors 

DDMRP 

 

IMHCP MHCP HCP 
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Figure 8.21 Contour and 3D Surface Plots 

8.5.2.2 Analysis with the exogenous factors 

In order to perform the second step of the extended comparison between the four 

PCPs, a full-factorial DOE was constructed, as shown in Table 8.7. In particular, 

DOE contains the eight exogenous factors that characterize the SC model, i.e., the 

ratio between the standard deviation and the mean of the customer demand σdp
μ

dp
⁄ , 

the delivery lead-time LT, the production flow time F, the ratio between the nominal 

production capacity and the mean of the customer demand χ
p

μ
dp

⁄ , the changeover 

time δ, the threshold of lost sales factor k, the inventory threshold factor z and the 

(d) 

(b) 

(c) 

(a) 
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failure rate λ. The unique data of the problem fixed ex-ante are the mean customer 

demand of both products, which are equal to 100 and 50 respectively. The values of 

these exogenous factors are consistent with relevant studies from the literature 

dealing with multi-echelon SC dynamics problem (as for example Sterman, 1989; 

Chatfield et al., 2004; Dejonckheere et al., 2004). The endogenous factors were fixed 

in accordance with the values selected in Section 8.5.2.1. All experimental factors 

are varied in three levels. Therefore, 38 = 6,561 scenarios were considered. To 

increase the robustness of the analysis, the experimental campaign was replicated 

10 times. The set of experiments was used for each PCP and, thus a total of 

38 ∙ 10 ∙ 4 = 262,440 simulation runs were performed. 

In order to identify the impact of the exogenous factors on FR for each SC model, 

an ANOVA analysis at 95% confidence level was performed. Table 8.8 shows the 

results of the ANOVA analysis. The statistical analysis refers to the quadratic 

models. For the sake of brevity, the table does not report the F-values and p-values 

of the two-way interactions. However, the interactions among the exogenous factors 

and each PCP are depicted by the interval plots in Figure 8.22 and Figure 8.23. 

The model investigated is statistically significant since the p-values are less than 

0.05. R2 is equal to 89.09%, 89.16%, 92.28% and 94.02%, respectively for HCP, 

MHCP, IMHCP and DDMRP models. They show a good fit since, in general, a 

substantial level of R2 is obtained for value higher than 67% (Henseler et al., 2009). 

The difference between the values of adjusted R2 and predicted R2 is less than 20%, 

thus confirming the effectiveness of each model. Finally, looking at the p-values it 

can be noticed that the impact of all the exogenous factors is statistically significant. 

It has to be noticed that the inventory threshold factor z was not considered in the 

DDMRP model since it is not used by this PCP and, then, it does not bias the 

effectiveness of DDMRP. 
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Parameters Symbol Value  
  

Mean demand of product A μ
dA

 100  
  

Mean demand of product B μ
dB

 50  
  

Endogenous factors Symbol HCP MHCP IMHCP DDMRP 

Forecasting factor (retailer) αret 0.90 0.90 0.90 0.90 

Forecasting factor (factory) αfact 0.10 0.10 0.13 0.10 

Proportional controller β 0.50 0.51 0.58 0.60 

Safety stock factor ε 1.00 1.00 1.16 1.05 

Exogenous factors Symbol 
Low 

value 

Medium 

value 

High 

value 

 

St. Dev. Demand / Mean Demand  σdp
μ

dp
⁄  0.05 0.10 0.20 

 

Transportation lead-time LT 1.00 2.00 4.00 
 

Production flow time F 1.00 2.00 3.00 
 

Nominal production capacity / mean 

demand 
χ

p
μ

dp
⁄  3.00 3.50 4.00 

 

Changeover time δ 1.00 2.00 3.00 
 

Threshold of lost sales factor k 1.50 2.00 2.50 
 

Inventory threshold factor z 8.00 9.00 10.00 
 

Failure rate λ 0.05 0.10 0.20 
 

Table 8.7 Full-factorial DOE 
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Source 

HCP model MHCP model IMHCP model DDMRP model 

F-value p-value F-value p-value F-value p-value F-value p-value 

Model 3900.58 0.000 3929.71 0.000 5715.47 0.000 7520.22 0.000 

σdp
μ

dp
⁄  37.12 0.000 29.72 0.000 1188.90 0.000 1896.05 0.000 

LT 6626.00 0.000 5327.25 0.000 1984.98 0.000 3518.17 0.000 

F 1980.54 0.000 1352.03 0.000 2771.36 0.000 86382.30 0.000 

χ
p

μ
dp

⁄  35115.98 0.000 41814.47 0.000 72420.73 0.000 100927.37 0.000 

δ 96554.42 0.000 91889.23 0.000 101657.11 0.000 44158.89 0.000 

k 47505.24 0.000 57118.44 0.000 119299.79 0.000 141825.56 0.000 

z 10737.51 0.000 9729.99 0.000 5802.06 0.000 - - 

λ 8774.74 0.000 8578.02 0.000 6399.14 0.000 8634.26 0.000 

R² 89.09%  89.16%  92.28%  94.02%  

Adjusted R² 89.06%  89.13%  92.27%  94.01%  

Predicted 

R² 
89.04%  89.11%  92.25%  94.00%  

Table 8.8 ANOVA table for FR 

The factors that mainly affect FR are χ
p

μ
dp

⁄ , δ and k, as also confirmed by the F-

values in Table 8.8. In the case of DDMRP, the main significant factor is F since it 

is used to calculate the thresholds.  However, it is worthwhile to study the 

interactions of each exogenous factor with the PCPs through interval plots. The 

interval plots, that are depicted in two different figures, i.e., Figure 8.22 and Figure 

8.23, also report the interaction between the exogenous factors and PCPs in terms of 

μIfact and ΣIfact. The x-axis and y-axis refer to the considered exogenous factor and 

KPIs respectively. HCP is represented with a red line, MHCP with a green line, 

IMHCP with an orange line and DDMRP with a blue line. To easily identifying the 

exogenous factors that mostly affect the key performance indicators, the y-axes of 

the interaction plots present the same scales. It can be noticed that, on average, HCP 

achieves the best performance in terms of FR. However, HCP presents the highest 

values of μIfact. As for the factory inventory variability, the interval plots reveal that 

DDMRP involves the highest values of ΣIfact. Finally, it can be noticed that IMHCP 

assures the best performances in terms of both μIfact and ΣIfact. 
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Figure 8.22-a shows that there is no appreciable effect from σdp
μ

dp
⁄ , as the FR 

maintains approximately the same percentage. However, it can be noticed a slight 

improvement that emerges when the SC is characterized by the high value of the 

demand variability (i.e., σdp
μ

dp
⁄ = 0.2). The high demand’s variability induces the 

factory to increase the number of changeovers that, consequently, to improve the 

responsiveness of the SCs. On the other hand, it also involves an increase in terms 

of μIfact and ΣIfact. In particular, it can be seen that the factory is more sensible to 

high values of σdp
μ

dp
⁄  in terms of ΣIfact when IMHCP or DDMRP are adopted. 

As expected, a long transportation lead-time LT negatively biases the 

performance of the SC (see Figure 8.22-b). In fact, when the delivery lead-time 

sharply increases (i.e., LT = 4), for each PCP it can be revealed a 5% of reduction of 

FR on average. High values of LT also increase the variability of the factory 

inventory, in particular for the case of DDMRP, while no significant difference it can 

be noticed in terms of μIfact.  

Figure 8.22-c shows that the values of flow time F strongly affects the FR of the 

SC when DDMRP is adopted, since the flow time F is used to calculate the 

thresholds. Therefore, when F is set to the highest value (i.e., F = 3), DDMRP is 

characterized by a higher inventory level that allows the factory to hedge against the 

uncertainties. This is confirmed by the interval plot concerning μIfact in which the 

highest value of F involves an average factory inventory level of about 500. As 

concerns the variability of the factory inventory level, higher values of F induce an 

increase of ΣIfact for each PCP. 

A high production capacity of the manufacturing system allows the SC to face the 

disruption events of the factory. This is demonstrated by Figure 8.22-d, in which a 

value of the ratio between the nominal production capacity and the customer mean 

demand χ
p

μ
dp

⁄  equal to 4 guarantees high FR for each PCP. Moreover, when the 

value of production capacity χ
p
 is high, the choice between HCP and MCHP becomes 

indifferent. When the production capacity χ
p
 is tight, the SC is stressed and its 

performance gets worse, also in terms of ΣIfact. On the other hand, as expected, higher 

values of production capacity χ
p
 induces an increment in terms of μIfact. 

As concerns the changeover time δ, a low value of δ allows the factory node to 

exploit the production capacity. In fact, HCP or MHCP allows the SC to yield a FR 
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close to 100%. Notably, when δ = 1, IMHCP performs better than DDMRP, achieving 

a FR between 85 and 90%. Increasing the changeover time has a negative impact on 

the performance of the SC, since the factory is subject to long production stoppages. 

Moreover, Figure 8.23-a shows that δ strongly damages the effectiveness of IMHCP. 

The increase of the changeover time δ has a strong impact also in the other KPIs, 

causing a reduction of μIfact and an increase of ΣIfact for each PCP. However, DDMRP 

is less sensitive to the changeover values compared to the other PCPs, particularly 

in terms of μIfact. 

The trend characterizing the exogenous factor k (see Figure 8.23-b) involves 

interesting findings, as also shown in the relevant literature (see e.g. Disney et al., 

2021). Notably, HCP outperforms the other PCPs to improve the FR indicator. When 

the threshold of lost sales assumes low values, the FR is in the range of 90% and 

100% for HCP and MHCP, while IMHCP enables achieving values close to 85%. 

When 𝑘 is set to the highest values (i.e., k = 2.5), the FR deeply decreases, especially 

for IMHCP where the FR is almost of 50%. As for the other experimental factors, an 

increase of FR induces higher values of μIfact. The variability of the factory inventory 

becomes larger for high values of k. Notably, the figure reveals that there is no 

relevant difference between HCP and its variants in terms of ΣIfact when k is lower 

than 2.5. 

Figure 8.23-c shows that the highest values of the inventory threshold factor z 

positively affect the FR and increase the μIfact. This means that higher values of z 

enable the factory to better satisfy the orders placed by the retailer. Interestingly, 

the inventory threshold factor z does not present a relevant influence on ΣIfact. 

Finally, it has to be pointed out that z is not used to define the thresholds of DDMRP 

and, therefore, there is no interaction among them. 

Finally, the failure rate λ negatively affects the FR, as expected. Figure 8.23-d 

highlights that HCP outperforms the other PCPs in terms of FR and demonstrates 

that the differences between the PCPs remain constant for each value of λ and for 

each investigated KPI.  
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Figure 8.23 Comparison between PCPs in terms of FR, μIfact and ΣIfact considering δ, k, z and λ 
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8.5.2.3 Managerial and theoretical implications 

The findings of this work provide several implications for SC management, under a 

variety of operational and market conditions. The implications are summarized as 

follows: 

1. The first implication regards the PCP to be adopted and integrates the 

findings formerly introduced by the literature regarding factory node with 

capacity constraints. Indeed, the previous papers demonstrate that the two 

variants of HCP, i.e., MHCP and IMHCP, allow minimizing the total costs 

incurred by the factory in a single-echelon system with a constant demand. 

Our study provides novel insights on the impact of the PCPs in more complex 

SCs (i.e., a two-product two-echelons) subjected to the intrinsic stochasticity 

of the real-life environments (e.g., the factory has to face a variable demand). 

Specifically, we show that the HCP generally outperforms MHCP, and 

IMHCP and DDMRP in terms of customer service level of the whole SC. 

However, results also show that the effectiveness of HCP and MHCP could 

be similar in some scenarios. The results speak for the fact that internal (i.e., 

intra-company) operational efficiency in terms of costs minimization is not 

necessarily aligned with systematic (i.e., SC-wide) efficiency in terms of 

customer service. These finding should be taken into account by managers in 

order to design and operate efficient, customer-centric SCs; 

2. In order to study the operational efficiency of the factory in a two-product 

two-echelon SC context, two additional key performance indicators were also 

evaluated, i.e., the average value and the variability of the factory inventory 

level. The analysis pointed out that IMHCP is the strategy that performs 

better from the viewpoint of the internal operational efficiency. Moreover, it 

can be noticed that the average value of the factory inventory level presents 

an opposite trend in comparison with the fill rate of the SC. It means that the 

factory needs to increase the intra-company costs to improve the SC-wide 

efficiency. Finally, DDMRP is the strategy that involves a larger variability 

of the factory inventory level. 

3. Another interesting finding regards both the market in which the SC is 

operating and the operational contexts. Results show that both the variability 

of the customer demand and the production flow time do not have a strong 
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impact on customer service level, as compared to the other exogenous factors 

(i.e., the transportation lead-time, the production capacity, the changeover 

time, the threshold of lost sales factor, the inventory threshold factor and the 

failure rate). In this fashion, these results suggest that the SC adopting the 

HCP is more resilient, with respect to variants, to the turbulence of the 

market demand and the production flow time. A different brief discussion has 

to be conducted for the flow time when DDMRP is adopted by the factory. In 

fact, the flow time is used to calculate the thresholds of this strategy and, 

therefore, its impact becomes relevant on the dynamics of the whole SC. In 

particular, the analysis revealed that high values of flow time allow the 

factory to create an inventory level that hedges against the disruptive events. 

However, it also involves a remarkable increase of the factory inventory level 

and variability. 

4. Moreover, the transportation lead-time negatively affects the customer 

service level when it assumes the highest values. HCP seems to be the most 

effective PCP for each value of transportation lead-time in terms of FR. Thus, 

it can be reasonable to consider that both geographically dispersed and closed 

SCs should favor the adoption of HCP policy.  

5. A further important implication concerns capacity management. We note 

that high values of production capacity allow coping with the disruptive 

events due to changeovers and failures. In this scenario, it seems to be 

indifferent to use HCP and MHCP. On the other hand, IMHCP is not able to 

achieve a FR larger than 60% for tight production capacities. These results 

suggest that an increase of production capacity could represent a suitable 

strategy to cope with the detrimental effects produced by uncontrollable, 

disruptive phenomena. However, increasing the capacity can produce other 

relevant unnecessary costs for SCs (i.e., increase of underutilization and fixed 

costs) (Disney and Lambrecht 2008; Cannella et al. 2018; de Matta 2019). 

This is confirmed by the increase of the average factory inventory level 

resulting from the scenario characterized by high values of production 

capacity. However, in this context, it can be noticed an interesting reduction 

in terms of variability of the factory inventory level when HCP and MHCP 

are used.   
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6. Concerning both changeover time and failure events, we note that the 

increase of their occurrences indisputably deteriorate the performance of the 

whole SC. The results clearly show that low values of changeover time and 

low failure probability enable the SC to achieve a higher customer service 

level. Notably, FR is almost equal to 95% when the changeover time is set to 

its lowest value and the factory adopts HCP or MHCP. Thus, managers 

should consider undertaking all possible actions to reduce the occurrences of 

both phenomena, for instance by adopting robust preventive maintenance 

programs and/or by investing in technical improvement, e.g., Single Minute 

Exchange of Die (Da Silva and Godinho Filho 2019), which can reduce the 

changeover time. 

7. A predictable result regards the impact of backlogs on the performance of the 

SC. When the threshold of lost sales is higher, the customer service level 

deeply decreases. Also in this case, the HCP is the most effective policy among 

the four. Despite the adopted PCP, the results show that the backlog could be 

reduced by increasing the available capacity. However, this decision should 

be based on a robust trade-off analysis between the penalty costs associated 

to the backlog and the fixed capacity costs. 

8. Regarding the inventory threshold factor, it is to note that, when HCP, MHCP 

or IMHCP were chosen as PCP, higher values of this parameter allow the 

factory to achieve a positive inventory that hedges against the adverse events, 

thus assuring higher customer service levels. Again, the HCP policy 

represents the best option to be adopted. As for DDMRP, the inventory 

threshold factor does not influence the performance, since it is not used to 

calculate the inventory thresholds of this PCP. 

9. A final implication is devoted to the endogenous variables of the SC. With the 

RSM we show that identifying the optimal values of the control parameters 

is necessary to increase the effectiveness of the PCP. For instance, the proper 

tuning of the proportional controller can enhance the customer service level 

since it smooths the variability of orders coming from the retailers. 

8.5.3 Evaluation of the new adaptive production control policy 

The previous work revealed that HCP is the best rule to improve the FR of two-

product two-echelon SCs. The aim of this section is to perform a comparison between 
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HCP and the new adaptive HCP (i.e., AHCP) that is proposed for the first time. To 

make this comparison, we considered a DOE that entails four independent variables: 

production control policy (PCP), the ratio between nominal production capacity and 

the mean of the customer demand (χ
p
 / μ

dp
), changeover time (δ) and inventory 

threshold factor (z). The production control policy is varied at two levels (HCP and 

AHCP) while the other independent variables at three levels. A number of 2 ∙ 3
3

 = 54 

scenarios were considered. To avoid randomness biasing the results, 30 replications 

were adopted for each scenario. Therefore, 30 ∙ 54 = 1620 simulation runs were 

performed. The values of the model parameters are shown in Table 8.9, while the 

independent variables are reported in Table 8.10. The production control policies 

were tested by investigating the FR as response variable of the experimental 

campaign (see Eq. 8.24). As in the previous works, the simulation time T is equal to 

2,000 periods, also including a warm-up time of 200 periods.  

Model parameters Symbol Values 

Machin repair time tr U∈[0,1] 

Smoothing forecasting factor α 0.30 

Standard deviation of demand / Mean demand σdp
/μ

dp
 0.10 

Delivery lead time LT 2.00 

Production flow time F 2.00 

Failure rate λ 0.10 

Threshold of lost sales factor k 2.00 

Proportional controller β 0.20 

Safety stock factor ε 1.00 

Mean demand of product A μ
dA

 100 

Mean demand of product B μ
dB

 50 

Table 8.9 Model parameters 
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Independent variables Symbol 

Levels 

I II III 

Production control policy PCP HCP AHCP - 

Nominal production capacity / Mean demand χ
p
/μ

dp
 3.00 3.50 4.00 

Changeover time δ 1.00 2.00 3.00 

Inventory threshold factor z 7.00 9.00 11.00 

Table 8.10 Design Of Experiments 

8.5.3.1 Analysis of numerical results 

To evaluate the significance of the model and the independent variables on the FR, 

an ANOVA analysis with 95% confidence interval was performed by using the 

commercial package Minitab 17® as a statistical tool. The outcomes resulting from 

this analysis are shown in Figure 8.24. For the sake of simplicity, statistical analysis 

just refers to the results of the first product (hereinafter denoted as product A) since 

no significant difference was found between the two types of products.  

Firstly, it can be observed that the p-value of the model and the blocks (i.e., 

replications) are equal to 0 and 1, respectively. These demonstrate that the proposed 

simulation model is statistically significant and the randomness does not affect the 

results. R-sq is equal to 95.15% and therefore the quadratic model fit is effective.  

 

Figure 8.24 ANOVA table 

Analysis of Variance 

 

Source                  DF   Adj SS   Adj MS  F-Value  P-Value 

Model                   54  39.5008  0.73150   568.56    0.000 

  Blocks                29   0.0062  0.00021     0.17    1.000 

  Linear                 7  32.3601  4.62286  3593.12    0.000 

    PCP                  1   2.4039  2.40392  1868.45    0.000 

    χ_p⁄μ_(d_p )         2   2.1296  1.06479   827.61    0.000 

    δ                    2  19.2207  9.61034  7469.64    0.000 

    z                    2   8.6059  4.30294  3344.46    0.000 

  2-Way Interactions    18   7.1346  0.39637   308.08    0.000 

    PCP*χ_p⁄μ_(d_p )     2   0.0097  0.00486     3.77    0.023 

    PCP*δ                2   1.2982  0.64912   504.53    0.000 

    PCP*z                2   0.6453  0.32267   250.80    0.000 

    χ_p⁄μ_(d_p )*δ       4   0.9930  0.24824   192.95    0.000 

    χ_p⁄μ_(d_p )*z       4   0.0874  0.02185    16.98    0.000 

    δ*z                  4   4.1009  1.02523   796.86    0.000 

Error                 1565   2.0135  0.00129 

Total                 1619  41.5143 

 

 

Model Summary 

 

        S    R-sq  R-sq(adj)  R-sq(pred) 

0.0358690  95.15%     94.98%      94.80% 
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Moreover, the predicted R-sq is in reasonable agreement with the adjusted one since 

their difference is less than 20% (R-sq(adj) – R-sq(pred) = 0.18%). Finally, all 

independent variables and 2-way interactions have p-values lower than 0.05, thus 

resulting statistically significant at a 95% confidence level. 

Figure 8.25 depicts the main effects plots of the ANOVA analysis and Table 8.11 

reports the mean values of the FR for each level of the independent variables studied. 

The most interesting findings come out from the main effects plot of the production 

control policy PCP. In general, the analysis shows that the new AHCP strategy is 

more effective than the HCP rule. Indeed, AHCP allows gaining a mean value of FR 

of 90.39%, while HCP allows achieving a mean value of FR of 82.69%. It is worth 

highlighting the effect of the nominal production capacity (χ
p
) on FR. A higher 

nominal production capacity (χ
p
) protects the manufacturing plant against inventory 

shortages. In fact, an adequate production capacity allows the inventory levels of 

each type of product to quickly reach the inventory threshold. Therefore, the 

manufacturing plant easily meet the retailer orders throughout the time horizon, 

thus increasing the FR indicator of the distribution chain. In confirmation of this, 

the mean value of FR is equal to 90.20% when the nominal production capacity of 

the manufacturing system is set to the highest level (i.e., χ
p
/μ

dp
= 4.00).  Moreover, 

it can be noticed that the FR indicator is more sensitive to lower values of χ
p
/μ

dp
. In 

fact, FR deeply decreases moving from χ
p
/μ

dp
= 3.50 (where the mean value of FR is 

equal 87.81%) to χ
p
/μ

dp
= 3.00 (where the mean value of FR is equal to 81.60%). 

Looking at the F-values in the ANOVA table (see Figure 8.24), the changeover 

time (δ) is the most influential independent variable. higher δ has a negative impact 

on the FR indicator. Confirming this, there is a relevant difference in terms of FR 

(i.e., ∆FR ≅ 27%) between the lowest value of changeover time (δ = 1.00) and highest 

one (δ = 3.00). It is noteworthy that when the changeover time (δ) is equal to one, 

disruptive phenomena are not significant since the FR indicator is close to 100%. 

Interestingly, the inventory threshold factor (z) positively affects the performance 

indicator at hand. Although it might be better to maintain a lower inventory level, a 

higher inventory threshold assures a better performance in terms of FR. In fact, the 

FR indicator moves from a value of 77.06%, when the inventory threshold factor (z) 

is set to 7 to a value almost equal to 95% when z is set to 11. 
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Finally, in order to make the comparison between production control policies more 

robust, a series of interval plots illustrating the interactions between HCP and 

AHCP with the adopted experimental factors are presented in the following lines. 

More specifically, Figure 8.26 reports the interaction between PCP with the ratio 

between the nominal production capacity and the mean demand (χ
p
/μ

dp
), Figure 

8.27 shows the interval plot involving the changeover time (δ) while Figure 8.28 

depicts the interaction with the inventory threshold factor (z). 

Interesting insights are obtained from the interval plot illustrated in Figure 8.26. 

In general, the trends emerged by the main effects plot (depicted in Figure 8.25) of 

the production control policies (PCP) and the nominal production capacity (χ
p
) are 

confirmed in the interval plot. Indeed, the interval plot points out that the adaptive 

approach, i.e., AHCP, outperforms the traditional rule, i.e., HCP, in terms of FR for 

each value of nominal production capacity (χ
p
). 

 

Figure 8.25 Main effects plots 
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Independent variables Symbol 

Mean FR 

Lev. I Lev. II Lev. III 

Production control policy PCP 82.69% 90.39% - 

Nominal production capacity / Mean demand χ
p
/μ

dp
 81.60% 87.81% 90.20% 

Changeover time δ 99.61% 87.06% 72.95% 

Inventory threshold factor z 77.06% 87.78% 94.78% 

Table 8.11 Mean values of FR for each level of DOE 

Furthermore, it is worth noting that the AHCP rule allows the manufacturing plant 

and the distribution chain to achieve a FR larger than 85% for each value of the ratio 

between the nominal production capacity and the mean demand (χ
p
/μ

dp
).  

Interestingly, the performance achieved by AHCP with χ
p
/μ

dp
= 3 is mostly equal to 

the FR achieved when the manufacturing system with χ
p
/μ

dp
= 4 adopts the 

traditional HCP (see Figure 8.26). This means that the adaptive rule allows the 

manufacturing system to achieve the same performance of a manufacturing system 

with a larger nominal production capacity (χ
p
) that adopts the HCP as production 

control policy. 

The effectiveness of the production control policy also strictly depends on the time 

taken to perform the changeover operations (δ). When the changeover time is low 

(δ = 1), there is no difference in the FR, regardless of the production control policy 

(PCP) adopted. In fact, in this case, the FR is almost equal to 100% when both HCP 

and AHCP are used. On the other hand, the highest changeover time (δ) leads to a 

large decrease in the FR indicator. Such detrimental effect depends on the 

production control policy chosen. In fact, when the changeover time (δ) is larger than 

one, Figure 8.27shows that AHCP is always more effective in terms of FR. Finally, 

regarding the inventory threshold factor (z), lower values of z emphasize the 

difference in terms of FR between AHCP and HCP. As shown in Figure 8.28, the 

difference in FR is more than 10% when z = 7, while, when z = 11, the performances 

of the two production control policies are similar. 
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Figure 8.26 Interval plot of production control policies for different levels of χ
p
/μ

dp
  to analyse the 

effect on the FR 

 

Figure 8.27 Interval plot of production control policies for different levels of δ to analyse the effect on 

the FR 
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Figure 8.28 Interval plot of production control policies for different levels of z to analyse the effect on 

the FR 

8.5.3.2 Managerial and theoretical implications 

Here, the main findings that emerge from the comparison of the two PCPs are 

summarized. Some of these findings can be considered relevant as they extend the 

literature of production control of two-product manufacturing systems by evaluating 

the effect of an adaptive strategy on the FR performance measure. Such findings are: 

(1) The adaptive AHCP strategy outperforms traditional HCP to improve the FR 

performance measure. 

This research should motivate practitioners to implement the proposed adaptive 

production control strategy to manage multi-product manufacturing systems with 

non-negligible changeover times. The results of the statistical analysis show that 

significant benefits may arise from employing an adaptive PCP focused on the FR. 

Such benefits were emphasized by comparing two alternative PCPs, namely AHCP 

and HCP, in various scenarios where nominal production capacity, changeover time 

and inventory threshold were varied. 

(2) The adaptive PCP approach is able to reduce shortages due to a lower 

production capacity. 

The results of the analysis show that the AHCP can achieve higher values of the FR 

indicator than the HCP for each value of nominal production capacity. It is worth 

noting that, the AHCP with χ
p
/μ

dp
= 3 assures almost the same FR of HCP when the 

ratio χ
p
/μ

dp
 is set to 4. Therefore, practitioners managing production systems with 
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lower production capacity might be encouraged to adopt an adaptive control 

approach rather than investing in expanding the capacity of the manufacturing 

system. 

(3) The choice of production control strategy requires a strong consideration of 

the changeover time required by the production system. 

Depending on the changeover time (δ), the production control strategies can involve 

different effects on the FR indicator. The results of this study show that there is no 

significant difference between the use of AHCP or HCP when the manufacturing 

system is characterized by a low changeover time (e.g., δ = 1). On the other hand, the 

production control strategy assumes a crucial role when the manufacturing system 

is described by long changeover times (e.g., δ = 3) and, thus, the adaptive approach 

allows achieving higher values of FR then the HCP. 

(4) Setting the inventory threshold is a key-factor to improve the FR indicator. 

The choice of an appropriate inventory threshold factor (z) is relevant. In fact, higher 

inventory threshold allows enhancing the FR performance measure. As concerns the 

production control policies, the analysis of results highlights that AHCP emerges to 

be an effective strategy for each value of inventory threshold factor (z) considered in 

the investigated DOE. 

(5) Investigating explicit multi-product models of unreliable manufacturing 

systems is needed to faithfully evaluate the impact of the production control 

policies in industrial contexts. 

From a theoretical viewpoint, our study reveals that modelling multi-product 

manufacturing systems may provide new findings regarding the production control 

policies that cannot be discovered in aggregated single-product industrial scenarios. 

Then, the present work would suggest that further studies may contribute to capture 

the impact of production control policies in unreliable multi-product manufacturing 

systems. 

8.6 Conclusions 

In this work, a variable capacity SC problem was explored. The objective of the 

proposed research consists of introducing a novel and realistic two-product SC 
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capacity model, defined as EXPO, subject to a set of unexplored operational 

parameters. The leading contribution of the proposed approach relies on the 

integration between a two-echelon SC context and a well-known near-optimal 

production planning policy, denoted as hedging corridor policy, whose role is to 

decide on the product changeover. Several ANOVA analyses revealed a strong 

interaction between the production planning model and the adopted smoothing 

replenishment strategy, which remarkably affects the performance of the SC. 

Interestingly, a higher value of the proportional controller negatively affects the 

service levels since the adopted PCP, under these circumstances, tends to encourage 

longer production runs for a certain product and, consequently, persistent stock outs 

for the other one. 

Furthermore, we provided a systematic analysis of four PCPs (i.e., HCP, MHCP, 

IMHCP and DDMRP), usually applied in manufacturing systems, in a two-product 

two-echelon SC system where the factory node has to satisfy a variable demand 

resulting from orders placed by the downstream echelon, i.e. the retailer. To the best 

of our knowledge, the literature demonstrated that MHCP and IMHCP allow the 

factory managers to minimize the total costs incurred, and DDMRP allows 

enhancing the performance of manufacturing systems exposed to uncertainties and 

high variability. However, to the best of our knowledge, the two variants of HCP 

were only tested in a single-echelon system that has to face a constant demand, while 

DDMRP never was employed to control the product changeovers in multi-product 

unreliable manufacturing systems. By adopting the SC EXPO model (see Section 8.3, 

Costa et al. 2020) that explicitly emulates the capacity constraints of the real-life 

production systems, in this work we investigate the effectiveness of the four PCPs 

on the customer service level via the FR indicator of a two-products, multi-echelon 

SC, in which the factory has to satisfy a variable demand resulting from the orders 

issued by the downstream node. Interestingly, the results of this study reveal that 

the HCP outperforms the other PCPs in terms of FR, while IMHCP allows the factory 

to improve its internal operational efficiency. Particularly, through the study of μIfact 

and ΣIfact, it can be noticed that the PCPs that improve for the intra-company 

internal efficiency in terms of inventory costs minimization not necessarily enhance 

the SC systemic efficiency in terms of customer service. Also, we showed that 

endogenous and exogenous variables can noticeably affect the customer service level 

when considering a PCP. 
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Finally, this work proposes a new PCP, called Adaptive Hedging Corridor Policy 

(AHCP). AHCP was compared with the well-known Hedging Corridor Policy (HCP), 

which is often used in manufacturing systems where the changeover time to switch 

from one type of product to another is not negligible. The interactions between PCP 

and experimental variables that characterize the production capacity and inventory 

of the manufacturing plant were considered.  
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9. Conclusions of the thesis 

This thesis dealt with the operations management of the outpatient chemotherapy 

oncology departments. The operations management concerns with managing the 

operations and process of a system to achieve the highest level of efficiency of the 

organization. The operations management in oncology units is challenging due to the 

complex nature of the oncology process, which can be considered as complex system. 

In fact, the oncology units are characterized by several stages and resources shared 

among patients, high variability and uncertainties in the process, and cooperation 

with the pharmacy departments. All these features increase the complexity in 

managing the operations of the outpatient chemotherapy oncology unit. 

Furthermore, in the last years, the operations management in the oncology units 

becomes more complex due to the increasing of demand of healthcare services arising 

from growing number of cancer cases. 

The aim of the thesis was to provide innovative methodologies and tool to support 

the healthcare managers in the operations management of the chemotherapy 

oncology units so as to reduce the patient waiting time. A summary of the proposals 

and findings of the thesis is provided in Section 8.1, while Section 8.2 reports some 

future research directions of the operations management in the oncology units. 

8.1 Summary 

The structure of the thesis respects the research objective fixed in Section 1.1. The 

first research objective was: 

RO1: systematically studying the literature related to the operations management of 

chemotherapy oncology departments. 

Chapter 2 provided a systematic literature review regarding the papers tackling the 

operations management in the chemotherapy oncology units. A detailed problem 

description was described involving all the aspects considered in literature (e.g., 

process and patient classification). Then, the chapter reported all the key 

performance indicators adopted by academics and practitioners by classifying them 

based on the patient and managerial perspective. Statistical analysis about the state 

of art were proposed to demonstrate the increasing attention of managers in the 

topic. The operations management in chemotherapy oncology unit were classified as 
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planning, scheduling and patient flow management problem. A literature review for 

each problem was provided.  

Chapter 3 dealt with the mathematical formalization of the problem. Specifically, 

the chapter denoted the specific problem statement and mathematical notation 

adopted in the whole thesis. Finally, a general pseudo-code simulation model of the 

patient flow in the oncology unit was provided. 

The second research objective was: 

RO2: solving the patient flow management problem by identifying the best 

techniques and methodologies to evaluate the current process and proposing new 

configurations of oncology units. 

During the doctoral research period, two real-life case studies were addressed: an 

oncology department situated in Catania and a second one located in Ragusa (both 

locations are in Southern Italy). Differently from the literature, both these two 

departments are characterized by pharmacy departments situated far from the 

oncology units. In fact, they need a courier service that uses a vehicle to deliver the 

therapies from the pharmacy to the oncology department. This aspect was not 

previously considered in the literature and represents a new features that increase 

the complexity of the system. The two case studies were faced with different 

approaches, which were described in Chapter 4 and Chapter 5.  

Chapter 4 coped with the case study of Catania in which it was proposed a 

methodology that merges Lean methodology with Discrete Event Simulation (DES). 

Specifically, we adopted a combination of Value Stream Maps with the stochastic 

simulation thus generating the Dynamic Value Stream Map. Firstly, the current 

process of the oncology unit was replaced by the DES model, thus creating the 

Current Dynamic Value Stream Map, which reports the current performances of the 

department in terms of mean flowtime, mean patient waiting time and efficiency of 

the system. Then, a Design of Experiments (DOE) was defined to evaluate and 

compare 72 Future Dynamic Value Stream Maps. The best FDVSM was identified 

through the ANOVA analysis and was proposed to the healthcare managers. To this 

end, the DES model was developed in the Arena® platform, since it provides a 3D 

virtual visualization that allows the healthcare managers to easily comprehend the 

benefits of our proposal. 
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Chapter 5 faced the case study of Ragusa, in which it was proposed a configurable 

and adaptable agent-based simulation model of the oncology unit. The aim was to 

develop a user-friendly simulation model that makes it possible for any healthcare 

managers to evaluate different corrective actions in the oncology process. This is the 

first time that an agent-based simulation approach in this topic. The simulation 

model was delivered to the healthcare managers who implemented the “best 

configuration” to the chemotherapy unit at hand. Due to the COVID pandemic we 

are not allowed to visit the ward, but we received positive feedback from the medical 

staff regarding a significant improvement in service level. Hopefully, further data 

will be collected in the near future to support the validity of the proposed research.  

The third research objective was: 

RO3: solving the outpatient chemotherapy appointment scheduling problem in 

oncology departments.  

Usually, the patients arrive at the hospital in the first hours of the day without 

respecting an agenda of appointment and generating long queues before the 

treatment. Then, the chemotherapy outpatient scheduling problem is recognized as 

a leading strategy to pursue the objective of reducing the patient waiting time. 

Chapter 6 dealt with the same-day off-line stochastic chemotherapy outpatient 

appointment scheduling problem inspired by a real-world oncology department was 

investigated. Differently from the rest of the literature on this topic, we 

stochastically modelled all the stages provided by the chemotherapy process and, in 

addition, several sources of uncertainty (e.g., deferrals and medical consultation 

times) were considered. Furthermore, as for the patient flow management problem, 

this is the first time that the scheduling problems consider a pharmacy is located far 

from the oncology unit and the courier service to deliver the therapies (as in real-life 

scenarios of Catania and Ragusa). Firstly, we proposed a stochastic mathematical 

programming to optimally solve the small instances of the problem at hand. Since 

the problem under investigation in NP-hard in strong sense, the metaheuristic 

approach was provided to solve medium-large instances. Specifically, we developed 

a novel Self-Adaptive Harmony Search named SAHS that was compared with the 

original version named Harmony Search and with the Greed Randomized Adaptive 

Search Procedure utilized in literature. Moreover, to improve the quality of any 
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appointment schedule, we adopted the LS scheduling strategy on the decoding 

algorithm.  

The fourth research objective was: 

RO4: providing guidelines to support managers in the decision-making process 

related to healthcare system design of oncology units. 

Chapter 7 addressed the healthcare system design problem of outpatient 

chemotherapy oncology departments. As in the scheduling problem, the patient flow 

was replaced by using a stochastic simulation model based on discrete-time recursive 

equations. This approach allows us to execute a huge number of simulations with 

small computational times. In order to consider both the quality of service to patients 

and the efficiency of the systems, the performances of the chemotherapy oncology 

units were evaluated based on three different key performance indicators: the 

patient waiting time, the number of patients and a trade-off indicator. A DOE was 

defined with the aim of considering oncology units of small, medium and large sizes. 

Firstly, we adopted the ANOVA analysis and Tukey tests to outline the impact of 

the number of resources on the key performance indicators. This analysis was 

supported by generating the Pareto graphs to identify the non-dominated solutions. 

After that analysis, an abacus of results was provided with the intent of supporting 

the healthcare managers in the decision-process of the healthcare system design of 

oncology units. In fact, the abacus is easy to read and enables the decision-makers 

to easy understand what the best configuration is for achieve some target 

performance levels. Finally, a multiple non-linear regression model was provided to 

estimate the performance of any oncology unit with an adequate approximation. 

The last research objective was: 

RO5: proposing a new realistic supply chain dynamic model that will be used 

for the healthcare context. 

Chapter 8 explored a new simulation model based on discrete time difference 

equations for two-product two-echelon supply chain dynamics problem where a set 

of unconventional variables (e.g., the changeover time, changeover threshold, failure 

rate, flow time) drastically affect the performance of the entire supply chain. Then, 

an extended experimental campaign involving several independent factors was 

performed to infer on how a series of operational and tactical parameters, related to 
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both manufacturing and replenishment issues, may affect the performance of the 

capacitated two-echelon SC at hand. The statistical analysis over the obtained 

numerical results highlighted that the interaction of the HCP policy with the 

replenishment policy has a peculiar effect on the performance of the distribution 

network, which has not emerged up-to-now from the relevant literature based on a 

single-product flow. As for instance, a partially counterintuitive role of the 

replenishment smoothing factor emerges from the numerical analysis. In fact, if the 

smoothing effect induced by the proportional controlled is reduced, not only the 

inventory variability at the factory stage increases – confirming findings of the 

literature – but also the fill rate significantly deteriorates. Moreover, the way several 

operation parameters (e.g., the nominal capacity, the lost sales threshold factor, the 

changeover duration and the threshold value for enabling the changeover task) 

impact on the performance measures investigated may represent a valuable 

contribution for the related literature. Furthermore, we provided a systematic 

analysis of four PCPs (i.e., HCP, MHCP, IMHCP and DDMRP), usually applied in 

manufacturing systems, in a two-product two-echelon SC system where the factory 

node has to satisfy a variable demand resulting from orders placed by the 

downstream echelon, i.e. the retailer. We assessed the impact of the four policies in 

terms of customer service level by evaluating the most commonly adopted key 

performance indicator for customer-oriented purpose, i.e., the FR. Firstly, we 

identified the most suitable set of values of the endogenous factors for each PCP and, 

then, we performed a comparison of the four PCPs, under several scenarios obtained 

by varying all the exogenous factors that characterize real-life SCs. The PCPs were 

compared also evaluating the internal operational efficiency of the factory, 

represented by the average value and the standard deviation of the factory inventory 

level, respectively μIfact and ΣIfact. Finally, a new production control policies, called 

Adaptive Hedging Corridor Policy, was proposed. The work demonstrated that 

AHCP can assure best performance in terms of customer service level compared to 

the well-established HCP. 

8.2 Future research directions 

Different future research directions can be highlited and summarized as follows: 
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• In the patient flow management problems, the proposed experimental 

campaigns were defined jointly with the healthcare staff of the two oncology 

units, with the aim of identifying an improved service configuration, without 

investing additional funds (according to lean principles). However, in 

accordance with the managing staff, further efforts will be dedicated to future 

projects for assessing in the real case study the impact of additional resources 

(e.g., the number of pharmacy technicians or treatment chairs) and different 

queuing mechanisms on the performance of the oncology department, also 

taking benefit from the findings of the work regarding the healthcar system 

design of oncology units (see Chapter 7). To this end, future research can be 

oriented towards either simulation-optimization approaches or hybrid 

simulation models, capable of adequately capturing macro- and micro-level 

dynamics of such complex healthcare systems.  

• As for the scheduling problem, alternative metaheuristic algorithms, a multi-

objective approach involving more objective functions or further constraints 

on the system modelling could be considered as new opportunities for future 

research in the chemotherapy outpatient scheduling topic. 

• In the healthcare system design problem, alternative methods of the 

Operations Research (OR) and new constraints of the model can be considered 

as new opportunities for future research in the healthcare system design 

problem of outpatient chemotherapy oncology departments. 

• Finally, the innovative methods and findings arising from the works in the 

supply chain dynamics problem can be applied for a real-life healthcare 

supply chain management problem so as to assure the best health service and 

to enhance the performance indicators both in patient and managerial 

perspectives.  
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