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Abstract

This thesis addresses the problem of unsupervised domain adaptation (UDA)

for the object detection and action recognition. UDA is a machine learning

technique that aims to minimize the domain shift between a source domain

(with labeled data) and a target domain (with unlabeled data). The main

goal is to develop a model capable of adapting to different scenarios, elim-

inating the need for resource-intensive data labeling and retraining, while

maximizing the performance on the target domain.

We investigate the UDA problem and explore its applications in object detec-

tion and action recognition. For object detection, we introduce two datasets

and propose novel architectures based on adversarial learning, self-training,

and image-to-image translation to learn domain-invariant representations

that can generalize across single or multiple target domains.

For action recognition, we analyze the ability of state-of-the-art methods to

generalize across first-person and third-person actions, identifying the most

efficient techniques for detecting actions from both point of view.

We conclude by discussing the limitations and future directions of UDA re-

search in computer vision tasks. We have publicly released the code of the

proposed algorithms and the datasets, facilitating further research in this

area.
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Chapter 1

Introduction

1.1 Motivation

Object detection and action recognition are fundamental tasks in computer

vision that play a crucial role in numerous applications, ranging from video

surveillance [1] and autonomous driving [2] to augmented reality [3] and

human-computer interaction [4]. With the increasing computational capabili-

ties of modern devices, including wearable devices and smartphones equipped

with powerful processors, the integration of object detection and action recog-

nition algorithms into various applications has become more accessible. This

integration empowers users with enhanced features and enables the extrac-

tion of valuable insights from visual data [5], [6], [7], [8].

However, the progress made in object detection and action recognition

models is often hindered by the expensive and time-consuming nature of

manual data labeling. The labor-intensive process of annotating datasets

with bounding boxes for object detection or labeling frames for action recog-

nition demands substantial resources in terms of both financial costs and

time investments. To address this challenge, researchers have explored the

1
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(a) Training on synthetic images and testing on synthetic (left) and real (right) images.

The algorithm fails to detect the artwork in the real image, highlighting the challenge of

domain shift.

(b) Training on sunny images and testing on sunny (left) and foggy (right) images. The

detection results show incorrect bounding box predictions, pointing out the impact of

environmental variations on performance.

Figure 1.1: Qualitative examples of Faster RCNN. The blue box represents the

ground truth, while the red and green boxes indicate predictions. The red box

denotes wrong detection (object localization or classification), whereas the green

box represents correct detection.

use of tools that automatically generate large amounts of labeled synthetic

images [9], [10], [11]. These tools have the potential to significantly reduce

labeling costs. However, models trained on synthetic data often face a per-

formance gap when applied to real-world images (Figure 1.1a). This per-

formance degradation can be attributed to the domain shift between the

synthetic and real data, where models fail to generalize well due to the dis-

tribution disparities in real-world scenarios. This is primarily because super-
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vised learning approaches typically assume that the test data (target domain)

and the labeled training data (source domain) adhere to the same underlying

distribution. In reality, the test data often exhibits a distribution shift from

the training data, even if the images are not synthetic. The domain shift

occurs due to variations in operating conditions and environmental factors

(Figure 1.1b), posing a significant challenge for many deep learning methods.

The distribution difference between the source and target domains must be

addressed to achieve optimal performance in real-world scenarios.

To tackle these challenges, researchers have turned to domain adaptation

methods, a subset of transfer learning techniques [12] that offer a promising

solution. These approaches facilitate the transfer of knowledge from a source

domain to a closely related target domain. The key objective is aligning the

source and target distributions, thereby mitigating the need for extensive

labeled data in the target domain. Within this realm, Unsupervised Do-

main Adaptation (UDA) stands out as a specific subtype. UDA involves the

adaptation of a model from a labeled source domain to an unlabeled target

domain [13], [14].

This thesis aims to investigate the field of unsupervised domain adaptation

for object detection and action recognition tasks. The primary research ob-

jective is to address the limitations of manual data labeling, explore tech-

niques to bridge the performance gap between synthetic and real data, and

develop novel algorithms and methodologies for UDA in these tasks.

For the object detection task, we created the UDA-CH (Unsupervised Do-

main Adaptation on Cultural Heritage) dataset, which consists of 16 art-

works. This dataset includes both synthetic images labeled automatically

using a tool and real images captured with Hololens and manually labeled.

State-of-the-art methods have been evaluated on this dataset, and as result,
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we introduce our algorithm named DA-RetinaNet, which achieves superior

performance on the UDA-CH and Cityscapes datasets. Furthermore, we have

addressed the challenge of unsupervised domain adaptation in the presence

of multiple target domains by extending the UDA-CH dataset introducing

manually labeled images acquired by a GoPro, and developing the (ST)MDA-

RetinaNet algorithm.

For the action recognition task, we have studied state-of-the-art algorithms

and their behavior for both first-person and third-person actions. We con-

ducted a preliminary analysis emphasizing methodologies that yield better

recognition results for both types, aiming to enhance the performance and

applicability of action recognition algorithms in different scenarios.

1.2 Contributions

In summary, the main contributions of this thesis are:

1. We introduce the UDA-CH 1 dataset and its extension 2 to study, re-

spectively, the unsupervised domain adaptation and the unsupervised

multi-target domain adaptation for object detection.

2. We propose DA-RetinaNet 3 and (ST)MDA-RetinaNet 4 to address

the UDA problem for object detection in a single and multi-target

environment.

3. We conduct a preliminary study of UDA for action recognition focus-

ing on the methodologies that perform best for first-person and third-

1https://iplab.dmi.unict.it/EGO-CH-OBJ-UDA/
2https://iplab.dmi.unict.it/OBJ-MDA/
3https://github.com/fpv-iplab/DA-RetinaNet
4https://github.com/fpv-iplab/STMDA-RetinaNet
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person views. We analyze different approaches and presents insights

into their strengths and weaknesses.

This thesis draws on the research conducted and published/in progress during

the Ph.D., which includes the following works:

• Journal paper:

G. Pasqualino, A. Furnari, G.M. Farinella, “A Multi Camera Unsu-

pervised Domain Adaptation Pipeline for Object Detection in Cultural

Sites through Adversarial Learning and Self-Training”, Computer Vi-

sion and Image Understanding 2022 (CVIU) 2022

• Journal paper:

G. Pasqualino, A. Furnari, G. Signorello, G.M. Farinella, “An Unsu-

pervised Domain Adaptation Scheme for Single-Stage Artwork Recog-

nition in Cultural Sites”, Image and Vision Computing (IMAVIS), 2021

• Conference paper:

G. Pasqualino, A. Furnari, G.M. Farinella, “Unsupervised Multi-camera

Domain Adaptation for Object Detection in Cultural Sites”, Interna-

tional Conference on Image Analysis and Processing (ICIAP) 2022

• Conference paper:

G. Pasqualino, A. Furnari, G. M. Farinella, “Unsupervised Domain

Adaptation for Object Detection in Cultural Sites”, International Con-

ference on Pattern Recognition (ICPR), 2020

• In progress:

G. Pasqualino, “Unsupervised Domain Adaptation for Action Recog-

nition: A Preliminary Study from First and Third-Person Views”
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1.3 Outline

The remainder of the thesis is organized as follows. In Chapter 2 we present

an overview of the foundational concepts and techniques that form the back-

ground for the research. We cover the fundamental principles of Unsupervised

Domain Adaptation, Object Detection and Action Recognition providing in-

sights into the existing literature and state-of-the-art approaches. In Chap-

ter 3 we delve into the study of unsupervised domain adaptation techniques

for object detection tasks. We explore various methods aimed to aligning

the distributions of source and target domains and introduce the UDA-CH

dataset and the DA-RetinaNet algorithm. In Chapter 4, building upon the

concepts of unsupervised domain adaptation, we focus on addressing the

UDA problem involving multiple target domains presenting the OBJ-MDA

multi-camera dataset and the (ST)MDA-RetinaNet algorithm. In Chapter 5

we investigate unsupervised domain adaptation techniques for action recogni-

tion tasks. We analyze methodologies for first-person and third-person action

recognition, highlighting approaches that yield better recognition results for

both types of actions. Finally, in Chapter 6 we summarize the main findings

and contributions of the thesis. We discuss the limitations of the proposed

methods and identify potential areas for future research.



Chapter 2

Background

This chapter provides a comprehensive background on the fundamental con-

cepts and techniques that form the basis of the research conducted in this

thesis. The aim is to establish a solid understanding of the key elements

related to unsupervised domain adaptation techniques and their application

for object detection and action recognition. By exploring the existing liter-

ature and state-of-the-art approaches in these fields, we lay the groundwork

for the advanced methodologies and approaches discussed in later chapters.

2.1 Unsupervised Domain Adaptation

Unsupervised Domain Adaptation is a technique that aims to improve the

performance of a model in the presence of a domain shift between the training

(source) and test (target) data. UDA methods leverage additional unlabeled

data from the target domain to reduce the domain shift and improve the

model’s performance on the target test data.

Formally, the UDA problem can be defined as follows: Let S = {(xn
s , y

n
s )}Ns

n=1

be the set of Ns labeled images from the source domain Ds, where xn
s indi-

7
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cates the nth source image and yns represents its corresponding annotation.

Let T = {xn
t }Nt

n=1 denote the set of Nt unlabeled images from the target do-

main Dt, where xn
t represents the nth target image. The goal is to learn a

function f : X → Y that can accurately predict the labels yt for target do-

main samples xt using the labeled source domain data Ds and the unlabeled

target domain data Dt.

During the training procedure, the objective is to minimize the domain dis-

crepancy between the source and target domains while maximizing the clas-

sification accuracy on the source domain. The loss function for UDA can be

formulated as follows:

min
f

H(f,Ds) + λ · L(f,Ds, Dt) (2.1)

H(f,Ds) denotes the source domain classification loss term, which measures

the accuracy on the source domain; L(f,Ds, Dt) represents the domain dis-

crepancy loss term, which capture the difference between the source and

target domains; λ is the trade-off parameter that controls the adaptation

loss and the classification. The specific form of the loss functions and the

adaptation mechanisms may vary depending on the UDA method and the

specific problem being addressed. For action recognition tasks, the focus is

on minimizing the standard Cross Entropy loss to accurately classify actions

while for the object detection, the loss functions are designed to handle both

classification and regression tasks associated with object bounding boxes.

At test time, the performance of the adapted model is evaluated on the

target test set to assess its ability to generalize to unseen target domain

samples. The structure and pipeline of the training and test processes for a

standard algorithm and a UDA algorithm are compared in Figure 2.1. In an

unsupervised domain adaptation setting, the task-specific models are mod-

ified to use a source labeled dataset and a target unlabeled dataset during
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Figure 2.1: Comparison between the standard training and test pipeline and

the UDA pipeline for object detection. The blue box shows the standard training

procedure, where the object detector is trained on a source dataset and tested on

the target test set. The red box shows the UDA pipeline, which includes the use

of an unlabeled training target and the UDA components to reduce the domain

gap.

training. Additionally, one or multiple domain adaptation components are

integrated into the algorithms to reduce the domain shift.

Thanks to the ever-growing interest of the scientific community in this prob-

lem, several techniques have been developed. The authors of [15], [16], [17]

proposed to minimize divergence quantities that can be measured between

source and target distributions. Minimizing these quantities allows the model

to extract features that are invariant with respect to the two domain distri-

butions. In particular, the authors of [17] proposed a method that aims to

minimize the intra-class discrepancy and maximize the inter-class discrep-

ancy. The authors of [15] exploited the MMD metric [18] in a CNN to reduce

the distribution mismatch. The model consists of two branches, one for each

domain, whose weights are not shared but lead equally to extract similar
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features from both domains minimizing the following loss:

L = Ls + Lt + Lw + LMMD (2.2)

Ls and Lt are the standard classification losses, Lw and LMMD represent two

regularizers that allow to extract invariant features from the two distribu-

tions. The first represents the loss between the corresponding levels of the

two flows, the second encodes the MMD metric defined as:

MMD2({f s
j }, {f t

j}) =

∥∥∥∥∥
Ns∑
i=1

ϕ(f s
i )

N s
−

Nt∑
j=1

ϕ(f t
i )

N t

∥∥∥∥∥
2

(2.3)

Where ϕ(·) denotes feature mapping in a RKHS [19], f s
i and f t

i represent

respectively the features extracted from the last layers from the source and

target streams. The authors of [16] used the CORAL metrics [20] inside

a CNN to align the covariances of the source and target distributions by

minimizing:

L = LCLASS +
t∑

i=1

λiLCORAL (2.4)

where LCLASS is the classification loss, LCORAL = 1
4d2
||CS −CT ||2F is the loss

defined as the distance between the covariance of the source (CS) and target

domain (CT ), t is the number of layers with CORAL loss, λ is the weight

assigned to each of them.

Other works used the adversarial learning paradigm to align the distributions

of the features extracted by the models of the source and target domains. The

authors of [13] introduce a gradient reversal layer into a standard CNN to

align the distributions of source and target features using adversarial learn-

ing. Specifically, the model they propose includes two components. The first

one processes the input samples to solve the supervised task (e.g., classifi-

cation). The second one is devoted to discriminate if the features extracted
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from the input sample belong to the source or target domain. The network

is trained to minimize the supervised loss of the first component and the

discriminator loss of the second one. The gradient reversal layer, which im-

plements a minmax game similar to the one described in [21], is used to

invert the gradients of the discriminator multiplying them by −λ when they

are used to update the parameters of the first component. In this way, during

the backpropagation optimization pass the weights are update as follow:

θf ← θf − µ(
∂Li

y

∂θf
− λ

∂Li
d

∂θf
) (2.5)

θf ← θf − µ
∂Li

y

∂θf
+ µλ

∂Li
d

∂θf
(2.6)

where µ is the learning rate, Ly is the classification loss and Ld is the domain

classification loss. The authors of [14] propose a method based on two stages:

in the first stage a CNN is trained on the source dataset. In the second stage

the weights of the CNN are adapted to extract domain-invariant features.

During the test phase, the weights obtained during the second stage are used

to extract the features, whereas the classification layers are obtained from

the network trained on the source domain. The authors of [22] proposed

a clustering based method to generate pseudo labels for the target domain,

than the method minimizes the discrepancy of the gradients generated by

the source and target images.

Image-to-image translation: The approaches outlined in the preced-

ing section operate at the feature level. However, when the images of the

source and target domains are visually different (e.g., color, style), an ef-

fective strategy for mitigating the domain gap is to employ image-to-image

translation techniques [23], [24], [25]. These techniques address differences

at the pixel level, aiming to transform an image from the source domain

into one belonging to the target domain. Importantly, this transformation
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preserves content while adjusting style and color elements. When pairs of

images belonging to the source and target domains are available, a mapping

between the two domains can be learned exploiting a conditional adversar-

ial network [26]. The authors of [27] note that paired datasets are difficult

to obtain in practice and introduce a method that translates images from

a source domain X to a target domain Y in the absence of paired exam-

ples. As proposed in [27], the goal is to learn a function G : X −→ Y such

that the distribution of the transformed images G (X) is indistinguishable

from the distribution of Y . Since the translation between the two domains

should be consistent, an inverse mapping F : Y −→ X is introduced such

that F (G(X)) ≈ X. As discussed in previous works [28], [29], [30], the

algorithms just described can be used in combination with the previous de-

scribed domain adaptation techniques to deal with the domain gap. The

images belonging to the source domain can be translated into the target do-

main and subsequently used as training images. The resulting model can be

used directly on the target domain at test time. Vice versa, it is possible to

train the model on the source domain and translate the test images to the

source domain at inference time.

UDA in presence of multiple source or target domains: The do-

main adaptation problem typically considers a pair of source-target domains.

However, in real-world scenarios, there are multiple source and target do-

mains, necessitating algorithms to generalize across them. To address this,

researchers have explored a broader scope of the problem by examining dif-

ferent contexts. The first context involves unsupervised domain adaptation

with multiple labeled source domains and only one unlabeled target domain.

In [31], the authors proposed a method based on the gradient reversal layer,

discriminating between all Target−Sourcen pairs, where d = 0, ..., D and D
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is the number of source domains. Another approach presented in [32] com-

prises three components: a feature extractor, a moment matching module,

and final classifiers. These methods often require access to multiple labeled

source datasets, which may be available or easy to produce in certain cases.

The second context focuses on a more realistic scenario with a single source

domain and multiple target domains. Here, the presence of multiple target

domains simulates situations where different devices with distinct lenses and

image generation pipelines (IGP) produce diverse target domains. The au-

thors of [33] proposed a method based on an autoencoder which finds a latent

space which can capture domain invariant and domain dependent features

that can generalize over multiple target domains. The authors of [34] pre-

sented a method that extends the idea proposed by [14] replacing a binary

discrimination with a multi-class discrimination. The authors of [35] pro-

posed a method based on an iterative multi-teacher knowledge distillation

from multiple teachers to a common student.

2.2 Unsupervised Domain Adaptation for Ob-

ject Detection

Object detection represents one of the most significant challenges in computer

vision, which in recent years has found several applications in people’s daily

lives [36], [37], [38]. In this section we briefly describe the object detector

algorithms and give more details on the UDA state-of-the-art algorithms for

object detection.
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Figure 2.2: The figure illustrates the fundamental architectures of two-stage

and one-stage detectors for object detection. (a) Two-stage detectors employ a

region proposal network to generate region proposals, which are then passed to

the classifier and regressor for further processing. (b) One-stage detectors operate

by directly predicting bounding boxes from the information contained in input

images, without the need for an intermediate proposal generation step.

2.2.1 Object Detection

Deep learning-based object detection algorithms can be divided into two main

categories according to their architecture (Figure 2.2): the algorithms be-

longing to the “two-stage” category, whose main representative are Faster R-

CNN [39], Cascade R-CNN [40] and Mask-RCNN [41], and those belonging to

the “single-stage” category such as RetinaNet [42], SSD [43] and YOLO [44].

The former category is known for its high accuracy in object recognition and

classification, while the latter category prioritizes computational efficiency

over precision. Two-stage algorithms follow a two-step approach. In the

first stage, they propose potential bounding boxes that may contain objects.

Then, in the second stage, they perform classification and regression tasks

on these proposed bounding boxes. For example, Faster R-CNN consists of

a backbone network, a Region Proposal Network (RPN), ROI pooling, and

classification/regression modules. The backbone network extracts a feature

map from the input image, while the RPN generates region proposals using



CHAPTER 2. BACKGROUND 15

convolution and classification/regression operations. The ROI pooling layer

selects the corresponding regions on the feature map based on the generated

bounding boxes, and the classification/regression modules process these re-

gions to classify objects and refine the bounding boxes.

On the other hand, single-stage algorithms like RetinaNet utilize a back-

bone network, a feature pyramid network (FPN), and classification/regres-

sion subnetworks. The backbone network extracts multiple feature maps of

varying resolutions. The FPN combines these feature maps to create a fea-

ture pyramid, enabling the detection of objects at different scales. The clas-

sification/regression subnetworks operate on the feature pyramid to classify

objects and refine their bounding boxes. This allows single-stage algorithms

to perform both tasks in a single forward pass, simplifying the overall process.

2.2.2 State-of-the-Art UDA Methods for Object De-

tection

Due to the crucial role of object detectors, researchers have sought to address

the unsupervised domain adaptation challenge in the context of object detec-

tion. This entails introducing novel methodologies or adapting existing ones,

initially designed for classification tasks and discussed in the UDA section.

The authors of [45] present DA-Faster RCNN, a custom version of a Faster

RCNN [39] that includes two modules: the first one aligns the features of the

entire input (i.e., at the image level), the second module aligns the features

before they are used for classification and regression (i.e. at the instance

level). The authors of [29] propose to adapt source and target domains ex-

ploiting both high-and low-level features. The authors of [46] propose an

architecture similar to the one presented in [45], but they add more discrim-
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inators with a gradient reversal layer to the Faster-RCNN backbone. The

authors of [47] propose a framework to align the source and target domains

at the level of image regions extracted from the “region proposal network”

of a Faster-RCNN. This architecture has two main components: 1) region

mining, which extracts the regions of interest from the source and target

images, groups them and selects the most important regions containing the

objects; 2) the region level alignment, which learns to align the patches of

the reconstructed images starting from the features selected by the previous

module through adversarial learning. The authors of [30] presented an ap-

proach composed of two stages: 1) a domain diversification stage where the

distribution of the labeled data is diversified by generating various distinctive

domains shifted from the source domain using image to image techniques;

2) multi-domain-invariant representation learning, where adversarial learn-

ing is applied with a multi-domain discriminator to encourage feature to be

indistinguishable across domains. The authors of [48] proposed to translate

images from the source domain into the target domain using CycleGAN and

trained an object detector using a self-training procedure to create pseudo

label for the target dataset. The authors of [49] introduced in a SSD architec-

ture a novel self-training method called weak self-training (WST) combined

with the adversarial background score regularization (BSR) to prevent the

degeneration of the performance due to incorrect pseudo label obtained us-

ing a naive approach reducing the amount of false negative and positive

detections. The authors of [50] presented a framework which combines inter-

mediate domains to progressively adapt feature alignment for object detec-

tion and a weighted task loss which weights the samples in the intermediate

domain. The authors of [51] presented a method based on SSD which is

divided in three steps: in the first step the SSD detector is pretrained using
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the source images; in the second step the source images are converted to real

with CycleGAN; in the third step SSD is trained using the converted source

images, the target images and using the weak self-training method proposed

by [49]. The authors of [52] proposed a Implicit Instance-Invariant Network

(I3Net), a single stage object detector which adapt the source and the target

domain considering: 1) a strategy to assign large weights to those sample-

scarce categories and easy-to-adapt samples considering the intra-class and

intra-domain variation, 2) a module to suppress uninformative background

features boosting the foreground object matching, 3) a module that align

the category at different domain specific layers and regularize the average

prediction of different layer respect to the same category. The authors of [53]

introduced a generic approach based on an attention mechanism which al-

lows to detect the important regions of the feature map extracted from the

backbone on which adaptation should focus. The authors of [54] proposed a

method which works at image and instance level aligning the two distribu-

tions so that well-aligned and poor-aligned samples are adaptively weighted

based on the uncertainty of each sample. The authors of [55] presented

a feature alignment method based on Faster RCNN which consist of three

modules: 1) a global discriminator which align the feature extracted from

the backbone; 2) category wise discriminators which aligns the features of

each class belonging to the source and the target domains; 3) a memory

guided attention mechanism which aids the category-wise discriminators to

align category specific features between the two domains.
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2.3 Unsupervised Domain Adaptation for Ac-

tion Recognition

2.3.1 Action Recognition

Action recognition problem represents one of the most difficult task in Com-

puter Vision. Unlike other tasks such as classification, object detection and

segmentation, accurately classifying an action requires considering the space-

time coordinates and capturing correlations between features extracted from

consecutive frames. Additionally, actions can be analyzed from both a third-

person and first-person perspective, increasing the complexity of the problem.

Given the wide range of approaches that have been developed to tackle this

problem, action recognition algorithms can be categorized into the following

categories:

2D CNNs: These algorithms capture temporal information by aggregat-

ing frame-level features into a compact representation exploiting 2D convo-

lutions. One popular approach is to process each frame independently using

a 2D CNN and then employ techniques like pooling predictions across the

entire video or utilizing recurrent neural networks like LSTM to model tem-

poral dependencies ([56], [57], [58], [59]). These methods are computationally

efficient but may struggle with capturing long-term temporal dependencies

and modeling complex motion patterns.

3D CNNs: These algorithms leverage 3D convolutions to directly pro-

cess video frames and capture spatio-temporal information. By extending

2D convolutions to the temporal dimension, 3D CNNs create a hierarchical

representation of spatio-temporal data capturing both appearance and mo-

tion cues. These methods have shown promising results in action recognition

tasks ([60], [61], [62], [63], [64], [65], [66]). They can be computationally



CHAPTER 2. BACKGROUND 19

demanding and require a large amount of training data.

Transformers: Inspired by Transformers [67] and Vision Transformers

(ViT) [68], researchers have adapted these architectures for action recognition

tasks. Transformers excel in capturing long-range dependencies and modeling

interactions between different frames in the video. They utilize self-attention

mechanisms to effectively capture complex temporal relationships. These

methods, such as [69], [70], [71], [72], [73], have demonstrated competitive

performance in action recognition.

2.3.2 State-of-the-Art UDAMethods for Action Recog-

nition

The challenging problem of unsupervised domain adaptation for action recog-

nition has been addressed in recent years by an increasing number of works

due to the several possible applications it finds in real-world scenarios. The

authors of [74] presented a method that creates a subspace representation of

the source and target domains and applies SA ([75]) or GFK ([76]) domain

adaptation methods to perform sequence of adaptations for the video clips.

The authors of [77] introduced TA3N which utilizes a temporal relation mod-

ule to align the source and target domains and learn the temporal relation

across video sequences. The authors of [78] presented an Adversarial Bi-

partite Graph (ABG) framework. This framework learns a domain-agnostic

video classifier by treating the features extracted by the convolutional lay-

ers as a Bipartite Graph and uses the adversarial learning paradigm to align

class-conditional distributions. The authors of [79] proposed a self-supervised

predictive method for video domain adaptation. It aims to predict the clip

order using an adversarial loss. The authors of [80] presented CoMix which

combines temporal contrastive learning, background mixing and supervised
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contrastive learning through the use of pseudo target labels. The authors

of [81] presented MA2L-TD which performs multi-level alignments from low

level (frame), to middle levels (segment), and high level (video). The authors

of [82] proposed CO2A, an approach for UDA that utilizes a contrastive loss

for domain alignment and incorporates a classification and a contrastive head

to stabilize training. The authors of [83] presented a novel approach that

combines transformers with a novel alignment loss derived from the Informa-

tion Bottleneck principle ([84], [85]). The authors of [86] proposed TCoN,

a deep architecture integrating a crossdomain attention module in order to

focus on shared key frames between source and target domains. The au-

thors of [87] proposed MM-SADA which combines the adversarial learning

paradigm with a self-supervision alignment classifier and learns a temporal

correspondence between modalities across source and target features to en-

hance the feature generality in both domains. The authors of [88] presented

a framework that performs unsupervised domain adaptation in two parts. It

includes a spatio-temporal contrastive learning framework for self-supervised

learning and a video-based contrastive distance metric to mitigate domain

shift. The authors of [89] introduced a multimodal framework based on con-

trastive learning which jointly adapts cross-modal and cross-domain feature

between source and target domains. The authors of [90] presented an audio

adaptive encoder that, starting from the adaptation of the sound of the ac-

tions, guides the visual features to be invariant respect the source and target

domains. The authors of [91] presented RNA-Net which utilizes RGB and

audio information simultaneously and employs a novel feature-level loss to

balance the contributions of the two modalities. The authors [92] presented

a multi-modal methods that shares the knowledge between modalities inte-

grating missing information of a specific modality exploiting the adversarial
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learning paradigm and the complementary and spatial consensus modules to

align the source and target domain.



Chapter 3

Unsupervised Domain

Adaptation for Object

Detection

3.1 Introduction

In this chapter, we investigate the use of unsupervised domain adaptation

techniques for artwork detection. Specifically, we consider a scenario in which

large quantities of labeled synthetic images are available, whereas only un-

labeled real images can be used at training time. The synthetic images can

be easily obtained starting from a 3D model of the cultural site acquired

with a 3D scanner such as Matterport 1 and using the tool proposed in [9]

to automatically generate the labeled data. The real unlabeled images can

be easily collected visiting the cultural site acquiring videos with a wearable

camera. Note that, since no manual labeling is required for the real im-

ages in the unsupervised settings, this procedure has a low cost. We hence

1https://matterport.com/
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aim to train the object detection models using labeled synthetic images and

real unlabeled images. To the best of our knowledge, there are not publicly

available datasets to study domain adaptation for artwork detection in cul-

tural sites. Therefore we collect and publicly release a suitable one which we

name UDA-CH (Unsupervised Domain Adaptation on Cultural Heritage).

We hence study the main unsupervised domain adaptation techniques for

object detection on UDA-CH: 1) image-to-image translation and 2) feature

alignment. We compare the performance of two popular object detection

approaches, Faster R-CNN [39] and RetinaNet [42]. Since in our study Reti-

naNet obtained results more robust to the domain gap than Faster-RCNN,

we propose a novel approach which combines feature alignment techniques

based on adversarial learning [13] for unsupervised domain adaptation with

the RetinaNet architecture. Our experiments show that the proposed ap-

proach greatly outperforms prior art. When combined with image to image

translation, our method achieves a mAP of 58.01% on real data without

seeing a single labeled real images at training time. To better demonstrate

the effectiveness of the proposed method, we have also tested the general-

ization of the approach in urban scenario exploiting the popular Cityscapes

dataset [93], [94].

3.2 Methods

We compare several approaches to unsupervised domain adaptation for ob-

ject detection. Specifically we considered the following: 1) a baseline object

detector without adaptation, 2) domain adaptation through image-to-image

translation, 3) domain adaptation through feature alignment, 4) the proposed

method based on RetinaNet and feature alignment and 5) approaches com-
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Figure 3.1: We used 3 different pipelines: (a) training and testing on the synthetic

domain, (b) training and testing on the real domain, (c) training using synthetic

images and testing on real images.

bining feature alignment and image-to-image translation. In the following

section, we give details on all the compared approaches.

3.2.1 Baseline approaches without adaptation

To assess performance in the absence of domain shift, we train and test

Faster RCNN and RetinaNet on the same domain (either synthetic or real

images), as illustrated in Figure 3.1(a) and Figure 3.1(b). We also consider a

model trained on synthetic images and tested directly on real test images, as

illustrated in Figure 3.1(c). These methods allow to assess the gap between

the two domains.
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Figure 3.2: (a) Pipeline used to train models on synthetic images transformed

to real with test performed on real images. (b) Pipeline used to train models on

synthetic images with test performed on real images transformed to synthetic.

3.2.2 Domain adaptation through image-to-image trans-

lation

Transforming images from synthetic to real and vice versa is a common way

to reduce the domain gap. In particular, we use CycleGAN [27] to transform

images from one domain to another. We compare two approaches: 1) trans-

lating synthetic images to real, training Faster RCNN and RetinaNet on the

transformed images and testing the two detectors with real images. This

approach is illustrated in Figure 3.2(a); 2) translating real test images to

synthetic, testing the two models that were previously trained on synthetic

images as illustrated in Figure 3.2(b).

3.2.3 Domain adaptation through feature alignment

We consider DA-Faster-RCNN [45] and Strong-Weak [29] and compare their

results with our method DA-RetinaNet described in the next subsection. All

these methods use synthetic labeled images and unlabeled real images for

training as shown in Figure 3.3.
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Figure 3.3: Pipeline used to train models based on feature alignment.
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Figure 3.4: Architecture of the proposed DA-RetinaNet.

3.2.4 Proposed Method: DA-RetinaNet

The proposed method is based on RetinaNet architecture [42] and it is illus-

trated in Figure 3.4. At each level of the feature pyramid map (C3, C4 and

C5) in the ResNet backbone, we add a discriminator (D3, D4, D5) with a Gra-

dient Reversal Layer. The three discriminators have different architectures:

D3 has 3 convolutional layers with a kernel size of 1 and ReLU as activation

function; D4 has 3 convolutional layers with kernel size of 3 followed by batch

normalization, ReLU and Dropout. At the end of the last convolutional layer

there is a fully connected layer; D5 has 3 convolutional layers with kernel size
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Figure 3.5: Pipeline used to combine feature alignment and image to image

translation from synthetic to real techniques.

of 3 followed by batch normalization, ReLU and Dropout. After the convo-

lutional layer there are 2 fully connected layers. Our idea follows [13], thus

we train our model to minimize the cost function:

L = Lclass + Lbox − λ(LD3 + LD4 + LD5) (3.1)

where Lclass is the sum of the losses of each classification subnet module,

Lbox is the sum of the losses of each regression subnet module. Their sum

represent the standard RetinaNet loss. LD3, LD4, LD5 are the losses of each

discriminator module and each of them is given by LDi
= 1

2
(LDs,i

+ LDt,i
)

where LDs,i
and LDt,i

are respectively the losses computed by the discrimina-

tors when receive in input respectively synthetic and real images and defined

using the Focal loss [42]. λ is the hyperparameter that balances RetinaNet

and discriminators losses.

3.2.5 Domain adaptation through feature alignment

and image to image translation

We combine the feature alignment techniques presented in Section 3.2.3 and

Section 3.2.4 with image-to-image translation. This approach is similar to

CyCADA proposed in [28] with the difference that we consider state-of-art

feature alignment methods to perform the adaptation. We combine these
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Figure 3.6: Pipeline used to combine feature alignment and image to image

translation from real to synthetic techniques.

techniques in two ways: 1) transforming synthetic labeled images to real, then

training feature-alignment-based architectures using transformed labeled and

real unlabeled images (Figure 3.5); 2) transforming real unlabeled images to

synthetic, then training feature alignment based architecture using synthetic

labeled and transformed unlabeled images and testing on real images trans-

formed to synthetic (Figure 3.6).

3.3 Experimental Settings and Results

This section presents the proposed dataset, reports and analyze the results

of the methods presented in the previous section and discusses the computa-

tional resources required to train all the models.

3.3.1 Dataset

The proposed dataset [95] contains 16 objects that cover a variety of artworks

which can be found in a museum like sculptures, paintings and books. Specif-

ically, the dataset has been collected inside the cultural site “Galleria Re-

gionale di Palazzo Bellomo” located in Siracusa, Italy2. We generated 75244

synthetic labeled images, we have used a 3D model of the museum acquired

2http://www.regione.sicilia.it/beniculturali/palazzobellomo/

http://www.regione.sicilia.it/beniculturali/palazzobellomo/
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Figure 3.7: Sample synthetic images of the 16 artworks of our dataset.

Figure 3.8: Sample real images of the 16 artworks of our dataset.

using Matterport3, of the 16 artworks using the public tool proposed by the

authors of [9] (see Figure 3.7). The tool proposed in [9] allows generate au-

tomatic labeled synthetic images, simulating a visitor who walks around the

site while observing the artworks. Each image acquired during the simulation

is associated to a semantic mask which allows to obtain bounding box anno-

3https://matterport.com/
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tations for each image. Real images of the same 16 artworks are taken from

the EGO-CH dataset proposed in [96] (see Figure 3.8), which contains videos

of 70 subjects who visited two cultural sites which have been captured using

a Microsoft HoloLens device. EGO-CH includes 176999 images manually an-

notated with bounding boxes. For the experiments, a subset of EGO-CH was

taken into account. In particular, we considered 2190 images which contain

the 16 artworks present in the synthetic dataset. To perform the experi-

ments, we split both sets of synthetic and real images to training and a test

set. We used 51284 synthetic and 1502 real images as training set and 23960

synthetic and 688 images as test set. The proposed dataset is available at the

following URL: https://iplab.dmi.unict.it/EGO-CH-OBJ-UDA/.

3.3.2 Experimental Settings

We trained all the object detectors for 62K iterations starting from Ima-

geNet [97] pre-trained weights. We used Faster-RCNN and RetinaNet De-

tectron2 [98] architectures4 with ResNet101 [99] as backbone. The batch size

has been set to 4 and the learning rate to 0.0002 for the first 30K iterations

and multiplied by 0.1 for the remaining iterations. CycleGAN was trained for

60 epochs using the default parameters. For DA-Faster RCNN5 and Strong-

Weak6 we used the settings proposed by the authors in their respective works

[45] and [29]. DA-RetinaNet7 was implemented using Detectron2 and it was

trained with a batch size of 6 and learning rate of 0.0002 for the first 30K

iterations. Also in this case, the learning rate has been then multiplied by

4https://github.com/facebookresearch/detectron2
5https://github.com/krumo/Detectron-DA-Faster-RCNN
6https://github.com/VisionLearningGroup/DA_Detection
7https://github.com/fpv-iplab/DA-RetinaNet

https://iplab.dmi.unict.it/EGO-CH-OBJ-UDA/
https://github.com/facebookresearch/detectron2
https://github.com/krumo/Detectron-DA-Faster-RCNN
https://github.com/VisionLearningGroup/DA_Detection
https://github.com/fpv-iplab/DA-RetinaNet
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Table 3.1: Performance of Faster RCNN and RetinaNet trained and tested on

images from the same domain.

mAP

Model Synthetic Real

Faster RCNN 93.08% 92.04%

RetinaNet 91.67% 92.15%

Table 3.2: Performance of Faster RCNN and RetinaNet trained on synthetic

images for a different amounts of iterations and tested on real images.

Training Iterations

Model 6K 12K 22K 32K 42K 52K 62K

F. RCNN 2.27% 9.67% 5.79% 3.58% 3.33% 3.81% 3.62%

RetinaNet 9.83% 14.44% 13.22% 12.31% 12.09% 12.44% 11.97%

0.1 for the remaining iterations.

3.3.3 Baseline Results

Table 3.1 reports the results of the two models when they are trained and

tested on the same domain. As can be noted, when images are sampled

from the same distribution, these algorithms achieve good performance. Ta-

ble 3.2 shows the performance achieved by Faster RCNN and RetinaNet when

trained on synthetic images and tested on real images. The results highlight

that models trained for few iterations generalize better than models trained

for more iterations. RetinaNet is in general more robust to domain shift than

Faster RCNN. In particular, RetinaNet trained for 12K iterations achieves

an mAP of 14.44% vs 9.67% obtained by Faster RCNN and 11.97% vs 3.62%
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Table 3.3: Results obtained transforming real images to synthetic at test time.

The models have been trained on synthetic images. N.A. stands for No Adaptation.

Training epochs for CycleGAN

Model (iter) N.A. 10 20 30 40 50 60

F. RCNN (62K) 3.62% 25.16% 25.49% 25.51% 26.68% 27.65% 28.25%

RetinaNet (62K) 11.97% 27.30% 32.14% 34.15% 32.66% 32.79% 32.82%

F. RCNN (12K) 9.67% 29.93% 32.84% 33.95% 31.45% 34.19% 31.58%

RetinaNet (12K) 14.44% 34.51% 35.45% 34.84% 35.34% 35.76% 35.74%

Table 3.4: Results obtained training the models on synthetic images transformed

to real and tested on real images. N.A. stands for No Adaptation.

Training epochs for CycleGAN

Model N.A. 10 20 30 40 50 60

F. RCNN 9.67% 18.76% 20.92% 21.22% 23.17% 24.45% 26.03%

RetinaNet 14.44% 40.13% 44.29% 46.05% 47.89% 49.96% 55.54%

considering 62K iterations. This suggests that training for more iterations

both models increases the domain gap between the two distributions because

the models learn to extract features specific to the source domain that do

not generalize to the target domain. It is worth noting that, even the best

RetinaNet model (14.44%) exhibits a drastic drop in performances if com-

pared with the results of Table 3.1 (92.15%). This is due to the domain shift

between synthetic images used for training and real images used for test.

3.3.4 Image-to-Image translation Results

Table 3.3 shows the results of Faster RCNN and RetinaNet tested on real

images transformed to synthetic using CycleGAN. We analyzed the perfor-
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mances of both models trained for 12K and 62K iterations to explore the

impact of overfitting. As shown in the Table 3.3, CycleGAN improves the

performance of both models. RetinaNet performs better than Faster RCNN.

Indeed Faster RCNN achieves performance similar to RetinaNet only when

tested on images transformed using a CycleGAN model trained for 50 epochs.

Table 3.4 reports the results of both models trained using synthetic images

transformed to real. In this case, the performance of Faster RCNN (26.03%)

are lower than the previous method which uses images translated from real

to synthetic (28.25%). RetinaNet increases its performance by ∼20% from

35.76% to 55.54%. Even in this case, the results seem to confirm that Reti-

naNet is more robust to domain shift. While training CycleGAN for more

epochs may allow for minor improvements, it should be noted that training

CycleGAN for 60 epochs required about 61 days with a single NVIDIA®

Tesla® K80. A detailed discussion on the training times of all methods is

provided in Section 3.3.8. Figure 3.9 shows qualitative example obtained

translating images from real to synthetic and vice versa. The first row of

Figure 3.9 (a) shows an example of successful translation. In the second row

the image is not correctly transformed due to light reflection, whereas in the

third row the texture is destroyed during the transformation. First two rows

of Figure 3.9 (b) show an example of successful translation while the last

rows show a bad translation example where the background contains many

artifacts.

3.3.5 Feature Alignment and Image-to-Image transla-

tion Results

Table 3.5 reports the mAP of the methods based only on feature alignment

and combined with CycleGAN. As can be seen from Table 3.5, the proposed
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(a) Transformation from real to synthetic. (b) Transformation from synthetic to real.

Figure 3.9: Qualitative CycleGAN results. We show the source domain (real

synthetic), the transformed image, and a reference image for visual comparison.

Table 3.5: Results of DA-Faster RCNN, Strong-Weak and the proposed DA-

RetinaNet combined with two different image-to-image translation approaches.

image-to-image translation

Model None Real2Syn Syn2Real

DA-Faster RCNN 12.94% 19.88% 33.20%

Strong-Weak 25.12% 33.33% 47.70%

DA-RetinaNet 31.04% 37.49% 58.01%

DA-RetinaNet achieves better performances when compared to other meth-

ods. Without image-to-image translation, DA-RetinaNet obtains an mAP

of 31.04% which is an increase in performance of about 6% as compared to

Strong-Weak (25.12%). The improvement is about 11% when the models

are combined with CycleGAN (58.01% vs 47.70%). Furthermore, it is worth

noting that all models benefit from a performance improvement which varies

between 21% and 27% when combined with CycleGAN.
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Table 3.6: Ablation study about the impact of each discriminator Di.

Model D3 D4 D5 mAP

RetinaNet (62K) 11.97%

RetinaNet (12K) 14.44%

DA-RetinaNet D 15.84%

DA-RetinaNet D 16.38%

DA-RetinaNet D 28.61%

DA-RetinaNet D D 30.52%

DA-RetinaNet D D D 31.04%

3.3.6 Ablation Study

Table 3.6 reports the results of DA-RetinaNet considering one, two or three

Discriminators Di without any image-to-image translation technique. As

shown in the table, aligning features using the paradigm of adversarial learn-

ing improves in each case the performance of standard RetinaNet. D3, the

discriminator that aligns low level features, doubles the performance with

respect to the standard RetinaNet model achieving a mAP of 28.61% vs

14.44%. The use of D4 and D5 allows to achieve similar performance (16.38%

and 15.84%) improving the baseline results by about 1.5%. This is proba-

bly due to the design of the RetinaNet architecture. Indeed between the

feature map C4 and C5 there are few convolutive layers. Combining the

two discriminators which achieve the best performance allows to improve the

mAP of about 2% (28.61% vs 30.52%). The best model is obtained by using

all the discriminators (31.04%), which is our suggested design, as shown in

Figure 3.4
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Table 3.7: Summary table of the analyzed methods.

Object Detector Adaptation mAP

Faster RCNN None 9.67%

RetinaNet None 14.44%

Faster RCNN Real2Syn (Test set) 34.19%

RetinaNet Real2Syn (Test set) 35.76%

Faster RCNN Syn2Real (labeled Training set) 26.03%

RetinaNet Syn2Real (labeled Training set) 55.54%

DA-Faster RCNN Feat.Align. 12.94%

DA-Faster RCNN
Feat.Align.+Real2Syn

(Test set and unlabeled Training set) 19.88%

DA-Faster RCNN
Feat.Align.+Syn2Real
(labeled Training set) 33.20%

Strong-Weak Feat.Align. 25.12%

Strong-Weak
Feat.Align.+Real2Syn

(Test set and unlabeled Training set) 33.33%

Strong-Weak
Feat.Align.+Syn2Real
(labeled Training set) 47.70%

DA-RetinaNet Feat.Align. 31.04%

DA-RetinaNet
Feat.Align.+Real2Syn

(Test set and unlabeled Training set) 37.49%

DA-RetinaNet
Feat.Align.+Syn2Real
(labeled Training set) 58.01%

3.3.7 Summary table and Qualitative Results

Table 3.7 summarizes all the performances of the analyzed methods with

respect to the considered adaptation techniques. The table confirms that

the proposed DA-RetinaNet achieves better performance than the compared

methods. In particular, considering only feature alignment techniques, our

architecture increases performance by about 5% when compared to Faster
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Faster RCNN
DA-Faster

RCNN
RetinaNet Strong-Weak DA-RetinaNet

Figure 3.10: Qualitative results of baseline and feature alignment approaches.

RCNN with CycleGAN, and by 6% compared to Strong-Weak. Again, our

method increases the performance of a standard RetinaNet with CycleGAN

by about 2.5% (55.54% vs 58.01%). Figure 3.10 shows qualitative result of

the baseline and the models based on feature alignment. Faster RCNN does

not detect any object and in some cases its predictions are false positive. DA-

Faster RCNN and RetinaNet correctly detect objects in the “easy” examples

(first two rows), with some misclassification problems when there are more

objects and occlusions (last three rows). Strong-Weak and DA-RetinaNet

are more accurate in detection but they still produce some false positive and

false negative predictions. Figure 3.11 reports the qualitative results of the

previous five methods combined with CycleGAN to translate images from
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Faster RCNN

+ CycleGAN

DA-Faster

RCNN +

CycleGAN

Strong-Weak

+ CycleGAN

RetinaNet +

CycleGAN

DA-RetinaNet

+ CycleGAN

Figure 3.11: Qualitative results of the baseline and feature alignment combined

with CycleGAN.

synthetic to real. Faster RCNN and DA-Faster RCNN have similar results

to DA-RetinaNet but they have much more false positive detections. Strong-

Weak and RetinaNet combined with CycleGAN correctly detect the objects

of the first three rows. Strong-Weak is less accurate than RetinaNet but

has less false positive detections. DA-RetinaNet combined with CycleGAN

perfectly detects artworks in the first four rows with only a misclassification

in the fourth rows behind the statue. As can be noted, even these models

are not able to detect object in the last two rows. Possible reasons are: 1)

bad translation results from synthetic to real, 2) few synthetic object are
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Table 3.8: Training times required by the models.

Model Hours (Days)

RetinaNet (12K iterations) ∼ 10 (∼ 0.5)

RetinaNet (62K iterations) ∼ 65 (∼ 3)

DA-RetinaNet ∼ 67 (∼ 3)

Faster RCNN (62K iterations) ∼ 131 (∼ 5.5)

DA-Faster RCNN ∼ 142 (∼ 6)

Strong-Weak ∼ 147 (∼ 6)

CycleGAN ∼ 1470 (∼ 61)

CycleGAN + RetinaNet ∼ 1535 (∼ 64)

CycleGAN + DA-RetinaNet ∼ 1537 (∼ 64)

CycleGAN + Faster RCNN ∼ 1601 (∼ 66)

CycleGAN + DA-Faster RCNN ∼ 1612 (∼ 67)

CycleGAN + Strong-Weak ∼ 1617 (∼ 67)

not similar to their real counterpart, 3) some synthetic objects are similar to

each other (e.g. some books).

3.3.8 Analysis of Computational Resources

Table 3.8 shows the training times required by the algorithms using a single

NVIDIA® Tesla® K80. We use the same batch size for each object detector

to evaluate the training times. Training CycleGAN for 60 epochs required 61

days in the considered settings. Methods based on feature alignment require

from 3 to 6 days depending on the considered object detector. In particular,

DA-Faster RCNN, Strong-Weak and DA-RetinaNet have only a small com-

putational overhead given by the presence of the discriminators. However,
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even if these methods required less time when compared to CycleGAN, they

have limited performance when compared to their counterparts who make

use of image-to-image translation (e.g. DA-RetinaNet: 31.04 % vs 58.01 %,

Strong-Weak: 25.12 % vs 47.70 %, DA-Faster RCNN: 12.94 % vs 33.20 %).

We argue that more attention should be devoted to such approaches in order

to minimize training times.

3.3.9 Results on Cityscapes Dataset

To better asses the performance of the proposed method and to understand

generalization capability over datasets, we have performed experiments on

the Cityscapes dataset [93] [94]. To this aim, we trained RetinaNet and DA-

RetinaNet for 50K iteration with a learning rate of 0.0002, batch size of 4

and starting from weights pre-trained on ImageNet. Following [29], we used

Cityscapes [93] as source domain and Foggy-Cityscapes [94] as target domain.

Both dataset have 2975 images in the training set. We reported results on

the 500 images of the validation set. Table 3.9 reports the results obtained

by standard object detector architectures and domain adaptation methods

based on feature alignment. The table highlights that standard RetinaNet

achieves better performance than Strong-Weak and Diversify and Match by

about 6%. The proposed DA-RetinaNet increases performance by 4%, 10%,

and 24% if compared respectively with standard RetinaNet, Strong Weak

and Diversify and Match, and DA-Faster RCNN. However there is still a gap

between the best results obtained by the proposed architecture and the result

of the Oracle which is obtained training and testing RetinaNet on the Foggy

Cityscapes dataset, which suggests that there is still room for improvement.
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Table 3.9: Results adaptation between Cityscapes and Foggy Cityscapes dataset.

The performance scores of the methods marked with the “*” symbol are reported

from the authors of their respective papers.

Model mAP

Faster RCNN* [29] 20.30%

DA-Faster RCNN* [45] 27.60%

Strong-Weak* [29] 34.30%

Diversify and Match* [30] 34.60%

RetinaNet 40.25%

DA-RetinaNet 44.87%

Oracle 53.46%

3.4 Conclusion

We considered the problem of Unsupervised Domain Adaptation for object

detection in cultural site. To conduct our study, we created a new dataset

consisting of 75244 synthetic images and 2190 real images of 16 artworks,

which we publicly release. To better assess generalization of the compared

approaches, we have also performed experiment with a dataset related to ur-

ban environment. Experiments showed that the proposed DA-RetinaNet

method achieves better performance compared to DA-Faster RCNN and

Strong-Weak. At the same time, the results obtained by these methods

based on feature alignment achieved very poor performance if compared

to their counterparts combined with image-to-image translation techniques.

DA-RetinaNet performed better than others also when combined with Cy-

cleGAN. However, using CycleGAN with this dataset required a high com-

putational training cost. We hope that the proposed dataset will encourage
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research on this challenging topic and that the proposed DA-RetinaNet will

serve as a strong baseline for future works.



Chapter 4

Unsupervised Multi-Target

Domain Adaptation for Object

Detection

4.1 Introduction

In this chapter, we investigate the unsupervised multi-target domain adap-

tation problem. In fact, in real-workly scenarios, object detection algorithms

often need to be deployed to different devices, which are generally equipped

with different cameras. This constraint further reduces the generalization

ability of the object detection methods in real scenarios. Figure 4.1 reports

some qualitative results of a standard object detector trained and tested on

different domains of images of a cultural sites: a set of synthetic images, real

images acquired with an HoloLens device, and a set of images collected with

a GoPro. As can be noted, the detection of the artworks works perfectly only

if the the training and test set belong to the same data distribution.

Domain adaptation techniques [13] can be used to reduce the domain dif-

43
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Figure 4.1: Qualitative results of a standard object detector trained and tested

on different domains. Blue bounding boxes represent the ground truth, green boxes

represent correct detections, whereas red boxes indicate wrong detections (either

object localization or classification). The model was trained using the domain

indicated in the rows and tested using the domain reported in the columns.

ference between source and target sets. However, in a real scenario, the

algorithm should also generalize to images collected using multiple cameras

as in the example in Figure 4.1, which may present subtle characteristics

capable of affecting model performance. We propose to tackle this problem

as a multi-target unsupervised domain adaptation task in which there is a

labeled source domain (the synthetic data) and more than one unlabeled

target domains (the target images acquired using different cameras). We

note that, since target unlabeled images can be acquired with a little effort,

the task setup involves a small additional overhead as compared to single-
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target domain adaptation. We hence investigate whether the presence of

more than one target domains can assist the domain adaptation process in

the considered settings. To analyze the problem, we introduce a new dataset

of both synthetic and real images collected in a cultural site and suitable

to study unsupervised multi-camera domain adaptation. We perform ex-

periments to assess the ability of current domain adaptation approaches to

generalize across multiple cameras. We hence investigate a generalization of

current state-of-the-art methods which is shown to outperform current meth-

ods. The proposed method outperforms the results of current state-of-the-art

methods by up to +23% mAP. To provide further evidence of the effective-

ness of the proposed technique, we conducted an evaluation in an urban

environment using the highly regarded Cityscapes dataset [93]. Specifically,

we examined the applicability of our approach in challenging scenarios such

as foggy [94] and rainy conditions [100].

4.2 Dataset

To study the problem, we created a dataset1 that contains images of 16 art-

works included in the cultural site “Galleria Regionale di Palazzo Bellomo2”.

The collection covers different types of artworks, as well as books, sculptures

and paintings. We considered three domains: i) synthetic images generated

from a 3D model of the cultural site and automatically labeled during the

generation process, ii) real images collected by 10 visitors with a HoloLens

device and manually labeled, iii) real images collected by the same visitors

with a GoPro and manually labeled. Figure 4.2 shows some examples of

images belonging to the three domains. As can be noted, synthetic images

1The dataset is available at https://iplab.dmi.unict.it/OBJ-MDA
2http://www.regione.sicilia.it/beniculturali/palazzobellomo/

https://iplab.dmi.unict.it/OBJ-MDA
http://www.regione.sicilia.it/beniculturali/palazzobellomo/
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(a) Synthetic images.

(b) Images acquired with HoloLens.

(c) Images acquired with GoPro.

Figure 4.2: Example of labeled images of the 16 artworks with respect to the three con-

sidered domains: (a) Synthetic images, (b) images acquired with HoloLens, (c) images

acquired with GoPro.

differ from the real images in style, shapes of the 3D objects (e.g., observe

the statues of Figure 4.2) and field of view. Similarly, real images acquired

with two the different devices differ only in style and field of view. The three

sets of images have been collected as detailed in the following:

• Synthetic labeled images (used as source domain): these images have
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Table 4.1: Statistics of the proposed dataset for unsupervised multi-target do-

main adaptation. The average occupied area (last column) is the average percent-

age of the image occupied by the bounding boxes of the considered object class.

Synthetic Domain (Source) HoloLens Domain (Target) GoPro Domain (Target)
Total object instances

for each class

Average

occupied area

Object Instances Training Test Training Test Training Test

Annunciazione 1301 605 191 69 211 74 2451 42.87%

Libro d’Ore miniato 1628 722 105 30 146 42 2673 8.02%

Lastra tombale

di Giovanni Cabastida
2313 1181 200 100 247 114 4155 24.58%

Madonna del Cardillo 2345 1264 106 40 166 66 3987 9.74%

Disputa di San Tommaso 2202 965 100 46 155 67 3535 28.17%

Traslazione della Santa Casa 1904 964 161 46 225 71 3371 22.24%

Madonna col Bambino 2135 1044 119 47 161 46 3552 21.93%

L’immacolata Concezione

e Dio Padre in Gloria
2557 1139 77 39 100 54 3966 35.70%

Adorazione dei Magi 1517 478 64 36 69 39 2203 30.35%

Sant’Elena e Costantino e Madonna

con Bambino in gloria fra angeli
3285 1031 94 44 153 61 4668 33.72%

Taccuini di disegni 1617 513 59 33 75 39 2336 22.34%

Martirio di S. Lucia 3567 2353 106 36 184 45 6291 22.55%

Volto di Cristo 990 519 25 26 50 36 1646 11.74%

Dipinti di Sant’Orsola 2721 1897 83 69 125 86 4981 30.56%

Immacolata e i santi Chiara, Francesco,

Antonio, Abate, Barbara e Maria Maddalena
3824 2424 104 69 187 89 6697 32.36%

Storia della Genesi 927 375 55 14 57 15 1443 22.79%

Total object instances for each split 34833 17474 1649 744 2311 944

been generated using the tool proposed by [9]. The tool allows to an-

notate in 3D the position of artworks in the 3D model of a cultural

site and simulates an agent navigating the environment while acquir-

ing egocentric images of the observed artworks. The acquired images

are automatically labeled by projecting the 3D bounding boxes of the

objects onto the generated 2D images. This set contains 75244 images

divided in 51284 training images and 23960 test images.

• Target images acquired using a HoloLens: this set of data has been

sampled from the work of [96] where data has been manually annotated

drawing a bounding box around each of the 16 object to match the same

artworks present in the synthetic set. This set contains 2190 images

divided in 1502 for the training and 688 for the test;
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• Target images acquired using a Gopro: the dataset was created sim-

ilarly to the previous one HoloLens. The images have been collected

by the same visitor which have visited the site wearing both HoloLens

and GoPro wearable cameras. This set contains a total of 2707 images

splitted into 1911 for the training and 796 for the test.

Table 4.1 shows the distribution of the object instances in the proposed

dataset. As can be noted, the HoloLens and GoPro domains have a number

of object instances less than ten times smaller than the synthetic domain.

The table also highlights that the proposed dataset is challenging for domain

adatation for object detection due to the average size of each object. Indeed,

the biggest object present in the dataset occupies only the 42.87% of the

images’ area while the smallest occupies 8.02% of the frame.

4.3 Methods

In this section, we discuss the compared methods and present the proposed

one setting the number of the target domains to 2.

4.3.1 Baselines without domain adaptation

We analyze the behaviour of two state-of-the-art object detectors: Reti-

naNet [42] and Faster RCNN [39]. We train and test both detectors on the

target domains to produce “Oracle results” and assess the performance drop

observed when the algorithms are trained on synthetic images and tested on

the real images of the target domains.
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4.3.2 Domain adaptation based on feature alignment

State-of-the-art domain adaptation methods for object detectors commonly

consider only one source domain and one target domain. To study whether

these state-of-the-art methods can be used to tackle multi-camera domain

adaptation, we consider a naive approach which merges the two target do-

mains into a single one. In particular, we considered the following unsuper-

vised domain adaptation methods for object detection: DA-Faster RCNN [45],

Strong Weak [29], DA-RetinaNet [101] and CDSSL [48].

4.3.3 Domain adaptation through feature alignment

and image to image translation

Feature alignment methods aim to reduce the difference between source and

target domains at the feature level without taking into account the difference

at pixel level (like style, color, shape etc.) which are present between the

source and targets domains. For this reason, we combine feature alignment

methods with image to image translation methods to reduce the gap also

at the pixel level. For the image to image translation task we used the

CycleGAN alorithm [27] to translate synthetic images to real.

4.3.4 Proposed Method

The training of the proposed method comprises three stages that will be

discussed in order of execution in the following sections. Each of them con-

tributes to improving the performance of the object detector and works to

adapt the two distribution at different levels. Figure 4.3 shows an overview

of the general pipeline of the proposed method.
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Figure 4.3: Pipeline of the proposed method. In the Stage 1 synthetic domains

is translated to the real domains to reduce the gap at pixel level. In the Stage

2 the gap at feature level is reduced using feature alignment method. In Stage 3

an iterative self-training procedure is used to produce pseudo labels for the target

domains.

Figure 4.4: Qualitative results obtained using CycleGAN as image to image

translation method (Stage 1). Synthetic images (left) are translated to the merged

target domains (center). Real images similar to the translated ones are also re-

ported for reference (right).

4.3.4.1 Image to Image Translation

Synthetic images generated from a model acquired using a 3D scanner, such

as Matterport 3, differ in general from real images in the style and shape

3https://matterport.com/

https://matterport.com/
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Figure 4.5: Architecture of the proposed MDA-RetinaNet model.

of the object which can affect object detection performance. To reduce this

diversity, the first step of our method consists in mitigating the style and

shape differences using an image to image translation method. In particular,

we used CycleGAN to transform training synthetic images into the real. In

the later stages of our pipeline, the object detection model will be trained on

the transformed images and tested directly on the real images. This step is

optional in our pipeline for two reasons: 1) it can be computationally expen-

sive when the datasets are large; 2) when the target and the source domain

are not too similar, this transformation can be not sufficiently accurate. Fig-

ure 4.4 shows some qualitative results of this translation. As can be noted,

the transformed images look more similar to the real counterpart after the

transformation.

4.3.4.2 Feature Alignment

Although image to image translation can be used to reduce the differences

in terms of style and shape, the features extracted from the two domains can

still be different. For this reason, in this second stage we propose an object

detection architecture which jointly adapts the features during the training.
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State-of-the-art domain adaptation methods for object detection do not con-

sider the existence of multiple target domains. To take advantage of mul-

tiple unlabeled target domains during the training, we propose a model,

that we called MDA-RetinaNet, to address the problem of unsupervised

domain adaptation for object detection based on adversarial learning [13].

Figure 4.5 shows the architecture of the proposed method which builds on

RetinaNet [42]. To reduce the domain gap present at the feature level, we at-

tach a domain discriminator with a gradient reversal layer to the feature map

C3 obtained from the ResNet backbone [99]. In particular, to adapt multiple

domains (in this case 1 source and 2 targets in our experiments) we consider

a multi-class classifier D which discriminates among all of them. The dis-

criminator has 3 convolutional layers with kernel size equal to 1, followed

by a ReLU activation function. Following [13], we place a gradient reversal

layer at the input of the discriminator and train the model by minimizing

the following loss function:

L = Lclass + Lbox − λ(LD)

where Lclass and Lbox are the regression losses of RetinaNet, LD is the loss

of the discriminator module and λ is an hyper-parameter that balances the

object detection and domain adaptation losses. This approach differs from

standard methods that use a binary classifier used to only discriminate fea-

tures belonging to the source and target domains, hence ignoring the pres-

ence of multiple targets. We hypothesize that, providing a multi-classes

discriminator, the model will learn to extract features which are not only in-

distinguishable across synthetic and real domains, but also indistinguishable

across the different real cameras. It is important to highlight that this type of

adaptation allow to learn a combination of weights that extract feature maps

using the backbone that generalize to the different domains. No adaptation



CHAPTER 4. MULTI-TARGET UDA FOR OBJECT DETECTION 53

Figure 4.6: Self-training module for MDA-RetinaNet.

is directly enforced for the layers involved in the classification and regression

of the bounding boxes (Figure 4.5 white modules).

4.3.4.3 Self-Training

As noted in the previous section 4.3.4.2, the adaptation provided in the

second stage is at the level of the features extracted by the backbone, whereas

the classification and regression layers which detect the objects are trained

only with the synthetic images due to the absence of labels for the real

images. To tackle this limitation, we generate pseudo labels for the real

images by retraining the model with the predictions on real images above

a given confidence threshold produced by the model trained at the second

stage of our pipeline (see Figure 4.3). This allows to train MDA-RetinaNet

in a supervised way as illustrated in Figure 4.6 by exploiting the obtained

pseudo labels. This latest module is trained in an iterative way, gradually

increasing the threshold used to generate the pseudo labels to reduce the

error of potentially wrong predicted labels. Algorithm 1 reports the complete

procedure of the proposed method.
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Algorithm 1: Proposed multi-target domain adaptation for object

detection algorithm.

Input: S = {xn
s , y

n
s } the source domain, T = {T1, T2, ...TD} target

domains, converge = false;

Step 1: transform the set S into T using CycleGAN;

Step 2: train MDA-RetinaNet using S ′ and T to adapt the features;

Step 3: set the threshold t = 0.75 and produce the pseudo labels ynd

for each images in each target T1, T2, .., TD using MDA-RetinaNet;

Step 4:

while !converge do

train MDA-RetinaNet using ynd ;

produce the new pseudo label ynd ;

if t < 0.9 then

t = t + 0.05;

else
converge = true;

end

end

Output: B - the set of predicted bounding boxes.

4.3.5 Experimental Settings

All the compared models were trained for 60K iterations using weights pre-

trained on ImageNet [97]. We set the learning rate to 0.0002 for the first

30K iterations, then we multiply it by 0.1 for the remains 30K iterations.

DA-Faster RCNN, Strong Weak and CDSSL were trained with the same

parameters proposed by the authors in their respective papers [45, 29, 48].

The batch size was set to 4 for RetinaNet, 6 for DA-RetinaNet (4 source
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and 2 target images, 1 HoloLens and 1 GoPro) and 8 for MDA-RetinaNet4

(4 source and 4 target images divided in 2 HoloLens and 2 GoPro images).

MDA-RetinaNet was implemented using Detectron2 [98]. To reduce the noise

of the initial training of the Discriminator D, we adapt the λ hyperparameter

following the update rule proposed by [13]. The second stage (Section 4.3.4.2)

is performed only one time to produce initial pseudo labels. The Self-Training

stage (Section 4.3.4.3) is executed 4 times gradually increasing the thresh-

old used to generate the new pseudo labels which will be used in the next

iteration. CycleGAN was trained for 60 epochs using the default parameters.

4.4 Results

This Section reports and analyzes the results of the experimental analysis.

4.4.1 Feature Alignment Results

Table 4.2 reports the results of the feature alignment based models. The

first two rows show the results of the baseline Faster RCNN and RetinaNet

modules trained with synthetic images and tested on HoloLens and GoPro

without any domain adaptation technique. It is worth noting that Reti-

naNet is less sensitive to the domain gap, obtaining an mAP ∼7% higher

than Faster RCNN (14.10% vs 7.61% on HoloLens and 30.39% vs 37.13%

on GoPro). For this reason, we focused our further experiments considering

RetinaNet as backbone for the object detector in our proposed methods. The

second group of rows (rows 3-6 of Table 4.2) report the results of state-of-

the-art methods adapted for this specific task. In particular, due to the fact

that these methods are able to work only with a single target, we merged

4code available at https://github.com/fpv-iplab/STMDA-RetinaNet
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Table 4.2: Results of baseline and feature alignment methods. S refers to Syn-

thetic, H refers to HoloLens and G to GoPro. ST indicates the self-training pro-

cedure.

Model Source Target Test H Test G

Faster RCNN [39] S - 7.61% 30.39%

RetinaNet [42] S - 14.10% 37.13%

DA-Faster RCNN [45] S H+G 10.53% 48.23%

Strong Weak [29] S H+G 26.68% 48.55%

CDSSL [48] S H+G 28.66% 45.3%

DA-RetinaNet [101] S H+G 31.63% 48.37%

MDA-RetinaNet S H, G 34.97% 50.81%

MDA-RetinaNet + ST S H, G 54.36% 59.51%

Faster RCNN [39] (Oracle) H - 91.97% 76.88%

Faster RCNN [39] (Oracle) G - 68.65% 89.21%

RetinaNet [42] (Oracle) H - 92.44% 77.96%

RetinaNet [42] (Oracle) G - 69.70% 89.69%

the HoloLens and GoPro datasets into one. The proposed MDA-RetinaNet

performs better than the other models and outperforms the best state-of-

the-art method, DA-RetinaNet, by ∼3% for HoloLens (34.97% vs 31.63%)

and ∼2% for GoPro (50.81% vs 48.37%). The last row shows the results of

MDA-RetinaNet combined with the self-training procedure. As the results

highlight, this combination allows to increase the performances of ∼23%

if compared with DA-RetinaNet (54.36% vs 31.63%) for HoloLens, ∼11%

(59.51% vs 48.37%) for GoPro and ∼20% if compared with MDA-RetinaNet

without self-training (54.36% vs 34.94%) for HoloLens and ∼9% (59.51% vs

50.81%) for GoPro. Furthermore, the performance gap between HoloLens
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Table 4.3: Results of feature alignment methods combined with CycleGAN. H

refers to HoloLens while G to GoPro. “{G, H}” refers to synthetic images trans-

lated to the merged HoloLens and GoPro domains. ST indicates self-training

procedure.

Model Source Target Test H Test G

Faster RCNN [39] {G, H} - 15.34% 63.60%

RetinaNet [42] {G, H} - 31.43% 69.59%

DA-Faster RCNN [45] {G, H} H+G 32.13% 65.19%

Strong Weak [29] {G, H} H+G 41.11% 66.45%

DA-RetinaNet [101] {G, H} H+G 52.07% 71.14%

CDSSL [48] {G, H} H+G 53.06% 71.17%

MDA-RetinaNet {G, H} H, G 58.11% 71.39%

MDA-RetinaNet + ST {G, H} H, G 66.64% 72.22%

Faster RCNN [39] (Oracle) H - 91.97% 76.88%

Faster RCNN [39] (Oracle) G - 68.65% 89.21%

RetinaNet [42] (Oracle) H - 92.44% 77.96%

RetinaNet [42] (Oracle) G - 69.70% 89.69%

and GoPro with this last model it is almost negligible.

4.4.2 Feature Alignment and Image to Image transla-

tion Results

Table 4.3 shows the results obtained combining the baseline and feature

alignment methods with CycleGAN. The first two rows report the results

of Faster RCNN and RetinaNet when trained on synthetic images trans-

formed to the merged HoloLens and GoPro domain. As can be noted, pixel
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level domain adaptation allows to significantly increase the performance of

Faster RCNN and RetinaNet respectively by about 8% (7.61% vs 15.34%)

and 16% (14.10% vs 31.43%) on HoloLens and by about 33% (30.39% vs

63.60%) and 32% (37.13% vs 69.59%) on GoPro, reducing the gap between

synthetic and real images. The middle part of the table shows the results of

the methods based on feature alignment. Also in this case, MDA-RetinaNet

achieves an higher mAP with respect to the best state-of-the-art method,

CDSSL, (53.06% vs 58.11% for HoloLens and 71.17% vs 71.39% for GoPro)

which further improves if we introduce the self-training procedure (58.11%

vs 66.64% for HoloLens and 71.39% vs 72.22% for GoPro). It is worth noting

that, with self-training the gap in performances between HoloLens and GoPro

is reduced from ∼13% to ∼6% which suggest that the model acquires knowl-

edge from the GoPro images that is useful to detect object in the HoloLens

domain. Furthermore, the performance of MDA-RetinaNet with self-training

is really close to the performance of the RetineNet oracles when trained with

the labeled HoloLens domain and tested on GoPro and vice versa (66.64%

vs 69.70% for HoloLens and 72.22% vs 77.96% for GoPro). However, there

is still space of improvement if we consider the performances of the oracles

trained and tested in their respective domains, which makes proposed dataset

still challenging (66.64% vs 92.44% for HoloLens and 72.22% vs 89.69% for

GoPro).

4.4.3 Ablation Study

Table 4.4 reports the ablation study of the proposed MDA-RetinaNet model

and compares the results with respect to the DA-RetinaNet architecture.

We evaluated the models on HoloLens domain, which is more challenging if

compared to GoPro, analyzing the impact of the placement of the discrim-
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Table 4.4: Ablation study about the impact of each discriminator Di and com-

parison between each discriminator Di placed at Ci and Pi level.

Model C3 P3 C4 P4 C5 P5 mAP

RetinaNet 14.10%

DA-RetinaNet D 15.84%

MDA-RetinaNet D 19.54%

MDA-RetinaNet D 16.29%

DA-RetinaNet D 16.38%

MDA-RetinaNet D 19.88%

MDA-RetinaNet D 17.01%

DA-RetinaNet D 28.61%

MDA-RetinaNet D 34.97%

MDA-RetinaNet D 31.44%

DA-RetinaNet D D 30.52%

MDA-RetinaNet D D 34.09%

MDA-RetinaNet D D 30.85%

DA-RetinaNet D D D 31.04%

MDA-RetinaNet D D D 32.11%

MDA-RetinaNet D D D 30.18%

inator at different levels of the feature map extracted from the RetinaNet

backbone (see Figure 4.5). As can be noted, each single discriminator in-

creases the performances of the standard RetinaNet architecture and obtain

better performances than DA-RetinaNet. The discriminator attached to the

first feature map C3, allows to achieve better results than the other two

discriminators attached to the C4 and C5 feature maps. Moreover, consider-

ing more than one discriminator to align the feature at different levels does
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Table 4.5: Comparison performance considering different threshold.

Model Threshold Test H Test G

MDA-RetinaNet + ST 0.90 47.48% 52.25%

MDA-RetinaNet + ST 0.85 to 90 49.21% 54.90%

MDA-RetinaNet + ST 0.80 to 0.90 52.49% 57.67%

MDA-RetinaNet + ST 0.75 to 0.90 54.36% 59.51%

lead to obtain better results in our experiments as in the case of the single

domain DA-RetinaNet but only decreases the performance. The best com-

bination and optimal number of discriminators was found empirically and,

as shown in Table 4.4, it is achieved using only one discriminator at the C3

level. We hypothesize that considering more discriminators at the same time

could unbalance the models training, obtaining features that are aligned but

less effective for the main object detection task. In Table 4.4 we also report

an ablation study of the impact of each discriminator attached at Pi or at

Ci levels. As can be noted, in each case, the performances achieved by the

models that use the discriminator at Pi levels are lower than their counter-

parts which use discriminators at the Ci levels. Table 4.5 shows the results

obtained with different linear schedules of the values of the threshold. We

noted that, due to the domain gap between source and target domains, it is

convenient to use a low threshold in the first iterations of self-training, where

a set of initial pseudo-labels is needed, and increasing this threshold to an

higher value as training proceeds. Indeed, we achieve best results for using

a threshold value starting at 0.75 and ending at 0.9. Table 4.6 reports the

results of adapting DA-Faster RCNN [45] and Strong Weak [29] to multiple

target domains using the same methodology proposed for MDA-RetinaNet.

Specifically, instead of merging the to dataset into one and use the binary
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Table 4.6: Comparison between DA-Faster RCNN, Strong Weak and MDA-

RetinaNet when modified using multiclass discriminators. S refers to Synthetic, H

refers to Hololens and G to GoPro.

Model Source Target Test H Test G

DA-Faster RCNN [45] S H, G 13.79% 48.35%

Strong Weak [29] S H, G 29.52% 49.06%

MDA-RetinaNet S H, G 34.97% 50.81%

discriminator proposed by the authors in their papers, we replaced it with our

multi classes discriminator and considered the target domains individually

instead of merging them. As can be noted, the performances of the other two

methods improves by 3-4% if compared with the results of Table 4.2. Nev-

ertheless, the best results are still obtained by the proposed MDA-RetinaNet

architecture. These results suggest that using a multi class discriminator in-

stead of a binary discriminator allows to consistently improve performances

with different architectures.

4.4.4 Comparison between MDA-RetinaNet and DA-

RetinaNet

Table 4.7 compares the results of the proposed MDA-RetinaNet with DA-

RetinaNet. It is worth noting that training the model using only one target

domain at a time results in worse performance in both domains despite they

are very similar. This happens because the model overfits with respect to

the considered target domain used for training. Using both domains during

training, as the proposed MDA-RetinaNet model does, allows to generalize

over both target domains with a single model, which also results in improved

performance.
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Table 4.7: Comparison between DA-RetinaNet trained using one target set at a

time and MDA-RetinaNet. S refers to Synthetic, H refers to Hololens and G to

GoPro.

Model Source Target Test H Test G

RetinaNet [42] S - 14.10% 37.13%

DA-RetinaNet [101] S H 31.01% 36.60%

DA-RetinaNet [101] S G 21.63% 45.86%

MDA-RetinaNet S H, G 34.97% 50.81%

4.4.5 Qualitative Results

Figure 4.7 compares some qualitative detection results obtained by the pro-

posed MDA-RetinaNet with and without Self-Training with respect to Reti-

naNet baseline (the ground truth is the blue bounding box). RetinaNet fails

the detection in many cases. Indeed, it does not detects any artwork or pro-

duce a wrong classification and/or regression. MDA-RetinaNet well recog-

nize small and large artworks but fails in the last two rows. MDA-RetinaNet

with Self-Training improve the performance of the standard RetinaNet and

MDA-RetinaNet with a more accurate detection of the artworks.

4.4.6 Results on Cityscapes Dataset

In order to thoroughly assess the generalization capabilities of the proposed

methods across different datasets, we conducted experiments using the widely-

used Cityscapes dataset [93], specifically targeting the foggy [94] and rainy

conditions as domains of interest. To generate the rainy dataset, we fol-

lowed the procedure proposed by [100], starting from the original Cityscapes

dataset. Each dataset consisted of 2975 training images and 500 validation

images. Table 4.8 presents the results obtained on the validation set using
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RetinaNet MDA-RetinaNet MDA-RetinaNet+ST

Figure 4.7: Qualitative results of RetinaNet, MDA-RetinaNet and MDA-

RetinaNet with self-training (ST). The blue box represents ground truth, the red

box indicates a wrong detection (object localization or classification), the green

box represents correct detections.

standard object detector architectures and domain adaptation methods based

on feature alignment. The table demonstrates that the standard RetinaNet

outperforms DA-Faster RCNN, Strong-Weak, and CDSSL by approximately

1.5%. Furthermore, our proposed models, MDA-RetinaNet and (ST)MDA-

RetinaNet, exhibit improvements of 1% and 2% respectively when compared

to the best-performing model, DA-RetinaNet. Despite these advancements,
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Table 4.8: Results adaptation between Cityscapes, Foggy and Rainy Cityscapes

dataset.

Model Fog Rain

Faster RCNN [29] 23.54% 22.93%

DA-Faster RCNN [45] 30.10% 29.66%

Strong-Weak [29] 38.76% 37.81%

CDSSL [48] 39.34% 38.22%

RetinaNet [42] 40.69% 40.14%

DA-RetinaNet [101] 45.02% 42.90%

MDA-RetinaNet 46.17% 43.79%

STMDA-RetinaNet 46.91% 45.37%

Oracle 56.75% 55.58%

a discernible gap remains between the performance of the proposed architec-

ture and the Oracle, which represents the performance achieved by training

and testing RetinaNet on the Foggy and Rainy Cityscapes datasets. This

observation suggests that there is still potential for further improvements

and enhancements in our approach.

4.5 Conclusion

We studied the problem of unsupervised multi-camera domain adaptation

for object detection in cultural sites. To perform the study, we have col-

lected and publicly released a new challenging dataset with the aim to en-

courage the community to continue researching on the problem. In order

to more comprehensively evaluate the generalization capabilities of the com-

pared approaches, we additionally conducted experiments using a dataset
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specifically designed for urban environments. We proposed a new method

which combines feature alignment, pixel level and self-training methods that

outperforms current state-of-the-art methods.



Chapter 5

Unsupervised Domain

Adaptation for Action

Recognition

5.1 Introduction

This chapter presents a preliminary study of the problem of unsupervised do-

main adaptation (UDA) for action recognition, examining both first-person

and third-person points of view. The study utilizes the Epic Kitchens 55

dataset for the first-person and the UFC-HMDB datasets for the third-person

perspective. To investigate the problem, we select C2D [102], I3D [61], and

MViT [69] as representatives of the three main categories of action recog-

nition algorithms (2D CNNs, 3D CNNs, and transformers) with the goal of

analyzing the diverse performances associated with each architecture. We

specifically focus on four domain adaptation strategies, treating them as in-

dividual “blocks” that can be integrated independently or in combination as

shown in figure 5.1. The primary objective of this investigation is to gain
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Figure 5.1: Scheme of the integration of one or multiple domain adaptation

methods into an action recognition algorithm (2D CNN, 3D CNN or transformers).

valuable insights into the impact of these domain adaptation strategies when

applied to different action recognition algorithms. By studying their behavior

and effectiveness, we aim to identify the most suitable and effective strate-

gies that lead to improved performance in the challenging domain adaptation

setting for both first and third person point of view.

5.2 Methods

In this section, we present the methods used for comparison, including base-

line approaches, domain adaptation approaches, and combined domain adap-

tation strategies.

Baseline Approaches without Adaptation: We establish baseline mod-

els without employing any domain adaptation techniques. These baselines

include models trained on source images and tested on target images (no

adaptation), as well as models trained and tested within the target domain

(referred to as ”oracle” models, which have access to target domain labels).

By exploring these baselines, we can quantify the performance loss due to

domain shift. The three action recognition algorithms used for the experi-
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ments are C2D [102], I3D [61] and MViT [69]. The results show that higher-

performing action recognition models tend to maintain their advantage in the

target domain even without domain adaptation, indicating their robustness

to domain shift on the evaluated datasets.

Domain Adaptation Approaches: Various methods are employed for

unsupervised domain adaptation in action recognition to reduce the domain

gap between the source and target domains. The following methods are

considered for our analysis: 1) Feature Alignment: this approach employs

adversarial learning using the gradient reversal layer [13] to align feature

distributions between source and target domains. 2) Temporal Alignment:

a temporal module [77] is used to produce relation feature representations,

enabling temporal alignment between the source and target domains. 3) Self-

Supervised Learning: contrastive learning [103] and pseudo-labeling [104] are

utilized as self-supervised learning methods for domain adaptation.

Combined Domain Adaptation Approaches: The effectiveness of com-

bining the individual domain adaptation methods is examined. By evaluating

the performance of these combined strategies, we gain insights into potential

synergies among them and their overall impact.

5.3 Experimental Settings and Results

In this section, we present and analyze the results obtained from the com-

pared methods. The models were trained using the PyTorch Video [105] im-

plementation, with Adam as the optimizer and a learning rate set to 0.001.

All other parameters were set to their default values. We report the top-1

accuracy for action recognition, and for the Epic Kitchens dataset we provide

the average accuracy obtained across the three domains (D1, D2 and D3).
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5.3.1 Datasets

UCF-HMDB Dataset: The UCF-HMDB dataset combines action classes

from two popular third-person action recognition datasets: UCF [106] and

HMDB [107]. The dataset contains 12 action classes selected by overlapping

them between the two datasets ensuring their presence in both UCF and

HMDB. The dataset consists of 3209 videos, with 1438 training videos and

571 validation videos from UCF, and 840 training videos and 360 validation

videos from HMDB. For domain adaptation experiments, UFC is used as the

source domain, and HMDB is used as the target domain.

Epic-Kitchens55 Dataset: The Epic-Kitchens55 is an egocentric action

recognition dataset that captures daily activities in kitchens from a first-

person perspective. The dataset contains videos recorded by people wearing

head-mounted cameras while performing kitchen-related tasks. The authors

of [87] adapted it for domain adaptation tasks by creating three domains

based on the eight largest action classes present in the dataset, correspond-

ing to P08, P01 and P22 kitchens. Domain adaptation experiments with

Epic-Kitchens aim to assess the models’ generalization ability from one par-

ticipant’s kitchen (source domain) to another participant’s kitchen (target

domain).

5.3.2 Baseline Results

Table 5.1 presents the baseline results of C2D, I3D, and MViT models trained

on the source domain and tested on the target domain, along with the oracle

results representing upper bound performance achieved within each dataset.

As can be observed, all the models drop in performance due to domain shift

when compared with the results obtained by the oracle models. Specifically,
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Table 5.1: Baseline results of C2D, I3D, and MViT when trained on the source

and tested on the target datasets. The table also includes the oracle results, which

represent the upper bound performance achieved in each dataset.

Model EK55 UFC → HMDB

C2D 32.81% 76.70%

I3D 35.49% 80.23%

MViT 38.98% 85.29%

C2D (oracle) 58.88% 93.44%

I3D (oracle) 60.55% 95.00%

MViT (oracle) 63.13% 96.12%

on the Epic Kitchens dataset, the performances decrease by approximately

24% compared to the oracle models (32.81% vs 57.88%, 35.49% vs 59.55%,

38.98% vs 62.13%). Similarly, on the UFC → HMDB datasets, the I3D

(80.23% vs 95.00%) and MViT (85.29% vs 96.12%) models show less sensi-

tivity to the domain shift compared to the C2D model (76.70% vs 93.44%).

These results highlight that action recognition models with superior perfor-

mance in their source domains maintain an advantage over less performing

models even in the presence of domain shift.

5.3.3 Domain Adaptation Results

Table 5.2 presents the performance of the C2D, I3D and MViT models with

different domain adaptation methods. The methods are denoted by LF , LT ,

LST and LC , representing respectively: feature alignment, temporal align-

ment, self-training with pseudo labels and contrastive learning. For the

Epic Kitchens 55 dataset (EK55), domain adaptation using feature alignment
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Table 5.2: Performance of C2D, I3D, and MViT models with domain adaptation

methods. LF , LT , LST , and LC respectively represent feature alignment, temporal

alignment, self-training with pseudo labels, and contrastive learning.

Model LF LT LST LC EK55 UFC → HMDB

C2D D 34.79% 77.12%

C2D D 35.10% 77.26%

C2D D 32.46% 75.90%

C2D D 33.38% 77.08%

I3D D 38.91% 80.63%

I3D D 39.24% 80.81%

I3D D 35.57% 80.36%

I3D D 36.22% 80.59%

MViT D 40.65% 86.28%

MViT D 41.18% 86.72%

MViT D 39.02% 85.37%

MViT D 39.55% 85.43%

(C2D with LF ) or temporal alignment results in an accuracy improvement

of 34.79% and 35.10% compared to the baseline C2D model without domain

adaptation (32.81%). On the other side, applying contrastive learning (C2D

with LC) or self training (C2D with LST ) individually leads respectively mi-

nor accuracy gains of 33.38% and a slight drop in performance 32.46%. On

the UFC → HMDB datasets, C2D with feature alignment (LF ) achieves an

accuracy of 77.12%, while temporal alignment (LT ) and self-training (LST )

show accuracies of 77.26% and 75.90%, respectively. C2D combined with

contrastive learning (LC) attains an accuracy of 77.08%. As can be noted,

for all three models (C2D, I3D, and MViT), the domain adaptation meth-
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ods have a similar behavior keeping their architectural advantage unchanged

regardless of the adaptation method used. The same happens when we com-

pare the results between the first (EK55) and third person dataset (UFC →

HMDB).

Table 5.3 reports the results of integrating two domain adaptation meth-

ods simultaneously into C2D, I3D, and MViT models. The table shows

that regardless of the specific combination employed, all methods exhibit

an enhancement in their performance compared to the results reported in

Table 5.2. For instance, I3D with LF improves from 38.91% (reported in Ta-

ble 5.2) to 40.77% when combined with LST . All the models exhibit a com-

mon pattern by achieving their optimal outcomes through the integration of

feature alignment (LF ) and temporal alignment (LT ), a trend consistently

observed across both datasets.

Table 5.4 reports the results of deploying the top three combined method-

ologies alongside a comprehensive integration of all UDA methods. As the

tabled shows, incorporating three strategies consistently improves the per-

formance of all considered action recognition models compared to Table 5.2

and Table 5.3. For instance, MViT’s accuracy increases from 44.36% (when

combining LF and LT in Table 5.3) to 45.27% with the addition of LC . How-

ever, an observation emerges when considering the third strategy. Contrary

to expectations, introducing the third strategy doesn’t necessarily lead to

superior performance across both first-person and third-person actions. To

illustrate, for the I3D model, the most optimal result is attained in first-

person actions by employing contrastive learning, while in third-person ac-

tions, self-training takes the lead. In the broader scope, it becomes evident

that selecting between contrastive learning and pseudo-labeling methods for

performance enhancement doesn’t exhibit a clear-cut advantage. Addition-
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Table 5.3: Performance of C2D, I3D, and MViT models combined with 2 domain

adaptation methods at time. LF , LT , LST , and LC respectively represent feature

alignment, temporal alignment, self-training with pseudo labels, and contrastive

learning.

Model LF LT LST LC EK55 UFC → HMDB

C2D D D 37.17% 78.91%

C2D D D 36.59% 78.08%

C2D D D 35.31% 77.43%

C2D D D 36.98% 78.70%

C2D D D 36.74% 78.25%

C2D D D 34.66% 77.31%

I3D D D 42.41% 81.80%

I3D D D 40.77% 81.44%

I3D D D 39.65% 81.19%

I3D D D 41.83% 81.63%

I3D D D 41.56% 81.58%

I3D D D 38.44% 80.96%

MViT D D 44.36% 90.02%

MViT D D 42.78% 88.47%

MViT D D 42.59% 88.36%

MViT D D 43.88% 89.25%

MViT D D 43.64% 88.90%

MViT D D 41.22% 87.71%

ally, the application of all four UDA methods to the models doesn’t yield

significant improvements. This observation could be attributed to the intri-

cate challenge of striking the right balance between multiple losses within
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Table 5.4: Performance of C2D, I3D and MViT combined with the top 3 method-

ology and with the four methods. LF , LT , LST , and LC respectively represent

feature alignment, temporal alignment, self-training with pseudo labels, and con-

trastive learning.

Model LF LT LST LC EK55 UFC → HMDB

C2D D D D 38.81% 79.95%

C2D D D D 39.06% 79.77%

C2D D D D D 38.52% 80.15%

I3D D D D 43.70% 82.58%

I3D D D D 43.39% 82.84%

I3D D D D D 43.56% 82.69%

MViT D D D 45.27% 91.64%

MViT D D D 45.43% 91.70%

MViT D D D D 45.34% 91.52%

the UDA framework, making complex the optimal adjustments.

5.4 Conclusion

We conducted a preliminary study on unsupervised domain adaptation for

action recognition, focusing on both first-person and third-person viewpoints.

Our investigation involved the most representative action recognition algo-

rithms from each category: C2D (2D CNN), I3D (3D CNN), and MViT

(transformer). The aim was to analyze the efficacy of various UDA strategies

across different perspectives and algorithms. By dissecting UDA into four

distinct strategies, we delineated their individual and collective influences on

model performance. Our experimental results unveiled several noteworthy
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observations. Firstly, the combination of multiple UDA methods consistently

demonstrated improved performance over employing a single method, indica-

tive of potential synergies between these strategies. Secondly, regardless of

the UDA strategy or combination employed, the performance hierarchy of

the three action recognition algorithms (2D CNN, 3D CNN, and transform-

ers) remained fairly consistent.

Future work could extend the analysis to other UDA methods, exploring the

possibility of combining additional strategies to improve performance in both

first and third-person action scenarios.



Chapter 6

Conclusion

In this thesis we tackled the problem of unsupervised domain adaptation for

object detection and action recognition tasks, which plays an important role

in enhancing the robustness and generalization capabilities of deep learning

models in computer vision.

Chapter 1 provided a comprehensive introduction to the unsupervised

domain adaptation problem, discussing its applications in various computer

vision tasks.

In Chapter 2, we delved into the background concepts, presenting the

problem’s formulation and an overview of state-of-the-art methods in object

detection and action recognition. These foundational insights set the stage

for our subsequent contributions.

In Chapter 3, our focus on unsupervised domain adaptation for object de-

tection resulted in the creation of the UDA-CH dataset and the development

of the DA-RetinaNet algorithm, specifically tailored to address challenges

within cultural heritage and autonomous driving scenarios.

Chapter 4 extended our study to multiple target domains by incorpo-

rating GoPro images into the UDA-CH dataset. The (ST)MDA-RetinaNet
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model showcased the potential of combining adversarial learning, image-to-

image translation, and self-training approaches, demonstrating adaptability

in complex scenarios.

In Chapter 5, we explored the action recognition, addressing both first-

person and third-person viewpoints. Through a comprehensive analysis of

UDA strategies using various algorithms, we uncovered valuable insights into

the effectiveness of combining multiple methods to enhance recognition per-

formance.

While our proposed algorithms, datasets, and insights contribute to the

field, it is important to acknowledge the dynamic nature of unsupervised do-

main adaptation. Challenges such as selecting appropriate adaptation strate-

gies, understanding the effects of diverse data distributions, and addressing

complex scenarios persist. The individual chapter conclusions provide spe-

cific details on our contributions, such as the creation of datasets, the de-

velopment of the novel algorithms, and the exploration of action recognition

strategies. These findings collectively advance the understanding of unsuper-

vised domain adaptation in computer vision. As the field continues to evolve,

future research could focus on refining existing algorithms, exploring novel

adaptation techniques, and investigating real-world deployment scenarios to

enhance the practical applicability of UDA solutions. By releasing the code

of the proposed algorithms and datasets, this thesis aims to facilitate further

research in the field.



Appendix A

GAN-Driven protection of

Medical Imagery against

Malicious Tampering

A.1 Introduction

In recent years, advancements in generative models have ushered in a new era

of image generation and manipulation, showcasing remarkable capabilities in

rendering images increasingly indistinguishable from their original counter-

parts [27, 108, 109]. This progress, driven by deep learning techniques, has

found applications in various domains, from creative artistry [110] to medical

imaging [111, 112, 113, 114, 115], among others. However, alongside positive

applications, researchers have demonstrated the malicious use of Generative

Adversarial Networks (GANs) for tasks such as malware obfuscation [116]

and the creation of deepfakes [117].

Within the medical domain, the potential consequences of malicious tam-

pering are critical, as the integrity and authenticity of images can have life-or-
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Figure A.1: Qualitative results of TAFIM [123] applied to CT scans. Columns 1

and 3 show input images, while columns 2 and 4 show the protected images. Note

the visible artifacts in the protected images, which may pose challenges during

analysis by medical experts.

death implications. Image tampering techniques [118] have raised concerns

by highlighting the potential for malicious manipulation of medical images,

such as computed tomography (CT) scans and radiographs. This introduces

a new dimension of cyber attacks, with image manipulation being employed

to deceive medical professionals and compromise patient care, potentially

leading to misdiagnoses.

To address this challenge, the research community has focused on devel-

oping automated detection systems for image manipulation, treating it as a

classification task. Various learning-based approaches have shown promise,

achieving excellent classification accuracy [119, 120, 121, 122].

Alternatively, another strategy is to prevent manipulations at the source

by disrupting manipulation methods’ output [124, 125, 123]. The key idea

is to disrupt generative neural network models by introducing noise patterns
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at a low level, making it more challenging for malicious actors to create

convincing forgeries.

In this study, we investigate the problem of image tampering in the med-

ical domain, focusing on the manipulation of CT scans. Building upon the

idea presented by the authors of TAFIM [123], we propose MITS-GAN (Med-

ical Imaging Tamper Safe-GAN), an approach based on Generative Adver-

sarial Networks. Our method generates tamper-resistant images, minimizing

potential artifacts (Figure A.1) that could pose challenges during the review

process by medical experts.

A.2 Related Work

In this section, we briefly review research related to our work.

A.2.1 GAN Applications in Medical Imaging

GANs have significantly contributed to medical imaging by addressing chal-

lenges and enhancing the quality and accessibility of medical imagery. They

have been employed for tasks such as data augmentation, style translation,

and image generation in various medical imaging modalities [126, 127, 128,

129, 115, 114, 113, 112, 111]. Additionally, GANs have found applications in

segmentation [130], super-resolution [131], and anomaly detection [132].

A.2.2 Adversarial Attacks

Adversarial attack methods aim to introduce imperceptible changes to images

to disrupt neural network feature extraction. Initially applied in classifica-

tion tasks [133, 134, 135], these methods have been extended to segmenta-

tion [136] and detection tasks [137]. Generic universal image-agnostic noise
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patterns have been proposed to address the challenge of time-consuming,

image-specific pattern optimization [138, 139]. However, such approaches

have limitations when applied to generative models.

A.2.3 Image Manipulation Prevention

Preventing image manipulations by disrupting adversarial attack techniques

has been explored as an alternative to classification and detection. Methods

like disrupting deepfakes [125], nullifying image-to-image translation mod-

els [124, 140], and generating image-specific patterns for low-resolution im-

ages [141] have been proposed.

A.3 Proposed Method

Our goal is to prevent image manipulation, such as adding or removing tu-

mors in CT scans, by disrupting the CT-GAN [118] architecture. We in-

troduce an imperceptible perturbation that disrupts the CT-GAN’s output,

making it easier for a human to identify tampered scans.

A.3.1 Method Overview

The proposed method is illustrated in Figure A.2. Given a CT scan Xs

and a fixed image-agnostic perturbation shared across the data distribution

δS, they are concatenated channel-wise and then input into the generator

G. The generator applies 5 2D convolutional layers to the perturbation δS,

with each followed by batch normalization and the ReLU activation function.

Subsequently, δS is concatenated with the image, and finally, a sequence of a

2D convolution, 3 residual blocks, and a final 2D convolution are applied in

succession. The output, denoted as XP , represents the protected scan and
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Figure A.2: Model Architecture Overview: The Generator receives the input

image XS and perturbation noise δS to produce the protected image XP . Subse-

quently, XP is forwarded to the manipulation model and discriminator.

is fed into the CT-GAN model M and, along with XS, to the discriminator

D. The discriminator D consists of 8 2D convolutional layers, each followed

by batch normalization and LeakyReLU activation function. The model is

trained using a generative adversarial objective, encouraging the generator

to produce protected images similar to the original (unprotected) ones. The

model is also augmented with the CT-GAN.

The goal is to optimize the following min-max objective:

min
G

max
D,M

Lg(D,G) + αLm(G,M) (A.1)

where Lg represents the generator and discriminator GAN losses, Lm is mean

squared error (MSE) loss computed between the output of the model M and

the generator G, and α is the weight that controls the interaction of these

losses.

A.4 Results

In this section, we present and analyze the results of the introduced method-

ologies. Our approach is assessed using the dataset outlined in [142], following
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the training editing procedure detailed in [118]. We use respectively 300 and

50 scans for the training set and test set. To evaluate the output quality, we

compute the RMSE, PSNR and LPIPS [143] metrics.

A.4.1 Experimental Setup

All models were trained for 20 epochs using an NVIDIA V100. The MITS-

GAN 1 architecture, implemented using PyTorch 2, was trained with a batch

size of 16, a learning rate set at 0.0002, betas of [0.5, 0.999], and utilizing

Adam as the optimizer. For TAFIM, we adopted the configurations suggested

by the authors in [123].

A.4.2 Qualitative Results

Figure A.3 shows the qualitative results of the proposed MITS-GAN method

compared with TAFIM. MITS-GAN exhibits fewer visible artifacts on the

reconstructed images and demonstrates a more robust ability to resist ma-

nipulation, accentuating the artifacts introduced when the model attempts

to manipulate the selected square. Figure A.4 shows the heatmap obtained

by performing a pixel-to-pixel difference between the real image and the

protected one. Also in this case, the proposed method generates protected

images that are more faithful to the originals than the compared method.

A.4.3 Quantitative Results

Table A.1 reports the results of the considered metrics evaluated between

each pair of real-protected and real-protected/tampered on the entire im-

1https://github.com/GiovanniPasq/MITS-GAN
2https://pytorch.org/
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Figure A.3: Qualitative results on the reconstruction task compared with images

as manipulation targets.

ages. MITS-GAN has lower RMSE, LPIPS, and higher PSNR values com-

pared to TAFIM, suggesting better reconstruction quality of the images. This

advantage is maintained even when considering the images after manipula-
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Figure A.4: Heatmap computed between the pairs: real-MITS-GAN and real-

TAFIM.

tion. Table A.2 shows the results evaluated on the square part subjected to

manipulation. In this case, the metrics favor the proposed method. After

manipulation, the output produced by the manipulator model appears to

be more damaged than the compared method. This suggests that MITS-

GAN produces images with less noise but is more robust to manipulation,

generating more visible artifacts when attempting to tamper with an image.
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Table A.1: Metric results evaluated between the following pairs on the entire im-

ages: real-MITS-GAN, real-TAFIM, real-MITS-GAN tampered, and real-TAFIM

tampered. Lower values are better for RMSE and LPIPS, higher for PSNR.

Metric MITS-GAN TAFIM MITS-GAN T. TAFIM T.

RMSE 169.481 194.943 198.253 233.780

PSNR 27.949 21.702 21.237 21.469

LPIPS 0.170 0.383 0.226 0.391

Table A.2: Metric results evaluated between the following pairs on the tampered

square part of the images: real-MITS-GAN, real-TAFIM, real-MITS-GAN tam-

pered, and real-TAFIM tampered. Lower values are better for RMSE and LPIPS,

higher for PSNR.

Metric MITS-GAN TAFIM MITS-GAN T. TAFIM T.

RMSE 50.565 66.061 84.349 79.451

PSNR 26.682 18.854 11.289 18.511

LPIPS 0.372 0.3417 0.591 0.346

A.5 Conclusion

In this work, we introduced MITS-GAN a novel approach utilizing Gen-

erative Adversarial Networks to safeguard medical imagery from malicious

tampering. The proposed method effectively disrupts manipulations at the

source, generating tamper-resistant images with fewer artifacts compared to

existing technique. Experimental results demonstrate the superior perfor-

mance of MITS-GAN, highlighting its potential to enhance the security and

integrity of medical scans. As the field evolves, proactive measures like these

are crucial to ensure responsible and ethical use of generative models, espe-
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cially in high-stakes applications such as healthcare. Further research and

collaboration will be key to advancing these methodologies and addressing

emerging cyber threats in medical imaging.
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