
University of Catania
Department of Matemathics and Computer Sciences

XXXIII Ph.D. in Computer Science (International)

Federico Fausto Santoro

Communication, Elaboration and Artificial Intelligence IoT

solutions for the Industry 5.0

Doctoral Thesis

University Advisor: Prof. Corrado Santoro

Enel Green Power Advisors:
Dario Iuvara

Giuseppe Leotta

Academic Period 2018 - 2020

i

“Never send a human to do a machine’s job.”

“Agent Smith”,Matrix.

ii

Abstract

The use of low-power wireless sensors and actuators with networking support

in the industry has increased over the past decade. New generations of microcon-

trollers, new hardware for communication, and the use of standardised protocols,

such as the Internet Protocol, have resulted in more possibilities for interoperability

than ever before. This increasing interoperability allows sensors and actuator nodes

to exchange information with large numbers of peers, which is beneficial for creat-

ing advanced, flexible and reusable systems. The implementation of these Internet

of Things devices in the industry environment, allowed a production improvement,

in terms of quality, safety and automation. Moreover, the companies which are re-

searching this field made new types of machines, robots and unnamed aerial vehicles,

which are useful in these production process. The main contribution of this thesis

is research and solution proposes of efficient Industry Internet of Things, not just

for industrial applications but also for the Internet of Things in general. The thesis

deals with the three macro categories which are related to communication, privacy

preservation, simulation, performance and application fo artificial intelligence in the

Internet of Things devices. In the first part, the thesis focuses on new communi-

cation protocols and solutions for the Internet Of Things, introducing the design

of new LoWPAN auto-maintaining protocol, an improved protocol for delay toler-

ant networks and an application solution for the unmanned aerial vehicles control

using the fifth generation of cellular systems. The second part of the thesis intro-

duces a new Docker technology improvement, which improves the normal building

process of Docker. Furthermore, the thesis discusses a new simulator framework

about unmanned aerial vehicles and their wireless communication protocols. In the

third and final part of the thesis, new applications of artificial intelligence were intro-

duced. In particular, a new architecture for human interaction with domotic devices

through social channels was discussed. Besides, a new neural network model was

introduced in the final part. The proposed model improves the production of solar

panels through the ability to predict the resulting solar panel before its creation.

Finally, at the end of each chapter, a set of experiment results and conclusions were

presented.

iii

Acknowledgements
This thesis is the result of more than two years of continuous research, development,

and learning. During that time I met many people who helped me to be the re-

searcher I am now; because without their advice this thesis would not have been

possible.

I need to extend my gratitude to my supervisor, Professor Corrado Santoro, who

trusted me for this Ph.D. position and invested time and effort guiding me to be on

the right track. Because I have found not only a guide but also a friend in him.

I also need to manifest my gratitude to my friends, Professor Salvatore Riccobene

and Professor Fabrizio Messina for their unconditional help, friendship, collabora-

tions, and discussions during these long way.

I would like to thank all my colleagues at the University of Catania because,

in one way or another, they contributed to this with a comfortable working and

enjoying environment.

In particular, I would like to thank all my 200th room colleagues for being patient

with me during these three years. Thanks to you for helped me growing, maturing

and I can confirm that I have found a small family, thanks, Santi Orlando, Francesco

Ragusa, Luca Guarnera, Marco Rosano, Filippo Milotta and Lorenzo Di Silvestro.

I also thank my friend and colleague Riolo Salvatore, with whom I had the

opportunity to laugh, study and make new international experiences.

Special thanks go to Enel Green Power S.p.A. and to my advisors, Giuseppe

Leotta and Iuvara Dario and company colleague Eleonora Arena, who helps me in

the last period.

Moreover, thanks to Xacria S.r.l. and the employers, with which I made a lot of

Cloud and Internet of Things projects, that helped me to grow in my research, in

particular Filippo Randazzo who was very patient with me.

Appreciation is also expressed to all my students and undergraduates with which

I worked in the last years and to Daniele Mulà that helped me with my university

course.

iv

Contents

Abstract ii

1 Introduction 1

1.1 Problem definition . 7

1.2 Thesis Scope . 8

1.3 Thesis Outline . 9

Publications 10

I Communication Protocols and Privacy Preservation for
IoT 12

2 Flight control of UAV flocks through fifth Generation Mobile Net-

work 13

2.1 Introduction . 13

2.2 Related Works . 15

2.3 Control of UAV Flocks and Performance Requirements 18

2.3.1 Virtual Application Functions 19

2.3.2 Interface Definition . 23

2.4 Conclusions . 25

3 A Self-organizing Network Protocol for LoWPAN Networks 26

3.1 Introduction . 26

3.2 Related Works . 28

3.3 The Proposed Protocol . 28

3.3.1 Network Topology . 29

3.3.2 Presentation Frame . 30

3.3.3 Routing Process . 31

v

3.3.4 Lead Node Selection . 31

3.3.5 Network Node Connection . 32

3.3.6 Node Failure . 32

3.4 Case Study . 35

3.5 Conclusions . 35

4 Privacy Preservation enchantment for Delay Tolerant Networks on

IoT Environment 37

4.1 Introduction . 37

4.2 Related Works . 39

4.3 Introduction to PRoPHET protocol 40

4.4 Innovation from natural context . 41

4.5 Privacy Preserving Delay Tolerant Network (PPDTN) 42

4.5.1 Starting phase . 44

4.5.2 Evolution Function . 44

4.5.3 Ageing Function . 47

4.5.4 Matching Function . 48

4.6 Experimental Results . 48

4.7 Conclusions . 52

II Simulators and Performance Improvements for IoT 54

5 A Framework for Realistic Simulation of multi-UAV Applications

and Networks 55

5.1 Introduction . 55

5.2 Related Work . 58

5.3 System Model . 61

5.4 Simulation Tools . 63

5.4.1 Gazebo . 63

5.4.2 ArduPilot and DroneKit . 64

5.4.3 Network Simulator 3 . 65

5.5 The Integrated Simulation Environment 66

5.5.1 Basic Components . 66

5.5.2 The GzUavChannel . 68

vi

5.5.3 Timing and Synchronization 70

5.5.4 Managing Simulations in a Distributed Environment 73

5.6 Case-Study: Leader-Follower . 75

5.7 Performance Evaluation . 77

5.8 Conclusions . 78

6 Wale: libraries and packages sharing approach in Docker Contain-

ers 80

6.1 Introduction . 80

6.2 Related works . 82

6.3 Background . 84

6.3.1 Virtualisation via Hypervisors 84

6.3.2 The Docker Approach . 85

6.4 Docker Images and Dockerfiles . 86

6.5 The Wale approach . 89

6.5.1 Basic Working Principle . 89

6.5.2 The Wale Tool . 90

6.5.3 Example of a Wale file . 94

6.5.4 Images Deletion and Garbage Collection 96

6.5.5 Isolation and Privacy of containers 96

6.6 Case Study and Experimental Data 97

6.6.1 Discussion . 99

6.7 Conclusions . 100

III Machine Learning Techniques applied to IoT 102

7 Fabulos: a Domotic Assistant Agent for Interaction by means of

Natural Language 103

7.1 Introduction . 103

7.2 Related works . 104

7.3 Software Architecture . 107

7.4 Extracting Intentions from Utterances 108

7.5 Case-Study . 112

7.6 Conclusions . 115

vii

8 A Neural Network Model for the Solar Module Power Prediction 117

8.1 Introduction . 117

8.2 Related Works . 119

8.3 Automated Assembly of Solar Modules 120

8.4 Dataset Analysis . 124

8.5 Model . 128

8.5.1 Error Model Definition . 131

8.5.2 Achievements and Observations 132

8.6 Improved Model . 133

8.7 Application . 136

8.8 Conclusions . 137

8.9 Acknowledgments . 138

9 Conclusions 139

Bibliography 140

viii

List of Figures

1.1 Internet of Things Architecture and technologies. 2

1.2 Internet of Things Communications modes. 3

1.3 Industry 4.0 / IIoT fields. 5

1.4 IoT Arguments of this Thesis. 8

2.1 Hierarchical Cloud Architecture of a 5G system. 17

2.2 Virtual Infrastructure of the Proposed Architecture. 20

3.1 A Network Protocol topology and node types. 29

3.2 Left: the idle node prefer the node with stronger RSSI. Right: the

idle node prefer the node with higher layer level. 30

3.3 Lead Node failure: the recovery process involves only nodes residing

in the first layer and thus the only ones with the strongest RSSI to

the gateway. 33

3.4 Middle Node failure: the Recovery process involves End Nodes di-

rectly linked to the failed Middle Node. 34

4.1 Example of a node track, in Frequency Domain (a) and in Time

Domain (b) (Note: function b is sampled accordingly to definition) . . 42

4.2 A portion of the public track, the relative cubic spline interpolation

and the original track . 45

4.3 Example of repeated applications of the evolution function to the

node A track (zoomed view). 47

4.4 Example of movements starting from the position wj. The value P (i)

represents the probability that the next step is the point wj+i 49

4.5 Comparison between PRoPHET vs. PPDTN in terms of encounters

that can reach a given target. 51

ix

4.6 Performances comparison between PRoPHET vs. PPDTN in the

range of working value (values less than 0.70 have been erased). . . . 51

4.7 Performances comparison between PRoPHET vs. PPDTN in the

range of working value. 52

5.1 Architecture of a UAV and other components of a multi-UAV appli-

cation . 62

5.2 Software Components and Architecture of the Integrated Simulator . 67

5.3 Relationships among Components and the GzUavChannel 69

5.4 Sequence diagram showing messages exchanged among processes for

each simulation step . 71

5.5 Interactions between High-level Logic processes and ns-3 73

5.6 Architecture of the Integrated Simulator in a Distributed Environment 74

5.7 Simplified listing of the Leader . 75

5.8 Simplified listing of the Follower . 77

5.9 Screenshot of 40 UAVs taking off . 77

5.10 Simulation runtime corresponding to 280 seconds of simulated time . 78

6.1 Hypervisors Type-1 and Type-2 . 85

6.2 Virtual machines and Docker Containers architectures 87

6.3 Three Docker images with same root file system, libraries and appli-

cation . 88

6.4 Three Application images with same base image (Core image) and

then same libreries . 92

6.5 The Work-flow of Wale . 93

6.6 Disk space usage for different applications 99

7.1 The Software Architecture of Fabulos 106

8.1 Solar Cell I − V Characteristic . 122

8.2 Heatmap of the normalised original dataset correlations 127

8.3 Principal component analysis of the normalised original dataset . . . 128

8.4 Neural Network Model Structure . 129

8.5 Distributions of prediction results (with one BIN) 132

8.6 Distributions of prediction results (with two BINs) 135

x

8.7 Some application screens. 137

xi

List of Tables

2.1 Interface list and description . 23

6.1 Disk space usage for different applications. 100

8.1 Original dataset statistics . 125

8.2 Original dataset inputs description 126

8.3 Example of input dataset (not normalised) 128

8.4 Neural Network Model Settings . 131

8.5 Prediction results statistics (with one BIN) 133

8.6 Example of input dataset with two classes (not normalised) 134

8.7 Example of final dataset after predictions with two classes (not nor-

malised) . 134

8.8 Prediction results statistics (with two BINs) 136

xii

To my mother, which always believed in me.

To my love, which has been with me in the worst times.

To my father, that can no longer be here but pushed me

to take this.

I love all of you, Giuseppina, Daniela and Francesco.

1

Chapter 1

Introduction

The Internet of things (IoT) term is new as old and was mentioned by Kevin Ashton

in 1999[1], taking up the idea of radio frequency identification (or RFID) with what

was at the time the leading topic, namely the Internet. From that event, many

companies predicted the dissemination of this technology[2], as the increase in the

number of things interconnected between them and, also, through the Internet[3].

This increase was renowned in the last ten years[4].

Many believe that the succession of such events is mainly due to the famous laws

of Moore[5] and Koomey[6]. According to Moore, the number of transistors within

the chips doubles about every two years, allowing the development of more powerful

machines, even the size of a single chip. Koomey explains instead that the number

of computations per kilowatt-hours doubles approximately every year. Considering

the two mentioned laws, it is easy to see how these also represent that machines can

become smaller, also decreasing the energy required to perform the computations

that the chip can perform, effectively making these more energy-efficient.

There is no real definition of the IoT, although several research groups have

given their definition. In general, we can say that ”the IoT is defined as a dynamic

and global infrastructure, with the ability to self-manage based on interoperable

communication standards and protocols”[7], more simply, ”things” capable of com-

municating with each other or allowing users to communicate with these devices.

The IoT combines different technologies within what then becomes a semi-

autonomous network of various types of devices. These are classified according

to their functionality, such as sensors, communication, computation, identification

or service, which are connected to the software technologies present today. Consid-

ering also that these devices can communicate through the Internet, it is easy to

Chapter 1. Introduction 2

GPS MCU

Can Bus

Sensors

Actuators
Bluetooth

Wi-Fi

Free Band Radio

Internet

Orchestratos

OpenStack, AWS, Azure, etc.

IoT Applications

C/C++
Micro Python

Javascript
Go Lang

LoRa, LoRaWAN

NB IoT

Cloud
Platforms

NodeJS
Python
C/C++

C#
Java

HTTP
MQTT

WebSocket

Figure 1.1: Internet of Things Architecture and technologies.

imagine an infinity of types of devices that can be designed.

An IoT device is equipped with a series of sensors that allows it to draw infor-

mation from the environment that surrounds it, such as environmental temperature,

humidity, light intensity, or more commonly, its physical position in an open envi-

ronment via GPS. These devices are also equipped with computational capabilities

which allows them to process information and may perform any type of operation

(e.g. a thermostat that turns off according to the environmental temperature).

These devices are also equipped with communication modules, which allows them

to communicate wirelessly, thereby using high-level messaging protocols, services

and cloud infrastructure through Internet protocol (IP). Among the most frequently

used messaging protocols are HTTP and MQTT protocols, which are useful when

devices need to publish or share information at that moment (e.g. a sensor read-

ing). When a realtime communication is necessary, appropriate protocols, such as

Websocket, should be used.

The most important part of IoT is how these devices are connected in order to

communicate. This ability is essential when you want to label an object as an IoT

object. However, ”the how” is less important, because the physical links and the

MAC layer for these devices, can be made in different ways. The implementation

of this depends on the purpose, the use and the environment. In general, there are

three methods of communication within the IoT.

The first method concerns those devices that do not need to communicate through

a network but communicate directly with another device. This kind of communi-

cation, also known as peer to peer (P2P), becomes very useful when two devices

are close enough to be able to communicate in a more simplified way. This type

Chapter 1. Introduction 3

Gateway

1. Peer to Peer Device
Connection

2. Device to Gateway
Connection

3. Direct device to
Internet connection

LoWPAN
Link

IP
Link

Figure 1.2: Internet of Things Communications modes.

of communication usually occurs through radio technologies, such as Bluetooth or

Zigbee, the latter based on 802.15.4.[8].

Another way is to communicate through the Internet with the use of a gate-

way. These devices use low-energy medium/long-range radio technologies, such as

6LoWPAN or LoRa, to communicate with a common gateway, which has the same

network interface. This gateway finally manages to send various messages received

by the devices to possible servers via Internet Protocol (IP). A practical example is

the LoRaWAN protocol.

Finally, a device may have the ability to communicate through the Internet

without the aid of any gateway, for example by taking advantage of commonly used

network interfaces, such as Ethernet or Wi-Fi or via the mobile data connection

(3G, 4G, NB-IoT).

From this, we understand how interconnectivity is the most important feature

for the IoT because the basic concept is built precisely on the ability to communicate

with everything trying to get a heterogeneous system. This is also the most difficult

point to reach, as there are many communication protocols, all different from each

other to date. Designing and implementing new communication solutions by using

more than one protocol has become a subject of research that seeks to address

technical and security issues. These issues are based on the purpose, the use and

the environment.

IoT applications are applicable in almost any field, thanks to the fact of low

energy consumption, which makes it possible to design and develop battery-powered

Chapter 1. Introduction 4

devices, which can be used in environments without it. Smart homes are equipped

with advanced automatic systems. Some can be scheduled for various operations

or tasks, such as light management, power consumption, video and audio control,

security and alarm systems, etc. These environments are usually referred to as

intelligent environments which are sensitive and adaptive to modern human needs[9].

Nowadays, the objectives of a smart home are to simplify energy management and

reduce unnecessary consumption[10]. This is important because energy consumption

and the comfort of the occupants are key factors when talking about smart home

environments[11].

One of the most striking fields of IoT, in recent years, is certainly the indus-

trial one. We often talk about the industrial revolution and how this has changed

enterprises in the last decades. The first great revolution began in 1790 in Great

Britain, implementing the aid of motor machinery. This revolution changed sev-

eral techniques and commodities. Among these, for example, are the replacement

parts for the same machines which lead to the first mass production. Later, in

the 20th century, the automobile industry revolutionised the business world again,

know as the Second Industrial Revolution. The biggest novelty was the creation

of the so-called assembly lines, introduced in the early 1900s. There was also a

third revolution, which was represented in a more general way by the introduction

of telecommunications, bringing production and sales to a global rather than just a

local level.

The fourth industrial revolution[12], the one we are currently experiencing, comes

from the implementation of new modern technologies, such as the IoT, called Indus-

try IoT (IIoT)[13]. It defines a sub-category of IoT concerning technologies applied

to the industrial environment. This has proven to be a key technology for the Indus-

try 4.0, by improving and optimising production processes through the connection

between machinery; the realisation of data useful for the production analysis; pre-

ventive checks on the state of production, and control of production times in general.

The IIoT also represents an evolution of the IoT, allowing a device to have multiple

connections at the same time and to work with a greater amount of data.

Compared to normal IoT devices, the IIoT ones need to be more resistant, as

they must operate in extreme conditions. Usually, these devices are used in en-

vironments where the temperature or the risk of corrosion is high or immersed in

Chapter 1. Introduction 5

Industry 4.0
(IIoT)

Water

Clean Water

Waste Water

Logistics

Air

Rail

Maritime

Road

Mining

Energy

Renewable

Elettricity

Gas

Oil

Manufacturing

Design

Plan

Make

Deliver

Agriculture

Telecommunications

Farming

ForestryAcquaculture

Mobile

Fixed

Satellite

Figure 1.3: Industry 4.0 / IIoT fields.

water. In some extreme situations, where the environment has no power supply for

such devices, these are equipped with special batteries which are able to withstand

these types of environments. These devices have greatly improved the quality of

production and productivity itself. Many of the production processes, especially

those that require repetitive operations[14], are now automated by machines and

robots that communicate their status and production through communication chan-

nels to a data center; data that will be processed later[15]. It is obvious to see that

the industrial revolution not only brought the use of IIoT in production but also in

safety requirements. Thanks to these devices it is now possible to monitor the state

of the air in a given place; possible technical faults in a machine that could become

dangerous to workers and the various automation processes that may prevent unfor-

tunate accidents. All this, however, has a cost. The implementation of such devices

can be expensive for a company. Furthermore, the same devices must be designed

and programmed ad-hoc for the task they will have to perform. Even the design and

development of such devices is not trivial. In a manufacturing environment, these

devices must guarantee a certain degree of reliability and resistance to failures; and

Chapter 1. Introduction 6

any certifications that may eventually bring the device to the market may be costly

and difficult to obtain[16].

Even though the Industry 4.0 was a clear industrial revolution along with IoT

technologies, there is room for improvement[17]. Recently, there has been talk of a

new fifth industrial revolution, which would bring artificial intelligence (AI) within

the production process to further improve production. In reality, it may seem strange

to many that the implementation of an AI within a production line can assert itself

as a real revolution, as artificial intelligence is already used within these companies.

Nowadays, the IIoT is based on a continuous collection of information and commu-

nication to a data center, where it will be stored. This information is then used

to instruct an artificial intelligence to predict failures and malfunctions within their

production chain. The goal of the fifth industrial revolution is to create devices

capable of making decisions, mostly simple, within a production line. An example

is an infrastructure that would simplify connections between individual devices and

a centralized server, particularly when these are powered by batteries alone. The

ability to make decisions in complete autonomy is the simplest way to avoid un-

necessary wireless communications, reducing the energy consumption of devices and

prolonging their operation.

The concept of artificial intelligence is mostly linked to machine learning tech-

niques, which is a subcategory of AI. Machine learning can be defined as a set of

methodologies that have been developed during the years, such as pattern recog-

nition, image elaboration, data mining and deep learning. In the scientific field,

machine learning is often linked to computer vision. Nevertheless, in recent years

these methodologies have found application in other areas, such as data processing

and IoT. Deep learning techniques, particularly neural networks, have shaken global

research in recent years. The possibility of generating a neural network model and

being able to use it in IoT devices would make these intelligent capable of making

relatively simple decisions, with a good degree of reliability. A practical example

would be a smartwatch. Depending on the wearer’s heart rate, humidity and other

sensors data, it can predict a possible malaise of the wearer, and contact emergency

services promptly. In industry and production environment, this would lead to new

infrastructures, where individual machines can, for example, understand or predict

the quality of a final product, possible local failures, or energy consumption and, as

Chapter 1. Introduction 7

a consequence, production costs.

1.1 Problem definition

Even though IoT has evolved in recent years there are still some doubts and known

problems. In IoT, data and information communications are the key to its infras-

tructure, but it is not designed to be secure. Even the availability of many network

protocols makes it, ironically, difficult to manage. Many of these are proprietary

protocols and are not free to date. They work with frequency bands that some-

times are limited in many countries around the world. This problem has made the

design of several commercial and all types of open-source solutions very popular,

nonetheless leading to confusion, making it difficult to understand them. Further-

more, the implementation of the same communication protocols is not trivial, and

the choice of which to use depends on the application environment which often leads

to bizarre solutions that are not entirely heterogeneous. A clear example is commer-

cial products for home automation. Most of these devices work via a normal Wi-Fi

connection, though others use Zigbee or other technologies (maybe proprietary) as

a commercial solution, making it difficult to interface with such instruments.

Another topic worthy of note is privacy, taking as an example the same IoT

devices for home automation. These exploit external services in the cloud, effec-

tively, transferring information and voice recordings for the smooth operation of the

device. The situation is worse concerning even the most modern security cameras

which constantly send audio and video streams of our lives today. Even the various

elaborations that face the devices are not to be underestimated. Many of these IoT

devices, however powerful, have limited reasoning capabilities, leading to long pro-

cessing times sometimes blocking the device. Moreover, the problem could also exist

in resources in general, such as storage space, where information or neural models

are stored.

Finally, there are still several difficulties to be overcome. These are current

research topics that need to be studied and resolved. An example is the indoor

localisation, which is useful inside of a company or a production chain, especially if

they want to automate the movements of logistic robots. Unmanned Aerial Vehicle

Chapter 1. Introduction 8

(UAV) is also a topic of interest, increasingly used in the industrial field, as well as

in logistics.

1.2 Thesis Scope

The Internet of Things is a vast area of research that has evolved steadily over the

last two decades. As a result, it represents a huge area of study that involves a

combination of many disciplines: hardware, security, communication, cloud com-

puting, big data, deep learning, etc. This multi-disciplinary nature of IoT requires

the constant collaboration of researchers with different research curricula. There are

so many problems in this area today, and no one can deal with them all. During the

period of my PhD, I decided, together with my associates and my academic adviser,

to focus in particular on three specific areas of IoT and its current research issues

or topics which are mostly dedicated to the industrial field but applicable to any

context.

Communication Protocols and
Privacy Preservation for IoT

Simulators and Performance
Improvements for IoT

Machine Learning Techniques
applied to IoT

Thesis Parts
Part I Part II Part III

Figure 1.4: IoT Arguments of this Thesis.

This thesis focuses, in detail on the study of the feasibility and design of new so-

lutions for IoT. It also proposes and analyses the problems and solutions considering

three macro areas of IoT, such as Communication Protocols and Privacy Preserva-

tion, Simulators and Performance Improvements and Machine Learning applied in

the IoT environment. All aspects of this research are not strictly focused on specific

devices, but find applications in a wide range of these, such as UAVs, embedded de-

vices and microcontrollers. This thesis, therefore, represents a set of improvements

regarding IoT, such as scalability, information processing, communication, privacy,

interoperability and energy efficiency.

Chapter 1. Introduction 9

1.3 Thesis Outline

The thesis consists of three parts, each organised with a macro area. The first part

presents research and solutions regarding the applicability of the new fifth generation

of mobile communication (5G), especially applied to UAV systems for coordinated

flight control. It also introduces an improvement applicable to any delay-tolerant

network, improving privacy preservation of information exchange between nodes.

Finally, a LoWPAN protocol, based on the 802.15.4 standard, capable of auto-

adapting to any situation or failure, will be presented.

In the second part, two innovative solutions will be presented, regarding simu-

lation and embedded computing. The first solution is a complete simulator of UAV

systems, capable of simulating through the integration of network-simulator 3 (NS-

3) wireless communication systems realistically, allowing you to install and use the

simulator in a distributed way. The second solution concerns an approach to build-

ing Docker images, which by default, which must ensure privacy between the various

containers and would generate used storage space unnecessarily. The new approach,

called Wale (assonance with the word Whale), stands above Docker without altering

the internal operation, allowing you to save storage space and managing to share

packages and libraries between containers, without denying privacy between them.

Finally, in the third part, other solutions related to machine learning techniques

applied to the IoT environment will be discussed. The first is based on the develop-

ment of a social assistant, called Fabulos, which allows users to interface with their

home automation devices through social channels. This software tool defines a So-

cial Network Interface and a BDI Interface Engine which is a system with artificial

intelligence, based on rules, that implements the logic of interactions and the various

tasks to be performed. Lastly, a neural network model will be introduced which can

predict the maximum power production of a solar module. A set of solar cells is

given as input to that neural network. The model was made using a dataset of real

data, produced during production tests, thereby making it ready for use in produc-

tion for tests and simulations. The proposed model reached an excellent level of

accuracy during the test phases and has been implemented within a cross-platform

software that allows predictions and simulations, even via the network.

10

Publications

1. Integrating Heterogeneous Tools for Physical Simulation of multi-

Unmanned Aerial Vehicles[18]

Authors: Fabio D’Urso, Corrado Santoro, Federico Fausto Santoro.

Status: Published in 19th Workshop on Agents conference (WOA2018).

2. The Tactile Internet for the flight control of UAV flocks[19]

Authors: Fabio D’Urso, Christian Grasso, Corrado Santoro, Federico Fausto Santoro,

Giovanni Schembra.

Status: Published in 4th IEEE Conference on Network Softwarization and Work-

shops (NetSoft).

3. Wale: a Dockerfile-based approach to deduplicate shared libraries

in Docker containers[20]

Authors: Fabio D’Urso, Fabrizio Messina, Corrado Santoro, Federico Fausto Santoro.

Status: Published in IEEE 16th Intl Conf on Dependable, Autonomic and Secure

Computing, 16th Intl Conf on Pervasive Intelligence and Computing, 4th Intl Conf

on Big Data Intelligence and Computing and Cyber Science and Technology Congress

(DASC/PiCom/DataCom/CyberSciTech).

4. An integrated framework for the realistic simulation of multi-UAV

applications[21]

Authors: Fabio D’Urso, Corrado Santoro, Federico Fausto Santoro.

Status: Published in Computers & Electrical Engineering Journal.

5. Meaning Extraction in a Domotic Assistant Agent Interacting by

means of Natural Language[22]

Authors: Carmelo F. Longo, Fabrizio Messina, Corrado Santoro, Federico Fausto Santoro.

Status: Published in IEEE 28th International Conference on Enabling Technolo-

gies: Infrastructure for Collaborative Enterprises (WETICE).

Chapter 1. Introduction 11

6. Design of Self-organizing Protocol for LoWPAN Networks[23]

Authors: Matteo Buffa, Fabrizio Messina, Corrado Santoro, Federico Fausto Santoro.

Status: Published in 12th Internet and Distributed Computing Systems Interna-

tional Conference (IDCS 2019).

7. Wale: A solution to share libraries in Docker containers[24]

Authors: Fabio D’Urso, Corrado Santoro, Federico Fausto Santoro.

Status: Published in Future Generation Computer Systems Journal.

12

Part I

Communication Protocols and

Privacy Preservation for IoT

13

Chapter 2

Flight control of UAV flocks

through fifth Generation Mobile

Network

2.1 Introduction

Unmanned Aerial Vehicles (UAV), also known as “drones”, are nowadays devices

widely available, and that can be bought off-the-shelf. Small UAVs can be eas-

ily obtained from sellers, and their employment ranges from toys to professional

applications. A wide range of monitoring applications is now made possible with

reasonable costs thanks to the availability of such small professional UAVs that can

be equipped with cameras or other kinds of sensing devices.

However, one of the main drawbacks of such UAVs is their autonomy that, with

the technology currently used for high capacity batteries, allows a flight time of only

15-20 minutes. This limitation impedes long-term missions and, as consequence,

restricts the size of the areas to monitor. To avoid such a problem, an approach

proposed by several researchers is the adoption of a flock of UAVs [25, 26, 27] that,

by flying in a proper formation, can—in principle—cover an area that is n times

(with n the number of drones) larger than the area covered by a single drone.

State-of-the-art solutions exploit decentralized approaches: each UAV is equipped

with a proper hardware-software infrastructure able not only to ensure flight sta-

bilization and control, but also to interact with other UAVs (by means of a com-

munication technology) in order to plan all together the best path for the mission

to perform. The result is an emerging behavior that drives the flock towards the

Chapter 2. Flight control of UAV flocks through fifth Generation Mobile Network14

coverage of the area to be monitored. Using a distributed/decentralized architecture

is the key to ensure also load balancing and fault tolerance. Moreover, thanks to

the autonomy, should a UAV fail the other UAVs can detect the event and adopt

proper countermeasures.

As it is well known, any decentralized architecture that is asked to support an

emerging behavior needs a proper communication infrastructure, otherwise entities

cannot self-organize. Wireless (ad-hoc) networks can, in this case, serve for the

purpose, but they suffer of two main drawbacks:

• Limited Range. Wireless devices used in the UAVs (as in any wireless sensor

network) have a limited range, so a complete coverage of the whole flock could

not always be possible (above all when the flock is large). In this case, routing

protocols must be adopted thus increasing the communication latency.

• Medium Access. A well-known key problem of wireless ad-hoc networks is the

medium access control. Even if specific protocols are used, the probability of

packet collisions on the same shared transmission medium is always present,

thus constituting another factor that affects bandwidth and latency.

A solution to the above issues is provided by the incoming fifth generation (5G)

of cellular systems [28, 29, 30, 31, 32, 33]. One of the main peculiarities of 5G

technology is the introduction of Multi-Access Edge Computing (MEC) [34, 35],

an ETSI proposal that leverages on network softwarization paradigms like Software

Defined Networks (SDN) [36] and Network Functions Virtualization (NFV) [37].

Leveraging on the above paradigms, a Telco operator is able to offer application

developers and content providers cloud-computing capabilities at the edge of the

network to achieve ultra-low latency and high bandwidth, as well as real-time access

to radio network information.

Another key element introduced with 5G and complementary to MEC is the

concept of network slicing [38, 39], defined by the Next Generation Mobile Net-

work Alliance (NGMN) as an independent virtualized end-to-end network allowing

operators to run different deployments based on different architectures in parallel.

Specifically, the term network slice refers to an instance of such a logical network us-

ing network and application function chains for delivering services to a given group

of devices. An exemplary application for network slicing is the “Tactile Internet”,

Chapter 2. Flight control of UAV flocks through fifth Generation Mobile Network15

with the purpose of achieving interactions between a human or machine and physical

objects in timescales of 1 ms. Extremely high reliability and security are additional

requirements, nonetheless the mission-critical characteristics associated with its ap-

plications.

In this section, we propose a software architecture based on a 5G communica-

tion infrastructure to control a flock of UAVs in their monitoring mission. The

architecture is composed of three main modules: flight control, which is the flight

stack needed to control stability, speeds and waypoints, the flock control, which is in

charge of deciding the UAV movements to maintain a given shape of the flock, and

the mission control, which is in charge of controlling the mission by sending proper

commands to the UAVs. The above modules usually run on board the UAVs because

of the strict interaction needs with the controlled UAVs. Instead, in this chapter, by

taking advantage of ultra-low latencies guaranteed by the 5G Tactile Internet, these

modules are designed to run on the edge of the network, i.e. in proper servers placed

either in the edge cloud deployed in the Central Office (CO) at the access point of

the core network, or even in the base stations, according to the latency requirements

between them and the UAVs they are controlling.

These modules also feature replication in base stations of adjacent cells in order

to support the continuity of operations even when one or more UAVs perform the

handover. Finally, some additional modules not presenting so hard requirements,

can be run on remote core clouds, and this is necessary if they require very huge

amounts of storage and/or computation.

2.2 Related Works

We consider, as a reference scenario, a certain area of terrain—more or less wide—to

be overflown for a specific reason, e.g. aerophotogrammetry, video or IR inspection,

seeding or fertilizer spreading for agriculture, etc. Here a set of UAVs is employed,

with the objective of subdividing the whole area into portions, each overflown and

monitored by one UAV. The way in which the area is subdivided and the parts

assigned to UAVs vary on the basis of the employed approach.

Some solutions presented in the literature [40, 41, 42] adopt a centralized model

in which a (centralized) entity performs an off-line (batch) processing in order to

Chapter 2. Flight control of UAV flocks through fifth Generation Mobile Network16

determine area partitions, thus assigning each partition to a different UAV that will

execute the overflight in autonomy. The central entity has also the task of checking

that all UAVs are working and, in case of failure, can assign the area of the faulty

UAV to another (or more) working UAVs.

Other proposals [43, 44, 45, 25] adopt a completely decentralized approach by

avoiding any central entity, and distributing the mission algorithm to the UAVs

themselves. In this case UAVs cooperate by exchanging messages and self-organize

in order to (i) form and maintain a “flock of drones”; and (ii) plan the optimal path

to cover the area to monitor. By continuously exchanging messages, each UAV can

also detect if another UAV fails (i.e. it becomes “silent”) and, altogether, re-plan

the path in order to re-scan areas lost by the failed entity. This kind of solutions

implies that UAVs can continuously interact to each other, therefore they need

a proper communication infrastructure able to guarantee certain quality-of-service

parameters.

In this chapter we consider the latter approach, i.e. a distributed solution to con-

trol a flock of drones belonging to an aerial monitoring platform, but leveraging on

a 5G Tactile Internet slice as the communication and computation commodity. This

slice provides support for ultra-low latency communications among all the elements

constituting the monitoring platform considered in this chapter. The physical struc-

ture of the 5G network is sketched in Figure 2.1. It is hierarchical from the radio

access network (RAN) to the remote Internet. The RAN is realized as a Cloud-RAN

(C-RAN), that is, constituted by an additional layer of small cells into the existing

macro-cell network, deployed as remote radio heads (RRHs), and connected to a

cloud where baseband units (BBU) are pooled in a single geographical point for a

one-to-one logical mapping.

The fixed network comprises the access and the core domains. The Fixed Access

Network interfaces the radio link with the Core Network. While the core domain is

commonly implemented with optical transport, the access domain uses a heteroge-

neous set of transport technologies. However, adopting optical transport also in the

access domain is a key enabler for the Tactile Internet as it offers high capacity and

small propagation delays, mandatory features to achieve the requirements imposed

to the Tactile Internet.

Chapter 2. Flight control of UAV flocks through fifth Generation Mobile Network17

Figure 2.1: Hierarchical Cloud Architecture of a 5G system.

Distribution of physical resources, as Figure 2.1 shows, allows different deploy-

ment levels of computing resources, all open to third-party service providers to run

their applications:

• The Core Cloud, which is a centrally located data center that hosts a large col-

lection of processing, storage, networking, and other fundamental computing

resources. On this cloud, the provider of the considered aerial video-monitoring

service is allowed to deploy and run software, e.g., operating systems and ap-

plications, to realize its service. Typically, only a few core clouds are installed

in a nationwide telco Operator network.

• An Edge Cloud, which is implemented inside an access branch of the fixed

network, closer to the end user, typically deployed inside a central office (CO).

This location constitutes a good trade-off between proximity with end-users

and devices, and computation and storage capacities.

• A Cloudlet, or Nano-Cloud, which is a mobility-enhanced small-scale cloud

data center, usually co-located with the macro cell sites. The main purpose

of the cloudlet is hosting the deployment of the Tactile Support Engine where

running resource-intensive and mobile applications to provide ultra-low latency

services and Artificial Intelligence (AI) to mobile devices like the UAVs we are

considering in this chapter.

Chapter 2. Flight control of UAV flocks through fifth Generation Mobile Network18

Physical and virtual resources belonging to the underlying network infrastructure

are managed and orchestrated by the Orchestrator entity, which is in charge of the

lifecycle of all the network and application functions, their placement and their

mapping on the available physical resources.

The optimal allocation of processing functions composing the aerial video-monitoring

service application on the different levels of computing resources described so far

will be described in the following according to the interaction requirements with the

UAVs.

2.3 Control of UAV Flocks and Performance Re-

quirements

As said so far, the best strategy to control UAV flock flight is by applying a dis-

tributed approach. However, difficulties in propagating information from each UAV

to all the others belonging to the same flock due to the short-range communications,

strongly limit the number of UAVs composing a flock, their maximum allowed speed

and the UAV density in the flock.

The idea at the base of this chapter, that can be realized only thanks to the usage

of a 5G Tactile Internet slice, is to create a digital twin of each UAV with a Virtual

Drone image running on the ground as a chain Virtual Application Functions (VAF),

and timely distributed among the three different cloud levels shown in Figure 2.1.

As depicted in Fig.2.2, the proposed aerial video-monitoring service application

can be realized with a number of Virtual Drones, each representing a virtual image

of a physical drone participating to the monitoring mission, and a set of additional

elements aimed at coordinating them and integrating their work with additional

facilities. Each component of the above elements is implemented as a VAF running

inside an execution container like, for example, a virtual machine, a Linux Container

or a programmable embedded system. VAFs chained to realize a Virtual Drone,

as well as the additional VAFs Global Video Processor, Historical Video DB and

Mission Manager, will be described in details in Section 2.3.1, while interfaces will

be defined in Section 2.3.2.

Chapter 2. Flight control of UAV flocks through fifth Generation Mobile Network19

2.3.1 Virtual Application Functions

UAV Flight Controller. The UAV Flight Controller is one of the most critical

parts of the system. It provides the low-level functionalities to perform control, and

stabilization of a UAV and implements the overall classical flight stack by exploiting

the inertials and positioning sensors that are installed on the physical UAV. Indeed,

the state-of-the-art technique employed to control a UAV is to determine its attitude

and position, by computing Euler angles—roll, pitch and yaw and their derivatives—

from the data by an Inertial Measurement Unit (IMU1), and the global position by

means of GPS and a barometer. These data are analyzed and processed by the

stabilization software that implements the control loops and, in turn, outputs data

for driving propellers in order to let the UAV keep the desired target attitude and

position.

Since this VAF has to interact with the physical entity, it must comply with the

requirements related to the dynamics of UAV control loops that, in general, must be

in the order of 500 Hz (i.e. 2 ms of maximum duration) and requires strict real-time

computations otherwise the system would result uncontrollable. This is the reason

why flight stacks are usually implemented by means of embedded/microcontrollered

systems that, however, even if they can provide the needed real-time requirements,

usually present a not so high computation power that, on the contrary, would be

really needed for data processing and sensor fusion (e.g. Kalman filters) implemen-

tation.

Flock Controller. The Flock Controller is in charge of implementing the

Flocking formation and maintenance algorithm. We consider, in particular, the

flocking algorithm presented in [25, 43], that we briefly describe here2. The objective

is to establish a flock shape that can be optimal to perform area scan; the used

approach exploits a decentralized algorithm that, on the basis of the mutual positions

of the various UAVs, determines the target horizontal and angular speeds to be

applied to UAVs, in order to ensure that the desired flock is maintained. This

process is performed by each Flock Controller using an autonomous loop that:

1An IMU is in general made of 3-axial gyros, accelerometers and magnetometers
2The reader interested in understanding the details of the algorithm can refer to the cited

bibliography.

Chapter 2. Flight control of UAV flocks through fifth Generation Mobile Network20

Figure 2.2: Virtual Infrastructure of the Proposed Architecture.

Chapter 2. Flight control of UAV flocks through fifth Generation Mobile Network21

1. Obtains the positions of the other UAVs by contacting the relevant Flock

Controllers;

2. Executes the control algorithm according to [25, 43];

3. Sends the computed target speeds to the UAV Flight Controller in order to

apply them to the physical UAV.

The dynamics of execution of the control loop of Flock Controller is in the order of
1
50
s while, as for the amount of data exchanged, the Flock Controller obtains GPS

position (latitude, longitude, heading and altitude) from the UAV Flight Controller

and the positions of the other UAVs from peer Flock Controllers; this last set of

data is dependent on the number of UAVs employed in the mission.

One of the main characteristics of the flocking algorithm is the selection of one

UAV which assumes the role of the leader, a role particularly important for the

area coverage task, which is described in the next subsection. The leader is selected

by all UAVs using a simple mechanism: since it is assumed that each UAV has a

unique ID, the leader is selected as the UAV with the lowest ID according to a given

metric. This choice ensures that, without requiring forms of negotiation or election,

all UAVs will select, in autonomy, the same leader.

Covered Area Manager. The main job of the Covered Area Manager VAF

is the implementation of the area coverage algorithms. Also in this case (since the

solution is distributed), each Virtual Drone has its own Covered Area Manager, and

its objective depends on the UAV role, i.e. whether it is the leader or a non-leader.

In the latter (non-leader) case, this VAF takes only into account the area parts

which are gradually covered by the UAV, storing the relevant information in a local

Area Part Database (APD). In the former (leader) case, the functionality is a little

bit more complex and includes the following steps:

1. the leader polls the APD of all the other UAVs and obtains all the parts

already covered by the flock;

2. the obtained data is merged in order to have a global and unique view of the

area parts to be still covered;

3. on this basis, the leader plans some possible paths that allow the needed

covering and selects the best one (shortest);

Chapter 2. Flight control of UAV flocks through fifth Generation Mobile Network22

4. the leader starts to fly on the chosen path and all the other UAVs, thanks to

the flocking algorithm, follow the leader and perform the monitoring functions.

This algorithm is executed periodically, with a period of about 1
8
s; this is re-

quired since, if one or more UAVs fail, the area parts covered by them (but not yet

transmitted and stored) must be rescanned: thanks to the said algorithm, the path

is continuously updated and adapted to changing conditions.

Local Video Processor. We suppose that each twin physical UAV is equipped

with a camera sensor that acquires images or video of the monitored area. Such a

video is streamed to the Local Video Processor that has the task of performing a

pre-processing according to the functions specified by the high-level user like, for

example, compression, feature extraction, encryption, etc.

Global Video Processor. The Global Video Processor receives all the video

flows pre-processed by each Local Video Processor and containing the images relating

to each monitored sub-area, and compose them to create a global video flow of the

monitored area as a whole. The resulting video flow is locally stored by the Global

Video Processor for a short time, and then is transferred to the Historical Video DB

to be stored definitively.

Historical Video DB. The Historical Video DB VAF is a simple storage el-

ement; it receives from the Global Video Processor, data that not only contains

the images themselves but also additional information including metadata, tags and

information extracted from the Local Video Processor. All of these data are thus

indexed and properly stored in order to be available for future search and analysis.

A further VAF that plays a key role in the whole monitoring system is the

Mission Manager , whose job is to control and manage the flight of the UAV

flock. For example, it imposes the shape and the speed of the flock, according to the

instructions received by the human service operator that is referred to as Mission

Initiator in Fig. 2.

As specified in [43, 25], the UAV Flight Controllers of all the UAVs need to

exchange information. Thanks to the fact that they run inside the same slice, we

can create a backend virtual network connecting all the Flock Controllers that,

therefore, can communicate with each other by broadcasting their information to be

shared with the other UAVs. The same is achieved for information exchange among

the Covered Area Managers of all the virtual UAVs.

Chapter 2. Flight control of UAV flocks through fifth Generation Mobile Network23

Interface Packet Size Latency

IPD←V D sensor data, lat,lng, altitude, status 60 byte 1 ms
IPD→V D motor power 32 byte 1 ms
IFl→Fk lat,lng,roll,pitch,yaw,status 29 byte 1

50
ms

IFk→Fl Vx,Vy, Vz, ωz 16 bytes 1
50
ms

IFk→A Image bounds 16 bytes 1
8
ms

IA→Fk Path bounds 16 bytes 1
8
ms

IFk,Bc lat,lng,hgt,yaw,status 17 byte 1/8 s
IFk,L compressed image from camera 1 MB - 10 MB best effort
IL,G compressed image from camera 1 MB - 10 MB best effort

Table 2.1: Interface list and description

Now, considering the flocking formation and maintenance algorithm and the data

to be exchanged through each interface shown in Fig. 2.2, we have derived the delay

requirements for each interface shown in Table 2.1, together with the kind and the

size of exchanged data.

2.3.2 Interface Definition

The interfaces defined between VAFs are listed in Table 2.1 together with communi-

cations requirements that have to be negotiated with the Network Slice Orchestrator.

IPD,V D is a bi-directional interface between the Physical Drone and the Virtual

Drone. In the uplink direction, the Physical Drone sends all the data related to

inertial and position sensors, i.e. gyroscope, accelerometer, magnetometer, barom-

eter and GPS (for the first tree sensors, a triple of values is acquired, one for each

geometric axis X, Y and Z). In the downlink direction, the Virtual Drone sends

the power of the motors computed by the stabilization and navigation algorithm.

The IFl,Fk interface connects the UAV Flight Controller and the Flock Controller.

Here exchanged data are the ones that are relevant to the flocking algorithm: the up-

link conveys position data while the downlink carries the set points for translational

and angular speeds.

The IFl,A interface connects the Flock Controller to the Covered Area Manager;

here the uplink is used to carry the information about the area portions which are

Chapter 2. Flight control of UAV flocks through fifth Generation Mobile Network24

gradually covered, and the downlink, which is used only by the leader, transmits

the path planned to perform area coverage.

Interfaces IFk,Bc and IA,Bc are two broadcast communication interfaces used to

share data among respectively Flock Controllers and Covered Area Managers. They

must support the same bandwidth and latency of IFk,F l and IFk,A.

The Interface IPD,L is used by the Physical Drone to transmit the captured

images to the Local Video Processor, the requirements of such an interface are

therefore similar to (but not the same of) those of traditional video channels, even if

real-time capabilities are not requested since the video must not be displayed. The

same characteristics are required by the IL,G interface, which connects each Local

Video Processor to the relevant Global Video Processor.

The IM,Flock interface is used by the Mission Manager to control the flock, by

sending to the Virtual Drones mission-specific parameters, such as area bounds,

flight altitude, max flight speeds, etc.

The IO,M interface allows the human operator to configure the mission by sending

the configuration parameters to the Mission Manager. On the other side, the Mission

Manager periodically provides the Human operator with the updates about the

mission progress.

Finally, the IM,O interface allows the Mission Manager to negotiate the network

slice parameters, in terms of computation, storage and latencies, with the Network

Slice Orchestrator, not only at the slice setup, but also at run time if some modifi-

cation is required during the service lifetime.

Information contained in Table 2.1 will be used by the Network Slice Orchestrator

to decide the placement of the VAFs inside the clouds available in the network, and

the links to realize the virtual graph of the overall virtual application service. For

example, each UAV Flight Controller must be deployed in the Cloudlet closest to

the current access point of the corresponding Physical Drone, while the Global

Video Processor and the Historical Video DB must be placed in clouds where high

computation resources and high storage resources, respectively. are available. Given

that no strict latency requirements are specified for these last elements, the most

suitable placement candidates for them are the core clouds.

Chapter 2. Flight control of UAV flocks through fifth Generation Mobile Network25

2.4 Conclusions

This chapter proposes a distributed platform for an aerial video-monitoring service

realized by leveraging on the Tactile Internet slice of a 5G communication system.

The UAVs providing this service are organized in flock, and their control is performed

by a chain of virtual application functions (VAF) running on the ground, in clouds

at the edge of the network. Very hard control loops, as the one needed to control

the engines of each UAV, which are usually realized by control functions installed

on board of the UAVs, can now be realized outside the UAVs, i.e. on the ground,

only thanks to the ultra-low latency and high reliability peculiarities guaranteed by

the Tactile Internet. The resulting deployment of computations in the edge provides

many advantages, in terms of scalability and fault-tolerance, and avoids processing

latencies, due to communication links, that represent an important drawback in

traditional solutions. Dimensioning the maximum number of UAVs that can belong

to the same flock, their minimum distance and the maximum speed for a given UAV

are considered as a future work. Another future work will consist in the definition

of autonomous placement, resource allocation and orchestration policies that will

be able to decide where placing VAFs, and the amount of networking, storage and

computing resources providing to each of them, even in presence of mobility, that is,

immediately after handover events, which can be very frequent during a flock flight.

26

Chapter 3

A Self-organizing Network

Protocol for LoWPAN Networks

3.1 Introduction

In the last few years, we witnessed an impressive growth of the Internet-of-Things

technology[46, 47], with the consequent widespread of IoT devices that, used in any

kind of large-scale applications, are employed to form very big networks and manage

very large quantities of data.

Among IoT applications, the theme of Smart Cities [48] is becoming increasingly

popular: in such a context, IoT devices are used to exchange information about pub-

lic transportation, traffic, air quality (pollution), etc., and, in the near future, it is

expected that also traffic lights will be automated according to the historical data

collected over time. Such devices can send these information to our cars, allowing

drivers (or even cars themselves) to choose the best route, in terms of efficiency (time

navigation) and air quality[48]. Devices can be also installed directly in sensitive

parts of city buildings, collecting information through appropriate sensors (like ac-

celerometers) with the objective of making the system able to try to predict stability

problems or identify events due to natural forces, such as earthquakes.

Also in the context of smart industries, IoT technology is giving a great support:

indeed, in production chains, not only a timely monitoring of the operating machines

is essential but, above all, the just-in-time prediction of failures is very important

[49].

However, even if the IoT technology promises to solve the problem of large-scale

monitoring, it poses a series of important issues that, in many cases, represent a

Chapter 3. A Self-organizing Network Protocol for LoWPAN Networks 27

big limitation. In IoT applications, the size of the system, in terms of number of

nodes, is very large, ranging from hundreds to thousand of devices, thus posing

a serious problem in terms of configuration, initialization and maintenance of the

network, operations that cannot surely be done using a manual intervention device-

per-device. From this point of view, there is not a common or standardized or even

state-of-the-art approach, but each specific application follows its own rules and

guidelines.

Another critical issue is battery life: basically IoT devices consume a lot of

energy when communicating with the access point (that often acts also as a gate-

way), therefore power consumption must be optimized and balanced otherwise the

switching-off of a devices–if frequent–would cause network structure’s changes and

the consequent waste of energy, thus reducing the whole network’s lifetime.

Battery depletion, as well as other kind of node failures, causes the disappearance

of that node from the network, with consequences that, in some cases, could be quite

harmful (think, for example, to the case in which the failed node acts as a gateway).

While human intervention could surely solve the problem, the ability of self-repairing

is surely a desirable feature.

Given the premises above, this chapter presents a LoWPAN (Low power Wireless

Personal Area Network) network protocol aimed at facing the cited issues. Basically,

it supports an automatic network construction (without human intervention) by

creating a layered tree structure featuring one Lead node, linked with the wireless

gateway, some Middle nodes, acting as normal nodes and as links between their child

nodes and the rest of the network, forwarding packets; finally the End nodes (at the

leaves of the tree) with the role of sending and receiving data from them to the rest

of the network. Such a network structure, as well as the underlying protocol, not

only faces the problem of configuration but is also able to balance communication

among nodes in order to ensure a fair power consumption. In addition, the protocol

features self-repair capabilities since it is able to identify node failures and perform

automatic recovery and re-configuration of the network, if needed.

Chapter 3. A Self-organizing Network Protocol for LoWPAN Networks 28

3.2 Related Works

The advent of low-cost, low-powers smart devices has encouraged the development

of novel technologies aimed at supporting low-power communications for low-cost

devices.

Contiki[50] is an open source, lightweight operating system designed to support

dynamic loading and replacement of IoT programs and services. The Contiki kernel

is event-driven and provides optional preemptive multi-threading; it provides feasi-

bility for resource constrained environment, as it allows the developer to keep the

base system lightweight and compact. Contiki supports IPv4 and IPv6, as well as

several low-power wireless standard, as 6lowpan[51], RPL[52] and CoAP[53]. It pro-

vides interesting capabilities as ContikiMAC[54] and sleepy routers [55] to support

battery-operated routers.

OpenThread [56, 57] was released by Google as an open-source implementation

of the IoT standard named Thread[58]. Google released OpenThread to support

networking into its own products known as Google Nest (smart devices for home),

and to allow developers to easily develop applications. The focus of OpenThread

is portability which is achieved by a platform abstraction layer and a small mem-

ory footprint. It supports both system-on-chip (SoC)[59] and network co-processor

(NCP) designs[60].

LoRaWAN[61, 62] (Long Range Wide Area Network Protocol for Internet of

Things) is a data-link layer with long range, low power, and low bit rate specifically

designed for the IoT. The LoRaWAN architecture define a “star of stars” topology,

where the physical layer, LoRa, enables the long range link. The protocol has

positive effects on the node battery lifetime, the network capacity, QoS and security.

As we discuss in the next section, the protocol described in this thesis relies on

the 802.15.4 protocol[63].

3.3 The Proposed Protocol

The proposed protocol is built on top of 802.15.4 protocol[63] which allows IoT

devices to connect to each other under a single LoWPAN in a large physical area.

In the following of this section, we will describe the various elements of the protocol.

Chapter 3. A Self-organizing Network Protocol for LoWPAN Networks 29

Optical Fiber, Ethernet, 5G Cellular Connection

Gateway

A

B C D

E

F

G H I

Network Gateway

Lead Node

Middle Node

End Node

Idle Node

802.15.4 Link

Figure 3.1: A Network Protocol topology and node types.

3.3.1 Network Topology

The protocol is designed to construct the network as a tree of variable depth. In the

tree, every node can act as a repeater and can have several down links and a single

up link. The protocol provides an upper limit for the down links of each node.

As Figure 3.1 shows, the network is a multi-hop network on which the “lead

node” (i.e. the root of the tree) is linked to the gateway. The Lead node is the

top node in the network (the root of the tree) and is connected to the Gateway.

Only one Lead node can exists in a network and can have only one up link with the

Gateway. The Gateway (or hub) is a device with which the IoT devices (so the other

nodes) can communicate thought the internet. Typically, this device is connected

to the Internet via cable connection (Optical Fiber, Ethernet) or mobile connection

(LTE/4G, 5G). The protocol also specifies an upper bound for the number of layers

(depth of the tree). The remaining nodes of the tree are labeled End nodes, Middle

nodes and Idle nodes. An End node is a leaf of the tree, it will send packets to

its own neighbours towards the gateway. A Middle node has a single uplink to its

parent and a number of downlinks to its own child nodes. Any node can send packets

to any other node through its own neighbours. An Idle node is a node that has to

join the network and, therefore, it will attempt to form an up link with a middle

Chapter 3. A Self-organizing Network Protocol for LoWPAN Networks 30

A

B C D

E

F

G H I

Lead Node Middle Node End Node Idle Node

802.15.4 Link

A

B C D

E

F

G H I

Preferred Link

Coverage Area of F node

Weakest Link

Figure 3.2: Left: the idle node prefer the node with stronger RSSI. Right: the idle node
prefer the node with higher layer level.

node.

3.3.2 Presentation Frame

Every node is able to make a downlink transmitting, periodically, a special packet

that is a presentation frame. The presentation frame allows the node itself to send

its own identity to the other nodes: the protocol uses the device information as

well as metadata related to the role of node (lead, middle, end, idle), current layer,

maximum number of allowed layers in the network, current number of downlinks

(children number) and the maximum number of allowed down links. Other impor-

tant data are also available such as the uptime of each node and the mean RSSI

(Received Signal Strength Indicator); these values are used to quantify the reliability

of the node itself. We will discuss in detail this aspect later.

An Idle node listens for these special packets in order to collect a list of nodes

which can potentially become its own parent. When an Idle node receives a pre-

sentation frame it saves the RSSI. In particular, in order to prevent the creation

of weak uplinks, the protocol specifies a threshold for the RSSI: the sender of the

presentation frame is added to the list of candidates only in the case the frame

RSSI is above the threshold. When an Idle node has more than one candidates, it

Chapter 3. A Self-organizing Network Protocol for LoWPAN Networks 31

will look at the i) layer to which the node belongs to, then the ii) number of down

links, iii) the RSSI and iv) finally the node uptime. The Idle node will select the

candidate having the lowest layer number (i.e. the candidate that resides in the

layer nearest to the Lead node). If there is only one node satisfying this criteria, it

will be the new parent, otherwise it has to look at the number of downlink of the

several candidates. In this case the node having the lowest number of downlink (i.e.

with the lowest number of child nodes) is selected (this choice allows the protocol to

balance the communication load of the network). If there are several nodes with the

same (lowest) number of child nodes, the Idle node will look at the RSSI value (the

highest is preferred) and, finally the value of uptime. An example of this process is

depicted in Figure 3.2.

3.3.3 Routing Process

The routing process is very simple. Each node maintains its own routing table

containing the MAC (Medium Access Protocol) addresses of all the nodes belonging

to the node’s sub-network, while the lead node holds the global routing table of the

network. As a consequence, any node, having to send a message to another node,

can have or not the destination address in its own routing table. In the first case,

the node forwards the data packet to the destination MAC address contained in

the sub-network owned by the node itself. In the latter case, the node will send

the packet to its parent node. The routing mechanism prevents loop back during

the middle node selection, excluding nodes that are already present in the selecting

middle node’s routing table, thus preventing that a node connects to any node within

its sub-network.

3.3.4 Lead Node Selection

This process is based on a voting mechanism, involving all the nodes in the network.

Each node will broadcast its own RSSI and its own MAC address to each other. In a

second phase the nodes will send a broadcast message containing the couple {MAC

address, RSSI} with the highest RSSI among those received from all the other

nodes, as well as its own couple {RSSI,MAC}. This message is, in fact, a vote for

the candidate represented by the first couple {RSSI, MAC} of the message. This

Chapter 3. A Self-organizing Network Protocol for LoWPAN Networks 32

process is repeated until the nodes reach a convergence on the best node in terms

of RSSI. There may be the case that two or more nodes have the same (highest)

RSSI and the same number of votes to become a lead node; in this case the decision

mechanism is mainly based on the candidate’s nodes uptime, while the RSSI is no

more a discrimination value.

3.3.5 Network Node Connection

In a real environment, devices do not power-on synchronously, therefore the network

will be built according to the power-on order of devices. For this reason, in the

proposed protocol, the following set of rules holds:

1. When an idle node has to join the network, it must evaluate which role it

will cover. In case a Lead node already exists, even if the Idle node has a

stronger RSSI with Gateway than the Lead node, it will not start an election

to become lead node, to prevent the energy waste during the process; it will

join the network minimizing the network’s structure changes. Therefore the

node will join the network as Idle node and it will connect to the best middle

node selected among the received presentation frames, as discussed before.

2. When a node connects to the network (to create an up link to its own parent)

it may become a new potential middle node for some other nodes. This is

possible with a periodically transmission of presentation frame allowing to

check the availability of a highest (in terms of height in the tree) middle node.

In this way, the network can automatically rectify itself to guarantee that each

link has a high connection quality and the number of layers in the network is

minimized.

3.3.6 Node Failure

In the event of a node failure, the protocol holds different strategies, depending on

the role of the failing node, which can be A) the Lead Node B) a Middle Node or

an C) End Node.

Chapter 3. A Self-organizing Network Protocol for LoWPAN Networks 33

Lead Node

First Layer Middle Node

A
B

C

D

Other Layers Middle Node

(-32db, B)

(-27db, C)

(-24db, D) A
B

C

D
(-32db, B)

(-27db, C)

(-24db, D)

Failed Node

1) Network Topology - Normal state 2) Network Topology - Lead Node Failure

B

C

D

(-24db, D)
(-27db, C)
(-32db, B)

3) Network Topology - Election Process

(-24db, D)
(-27db, C)
(-32db, B)

(-24db, D)
(-27db, C)
(-32db, B)

B

C

D

4) Network Topology - End of Recovery Process

Figure 3.3: Lead Node failure: the recovery process involves only nodes residing in the
first layer and thus the only ones with the strongest RSSI to the gateway.

A) When the Lead Node fails (Figure 3.3), the new Lead nodes will be chosen

by only the nodes of the second layer of the network. The voting mechanism is

the same used at network construction time. Once elected, the new Lead node will

connect to the gateway, and the nodes residing in the second layer will link to it. The

strategy to limit the election of the Lead node to the nodes residing in the first layer

is aimed at minimizing the energy consumption. Moreover, given the construction

rules of the network, which are based on the evaluation of node with strong RSSI,

it is generally not very useful to involve nodes with an RSSI lower than the first

layer’s nodes.

B) When a Middle node fails (Figure 3.4), all the nodes previously connected to

them become idle for a certain amount of time, waiting that the same node returns

available. After a given timeout, it is assumed that the middle node is in failing

state, then the idle nodes will look for the first available node to connect to. The

choice is based on the mechanism discussed before for the connection of a new node.

Chapter 3. A Self-organizing Network Protocol for LoWPAN Networks 34

Lead Node

Middle Node

End Node

Failed Node

A

B C D E

F G H I J

A

B C D E

F G H I J

Network Topology - Normal State Network Topology - Middle Node Failure

A

B C E

F G H I J

Network Topology - End of Recovery Process

Figure 3.4: Middle Node failure: the Recovery process involves End Nodes directly linked
to the failed Middle Node.

It may also arise a scenario where there is no any eligible node (i.e. RSSI under

the threshold) to replace the failed Middle node. In this case the orphan nodes will

create a link with one of the node residing in their current layer. This will result in

the addition of a new layer in the tree. If the maximum number of layers is already

reached, then a new layer cannot be added. In this case the system will modify the

RSSI threshold in order to allow the orphans to select a new Middle node from the

same layer of the failed Middle node.

C) When an End Node fails, the only task to perform is represented by the

deletion of the corresponding entry in the routing table of any node previously

attached to it.

Chapter 3. A Self-organizing Network Protocol for LoWPAN Networks 35

3.4 Case Study

The approach described in this chapter can be adopted to monitor the production

status of hives in beekeeping[64]. Sensors of the LoWPAN network can be placed

into every beehive to monitor the internal temperature of the hives and even the

sound made by bees, which is an health indicator for them.

Moreover, it is desirable that the LoWPAN network can act as anti theft because

beehives are often stolen. To this end, the protocol must be able to adapt and

distinguish a fault from a theft; in the last case, a theft can be perceived as an

abnormal change in the typical behaviour of one or more node: the gyroscope of

the device will record an unusual movement (that excludes a fall from the original

position), and start also evaluating the latency of communication. The latency

measure is useful to understand how many other hives are being stolen and allows

them to form a subnet that lasts as much as possible. Only one node a time is

selected to use GPS (Global Positioning System) until it exhaust the battery. All

other nodes will follow the same behaviour until all of them will consume their own

battery. This represents an optimization to maximize network duration. More in

general, every hive is seen as a single node; each node has a precise role inside of the

network, and is responsible of its own communication and to forward other node’s

communication. It has a routing table with a MAC address of the associated node.

It is able to auto configure and to adapt and make autonomous decisions in case of

fault or theft. Even in this case study, we remark that the human intervention is

minimized down to zero, and the communication is strictly related to the basic data

exchange, except for the network building process and for the recovery cases. In this

way, battery life is optimized to last more without losing important information.

3.5 Conclusions

We described a LoWPAN (Low power Wire-less Personal Area Network) network

protocol aimed at facing several issues related to the Internet of Things. In particular

we addressed automatic network construction and configuration as well as battery

life optimization and fault tolerance. The proposed solution provides an automatic

construction of a IoT network which does not need any human intervention. Such

Chapter 3. A Self-organizing Network Protocol for LoWPAN Networks 36

a network structure, as well as the underlying protocol are designed to face the

problem of configuration and to balance communication among nodes in order to

ensure a fair power consumption. We have described its self-repair capabilities, as

well as the process of automatic recovery after a node failure. We also discussed a

simple case study in order to show a potential application of the described approach.

37

Chapter 4

Privacy Preservation enchantment

for Delay Tolerant Networks on

IoT Environment

4.1 Introduction

Delay Tolerant Networks (DTNs)[65] are characterized by long transmission delays

and no assurance to find a complete end-to-end routing path for most of the time.

Meetings among nodes are opportunities to find new partial paths towards desti-

nation. Opportunistic approaches are then adopted to handle routing on this kind

of networks: a message can be delivered to the destination node using the physical

node movement. The “store, carry and forward” paradigm is used in order to allow

communication. To overcome these features, DTNs define a new layer in ISO/OSI

stack, between transport and application layers, named Bundle Layer. To manage

this layer there is the Bundle Protocol (BP) [66], that substantially applies the store

and forward paradigm [67] keeping a packet stored for a time greater than usu-

ally, until the packet can be delivered to the next available node toward its final

destination.

Many protocols have been designed to implement routing on DTNs. The epi-

demic protocol [68] uses a modified flooding approach to deliver messages. As the

name suggests, a message is replicated in every new met node, so every possible

route is tested. In term of communication bandwidth and storage memory, this

strategy clearly wastes a lot of resources.

Spray and Wait [69] is a modified version of epidemic routing protocol that tries to

Chapter 4. Privacy Preservation enchantment for Delay Tolerant Networks on IoT

Environment
38

reduce overhead bounding message flooding only in the destination area. It works

in two phases: in the first one, the so-called spray phase, a new created message is

distributed in, at least, k copies to specific relay nodes, similarly to the epidemic

strategy. After that, if the destination node is not reached yet, the wait (second)

phase starts: no other copy will be generated and every relay node will deliver the

message only to the correct destination.

Others DTNs routing protocols base their decisions on past behaviour: in real

life the node movements are not random, but follow a social behaviour. In these

cases, there is a non trivial probability that two specific nodes, that met each other

in the past, will meet themselves again in the future.

PRoPHET [70] bases its routing protocol on the knowledge of these behaviours.

When a node is met, the probability, that it could reach directly or indirectly the final

destination is calculated. To implement this approach, every node has to maintain

a vector that keeps trace of previous meeting, in order to calculate future meeting

probability. This information is shared with other nodes, allowing them to decide

whether transfer messages or not.

The exchange of this information among nodes represents an obvious weakness

in terms of Privacy Preserving [71]. Malicious intruders can collect them to easily

rebuild the graph of node contacts and movements, violating their privacy.

Privacy is defined by Clifton et al. [72] as “the prevention of personal data usage

in a way that negatively impacts someone’s life”. Preserving privacy can therefore

be referred to as a measure of preventing a malicious user to exploit information for

identification of a physical being or discover relationships physical being.

The main aim of this research is to present a routing algorithm for DTNs that

is able to drive messages from a source node to destination, by using data not re-

lated to content or network layouts, with a good approximation and performance.

The proposed routing protocol works with blurred data, which are meaningless if

considered independently by the context, providing the privacy of the nodes, in the

case of leakage by malicious intruders.

Chapter 4. Privacy Preservation enchantment for Delay Tolerant Networks on IoT

Environment
39

4.2 Related Works

Nowadays, Privacy Preserving is assuming a role even more important inside digital

communications because a lot of data, often related to our daily life, are conveyed

into communication infrastructures. For instance, several mobile applications share

our personal data for job search or other private purposes, that can be spoofed

for malicious intents. Another example could be the context of IoT (Internet of

Things)[46]: it is composed by a large number of small devices whose that share a

big amount of data which may be also sensitive. In fact, with the increasing of the

home-automation, many of these devices can be embedded in our home furnishings.

In the context of IoT, DTNs represent a good choice to implement a network infras-

tructure.

In [73] the authors describe an approach based on multiple paths for each desti-

nation to prevent traffic analysis. The proposed architecture uses layered encryption

scheme based on a PKI. A message is divided in parts using erasure code and each

part follows a different path.

The authors in [74] present two methods based on Bloom filters, that are a

space-efficient probabilistic data structures used to represent sets.

Looking at the social-based algorithms can be observed that human relationships

are reflected in the contact opportunities of the devices they carry with them. In

this case, the routing decisions are based on metrics coming from Social Analysis

and characterise the importance of each node on the network. Some well-known

algorithms of this category are the BubbleRap [75] and the SimBet [76].

The first one substantially reduces the representation space overhead using a

summary vector. The second one uses a Bloom filter in opportunistic networks.

When two nodes encounter each other, they exchange the information stored in their

buffers to avoid useless transmissions and control redundancy, through a summary

vector indicating the packets already received. Unfortunately, Bloom filters intro-

duce some drawbacks like additional processing overhead during each packet routing

and the most famous “Probability of false positive”. To reduce this phenomenon,

Bloom filters should be used in a very large scale of node sets, which increases the

probability that information privacy of some nodes could be violated at the same

Chapter 4. Privacy Preservation enchantment for Delay Tolerant Networks on IoT

Environment
40

time. Another way adopted to keep information privacy is in [77]. It take advan-

tage by an encryption heuristics based on the homomorphic relationship between

the data available before and after encryption but for this reason the encounters

between nodes have to be direct or the routing paths have to be known (between

source, destination and all the relays in the path too) before to send messages. In

this case the routing could be hazardous in terms of potentially information shared

and and costs.

4.3 Introduction to PRoPHET protocol

To drive messages from source to destination avoiding useless packet replication

through the network, PRoPHET [78, 79] applies a probabilistic routing by a specific

metric called Delivery Predictability (DP). Denoted as Pi(j) ∈ [0, 1], the DP is estab-

lished at every node i for each known destination j. The DP provides information

about probability to encounter other nodes. When the metric is calculated, a node

with a higher value is considered a better candidate for delivering message bundles.

For instance, if PA(D) > PB(D), then using node A as a carrier towards destination

D is statistically better than using node B. The DP is therefore leveraged for the

forwarding decisions.

When two PRoPHET nodes have a communication opportunity, initially they enter

in a two-parts Information Exchange Phase (IEP). In the first part, the nodes ex-

change their summary vectors, the DP tables. During the second part, bundles are

forwarded using the results based on the information exchanged in the first part.

The basic idea of this protocol is to learn how to route bundles analyzing node

movements. This strategy is regulated by the following predictability update rule

[79]:

Pi(j)new = Pi(j)old + (1− Pi(j)old) · Pinit (4.1)

where Pinit ∈ [0, 1] .

Consider the example case in which we have three nodes, where node A frequently

encounters the node B, which frequently encounters node C. In such a case, A can

be considered a good forwarder for messages that must reach the node C, even if the

Chapter 4. Privacy Preservation enchantment for Delay Tolerant Networks on IoT

Environment
41

node A does not encounter C directly. This can be formalized with the transitive

rule, expressed as:

PA(C)new = PA(C)old + (1− PA(C)old) · PA(B) · PB(C) · β (4.2)

where β ∈ [0, 1] defines the impact of the transitivity rule in (DP). To implement

a forgetfulness procedure, PRoPHET provides an ageing rule:

Pi(j)new = Pi(j)old · γk (4.3)

where γ ∈ [0, 1[and k ∈ N.

Privacy lacks

The exchanges of the DP tables provide sensitive data on node behaviours and node

mobility in the network. A hypothetical spy node could reconstruct private infor-

mation, principally by means of the transitive rule (2).

4.4 Innovation from natural context

When somebody learns to speak a language, he is influenced by the country where

he is and by the people which live there. Changing place and/or meeting different

people, he will also change his way to talk, in terms of tone, accent or syntax. In

fact, when we listen someone speaking around, we can guess where he comes from,

with some degree of accuracy.

Suppose now to transpose this concept in a network domain, where we have DTNs

instead of countries and nodes instead of people. A node can send a message using

some peculiar characteristics of destination. These features are specific of the zone

and the context where destination node currently is.

Some DTNs use opportunistic routing protocols to exchange messages, but the cost

to implement a correct and efficient routing is to share sensitive information on node

topology throughout the network. In this paper will be shown an innovative solution

Chapter 4. Privacy Preservation enchantment for Delay Tolerant Networks on IoT

Environment
42

Figure 4.1: Example of a node track, in Frequency Domain (a) and in Time Domain (b)
(Note: function b is sampled accordingly to definition)

that minimizes the usage of specific information linked to the nodes behaviours,

preferring information related to the environment.

As in human context we speak about vocal tone or timbre [80], in a DTN envi-

ronment we will use a peculiar track for every node, whose shapes will be moulded

by meeting history. The track can be simply thought as a mathematical function.

Routing will be based on the similarity of the node tracks. More details will be

exposed in the next paragraphs.

4.5 Privacy Preserving Delay Tolerant Network

(PPDTN)

The main goal of our protocol is to relax the use of sensitive information from the

encountered nodes, using instead more generic, and less sensitive, information. As

every person has a peculiar voice timbre, each node needs to have its own shape

function that will be called “track”. Track shapes aren’t permanent. A track will

evolve continuously in time, trying to resemble to the ones of the met nodes.

If the tracks of two or more nodes are similar, it means they approximately go

around to the same area and they know the same neighbors.

Before to present a mathematical formalisation, we must introduce the main

features related to this new proposal:

• Starting phase: when a node joins to a network, it needs an initial track. It

will be pseudo-randomly generated considering the ones of its neighbors.

Chapter 4. Privacy Preservation enchantment for Delay Tolerant Networks on IoT

Environment
43

• Evolution function: when a node meets another, their tracks must be accord-

ingly modified in order to resemble each other. We need a procedure that

receives in input the two tracks (the main and the encountered track) and

returns the modified track.

• Matching function: during the routing phase, a node must decide if the met

node can be a good choice to reach the destination, as in any routing protocol

based on opportunistic meeting. To implement this, we need a matching func-

tion that, receiving two tracks as input, returns a similarity value, normalized

between 0 and 1.

• Ageing function: when a node changes for a long time its location, it must

forget the remote influences. Other encounters will help this behaviour, but

we need a faster method. The ageing function modifies a track toward its

initial shape, representing a sort of forgetfulness procedure.

From a mathematical point of view, a track is a continous function with some

peculiar characteristics.

T (x) : R→ R (4.4)

To easily maintain and handle it, we introduce the following characteristics:

• the function is defined in [0, n] with n ∈ N

• T (x) ∈ [−m,m] with m ∈ N

• the function must have a strong variability in [0, n]

The function becomes:

T (x) : [0, n]→ [−m,m] (4.5)

All these requirements are introduced in order to correctly implement the pro-

posed solution. The firsts two characteristics allow a simple comparison between

two shapes. The last - the high variability in the defined interval [0, n] - is essential

to strongly characterize the node and the context.

Chapter 4. Privacy Preservation enchantment for Delay Tolerant Networks on IoT

Environment
44

4.5.1 Starting phase

when a node joins to the network, its track must be randomly generated. The

high variability constrain can be obtained leveraging the frequency domain. If we

randomly generate some frequency components - in the frequency domain - chosen

in conformity to the definition interval, the desired function can be obtained by

means the inverse Fourier transform.

Figure 4.1 presents the spectrum (a) in the frequency domain and the corre-

spondent track in the Time domain (b).

Store and handle a function of this kind can be very hard; so we sample the track

in the interval of definition, choosing n + 1 equispaced value for the abscissa:

si = T (xi) xi = 0..n (4.6)

obtaining n + 1 different points:

(0, s0), (2, s2), ..., (n, sn) (4.7)

All the si values are then normalized and quantized into the amplitude [−m,m].

In the following, we will indicate them with yi

In this way, a track can be easily stored as a vector of n + 1 values.

The set with all the points (xi, yi) identifies, with a high degree of accuracy, the

original function.

4.5.2 Evolution Function

the track exchange during node encounter is a mandatory step to implement evo-

lution and matching functions. To reinforce the Privacy Preserving property it is

useful to hide the exact function shape, sending instead a blurred representation

obtained from the original one. To implement this, we consider a number k such

that:

k < n

n = p ∗ k with p ∈ N

We extrapolate a subset of k values from the original set:

Chapter 4. Privacy Preservation enchantment for Delay Tolerant Networks on IoT

Environment
45

Figure 4.2: A portion of the public track, the relative cubic spline interpolation and the
original track

x′0 = x0 ... x′j = xj∗p ... x′k = xk∗p = xn j ∈ [0, k]

Note that the x′j values are equispaced (i.e., uniformly taken).

From these values we can derive the correspondent points on the function:

(x′j, T (x′j)) j ∈ [0, k]

In order to reconstruct the function, we can use a cubic spline interpolation func-

tion [81, 82]; it is a degree-3 polynomial curve that can be derived twice throughout

the definition interval, and represents an approximated (blurred) shape of the real

track. The blurred representation is what we call the public track of a node.

Figure 4.2 shows, in a zoomed view, the set of points of the public track, the

correspondent cubic spline interpolation and the original track. Note that in some

parts the approximation well fits the original track, but in other parts some pecu-

liar characteristics are strongly blurred. The precision of the interpolation directly

depends by the ratio k/n.

Chapter 4. Privacy Preservation enchantment for Delay Tolerant Networks on IoT

Environment
46

To implement the mutual influence between nodes in case of an encounter, we

need an evolution function, that, given a remote public track, modifies the real track

of the node.

Let TA the real track of the node A and TBpublic
the public (blurred) track of B.

We define:

f evol(A,B, x)
def
= β · TA(x) + (1− β) · TBpublic

(x) (4.8)

where β ∈]0.5, 1[is a coefficient that determines the impact of influence of remote

tracks on track evolution.

Node B communicates its track with a set of points:

TBpublic
(xj) j ∈ [0, k] (4.9)

Using these points, we derive the cubic spline that interpolates this set. Call it

spB(x).

Applying the evolution function to node A track, will have:

TA(xi)new = β · TA(xi)old + (1− β) · spB(xi) i ∈ [0...n] (4.10)

where TA(x)new represents the evolved track.

It has been empirically observed that massive execution of the evolution function

(4.10) tends to flatten the tracks, minimizing more and more the characteristics. To

avoid this behaviour, we apply the normalization procedure, as after the generation

phase.

Figure 4.3 shows an example of evolution for a track, applying 30 times the

formula (4.10) and the normalization to the track of node A, keeping fixed the other

track (node B). The figure is a zoomed part of the entire shape. As we can see,

when the two tracks present peaks in the same direction, as at time 1.8, the result

accentuates the behaviour. Instead, when they are in opposition, the result tends

to a mean value (see time 1.2). Further, the effect of the normalization procedure

Chapter 4. Privacy Preservation enchantment for Delay Tolerant Networks on IoT

Environment
47

Figure 4.3: Example of repeated applications of the evolution function to the node A track
(zoomed view).

is visible in the movements of the peak towards the ones of the track B (see, for

example, the interval between 1.0 and 1.6).

4.5.3 Ageing Function

As explained in Section 4.5, we need an ageing function, that represents a sort of

forgetfulness method, useful when a node changes its location and its contacts for

a long time. This function modifies the track towards the original one. It can be

implemented in a similar way of the evolution function. It is be applied with regular

time slots.

fage(A, x)
def
= γ · TA(x) + (1− γ) · TAorig

(x) (4.11)

Chapter 4. Privacy Preservation enchantment for Delay Tolerant Networks on IoT

Environment
48

where TAorig
(x) is the original track of the node A, as generated in the starting

phase, and γ is a parameter defined in]0, 1[.

4.5.4 Matching Function

The matching function provides a simple information on the ability of the encoun-

tered node to carry data towards the correct destination.

Starting from the profile of the destination and the public track of the met node,

the function returns a value in the range [0, 1], where 1 means a perfect match.

Let T1(x) and T2(x) the two functions, reconstructed with the cubic spline inter-

polation from the set of points associated with the destination and the met node.

We define it in this way:

fmatch(T1, T2)
def
= 1−

∑︁n
i=0 |T1(i)− T2(i)|

2mn
(4.12)

Every met node that determines a matching function result higher than a predeter-

mined threshold can be considered a good carrier. Moreover, the set of results of

the matching function for a given destination, can be used to determine when to

stop the research for other carrier, in order to assume delivered the message, and

delete it.

4.6 Experimental Results

To validate our protocol, we tested it in a scenario of 20 x 20 kilometres with a

population of 100 nodes. The range of communication for every node is about

250m. In the scenario a set of zones has been defined. They represent the locations

where the nodes move towards and stop for a certain time (600s in average). The

dimension of the scenario and the number of nodes have been chosen to avoid that

a generic node could meet every other node, but only a limited subset, typically, at

most, 15 other nodes. The speed of the movements is variable between 3 and 30

m/s, similarly to human beings.

Chapter 4. Privacy Preservation enchantment for Delay Tolerant Networks on IoT

Environment
49

Every node follows a route that, with some probability, drives it towards a point

chosen in a prefixed set. Let Li = {w1, w2...wzi} be the list of points chosen for

node i (zi is the size of Li). When the node reaches the position wj, we randomly

select a value k < zi and a set of probability p(x) : x ∈ [1, k] such that
∑︁

p(x) = 1.

Every p(x) value corresponds to a point in the list Li that follows the point wj. In

other words, the node follows a route that includes all the position of the list in a

circular way, but some positions could be skipped in a given round. This behaviour

reproduces the real human one.

Figure 4.4: Example of movements starting from the position wj . The value P (i) repre-
sents the probability that the next step is the point wj+i

During the simulations, we monitored about 10.000 encounters between all the

100 nodes.

To validate our protocol, we compared its performance with the PRoPHET ones.

Figure 4.5 shows the distribution of the encounter probability obtained for all the

occurrence of the encounters. For PRoPHET every bar represents the value that

the encountered node communicates in order to reach the destination. For PPDTN,

Chapter 4. Privacy Preservation enchantment for Delay Tolerant Networks on IoT

Environment
50

instead, it represents the results of the matching function. We compare these values

each other because they are used to choose (or not) the encountered node as carrier.

As we can see, both distributions present a very similar shapes. In particular,

the number of encounters with low value (P < 0.70) is high for both protocols,

representing, respectively, 94% and 88% of the total.

To evaluate the actual working phase, we must extrapolate only the portion in

the range 0.70 − 1.0 from this chart, because lower values are discarded by both

protocols (i.e. the encountered node is judged as a useless carrier).

In fig. 4.6 the focus is placed in the range 0.70−1.0, considering only the encoun-

ters that provide a useful possibility for the deliver, higher then a given threshold.

Every point indicates the number of useful encounters with a given probability. For

example, we have about 480 encounters for PPDTN and 220 for PRoPHET with

probability in the range 0.70, 0.78. As we can see, PRoPHET shows a limited incre-

ment over the value 0.86, forcing to choose a general threshold lower than 0.80, in

order to increment the number of nodes classified as “good choice”. Instead PPDTN

shows a constant increasing trend from 0.70 to 0.94, allowing a more punctual eval-

uation of the correct threshold. This last consideration can be used to improve the

routing when the message is closer to the destination.

Within the simulation we also tested the message delivery performance obtained

applying the rules defined for both protocols. After an initial running phase to reach

the steady state, the simulator generates a message every 100 seconds on average,

with random source and destination. The messages are not duplicated: when a

node transfers a massage to another one, the old copy will be deleted. Figure 4.7

diagrams the number of messages delivered for PRoPHET and PPDTN.

As we can see, only a limited number of generated message reaches its desti-

nation. This is in accord with the chosen scenario, with a large dimension (400

km2) and a limited number of node (100). This was done to stress the protocols,

highlighting flaws in the routing decisions.

The results show that PPDTN performance tend to double the PRoPHET ones.

Chapter 4. Privacy Preservation enchantment for Delay Tolerant Networks on IoT

Environment
51

Figure 4.5: Comparison between PRoPHET vs. PPDTN in terms of encounters that can
reach a given target.

Figure 4.6: Performances comparison between PRoPHET vs. PPDTN in the range of
working value (values less than 0.70 have been erased).

Chapter 4. Privacy Preservation enchantment for Delay Tolerant Networks on IoT

Environment
52

Figure 4.7: Performances comparison between PRoPHET vs. PPDTN in the range of
working value.

4.7 Conclusions

DTNs protocols like PRoPHET work to resolve routing problems with forecast ap-

proaches but show some vulnerabilities on information privacy, that could become

limits for their applicability in case of sensitive data. What was exposed along

this paper has to be considered a new way to approach routing protocols in those

conditions.

Through this work it has been possible think outside canonical schemes, moving

toward a concept related to something that we usually knows and that for this

reason we habit to ignore, the features that nature provided us since our existence:

graphical shape of the math function as vocal timber.

It has been the keystone to realise new solutions introducing new features never

used before with a high potential of future developments. To highlight the double

effect given by tracks in terms of tool to get the destination and to keep the pri-

vacy safe at the same time. This strengths applied to PPDTNs turned out a novel

protocol with excellent results in terms of routing performances keeping also our

information safe from malicious intentions.

Chapter 4. Privacy Preservation enchantment for Delay Tolerant Networks on IoT

Environment
53

54

Part II

Simulators and Performance

Improvements for IoT

55

Chapter 5

A Framework for Realistic

Simulation of multi-UAV

Applications and Networks

5.1 Introduction

The common recent trend of the research in the field of ummanned aerial vehi-

cles (UAVs) is devoted towards multi-UAV applications [83, 84]: the challenge is

now proposing algorithms and techniques to make sets of UAVs achieve a common

mission in a more or less coordinated way.

A flight mission can vary in objectives and nature, but is basically made of a

common flight plan that the UAVs of the set must follow; it is, in turn, specified

according to the real nature of the mission itself, e.g. as a set of waypoints that

UAVs must reach, a certain area of terrain that must be scouted to gather images

or other kind of data, etc.

When a set of autonomous UAV is considered, a two-level concept of autonomy

has to be taken into account: a first level, the lower one, that we can call the UAV

Level, relates to stability and flight control and is a matter of the single UAV; a

second level, the higher one, that we can call the Mission Level, refers to control

of the activities of the mission and is the most important part in a multi-UAV

application.

Indeed, the UAV Level is generally implemented by means of algorithms based on

classical state-of-the-art Proportional-Integral-Derivative (PID) control loops, some-

times suitably optimised to improve stability. On the other hand, the Mission Level

Chapter 5. A Framework for Realistic Simulation of multi-UAV Applications and

Networks
56

includes techniques and algorithms that are strongly dependent on the mission type

and the mission policies employed, varying from simple forms of task assignment [44,

85, 86], in which a centralised base station instructs each UAV to reach a sequence

of waypoints, to more complex forms of coordinated flight, in which UAVs try to

self-organise [87, 43, 88, 89, 45, 25] without a central control entity, each one plan-

ning its own activities, in order to reach a common goal. In any case, since UAVs

must interact with each other and/or with a base station, a communication system

is mandatory and, given the nature of the application, it must surely be wireless

and based on a technology which is, once again, dependent on the nature of the

interactions occurring during the mission. For example, IEEE 802.11 (commonly

known as WiFi) could suffice for the centralised case since UAVs must only contact

the base station, whereas, when inter-UAV communication is required, ad-hoc net-

works must be considered. In particular, in the latter case and especially when the

set of UAVs is asked to self-organise in a flock, the communication channel plays

a fundamental role, since it enables the exchange of location or path data among

UAVs, letting other UAVs understand where they have to go.

As a result, the development of multi-UAV applications involves considering

and integrating concepts and solutions that are proper of control systems, wireless

communication, coordination, self-organisation and so on; the natural consequence

of this statement is that implementing such kind of systems is quite far from a

simple task. However, the most complex issues are testing and debugging : on one

hand, algorithms are designed to run onto physical systems, so the best way to

debug them is to perform testing using real UAVs; on the other hand, bugs or

wrong tuning of parameters can have catastrophic consequences, such as triggering

hazardous behaviour or even induce crashes that, in the best case, only require to

repair or rebuild the mechanical frame, but they might even cause injuries to people.

To avoid such bad consequences, before running a real system, all algorithms must

be preventively verified in order to catch as many bugs as possible (ideally all of

them, though full correctness is often impossible to achieve in complex software

systems) and fix them, a condition that, however, cannot be reached without proper

testing. In other words, we strongly need tests but tests can provoke danger: while

this seems to lead to a deadlock condition, a good solution is to be able to simulate

the system in such a way as to make it possible to assess algorithms, to debug and

Chapter 5. A Framework for Realistic Simulation of multi-UAV Applications and

Networks
57

to tune parameters.

Dealing with simulations of multi-UAV applications is not a straightforward task.

While a large variety of multi-agent simulators exist [90, 91, 92], the key differences

lie in the tools’ ability to simulate the real system and their accuracy. For instance,

NetLogo [90] or Repast [92] simulators are able to support the motion of the entities

with a specified speed and direction, but such a motion is performed without taking

into account the physical dynamics of entities themselves, an aspect that, above all,

in the case of UAVs can strongly affect cooperation algorithms. Indeed, UAVs are

mechanical systems whose dynamics tend to oscillation or instability, especially in

the presence of environmental conditions such as wind or turbulence, hence their

real behaviour must always be considered when designing a multi-UAV application.

Communication is another not less important issue in simulation of multiple au-

tonomous entities: typical multi-agent simulators often implement communication

in a näıve way (e.g. a simple message-passing), while real systems feature latencies,

packet losses and other kind of problems that are typical of real-world networks

and, once again, could have a strong impact on the dynamics of the physical sys-

tem and thus the overall behaviour of the multi-UAV application. For instance, if

control algorithms depend on input from other UAVs, high network latency and/or

congestion might keep the system from stabilising.

As a natural consequence, the ideal framework for testing a multi-UAV applica-

tion should be (i) to refine your algorithm using the simulator and (ii) let it run

directly on the physical system without any modification. To achieve this goal, the

basic requirement is to have a simulation environment that is as realistic as possi-

ble in terms of both the physical system and the software stack/APIs. Many tools

are currently available: for example, Gazebo [93] or V-REP are simulators able to

simulate the physics of robots; similarly, a variety of network simulators exist [94,

95], with the ability of simulating, in a more or less precise way, wired or wireless

networks, along with classical hardware equipment, such as network cards, switches,

routers, etc. However, all of these simulators are not designed to work together in an

all-in-one integrated simulation environment, which is what we need for a multi-UAV

application. And even if some hacks or interfaces could be written to let these tools

talk to each other, the main issue is that a common notion of time is a mandatory

requirement, otherwise the needed realism cannot be achieved.

Chapter 5. A Framework for Realistic Simulation of multi-UAV Applications and

Networks
58

Given these premises, the objective of this chapter is to present an integrated

solution to let a developer simulate, in a realistic way, a multi-UAV application.

In particular, the chapter focuses on the usage of some state-of-the-art simulators

and builds around them a “glue” consisting in a protocol, a software module called

GzUavChannel and some plug-ins for the simulators; this glue aims at integrating

these tool and letting them proceed with a common notion of the time. The tools

employed are Gazebo [93], ArduPilot and ns-3 [94]. Gazebo is a widely used robotic

simulator able to simulate the physics of mechanical systems; it also offers a 3D view

to observe how the system is progressing in real time. ArduPilot is a multi-vehicle

control platform that implements control algorithms (i.e. the UAV Level) for UAV

stabilization and flight control; it is used in many UAV-based projects. Ns-3 is one

of the most widely used network simulators.

As the work will describe, we integrated such tools by means of a multi-purpose

software integrator middleware, the GzUavChannel, that is able to interact with

the tools in order to govern their execution and the overall simulation. The way

in which the architecture of the integrator is designed provides a high degree of

flexibility: while a 3D visualisation environment is provided by Gazebo, it can also

be disabled in order to perform batch simulations and gather specific numerical

results. It is also fairly easy to switch network models, thanks to the generic nature

of the ns-3 plug-in that we developed. Moreover, this chapter will also describe

the protocol that we designed and implemented in GzUavChannel to coordinate

the various parts of the simulation. As will be detailed, the protocol is designed in

such a way as to make it possible to run some components on distinct machines,

effectively spreading the computational workload when, in the presence of a high

number of UAVs, the CPU cost of simulation becomes too high.

5.2 Related Work

Simulations can be performed with a wide range of tools, some of which are ap-

proximate and non-realistic, whereas others are very accurate, in the sense that a

simulated UAV runs the same program that a real one would, receiving the same

type of input and producing the same type of output.

Chapter 5. A Framework for Realistic Simulation of multi-UAV Applications and

Networks
59

The simulation tools that are farthest from our approach are the non-realistic

ones such as NetLogo [90, 96], which offers a simple point-shaped agent abstraction

that can be programmed in a Logo-based programming language, through which

agents can move and interact with other agents that are part of the simulation

(e.g. run remote commands, read remote variables). Unlike our approach, NetLogo

does not simulate neither physics (i.e. agents can move immediately without any

constraint or inertia) nor communication channel characteristics such as latency,

capacity and so on. Such non-realistic simulation tools are often used during the

initial phase of algorithm design, but quickly become inadequate when one wants to

start reasoning about a real-world application, and the need for more realism arises.

Some researchers choose to write custom/ad-hoc engines, modelling only the

specific aspects they are interested in. Closer to our framework’s goal, this type

of simulators is often focused on tuning and capturing issues arising from the con-

straints imposed by the more realistic models. An example of this approach is [97],

which simulates physics of fixed-wing UAVs with wireless communication capabilities

using custom models. However, custom tools must not necessarily be based entirely

on ad-hoc simulation engines, but they can also reuse one or more pre-existing com-

ponents. For example, in [98] the authors used a custom MATLAB-based physical

model along with the OMNeT++ [95] network simulator.

When more than one simulation engine is involved (so-called “co-simulation”

scenario), the issue of bi-directionality arises. Indeed, some works simply chain

different simulators in one direction only: for instance, in [99] XPlane 1 simulates

aerial vehicles and produce flight paths, while OMNeT++ [95] simulates networking

according to those paths. In this architecture, although flight paths are processed

in real time, the output of the network simulator does not affect XPlane; in other

words, the simulation is not bi-directional, because the physical/behavioural part

cannot be influenced by the simulated network, as instead happens in our solution.

Other co-simulation approaches, on the other hand, keep all components syn-

chronised and fully aware of each other. For example, [100] proposes a framework

for robotics simulations with wireless modelling based on ns-2 or ns-3 [94], using a

bi-directional synchronisation method similar to the one we are proposing. For a

more complete taxonomy and a survey on co-simulation, [101] is a useful resource.

1http://www.x-plane.com

http://www.x-plane.com

Chapter 5. A Framework for Realistic Simulation of multi-UAV Applications and

Networks
60

The Gazebo robotics simulator [93] has been used in several UAV-related works,

such as [102], often coupled with ArduCopter or the PX4 flight stack [103]. The

DroneKit library is also often used, either alone (using its built-in “software-in-the-

loop” engine) [85] or in conjunction with ArduCopter. However, in these projects,

the issue of communication (and thus the simulation of a network) is not addressed.

As reported above, there are a relatively large amount of works on robot simula-

tion. Nevertheless, a small amount of these robotic simulators allow the simulation

of the network used by virtual robots.

In [104] a tool is presented that allows the simulation of multiple types of robotic

systems interacting through a communication infrastructure. It integrates the AR-

GoS robotic simulator and ns-3, providing a scheduling system with the task of

synchronizing the robotic simulation, the radio communication and thus the trans-

fer of any data packets to/from a robot. This tool works similarly to our framework.

However, the core of ARGoS and ns-3 is strongly modified so the impact of the inte-

gration task is really high, whereas our solution is much less invasive. Moreover, the

behaviour of the robots must be written using an ad-hoc C++ API, thus the porting

of the software onto physical platform would require a rewriting/refactoring process.

Conversely, our approach lets a developer port her/his software to a real UAV in

a seamless way. Finally, this framework does not present any form of distributed

simulation.

PiccSIM [105] is a simulation platform for networked control systems (NCS),

i.e. control systems interacting through a network (which, in the case of PiccSIM,

is a wireless one). It uses Matlab/Simulink to simulate the control systems and

ns-2 to simulate the network. The simulator platform provides a graphical interface

tool with which the developer can configure the entire Simulink and ns-2 simulation

environment. The simulation platform is intended to run onto a single PC but it

can also be split in a maximum of two nodes, while our solution is able to distribute

the workload in several nodes.

Player/Stage is a software tool used to simulate multi/distributed robotic sys-

tems; it is the precursor of Gazebo. The software tool is composed by two com-

ponents: Player and Stage. The Player is a server that expose the sensors of the

robot over the network, providing a unique interface for client applications. The

Stage part is the robotic simulator that can simulate a large population of robotics

Chapter 5. A Framework for Realistic Simulation of multi-UAV Applications and

Networks
61

systems, sensors and environmental object. The main objective of Stage is to enable

a rapid development of control software that can be used in real robots, as well as

to enable experiments without any real hardware or environment.

Another integration middleware worth citing, in the context of robotic applica-

tions, is ROS (Robot Operating System). In spite of what the name suggests, it

is not a real “operating system” (like e.g. Windows or Unix/Linux), but a commu-

nication middleware that lets robotic components (i.e. sensors, actuators, control

programs, etc.) interact and exchange data using a common API and a common

message format. Data exchange is based on a publisher/subscriber model, that is

particularly suited for a robotic scenario. ROS is widely used in robotic research

and also in simulation (Gazebo can interact with ROS), even if the use of common

message formats adds an unavoidable overhead due to data serialisation, that un-

doubtedly affects the performance of the applications. ROS is a quite interesting

approach to provide integration among components; however, there are no ROS

packages supporting interaction with a network simulator.

Finally, a survey on UAV applications, from a networking perspective, can be

found in [106].

5.3 System Model

In this Section, an overview of the model of the system used in a multi-UAV appli-

cation is presented, with the objective of letting the reader understand the various

components of a multi-UAV scenario and their role in the context of the application.

Such components are depicted in Figure 5.1 and described below.

The basic component is obviously the UAV. As for the airframe, while any type

of configuration is possible, researchers tend to employ multi-rotors (such as quad-

rotors), since they are more flexible than fixed-wing aerial vehicles; indeed, they

feature a high degree of maneuverability since they support vertical take-off and

landing, and translated flight in all directions.

In order to let a multi-rotor fly properly, a Flight Control Unit (FCU) is always

employed; it is an electronic board equipped with a microcontroller, the proper

drivers for the motors and a set of inertial and geographical sensors2.

2Accelerometers, gyroscopes, magnetometers, barometers and GPS.

Chapter 5. A Framework for Realistic Simulation of multi-UAV Applications and

Networks
62

Wireless
card

Flight control unit (FCU)

Telemetry
radio
(VHF)

MAVLink
Protocol

Companion
computer

UAV 1

Telemetry
Link

 Companion
 computer

MAVLink
Protocol

UAV 2

Inter-UAV Link
and Communication with Base Station

Inertial
Sensors

Flight stack

GPS

Wireless
card

Wireless
card

FCU

Airframe

Base Station

Telemetry
radio
(VHF)

Ground Control Station

Figure 5.1: Architecture of a UAV and other components of a multi-UAV application

The FCU runs a flight stack, which implements the UAV Level autonomy cited

in Section 5.1. In this sense, there are many ready-to-run products available on the

market, as well as several open-source solutions; as an example, one of the most used

hardware for UAVs is the PixHawk control board, which is usually equipped with

the PX4 [103] or Ardupilot flight stack. In any case, the developer is not asked to

consider low-level control issues since such solutions already do the job for her/him.

FCUs often provide some communication interfaces for telemetry, flight emer-

gency control and FCU setup/monitoring. In some cases, a VHF radio modem is

included, to interact with a Ground Control Station, i.e. a regular PC running a

monitoring GUI that allows to perform calibration tasks, read and modify FCU

parameters, check the status of the UAV batteries, etc. The Ground Control Sta-

tion only exists for safety purposes and does not contribute to the execution of the

mission. The FCU also offers a communication channel that can be used to connect

an on-board companion computer, i.e. an embedded platform such as a Raspberry

PI, Odroid, etc., that implements the high-level logic of the mission, i.e. what we

called the Mission Level in Section 5.1. This is the hardware platform in which

the multi-UAV application runs (for the part related to the single UAV) and, for

this reason, it must be equipped with a wireless communication interface to perform

Chapter 5. A Framework for Realistic Simulation of multi-UAV Applications and

Networks
63

data exchange with other UAVs and/or a possible Base Station.

This last component, i.e. the Base Station, is an off-board (ground) system (made

of one or more computers unrelated to the Ground Control Station) that has the

role of managing and controlling the whole mission. This is performed by being in

continuous contact with UAVs, and its characteristics depend on the specific multi-

UAV application. Depending on the mission algorithm, there might be no Base

Station at all, as is the case for self-organising UAV flocks.

5.4 Simulation Tools

All the elements described in Section 5.3 must have a relevant corresponding block

in the simulated scenario. We propose a solution based on the integration of three

existing tools, each implementing a specific function. The physics of the mechanical

parts (i.e. airframe, motors and propellers) is simulated by means of Gazebo; ns-3

is used to simulate the network; as for the flight stack, we employed ArduPilot.

5.4.1 Gazebo

The Gazebo3 robotics simulator [93] is designed to be as realistic as possible in the

modelling of the simulated environment and in the response of the objects and the

sensors contained in it. It has been used in several UAV projects, such as [107] and

[102].

Gazebo’s software architecture is modular and can be extended by plug-ins. Ac-

cording to what aspect of the simulation is to be controlled, Gazebo defines several

types of plug-ins. A Gazebo plug-in consists in Linux shared library (.so) which is

loaded through an XML file. Plug-ins can not only interact with the simulation (us-

ing Gazebo’s APIs), but also interact with external processes using the underlying

operating system’s mechanisms (e.g. IPC, sockets and so on). As will be described

later, we heavily used this possibility in order to synchronise Gazebo’s world with a

number of external processes.

Gazebo maintains a clear separation between the core of the simulation (the

gzserver program) and the 3D visualisation engine (the gzclient program). Indeed,

3http://gazebosim.org/

Chapter 5. A Framework for Realistic Simulation of multi-UAV Applications and

Networks
64

it is possible to only launch gzserver and run the simulation headless (i.e. without

any visualisation, which is useful to collect statistics during simulation campaigns)

or, conversely, several gzclient instances can be run in order to observe the simulated

environment from different points of view.

Being a well-known and de facto standard simulation environment, there is a

wide library of both built-in and third-party readily-available Gazebo models and

plug-ins. For instance, the UAV model that we use for our simulations is the built-

in iris with standoffs model, our code that runs within Gazebo (the GzUavPlugin,

see Section 5.5) reuses part of the built-in ArduCopterPlugin, and the thrust of the

propellers is modelled using the built-in LiftDragPlugin.

5.4.2 ArduPilot and DroneKit

The ArduPilot project, originally developed by an hobbyist who later co-founded

one of the biggest drone companies, consists in a variety of subprojects, providing

control algorithms for autonomous vehicles such as heli/multicopters, fixed-wing

planes, submarines and ground vehicles. The module that implements control loops

for multicopters is called ArduCopter, and it supports several types of frames (e.g.

quad and hexa). A similar project, which ArduPilot shares some code with, is

PX4 [103].

Both ArduPilot and PX4, which are intended to run on a FCU, support the

connection of a companion computer, that is an external on-board system (usu-

ally a Linux-based system-on-a-chip) that can retrieve the status of the vehicle

in real-time (pose, battery voltage, RC inputs, ...) and send position and veloc-

ity setpoints. While low-level control algorithms (e.g. flight stabilisation, real-time

pose estimation, simple GPS path-following) are executed by ArduPilot (or PX4)

within its dedicated microcontroller high-rate inertial sensors, companion computers

are usually employed to implement higher-level algorithms that require more com-

plex lower-rate sensors. For example, a target-tracking algorithm would usually be

implemented by connecting a camera to the companion computer, which runs the

computer vision algorithms and then continuously sends velocity setpoints to the

ArduPilot microcontroller.

Chapter 5. A Framework for Realistic Simulation of multi-UAV Applications and

Networks
65

The communication between the FCU and the companion computer happens us-

ing a standardised protocol called MAVLink 4, usually over a serial channel. MAVLink

is a complex protocol, which forces the companion computer programmer to deal

with a lot of low-level implementation details. In order to hide this complexity, high-

level wrapper libraries were created to simplify the task of programming autonomous

vehicles. One such library is DroneKit5, which is especially targeted at controlling

ArduPilot-based FCUs from Python programs. It automatically configures the se-

rial port and exposes data received via MAVLink through global variables, while

also offering an easy-to-use API to send position setpoints. The MAVLink protocol

can also be used to remotely control the vehicle from a Ground Control Station

by means of wireless “telemetry radios”, that are usually employed to monitor the

overall status (e.g. receive alarms in case of system failure) and send emergency

commands.

Lastly, another interesting ArduCopter feature is the support for SITL (Software-

In-The-Loop) simulations, i.e. a configuration in which the target platform is not a

real object, but a software simulation of it. When run in SITL mode, ArduCopter

offers that same MAVLink control channels a real UAV would offer (albeit via TCP

socket instead of a serial port), enabling the validation of high-level algorithms in a

simulator using the same MAVLink messages that would be used in the real UAV.

5.4.3 Network Simulator 3

Network Simulator 3 (ns-3) [94] is a simulator capable of simulating several types

of network infrastructures and network protocols. It is the evolution of ns-2, one

of the most popular network simulators that has been widely used for research and

education on the Internet and other network systems.

Its core is written in C++ (with optional Python bindings), and its vast library

of built-in modules offers models for technologies and protocols such as CSMA links

(Ethernet), bridge communication, WiFi (802.11 links with beacons and ad-hoc

modes), network mesh (802.11s and “Flame”) and low-energy wireless communica-

tion (802.15.4 LoWPAN).

4http://mavlink.org
5http://python.dronekit.io

http://mavlink.org
http://python.dronekit.io

Chapter 5. A Framework for Realistic Simulation of multi-UAV Applications and

Networks
66

Simulations are programmed by means of so-called “simulation scripts”, C++

programs that create instances of nodes and assign each of them a network stack

and an optional mobility model (describing how a node moves in time). Such scripts

would ordinarily also define how node behave up to (simulated) application level;

however, in our case, the application logic belongs to the High-level logic processes,

and script-defined stacks have to stop at transport level. Similarly, our framework

takes over UAV nodes’ mobility models to keep their position synchronised with

Gazebo.

5.5 The Integrated Simulation Environment

The tools presented in the previous section constitute the basic blocks to build a

complete simulation environment for a multi-UAV application; however, they are

not designed to work together in an integrated manner. In this sense, there are two

main problems that must be faced.

The first problem regards the way in which such tools can exchange data. Since

all of them have different interfaces, a proper “translator” must be written, each

using the relevant API of the specific tools, to expose data in a common format.

This is not particularly challenging and it is a matter of good code writing.

The second, but most important, aspect is tied to clock synchronisation. All

the tools employed are designed to provide the most realistic simulation as possible;

however, each of them includes its own notion of time, that is rather different than

wall-clock time and mostly tied to the events they simulate. What we need, instead,

is the integrated simulation environment to have a common notion of time, otherwise

the requirement of realistic simulation cannot be met. For this reason, the said

“translators” must interact with each other and with the various tools in order to

make them proceed, during the simulation, in a strictly synchronised way.

5.5.1 Basic Components

The software architecture of the integrated simulator is composed of several modules,

each referring to a specific component of a UAV in the real scenario. Each UAV

is represented by the following software modules which are shown in Figure 5.2

Chapter 5. A Framework for Realistic Simulation of multi-UAV Applications and

Networks
67

 Ns-3 process

Gazebo physics
simulator
(gzserver)

Gazebo 3D
visualisation

engine
(gzclient)

Gazebo
Visual
Model

Gazebo
Visual
Model

Unix Process GzUavPlugin

ArduCopter process
(in SITL mode)

Unix Process

High-level logic
UAV Node

Unix Process GzUavPlugin

ArduCopter process
(in SITL mode)

Unix Process

High-level logic
UAV Node

.......

UAV 1

UAV 2

Gazebo
Physical
Model

Gazebo
Physical
Model

Figure 5.2: Software Components and Architecture of the Integrated Simulator

and described below: Gazebo Visual Model, Gazebo Physical Model, GzUavPlugin,

ArduCopter process, UAV node and High-level Logic (or Mission-level Logic).

The Gazebo Visual Model and Gazebo Physical Model represent the definition of

the frame and inertia of the UAV, which, in our experiments, is a quad-rotor VTOL

aerial vehicle. Both models are coded in the same XML definition file that Gazebo

uses to display the UAV in the 3D scenario and to simulate its physics. In our

framework, we used the definition file of a quad-rotor, called iris, that is available

in Gazebo’s own model library.

In order to let the simulated quadrotor fly, the frame must be “connected” to the

ArduCopter flight stack; to this aim, ArduCopter must obtain proper information

on frame pose (geographical coordinates, Euler angles and Euler angle rates and

must be able to drive propellers by sending proper commands to motors. The

GzUavPlugin component is a Gazebo plugin that has this specific objective. Derived

from the ArduCopterPlugin which is available in the Gazebo package, we suitably

modified it in order to include synchronisation of the activities with the other parts

of the integrated simulation environment.

The ArduCopter process is a stand-alone process running an instance of the

ArduPilot flight stack, specifically compiled to run on a PC-based platform (and not

a real FCU) and to support the “software-in-the-loop” (SITL) mode. By interacting

with the GzUavPlugin it is able to control the stability and the flight of the simulated

UAV.

The UAV node represents the communication end-point, that is the wireless

interface of a companion computer placed in the UAV. It is in practice an instance

Chapter 5. A Framework for Realistic Simulation of multi-UAV Applications and

Networks
68

of a C++ class that runs within the ns-3 process and enables the simulation of the

wireless communication channel. In our implementation, we support both IEEE

802.11 and IEEE 802.15.4 wireless standards, and the type of communication can

be selected when the simulation is launched.

The last part is High-Level Logic (HLL), which is the module running the user-

defined software that implements the multi-UAV application. In our case, it is a

Python script that exploits services provided by two Python APIs: DroneKit, the

library already cited in Section 5.4.2, and ns3interface, a library written by the

authors to let the Python program interact with ns-3. A Python script contains

the HLL of the behaviour of a single UAV, so, for each UAV of the application,

a different Python process must be run; this implies that, when the application

is ready to be ported onto a real scenario, the source code of the behaviour can

easily be run on the companion computer of each UAV without (or with very few)

modifications.

As Figure 5.2 clearly shows, a specific instance of each module is created for each

simulated UAV, but all these instances, while constituting altogether a single UAV,

do not run in the same environment and each one is executed inside its specific

simulation tool: the Gazebo model and the GzUavPlugin run inside the Gazebo

process, the UavNode runs inside ns-3, while ArduCopter and High-Level Logic are

executed as stand-alone processes.

5.5.2 The GzUavChannel

In order to support the synchronization requirements dealt with in the previous sec-

tion, the integrated simulation environment we propose includes a basic component

called GzUavChannel, which is depicted in Figure 5.3 together with the links

and connections with the other components of the framework6. It is a middleware

component that has multiple aims.

Its first objective is clock synchronization. The GzUavChannel has the

responsibility of capturing the time tick generated by Gazebo, which is our main

clock source, and distributing it to all the other components, in order to allow the

evolution of the simulation with a common knowledge of time.

6Figure 5.3 shows an environment where two UAVs are simulated; if more entities have to be
considered, it suffices to replicate the various modules accordingly.

Chapter 5. A Framework for Realistic Simulation of multi-UAV Applications and

Networks
69

 Ns-3 process

Gazebo physics
simulator
(gzserver)

Unix Process

GzUavPlugin

Unix-domain
Socket

ArduCopter process
(in SITL mode)

Unix Process

TCP
Connection

TCP
Connection

High-level logic

UAV Node

Unix Process

Unix-domain
Socket

GzUavPlugin Unix-domain
Socket

ArduCopter process
(in SITL mode)

Unix Process

TCP
Connection

TCP
Connection

High-level logic

UAV Node

MAVLink
(TCP)

TCP
Connection

Unix-domain
Socket

GZUAVCHANNEL

MAVLink
(TCP)

UAV 2

UAV 1

Figure 5.3: Relationships among Components and the GzUavChannel

The second objective is data exchange. It acts as a data-bridge among GzUavPlu-

gins and ArduCopter processes; this bridging is the key to handle time synchronisa-

tion, but it is also required to support the distribution of the simulation in several

network nodes.

Distribution Handling is indeed the third objective of GzUavChannel. As

it will be discussed in Section 5.5.4, when the simulation is split over different

network nodes (in order to spread the workload), each node hosts an instance of

GzUavChannel and all of them cooperate to synchronise the overall activities.

As Figure 5.3 shows, the components of the framework not only interact with

GzUavChannel but also directly with each other. In particular, communication

between ArduCopter and High-level Logic instances is directly performed through

a TCP link that encapsulates the MAVLink protocol (via DroneKit), while another

TCP connection is exploited to carry data packets that must be sent over the network

simulated by ns-3. In this case, the use of TCP links is required to allow the splitting

of the various components over different machines of a distributed environment.

Chapter 5. A Framework for Realistic Simulation of multi-UAV Applications and

Networks
70

5.5.3 Timing and Synchronization

A basic aspect of the simulators of dynamic systems is the way in which time is

handled; this depends of the specific type of system that has to be simulated and,

as a consequence, of the laws governing it.

Physical systems, like those simulated by Gazebo, are modelled by means of

differential equations that govern their dynamics and kinematics; in order to be

simulated, those equations must be discretised and then implemented in software.

Discretisation is performed according to a certain sampling time that constitutes

the time granularity of the simulation: for each iteration, we assume that a time

interval equal to the sampling time elapses and we can update state information by

using the relevant equations. As is widely known, such a simulation policy is called

time-driven.

On the other hand, other simulation systems do not need to support a continuous

flow of time but are featured by events that can occur more or less sporadically. It

is the case of a network scenario in which nodes may be silent for a long time

and then make something happen by starting to send a packet. These scenarios are

simulated by means of an event-driven approach: events are placed in a queue which

is handled by a proper scheduler which retrieves and processes them accordingly.

Events are also “timed”, i.e. they have a timestamp indicating when that event

must be processed: indeed, as an example, when a packet is sent, the next event

is packet reception but it happens only after a certain time which depends on the

transmission media and the packet size, a condition that a network simulation tool

must consider.

As the reader can easily understand, our integrated simulation environment must

deal with tools that have different simulation policies, namely time-driven for Gazebo

and event-driven for ns-3. The solution we adopted to integrate them is to change

the notion of time within ns-3 by writing a ns-3 module that provides an alternative

event scheduler7: the new scheduler is able to receive a target timestamp from an

external process, which triggers the execution of all scheduled network events whose

7The installation process simply consists in copying our module’s source directory to the ns-3
directory. Simulation scripts can then make use of our module’s API in order to tie ns-3’s Nodes
to Gazebo UAVs and High-level logic processes.

Chapter 5. A Framework for Realistic Simulation of multi-UAV Applications and

Networks
71

Gazebo GzUavPlugin

onUpdate()

....

GzUavChannel

Begin-Tick-AC

ArduCopter
Instance

High-level
Logic

Begin-Tick-AC

Begin-Tick-0

End-Tick-AC End-Tick-0

ns-3

Here GzUavChannel waits for
the arrival of End-Tick-AC, End-
Tick-0 messages from all the
ArduCopters/HLL involved

Begin-Tick-1

End-Tick-1

End-Tick-AC

These activities are
executed for each UAV

Figure 5.4: Sequence diagram showing messages exchanged among processes for each
simulation step

timestamp is smaller than the received value. In this way, ns-3 becomes synchronized

to an external clock source thus making integration possible.

A specific notion of time is not only required by the simulation tools but also

by the other components of the framework. The ArduCopter flight stack is a time-

driven process, and, since it implements the control algorithms for stabilization

and navigation, it exploits differential equations too (that is, PID-based control

schemes) which are thus discretised and implemented in a time-driven way. On the

other hand, the notion of time for the High-level Logic depends on the kind of multi-

UAV application to be implemented: strongly collaborative applications, like those

based on flocking, are still based on algorithms requiring a discrete time step; other

applications that require a loose coupling among UAVs are instead sensible to events

such as the arrival of a network packet or the achievement of a certain way-point.

In any case, for this component of the framework, a strict form of synchronization

(with simulated time and with the other components) is required, too.

In our simulation environment, time synchronization is managed by GzUavChan-

nel according to the interaction protocol that is depicted in Figure 5.4 and described

here. Everything is started by Gazebo: it is this tool that indeed has the responsi-

bility of generating the master time tick, an event that is notified to all the plugins

running within Gazebo, including the GzUavPlugins. As Figure 5.4 shows, this event

corresponds to the call to a specific callback function that, for the GzUavPlugin,

Chapter 5. A Framework for Realistic Simulation of multi-UAV Applications and

Networks
72

is called onUpdate(). As soon as a GzUavPlugin is notified of this event, it re-

trieves data relevant to the (simulated) sensors of the associated UAV (pose data),

and sends them to GzUavChannel through a Begin-Tick-AC message. This

message notifies GzUavChannel of the start of a new simulation period that is

divided, by GzUavChannel, in two different sequential phases, called Phase-0 and

Phase-1 : the first phase is devoted to the execution of two UAV-related activities,

while, in the second phase, a step of network simulation is executed.

In particular, during Phase-0, as a consequence of the reception of each Begin-

Tick-AC message from the plugin, GzUavChannel relays this message to the

relevant ArduCopter process and, in parallel, generates another message, Begin-

Tick-0, that is sent to the High-level Logic process. On this basis, the ArduCopter

instance will execute one step of the control loop: the result will be the values of

power to be sent to motors8, an information that is replied to GzUavChannel by

means of the message End-Tick-AC. In parallel, the High-level Logic, notified by

the Begin-Tick-0 message, executes both clock synchronisation and a step of its

activities. Also this process, at the end of the step, replies to GzUavChannel by

sending an End-Tick-0.

When all ArduCopter and High-level Logic processes have concluded their tasks

and the GzUavChannel has gathered all the End-Tick-AC and End-Tick-0

messages, the Phase-0 is over and Phase-1 can be started. Phase-1 is characterised

by the message Begin-Tick-1 that GzUavChannel sends to the ns-3 process;

as a consequence, ns-3 synchronises its clock and executes all the events whose

timestamps fall within the duration of time tick. At the end of this step, ns-3 replies

with a End-Tick-1 message to GzUavChannel which, in turn, can signal the end

of the simulation tick by sending a End-Tick-AC message to all the GzUavPlugins

involved.

The subdivision of the simulation tick into two different phases is required to

synchronise transmission activities. Indeed, during Phase-0, the High-level Logic

can execute its simulation step of e.g. a flocking or other kind of algorithm; this

phase surely would include the computation of next speed or position set-points for

the UAV and their subsequent transmission to the flight stack (via MAVLink), as

well as the transmission or reception of messages, via the wireless link, that must

8In particular, the output is the PWM values for the motor drivers.

Chapter 5. A Framework for Realistic Simulation of multi-UAV Applications and

Networks
73

be then simulated by ns-3. In order to correctly simulate network activities, the

adopted policy is as follows: during Phase-0, High-level Logic processes that have to

send data over the network directly interact with ns-3 by sending an ENQUEUE-

NS3 message, as Figure 5.5(a) details; here the message is not really processed

by ns-3 but only placed in the event queue. When Phase-0 is over and Phase-1

is started, ns-3 scans the event queue and starts simulating data transmission: if,

during time tick, a data packet needs to be delivered to a destination UAV, the

relevant UavNode running within ns-3 is contacted which, on this basis, sends an

ENQUEUE-HLL message (along with the packet payload data) to the High-level

Logic process (see Figure 5.5(b)); once again, the packet is enqueued, and it will

only be processed by the High-level Logic at the next instance of Phase-0.

GzUavChannel High-level
Logic

Begin-Tick-0

End-Tick-0

ns-3

Enqueue-ns3

Ack
For each
message
to be sent

((a)) Messages sent by UAVs are enqueued
in ns-3 during Phase 0

GzUavChannel High-level
Logic

Begin-Tick-1

End-Tick-1

ns-3

Enqueue-HLL
Ack

For each
message
to be delivered

((b)) Ns-3 runs the network simulation, in-
cluding the delivery of messages to UAVs,
during Phase 1

Figure 5.5: Interactions between High-level Logic processes and ns-3

5.5.4 Managing Simulations in a Distributed Environment

In addition to the synchronisation of the clock and the activities, the other aim of

GzUavChannel is to allow a developer to distribute the simulation over different

interconnected servers, in order to take advantage of a multi-node environment. In

this way, the computational workload can be spread over a network, by e.g. par-

titioning the set of UAVs into a number of groups, each controlled by a different

GzUavChannel instance on a dedicated computational node.

Basically, as Figure 5.3 shows, processes that interact directly, i.e. ArduCopter,

High-level Logic and UavNode, are interconnected through a TCP Link that is

independent of GzUavChannel, so they can be hosted on different machines.

Nevertheless, all processes must be coordinated by the central entity that must do

Chapter 5. A Framework for Realistic Simulation of multi-UAV Applications and

Networks
74

Gazebo physics
simulator
(gzserver)

GzUavPlugin

GzUavPlugin

TCP Link

TCP Link

GZUAVCHANNEL
GzUavPlugin

GzUavPlugin

GzUavPlugin

GzUavPlugin

Node A Node C

TCP Link

TCP Link

GZUAVCHANNEL

Node B

Node D

Node E

ArduCopter

GZUAVCHANNEL
ArduCopter

High-level Logic

High-level Logic ArduCopter

GZUAVCHANNEL
ArduCopter

High-level Logic

High-level Logic

ArduCopter

GZUAVCHANNEL
ArduCopter

High-level Logic

High-level Logic

Node F

ns-3 network
simulator

UAV Node

UAV Node

UAV Node

UAV Node

UAV Node

UAV Node

TCP Link

TCP Link
TCP Link

TCP Link

TCP Link

TCP
Link

TCP
Link

UAV Nodes are
interconnected
within ns-3's

simulated network
according to the
network model

Figure 5.6: Architecture of the Integrated Simulator in a Distributed Environment

its work also when components are distributed, therefore a link to GzUavChannel

must always be kept. Given that the policies used to spread the processes over a

set of servers may be various, a good way to improve simulation performances is to

separate the physics simulation (Gazebo) from the other parts.

In this sense, as Figure 5.6 reports, in the most general form, a tree can be

created, in which the nodes are GzUavChannel instances and the edges are TCP

connections9; in such a tree, the root is represented by the instance directly con-

nected to Gazebo, while the leaves are connected to ArduCopter processes. Each

ArduCopter process is connected to the associated High-Level logic process, running

on the same node, which is in turn connected to the global ns-3 process.

The dynamics of interaction in a distributed environment are quite similar to the

centralised case; coordination is performed by using the messages Begin-Tick-AC

and End-Tick-AC that are exchanged by GzUavChannels. In detail, when the

first Begin-Tick-AC is received from the root GzUavChannel (node A), it is

forwarded to children nodes, down to the leaves of the tree. Each GzUavChannel

thus behaves according to the protocol in Figure 5.4, coordinating the processes

which it is has the responsibility for. Finally, when Phases-0 are completed, the

End-Tick-AC message is generated by leaf nodes and forwarded along the tree until

the root is reached, thus letting the root GzUavChannel proceed with Phase-1.

9As is widely known, TCP tends to introduce latencies that might slow down the simulation
(but not affect its correctness, thanks to the strict synchronization protocol). The developed
software tries to eliminate such latencies through careful usage of Linux’s TCP NODELAY, TCP CORK

and MSG MORE flags in networking system calls.

Chapter 5. A Framework for Realistic Simulation of multi-UAV Applications and

Networks
75

5.6 Case-Study: Leader-Follower

In order to show how to use the integrated framework to develop and simulate a

multi-UAV application, in this section we present a simple test-case in which two

UAVs are involved in a Leader-Follower application. One of the UAVs (established

at design time), the Leader, performs a mission on the basis of a list of fixed way-

points that are reached in sequence. At the same time, the current waypoint is sent

through the wireless network to the other UAV, the Follower, which, as soon as

it receives the packet, “follows” the leader by reaching the most recently received

waypoint.�
1 import math

2 import ns3interface

3 import simtime

4 # ... other imports

5 from dronekit import connect , VehicleMode , LocationGlobalRelative

6
7 ns3interface.connect (...) # Connect to the ns3 network simulator

8 vehicle = connect(...) # Connect to the Vehicle through MAVLink/DroneKit

9 simtime.connect (...) # Synchronize time.time () and time.sleep(n) with sim clock

10 while not vehicle.is_armable: # Don ’t try to arm until autopilot is ready

11 time.sleep (5)

12 vehicle.mode = VehicleMode("GUIDED") # Set flight mode to GUIDED and arm the copter

13 vehicle.armed = True

14 while not vehicle.armed: # Confirm vehicle armed before attempting to take off

15 time.sleep (1)

16 vehicle.simple_takeoff (5) # Take off to target altitude (5 meters)

17 time.sleep (5) # wait for taking -off

18
19 # A square (in geographical coordinates)

20 WAYPOINTS = [(-35.3631807 , 149.1653119) ,

21 (-35.3633233 , 149.1653333) ,

22 (-35.3633407 , 149.1651585) ,

23 (-35.3631983 , 149.1651369)]

24 index = 0

25 while True:

26 target_lat , target_lon = WAYPOINTS[index]

Go to the waypoint at the current index

27 vehicle.simple_goto(LocationGlobalRelative(target_lat ,

28 target_lon , target_altitude))

29 payload = struct.pack("<dd", target_lat ,

30 target_lon) # Prepare the packet with waypoint

31 ns3interface.sendto(payload , follower_address)

Transmit the current waypoint

32 time.sleep (10)

33 index = (index + 1) % len(WAYPOINTS) # Prepare for next waypoint
� �
Figure 5.7: Simplified listing of the Leader

Chapter 5. A Framework for Realistic Simulation of multi-UAV Applications and

Networks
76

The simplified version of the source code for both the Leader and the Follower

are reported in Figures 5.7 and 5.8, and described below.

After the necessary imports, both source codes feature a common preamble that

includes all activities needed to initialize the communication channels (for this reason

this common part is not reported in the listing of Figure 5.8 but simply referred to

in the other listing). At first, such activities include the connection to ns-3 (line 7 of

Figure 5.7), using our ns3interface library, and to the vehicle via DroneKit (line

8), and then the connection to GzUavChannel (line 9), using our simtime library;

this last statement presents a library call that, together with the cited connection,

redefines the functions time() and sleep() of the Python module time in order to

allow a synchronisation of the process’ time with the simulation tick10. The next

activities of the preamble, carried out using the DroneKit library, are (i) ensuring

that the vehicle is ready (lines 11-12); (ii) setting the vehicle in controlled mode11

(lines 12-15); (iii) triggering the take-off at a certain altitude (lines 16-17).

As for the Leader (Figure 5.7), a list of waypoints is defined (lines 20-23) and

then a loop is started including (i) request to reach the current waypoint (lines

26-27, through DroneKit); (ii) transmission of the current waypoint to the Follower

(line 28-29, through ns3interface); (iii) waiting12 (line 31, through the simtime-

provided sleep function - which internally synchronises with GzUavChannel);

(iv) change to the next waypoint in a circular fashion.

As for the Follower (Figure 5.8), it has the same preamble13 (so it is not reported

in the listing) and its main activity loop (lines 12-18) includes a check for the ar-

rival of a new message: as soon as new data arrives through our ns3interface

library (line 14), the packet is interpreted by extracting the coordinates of the way-

point (lines 15-16) and such a waypoint is set as the new target (line 17) using

DroneKit. Idle time is spent by repeatedly calling sleep, which in turn causes our

simtime module to let the simulation progress while keeping time synchronized with

GzUavChannel.

10simtime.connect internally redefines such functions by simply assigning the alternate im-
plementation to the function name (e.g. time.sleep = new sleep). The redefinition happens at
run-time and no permanent modifications to the Python libraries are required.

11This is called “GUIDED Mode” in the ArduCopter terminology.
12Indeed, at this point, instead of performing bare waiting, the program should retrieve current

UAV position and check if the waypoint is reached; this can be performed by means of the API
provided by DroneKit. However, for the sake of brevity, we omitted here this feature.

13The Follower’s target altitude must be different from the Leader’s one to avoid collisions.

Chapter 5. A Framework for Realistic Simulation of multi-UAV Applications and

Networks
77

�
1 import math

2 import ns3interface

3 import simtime

4 # ... other imports

5 from dronekit import connect , VehicleMode , LocationGlobalRelative

6
7 #

8 # same initialization block of code of the Leader , lines 7-17

9 #

10
11 # We are the "follower" vehicle

12 while True:

13 # Process incoming messages

14 if ns3interface.message_available ():

15 payload , sender = ns3interface.recvfrom ()

Receive waypoint coordinates

16 target_lat , target_lon = struct.unpack("<dd", payload)

17 vehicle.simple_goto(LocationGlobalRelative(target_lat ,

18 target_lon , target_altitude))

19 time.sleep (.1) # Waste time if there is no available message
� �
Figure 5.8: Simplified listing of the Follower

5.7 Performance Evaluation

Figure 5.9: Screenshot of 40 UAVs taking off

The described architecture has been implemented and validated (see Figure 5.9)

on a number of test programs. Among them, the implementation of the Boids

algorithm [108] has been to evaluate the performances of the simulator. In particular,

Chapter 5. A Framework for Realistic Simulation of multi-UAV Applications and

Networks
78

0
500

1000
1500
2000
2500
3000
3500
4000
4500
5000
5500

10 20 30 40 50 60 70 80 90 100 110 120

T
im

e
to

ru
n

th
e

si
m

u
la

ti
on

(s
)

Number of simulated UAVs

Figure 5.10: Simulation runtime corresponding to 280 seconds of simulated time

we aimed at testing (i) the scalability of the solution and (ii) its performances by

comparing the duration of a simulation with respect to real-time.

We made a simulation campaign using an increasing number of UAVs starting

from 10 up to 120, and using a (simulated) duration of the mission of 280 seconds.

On this basis, we collected the measure of real-time duration of the simulation.

Measurements are reported in Figure 5.10, and refer to the implementation of

the Boids algorithm that uses a IEEE 802.15.4 wireless channel for UAV interaction;

the test run on a single Intel Xeon E5-2620 v3 @ 2.40GHz node, within a VMWare

Virtual Machine with 8 vCPUs and 32 GB RAM. As Figure 5.10 shows, the inte-

grated simulator is able to support up to more than one-hundred simulated UAVs,

a number that is in accordance with a scenario of a real mission.

5.8 Conclusions

This chapter has described an architecture to combine different tools into a unified

framework, which can be used to simulate multiple realistic UAVs with wireless

networking capabilities.

Simulation is an invaluable tool in UAV application development, as it allows

algorithms to be tested without using real UAVs, thus avoiding the associated risks.

Thanks to the usage of ArduPilot’s MAVLink API, the same code that runs on the

simulator can also run in a real UAV. Therefore, our framework lets one develop

Chapter 5. A Framework for Realistic Simulation of multi-UAV Applications and

Networks
79

UAV programs in the simulator at first, and deploy them in the physical world only

after they have been extensively tested and validated.

The choice of Gazebo, as the robotics simulation engine, makes it possible to

include a variety of further objects and sensors in the simulated world for UAVs to

interact with, in order to build realistic and accurate virtual environments. Gazebo

also offers a 3D visualisation interface that allows one to optionally monitor the

simulation progress in real time.

Multi-UAV applications are often strongly tied to the UAVs’ ability to commu-

nicate with each other. Such communication requirements impose a careful perfor-

mance analysis of available wireless protocols and technologies with respect to the

specific application. Because of this need, we integrated the ns-3 network simulator

in our framework. Ns-3 is able to accurately simulate most, if not all, technologies

that are of interest for UAV applications.

The proposed framework combines Gazebo, ArduPilot and the ns-3 network

simulator by means of a new tool we developed called GzUavChannel (and a set

of adapter plug-ins for existing tools, too) which implements a custom protocol, to

keep all parties synchronised. The result of this work is a time-based simulation

framework, whose programs can be programmed in the Python language and then

run, with minimal boilerplate changes, on real UAVs. Source code, as well as a

number of example programs, can be found at the http://gzuav.dmi.unict.it/

website.

Future work will aim at implementing the flocking and area coverage algorithm

described in [25], using the simulator during the development phase and then, once

deployed on real UAVs, to analyse the differences between the simulator and the

real world. We also plan to add support for unmanned ground vehicles (UGV), in

order to support both UGV-only and UGV-UAV cooperation, as the framework is

currently being used by our university’s team in preparation for the MBZIRC 202014

robotics contest.

14Mohamed Bin Zayed International Robotics Challenge, http://www.mbzirc.com/challenge/
2020

http://gzuav.dmi.unict.it/
http://www.mbzirc.com/challenge/2020
http://www.mbzirc.com/challenge/2020

80

Chapter 6

Wale: libraries and packages

sharing approach in Docker

Containers

6.1 Introduction

Cloud Computing represents nowadays one of the most widely used enabling tech-

nology to access large computational resources [109]. The key aspect relies on the

ability of the user of being connected to the Internet anytime and anywhere, thus al-

lowing her/his to seamlessly access, with any device, to e.g. a remote disk space, an

office application, a virtual CPU, or other kinds of computational resources. Services

like Amazon Cloud, iCloud, Google Docs, Google Drive, etc., have become tools that

people are normally using in everyday activities, both personal and professional.

Such a wide-spreading of cloud-based services implies the need of proper IT

infrastructures able to support user requirements, not only in terms of response

time and scalability, but also for what the privacy aspects are concerned. Accessing

external storage or using network services often implies to send private data, e.g.

documents, pictures, and any other kind of personal information, to remote servers

that store or manage them, therefore the secure and trusted treatment of such data

is an aspect that IT people must always strongly take into account.

From the technological point of view, the state-of-the-art enabling technology for

Cloud Computing is virtualisation [110, 111, 112, 113], i.e. the ability to not directly

expose, to users, a real CPU or a physical amount of RAM, but, by means of proper

hardware and software tools, to “recreate” a virtual CPU, a logical/virtual RAM

Chapter 6. Wale: libraries and packages sharing approach in Docker Containers81

space, etc. and let users/developers use them. Indeed, by means of proper virtualis-

ers, a physical machine can be split into several virtual machines (VMs), each one

with its proper characteristics derived on the basis of the particular service that the

VM itself has to support or provide. There are many off-the-shelf solutions that sup-

port virtualisation; many of them, i.e. hypervisors [114, 115, 116], exploit dedicated

hardware, but there are also software-only solutions that, while being somewhat

limited, perform quite well for certain specific types of cloud environments.

Among software-only solutions, Docker [117] represents one step beyond: Docker

allows operators to create execution environments without using any kind of software

or hardware emulation. Docker has recently gained a lot of attention in the con-

text of DevOps [118], as the enabling technology to easily create and deploy virtual

execution environment suitable for microservices [119, 120], which are quite hard

to support using traditional (hardware-based) virtualisation approaches. Docker

relies on the use of so called “container images”, i.e. complete installations of a

Linux-based execution environment which can be created from a build file or down-

loaded from an official or third-party repository. A single physical machine can host

multiple Docker containers, thus providing different virtual environments, each one

running its OS image. These images represent ready-to-use environments suitable

to deploy applications ready to be executed in containers. In this way, developers

can publish ready-to-use images for every kind of application and service.

In addition to Cloud Computing, developing of new kinds of Edge Computing

and IoT infrastructures are made possible thanks to Docker. Indeed, a microservice

can be deployed just-in-time on some nodes closer (in terms of network hops) to the

node requiring that service.

Nowadays, these infrastructures have found a large number of applications, from

the management of energy saving (through on-site control of energy production with

appropriate devices) to the medical environment (via mobile devices worn for exam-

ple by patients)[121, 122, 123, 124], bringing us closer to Tactile Internet (chapter

2) [19].

Unfortunately, despite the cited advantages, Docker presents an important draw-

back: building and deploying Docker images might generate non-trivial disk space

waste, which is caused by the large number of libraries that each application needs

Chapter 6. Wale: libraries and packages sharing approach in Docker Containers82

for its execution. Furthermore, since containers represent isolated environments, ev-

ery library or package used in more than one container will be duplicated, because

there is no sharing mechanism. A consequence of this is a waste of disk space, that

increases on the basis of the number of containers running on the physical machine

and the amount and size of common parts.

In this context, this chapter proposes a smart image building management tech-

nique, for the Docker platform, which allows developers to manage the creation

of the various containers images by including common libraries into a base docker

image called Core Image. The developed technique allows developers and system

administrators to save space on the disk without affecting the organisation of the

application containers. The technique, called Wale, is based on the sharing of the

libraries and packages that could belong to more than a container, but without af-

fecting the requirements of privacy that completely isolated environments provide by

default. A case study is included in the chapter, with some results proving that the

proposed approach is effective in terms of saved space in container management.

6.2 Related works

In the wide-spreading of the virtualization and containerization technologies such

as Docker, de-duplication of memory and disk space is becoming an important non-

functional requirement for enterprises which have moved their computational infras-

tructures in the cloud. Although our work is focused on avoiding duplication of disk

space, a few related works are similarly aimed at saving memory [125, 126, 127,

128].

Among them, KSM (Kernel Samepage Merging) [126] represents a technique

developed to prevent RAM duplication in the same host across different virtual ma-

chines which possibly runs the same software or handle the same data. KSM is

simply a Linux Kernel module to enable sharing of parts of memory across differ-

ent processes and, as a consequence, also for different KVM (Kernel based Virtual

Machine) virtual machines. The main advantage of KSM is that it finds memory

pages with the same content in the system by using two different data structures:

it uses two trees, one representing the already shared and not changing KSM gen-

erated pages (the “stable tree”), the other representing the memory pages which

Chapter 6. Wale: libraries and packages sharing approach in Docker Containers83

are not shared but that are tracked by KSM. However, due to efficiency issues,

KSM provides a set of API to let the applications optionally register which virtual

memory areas should be scanned by the kernel thread that has the task of merging

equal physical pages of memory. Moreover, some possible security issues have been

analysed. As discussed in [129], memory de-duplication is vulnerable to memory dis-

closure attacks. Since de-duplication is performed by the Copy-On-Write technique,

the authors observe that, although the sequence of operations is logically valid and

the results is consistent, the write access time is different between de-duplicated and

non-de-duplicated pages. As a consequence, an attacker may use the time difference

in a memory disclosure attack.

The researchers studied the problem of disk de-duplication since the beginning

of the massive adoption of virtualisation [130]. The authors of [130], in order to

test effectiveness of de-duplication, conducted a number of extensive evaluations on

virtual machine disk images with different “chunking” strategies. They have shown

that de-duplication of VM disk images can save 80% or more of the space required

to store the operating system and application environment. They found that the

de-duplication ratio can have a high bias due to the many factors such as the base

operating system or even the Linux distribution. Overall, the tests performed by the

authors have shown that, in general, 40% is approximately the highest de-duplication

ratio if no obviously similar VMs are involved (e.g. same OS selected by the users).

A project worth to mention is LCFS1, Layer Cloning FileSystem, which is a

filesystem designed to be a Docker storage driver2. LCFS focuses on image’s layers,

and it operates directly on top of block devices, as opposed to merging separate

filesystems. Thereby, LCFS aims to directly manage the container image’s layer

level, which has a positive impact on the overhead of having a second filesystem.

File system block level can provide several advantages. Docker provides several

different storage drivers, which are supported by different backing filesystems. In

particular, as widely documented3, aufs, overlay, and overlay2 operate at the

file level rather than the block level. The main implication is that they are efficient

in terms of memory consumption, but there is no de-duplication of disk space, and

the container’s layer may significantly grow in write-heavy workloads. The three

1https://github.com/portworx/lcfs
2https://docs.docker.com/storage/storagedriver/select-storage-driver/
3https://docs.docker.com/storage/storagedriver/select-storage-driver/

Chapter 6. Wale: libraries and packages sharing approach in Docker Containers84

aforementioned storage drivers are supported by ext4 or xfs filesystem. Instead,

btrfs or zfs storage drivers, supported by the backing filesystem which have the

same name, BTRFS [131] and ZFS [132, 133], operate at block level. This choice

leads to a better efficiency, as they work at the block level. Moreover, both zfs and

btrfs support de-duplication at block level. On one hand, if storage de-duplication

is performed at block level, it is transparent to the operating system, Docker and all

the applications. On the other hand, operating such a choice imposes the adoption of

one of the filesystem zfs or btrfs, as ext4 or xfs can only support overlay/overlay2 and

aufs. Finally both btrfs and zfs are less efficient in terms of memory consumption.

6.3 Background

6.3.1 Virtualisation via Hypervisors

As it has been stated in Section 6.1, virtualisation [110] is the key technology to

make a physical host machine able to emulate a number of virtual machines (VMs)

with, at most, the same hardware specifications of the host machine itself [113]. The

main component for virtualisation is the Hypervisor, also known as Virtual Machine

Monitor (VMM)4; it is a software, installed on top of computer hardware, that

creates a virtualisation layer with the objective of managing the sharing of physical

resources. The VMM emulates the hardware of a physical machine and prevents

access, by a VM, to the real hardware thus providing an isolation environment

ensuring that a VM cannot affect the operations of any other VM and host system,

even in the case of crashes or malicious behaviors. The way in which this task is

performed is a crucial aspect, since it is main impact factor of VMs performance. In

this sense, two kind of VMM technology exist, known as type-1 and type-2. Type-1

hypervisors, also known as bare metal hypervisors (see left-side of Figure 6.1), are

small executives that boot when the machine is powered-up; in turn, they can run

the guest OS of each virtual machine as a user process of the executive. The guest

OS is unaware that it is just a user process of the hypervisor and when it tries to

execute a sensitive instruction that could imply the access to a hardware resource, a

4In the following, we will use the terms “hypervisor” and “VMM” with the same meaning.

Chapter 6. Wale: libraries and packages sharing approach in Docker Containers85

HYPERVISOR TYPE-1

HARDWARE

HOST OPERATING SYSTEMHYPERVISOR

VIRTUALISATION LAYER

GUEST OS

LIBS

APPLICATION #1

VM #1

GUEST OS

LIBS

APPLICATION #2

VM #2

HARDWARE

HOST OPERATING SYSTEM

HYPERVISOR

GUEST OS

LIBS

APPLICATION #1

VM #1

GUEST OS

LIBS

APPLICATION #2

VM #2

VIRTUALISATION LAYER

HYPERVISOR TYPE-2

Figure 6.1: Hypervisors Type-1 and Type-2

trap to the hypervisor occurs that, in turn, manages it accordingly. Xen [110, 134],

ESXi [135, 136, 137] and Hyper-V [136, 137] are examples of type-1 hypervisors.

Type-2 hypervisors, also known as hosted hypervisors, are software applications

installed and running directly on top of a host operating system (see right-side of

Figure 6.1). To support virtualisation, this kind of hypervisors either use the CPU

capability to intercept sensitive instructions, which are then processed by an agent

running in the host’s kernel, or use the “binary translation” [138, 139, 140] technique:

the guest OS (as well as any of its software applications) is scanned by the hypervisor

in order to search for code blocks containing sensitive (i.e. reserved) instructions,

such parts are then replaced to calls to the VMM in order to be emulated and handled

properly. VMWare [141, 142], VirtualBox [142], Bochs [143, 144], KVM [135, 137]

and QEMU [145] are instances of type-2 hypervisors.

6.3.2 The Docker Approach

The philosophy behind Docker [117] is instead completely different with respect

to the solutions cited above. Unlike hypervisors, Docker is able to create virtual

environments that share the same Linux kernel: as Figure 6.1 shows, the idea is to

move the virtualisation layer up to the application space (as in type-2 VMMs) but,

Chapter 6. Wale: libraries and packages sharing approach in Docker Containers86

instead of having a different kernel for each VM, all VMs share the same kernel. This

solution surely makes it impossible to organise VMs with different guest OSs, but,

when the same OS suffices for the target application, this approach surely provides

less overhead with respect to hypervisors5.

In Docker, the term “virtual machine” is replaced by a more generic “virtual

environment” which is called container : indeed, a Docker installation is a set of

containers, each one properly isolated just like a VM. Docker containers are managed

by the Docker Daemon, a background service that runs on top of the OS and manages

the creation, termination and execution of the various defined containers.

Virtualisation and isolation are achieved in various ways. File system isola-

tion is obtained by exploiting the “chroot” tool6, while the Union File System

(UnionFS) [146] is exploited to handle file system changes in order to (i) ensure that

each container has its own files, (ii) undo changes when the container is destroyed.

UnionFS is based on a layering approach: once the Docker Daemon launches a con-

tainer, it mounts the root file system in read-only mode and another layer is added

to the file system; every time a file system change occurs, Docker adds a new layer.

Cancelling changes thus implies only to remove layers.

From the practical point of view, each container is made of a special package file,

called Docker Image, which includes all the libraries and applications needed for that

container and that is created by a compiler able to process a text file that specifies

the composition of the image, in terms of additional software packages, libraries

and applications. Creating a Docker container implies (for the Docker Daemon) to

instantiate the relevant image file thus creating the virtual environment. The details

of the process for compiling and creating a Docker Image, as well as the syntax and

semantics of the image specification file, are given in the next Section.

6.4 Docker Images and Dockerfiles

As it has been reported in the previous Section, Docker uses UnionFS [146] to

manage the Docker images, a service that is able to mount files and directories from

5Indeed, using hypervisors, we need a complete OS installation for each VMs.
6http://www.gnu.org/software/coreutils/manual/html node/chroot-invocation.html

Chapter 6. Wale: libraries and packages sharing approach in Docker Containers87

DOCKER CONTAINERS' ARCHITECTURE

INFRASTRUCTURE

HYPERVISOR

HOST OPERATING SYSTEM

INFRASTRUCTURE

DOCKER DAEMON

HOST OPERATING SYSTEM

LIBS

APPLICATION #1

CONTAINER #1

VIRTUAL MACHINES' ARCHITECTURE

GUEST OS

VM #2

LIBS

APPLICATION #2

CONTAINER #2

GUEST OS

LIBS

APPLICATION #2

VM #2

GUEST OS

LIBS

APPLICATION #1

VM #1

Figure 6.2: Virtual machines and Docker Containers architectures

other file systems and combine them into a single file system; indeed, a Docker Image

typically contains a union of layered filesystems, stacked on top of each other.

A Docker Image is made starting from a base image, which includes the root

filesystem of the Linux distribution to be used in the container, plus the files of

the application(s) to be run; moreover, a series of packages can be added, if they

are needed by the applications themselves. All modifications to be applied to the

base image to obtain the final Docker Image are specified by using a text file, called

“Dockerfile”, which includes a set of directives following a precise syntax7, an ex-

ample of which is reported in Listing 6.1. As the listing shows, the “FROM” directive

specifies the root file system to be used for the base image; the “ADD” directive indi-

cates an application file to be added, while the “RUN” directive implies the execution

of a specific command that, usually, is employed to install additional libraries or

packages; finally, the “ENTRYPOINT” directive is used to run the application when

the container is instantiated.

A Dockerfile is parsed by a proper compiler that generates the Docker image used

to instantiate the container. This last operation (i.e. launching a new container),

which is performed by the Docker daemon, implies a series of operations that follow

7https://docs.docker.com/engine/reference/builder/

Chapter 6. Wale: libraries and packages sharing approach in Docker Containers88

Base Image
Ubuntu/Latest

RUN
apt-get install lib1 lib2 lib3 -y

ADD
/home/user/app /app

ENTRYPOINT
/app

RUN
apt-get install lib4 -y

RUN
apt-get install lib1 lib2 lib3 -y

ADD
/home/user/app /app

ENTRYPOINT
/app

RUN
apt-get install lib1 lib2 lib3

lib4 -y

ADD
/home/user/app /app

ENTRYPOINT
/app

Image1/app

Image2/app

Image3/app

Figure 6.3: Three Docker images with same root file system, libraries and application

the content of the Dockerfile and that are detailed in the following. First the root file

system of the base image is mounted in read-only mode; then, in order to support

file system modification, another layer is added using UnionFS mount. According

to the Dockerfile, the various lines are thus “executed” in order, but, for each line,

a new (UnionFS) layer is added; this process is shown in Figure 6.3.

When different containers are instantiated in the same machine, a sharing policy

is applied to the base image only: if more than one container uses the same root file

system image, Docker organises them in order to share the content (see Figure 6.3);

this is made possible thanks to the fact that the root file system is mounted in

read-only and that modifications, in the specific containers, are handled by using

layering; therefore, a change done in a container is not propagated in/visible by

other containers. Since it is very common to have different applications (running

in different containers) that however are based on the same running platform, this

sharing policy makes sense because it is able to save disk space.

Chapter 6. Wale: libraries and packages sharing approach in Docker Containers89

Listing 6.1: Example of Dockerfile

FROM ubuntu :16.04

WORKDIR /app

RUN apt -get install node -y

ADD package.json package.json

ADD main.js main.js

RUN npm install

ENTRYPOINT node main.js

Unfortunately, the sharing is applied only to root filesystem image and not to

other parts, such as libraries or applications files; in many cases, the same library

(or even a same set of libraries) could be needed by different containers; and, even

more, many people use Dockerfiles made by third parties, without paying attention

to their content, just to build the image and run its Docker container. In all of

such cases, the lack of a sharing policy at the library/application level surely leads

to a wasting of disk space, that can also be quite relevant when the number of

containers increases. The solution we developed is able to address this problem thus

allowing developers to save disk space without affecting the isolation degree needed

in a Docker environment.

6.5 The Wale approach

6.5.1 Basic Working Principle

As it has been already discussed in Section 6.4, a Docker Image starts from a base

image and includes a set of libraries and some specific application files. According

to Figure 6.3, the base image is shared among all containers and thus can be con-

sidered somewhat “public” since it is visible from any created virtual environment,

even if in read-only mode. All the other parts, i.e. libraries and application, are

instead container-local and thus completely isolated from the relevant parts of other

containers. We can refer to them as “private” parts.

This subdivision into public and private parts is embedded in Docker by design.

Indeed, the underlying concept of Docker is to create environments that are isolated

from each other, such as “sandboxes”, so that these environments can not affect to

Chapter 6. Wale: libraries and packages sharing approach in Docker Containers90

each others, otherwise the concerns of privacy and security, that are fundamental

for cloud environments, would be lacking. Nevertheless, it is plausible to think that

a library or package used by two or more containers could be shared as well, in

order to save space on disk that would otherwise be wasted. However, even if, from

a point of view, sharing a common library implies to save disk space, from another

perspective it must not compromise–in any case–the isolation, privacy and integrity

of containers.

The approach proposed in Wale8 is based on the concepts above. The idea

behind Wale is, at first sight, simple but effective: to identify all libraries/files that

are common to several containers and move them from the “private” parts (that

would feature duplication) to the “public” part (that features sharing). The idea is

therefore to exploit this public/private mechanism of Docker to avoid the waste of

disk space, being able to identify what can be transported in the public part and

what should remain in the private and isolated part. By applying this solution,

the structure of the three containers depicted in Figure 6.3 would become as in

Figure 6.4: here the commands relevant to the installation of packages are executed

in such a way as to download and install files in the public part, so that they can

be shared by any container.

Of course, placing packages in the public part must be somewhat controlled and

limited, otherwise the requirements of privacy and isolation could be easily violated:

indeed, it’s up to the Wale tool to organise and properly decide which parts can be

moved to the public part by following precise rules. These aspects, as well as the

details about the working model of Wale, are reported in the next subsections.

6.5.2 The Wale Tool

In order to support the sharing characteristics explained above, the Wale tool acts

as a pre-processor by taking, as input, a file specifying the desired composition

of a container and generating, as output, a Docker Image that can be directly

instantiated by Docker itself. With reference to Figure 6.4, the public part is called

Core Image (which conceptually replaces the base image of the original Docker

structure). Like the private part, the Core Image is managed by UnionFS and

thus is organised in “layers”: the lower layer corresponds to a Docker base image

8The name was chosen because it sounds similar to the word “whale”.

Chapter 6. Wale: libraries and packages sharing approach in Docker Containers91

Algorithm 1 Wale’s approach algorithm

1: procedure Wale(core, application) ▷ Dockerfiles
2: depends← GetDependencies(application)
3: n depends← depend.length
4: if core not exists then
5: core← GetFromDockerHub(application.requiredDistribution)
6: end if
7: if n depends > 0 then
8: core depends← GetDependencies(core)
9: diff depends← core depends− depends

10: n diff depends← diff depends.length
11: if n diff depends > 0 then
12: for dependency in diff depends do
13: AddDependency(dependency, core)
14: end for
15: BuildImage(core)
16: aux app← CreateAux(application)
17: end if
18: else
19: aux app← CreateAux(application)
20: end if
21: BuildImage(aux app)
22: end procedure

Chapter 6. Wale: libraries and packages sharing approach in Docker Containers92

RUN
apt-get install lib1 -y

ADD
/home/user/app /app

ENTRYPOINT
/app

ADD
/home/user/app /app

ENTRYPOINT
/app

ADD
/home/user/app /app

ENTRYPOINT
/app

Image1/app Image2/app Image3/app

RUN
apt-get install lib2-y

RUN
apt-get install lib3 -y

Base Image
Wale/Core

RUN
apt-get install lib4 -y

Figure 6.4: Three Application images with same base image (Core image) and then same
libreries

(e.g. Debian-based or a Red Hat distribution), while each additional layer is created

for each additional package installed. Wale takes care of managing and checking,

with appropriate specifications, what has to be installed inside the Core Image and,

later, how to create a new application image starting from the Core image, but

inserting all the private information related to the application and the application

itself.

The working scheme of Wale is shown in Figure 6.5. Everything starts from a

text file, called Wale file, which describes with a JSON syntax the container to be

created; this file specifies the following information:

• distribution: it indicates the base image and is equivalent to the “FROM”

keyword of a Dockerfile;

• dependencies: it is a list of additional packages that need to be installed

(via “apt-get” or a similar command);

Chapter 6. Wale: libraries and packages sharing approach in Docker Containers93

Wale File

{
 distribution : x,
 dependencies: [],
 workdir : "/yyy"
 dataFiles : [],
 commands : [],
 entrypoint : "zzz"
}

WALE

Database

Application Image

Core Image

FS
0
1

FS
0
1
2
3
4

Figure 6.5: The Work-flow of Wale

• dataFiles: it is a list of application/data files to be copied in the final image

that are needed by the application to be run in the container;

• commands: it is a list of commands that are specifically related to the ap-

plication and that must be run each time the application image is built;

• workdir: it specifies the directory in which the files of the application will

reside;

• entrypoint: it specifies the shell command to execute in order to lauch the

application in the container.

When the container will be instantiated, the first two items will be placed to the

public/shared part, while the remaining items will be placed/run in the private part.

In order to create and instantiate the container, the text file is parsed by the Wale

tool and the various parts specified are handled according to Algorithm 1 which is

described below.

First of all Wale checks whether, in its database, a Core Image corresponding to

to the distribution base image already exists; if this is not the case a new Core Image

is created by Wale (lines 4–6 of Algorithm 1). In the retrieved Core Image, layers

correspond to the various installed packages: Wale compares the list of installed

Chapter 6. Wale: libraries and packages sharing approach in Docker Containers94

packages with the packages requested by the new specification file (i.e. “dependen-

cies”) (lines 8–10) and missing packages are added by stacking new layers (lines

11–15). The process of building the Core Image is performed, by Wale, by exploit-

ing the tools of Docker: the aim is to create a new Dockerfile, representing the

new Core Image, and compile it; however, this task is managed by Wale and thus

completely transparent for the user.

In a way similar to the creation of the Core Image, the sections of the Wale file

related to “dataFiles”, “commands”, “workdir” and “entrypoint” are subsequently

processed by Wale: the result is another Dockerfile that imports the Core Image

above and includes the proper commands (lines 16–19). When this Dockerfile is

compiled by the Docker tool, the final image of the container is obtained and can

be thus directly instantiated (line 21).

6.5.3 Example of a Wale file

Listing 6.2: Wale file

1 {

2 distribution : "ubuntu :16.04",

3 dependencies : ["node"],

4 dataFiles : ["package.json", "main.js"],

5 commands : ["npm install"],

6 workdir : "/app",

7 entrypoint : "node main.js"

8 }

As an example, Listing 6.2 reports a Wale file for the creation of a container run-

ning a specific NodeJS application. The container uses an Ubuntu 16.04 distribution

and requires the “node” package to be installed; moreover, the files “package.json”

and “main.js” must be included9, the command “npm install” must be executed

before running the application, the directory of the application has to be “/app”

and the application itself must finally be launched by means of the command “node

main.js”.

9They constitute the application files so they are provided separately.

Chapter 6. Wale: libraries and packages sharing approach in Docker Containers95

Starting from this file, Wale retrieves the Core Image relevant to Ubuntu 16.0410,

along with the associated Dockerfile, and modifies the latter by including the lines

relevant to the additional packages requested. The result is a new Dockerfile, shown

in Listing 6.3, that, when compiled, produces a new version of the Core Image

relevant to the chosen distribution. The Core image Dockerfile acts as ”database”

for Wale tool. In fact, this Dockerfile describes a list of already installed libraries

and dependencies. In addiction, this Dockerfile can be used to backup and re-build

the Core image.

Listing 6.3: Rebuild of the core image

1 FROM ubuntu :16.04

2 #DEPENDENCIES

3

4

5 RUN apt -get install node -y

6 #END_DEPENDENCIES

The other parts of the Wale file are finally used to create the application Dock-

erfile, which is depicted in Listing 6.4, that, compiled with the Docker tool, is able

to create the final desired image of the container.

10We suppose that this image is present in the database.

Chapter 6. Wale: libraries and packages sharing approach in Docker Containers96

Listing 6.4: Re-build application image

1 FROM wale/core

2 WORKDIR /app

3 ADD package.json package.json

4 ADD main.js main.js

5 RUN npm install

6 ENTRYPOINT node main.js

6.5.4 Images Deletion and Garbage Collection

The working scheme of Wale described so far is related to the creation and instan-

tiation of container images built according to certain specification files. However,

during working sessions, images are not only created but also deleted when they

are no more needed: in such a case, all packages that are used by a deleted image

should be removed, otherwise they will waste disk space, but such a deletion must

be performed only if the packages are not shared/used by other application images.

For these reasons, deletion is a process that has to be managed by Wale by means

of a two-fold mechanism: (i) the use of a tag based on reference counting, and

(ii) by running a garbage collection process. Wale includes an additional database

that stores the list of packages which are installed into the Core Image and tags

each package with a reference counter. Such a reference counter aims to count how

many Application Images are using that package, i.e. it is incremented each time the

package is installed into a new Core Image, and decremented when an Application

Image is deleted: a reference counter equal to zero thus means that the package is no

longer used by any Application Image and can be deleted from the Core image(s).

This operation is handled by Wale tool11 which scans the reference database in order

to find packages with counter equal to zero and rebuilds the relevant Core Images

accordingly.

6.5.5 Isolation and Privacy of containers

The objective of Wale is to support library sharing among Docker containers in order

to save disk space. At first sight, the presence of additional shared parts could lead

11that must be run each time an Application Image is deleted

Chapter 6. Wale: libraries and packages sharing approach in Docker Containers97

to think that the isolation requirement is compromised. However, despite the goal

achieved, the final isolation is not lacking.

First of all, Wale is an approach that allows the management of the compilation

of Docker Images through the simple management and updating of the related Dock-

erfiles, without therefore altering the normal operation of the Docker Daemon, so

the same isolation among multiple containers that Docker guarantees is kept intact

in the Wale context.

Secondly, the Wale building phase forces a developer to use images from the

official Docker repository (that is called Docker Hub); for this reason the risk to use

images which can be (maliciously) altered is completely avoided.

The guarantee of the Docker container isolation does not imply the total pri-

vacy between the containers: indeed, if used incorrectly, Wale may install malicious

libraries within the same Core and then share them in all containers, effectively

infecting them. To overcome this problem, an additional restriction has been added

in Wale: a developer is allowed to use exclusively the RUN commands with the cor-

related package manager to install packages in the shared dependency block. With

this additional Wale constraint, the risk of including malicious code, that can alter

several containers, is thus avoided: code that becomes part of the Core can be in-

stalled exclusively from the package manager (e.g. Aptitude, via the RUN command)

by using trusted repositories that are specified in Docker images and that cannot be

modified by the Wale user; on the other hand, other third-part (untrusted) libraries–

if needed–can be only included in the local context of a certain container and it’s up

to the developer itself the responsibility of their trustiness: nevertheless, such addi-

tional libraries could contain malicious code, but it affects only the specific container

and not the whole Core.

6.6 Case Study and Experimental Data

In order to validate the approach proposed in this work, we describe, in this Section,

a case-study of Wale used in a desktop application environment thus reporting the

performances measured in terms of disk space utilisation. Our experiment was per-

formed in a Linux Mint distribution (18.3 Sylvia) using Docker Community Edition

Chapter 6. Wale: libraries and packages sharing approach in Docker Containers98

(18.05). The hardware details are omitted because we only evaluate the disk space

usage.

Although Docker is mostly used for deploying server-side applications, it can

be used to run desktop applications. Moreover, a desktop environment is more

appropriate for our purposes since it is a scenario in which the advantages of Wale

are more evident.

As applications, we have chosen some of the most commonly used ones, that are:

Atom, Chrome, Firefox, Telegram and Visual Studio Code. These applications share

the most used graphics libraries, such as libcairo2, libgl1-mesa-glx, libgl1-mesa-dri,

libx11-xcb-dev, etc. with all their dependencies.

In this experiment, we have been used desktop applications (with GUIs) only

to better highlight, in terms of used disk space, the capabilities of Wale to reduce

the disk space that can be wasted, because the graphical libraries could be more

heavy than other libraries. Nevertheless, the results obtained also extend to services

and microservices. Once we prepared the various Dockerfiles12, we started the build

phase13. In our experiment, the various Docker images used two different root file

systems: debian:sid and debian:buster. In order to render the Graphical User

Interface that a desktop application could have, we mount the X11 socket into

the container and we define the device where we want redirect the out rendering

(typically the first/unique display). We run the created images and measured the

resulting disk space: we noticed that the storage used by these applications was

much more than their official storage requirements. Indeed, applications such as

Chrome or Atom reach almost 900 Megabytes of disk space. Overall, the entire

installation occupies 2958 Megabytes. These numbers are reported in Figure 6.6

and Table 6.1.

We repeated the same experiment by using Wale, by properly preparing the

various Wale files of the applications and running the Wale tool accordingly. The

results, also shown in Figure 6.6 and Table 6.1, proves that, in most cases (Chrome,

Firefox and VSCode), the amount of saved space is more than 50 % with respect

to the corresponding Docker build, while, in average, the disk space occupancy of

reduced to the 40.91 % (1210.1 Megabytes).

12In this preparation, we exploited some Dockerfiles ready to be downloaded from the Internet.
13The original used Dockerfiles were created by the developer Jessie Franzelle and are available

on her git repository https://github.com/jessfraz/dockerfiles.

Chapter 6. Wale: libraries and packages sharing approach in Docker Containers99

Atom Chrome Firefox Telegram VSCode

200

400

600

800

D
is

k
S

p
ac

e
U

sa
ge

(M
B

)

Disk Space used by Docker images applications

Docker build Wale approach

Figure 6.6: Disk space usage for different applications

As a final remark, we have to consider that the percentage could increase de-

pending on the number of the applications and services, because the more amount

of shared parts the more the disk space saved.

6.6.1 Discussion

The Wale Approach, as already described above, allows a developer to save disk

space by sharing, among several images, some of the common libraries. It is a

non-invasive approach to the Docker technology as it defines a method to build

images, in line with current technology. In fact, the Wale approach can be directly

implemented in any machine having Docker installed. Wale does not alter Docker

in any way, in fact isolation among containers is still guaranteed. In other words,

each container will not be able to alter other library applications.

However, despite the cite advantages, Wale presents a drawback that is related

to application/libraries updating. Indeed, when an application receives an update

(e.g., a major or a security update) all images that use it should be rebuild: this

Chapter 6. Wale: libraries and packages sharing approach in Docker Containers100

Disk Space Usage
Image Docker build (MB) Wale approach (MB)
Core Image 445.9
Debian:sid 105.9
Debian:buster 106.6
Atom 802.3 527.7
Chrome 875.3 267.7
Firefox 470.1 172.7
Telegram 138.2 120.7
VS Code 459.6 213.2
Total 2958 1747,9

Table 6.1: Disk space usage for different applications.

operation can be performed in two different ways. The first one concerns installing

the updated library into each application image, which surely means a waste of

disk space; for this reason, this method is advised only if a few images require this

updated library. The second way, that can be used when disk space needs to be

saved, implies to install the updated library into the Core Image; more specifically,

this method requires to rebuild both the Core Image and all images that are using

this updated library. In both cases, a non-negligible cost has to be payed, since one

or more images need to be rebuilt, however, since major updates are not so frequent,

such a cost cannot be considered particularly high with respect to the advantages,

in terms of disk space saving, that the Wale approach is able to provide.

6.7 Conclusions

Docker is a system that has revolutionised and is revolutionising the way in which

applications and services are deployed. Being able to manage and manipulate, in

a clear and simplified way, a complex ecosystem of microservices within a cloud

infrastructure brings great benefits, not only in terms of timing but also in terms of

security. Docker allows developers to create contained environments within which to

manage applications in isolation. Unfortunately, Docker does not take into account

the space occupied by every single image. This is due to the fact that natively it

Chapter 6. Wale: libraries and packages sharing approach in Docker Containers101

was not designed to keep track of what is installed but exclusively to create isolated

environments.

To overcome such a limitation, in this chapter, we presented a solution based on

a simple image build approach that saves disk space by sharing common libraries

among multiple containers. The proposed solution is based on a tool, called Wale,

that has the task of automating the creation of Dockerfiles and the relevant images,

being able to recognise the parts that can be shared among different containers.

Adopting this solution leaves the host unchanged and it does not require the adop-

tion of a specific file system in the host or in the VM.

As future work, we aim at testing and/or integrating the Wale mechanisms as

a module of the Moby Project 14, which is a recent project with the objective of

building stratified modules for Docker.

14https://mobyproject.org/

102

Part III

Machine Learning Techniques

applied to IoT

103

Chapter 7

Fabulos: a Domotic Assistant

Agent for Interaction by means of

Natural Language

7.1 Introduction

In the last decade, computing environments have become quite pervasive with re-

spect to past. While they have been widely used in professional and working en-

vironments, they are now part of our everyday life even in our homes. Household

appliances exploit CPU-based equipment since a long time; however, the recent

trend is towards IoT-based Smart Homes [147], where computing pervasiveness is

pushed at high levels: as an example, many modern household appliances also em-

bed wireless communication capabilities; traditional sockets can be easily replaced

by smart sockets [148] able to measure the power and with the ability of being

remotely controlled; smart cameras connected to smart phones can now be easily

installed in homes for surveillance applications.

This kind of pervasiveness, while helping our activities, surely presents some

drawbacks: in general, each device has its own control App, often provided for a

smartphone platform, and mostly these devices/Apps do not interact each other in

an integrated manner (even if most of them use standard protocols such as https);

in other words, the users is forced to switch among different Apps in order to control

and access all the home devices. A fair solution to this issue is to develop an inte-

grated ad-hoc App implementing all the protocols for the devices to be accessed, but

such a monolithic application poses other problems in terms of flexibility, updating,

Chapter 7. Fabulos: a Domotic Assistant Agent for Interaction by means of

Natural Language
104

and maintenance when new devices have to be added or changed.

On the contrary, a different approach implies to transfer the integration abilities

to another kind of system, rather than the smartphone, but using the latter to

perform the interaction: indeed we may think to a sort of “robot”, which is able to

talk, on one side, with all the devices of the home environment and, on the other

side, with the user: in other words, a sort of personal agent that virtually lives

always at home, acting on behalf of ourselves. Therefore, since such a robot can

be seen as a virtual being, one may think to it as able to interact with real people

(i.e. the home’s householders) using the same social media we use everyday, such as

Whatsapp, Telegram, Facebook, Instagram, etc.

In such a context, in this work we have developed a software prototype of a social

assistant, called Fabulos, able to let a user interact with her/his home automation

environment via classical social channels. It is composed of three main parts: (i)

the Smart Environment Interface, which includes all the components to interact

with home devices; (ii) the Social Network Interface, that allows access to social

media; (iii) a BDI Inference Engine, i.e. a rule-based AI system that implements

the logic of the interaction with the user and the needed automation tasks; and

(iv) the Translation Services, a component able to parse and interpret the sentences

provided by the user.

This work, while describing the overall software architecture, focuses on this

last component, i.e. the Translation Services and, in particular, on the modules to

perform the Natural Language Processing (NLP) and extract the real intentions

associated to the sentences uttered by the user. The algorithms and techniques

employed are described in the chapter, as well as a case-study that shows an example

of how the proposed approach behaves during a real interaction session.

7.2 Related works

Among vocal assistants, we cannot ignore the two most popular ones, which are

Google Assistant and Amazon Alexa. The latter has a wider set of abilities, the

so-called skills, which are concretely implemented as Apps running in your smart

speaker and that let you to do more with your device than what it is capable of

out of the box. On the contrary, Google Assistant is better linked with all kinds of

Chapter 7. Fabulos: a Domotic Assistant Agent for Interaction by means of

Natural Language
105

information sources, thanks with its direct connection with the Google search engine.

Both accept only a single domotic command in natural language, like “turn on the air

cooler”, not given in a pipeline, and without making use of any specific conditionals;

commands like “turn on the air cooler only if the room temperature is 25 or higher”

are not properly recognised by these systems, unless making use of additional third

part software like IFTTT[149] or others; however this additional software needs

communication in cloud, increasing latency times and the complexity of the overall

application. Moreover, these systems require the intervention of the user who has

to configure specific ”applets” that manage the association of commands to devices.

Another platform with higher understanding capabilities, made by the Apple Siri

team, is Viv. Two years ago, Viv was acquired by Samsung, which announced their

AI assistant: Bixby will begin to incorporate Viv Labs technology for third-party

integration in the market of smartphones, but, so far, its employment in domotic

contexts has not considered nor announced.

Another platform worth to be mentioned is Wit.ai1. It is an open NLP platform,

that can be used via Web or as cloud service, and allows developers to build bot/-

conversational applications and devices that can receive and send messages. Wit.ai

provides an interface and an API to perform training of human conversations; the

objective is to have a platform able to parse incoming messages (voice or text) into

a structured data. The process is based on intents and entities : an intent is simply

what the user intends to do (e.g. changeTemperature), while entities are vari-

ables that contain details of the user’s task. Wit.ai comes with default entity types,

such as location, number, and let developers to create their own. Actually, Wit.ai

is free (for commercial use too), nevertheless, Wit.ai does not support third-party

integration.

Apart the cited commercial products, we can say that, although there is a good

amount of literature about Natural Language Understanding (NLU) on IoT environ-

ments [150], the join of them inherits much from NLU in robotics. The (common)

aim remains, either in IoT or robotics, a set of operations for any available device,

each of which is extracted from a string expressed in natural language but with a

precise and pre-fixed form. In the light of this, the authors of [151] developed a

natural language interface for human-robot interaction which implements reasoning

1https://wit.ai/

Chapter 7. Fabulos: a Domotic Assistant Agent for Interaction by means of

Natural Language
106

Figure 7.1: The Software Architecture of Fabulos

about deep semantics in natural language, employing methods derived from cogni-

tive linguistics. The system has a complex and powerful interface, but does not face

properly the issue of speech recognition, and does not go deep to the general mean-

ing of the words, in order to accept commands in different ways without changing

behaviour’s rules or adding new ones.

The authors of [152] pursue an information theoretic approach in order to min-

imise uncertainty in language, by means of apposite clarification questions. The

system is based on learning but does not deal with conditionals clauses for subordi-

nating main intentions, neither negations.

The authors of [153] and [154] represent meaning as an ontologically richly sorted,

relational structure, based on Combinatory Categorical Grammar (CCG) [155]. In

our work, instead of logical approaches, we preferred the dependency parsing of the

input sentence, because it’s handier for information extraction, plus, the Wordnet

features for meaning coding/representation.

In [156], the authors developed a natural language command interpreter called

NLCI, which accepts action commands in English and translates them into exe-

cutable code. Although not used in domotic context, NLCI has in common with our

work the usage of a dependency parser for the semantic roles extraction.

Chapter 7. Fabulos: a Domotic Assistant Agent for Interaction by means of

Natural Language
107

7.3 Software Architecture

In this Section, we give an overview of the software architecture of Fabulos by

highlighting the various components, their role and their interactions.

Figure 7.1 shows the structure of Fabulos which is basically made of four com-

ponents: the Social Network Interface, the Translation Services, the BDI Engine

and Smart Environment Interface.

The Social Network Interface has the task of making Fabulos interact with the

user. The objective is to let a user “talk” with Fabulos by means of the nowadays

widely used social channels, like Facebook or Twitter, and messaging systems, such

as Telegram, Whatsapp or Messenger. The user can contact Fabulos using chat

or voice messages and be notified of home events through chat/voice messages as

well, or even proper posts or tweets. The component runs various “plug-ins”, one

for each social channel to be interfaced; each plug-in, on one hand, implements the

communication protocols for the specific social network and, on the other hand,

exploits the API of the Translation Service to notify user requests and get responses

from the agent.

Conceptually the Social Network Interface is a simple “protocol translator” and

does not implement any form of intelligence or other complex behaviour. On the

contrary, the Translation Service is one of the most important (and most complex)

component of the architecture, since it has the objective of understanding and in-

terpreting the real meaning of messages provided by the user. Since user requests

may come either by text or by voice, this component includes the proper modules

to perform speech-to-text and text-to-speech tasks, which are in particular imple-

mented by exploiting ready-to-user cloud services2. Once that command is in plain

text, it must be analysed in order to extract the meaning and thus understand the

real intention of the user that uttered the sentence; This task is performed by the

components NLP and Concept Extractor : the former implements syntactic and se-

mantic analysis of the text while the extraction of the user intention, together with

possible conditionals is handled by the latter component.

The result of the Translation Services module is a set of beliefs that are able

to represent the user intention with the associated parameters and conditionals,

2In this sense, we made some tests using both Google TTS/STT API and IBM Watson Services;
in both cases, we obtained reasonable results.

Chapter 7. Fabulos: a Domotic Assistant Agent for Interaction by means of

Natural Language
108

if present; such beliefs are then processed by the PROFETA engine [157], a BDI

rule-based system that is able to trigger the rules representing the computations to

be done following such a belief assertion. The aim of such rules is to perform an

interpretation of the intention and contact the relevant IoT device to concretely ex-

ecute the command. This is performed by exploiting the API provided by the Smart

Environment Interface, a module that includes the component for the interaction

with the IoT devices present in the environment; to this aim, each IoT device is

represented by a corresponding driver that implements all the needed protocols to

handle the device itself.

7.4 Extracting Intentions from Utterances

The most complex task of any vocal/text assistant is to extract the real meaning

from an utterance provided by the user. This implies to basically perform the

following steps:

1. if the sentence has been given in a spoken form, the speech must be converted

into text;

2. then, the sentence has to be syntactically analysed, in order to classify semantic

terms and determine the relationships between them;

3. finally, the context and the meaning of the semantic terms must be inferred

in order to understand user intention.

The first step can be dealt with by means of speech-to-text tools; in this sense,

many cloud services already exist, including for example Google STT API and IBM

Watson; they perform really well, also thanks to the exploitation of Web search that

helps to solve ambiguities by comparing all the possible identified sentences with

the most recurring ones found in the WWW.

The second step entails the usage of a so-called dependency parser, a tool able

to analyse the syntax of the text sentence, extract the terms and their relation-

ship in the phrase. Also for this task, many tools exist, such as spaCy [158] or

CoreNLP [159], that can be directly used and well serve for the purpose; but the

results of a dependency parser cannot be used “as is” and a further context analysis

must be applied, which is indeed the third step and the core of our contribution.

Chapter 7. Fabulos: a Domotic Assistant Agent for Interaction by means of

Natural Language
109

Without losing generality, we can assume that the output of dependency parser

is a set of predicates, in the form P (t1, t2), where P is the predicate (relationship)

name, and t1 and t2 are the terms in that relationship.

In domotic contexts, the sentence will be always in the form of imperative verbal

phrase, such as: Turn off the light in the living room or Activate the camera in the

garden. As an example, the first sentence will provide the predicates expressed in

the table following table, together with the relevant meaning3:

ROOT(ROOT, Turn) Root term

prt(Turn, off) Particle

det(light, the) Determinative (definite) term

dobj(Turn, light) Direct object

prep(Turn, in) Preposition

det(room, the) Determinative (definite) term

compound(room, living) Compound term

pobj(in, room) Preposition object

A similar predicate set is generated for the second sentence. In these cases

(i.e. imperative verbal form), a dependency parsing will always generate dobj (direct

object) relations between verbs and objects related to them, which is the main key to

understand the intentions inside a command. Still, the dependency parser will also

generate pobj (preposition object) relations, which give additional meaning about

the so-called modificators of the main intentions.

From the set of predicates, we remove those representing articles and create two

lists:

• Intentions, I, that includes the relations between verbs and objects; and

• Modificators, M , that includes relations between verbs and parameters.

We represent such lists as:

I = [(vb1, obj1), (vb2, obj2), ..., (vbn, objn)]

M = [(vbh1 ,mod1), (vbh2 ,mod2), ..., (vbhm ,modm)]

3In the following, we will use the predicate names provided by the spaCy parser, which is the
tool we employed in our prototype implementation.

Chapter 7. Fabulos: a Domotic Assistant Agent for Interaction by means of

Natural Language
110

with 1 ≤ hi ≤ n, i = 1, 2, ...,m

Considering the previous example, I and M will be4:

I = [(Turn off, light)]

M = [(Turn off, living room)]

In the case we want to include further modificators, such as Turn off the light in the

living room at 12.00, an additional relation pobj(at, 12.00) will be generated. So,

taking into account of the occurrence order in a line-to-line reading of the depen-

dency parsing, the list M will be as follows:

M = [(Turn off, living room), (Turn off, 12.00)]

The dependency parsing is also able to extract temporal modificators, such as

“tomorrow”, “today”, “sunday”, “monday” (if they are present), that are indeed

very relevant for domotic commands. In this case, the dependency parser will gen-

erate the additional predicate npadvmod5, that creates a relationship between the

verb and the temporal adverb. Temporal modificators are thus collected in another

list, T , formed as:

T = [(vbk1 , tmodk1), (vbk2 , tmodk2), ..., (vbkr , tmodkr)]

with 1 ≤ ki ≤ n, i = 1, 2, ..., r

If we include, in the sentence above, the term “tomorrow”, list T will be as:

T = [(Turn off, tomorrow)]

A further option that is often used in imperative commands is to subordinate

the intention to another clause, expressing one or more arbitrary conditions, that

employ adverbial clauses like while, when or the preposition if. All these semantic

elements will be marked as mark by the dependency parser, a predicate that is

used by our analyser to build another list called C, that includes the list of couples

4Please note that, in constructing the verb, the particle is considered as a part of it.
5Noun Phrase Adverbial Modificator

Chapter 7. Fabulos: a Domotic Assistant Agent for Interaction by means of

Natural Language
111

(entity, property), where entity is the subject of the condition and property is the

parameter:

C = [(ent1, prop1), (ent2, prop2), ..., (ents, props)]

As an example, if the sentence includes the conditional “... if the temperature is

under 25 and the floor is dirty”, list C will result as follows:

C = [(temperature, under 25), (floor, dirty)]

After having constructed the lists I, M , T and C, the next step is to let a

developer create an inference system through a set of production rules, which takes

into account the meaning of words, without making use only of a mere strings-

matching of parts of domotic command. To this aim, let us define the Domotic

Vocabulary as a set of all the verbs and objects that can appear in a domotic context.

If we consider several languages, we have VD ⊂
⋃︁N

n=1 Vi, where every Vi is a distinct

vocabulary of a given language (for instance VD ⊂ {VEN ∪ VIT ∪ VFR}). Starting

from VD, we consider the following subsets:

V erbsD = {v ∈ VD | v is a verb}

ObjectsD = {o ∈ VD | o is a noun}

Let FM be the Meaning function as:

FM : VD → CD

CD ⊂ S, with S = the space of all possible strings.

FM is a special function, which encodes and maps together, with the same value,

all terms of VD that share the same meaning, in the domotic context, in whatever

language. As an example, the terms: “air conditioner”, “conditioner”, “air cool-

ing”, “cooler” and “climatization”, refer to the same equipment and thus they will

mapped, through FM , to a same string. In the same way, also verbs are mapped

through FM in such a way as to have the same results for synonyms.

Chapter 7. Fabulos: a Domotic Assistant Agent for Interaction by means of

Natural Language
112

The Meaning Function is used as follows: first the Total Intentions IT set is

formed as all pairs (v, o) from V erbsD and ObjectsD:

IT = { (v, o) | v ∈ V erbsD, o ∈ ObjectsD }

We say that IA ⊂ IT is a set of acceptable intentions, for a given vocabulary Vx ⊂ VD,

when exists a program P which implements PVx(FM(v), FM(o)); in other words:

IA = { (v, o) ∈ IT | ∃PVx(FM(v), FM(o)) }

As the program PVx(FM(v), FM(o)), we consider a clause, in a rule-production

system, that is able to match the results of FM(v) and FM(o), and execute the

relevant code to concretely perform the action. In Fabulos, this is performed by

using PROFETA and, in particular, by asserting the belief Intent whose parameters

will be:

• the verb v;

• the object o;

• the set of modificators M ;

• the set of temporal modificators T ;

• the set of conditionals C.

When a sentence is analysed, an Intent belief is asserted for each possible mean-

ing provided by the Meaning Function, but it’s up to the developer to write the rule

corresponding to the specific meaning she/he intend to catch. This aspect will be

clarified in the next section, where a concrete example will be shown.

The algorithm that handles sets I, M , T and C and produces the Intent belief,

exploiting the Meaning Function, is expressed in the Algorithm 2 and constitutes

the last step of the meaning extraction process.

7.5 Case-Study

In this Section we report a simple case-study that shows how the extracted intention

can be exploited to program some inference rules executing what the user said.

Chapter 7. Fabulos: a Domotic Assistant Agent for Interaction by means of

Natural Language
113

Algorithm 2

1: procedure FindIntents(I,M, T, C)
2: for i← 1, n do
3: mvi ← FM(vi)
4: for j ← 1, n do
5: moj ← FM(oj)
6: if C = ∅ then
7: assert belief(Intent(mvi , moj , M, T))
8: else
9: assert belief(Intent(mvi , moj , M, T, C))

10: end if
11: end for
12: end for
13: end procedure

In our prototype implementation of Fabulos, since the inference engine used

is PROFETA, which is Python-based, also all the modules of Fabulos are imple-

mented in Python. Similarly, for what concerns the dependency parser, we exploited

the spaCy [158] framework, which is also in Python, (although we made also some

tests with CoreNLP Stanford [159]) due to a wider range of supported languages.

As for the Meaning Function, we considered the convenient biunique correspon-

dence between WordNet [160] synsets and general meanings. On this basis, to

create a rule which expresses the meaning of a single intention, we have to choose

the correct synset among all available ones which are the same thorough different

languages, and then use it into a production rule; this must be done for both verbs

and objects. For instance, to represent the action of changing the air conditioner

setting, the synsets specify.v.02 and air conditioner.n.01, among all synsets encoded

in WordNet, express exactly what we mean. So, replacing meanings with synsets,

the production rule which expresses our intention became as in Algorithm 3. Please

consider that, for the sake of brevity, we omitted here the details about PROFETA

syntax that is indeed reported in [157], but we can clarify that the rule shown

means “when the Intent belief is asserted, with those parameters, execute the ac-

tion set air conditioner”.

Now, considering also the objective to handle the English language, the usage

of synsets within the production rule will let PROFETA to accept all the beliefs

containing anyone of those lemmas within the synsets, as the sentence (restricted

Chapter 7. Fabulos: a Domotic Assistant Agent for Interaction by means of

Natural Language
114

Algorithm 3

+Intent("specify.v.02",

"air_conditioner.n.01",

M,T) >> set_air_conditioner(M,T)

only to this case) were one of the following:

Set the air conditioner at...

or

Fix the air conditioner at...

or

Set the cooler at...

...

etc.

Now let us suppose we give Fabulos the following command:

Set the air conditioner at 26 today at 12.00 and turn off the light tomor-

row at noon if the temperature is under 25

The sets I, M , T and C derived by the technique described in Section 7.4 will

be:

I = [(set, air conditioner), (turn off, light)]

M = [(set, 26), (set, 12.00), (turn off, noon)]

T = [(set, today), (turn off, tomorrow)]

C = [(temperature,′ under25′)]

On this basis, once the sets above have been obtained, the FindIntents proce-

dure will assert the following beliefs:

Intent(”put.v.01”,”air conditioner.n.01”,M,T,C)

Intent(”determine.v.03”,”air conditioner.n.01”,M,T,C))

Chapter 7. Fabulos: a Domotic Assistant Agent for Interaction by means of

Natural Language
115

Intent(”set.v.04”,”air conditioner.n.01”,M,T,C))

Intent(”specify.v.02”,”air conditioner.n.01”,M,T,C))

....

....

Intent(”dress.v.16”,”air conditioner.n.01”,M,T,C))

Indeed, according to WordNet, the verb set is contained as a lemma in 25 synsets,

such as: “put.v.01”, “determine.v.03”, “specify.v.02”, “set.v.04”, etc., but it is the

“specify.v.02” which has the meaning we wanted to express by means of the pro-

duction rule. The noun air conditioner is contained as lemma in only one synset,

which is “air conditioner.n.01”. Therefore, only the fourth Intent will be recognised

by the program in Algorithm 3, thus executing the relevant action; all the other

beliefs will be ignored since they are not related to any matching rule.

7.6 Conclusions

In this work, we presented a software architecture, based on the BDI framework

PROFETA, for the implementations of software agents, which allow users to inter-

act with their domotic devices via most commonly used social network channels.

Although the infrastructure uses social media as data input, it has the merit of not

being entirely dependent on cloud services, thus one can easily integrate it with

local Speech-To-Text engines like Sphinx[161] or others, letting Fabulos work also

in absence of the internet connection; this would make the system more reliable and

preferable than the well-known cloud-dependent domotic systems.

The proposed architecture, is capable of processing a domotic command given in

many different shapes, extracting the very meaning of all its terms. In addition, our

Natural Language Processor works regardless the text message, because it does not

compare the input with prepared texts, but analyses in depth the grammar structure

of the sentence. In this way, we can parse the sentence and understand its meaning

(the intentions and the entities) without regard the language and also working with

synonyms. Futhermore, our software solution is able to manage a flow of intentions

with conditionals and preserves privacy users processing all data locally.

Chapter 7. Fabulos: a Domotic Assistant Agent for Interaction by means of

Natural Language
116

As future work, we aim at testing and integrating the proposed software solution

into a hardware which acts as hub for IoT home devices.

117

Chapter 8

A Neural Network Model for the

Solar Module Power Prediction

8.1 Introduction

Renewable energy has always aroused great interest in the field of energy produc-

tion, not only for industrial use but, in recent times, also for private and city usage.

Among renewable energy, photovoltaics is undoubtedly one of the most promising

solutions and, for this reason, the production of solar cells has gained a lot of atten-

tion among companies producing semiconductor devices.

Typically a solar module is made up of a set of 60 to 72 solar cells, according

to the output power that is needed and assembled together through a soldering

process. One key aspect of a solar module, and hence of a cell, is its efficiency,

i.e. the transfer factor from solar irradiance to power output, that should be always

kept as maximum as possible. Obviously the efficiency of a solar module depends

on the efficiency of each cell composing it, but unfortunately such a dependence

cannot be easily understood due to a large number of factors and parameters that

are related to the characteristics of each cell.

Indeed, cell production is based on many steps that, starting from a silicon wafer

through a series of chemical, mechanical and electrical processes, finally completes

a cell, and such steps are in general performed repetitively by automated machines.

However, despite the automation of the whole process, due to many factors like

wafer quality, chemical reactions, etc., the produced solar cells may have different

characteristics from each other, and thus each feature a different efficiency factor.

The bad news is that once a PV panel is made of cells with many different efficiency

Chapter 8. A Neural Network Model for the Solar Module Power Prediction 118

factors, the result may be a product with a very low overall power production

capability.

The practical way to deal with such a problem is to perform (in the automated

production line) an irradiation test aimed at determining the efficiency factor of the

cell and then to classify the cell according to specific ranges of the factor itself. On

this basis, making a PV panel by using cells of the same class should imply, at first

sight, a final product with a power factor that is close to that of the composing

cells. However, tests made on real products prove that this statement is often false.

Indeed, since the aim is always to produce PV panels with power factors as high

as possible, an ideal way to deal with such a problem is having the possibility of

predicting the final efficiency of a panel starting from a set of given cells.

In this context, this work proposes a neural network model capable of predicting

the maximum final power of a PV module considering as input a set of real solar

cells which would be used to assemble the module itself. The network is based on

a large set of electrical parameters that completely characterise each cell composing

the module. In this way, the production line can simulate a final solar module,

without actually having to assemble it, with the objective of understanding whether

the final performances would be acceptable. Also, the proposed model works with

more than one class of solar cells, allowing experiments by combining different types

of solar cells. In this way, the solar cell classification will be simplified, decreasing

the number of solar cell classes and improving the performance of the production

line. Moreover, the same model was trained and tested using realistic datasets

supplied directly from the production lines, improving and increasing the degree of

reliability with the possibility of being used in the production line. Finally, the same

model can be used with the help of an ad-hoc desktop/server application to make

predictions also through a private network, using a set of RESTful APIs provided

by the software itself through HTTP protocol.

The proposed work briefly introduces the fundamental characteristics of solar

cells and modules, highlighting, through example, the problem addressed. Soon af-

ter, the dataset used for the training and the analysis of the latter will be introduced,

considering the correlations between the various inputs and the possibility of being

able to reduce the number to train the neural model. Therefore the structure of

the proposed neural network model, the technologies and algorithms used, and the

Chapter 8. A Neural Network Model for the Solar Module Power Prediction 119

definition of error according to the model itself, will be introduced, presenting the

first results of the same model. Also, an improvement to the same model will also be

introduced allowing it to be used with more than one class of solar cells, permitting

experiments about the combination of near solar cells classes. Finally, the latest test

results of the model, the application, and technologies used will be presented, with

which you can directly use the model in production or for experimentation.

8.2 Related Works

In the field of IoT and deep learning technologies, the application and use of these

in an industrial production environment are becoming an important requirement

for enterprises which are changing their manufacturing architectures. Although

this chapter is focused on the training and use of a neural network to predict the

efficiency of the final product, a few related works are similarly aimed at solar energy

production[162, 163, 164, 165, 166, 167].

Among them, in [162] a solar cell status classification is presently based on deep

learning and operated using electroluminescence (EL) images. The basic idea is

to detect and classify the solar cells which suffer from some production or lifetime

defect. The proposed neural network model seems to be useful in terms of waste of

hours and manpower. The default analysis process of the EL images is a manual

job and the amount of these images is about 90 million per solar energy production

field. Therefore, the authors propose a convolutional neural network based on images

analysis which classifies the solar cells in a set of two classes, either good or defect.

A similar approach was introduced in [163], where authors proposed a convolutional

neural network model which use low-resolution satellite photos as input.

The authors of [164] presented a neural network capable of detecting power losses

to be attributed to the position of the sun. The three angles (altitude, azimuth and

incidence solar angles) were used as the input dataset and represent the position

of the sun in the sky. The authors used a fully connected neural network with

two hidden layers and only one output which is the power production prediction

relative to the position of the sun. The model results useful to detect the best

or wrong placement position of the solar panel, increasing the final efficiency of

it. Moreover, the proposed model can operate independently from the geographical

Chapter 8. A Neural Network Model for the Solar Module Power Prediction 120

location of the solar panel. In [165], the authors present a similar result. This

paper proposes an application of a neural network that can predict the maximum

output power of a solar panel array under the effects of some non-uniform shadows,

dependent on its geolocalisation. The work is based on the difficulty of calculating

and estimating the shading factor (which is the ratio of shaded/non-shaded area) on

the solar panel. The hardest part of this operation arises with the dynamic shape

and position of the shadows. The approach consists in the estimation of the shadow

ratio, which is relative to the altitude and angles of the position of the sun in the

sky. Subsequently, this information, with the irradiation levels, is used to train the

neural network model, obtaining the maximum output power as output.

The authors of [166] introduced methods to forecast solar power generation in

a solar energy plant. The methods take into account some new variables of the

environment such as wind, cloud coverage, temperature, rainfall and humidity as

well as sun altitude and sky position angles. The neural network model proposed

was obtained and compared using a branch of regression functions. The training

dataset is based on real data over one year of operational solar panels and consists

of seven inputs and one output that is the predicted power production. Also, the

output will be weighed with the degradation time of solar panels.

Lastly, a neural network model for the prediction of the maximum power point

of a solar panel was presented in [167]. More specifically, the authors used a com-

bination of back-propagation and radial basis networks (RBF) to understand which

one of these two networks could be the best one. The training dataset was generated

virtually (considering the I-V solar cell characteristic) and consists of a set of two

inputs (the irradiation and temperature of the solar cell) and the maximum power

point as output. The results confirm that the RBF network was the best choice for

the authors’ work.

8.3 Automated Assembly of Solar Modules

Basically, a solar module, also called solar panels, is a single photovoltaic panel that

is an assembly of interconnected solar cells, enclosed in a weatherproof package. The

solar cells absorb sunlight as a source of energy to generate electricity. The solar

modules will be merged into an array of modules used to supply power to buildings.

Chapter 8. A Neural Network Model for the Solar Module Power Prediction 121

A solar array of modules consisting of higher-energy producing solar modules will,

therefore, produce more electricity in less space than an array of lower-producing

modules.

The solar cells’ efficiency and output power can vary depending on the type

and quality of solar cells used. A solar module can range in energy production

from 100-380 Watts of direct current (DC) electricity. Solar cells are made using

silicon crystalline wafers which are similar to the wafers used to make computer

processors. The silicon wafers can be either polycrystalline or monocrystalline and

are produced using several different manufacturing methods. The most efficient

type is monocrystalline which is manufactured using a method known as Czochralski

process[168].

Solar modules are manufactured in an automated assembly line which is a set of

machines and robots that operate automatically in a precise way. These machines

communicate among themselves using a specific application network protocol[169]

which makes the synchronisation according to its production and status. Typically,

these machines send their information to a main server that notify the production

status and other important information, such as production faults[170]. Starting

with individual cells, the machines take cells and process them into “ready to mount”

modules. Several machines contribute to the manufacturing process. We can break

down this manufacturing process into two sections: the Solar Cell Production and

the Solar Cell Assembly, that is the Solar Module Production.

In the Solar Cell Production chain the solar cells are created and classified accord-

ing to their electrical performance[171], which are tested under simulated sunlight.

When the Solar Cells are made, tested and classified, these are stored in specific

bins, each one for each different efficiency class.

A solar cell is basically a semiconductor device[172] that converts the energy

emitted by the sun into electric power, as the product of electric current (I) and

electric potential (U).

P(W) = I(A) · U(V) (8.1)

Solar cells produce photocurrent while light strikes on it, while the photovoltage

or potential difference is independent of the intensity of incident light, whereas

the current capacity of a cell is proportional to the intensity of incident light as

Chapter 8. A Neural Network Model for the Solar Module Power Prediction 122

P
ow

er
 (

W
)

Short Circuit

Current ()

Open Circuit

Volate ()

Maximum Power

Point ()
A

m
pe

re
s

(I
)

Voltage (V)

Figure 8.1: Solar Cell I − V Characteristic

well as the area that is exposed to the light. A combination of photovoltage and

photocurrent values at which a solar cell can be operated is called a working point.

These values at short and open circuit conditions are called short-circuit current

(Isc) and open-circuit voltage (Voc).

The Isc is the maximum current that a solar cell can deliver without harming

its own constriction. It is measured by short circuiting the terminals of the cell

at the best optimised condition for producing maximum output. As the current

production also depends upon the surface area of the cell exposed to light, it is better

to express maximum current density instead of maximum current. The maximum

current density is the ratio of Isc to exposed to the surface area of the cell.

Jsc =
Isc
A

(8.2)

where Jsc is the maximum current density, Isc is the short circuit current and A is

the area of the solar cell.

The Voc is the measured voltage of the solar cell when there is no load connected

to the solar cell. This value depends on the manufacturing quality, modes and

temperatures, but not depends on the intensity of light and its area of coverage.

The main electrical characteristics of a solar cell (and solar modules) are sum-

marised in the relationship between the current and voltage produced on a solar cell

Chapter 8. A Neural Network Model for the Solar Module Power Prediction 123

I-V characteristic curve (fig. 8.1).

A current–voltage characteristic (called I-V characteristic) of a solar cell is a plot

of all possible working points in a considered range. I-V characteristic provides the

information required to configure a solar system so that it can operate as close to its

optimal peak power point (MPP) as possible. There is one combination of current

and voltage where the power generated by the solar cell reaches its maximum (Impp

and Vmpp)[173]. This point on the I-V characteristic of an illuminated solar cell is

called the maximum power point (Pmpp).

Pmpp = Impp · Vmpp (8.3)

There is an additional parameter for the characterisation of the Solar Cell that is

the Fill Factor (FF). It describes the amount with which the Isc−Voc “rectangle” is

filled by the Impp − Vmpp “rectangle” in the I-V characteristic plot. The Fill Factor

value gives an idea of the quality of the array and the closer the fill factor is to 1,

the more power the array can provide.

FF =
Impp · Vmpp

Isc · Voc

(8.4)

Finally, the efficiency η of a solar cell is the ratio between the maximum electrical

power that the solar cell can produce compared to the amount of the solar irradiance

hitting the cell.

η = FF · Isc · Voc

Psun

(8.5)

Therefore, in an automated factory of solar cells, the classification of these is

based on the Pmpp value of the single solar cell. In this way, the production of the

final solar module can be determined by what kind of a solar module is desired, in

terms of the maximum power point of the solar module that is wanted.

Taking into account all of the above formulas, and in particular taking into

consideration the formula in 8.3 that is, a group of Solar Cells with the same clas-

sification and therefore with similar characteristics. For instance, lets suppose that

the maximum power point of a single solar cell is:

Pmpp = Impp · Vmpp = 5.5W (8.6)

Chapter 8. A Neural Network Model for the Solar Module Power Prediction 124

An industrial solar module, typically, is composed by 60-72 solar cells and these

will be assembled in a connection series. Supposing we have 72 cells, then the final

maximum power point of the solar module will be:

Pmpp(module)
= Pmpp · 72 = 396W (8.7)

In reality, the final power of the module will be lower than the mathematical

result because it is affected by factors strictly related to the module processing steps,

such as interconnection, stringing and lamination that lead to optical gains and

resistive losses, as well as factors related to the used glass materials that determine

undesired absorption of light. These phenomena are described by the cell-to-module

power ratio (CTMpower)[174] that describes the ratio of the power output of the solar

module to the sum of the power of the cells embedded in the module. This metric

quantifies the power loss equal to 1-2% of the ideal power output given by the

formula 8.3.

A proposed solution is the mathematical formalisation of a predictive model

which can predict, given a set of solar cells, a possible Pmpp of the solar module in

output, using the same classification of solar cells of more than one of these. The

model will be used to predict and get the Pmpp of solar modules without any costs,

to experiment new ways of classification and to demonstrate that power loss is not

related to the use of different classes of solar cells. Moreover, the model will be

used to experiment and improve the production of a new set of solar cell recipes.

The final model will be based, obviously, on the actual state of the manufacturing

environment and production, but can be adapted to any production environment.

8.4 Dataset Analysis

In order to implement the model, the process data used was generated during en-

gineering tests in the Solar Module Production Line. The first dataset was created

considering 2490 modules built up with cells belonging to the same class (BIN). For

each module the input of the model is given by means of the electrical parameters

of the cells stringed inside the module since the standard deviation of the statistical

distribution of the cells belonging to a specific class is very low. Then we can ap-

proximate the raw data to the mean values. The output target is instead given from

Chapter 8. A Neural Network Model for the Solar Module Power Prediction 125

count mean std min 25% 50% 75% max
Tcell 2490.0 31.101824 0.924260 28.950531 30.514487 30.974315 31.587993 33.647268
Voc 2490.0 0.728333 0.002960 0.715065 0.726716 0.728993 0.730396 0.734098
Vmpp 2490.0 0.616127 0.006148 0.586048 0.612707 0.617391 0.620138 0.628127
Isc 2490.0 9.353728 0.029870 9.145561 9.334788 9.353141 9.371336 9.441513
Impp 2490.0 8.797918 0.058547 8.441078 8.774798 8.809099 8.831255 8.900302
Jsc 2490.0 38.287879 0.122267 37.435783 38.210340 38.285481 38.359947 38.647207
Pmpp cell 2490.0 5.420767 0.081241 5.076663 5.371564 5.436099 5.482212 5.557193
FF 2490.0 79.567487 0.866929 75.100406 79.248990 79.799415 80.080608 81.015388
Eta 2490.0 22.188978 0.332546 20.780444 21.987568 22.251736 22.440497 22.747420
Insol 2490.0 999.649397 0.100482 999.350802 999.577315 999.641897 999.713865 1000.019523
Rser 2490.0 0.005362 0.000493 0.004527 0.005056 0.005250 0.005559 0.009030
Rshunt 2490.0 545.977494 97.227755 5.078913 499.935172 547.900248 599.731721 913.607184
Pmpp Target 2490.0 374.419312 5.539508 350.211700 372.052025 375.366837 378.132530 385.930786

Table 8.1: Original dataset statistics

the final value of Pmpp of the solar module (Pmpp Target). Regarding the solar

cells features, the dataset is composed by the following fields: Tcell, Voc, Umpp,

Isc, Impp, Jsc, Pmpp cell, FF, Eta, Insol, Rser and Rshunt, which are described in

Table 8.2.

A preliminary analysis of the dataset was made. First of all, statistical informa-

tion was recovered (Table 8.1) and saved to be used subsequently for the normal-

isation of the dataset. These information will be normalised and used also for the

training, test and production environment. Secondly, we analysed the dataset and

its correlations among the information. As result, a heatmap of correlations was

obtained (Figure 8.2). The verification of correlations is an important part of the

exploratory data analysis process[175]. This analysis is used to decide which fea-

tures affect the target variable the most, and in turn, used in predicting this target

variable. In this way, a first reduction of highly correlated features for the model

is possible. Some interesting correlations shown as can be seen in the heatmap in

Figure 8.2. Among this information some seem to be useless as it might confuse

the model. In fact, the Isc and Jsc features seem to be highly correlated, as each

one of these can represent the other one, therefore the Isc feature will be used for

the training of the model and the Jsc will be dropped. The same thing happens for

the Eta and Pmpp cell features, which in this case it is more convenient to remain

on ”Pmpp” nomenclature. The other feature that can be dropped for low correla-

tion is the Insol feature. Lastly, as the Table 8.1 and Figure 8.2 shows, there are

some very important points made about the series and Shunt resistances (Rs and

Rshunt). These resistances have a strange/low correlation with the other inputs and

Chapter 8. A Neural Network Model for the Solar Module Power Prediction 126

Inputs description
Name Description Unit of measurement
Tcell The test exposition temperature of

solar cell
Celsius (C◦)

Voc The open-circuit voltage of the solar
cell

Volts (V)

Vmpp The maximum power point voltage
of the solar cell

Volts (V)

Isc The maximum current of the solar
cell

Amperes (A)

Impp The maximum power point current
of the solar cell

Amperes (A)

Jsc Current density of solar cell Amperes per square me-
tre (Am−2)

Pmpp cell The maximum power point of solar
cell

Watts (W)

FF The Fill Factor of solar cell Percentage (%)
Eta The efficiency of solar cell Percentage (%)
Insol The Solar Cell Insolation Watts per square metre

(Wm−2)
Rser The series resistance of solar cell Ohm (Ω)
Rshunt The parallel/Shunt resistance of so-

lar cell
Ohm (Ω)

Pmpp Target The final maximum power point of
solar module

Watts (W)

Table 8.2: Original dataset inputs description

the standard deviation of these values is really high (in particular the Rshunt). It

must be said, however, that can be a physical consequence of the serial assembly

of the solar cells and therefore the high standard deviation is justifiable, but it can

also confuse the final neural network model. For this reason the resistances are not

considered as inputs for the model. Subsequently, a principal component analysis

(PCA) was made.

The PCA is commonly used for dimensionality reduction of the inputs, project-

ing each information point onto only the first few principal components to obtain

lower-dimensional data, while preserving as much of the data’s variation as possible.

Basically, the PCA generates a new set of features that can describes the original

Chapter 8. A Neural Network Model for the Solar Module Power Prediction 127

Tcell Uoc Umpp Isc Impp Jsc Pmpp_cell FF Eta Insol Rser Rshunt

Tcell

Uoc

Umpp

Isc

Impp

Jsc

Pmpp_cell

FF

Eta

Insol

Rser

Rshunt

1 0.11 -0.085 0.11 -0.066 0.11 -0.086 -0.19 -0.086 -0.26 0.096 -0.16

0.11 1 0.74 0.31 0.43 0.31 0.68 0.47 0.68 0.038 -0.35 0.19

-0.085 0.74 1 0.42 0.63 0.42 0.94 0.9 0.94 0.14 -0.88 0.28

0.11 0.31 0.42 1 0.78 1 0.62 0.45 0.62 -0.13 -0.42 0.33

-0.066 0.43 0.63 0.78 1 0.78 0.85 0.79 0.85 0.028 -0.58 0.58

0.11 0.31 0.42 1 0.78 1 0.62 0.45 0.62 -0.13 -0.42 0.33

-0.086 0.68 0.94 0.62 0.85 0.62 1 0.95 1 0.11 -0.84 0.44

-0.19 0.47 0.9 0.45 0.79 0.45 0.95 1 0.95 0.17 -0.9 0.45

-0.086 0.68 0.94 0.62 0.85 0.62 1 0.95 1 0.11 -0.84 0.44

-0.26 0.038 0.14 -0.13 0.028 -0.13 0.11 0.17 0.11 1 -0.11 0.24

0.096 -0.35 -0.88 -0.42 -0.58 -0.42 -0.84 -0.9 -0.84 -0.11 1 -0.24

-0.16 0.19 0.28 0.33 0.58 0.33 0.44 0.45 0.44 0.24 -0.24 1
0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

Figure 8.2: Heatmap of the normalised original dataset correlations

dataset, in variance percentage.

Figure 8.3 shows the results of PCA related to our dataset. It shows that about

6 or 7 of the new features generated can describes our dataset, instead of original 11

features. The problem is that the new features cannot be used in a real production

environment, but the result of PCA gives some hints and intuition of how many

original features can be used to describe the dataset in some total way. Considering

the results of PCA and the correlation analysis made before, it is deduced that the

features that will be used are 7 and these are Tcell, Voc, Umpp, Isc, Impp, FF and

Pmpp Cell (an example of input dataset, not normalised, is shown in Table 8.3).

Chapter 8. A Neural Network Model for the Solar Module Power Prediction 128

0 2 4 6 8 10
of Features

30

40

50

60

70

80

90

100

%
 V

ar
ia

nc
e

Ex
pl

ai
ne

d

PCA Analysis

Figure 8.3: Principal component analysis of the normalised original dataset

Tcell Voc Umpp Isc Impp FF Pmp Cell Pmpp Target
30.82 0.73 0.62 9.41 8.89 80.57 5.56 384.60

...

Table 8.3: Example of input dataset (not normalised)

8.5 Model

The training phase of the model and, therefore, the prediction phase, uses the nor-

malised input data, using the original dataset statistics shown in Table 8.1. These

statistics are saved and reloaded to be used in the training phase and in every fu-

ture prediction phase, because the model will be trained with a specific normalised

dataset. Then, the domain of the inputs must be the same. For the definition,

building and training of the model, Keras1 technology was used.

1https://keras.io/

https://keras.io/

Chapter 8. A Neural Network Model for the Solar Module Power Prediction 129

Tcell

Voc

Umpp

Isc

Impp

Pmpp
Cell

FF

h1

hn

k1

kn

Pmpp
Target

Input Layer

Hidden Layer 1 Hidden Layer 2

Output Layer

Inputs: 7
Outputs: 128

Activation Function: ReLu
Parameters: 1024

Inputs normalized

Inputs: 128
Outputs: 128

Activation Function: ReLu
Parameters: 16512

Inputs: 128
Outputs: 1

Kernel Initializer: normal
Parameters: 129

Neural Network compile settings

Optimizer: Adam
Learning Rate: 10-4

Loss Function: MAPE
Patience grade: 60
Max epochs: 1500
AVG epochs: 550

Figure 8.4: Neural Network Model Structure

Keras is a deep learning API written in Python, running on top of the ma-

chine learning platform TensorFlow2. Keras could be used also with other machine

learning engines but TensorFlow (version 2) was chosen.

TensorFlow bundles together a slew of machine learning, deep learning mod-

els and algorithms which makes them useful by way of a common metaphor. It

also uses Python to provide a convenient front-end API for building applications

with the framework, while executing those applications in high-performance C++.

In fact, the actual math operations, however, are not performed in Python. The

libraries of transformations that are available through TensorFlow are written as

high-performance C++ binaries. Python just directs traffic between the pieces, and

provides high-level programming abstractions to hook them together. This is the

most important thing because, at the end of model training, TensorFlow permits to

convert the model to be used with other technologies, such as TensorFlowJS3.

As Figure 8.4 shows, the model is composed by 4 layers. The first one is the

input layer, where the inputs are passed normalised. The second and third one (the

hidden layers) are the same, each one with 128 neurons as input and output, except

for the second one that has the same number of inputs as input. The final layer is

the output layer, that has obviously only one output, that is the Pmpp Predicted.

2https://www.tensorflow.org
3https://www.tensorflow.org/js

https://www.tensorflow.org
https://www.tensorflow.org/js

Chapter 8. A Neural Network Model for the Solar Module Power Prediction 130

These values were chosen after some trial and error experiments in order to reach

the best performance in terms of network structure, computational complexity and

values of loss and accuracy.

The activation functions of two hidden layers is the rectified linear activation

unit function (ReLU function defined in 8.8)[176], and is a simple calculation that

returns the value provided as input directly, or the value 0 if the input is 0 or less.

ReLU = max(0, x) (8.8)

ReLU is linear for all positive values, and zero for all negative values. This means

that ReLU is cheap to compute as there is no complicated math. It converges faster,

being linear, and is sparsely activated, since ReLU is zero for all negative inputs. It

is likely for any given unit to not activate at all. Sparsity results in concise models

that often have better predictive power and less overfitting or noise. In a sparse

network, it is more likely that neurons are actually processing meaningful aspects of

the problem. Finally, a sparse network is faster than a dense network, as there are

fewer things to compute. To compile the model, to adjust the weights of the final

model, the Adam[177] Optimiser was used.

Adam optimisation is a stochastic gradient descent method that is based on

adaptive estimation of first-order and second-order moments. The Adam optimiser

is computationally efficient, has little memory requirement, invariant to diagonal

re-scaling of gradients, and is well suited for problems that are large in terms of

data and parameters.

w(t+1) ← w(t) − η
m̂w√
v̂w + ϵ

(8.9)

where w is model weights and η is the learning rate. The learning rate η was set at

10−4.

As loss function the Mean Absolute Percentage Error[178] (MAPE) was used.

The MAPE function is a measure of prediction accuracy of a forecasting method in

statistics as well as being a loss function for regression problems in machine learning.

This has proven to be perfect for this problem.

M =
1

n

n∑︂
t=1

⃓⃓⃓⃓
At − Ft

At

⃓⃓⃓⃓
(8.10)

Chapter 8. A Neural Network Model for the Solar Module Power Prediction 131

Model Compile Settings
Optimiser Adam
Learning Rate 10−4

Loss Function MAPE
AVG epochs 550

Table 8.4: Neural Network Model Settings

where At is the actual value and Ft is the forecast value.

Finally, the training of the model was monitored by a callback to early stop.

The early stop callback monitors the value of loss with a patience grade of 60. In

this way, the training stops before the maximum epochs. For the final model, the

training stops at about 550 epochs obtaining scores: loss: 0.388; mean absolute

error: 1.4509 and mean squared error: 8.9649.

8.5.1 Error Model Definition

Since the problem being treated is a regression problem, unlike classic classification

problems, it is necessary to define what is correct and what is not. To do that, it

is necessary to remember that a loss of power of approximately 1-2% is acceptable

(e.g. the 1% of 374W is 3.75W) and it is a good choice to define a threshold for the

Predicted Pmpp as close as possible to the 1% of the mean of Pmpp Target.

Let be ∆ϵ the Euclidean Distance between the Pmpp Target and the Pmpp

Predicted, λ the 1% of the mean Pmpp Target of the training dataset (as the

trained model is 3.5) and Θ the closest threshold to λ (for the trained model it is

can assumable a value equal to 2.5):

Chapter 8. A Neural Network Model for the Solar Module Power Prediction 132

6 4 2 0 2 4
Prediction error[Pmpp Target]

0

20

40

60

80

100

Co
un

t

Histogram of Prediction errors
Correct
Incorrect (Acceptable)
Incorrect

Figure 8.5: Distributions of prediction results (with one BIN)

Let ∆e = |Pmpp(Target) − Pmpp(Predicted)| ; (8.11)

λ = 1% of Pmpp(Target) dataset average; (λ ≃ 3.5);

Θ = closest acceptable value to λ; (Θ = 2.5);

then:

Prediction =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
Correct, if ∆ϵ ∈ [−Θ,Θ]

Incorrect (but acceptable), if ∆ϵ ∈ [−λ,−Θ[∪]Θ, λ]

Incorrect, otherwise

(8.12)

8.5.2 Achievements and Observations

As test dataset, the dataset used consisted of 922 solar modules. Predictions

Chapter 8. A Neural Network Model for the Solar Module Power Prediction 133

Pmpp Target Pmpp Predicted Error
count 922.000000 922.000000 922.000000
mean 376.116134 376.381714 -0.265582
std 4.259103 3.962520 1.235558
min 358.869812 359.779572 -6.846039
25% 373.611473 373.984764 -0.779381
50% 376.476791 376.845276 -0.101639
75% 379.210892 379.346252 0.481018
max 384.602509 385.177979 3.753174

Table 8.5: Prediction results statistics (with one BIN)

results, as the Figure 8.5 shows, matched 875 modules of 922 given, with 47 in-

correct predictions. Therefore, the model achieves an accuracy of prediction about

94.90% (only the Corrected predictions were considered). Another aspect that gives

good results is the statistical information about the errors. As Table 8.5 shows, the

standard deviation and the mean of Error are very low. The predictions results

demonstrate that the neural network model can predict the final maximum power

point of a solar module with high prediction accuracy, and this seems acceptable and

can be used in engineering tests to improve the solar cells and solar modules pro-

duction. Nevertheless, the model can also help to improve the production logistics,

such as material transportation, reducing the number of solar cell classes, and using

more than one solar cell class, with negligible loss of power. To this purpose, new

engineering tests have been made by assembling solar modules with two different

”nearby” solar cell classes. The results have been used to improve the model.

8.6 Improved Model

To improve production logistics, the transportation of production materials and the

solar cells classification, the reduction of solar cells classes is required. For that

reason, a new set of experiments, about the assembly of solar modules with solar

cells belonging to contiguous classes were made to verify the possible power loss

from a practical and theoretical point of view. The power loss, from a theoretical

point of view, is related to the serial connection of solar cells and therefore, the final

Chapter 8. A Neural Network Model for the Solar Module Power Prediction 134

Tcell Voc Umpp Isc Impp FF Pmp Cell BIN MIN BIN COUNT CELLS Pmpp Target
31.03 0.73 0.62 9.44 8.90 80.61 5.56 17 1 60 385.20
31.99 0.73 0.60 9.40 8.89 80.893 5.58 18 0 12 385.20

...

Table 8.6: Example of input dataset with two classes (not normalised)

Pmpp Target Bin Min Bin Max Num Cells Min Num Cells Max Pmpp Predicted Min Pmpp Predicted Max
385.20 17 18 60 12 381.90 384.10
...

Table 8.7: Example of final dataset after predictions with two classes (not normalised)

power of the module settles to the power relative to the class of the solar cells with

lesser efficiency.

In this case the obtained model cannot correctly predict the final power of solar

module. Therefore, the idea is to use the same model to predict the final power of

the solar modules, adding this new information about the final module.

To introduce a new structure of the input dataset, a new way is needed to use

the model, as the Table 8.6 shows. In this case, the dataset represents a set of solar

modules which are made with two different classes of solar cells.

The dataset contains in rows of two by two, the same solar module and the

average of solar cells features, considering their respective classes. In the dataset

there was also some information added about the classes such as the relative class

of solar cells (BIN), the amount of solar cells used to make the solar module

(COUNT CELLS) and a flag to understand what the minimum class is of the

solar cells (MIN BIN). However this was added only for test purposes.

Considering the same dataset and predictions, every single solar module can

be summarised in one row, saving the Pmpps predicted (Minimum and Maximum)

in relation to the two Solar Cells classes (BINs) and the count of solar cells for

each class. As Table 8.7 shows, the Pmpp(s) predicted seem to correspond to the

minimum and maximum value of the interval where the Pmpp target seems to

remain in the middle of this interval. In addition, we discovered that the minimum

solar cell class (BIN) affects the final Pmpp more than the maximum solar cell class

(about 60%). Therefore, definition of a new weighted Pmpp predicted using the

two Pmpp predicted before with some weights is needed.

Chapter 8. A Neural Network Model for the Solar Module Power Prediction 135

6 4 2 0 2
Prediction error[Pmpp Target]

0

5

10

15

20

25

30

35

Co
un

t

Histogram of Prediction errors
Correct
Incorrect (Acceptable)
Incorrect

Figure 8.6: Distributions of prediction results (with two BINs)

Let Weightmin and Weightmax be two constant weights applied for their respec-

tive minimum and maximum classes:

Let Weightmin = 0.6 and Weightmax = 0.4 ; (8.13)

µ = (CountCellsmax ·Weightmax);

ν = (CountCellsmin ·Weightmin);

then define a new Pmpp Weighted as follows:

PmppPredictedweighted =
((PmppPredictedmin · ν) + (PmppPredictedmax · µ))

ν + µ

(8.14)

As test dataset, the dataset used consisted of 440 solar modules made of two

classes of solar cells. The predictions results, as Figure 8.6 shows, matched 415

modules of 440 given, with 25 incorrect predictions. Therefore, the model achieves

Chapter 8. A Neural Network Model for the Solar Module Power Prediction 136

Pmpp Target Pmpp Predicted Weighted Error Weighted
count 440.000000 440.000000 440.000000
mean 375.558011 375.555437 0.002574
std 4.051693 3.706731 1.334370
min 353.620209 353.127561 -6.888446
25% 373.826920 373.956401 -0.593594
50% 375.897400 375.865245 0.128161
75% 378.197914 377.818066 0.813447
max 385.207001 383.648547 3.050453

Table 8.8: Prediction results statistics (with two BINs)

an accuracy of prediction about 94.32% (only the Corrected prediction were con-

sidered). Another aspect that gives good results is the statistical information about

the errors. The predictions results demonstrates that the neural network model can

predict the final maximum power point of a solar module made with one or two

solar cell classes, with a high accuracy of prediction.

Considering the theoretical aspect, as described above, we would have expected

the final power attested to the power linked to the electrical parameters of the cells

less efficient, while instead, it seems that there is a power gain due to cells with

better efficiency4.

8.7 Application

Since the model was developed using the Keras framework, its usage could be prob-

lematic. Therefore, a server/desktop application was made. The application was

developed as a multi-platform application, which means the application can run in

a Linux or Windows environment (maybe also in macOS). The Electron framework5

was chosen to make the final application. The framework allows the development of

the application using Javascript language, through a Javascript interpreter, such as

WebKit.

The graphical user interface was limited to the design and the development of a

Web interface, within which the users can use the model. The original model was

4The modules used in these experiments are currently under reliability testing to verify that
the use of larger classes do not compromise the quality of the final product.

5https://www.electronjs.org/

https://www.electronjs.org/

Chapter 8. A Neural Network Model for the Solar Module Power Prediction 137

Figure 8.7: Some application screens.

converted into the TensorFlowJS type that can be used with the final application.

The application offers some simple views where the users can operate with the model.

In the first view, the users can use the model passing the relative inputs and perform

the prediction. The second view allows the users to load a CSV file with more than

one row which will be used to make more than one prediction. Before the launch

of the predictions, the input file will be analysed, verifying the integrity and format

of the file and the column labels. If the labels do not respect the requirements, the

software will ask the user to select the correct columns. The third view allows the

users (or administrators in this case) to launch a simple HTTP server, specifying the

service port, which will be served to allow the prediction service via the network. The

last view contains some information about the developer and the software version. A

new version of the software was made by using GoLang language6. Nevertheless, the

resulting application can run only in a Linux environment, therefore was scrapped

despite its performances7.

8.8 Conclusions

In this chapter we introduced the physical basis of solar cells and solar modules,

introducing the I-V characteristic of the solar cells and, therefore, the problem of

the final power produced by the solar modules in the real world. Furthermore, the

real problem about the power produced is stronger. Part of this problem is the

automated manufacturing environment and settings, where the ”trial and error”

6https://golang.org/
7Also the installation process would be more difficult than the Electron version

https://golang.org/

Chapter 8. A Neural Network Model for the Solar Module Power Prediction 138

has a cost. In addition, the assembly phases of solar cells and solar modules could

be improved, for instance by improving the classification system of the cells and

reducing the number of the classes.

Therefore, we created a neural network model which can predict the final maxi-

mum power of a solar module, made with a set of solar cells as inputs. The proposed

model works fine with one or two types of solar cell classes. This permits new types

of experiments such as exploring new recipes or new solar cell classes. In addition,

the accuracy of the proposed model seems acceptable with about 94% of accuracy

and finally, it can be used to simulate the production of the final maximum power

of solar modules without any production costs.

For future research, the model must be more generic, because, the model can

only predict the power of the solar module with one or two different classes of solar

cells. Therefore, a new model must be trained with a new type of dataset and

should be designed to be generic. Finally, the results of the predictions should be

demonstrated, making real solar modules with the same set of solar cells used for

prediction and compare the results.

8.9 Acknowledgments

We thank Dario Iuvara8 and Fabrizio Bizzarri9 for the help and collaboration given

to us during our research and work.

8Head of the Automation Innovation Support Unit of Enel Green Power (dario.iuvara@enel.com)
9Head of the Solar Innovation Unit of Enel Green Power (fabrizio.bizzarri@enel.com)

139

Chapter 9

Conclusions

The works presented in this thesis aim to advance the state of the art in Indus-

trial IoT and represent a step forward in the implementation and expansion of IoT

technology in any field. The presented approaches can be used as a guide for the cre-

ation of new protocols, simulators, elaborations, and prediction systems to improve

industrial technologies.

In the first part, this thesis addresses on communication protocols and privacy

preservation of IoT. Furthermore, a new distributed platform of the UAV flock

control, a new communication protocol which allows the automatic configuration of

the devices’ network and a new routing protocol for the DTN networks have been

discussed.

In the second part, this thesis introduces a new UAV simulator which can also

emulate wireless networks and an improvement of Docker technology. The latter

allows the sharing of libraries between containers.

Finally, in the third part, the thesis regards the artificial intelligence application

on IoT. This introduces a new smart social agent which enables the interactions

between humans and domotic devices through social networks and a neural network

model capable of predicting the efficiency of a solar module before its creation.

The results of each chapter demonstrate the application feasibility of each pro-

posed solution. Moreover, the same results provide new ideas for future works, useful

to further improve the Internet of Things.

140

Bibliography

[1] K. Ashton et al. “That ‘internet of things’ thing”. In: RFID journal 22.7

(2009), pp. 97–114.

[2] M. Zwolenski, L. Weatherill, et al. “The digital universe: Rich data and the

increasing value of the internet of things”. In: Journal of Telecommunications

and the Digital Economy 2.3 (2014), p. 47.

[3] C. Counter. “The Internet of Everything in Motion”. In: Cisco’s Technol-

ogy News Site.—[Elec tronic resource].—Mode of Access: https://newsroom.

cisco. com/featurecontent ().

[4] J. Rivera and R. van der Meulen. “Gartner says the internet of things installed

base will grow to 26 billion units by 2020”. In: Stamford, conn., December 12

(2013).

[5] G. E. Moore. “Cramming more components onto integrated circuits”. In:

Proceedings of the IEEE 86.1 (1998), pp. 82–85.

[6] J. G. Koomey, S. Berard, M. Sanchez, and H. Wong. “Assessing trends in

the electrical efficiency of computation over time”. In: IEEE Annals of the

History of Computing 17 (2009).

[7] L. Atzori, A. Iera, and G. Morabito. “Understanding the Internet of Things:

definition, potentials, and societal role of a fast evolving paradigm”. In: Ad

Hoc Networks 56 (2017), pp. 122–140.

[8] J. Zheng and M. J. Lee. “A comprehensive performance study of IEEE 802.15.

4”. In: Sensor network operations 4 (2006), pp. 218–237.

[9] M. H. Coen et al. “Design principles for intelligent environments”. In: AAAI/I-

AAI. 1998, pp. 547–554.

[10] M. Hoeynck and B. W. Andrews. Sensor-Based Occupancy and Behavior

Prediction Method for Intelligently Controlling Energy Consumption Within

a Building. US Patent App. 12/183,361. 2010.

Bibliography 141

[11] C Gomez-Otero, R Martinez, and J Caffarel. “ClimApp: A novel approach

of an intelligent HVAC control system”. In: 7th Iberian Conference on Infor-

mation Systems and Technologies (CISTI 2012). IEEE. 2012, pp. 1–6.

[12] H. Lasi, P. Fettke, H.-G. Kemper, T. Feld, and M. Hoffmann. “Industry 4.0”.

In: Business & information systems engineering 6.4 (2014), pp. 239–242.

[13] A. Gilchrist. Industry 4.0: the industrial internet of things. Springer, 2016.

[14] K. Witkowski. “Internet of things, big data, industry 4.0–innovative solutions

in logistics and supply chains management”. In: Procedia Engineering 182

(2017), pp. 763–769.

[15] M. Wollschlaeger, T. Sauter, and J. Jasperneite. “The future of industrial

communication: Automation networks in the era of the internet of things and

industry 4.0”. In: IEEE industrial electronics magazine 11.1 (2017), pp. 17–

27.

[16] D. Bandyopadhyay and J. Sen. “Internet of things: Applications and chal-

lenges in technology and standardization”. In: Wireless personal communi-

cations 58.1 (2011), pp. 49–69.

[17] F. Shrouf, J. Ordieres, and G. Miragliotta. “Smart factories in Industry 4.0:

A review of the concept and of energy management approached in production

based on the Internet of Things paradigm”. In: 2014 IEEE international con-

ference on industrial engineering and engineering management. IEEE. 2014,

pp. 697–701.

[18] F. D’Urso, C. Santoro, and F. F. Santoro. “Integrating Heterogeneous Tools

for Physical Simulation of multi-Unmanned Aerial Vehicles.” In: WOA. 2018,

pp. 10–15.

[19] F. D’Ursol, C. Grasso, C. Santoro, F. F. Santoro, and G. Schembra. “The

Tactile Internet for the flight control of UAV flocks”. In: 2018 4th IEEE Con-

ference on Network Softwarization and Workshops (NetSoft). IEEE. 2018,

pp. 470–475.

Bibliography 142

[20] C. Santoro, F. Messina, F. D’Urso, and F. F. Santoro. “Wale: a Dockerfile-

based approach to deduplicate shared libraries in Docker containers”. In:

2018 IEEE 16th Intl Conf on Dependable, Autonomic and Secure Computing,

16th Intl Conf on Pervasive Intelligence and Computing, 4th Intl Conf on Big

Data Intelligence and Computing and Cyber Science and Technology Congress

(DASC/PiCom/DataCom/CyberSciTech). IEEE. 2018, pp. 785–791.

[21] F. D’Urso, C. Santoro, and F. F. Santoro. “An integrated framework for the

realistic simulation of multi-UAV applications”. In: Computers & Electrical

Engineering 74 (2019), pp. 196–209.

[22] C. F. Longo, C. Santoro, and F. F. Santoro. “Meaning Extraction in a Do-

motic Assistant Agent Interacting by means of Natural Language”. In: 2019

IEEE 28th International Conference on Enabling Technologies: Infrastructure

for Collaborative Enterprises (WETICE). IEEE. 2019, pp. 21–26.

[23] M. Buffa, F. Messina, C. Santoro, and F. F. Santoro. “Design of Self-organizing

Protocol for LoWPAN Networks”. In: International Conference on Internet

and Distributed Computing Systems. Springer. 2019, pp. 424–433.

[24] F. D’Urso, C. Santoro, and F. F. Santoro. “Wale: A solution to share libraries

in Docker containers”. In: Future Generation Computer Systems 100 (2019),

pp. 513–522.

[25] M. De Benedetti, F. D’Urso, G. Fortino, F. Messina, G. Pappalardo, and C.

Santoro. “A Fault-tolerant Self-organizing Flocking Approach for UAV Aerial

Survey”. In: J. Netw. Comput. Appl. 96.C (Oct. 2017), pp. 14–30. issn: 1084-

8045. doi: 10.1016/j.jnca.2017.08.004. url: https://doi.org/10.

1016/j.jnca.2017.08.004.

[26] Z. Zheng, A. K. Sangaiah, and T. Wang. “Adaptive Communication Proto-

cols in Flying Ad Hoc Network”. In: IEEE Communications Magazine 56.1

(2018), pp. 136–142. issn: 0163-6804. doi: 10.1109/MCOM.2017.1700323.

[27] G. S. C. Rametta. ““Designing a softwarized network deployed on a fleet of

drones for rural zone monitoring””. In: Future Internet 9.1 (2017).

[28] M. Maier, M. Chowdhury, B. P. Rimal, and D. P. Van. “The tactile inter-

net: vision, recent progress, and open challenges”. In: IEEE Communications

Magazine 54.5 (2016), pp. 138–145.

https://doi.org/10.1016/j.jnca.2017.08.004
https://doi.org/10.1016/j.jnca.2017.08.004
https://doi.org/10.1016/j.jnca.2017.08.004
https://doi.org/10.1109/MCOM.2017.1700323

Bibliography 143

[29] A. A. Ateya, A. Muthanna, and A. Koucheryavy. “5G framework based on

multi-level edge computing with D2D enabled communication”. In: 2018 20th

International Conference on Advanced Communication Technology (ICACT).

2018, pp. 507–512. doi: 10.23919/ICACT.2018.8323812.

[30] S. Iellamo, J. J. Lehtomaki, and Z. Khan. “Placement of 5G Drone Base

Stations by Data Field Clustering”. In: 2017 IEEE 85th Vehicular Technology

Conference (VTC Spring). 2017, pp. 1–5.

[31] L. Chiaraviglio, W. Liu, J. A. Gutierrez, and N. Blefari-Melazzi. “Optimal

pricing strategy for 5G in rural areas with unmanned aerial vehicles and

large cells”. In: 2017 27th International Telecommunication Networks and

Applications Conference (ITNAC). 2017, pp. 1–7. doi: 10.1109/ATNAC.

2017.8215406.

[32] M. Dohler, T. Mahmoodi, M. A. Lema, M. Condoluci, F. Sardis, K. Anton-

akoglou, and H. Aghvami. “Internet of skills, where robotics meets AI, 5G and

the Tactile Internet”. In: 2017 European Conference on Networks and Com-

munications (EuCNC). 2017, pp. 1–5. doi: 10.1109/EuCNC.2017.7980645.

[33] A. Aijaz, M. Dohler, A. H. Aghvami, V. Friderikos, and M. Frodigh. “Real-

izing the Tactile Internet: Haptic Communications over Next Generation 5G

Cellular Networks”. In: IEEE Wireless Communications 24.2 (2017), pp. 82–

89. issn: 1536-1284. doi: 10.1109/MWC.2016.1500157RP.

[34] F. Sophia Antipolis. Mobile edge computing: A key technology towards 5G.

2015.

[35] T. Taleb, K. Samdanis, B. Mada, H. Flinck, S. Dutta, and D. Sabella. “On

Multi-Access Edge Computing: A Survey of the Emerging 5G Network Edge

Cloud Architecture and Orchestration”. In: IEEE Communications Surveys

Tutorials 19.3 (2017), pp. 1657–1681. doi: 10.1109/COMST.2017.2705720.

[36] D. Kreutz, F. M. V. Ramos, P. E. Veŕıssimo, C. E. Rothenberg, S. Azodol-

molky, and S. Uhlig. “Software-Defined Networking: A Comprehensive Sur-

vey”. In: Proceedings of the IEEE 103.1 (2015), pp. 14–76. issn: 0018-9219.

doi: 10.1109/JPROC.2014.2371999.

https://doi.org/10.23919/ICACT.2018.8323812
https://doi.org/10.1109/ATNAC.2017.8215406
https://doi.org/10.1109/ATNAC.2017.8215406
https://doi.org/10.1109/EuCNC.2017.7980645
https://doi.org/10.1109/MWC.2016.1500157RP
https://doi.org/10.1109/COMST.2017.2705720
https://doi.org/10.1109/JPROC.2014.2371999

Bibliography 144

[37] J. d. J. Gil Herrera and J. F. B. Vega. “Network Functions Virtualization:

A Survey”. In: IEEE Latin America Transactions 14.2 (2016), pp. 983–997.

issn: 1548-0992. doi: 10.1109/TLA.2016.7437249.

[38] X. Foukas, G. Patounas, A. Elmokashfi, and M. K. Marina. “Network Slicing

in 5G: Survey and Challenges”. In: IEEE Communications Magazine 55.5

(2017), pp. 94–100. issn: 0163-6804. doi: 10.1109/MCOM.2017.1600951.

[39] J. Ordonez-Lucena, P. Ameigeiras, D. Lopez, J. J. Ramos-Munoz, J. Lorca,

and J. Folgueira. “Network Slicing for 5G with SDN/NFV: Concepts, Archi-

tectures, and Challenges”. In: IEEE Communications Magazine 55.5 (2017),

pp. 80–87. issn: 0163-6804. doi: 10.1109/MCOM.2017.1600935.

[40] J.-C. Latombe. “Exact Cell Decomposition”. In: Robot Motion Planning.

Springer, 1991, pp. 200–247.

[41] J.-C. Latombe. “Approximate cell decomposition”. In: Robot Motion Plan-

ning. Springer, 1991, pp. 248–294.

[42] I. Rekleitis, A. P. New, E. S. Rankin, and H. Choset. “Efficient boustrophedon

multi-robot coverage: an algorithmic approach”. In: Annals of Mathematics

and Artificial Intelligence 52.2-4 (2008), pp. 109–142.

[43] M. De Benedetti, F. D’Urso, F. Messina, G. Pappalardo, and C. Santoro.

“3D Simulation of Unmanned Aerial Vehicles”. In: XVIII Workshop ”Dagli

Oggetti agli Agenti”. CEUR-WS. 2017.

[44] P. Pace, G. Aloi, G. Caliciuri, and G. Fortino. “A mission-oriented coordina-

tion framework for teams of mobile aerial and terrestrial smart objects”. In:

Mobile Networks and Applications 21.4 (2016), pp. 708–725.

[45] M. D. Benedetti, F. D’Urso, F. Messina, G. Pappalardo, and C. Santoro.

“UAV-based Aerial Monitoring: A Performance Evaluation of a Self-Organising

Flocking Algorithm”. In: 2015 10th International Conference on P2P, Paral-

lel, Grid, Cloud and Internet Computing (3PGCIC). 2015, pp. 248–255. doi:

10.1109/3PGCIC.2015.78.

[46] L. Atzori, A. Iera, and G. Morabito. “The internet of things: A survey”. In:

Computer networks 54.15 (2010), pp. 2787–2805.

https://doi.org/10.1109/TLA.2016.7437249
https://doi.org/10.1109/MCOM.2017.1600951
https://doi.org/10.1109/MCOM.2017.1600935
https://doi.org/10.1109/3PGCIC.2015.78

Bibliography 145

[47] J. Gubbi, R. Buyya, S. Marusic, and M. Palaniswami. “Internet of Things

(IoT): A vision, architectural elements, and future directions”. In: Future

generation computer systems 29.7 (2013), pp. 1645–1660.

[48] A. Zanella, N. Bui, A. Castellani, L. Vangelista, and M. Zorzi. “Internet

of things for smart cities”. In: IEEE Internet of Things journal 1.1 (2014),

pp. 22–32.

[49] A. Gaur, B. Scotney, G. Parr, and S. McClean. “Smart city architecture

and its applications based on IoT”. In: Procedia computer science 52 (2015),

pp. 1089–1094.

[50] A. Dunkels, B. Gronvall, and T. Voigt. “Contiki-a lightweight and flexible

operating system for tiny networked sensors”. In: 29th annual IEEE interna-

tional conference on local computer networks. IEEE. 2004, pp. 455–462.

[51] G. Mulligan. “The 6LoWPAN architecture”. In: Proceedings of the 4th work-

shop on Embedded networked sensors. ACM. 2007, pp. 78–82.

[52] N. Accettura, L. A. Grieco, G. Boggia, and P. Camarda. “Performance anal-

ysis of the RPL routing protocol”. In: 2011 IEEE International Conference

on Mechatronics. IEEE. 2011, pp. 767–772.

[53] C. Bormann, A. P. Castellani, and Z. Shelby. “Coap: An application protocol

for billions of tiny internet nodes”. In: IEEE Internet Computing 2 (2012),

pp. 62–67.

[54] A. Dunkels. “The contikimac radio duty cycling protocol”. In: (2011).

[55] S. Kalyoncu. Wireless solutions and authentication mechanisms for Contiki

based Internet of things networks. 2013.

[56] H.-S. Kim, S. Kumar, and D. E. Culler. “Thread/OpenThread: A Compro-

mise in Low-Power Wireless Multihop Network Architecture for the Internet

of Things”. In: IEEE Communications Magazine (2019), p. 3.

[57] G. Inc. OpenThread. https://openthread.io/. 2019.

[58] T. T. Group. Thread. https://www.threadgroup.org/. 2019.

[59] R. Rajsuman. System-on-a-chip: Design and Test. Artech House, Inc., 2000.

https://openthread.io/
https://www.threadgroup.org/

Bibliography 146

[60] R. Giladi. Network processors: architecture, programming, and implementa-

tion. Morgan Kaufmann, 2008.

[61] N Sornin, M Luis, T Eirich, T Kramp, and O Hersent. “LoRaWAN specifi-

cation”. In: LoRa alliance (2015).

[62] J. de Carvalho Silva, J. J. Rodrigues, A. M. Alberti, P. Solic, and A. L.

Aquino. “LoRaWAN—A low power WAN protocol for Internet of Things:

A review and opportunities”. In: 2017 2nd International Multidisciplinary

Conference on Computer and Energy Science (SpliTech). IEEE. 2017, pp. 1–

6.

[63] N. Kushalnagar and G. Montenegro. “Transmission of IPv6 packets over

IEEE 802.15. 4 networks”. In: (2007).

[64] A. Zacepins, A. Kviesis, P. Ahrendt, U. Richter, S. Tekin, and M. Durgun.

“Beekeeping in the future—Smart apiary management”. In: 2016 17th In-

ternational Carpathian Control Conference (ICCC). IEEE. 2016, pp. 808–

812.

[65] K. Fall. “A delay-tolerant network architecture for challenged internets”. In:

Proceedings of the 2003 conference on Applications, technologies, architec-

tures, and protocols for computer communications. ACM. 2003, pp. 27–34.

[66] K. L. Scott. “Bundle protocol specification”. In: (2007).

[67] T. Small and Z. J. Haas. “Resource and performance tradeoffs in delay-

tolerant wireless networks”. In: Proceedings of the 2005 ACM SIGCOMM

workshop on Delay-tolerant networking. ACM. 2005, pp. 260–267.

[68] A. Vahdat, D. Becker, et al. “Epidemic routing for partially connected ad

hoc networks”. In: (2000).

[69] L Wood, J McKim, W Eddy, W Ivancic, and C Jackson. “Saratoga: A scalable

file transfer protocol”. In: work in progress as an Internet-draft (2010).

[70] A. Lindgren, A. Doria, and O. Schelén. “Probabilistic routing in intermit-

tently connected networks”. In: ACM International Symposium on Mobilde

Ad Hoc Networking and Computing, MobiHoc 2003: 01/06/2003-03/06/2003.

2003.

Bibliography 147

[71] Y. Lindell and B. Pinkas. “Privacy preserving data mining”. In: Annual In-

ternational Cryptology Conference. Springer. 2000, pp. 36–54.

[72] C. Clifton, M. Kantarcioglu, and J. Vaidya. “Defining privacy for data min-

ing”. In: National science foundation workshop on next generation data min-

ing. Vol. 1. 26. Citeseer. 2002, p. 1.

[73] Y. Zhu and Y. Hu. “Making peer-to-peer anonymous routing resilient to

failures”. In: 2007 IEEE International Parallel and Distributed Processing

Symposium. IEEE. 2007, pp. 1–10.

[74] E. Papapetrou, V. F. Bourgos, and A. G. Voyiatzis. “Privacy-preserving rout-

ing in delay tolerant networks based on bloom filters”. In: 2015 IEEE 16th

International Symposium on A World of Wireless, Mobile and Multimedia

Networks (WoWMoM). IEEE. 2015, pp. 1–9.

[75] P. Hui, J. Crowcroft, and E. Yoneki. “Bubble rap: Social-based forwarding in

delay-tolerant networks”. In: IEEE Transactions on Mobile Computing 10.11

(2010), pp. 1576–1589.

[76] E. M. Daly and M. Haahr. “Social network analysis for routing in discon-

nected delay-tolerant manets”. In: Proceedings of the 8th ACM international

symposium on Mobile ad hoc networking and computing. 2007, pp. 32–40.

[77] A. Guellier, C. Bidan, and N. Prigent. “Homomorphic cryptography-based

privacy-preserving network communications”. In: International Conference

on Applications and Techniques in Information Security. Springer. 2014, pp. 159–

170.

[78] A. V. Vasilakos, Y. Zhang, and T. Spyropoulos. Delay tolerant networks:

Protocols and applications. CRC press, 2016.

[79] A. Lindgren, E. Davies, S. Grasic, and A. Doria. “Probabilistic routing pro-

tocol for intermittently connected networks”. In: (2012).

[80] R. W. Schafer and L. R. Rabiner. “Digital representations of speech signals”.

In: Proceedings of the IEEE 63.4 (1975), pp. 662–677.

[81] A. Quarteroni, R. Sacco, and F. Saleri. Numerical mathematics. Vol. 37.

Springer Science & Business Media, 2010.

Bibliography 148

[82] S. McKinley and M. Levine. “Cubic spline interpolation”. In: College of the

Redwoods 45.1 (1998), pp. 1049–1060.

[83] G. Cai, J. Dias, and L. Seneviratne. “A survey of small-scale unmanned aerial

vehicles: Recent advances and future development trends”. In: Unmanned

Systems 2.02 (2014), pp. 175–199.

[84] Y. Wei, M. B. Blake, and G. R. Madey. “An operation-time simulation frame-

work for UAV swarm configuration and mission planning”. In: Procedia Com-

puter Science 18 (2013), pp. 1949–1958.

[85] T. R. F. Cavalcante, I. V. d. Bessa, and L. C. Cordeiro. “Planning and

Evaluation of UAV Mission Planner for Intralogistics Problems”. In: 2017 VII

Brazilian Symposium on Computing Systems Engineering (SBESC). 2017,

pp. 9–16.

[86] G. Chmaj and H. Selvaraj. “Distributed processing applications for UAV/-

drones: a survey”. In: Progress in Systems Engineering. Springer, 2015, pp. 449–

454.

[87] C. Virágh et al. “Flocking algorithm for autonomous flying robots”. In: Bioin-

spiration & biomimetics 9.2 (2014), p. 025012.

[88] N. Bouraqadi and A. Doniec. “Flocking-Based Multi-Robot Exploration”.

In: Proceedings of the 4th National Conference on Control Architectures of

Robots. Toulouse, France, 2009.

[89] G. Vásárhelyi et al. “Outdoor flocking and formation flight with autonomous

aerial robots”. In: IEEE/RSJ International Conference on Intelligent Robots

and Systems. IROS ’14. Chicago, IL, USA, 2014, pp. 3866–3873.

[90] E. Sklar. “Software Review: NetLogo, a Multi–agent Simulation Environ-

ment”. In: Artificial Life 13 (2007), pp. 303–311.

[91] S. Luke, C. Cioffi-Revilla, L. Panait, K. Sullivan, and G. Balan. “MASON: a

Multi–Agent Simulation Environment”. In: Simulation 81.7 (2005), pp. 517–

527.

[92] E. Tatara, M. North, T. Howe, N. T. Collier, and J. Vos. “An introduction

to Repast modelling using a simple predator–prey example”. In: Proceedings

of Agents 2006 Conference on Social Agents: Results and Prospects. 2006.

Bibliography 149

[93] N. Koenig and A. Howard. “Design and Use Paradigms for Gazebo, An Open-

Source Multi-Robot Simulator”. In: International Conference on Intelligent

Robots and Systems. Sendai, Japan, 2004, pp. 2149–2154.

[94] G. F. Riley and T. R. Henderson. “The ns-3 Network Simulator”. In: Mod-

eling and Tools for Network Simulation. Berlin, Heidelberg: Springer Berlin

Heidelberg, 2010, pp. 15–34. isbn: 978-3-642-12331-3.

[95] A. Varga and R. Hornig. “An overview of the OMNeT++ simulation envi-

ronment”. In: In Proceedings of the 1st international conference on Simula-

tion tools and techniques for communications, networks and systems & work-

shops, page 60. ICST (Institute for Computer Sciences, Social-Informatics

and Telecommunications Engineering. 2008.

[96] A. G. Madey and G. R. Madey. “Design and Evaluation of UAV Swarm Com-

mand and Control Strategies”. In: Proceedings of the Agent-Directed Simu-

lation Symposium. ADSS 13. San Diego, California: Society for Computer

Simulation International, 2013, 7:1–7:8. isbn: 978-1-62748-029-1.

[97] S. Hauert, S. Leven, M. Varga, F. Ruini, A. Cangelosi, J. Zufferey, and D.

Floreano. “Reynolds flocking in reality with fixed-wing robots: Communi-

cation range vs. maximum turning rate”. In: 2011 IEEE/RSJ International

Conference on Intelligent Robots and Systems, IROS 2011, San Francisco,

CA, USA, September 25-30, 2011. 2011, pp. 5015–5020.

[98] L. Ciarletta, A. Guenard, Y. Presse, V. Galtier, Y. Q. Song, J. C. Ponsart, S.

Aberkane, and D. Theilliol. “Simulation and platform tools to develop safe

flock of UAVs: a CPS application-driven research”. In: 2014 International

Conference on Unmanned Aircraft Systems (ICUAS). 2014, pp. 95–102.

[99] E. A. Marconato, M. Rodrigues, R. de Melo Pires, D. F. Pigatto, L. C. Q.

Filho, A. R. Pinto, and K. R. L. J. C. Branco. “AVENS - A Novel Flying

Ad Hoc Network Simulator with Automatic Code Generation for Unmanned

Aircraft System”. In: HICSS. 2017.

[100] M. Kudelski, L. M. Gambardella, and G. A. Di Caro. “RoboNetSim: An

Integrated Framework for Multi-robot and Network Simulation”. In: Robot.

Auton. Syst. 61.5 (May 2013), pp. 483–496. issn: 0921-8890.

Bibliography 150

[101] C. Gomes, C. Thule, D. Broman, P. G. Larsen, and H. Vangheluwe. “Co-

simulation: State of the art”. In: CoRR abs/1702.00686 (2017). arXiv: 1702.

00686.

[102] F. Furrer, M. Burri, M. Achtelik, and R. Siegwart. “RotorS—A modular

gazebo MAV simulator framework”. en. In: Robot operating system (ROS) :

the complete reference (volume 1). Ed. by A. Koubaa. Vol. 625. Studies in

computational intelligence. . Springer, 2016, pp. 595 –625. isbn: 978-3-319-

26054-9.

[103] L. Meier, D. Honegger, and M. Pollefeys. “PX4: A Node-Based Multithreaded

Open Source Robotics Framework for Deeply Embedded Platforms”. In:

Robotics and Automation (ICRA), 2015 IEEE International Conference on.

2015.

[104] M. Kudelski, M. Cinus, L. Gambardella, and G. A. Di Caro. “A framework for

realistic simulation of networked multi-robot systems”. In: Intelligent Robots

and Systems (IROS), 2012 IEEE/RSJ International Conference on. IEEE.

2012, pp. 5018–5025.

[105] S. Nethi, M. Pohjola, L. Eriksson, and R. Jantti. “Platform for emulating

networked control systems in laboratory environments”. In: World of Wire-

less, Mobile and Multimedia Networks, 2007. WoWMoM 2007. IEEE Inter-

national Symposium on a. IEEE. 2007, pp. 1–8.

[106] S. Hayat, E. Yanmaz, and R. Muzaffar. “Survey on Unmanned Aerial Vehicle

Networks for Civil Applications: A Communications Viewpoint”. In: IEEE

Communications Surveys Tutorials 18.4 (2016), pp. 2624–2661. issn: 1553-

877X.

[107] M. Schmittle, A. Lukina, L. Vacek, J. Das, C. Buskirk, S. Rees, J. Szti-

panovits, R. Grosu, and V. Kumar. “OpenUAV: A UAV Testbed for the CPS

and Robotics Community”. In: Proceedings of the 9th ACM/IEEE Interna-

tional Conference on Cyber-Physical Systems. ICCPS ’18. Porto, Portugal:

IEEE Press, 2018, pp. 130–139. isbn: 978-1-5386-5301-2.

[108] C. Reynolds. “Flocks, Herds and Schools: A Distributed Behavioral Model”.

In: Proceedings of the 14th Annual Conference on Computer Graphics and

https://arxiv.org/abs/1702.00686
https://arxiv.org/abs/1702.00686

Bibliography 151

Interactive Techniques. SIGGRAPH ’87. New York, NY, USA: ACM, 1987,

pp. 25–34.

[109] P. Mell and T. Grance. “The NIST definition of cloud computing”. In: Com-

munications of the ACM 53.6 (2010), p. 50.

[110] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho, R. Neugebauer,

I. Pratt, and A. Warfield. “Xen and the art of virtualization”. In: ACM

SIGOPS operating systems review. Vol. 37. 5. ACM. 2003, pp. 164–177.

[111] P. Dash. Getting started with Oracle VM VirtualBox. Packt Publishing Ltd,

2013.

[112] R. Uhlig, G. Neiger, D. Rodgers, A. L. Santoni, F. C. Martins, A. V. Ander-

son, S. M. Bennett, A. Kagi, F. H. Leung, and L. Smith. “Intel virtualization

technology”. In: Computer 38.5 (2005), pp. 48–56.

[113] A. Kivity, Y. Kamay, D. Laor, U. Lublin, and A. Liguori. “kvm: the Linux

virtual machine monitor”. In: Proceedings of the Linux symposium. Vol. 1.

2007, pp. 225–230.

[114] C. D. Graziano. “A performance analysis of Xen and KVM hypervisors for

hosting the Xen Worlds Project”. In: (2011).

[115] A. Desai, R. Oza, P. Sharma, and B. Patel. “Hypervisor: A survey on con-

cepts and taxonomy”. In: International Journal of Innovative Technology and

Exploring Engineering 2.3 (2013), pp. 222–225.

[116] P. M. Perera and C. Keppitiyagama. “A performance comparison of hypervi-

sors”. In: Advances in ICT for Emerging Regions (ICTer), 2011 International

Conference on. IEEE. 2011, pp. 120–120.

[117] D. Merkel. “Docker: lightweight linux containers for consistent development

and deployment”. In: Linux Journal 2014.239 (2014), p. 2.

[118] L. Bass, I. Weber, and L. Zhu. DevOps: A Software Architect’s Perspective.

Addison-Wesley Professional, 2015.

[119] N. Dragoni, S. Giallorenzo, A. L. Lafuente, M. Mazzara, F. Montesi, R.

Mustafin, and L. Safina. “Microservices: yesterday, today, and tomorrow”.

In: Present and Ulterior Software Engineering. Springer, 2017, pp. 195–216.

Bibliography 152

[120] S. Newman. Building microservices: designing fine-grained systems. ”O’Reilly

Media, Inc.”, 2015.

[121] A. H. Sodhro, S. Pirbhulal, M. Qaraqe, S. Lohano, G. H. Sodhro, N. U. R.

Junejo, and Z. Luo. “Power control algorithms for media transmission in

remote healthcare systems”. In: IEEE Access 6 (2018), pp. 42384–42393.

[122] A. H. Sodhro, Z. Luo, A. K. Sangaiah, and S. W. Baik. “Mobile edge com-

puting based QoS optimization in medical healthcare applications”. In: Inter-

national Journal of Information Management (2018). issn: 0268-4012. doi:

https://doi.org/10.1016/j.ijinfomgt.2018.08.004.

[123] A. H. Sodhro, S. Pirbhulal, and A. K. Sangaiah. “Convergence of IoT and

product lifecycle management in medical health care”. In: Future Generation

Computer Systems 86 (2018), pp. 380 –391. issn: 0167-739X. doi: https:

//doi.org/10.1016/j.future.2018.03.052.

[124] A. Sodhro, A. Sangaiah, G. Sodhro, S. Lohano, and S. Pirbhulal. “An energy-

efficient algorithm for wearable electrocardiogram signal processing in ubiq-

uitous healthcare applications”. In: Sensors 18.3 (2018), p. 923.

[125] D. Gupta, S. Lee, M. Vrable, S. Savage, A. C. Snoeren, G. Varghese, G. M.

Voelker, and A. Vahdat. “Difference engine: Harnessing memory redundancy

in virtual machines”. In: Communications of the ACM 53.10 (2010), pp. 85–

93.

[126] A. Arcangeli, I. Eidus, and C. Wright. “Increasing memory density by using

KSM”. In: Proceedings of the linux symposium. Citeseer. 2009, pp. 19–28.

[127] G. Milós, D. G. Murray, S. Hand, and M. A. Fetterman. “Satori: Enlightened

page sharing”. In: Proceedings of the 2009 conference on USENIX Annual

technical conference. 2009, pp. 1–1.

[128] K. Suzaki, T. Yagi, K. Iijima, A.-Q. Nguyen, C. Artho, and Y. Watanebe.

“Moving from Logical Sharing of Guest OS to Physical Sharing of Dedupli-

cation on Virtual Machine.” In: HotSec. 2010.

[129] K. Suzaki, K. Iijima, T. Yagi, and C. Artho. “Memory deduplication as a

threat to the guest OS”. In: Proceedings of the Fourth European Workshop

on System Security. ACM. 2011, p. 1.

https://doi.org/https://doi.org/10.1016/j.ijinfomgt.2018.08.004
https://doi.org/https://doi.org/10.1016/j.future.2018.03.052
https://doi.org/https://doi.org/10.1016/j.future.2018.03.052

Bibliography 153

[130] K. Jin and E. L. Miller. “The effectiveness of deduplication on virtual machine

disk images”. In: Proceedings of SYSTOR 2009: The Israeli Experimental

Systems Conference. ACM. 2009, p. 7.

[131] O. Rodeh, J. Bacik, and C. Mason. “BTRFS: The Linux B-tree filesystem”.

In: ACM Transactions on Storage (TOS) 9.3 (2013), p. 9.

[132] O. Rodeh and A. Teperman. “zFS-a scalable distributed file system using ob-

ject disks”. In: Mass Storage Systems and Technologies, 2003.(MSST 2003).

Proceedings. 20th IEEE/11th NASA Goddard Conference on. IEEE. 2003,

pp. 207–218.

[133] J. Bonwick and B. Moore. “ZFS: The last word in file systems”. In: (2007).

[134] H.-f. XUE, S.-h. QING, and H.-g. ZHANG. “Analysis on XEN virtualization

machine [J]”. In: Journal of System Simulation 23 (2007), p. 052.

[135] J. P. Walters, A. J. Younge, D. I. Kang, K. T. Yao, M. Kang, S. P. Crago,

and G. C. Fox. “GPU passthrough performance: A comparison of KVM, Xen,

VMWare ESXi, and LXC for CUDA and OpenCL applications”. In: Cloud

Computing (CLOUD), 2014 IEEE 7th International Conference on. IEEE.

2014, pp. 636–643.

[136] J. Torbić, I. Stanković, B. Dordević, and V. Timčenko. “Hyper-V and ESXi

hypervisors comparison in Windows Server 12 virtual environment”. In: 2018

17th International Symposium INFOTEH-JAHORINA (INFOTEH). 2018,

pp. 1–5. doi: 10.1109/INFOTEH.2018.8345548.

[137] V. K. Manik and D. Arora. “Performance comparison of commercial VMM:

ESXI, XEN, HYPER-V, KVM”. In: 2016 3rd International Conference on

Computing for Sustainable Global Development (INDIACom). 2016, pp. 1771–

1775.

[138] D. J. Magenheimer, P. Ranganathan, and M. Chapman. Virtualization with

binary translation. US Patent 8,327,354. 2012.

[139] B.-C. Le. Emulation system that uses dynamic binary translation and permits

the safe speculation of trapping operations. US Patent 6,631,514. 2003.

https://doi.org/10.1109/INFOTEH.2018.8345548

Bibliography 154

[140] E. R. Altman, K. Ebcioglu, M. Gschwind, and S. Sathaye. “Advances and

future challenges in binary translation and optimization”. In: Proceedings of

the IEEE 89.11 (2001), pp. 1710–1722.

[141] G. K. Thiruvathukal, K. Hinsen, K. Läufer, and J. Kaylor. “Virtualization

for computational scientists”. In: Computing in Science & Engineering 12.4

(2010), pp. 52–61.

[142] P. Li. “Selecting and using virtualization solutions: our experiences with

VMware and VirtualBox”. In: Journal of Computing Sciences in Colleges

25.3 (2010), pp. 11–17.

[143] S. N. T.-c. Chiueh and S. Brook. “A survey on virtualization technologies”.

In: Rpe Report 142 (2005).

[144] B. des Ligneris. “Virtualization of Linux based computers: the Linux-VServer

project”. In: High Performance Computing Systems and Applications, 2005.

HPCS 2005. 19th International Symposium on. IEEE. 2005, pp. 340–346.

[145] F. Bellard. “QEMU, a fast and portable dynamic translator.” In: USENIX

Annual Technical Conference, FREENIX Track. Vol. 41. 2005, p. 46.

[146] D. Quigley, J. Sipek, C. P. Wright, and E. Zadok. “Unionfs: User-and community-

oriented development of a unification filesystem”. In: Proceedings of the 2006

Linux Symposium. Vol. 2. 2006, pp. 349–362.

[147] B. L. R. Stojkoska and K. V. Trivodaliev. “A review of Internet of Things for

smart home: Challenges and solutions”. In: Journal of Cleaner Production

140 (2017), pp. 1454–1464.

[148] K.-L. Tsai, F.-Y. Leu, and I. You. “Residence energy control system based

on wireless smart socket and IoT”. In: IEEE Access 4 (2016), pp. 2885–2894.

[149] IFTTT: If This Then That.

[150] M. Mehrabani, S. Bangalore, and B. Stern. “Personalized speech recognition

for Internet of Things”. In: 2015 IEEE 2nd World Forum on Internet of

Things (WF-IoT). 2015, pp. 369–374. doi: 10.1109/WF-IoT.2015.7389082.

https://doi.org/10.1109/WF-IoT.2015.7389082

Bibliography 155

[151] S. T. Manfred Eppe and J. Feldman. “Exploiting Deep Semantics and Com-

positionality of Natural Language for Human-Robot Interaction”. In: Inter-

national Conference on Intelligence Robots and System in Daejeon, Korea.

IEEE/RSJ. 2016.

[152] S. Tellex, T. Kollar, S. Dickerson, M. R. Walter, A. G. Banarjee, S. Teller, and

N. Roy. “Understanding natural language commands for robotic navigation

and mobile manipulation”. In: Conference on Artificial Intelligence. AAAI.

2011.

[153] G.-J. M. Kruij, P. Lison, T. Benjamin, H. Jacobsson, H. Zender, and I. Kruij-

Korbayov. “Situated Dialogue Processing for Human-Robot Interaction”. In:

Cognitive Systems (2010).

[154] G.-J. M. Kruijff, H. Zender1, P. Jensfelt, and H. I. Christensen. “Situated

Dialogue and Spatial Organization: What, Where. . . and Why?” In: Interna-

tional Journal of Advanced Robotic Systems (2007).

[155] M. Steedman. “The syntactic process”. In: MIT Press (2000).

[156] W. F. T. Mathias Landhäußer Sebastian Weigelt. “NLCI: a natural language

command interpreter”. In: Springer Science+Business Media New York (2016).

[157] L. Fichera, F. Messina, G. Pappalardo, and C. Santoro. “A Python framework

for programming autonomous robots using a declarative approach”. In: Sci.

Comput. Program. 139 (2017), pp. 36–55. doi: 10.1016/j.scico.2017.01.

003. url: https://doi.org/10.1016/j.scico.2017.01.003.

[158] H. Matthew. spaCy: Industrial-Strength Natural Language Processing. https:

//spacy.io. 2017.

[159] C. D. Manning, MihaiSurdeanu, J. Bauer, J. R. Finkel, StevenBethard, and

D. McClosk. “The stanford corenlp natural language processing toolki”. In:

Proceedings of 52nd Annual Meeting of the Association for Computational

Linguistics: System Demonstrations, pages 55-60. 2014.

[160] G. A. Miller. “WordNet: A Lexical Database for English”. In: Communica-

tions of the ACM Vol. 38, No. 11: 39-41. 1995.

[161] CMUSphinx: Open-source speech recognition toolkit.

https://doi.org/10.1016/j.scico.2017.01.003
https://doi.org/10.1016/j.scico.2017.01.003
https://doi.org/10.1016/j.scico.2017.01.003
https://spacy.io
https://spacy.io

Bibliography 156

[162] A. Bartler, L. Mauch, B. Yang, M. Reuter, and L. Stoicescu. “Automated

Detection of Solar Cell Defects with Deep Learning”. In: 2018 26th European

Signal Processing Conference (EUSIPCO). 2018, pp. 2035–2039. doi: 10.

23919/EUSIPCO.2018.8553025.

[163] V. Golovko, S. Bezobrazov, A. Kroshchanka, A. Sachenko, M. Komar, and

A. Karachka. “Convolutional neural network based solar photovoltaic panel

detection in satellite photos”. In: 2017 9th IEEE International Conference on

Intelligent Data Acquisition and Advanced Computing Systems: Technology

and Applications (IDAACS). Vol. 1. 2017, pp. 14–19. doi: 10.1109/IDAACS.

2017.8094501.

[164] K. Jazayeri, S. Uysal, and M. Jazayeri. “Determination of power losses in

solar panels using artificial neural network”. In: 2013 Africon. 2013, pp. 1–6.

doi: 10.1109/AFRCON.2013.6757775.

[165] D. D. Nguyen, B. Lehman, and S. Kamarthi. “Performance evaluation of solar

photovoltaic arrays including shadow effects using neural network”. In: 2009

IEEE Energy Conversion Congress and Exposition. 2009, pp. 3357–3362. doi:

10.1109/ECCE.2009.5316451.

[166] T. Verma, A. P. S. Tiwana, C. C. Reddy, V. Arora, and P. Devanand. “Data

Analysis to Generate Models Based on Neural Network and Regression for

Solar Power Generation Forecasting”. In: 2016 7th International Conference

on Intelligent Systems, Modelling and Simulation (ISMS). 2016, pp. 97–100.

doi: 10.1109/ISMS.2016.65.

[167] M. Taherbaneh and K. Faez. “Maximum Power Point Estimation for Photo-

voltaic Systems Using Neural Networks”. In: 2007 IEEE International Con-

ference on Control and Automation. 2007, pp. 1614–1619. doi: 10.1109/

ICCA.2007.4376633.

[168] M. Green, A. Blakers, S Narayanan, and M Taouk. “Improvements in silicon

solar cell efficiency”. In: Solar cells 17.1 (1986), pp. 75–83.

https://doi.org/10.23919/EUSIPCO.2018.8553025
https://doi.org/10.23919/EUSIPCO.2018.8553025
https://doi.org/10.1109/IDAACS.2017.8094501
https://doi.org/10.1109/IDAACS.2017.8094501
https://doi.org/10.1109/AFRCON.2013.6757775
https://doi.org/10.1109/ECCE.2009.5316451
https://doi.org/10.1109/ISMS.2016.65
https://doi.org/10.1109/ICCA.2007.4376633
https://doi.org/10.1109/ICCA.2007.4376633

Bibliography 157

[169] S. Katsikeas, K. Fysarakis, A. Miaoudakis, A. Van Bemten, I. Askoxylakis, I.

Papaefstathiou, and A. Plemenos. “Lightweight & secure industrial IoT com-

munications via the MQ telemetry transport protocol”. In: 2017 IEEE Sym-

posium on Computers and Communications (ISCC). IEEE. 2017, pp. 1193–

1200.

[170] A. Xenakis, A. Karageorgos, E. Lallas, A. E. Chis, and H. González-Vélez.

“Towards distributed IoT/cloud based fault detection and maintenance in

industrial automation”. In: Procedia Computer Science 151 (2019), pp. 683–

690.

[171] M. A. Green, E. D. Dunlop, D. H. Levi, J. Hohl-Ebinger, M. Yoshita, and

A. W. Ho-Baillie. “Solar cell efficiency tables (version 54)”. In: Progress

in Photovoltaics: Research and Applications 27.7 (2019), pp. 565–575. doi:

https://doi.org/10.1002/pip.3171. eprint: https://onlinelibrary.

wiley.com/doi/pdf/10.1002/pip.3171. url: https://onlinelibrary.

wiley.com/doi/abs/10.1002/pip.3171.

[172] S. Arimoto. Method of producing a solar cell; a solar cell and a method of

producing a semiconductor device. US Patent 6,093,882. 2000.

[173] “Basic Characteristics and Characterization of Solar Cells”. In: Materials

Concepts for Solar Cells. Chap. 1, pp. 3–43. doi: 10.1142/9781786344496_

0001. eprint: https://www.worldscientific.com/doi/pdf/10.1142/

9781786344496_0001. url: https://www.worldscientific.com/doi/

abs/10.1142/9781786344496_0001.

[174] I. Haedrich, U. Eitner, M. Wiese, and H. Wirth. “Unified methodology for

determining CTM ratios: Systematic prediction of module power”. In: Solar

energy materials and solar cells 131 (2014), pp. 14–23.

[175] B. J. Pyper and R. M. Peterman. “Comparison of methods to account for

autocorrelation in correlation analyses of fish data”. In: Canadian Journal of

Fisheries and Aquatic Sciences 55.9 (1998), pp. 2127–2140.

[176] A. F. Agarap. “Deep learning using rectified linear units (relu)”. In: arXiv

preprint arXiv:1803.08375 (2018).

[177] D. P. Kingma and J. Ba. Adam: A Method for Stochastic Optimization. 2017.

arXiv: 1412.6980 [cs.LG].

https://doi.org/https://doi.org/10.1002/pip.3171
https://onlinelibrary.wiley.com/doi/pdf/10.1002/pip.3171
https://onlinelibrary.wiley.com/doi/pdf/10.1002/pip.3171
https://onlinelibrary.wiley.com/doi/abs/10.1002/pip.3171
https://onlinelibrary.wiley.com/doi/abs/10.1002/pip.3171
https://doi.org/10.1142/9781786344496_0001
https://doi.org/10.1142/9781786344496_0001
https://www.worldscientific.com/doi/pdf/10.1142/9781786344496_0001
https://www.worldscientific.com/doi/pdf/10.1142/9781786344496_0001
https://www.worldscientific.com/doi/abs/10.1142/9781786344496_0001
https://www.worldscientific.com/doi/abs/10.1142/9781786344496_0001
https://arxiv.org/abs/1412.6980

Bibliography 158

[178] A. de Myttenaere, B. Golden, B. Le Grand, and F. Rossi. “Mean Abso-

lute Percentage Error for regression models”. In: Neurocomputing 192 (2016),

38–48. issn: 0925-2312. doi: 10.1016/j.neucom.2015.12.114. url: http:

//dx.doi.org/10.1016/j.neucom.2015.12.114.

https://doi.org/10.1016/j.neucom.2015.12.114
http://dx.doi.org/10.1016/j.neucom.2015.12.114
http://dx.doi.org/10.1016/j.neucom.2015.12.114

	Abstract
	Introduction
	Problem definition
	Thesis Scope
	Thesis Outline

	Publications
	I Communication Protocols and Privacy Preservation for IoT
	Flight control of UAV flocks through fifth Generation Mobile Network
	Introduction
	Related Works
	Control of UAV Flocks and Performance Requirements
	Virtual Application Functions
	Interface Definition

	Conclusions

	A Self-organizing Network Protocol for LoWPAN Networks
	Introduction
	Related Works
	The Proposed Protocol
	Network Topology
	Presentation Frame
	Routing Process
	Lead Node Selection
	Network Node Connection
	Node Failure

	Case Study
	Conclusions

	Privacy Preservation enchantment for Delay Tolerant Networks on IoT Environment
	Introduction
	Related Works
	Introduction to PRoPHET protocol
	Innovation from natural context
	Privacy Preserving Delay Tolerant Network (PPDTN)
	Starting phase
	Evolution Function
	Ageing Function
	Matching Function

	Experimental Results
	Conclusions

	II Simulators and Performance Improvements for IoT
	A Framework for Realistic Simulation of multi-UAV Applications and Networks
	Introduction
	Related Work
	System Model
	Simulation Tools
	Gazebo
	ArduPilot and DroneKit
	Network Simulator 3

	The Integrated Simulation Environment
	Basic Components
	The GzUavChannel
	Timing and Synchronization
	Managing Simulations in a Distributed Environment

	Case-Study: Leader-Follower
	Performance Evaluation
	Conclusions

	Wale: libraries and packages sharing approach in Docker Containers
	Introduction
	Related works
	Background
	Virtualisation via Hypervisors
	The Docker Approach

	Docker Images and Dockerfiles
	The Wale approach
	Basic Working Principle
	The Wale Tool
	Example of a Wale file
	Images Deletion and Garbage Collection
	Isolation and Privacy of containers

	Case Study and Experimental Data
	Discussion

	Conclusions

	III Machine Learning Techniques applied to IoT
	Fabulos: a Domotic Assistant Agent for Interaction by means of Natural Language
	Introduction
	Related works
	Software Architecture
	Extracting Intentions from Utterances
	Case-Study
	Conclusions

	A Neural Network Model for the Solar Module Power Prediction
	Introduction
	Related Works
	Automated Assembly of Solar Modules
	Dataset Analysis
	Model
	Error Model Definition
	Achievements and Observations

	Improved Model
	Application
	Conclusions
	Acknowledgments

	Conclusions
	Bibliography

