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SUMMARY 
 

Cancer signaling pathways have been extensively investigated. However, the way cross-talk 

processes and integrates pathway responses in cancer is still far from being completely elucidated. 

Genetic and epigenetic alterations lead cells to aberrant proliferation and escapement from 

physiological mechanism controlling cell growth, survival and migration. In this context, specific 

mutations transform cellular proto-oncogenes to oncogenes, triggering hyperactivation of signaling 

pathways, whereas inactivation of tumor suppressors removes critical negative regulators of 

signaling. MAPK and PI3K/AKT pathways often present mutated genes in different types of cancer, 

and are strongly involved in intensive cross-talk.  

There is an ever-increasing awareness that computational modeling and simulation are more than 

helpful in improving the understanding at cellular and molecular levels, in speeding-up the drug 

discovery process through the identification of alternative strategies with the aim to overcome drug 

resistance in cancer.  

The main objective of this thesis is to reveal biochemical and genetic mechanisms underlying drug 

resistance in melanoma and thyroid cancer through the application of ordinary differential equations 

based models coupled with algorithmic approaches. These tumors share both MAPK and PI3K/AKT 

signaling pathway, with the presence of BRAF V600E mutation. Computational approaches 

developed in this PhD project were demonstrated to be able to find novel therapeutic targets and 

prognostic biomarkers for a more effective treatment in melanoma and thyroid cancer. 

 

 

 

 



 

 

SOMMARIO 
 

Le vie di segnalazione del cancro sono state oggetto di ampio studio. Tuttavia, il modo in cui eventuali 

cross-talk processano e integrano le risposte delle diverse vie di segnalazione nel cancro è ancora ben 

lungi dall'essere completamente chiarito. Le alterazioni genetiche ed epigenetiche possono 

contribuire ad un’aberrante proliferazione cellulare e all’elusione del meccanismo fisiologico che 

controlla la crescita, la sopravvivenza e la migrazione delle cellule. In questo contesto, mutazioni 

specifiche trasformano i proto-oncogeni cellulari in oncogeni, innescando l'iperattivazione delle vie 

di segnalazione, mentre l'inattivazione dei soppressori tumorali rimuove i regolatori negativi critici 

della segnalazione. Le cascate di segnalazione MAPK e PI3K/AKT presentano spesso geni mutati in 

diversi tipi di tumore e sono fortemente coinvolti in complessi cross-talk. 

E’ presente una sempre più crescente consapevolezza di come la modellizzazione e la simulazione 

computazionale risultino più che utili nel migliorare la comprensione a livello cellulare e molecolare 

dei fenomeni biologici, e contribuiscano all’accelerazione del processo di scoperta dei farmaci e 

l'identificazione di strategie alternative per superare la resistenza farmacologica presente in molte 

forme di cancro.  

L'obbiettivo principale di questa tesi è quello di rivelare, attraverso l’utilizzo di modelli 

computazionali basati su equazioni differenziali ordinarie accoppiate ad approcci algoritmici, i 

potenziali meccanismi biochimici e genetici alla base della resistenza dei farmaci nel melanoma e nel 

cancro della tiroide. Questi tumori condividono entrambe le vie di segnalazione MAPK e PI3K/AKT 

e la presenza della mutazione BRAFV600E. Gli approcci computazionali sviluppati in questo 

progetto di dottorato sono stati efficaci nell’identificazione di nuovi bersagli terapeutici (nonché di 

biomarcatori prognostici) per un trattamento più efficace del melanoma e del cancro della tiroide. 
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1 INTRODUCTION 
 

1.1 The importance of signaling pathways and cross-talks in cancer  

 

Biological cells communicate each other using physical signals but mostly through chemical signals. 

Within an organism, cells are immersed in an ocean of growth factors and hormones that represent 

the most important sources of chemical signals, secreted firstly from a cell and then released into the 

extracellular space1,2. 

The chemical signal represents a real message with a specific biological meaning and is carried out 

by a ligand or a growth factor3. It is often communicated through a sequence of secondary messengers 

inside the cell and then it is propagated towards the neighboring cells4. After that, cell changes its 

status because of an alteration in the activity of a gene or when a whole process such as cell division 

has been initiated. Ultimately, the original intercellular signal is converted into a new signal that 

triggers a biological response5.  

This complex and accurate function of communicating is guaranteed through a number of pathways 

that receive and process signals originating not only from the external environment and from other 

cells within the organism, but also from different regions within the cell, hence moving from a micro 

to a macroscale6. Furthermore, all of this cell machinery is strongly capable to adapt the function of 

an organism to environmental changes in a signal-directed way and to control all the cellular functions 

as well. The capability to coordinate and regulate cellular function results from the complex network 

of communications among cells, where signals are transduced into intracellular biochemical reactions 

that follow, on a case-by-case basis, different kinetic laws such as mass action equilibrium7, 

Michaelis-Menten kinetics8, constant flux equations9 and so forth10. The two general categories of 

cell signaling include intercellular and intracellular signaling: 

- intercellular signaling: it coordinates and regulates the physiological functions of a 

multicellular organism through the communication among cells11. In this case, a single cell 



influences the behavior of other cells in a specific way. Signals propagated during intercellular 

signaling are delivered and processed in target cells with the aim to trigger biochemical 

reactions that absolve a specific cell function12. Intercellular communication uses messenger 

substances, such as hormones13, secreted by signal-producing cells and gathered by target 

cells. The extracellular signals are transduced into intracellular signaling sequences that 

control many of the biochemical activities of a cell and can trigger the formation of further 

extracellular signals14,15. Typical examples of signaling deal with physiological activities such 

as response to external signals16, intermediary metabolism17, cell growth18, cell division19, cell 

motility20, cell morphology21, cell differentiation22 and cell development23. Cells 

communicate each other via messenger substances, gap junctions, surface proteins, electrical 

signals24–27. Communication steps between cells could be summarized as follows: i) formation 

of a signal in the signal-producing cell as a result of an external trigger; ii) transport of the 

signal to the target cell; iii) recording of the signal in the target cell28,29. 

- intracellular signaling: it coordinates and regulates signals within the cell, in response to 

extracellular and intracellular stimuli5,30. Sensory signals or external growth factors are 

specifically recognized, processed and transduced by cell receptors that convert the external 

signal into an intracellular signaling chain. The intracellular signaling paths modulate 

intermediary metabolism17, cell division19, cell morphology4, and also the transcription 

process31.  

Both intercellular and intracellular signaling are regulated by specific control mechanisms and 

mediators in a certain tissue32. Modulation of intercellular signaling is mainly regulated via external 

trigger signals, feedback loops, degradation and modification processes, and amount and activity of 

receptors33–35.  

Typically, a large number of signaling components participate in the transduction of an extracellular 

signal into intracellular biochemical reactions that define the endpoint of signal transduction36. To 

characterize and describe a signal transduction pathway, the number and type of signaling 



components involved, as well as their linkages, represent the essential features to consider. However, 

it is increasingly documented that the existence of subtypes of signaling proteins allow different 

signals to access and to be processed in the same type of signaling path, leading then to variable 

outcomes37. Besides, the features of branching and cross-talk of signaling in biology, in which one or 

more components of one signal transduction pathway affect other pathways, usually include a large 

number of possible linkages within a signaling path and between different signaling paths38,39. In 

these signal transduction pathways, there are often shared components that can interact with either 

pathway.  

Commonly, signaling pathways are depicted through a sequential transmission of signals in a linear 

signaling chain. Linear pathway description is very useful to illustrate the main biochemical steps in 

a signaling cascade of events that help to outline the intrinsic biological and biochemical meaning of 

a signaling pathway. Each signal is listed by an upstream component of a signaling chain and is then 

transferred to the downstream constituent that will sequentially propagates the signal to the next 

protein40. This linear description of signaling comes out from in vitro experiments where signaling is 

originated by strong signals produced by overexpression or mutation of signaling proteins41. A 

component will activate the next component through intrinsic mechanisms of activation and 

deactivation by specific enzymes, commonly known as tyrosine and serine-threonine protein 

kinase42,43. They represent a complex system with elaborated internal and external interactions and 

are known to play a fundamental role in protein phosphorylation44, the main enzymatic process for 

the initiation of cellular processes such as cell division, metabolism, survival and apoptosis. The 

routing of signals depends on the amplitude, that is the signal intensity, and on the frequency that 

influences the duration of the signal. It is well known that many signaling proteins own multiple 

downstream reactions that can be activated for further signal transduction40. This feature leads to a 

degeneracy of signals and to a distribution of alternative reaction partners (or branching reactions)45 

that are not always been well defined experimentally.  



Within the signaling pathways, different routes and alternative paths connect one pathway with 

another one, reinforcing each other and constantly receiving excessively signals simultaneously46. 

Basically, the multiple outputs that originate from the same type of signaling protein lead to an 

activation of alternative routes and to the biological phenomenon of cross-talk.  

A cross-talk is a biological process that involve the signaling cascades of transduction pathways and 

it refers to the interdependence among signaling pathways37–39,47.  

In specific occurrences, one or more components of one signal transduction pathway affect the other 

one, sharing the same components that can interact and be linked with either pathway. These 

phenomena process a large number of signals at the same time and the information flow does not run 

through a single conduit.  

Moreover, in cross-talk dynamics, when a signal propagates through different branches and meet a 

common target, the signaling responses along these branches will influence, with an incremental 

effect, the overall target response. Furthermore, each intersection that connects one pathway with 

another could potentially represent a regulatory checkpoint for the signal flow itself. Noteworthy is 

the multivalency of signaling proteins, that determines several effects on the components of a 

signaling, and the plausible role of cross-talk in achieving robust activation of key downstream targets 

by low physiological doses of external stimuli48. In the light of this extraordinary complexity of 

signaling networks, it becomes more and more evident how sophisticated hypothesis and accurate 

predictions of cellular response and their intricate relationship represent a mandatory goal in signaling 

research.  

 

1.2 MAPK and PI3K/AKT pathways: common target in cutaneous melanoma and 

thyroid cancer 

Many examples of cross-talk were found in cell signaling38. In particular, multiple levels of cross-

talk interactions between PI3K/AKT and MAPK signaling pathways have been discovered in the 



modulation of cell fate47,49,50. In this view, specific feedforward and feedback loops, involving 

interacting pathways, coordinate both input and output response of both pathway34,47.  

The mitogen-activated protein kinase (MAPK) and the phosphoinositide 3-kinase (PI3K/AKT) 

pathway are the most common signaling pathways downstream of cellular growth factor receptor51–

54. These signaling pathways orchestrate the majority of cellular physiological processes, such as cell 

growth, differentiation, metabolism, survival and mitogenesis43,55–57. A graphical summary of both 

pathways is shown respectively in Figure 1 and Figure 2. 

 

 

Figure 1. Schematic illustration of MAPK signalling cascade. 



 

 GFDL license via Wikimedia Commons 

 

 

 

Figure 2. Schematic illustration of PI3K/AKT signalling cascade. 

 

 Robbins et al. Frontiers in Endocrinology 2016;6:188 

 

 

MAPK cascade is a highly conserved pathway expressed in mammals58 in at least four distinct 

regulated groups of MAPKs59, extracellular signal-related kinases (ERK)-1/260, Jun amino-terminal 

kinases (JNK1/2/3)61,62, p38 proteins (p38alpha/beta/gamma/delta)63,64 and ERK565. All of these 

kinases are activated by specific MAPKKs: MEK1/2 for ERK1/266, MKK3/667,68 for the p38, 

MKK4/769 (JNKK1/2) for the JNKs, and MEK570 for ERK5. Each MAPKK, however, can be 

activated by more than one MAPKKK71, increasing the complexity and diversity of MAPK 

signalling. Apparently, each MAPKKK confers responsiveness to distinct stimuli. For example, 

activation of ERK1/2 by growth factors depends on the MAPKKK C-RAF72, but other MAPKKKs 



may activate ERK1/2 in response to pro-inflammatory stimuli59. The fundamental protein network 

involved in this signalling cascade is reported below in Table 1. 

 

Signaling pathway KEGG 

network 

Cell function Reference 

EGF-EGFR-RAS-ERK Cell proliferation 73 

PDGF-PDGFR-RAS-ERK Cell migration, proliferation and 

survival 

74 

FGF-FGFR-RAS-ERK Cellular proliferation, 

differentiation and migration 

75 

EGF-EGFR-PLCG-ERK Cell motility 76 

IL1-IL1R-p38 Pro-inflammatory activities, 

innate immune reactions 

77 

IL1-IL1R-JNK Cellular apoptosis, response to 

stress stimuli  

78 

TGFA-EGFR-RAS-ERK Cell proliferation, differentiation 

and development 

79 

IGF2-IGF1R-RAS-ERK Pro-proliferative and anti-

apoptotic effects 

80 

EREG-EGFR-RAS-ERK Tumorigenesis 81 

AREG-EGFR-RAS-ERK Immunity, inflammation and 

tissue repair 

82 

 

Table 1. Signaling pathways involved in MAPK cascade 

 

In physiological conditions, the activation of the MAPK signalling pathway initiates through ligand 

activation of receptor tyrosine kinases (RTKs)83 followed by guanosine triphosphate–bound RAS 

binding84 to RAF kinase and its family members85, BRAF86 and/or CRAF87. This interaction 

transposes the RAF kinase “activator” to the plasma membrane, where conformational changes and 

consequent phosphorylation lead to a heterodimerization or homodimerization of the activator RAF 

with a “receiver” RAF kinase88,89. In particular, BRAF, being the RAF activator, transactivates 

CRAF, the bound receiver, that will be enable to phosphorylate MEK90. ARAF own a marginal role 

even though it is able also to dimerize itself; ARAF kinase activity is weak in comparison to the other 

family members BRAF and CRAF and it seems that it works more than scaffold molecule for 

stabilizing the interactions between BRAF and CRAF91. Participation of BRAF in this signalling 

cascade is fundamental92. Indeed, Freeman et al., have shown how a depletion of BRAF in HeLa cells 



reduce CRAF kinase activity induced by epidermal growth factor, by 90%, while CRAF depletion 

reduces BRAF activity by only 50%, and ARAF depletion present no significant effect88. 

For what concerns PI3K-AKT signaling pathway, several types of cellular stimuli or toxic insults this 

cascade93. The binding of growth factors to their RTK or G protein-coupled receptors (GPCR) 

stimulates respectively class Ia and Ib PI3K isoforms94. PI3K catalyzes the production of 

phosphatidylinositol-3,4,5-triphosphate (PIP3) at the cell membrane95. PIP3 in turn works as a second 

messenger that contributes to activate AKT53. Once active, AKT can regulate key cellular processes 

by phosphorylating substrates involved in cell cycle, protein synthesis, metabolism and apoptosis96,97. 

The fundamental protein network involved in this signalling cascade is reported below in Table 2. 

 

 

Signaling pathway KEGG 

network 

Cell function Reference 

EGF-EGFR-RAS-PI3K Cell proliferation 73 

EGF-EGFR-PI3K Survival, proliferation, migration, 

and differentiation 

98 

FGF-FGFR-PI3K Proliferation, migration, 

angiogenesis and survival of cancer 

cells 

99 

PDGF-PDGFR-PI3K Survival, proliferation, growth, and 

metabolism 

100 

HGF-MET-PI3K Cell proliferation, migration, 

tumorigenesis, angiogenesis 

101 

KITLG-KIT-PI3K Cell survival, proliferation, 

hematopoiesis, stem cell 

maintenance, gametogenesis, mast 

cell development, migration and 

function and in melanogenesis 

102 

CXCR-GNB/G-PI3K-AKT Migration, intracellular signalling 

and intercellular communication in 

the microenvironment, 

transcription, translation, 

proliferation, growth, and survival 

103 

IGF-IGFR-PI3K-NFKB Regulation of protein synthesis, 

glucose metabolism, cell 

development, inhibition of 

apoptosis and triggering of 

inflammatory responses 

104 



PTEN-PI3K-AKT Survival, migration, cell cycle 

progression and arrest, metabolism, 

tumorigenesis 

105 

TGFA-EGFR-PI3K Cell proliferation, differentiation 

and development 

73 

IGF2-IGF1R-PI3K Growth, development, and 

maintenance tissue, anti-apoptotic 

effects, promoting glucose 

metabolism 

106 

EREG-EGFR-PI3K Cellular growth, proliferation, 

tissue regeneration, pain processing 

107 

AREG-EGFR-PI3K Cell proliferation, survival, cell 

growth 

108 

 

 

Table 2. Signaling pathways involved in PI3K/AKT cascade 

 

PI3K phosphorylates the phosphatidylinositol-3,4,5-trisphosphate (PI(3,4,5)P3), a fundamental 

second-messenger of survival signaling109. PI3K kinases are heterodimers made of a catalytic subunit 

called P110 and a regulatory subunit named p85, which is activated by RTKs and by GPCR110–112.  

The signaling downstream steps of RTK receptor include phosphorylation of the insulin receptor 

substrate (IRS)113 with the concomitant binding of the SH2-containing phosphatase (SHP-2)114 and 

the phosphorylation of p85 subunit of PI3K115. This determines PI3K activation and, via PI(3,4,5)P3, 

the stimulation of 3-phosphoinositide-dependent kinase-1 (PDK1) and the enhancement of the 

phosphorylation and, then, of the activity of AKT53,116–118. 

Frequent genetic alterations, especially in cancer, were found in these signaling pathways: about 50% 

of melanoma patients present mutations in the serine/threonine kinase BRAF of melanocytes119, 

which are regulated by the RAS/RAF/MEK/ERK MAPK pathway120, while PI3K pathway is often 

dysregulated during melanomagenesis121. AKT itself is overexpressed during melanoma 

progression122.  

In more than 70% of papillary thyroid carcinoma, genetic alterations such as point mutations of BRAF 

and RAS gene, lead to an activation of MAPK123,124. Moreover, several aberrant RTKs and genetic 

mutations result in a continuous activation of PI3K/AKT in its downstream effectors leading to a high 

cell proliferation in thyroid carcinomas125,126. Typical examples of genetic modifications are 



represented by phosphatase and tensin homolog deleted on chromosome 10 (PTEN) encoding 

genes127, extra copies of phosphoinositide-3 kinase catalytic α (PIK3CA)128, phosphoinositide-3 

kinase catalytic β (PIK3CB) and PDK1 encoding genes129. 

 

1.3 Target therapy with BRAF inhibitors 

BRAF gene, also known as BRAF proto-oncogene or serine/threonine kinase, is a human gene that 

allows the transmission of chemical signals from outside the cell to the nucleus130. The cytogenetic 

location of BRAF gene is 7q34, which is the long (q) arm of chromosome 7 at position 34 and it 

encodes a protein belonging to the RAF family of serine/threonine protein kinases called BRAF. 

BRAF protein is a serine/threonine-specific protein kinase made of 766 amino acids and its 

mammalian RAF kinase family is composed by three RAF isoforms: A-RAF, BRAF and C-RAF131. 

Several findings suggest that BRAF is the family member the most strongly involved in mediating 

MAPK activation132. In particular, it consists of three conserved domains characteristic of RAF kinase 

family:  

i) conserved region 1 (CR1), a Ras-GTP-binding self-regulatory domain;  

ii) conserved region 2 (CR2), a serine-rich hinge region;  

iii) conserved region 3 (CR3), a catalytic protein kinase domain that phosphorylates a sequence 

of protein substrates. 

Before becoming active, BRAF must be initially bound to RAS-GTP. Then, BRAF changes its 

conformation leading to a dimerization via hydrogen-bonding and electrostatic interactions of the 

kinase domains. BRAF catalyzes the phosphorylation of serine and threonine residues in a sequence 

of cascade proteins through the energetic contribution of ATP, yielding ADP and specific substrates 

of phosphorylated proteins as products. It is not surprisingly that, due to the high BRAF kinase 

activity compared to the other family members, a high frequency of BRAF point mutations and a 

constitutively activation of BRAF is observed in human cancers133,134. Mutations in this gene, mostly 



V600E alteration, represent the most frequently detected cancer-causing mutations in melanoma 

(V600E has been examined in 66% of malignant melanomas)135–137 and in several other cancers 

including non-Hodgkin lymphoma138, colorectal cancer139, thyroid carcinoma140, non-small cell lung 

carcinoma141, hairy cell leukemia142 and adenocarcinoma of lung143. Approximately 80–90% of V600 

BRAF mutations regard V600E144–146 and they deal with an amino acid substitution at position 600 

in BRAF, from a valine (V) to a glutamic acid (E). This mutation is specifically localized to the 

serine/threonine kinase domain and occurs within the activation segment of the kinase domain, 

leading to a constitutive activation of the protein itself and insensitivity to negative feedback 

mechanisms147,148. 

Among the BRAF mutations observed in melanoma, over 90 % are at codon 600 and, among these, 

over 90 % are single nucleotide mutations resulting in substitution of glutamic acid for valine149. 

BRAFV600E mutation has been implicated in melanoma progression, through the activation of the 

downstream MEK/ERK within MAPK signalling pathway, evasion of senescence and apoptosis, 

angiogenesis, tissue invasion and metastasis process, and evasion of immune response137,150. 

Activating mutation in the BRAF serine/threonine kinase represents also the most common genetic 

alteration in thyroid cancer, occurring in approximately 45% of papillary thyroid cancer, and in a 

lower proportion of poorly differentiated thyroid cancer (PDTC) and anaplastic thyroid cancer 

(ATC)140,151,152. 

Over 95% of all BRAF mutations detected in thyroid cancer is a thymine to adenine transversion at 

exon 15 nucleotide 1799 (T1799A) of the BRAF gene leading to substitution of valine by glutamic 

acid at residue 600 of the protein chain (V600E)153. This alteration results in a constitutively active 

BRAF molecule with sustained kinase activity that promotes chronic stimulation of MAPK pathway, 

thereby resulting in increased phosphorylation of downstream targets, including ERK kinase154. This 

altered signalling results in an increased cell proliferation, survival and tumor progression, in a growth 

factor independent manner155.  



In comparison to wild-type BRAF, activating mutations in BRAF are constitutively active and there 

is some evidence that these changes lead to bypass the dimerization process156. In melanoma, BRAF 

V600E mutation permits BRAF to signal as a monomeric enzyme without the presence of activated 

RAS and upstream RTK inputs to amplify its dimerization157. In papillary thyroid cancer (PTC), the 

BRAF V600E gene mutation is associated with more rapid cancer growth and a higher death rate158. 

The discovery of genetic underpinnings in cancer has opened the way for targeted therapies consisting 

in drugs that directly target cells with specific gene changes, acting on specific cell processes and 

changing the way tumor cells signal to each other159–161. These drugs can stimulate the body to attack 

or control the growth of cancer cells. Given the crucial role both in melanoma and in thyroid cancer, 

BRAF V600E represents the most promising therapeutic target for treatment of patients with 

metastatic melanoma and advanced thyroid cancer refractory to standard approaches162,163. Several 

small molecule BRAF inhibitors have been developed during the last years, showing encouraging 

results in clinical trials both in melanoma and thyroid cancer164. These drugs work through a selective 

competitive mechanism of action for the modified adenosine triphosphate binding site of the active 

forms of BRAF V600E kinase; in this way, they inhibit its ability to participate in MAPK pathway 

activation. Vemurafenib and dabrafenib have been shown to be highly selective for BRAF V600E 

mutant cells that are respectively 100 and 500 fold higher than those for cells with wild-type 

BRAF165,166. Small molecules as vemurafenib, also known as PLX4032, and dabrafenib or 

GSK2118436 belong to BRAF inhibitors and reduce or slow tumor growth in people whose 

metastatic melanoma has a BRAF gene change167. Such drugs can help some patients to live longer, 

even though the melanoma typically starts increasing over again. Dabrafenib can be used after surgery 

in people with stage III melanoma (tumors that have spread to regional lymph nodes) and can 

contribute to decrease the risk of cancer recurrence.  

MEK protein, which properties downstream from BRAF, represents an additional target in melanoma 

treatment because agents that block MEK proteins can indirectly help melanoma patients with BRAF 

mutation. MEK inhibitors as trametinib and cobimetinib have been shown to shrink BRAF-mutant 



melanoma168. However, when used by themselves, these drugs do not seem to shrink the tumor as 

BRAF inhibitors usually do. Hence, a combination therapy with BRAF and MEK inhibitors 

represents a more successful therapeutic approach in decreasing tumors for longer periods than 

administering either type of drug alone. The combination of dabrafenib with vemurafenib or 

trametinib has significantly extended the progression free survival compared to dabrafenib alone in 

advanced BRAF V600E mutated melanoma169–171 and in advanced BRAF V600E mutated anaplastic 

thyroid cancer172,173. Unfortunately, response to BRAF inhibition differs among cell types: in most 

patients who initially respond to these treatments, then resistance is inevitably acquired to BRAF 

inhibitors as cells develop alternative mechanisms to pathway activation. Up to now, several potential 

resistance mechanisms have been identified within the context of both cancers that lead to reactivation 

of the MAPK pathway171,174–176.  

For what concerns melanoma, the resistance mechanisms include:  

i) NRAS mutations177;  

ii) activation of upstream RTKs (e.g.,insulin-like growth factor 1 receptor, platelet-derived 

growth factor receptor β [PDGFRβ], epidermal growth factor receptor [EGFR])178;  

iii) BRAF V600E kinase splice variants unable to be inhibited by BRAF inhibitors179;  

iv) transactivation of an uninhibited RAF dimer partner by the inhibited BRAF V600 

mutant180;  

v) acquisition of MEK-activating mutations181. 

Thyroid cancer cells harboring BRAF V600E mutation show a not well-defined intrinsic resistance 

mechanism to BRAF kinase inhibitors (KIs). High levels of EGFR in thyroid cancer cells show a 

positive response to the combination of vemurafenib with an EGFR inhibitor, while poorly responses 

were observed when vemurafenib was administered alone172. In the light of this, EGFR expression 

level represents a sensitivity factor to BRAF V600E inhibitors182 and its response mechanism seems 



to be the deactivation of EGFR-negative feedback loops by vemurafenib and the following prompt 

activation of RTK183.  

These mechanisms result in continuous signalling along the MAPK pathway or an alternative pro-

survival pathway such as the PI3K pathway. Other alterations, both upstream and downstream of 

BRAF can alternatively activate other signalling pathways. Hence, growing concerns over drug 

resistance to molecular targeted therapies such as in melanoma and papillary thyroid cancer184, 

including BRAF and MEK inhibitors, have stimulated researchers to discover alternative molecular 

targets for the treatment of disorders linked to BRAF mutations.  

Pathways have not only facilitated researchers to understand the theoretical complexity of cell 

molecular mechanisms, at the same time, supported by the interdisciplinary framework of systems 

biology, but they have constituted a bridge for the development of innovative tools for complex 

biological events185. 

From a systems biology perspective, there are many tools and resources for pathway analysis186–188, 

an emergent discipline combining software tools, database models and computational algorithms with 

the aim to help biologists in converting protein interaction data into a set of computational models189. 

High-throughput technologies also contribute to a significant amount of protein interaction data, 

generated through deep sequencing and microarrays190. All of these data help to acquire an overall 

picture of cell regulatory processes.  

An accurate classification of these methods remains discussable, according to the fact that pathway 

analysis methods evolve very fast. However, three main groups of methods in pathway analysis are 

available by now: i) Over-Representation Analysis or Enrichment Analysis (ORA); ii) Functional 

Class Scoring (FCS) and iii) Pathway Topology (PT). 

ORA measures the percentage of genes in a specific pathway or any gene group (gene ontology (GO) 

groups, protein families and so on) that own differential expression. The main scope of ORA is to 



provide a list of the most relevant pathways, sorted in accordance to a p-value. It is possible, hence, 

to identify relevant pathway, through the number of genes differently expressed in the experiment 

that pathways contain. The statistical significance of the correspondence among genes from a 

pathway and the list of differently expressed genes is determined by statistical tests as Fisher's test, 

hypergeometric distribution test and so forth191,192. 

FCS analyzes the expression change of overall genes in the list (not ranking by statistical significance) 

of differently experimental expressed genes. FCS removes the ORA cut-off threshold limitation. The 

aim of FCS is to evaluate differently expressed genes enrichment scores using pathways as gene sets 

to execute their calculations193,194. One of the first and most popular methods using the FCS approach 

is the Gene Set Enrichment Analysis (GSEA), also knowns as functional enrichment analysis195. 

GSEA is useful to identify genes that display precise changes at the individual level and harmonious 

enrichment within a set196. It is worth mentioning that pathway enrichment methods can be 

distinguished by the use or the absence of an explicit gene-wise statistic to measure the gene's 

association with a specific treatment and evaluate the relevance of a specific pathway in a specific 

treatment. Conversely, Gene Set Analysis (GSA)197 is able to rank genes applying the max-mean 

statistic in order to summarize gene sets and re-standardize them for more accurate inferences.  

PT is similar to FCS, but PT uses gene-level statistics through different databases integration. The 

critical difference is that PT is able to re-score the implication of a pathway as the connections change 

by taking into account the information about the role, the position and the direction of a biochemical 

interaction directly from the pathway database198. Oppositely, FCS will always provide the same 

score. Signaling Pathway Impact Analysis (SPIA)199, EnrichNet200, Gene Graph Enrichment Analysis 

(GGEA)201 and TopoGSA202 are some examples of PT approaches.  

Thomas et al. suggested a method to analyse the topology of genes in a pathway employing a genetic 

algorithm for the estimation of the contribution of each gene, coupled with a system biology-based 

approach for the identification of significant perturbed genes in a specific pathway203.  



Additionally, Bayesian Network (BN) models have gained popularity for learning biological 

pathways from microarray gene expression data204,205. Biological pathways as BN were modeled in 

2014 by Korucuoglu et al., pioneers in developing the Bayesian Pathway Analysis (BPA) helpful for 

the identification of cancer-related pathways206.  

At the same time, other methods such as cluster analysis with depth of inference approach207, 

correlation  statistics analysis208, weight matrices209, neural networks210, genetic algorithms211 and 

supervised learning algorithms212 represent a helpful set of resources for pathway analysis and 

discovery.  

In this scenario, three major “actors” play a fundamental and necessary role in the game: 

1. Databases: essential to storage molecular interaction network, collect pathways, molecular 

annotation and classifications (ontologies). 

2. Algorithms: fundamental to allow the navigation of the network in the databases, the statistical 

analysis of the high - throughput data, the pathway inference and the network modeled. 

3. Software client interface: useful for pathway and network layout and visualization. 

 

1.4 Computational strategies for signaling networks 

 

1.4.1 Database and tools for the visualization, simulation and analysis of signaling networks 

A growing number of databases provides information and knowledge about function annotation, 

protein interactions and experimentally validated biological pathways. These databases represent 

excellent and essential resources to ease pathway predictions and models in general213,214. Most 

researches and scientists have focused on integrating function annotation and protein–protein 

networks with expression data to ameliorate the accuracy and precision of a pathway model 

construction. 



Several public universities have taken a pioneering lead in the attempt to become a fundamental 

authority for pathway and molecular interaction databases. In particular, Kyoto University has 

developed the Kyoto Encyclopedia of Genes and Genomes (KEGG) database promptly curated by its 

own staff and containing a comprehensive collection of pathways curated by scientists considered to 

be the top experts in the field215.  

KEGG classifies pathways into seven specific classes: metabolism, genetic information processing, 

environmental information processing, cellular processes, organismal systems, human diseases and 

drug development. KEGG utilizes a sort of “maplink” to represent an interaction between a protein 

belonging to one pathway and a protein within the linked pathway. Moreover, KEGG associates more 

pathways from different species into one framework.  

There are other databases that is worth mentioning for the investigation of biological pathway and 

the improvement of research in general:  

A. WikiPathways: it is particularly useful to create manually electronic graphs of structured 

pathways both for cellular signaling and for metabolic processes216. Moreover, each pathway 

sheet includes a brief description, a curated bibliography, an updated pathway version history 

and a list of all the component genes and proteins linked to public resources. 

B. Gene Ontology (GO): it provides gene composition information of pathways pointing out the 

gene function and its relationships with three ontology categories, such as biological process, 

molecular function and cellular component217. 

C. Protein ANalysis THrough Evolutionary Relationships (PANTHER): it represents a large 

curated biological database of gene/protein families based on a classification system that 

identify gene function and classify them with their functionally related subfamilies. 

PANTHER takes part of the Gene Ontology Reference Genome Project aimed to categorize 

proteins and genes for high-throughput analysis218. 



D. Reactome: it is an open source curated bioinformatics database of human pathways and 

biochemical enzymatic reactions in which the concept of “reaction” is generalized through the 

typical transformations of specific entities such as nucleic acids, proteins (with or without 

post-translational modifications) and macromolecular complexes219. These transformations 

include the transport of a specific entity from one compartment to another, the consequent 

interaction necessary to induce the protein complex formation and so on. This simple 

generalization allows to capture the range of biological processes that spans signaling, 

metabolism, transcriptional regulation, apoptosis and synaptic transmission in a single 

internally consistent, computationally navigable format. 

1.4.2 Algorithms for Pathway visualization, investigation and prediction  

Several applications can be found in the literature about two dimensional graph layout for pathway 

analysis220. The most popular are force-based and energy-based algorithms able to exploit the N-body 

simulation method and helpful to reveal hubs and clusters in the signaling networks221. 

Force-based algorithms are based on the ascription of definite physical properties to the nodes (treated 

as a set of interacting particles) and edges of the graph that will influence the equilibrium state of the 

entire system. This method uses both repulsive (i.e., electrostatic interaction between every pair of 

particles) and attractive forces (i.e., spring interaction along the graph edges) with the target to 

identify the stationary node position matching the equilibrium state of the entire system.  

Energy-based algorithms are similar to force-based ones, as the equilibrium state of the system 

corresponds to a minimum of energy. These approaches offer a good basis for arbitrary graph 

placement but need huge computational resources222.  

For every fixed node 𝑢̅ (𝑢̅ ∈ 𝑉) we have: 

∑ 𝐹𝑟𝑒𝑝

𝑣∈𝑉

(𝑟𝑢̅ − 𝑟𝑣) + ∑ 𝐹𝑎𝑡𝑡𝑟

(𝑢̅,𝑣)∈𝐸

(𝑟𝑢̅ − 𝑟𝑣) = 0 

                                                                                                                                                                          (1) 



 

Zero net force corresponds to the result of force-based algorithms, while the result of energy-based 

algorithms matches with the state corresponding to the minimum energy 

⋃ =
𝑚𝑖𝑛

 𝑚𝑖𝑛 [ ∑ ⋃ (𝑟𝑢 − 𝑟𝑣)
𝑟𝑒𝑝

{𝑢,𝑣}∈𝑉

− ∑ ⋃ (𝑟𝑢 − 𝑟𝑣)
𝑎𝑡𝑡𝑟

(𝑢,𝑣)∈𝐸

] 

(2) 

where 𝑈𝑟𝑒𝑝 and 𝑈𝑎𝑡𝑡𝑟 are absolute values of the repulsion and attraction potentials. 

In both the approaches, the main goal is to achieve the stationary equilibrium for each node position. 

The force-based algorithm implementation consists of a solution of a nonlinear set of algebraic 

equations from a mathematical point of view, while the energy-based algorithm performs functional 

minimization. Both of these properties can be derived from one another. 

For what concerns pathway investigation and prediction, genetic algorithms (GAs)223 and supervised 

learning algorithms represent a class of methods to search knowledge and targets within gene 

interaction networks and also to automatically identify functionally cooperative genes.  

GAs originate from the studies of cellular automata conducted by Holland and collaborators in the 

early 1970s224. From that moment forward, GAs have been increasingly applied to several 

optimization problems in different fields, with a special attention in biomedicine. GAs consist on 

randomised, parallel search algorithms that model the principles of natural selection that leads to 

evolution. Like natural selection, GAs is a robust search method needing little information to explore 

effectively in large and poorly understood search spaces. In literature, several genetic algorithms were 

developed in order to take a data-driven approach to annotate and detect novel biological pathways, 

clusters in biological networks and to isolate functional and disease pathways.  

Nguyen et al., described a method for orienting protein–protein interaction networks (PPIs) and 

discovering pathways, conducting multiple runs on the data of yeast PPI networks225. They tested the 



best option for the problem through the design of a GA. Their GA is able to detect specific populations 

on a protein-protein interaction network and to evaluate their number and size against existing 

references. 

Supervised learning algorithms are a class of machine learning algorithms that customs a known 

training dataset to make predictions. This dataset contains input data and response values from which 

the supervised learning algorithm tries to build a predictive model of the response values for a new 

dataset.  

Dale and co-workers222 applied this machine learning method to obtain a metabolic pathway 

prediction starting from a gold standard genome annotation dataset made of specific and well-known 

features, considered as input data. The final output was the estimation of the probability that a 

pathway is present or not in a specific organism. 

1.4.3 Software for Pathway Analysis 

Pathway analysis applications can be usually classified into: i) web-based applications; ii) desktop 

programs and, iii) programming packages. 

Web-based applications for pathway analysis can offer both network visualization and simple 

analysis possibilities, such as STRING226, Cytoscape227, Ondex Web228, Visant229, CellMaps230. 

Typical example of desktop programs are i) GSEA-P, a Java desktop program application for Gene 

Set Enrichment Analysis with a user-friendly graphic interface231; ii) Genome Informatics Data 

Explorer (Guide), a desktop application designed to help biologists analyse RNA-seq and microarray 

gene expression data232. 

Programming packages are principally written in R and Python languages, and are freely shared 

through the BioConductor233 project and GitHub234 service.  



1.4.4 Algorithms in finding alternative pathways and new drug targets 

One of the first undirected pathway prediction algorithms used was NetSearch235. Its function consists 

on the enumeration of linear pathways and the generation of their ranking through a clustering of 

gene expression profile of each pathway entities. In parallel, NetSearch allows to generate a 

hypergeometric distribution-based score. 

However, linear paths do not easily and fully capture the complexity of signaling networks. To this 

aim, researchers have been looking for other pathway prediction strategies. For example, Scott and 

colleagues236, employed a specific color-coding technique finalized to search paths and higher order 

structures, namely trees and parallel paths, in a weighted protein interaction graph. Similarly to the 

work done by Scott and collaborators, Lu and co-workers237, showed a randomized divide-and-

conquer algorithm able to support complex non-linear pathway structures.  

PathFinder, another tool commonly used for pathway analysis238, allows to: i) associate several data 

sources and extract combining rules that describe protein function in a well-known signaling pathway; 

ii) detect new pathways in the network of interest employing the extracted rules, along with 

annotation and expression data. 

These methods essentially are capable to search potential target pathways in an individual way, but it 

is worth to mention that other approaches, such as the one formulated by Zhao et al,239, own the 

potentiality to recognize a single universal signaling subnetwork, using an unoriented edge selection 

algorithm240. 

In this scenario, Yosef et al.241 tried to combine these two different approaches using an algorithm 

able to recognize the trade-off between local and global search methods, and giving a preference to 

one or the other on a particular run of interest.  

Even if these methods pointed out valuable outcomes, none of them is capable to generate directed 

pathways and specific targets. To overcome the orientation problem for length-bounded pathways in 



weighted interaction networks, Gitter and collaborators242 implemented several algorithms based on 

probabilistic selection and alternative methods to solve specific issues about weighted Boolean 

satisfiability (SAT)243. They applied these algorithms to PPI networks using simulated and 

biologically derived sources and targets. These algorithms can recover many well-known pathways 

and improve upon previous approaches for pathway discovery, using real signaling networks. These 

algorithms are able to discover and analyzed pathways that do not appear in existing signaling 

databases and successfully they match notorious knowledge about the directionality of the 

interactions within pathways. Moreover, these algorithms rely on a number of reasonable biological 

assumptions including limiting the path length, using the confidence in the interaction edges and 

allowing for parallel pathways between sources and targets.  

A very common need in pathway analysis is represented by the research of nodes that make significant 

contribution to a specific target. This is required, for example, in the identification of potential targets 

that may elicit an effect at cellular level through the controlling cascade of a specific biological 

function. These nodes, however, could not belong to the neighborhood of the biological target under 

investigation. It is also possible that effective targets could be hidden within pathways that are only 

connected to the analyzed one by only one or few nodes.  

 

 

 

 

 

 

 



2 AIM OF THE THESIS 

Computational modeling of signal transduction is currently attracting much attention as it promotes 

the understanding of complex signal transduction mechanisms. Although several computational 

models have been used to examine signaling pathways, little attention has been given to crosstalk 

mechanisms. In this PhD research project, we developed a computational model that automatically 

explores and detects the most relevant nodes within the MAPK and PI3K/AKT pathways, attributing 

a specific weight and simulating the dynamics of MAPK and PI3K/AKT signaling cascades involved 

in melanoma and thyroid cancer. Moreover, the dynamics of the protein activities were analyzed 

based on a set of kinetic equations fostered with data coming from both literature and experimental 

sources. In silico analysis revealed that the RAF and AKT pathways act independently in both 

diseases and that novel prognostic biomarkers and therapeutic targets could be identified for obtaining 

benefits and a more effective treatment in thyroid cancer and melanoma. 

This PhD project has as the main goal the advancement of the state of the art in the development of 

computational strategies able to simulate both PI3K/AKT and MAPK pathways and their interactions, 

in order to deeper examine and investigate the cascade reactions involved in melanoma and thyroid 

cancer development and progression with a special attention to unresponsivity to conventional 

treatments. 

 

 

 

 

 

 



3 COMPUTATIONAL MODELING IN MELANOMA 
 

3.1 Melanoma background 

Skin is the largest organ of the body and represents the first line of defense from external factors. To 

this aim, integumentary system protects body against pathogens and excessive water loss and is 

fundamental for vitamin D production, sensory stimuli and temperature regulation. Melanocytes are 

responsible for the production of melanin, a pigment that defends skin from damage effects of 

sunrays. In physiological conditions, melanocytes lead to dark agglomerations formation, visible on 

the skin, known as nevi244.  

A tumor transformation of melanocytes could lead to cutaneous melanoma that represents a small 

percentage (about 5%) of all skin cancers245. It is estimated that one American dies of melanoma 

every hour, and according to the American Cancer Society 3.5 million cases of basal and squamous 

cell skin cancer and about 73,000 cases of melanoma are diagnosed each year in the U.S., more than 

all other cancers combined, and 50 million people are treated for it annually246.  

Epidemiological data coming from Italian Association of Tumor Registers (AIRTUM) report about 

13 cases per 100000 people of melanoma in Italy, and a growing and doubled incidence in the last 

ten years. Cutaneous melanoma affects men and women around 40-50 years old and is quite rare in 

children. It originates from skin or pre-existing nevi that could be congenital, if present from birth, or 

acquired, if they appear during the course of life247. Cutaneous melanoma is classified into:  

I. superficial spreading melanoma (the most common);  

II. lentigo malignant melanoma;  

III. acral lentiginous melanoma; 

IV. nodular melanoma. 



The main symptom of cutaneous melanoma is the change of a nevi shape or the formation of a new 

one. The characteristics of a nevi, that may indicate the onset of melanoma, are summarized in the 

acronym ABCDE248:  

A= asymmetry form (a benign nevus has a circular form, while melanoma is more irregular);  

B= border (irregular and indistinct);  

C= color variable (with different shades within the same nevus);  

D= dimensions (a clear increase in melanoma);  

E= evolution of nevus (which also shows changes in a short time).  

Other symptoms could be represented by a nevus that bleeds, surrounded by reddened area or itches. 

Cutaneous melanomas are generally classified into four stages, I to IV, in which zero represents the 

melanoma in situ, restricted to the surface layer of the skin. These four stages are defined on the basis 

of the TNM system, which takes into account the characteristics of the tumor as the thickness, the 

rate of replication of cancer cells, the presence of ulcerations (T), the involvement of lymph nodes 

(N) and the possible presence of metastases (M)249. The prognosis is different according to the 

thickness of the lesion. 

The main risk factor for melanoma is an excessive exposure to ultraviolet light (UVA and UVB), 

mainly in the form of sun’s rays, but also of tanning beds that should be used with caution, without 

abuse. Prolonged exposure to UV radiation is potentially dangerous because it can damage the DNA 

of skin cells and trigger tumor transformation250. Other risk factors are the failure of the immune 

system (due to previous chemotherapy treatments or transplant) and some genetic diseases such as 

xeroderma pigmentosum (in which patients DNA is not able to repair the damage caused by 

radiation). The risk increases in people with freckles, nevi, fair skin and eyes, in those who have a 

family history of melanoma and in those who was already affected from melanoma251.  



To prevent the risk of development of skin cancer there are several good manners and 

recommendations that dermatologists suggest for a healthy skin. The European Society for Medical 

Oncology clinical practice guidelines for cutaneous melanoma highlight the importance of a detailed 

diagnosis for the establishment of the tumor stage and, in some tumors, a mutation test is also 

required252. A periodic skin self-examination usually allows to identify changes or suspicious nevi 

and to consult a dermatologist in time. The dermatologist will assess a family history and the presence 

of typical signs and symptoms of cutaneous melanoma. The visual examination of the skin is more 

accurate when digital epiluminescence dermatoscope is used, in parallel to a magnifying glass and 

light illumination technique. However, the established clinical diagnosis of cutaneous melanoma 

requires a biopsy. Hence, early diagnosis is essential. Thanks to specific test analysis on tissue 

samples, it is possible to identify typical molecular mutations of different forms of cutaneous 

melanoma and establish relative prognosis and treatment. Diagnostic imaging tests such as x-rays of 

the chest, Computed Axial Tomography (CAT), Positron Emission Tomography (PET) and Magnetic 

Resonance Imaging (MRI) are useful to determine if and where the disease is spreading253. 

Currently, the US Food and Drug Administration (FDA) have approved several options for treatment 

of cutaneous melanoma over the past years254. Current therapeutic approaches include surgical 

resection, chemotherapy, photodynamic therapy, immunotherapy, biochemotherapy, and targeted 

therapy255. The therapeutic strategy can include single agents or combined therapies, depending on 

the patient’s health, stage, and location of the tumor. The efficiency of these treatments can be 

decreased due to the development of diverse resistance mechanisms. New therapeutic targets have 

emerged from studies of the genetic profile of melanocytes and from the identification of molecular 

factors involved in the pathogenesis of the malignant transformation. The main approach is 

represented by surgery intervention that generally can permanently treat the disease at an early stage 

for patients with stage I-IIIB melanoma. Other following interventions depend on melanoma stage, 

as the removal of a portion of healthy tissue around the sick one. In some cases, the "sentinel" lymph 

nodes are also removed and radiotherapy is used as an adjuvant therapy after surgery or to treat cases 



of recurrence. If melanoma has metastasized from the skin to other organs, the cancer is very unlikely 

to be treat by surgery. Even though resistance to apoptosis is probably the major cause of 

chemotherapy drug resistance in melanoma256, chemotherapy remains the most important palliative 

treatment of refractory, progressive, and relapsed melanomas257. In Table 3, the most important and 

conventional approaches in melanoma treatment258 are summarized and described in brief. 

Unfortunately, for most of them, melanoma in its advanced stages, is generally considered to be 

resistant. 

 

 

TREATMENT DESCRIPTION REFERENCE 

Dacarbazine (DTIC) For decades and until 2010, DTIC, a cell cycle-

nonspecific antineoplastic, was the current 

standard treatment for patients with inoperable 

metastatic melanoma. Nevertheless, it has never 

shown beneficial effects on survival of patients 

in phase III trials. 

DTIC acts both as a cytotoxic agent and as an 

immunostimulatory drug because it is able to 

induce local activation of natural killer (NK) and 

T cells. 

259,260 

Temoxolomide (TMZ) TMZ is the first-choice treatment for patients 

with malignant melanoma who are not able to 

receive an intravenous chemotherapy 

intervention. TMZ owns the same mechanism of 

DTIC, being the prodrug of DTIC and acting as 

an alkylating agent. TMZ demonstrates equal 

activity of DTIC with the advantage to be 

administered orally and to easily penetrate the 

blood-brain barrier. 

261,262 

Electrochemotherapy (ECT) ECT may be considered as an alternative 

strategy for local tumor control or as an 

additional treatment to the systemic ones. It uses 

a combination of physical properties of 

electroporation (through electric current) and 

chemical properties of chemotherapeutics with 

the aim to treat locally melanoma metastases. 

263 

Photodynamic therapy (PDT) PDT plays a possible role as an adjuvant therapy 

in the management of advanced melanoma 

(stage III and IV). 

It involves a systemic or a local administration 

of a photosensitizer that, after its activation by 

irradiation, will take place within the tumor. The 

effects of PDT may be summarized as follows: 

induction of high levels of DNA damage, 

cytoskeleton alterations and enhanced 

pigmentogenesis. 

264 

Immunotherapy Since 2011, FDA has approved four new drugs 

for melanoma treatment. These drugs are 

ipilimumab, pembrolizumab, nivolumab, and 

talimogene laherparepvec (T-VEC). The last one 

is an oncolytic virus drug that stimulates 

stronger anti-tumor immune responses, while the 

other ones are checkpoint inhibitors that take the 

“brakes” off the immune system and enable it to 

fight cancer.  

265–267 



Oncolytic virus therapy This group includes viruses genetically modified 

as well as the ones found in nature to reproduce 

efficiently themselves in cancer cells without 

harming healthy cells. T-VEC (also known as 

OncoVEXGM-CSF) is approved from FDA for 

melanoma patients with injectable but non-

resectable lesions in the skin and lymph nodes. It 

represents the first oncolytic virus approved for 

cancer therapy in the US. 

268,269 

IFN-α-2b FDA has approved high-dose of IFN-α-2b in 

patients after resection of high-risk melanoma 

(stage IIB and stage III). 

IFN-α-2b may interfere with the growth of 

tumor cells and slow the growth of melanoma. 

Even though IFN is approved as adjuvant 

treatment in melanoma, in clinic its use is 

restricted due to the high toxicity and dubious 

effectiveness. 

259,270 

Peg-IFN On March 2011, pegylated-IFN-α-2b (Peg-IFN) 

has been approved for the treatment of 

melanoma patients with a high risk of recurrence 

after radical surgery and for adjuvant treatment 

of lymph node-positive melanoma. Peg-IFN 

owns a persistent absorption and a prolonged 

half-life; this means a better effectiveness 

compared with the non-pegylated form. 

271 

Biochemotherapy Biochemotherapy is defined as a therapeutic 

regimen that consists, at least, of a chemotherapy 

(in single or combination formulation) and IL-2. 

This strategy may provide better relapse-free 

survival (RFS) than high-dose interferon (HDI) 

in patients with high-risk melanoma. 

272 

IL-2 Immunotherapy based on IL-2 has been the 

mainstay of systemic therapy for advanced 

melanoma. When administered at high-doses, 

IL-2 produces a small number of durable 

remissions in patients with metastatic melanoma, 

and due to this fact, it was approved in the US in 

1998 for metastatic melanoma. Unfortunately, 

IL-2 shows a significant toxicity and low-doses 

of IL-2 display low response rates and 

ineffectiveness. IL-2 effects consist on: 

i)blockage of the reproduction and spread of 

cancer cells; ii)stimulation of white blood cells 

helpful to attack cancer cells; iii)release of 

chemicals by cancer cells that attract cancer-

killing immune system cells.  

273,274 

Treg inhibitors According to the major role of Tregs in 

promoting tumor progression, targeting Tregs 

seems to be promising approach in cancer 

immunotherapy. Several approaches have been 

developed for targeting Tregs, for example the 

depletion of Tregs, the suppression of Treg 

function, the disruption of Treg recruitment to 

the tumour microenvironment (TME) and 

inhibition of pTreg generation. Some examples 

of these therapeutic strategies are low‐dose 

chemotherapy drugs and immune checkpoint 

inhibitors (ICIs). The main idea is to target Tregs 

specifically in the TME rather than peripheral 

depletion to minimize the risk of autoimmune 

diseases.  

275,276 

CTLA-4 blockade Monoclonal antibodies directed against 

cytotoxic T lymphocyte–associated antigen-4 
(CTLA-4), such as ipilimumab, harvests overall 

survival in patients with metastatic melanoma 

both in monotherapy and in combination with 

other checkpoint inhibitors.  

277,278 

PD-1/PD-1 ligand (PD-L1) blockade To maintain the discrepancy between immune 

surveillance and cancer cell proliferation, check-

point antibody inhibitors, such as anti-PD-1/PD-

L1, are a novel class of inhibitors that act as a 

tumor suppressing factor through the modulation 

of immune cell-tumor cell interaction. These 

checkpoint blockers are increasingly becoming a 

sophisticated and promising cancer therapeutic 

279,280 



strategy that produces significant antitumor 

responses with limited adverse reactions. 

Gp100 Peptide vaccine In a phase 2 study, patients with metastatic 

melanoma that received high-dose of IL-2 plus 

gp100 peptide vaccine have shown a higher rate 

of response than the rate expected among 

patients treated with IL-2 alone. This study 

demonstrates that the injection of gp100 

produces very high levels of circulating T cells, 

able to recognize and kill melanoma cancer cells 

in vitro. 

281 

Toll like receptor (TLR) agonists Toll like receptor (TLR) agonists seem to be an 

interesting strategy to enhance the vaccination or 

the immune system itself at the tumor 

microenvironment level. The trial conducted by 

Royal et al. evaluates the biologic and clinical 

effects of resiquimod, a TL3 7/8 agonist capable 

to trigger myeloid (mDC, TLR 8) and 

plasmacytoid (pDC, TLR 7) dendritic cells in 

advanced melanoma patients. Resiquimod, in 

vaccinated hosts with type-1 IFN and IFN-γ, 

leads to a regression of metastases, through an 

antitumor response, indipendently of previous 

vaccinations. 

282 

Adoptive T-cell therapy (ACT) ACT is a type of immunotherapy based on the 

administration of autologous tumor-infiltrating 

lymphocytes (TILs). A high percentage of 

CD4 + CD25 + CD127lowFoxp3+ T cells among 

the infused TIL population was associated with a 

significant overall survival in pretreated 

advanced melanoma patients. The combination 

of ACT with checkpoint inhibitors could 

enhance the TIL effect by opposing the local 

immunodeficiency. 

283 

Cyclin-dependent kinases (CDKs) 

inhibitors 

CDKs are protein kinases involved in 

i)progression of cell cycle, ii)control of 

transcription and iii)regulation of cell 

proliferation. Each CDK regulates a specific 

stage of cell cycle and acts as a checkpoint to 

stop cell cycle progression in response to 

specific alterations in the mitotic spindle or 

DNA damage process. Recently, a novel multi-

CDK inhibitor called P1446A-05, is able to limit 

melanoma growth and synergistically is showing 

positive effects in combination with MAPK 

pathway inhibitors. 
 

284,285 

Erythroblastic leukemia viral 

oncogene homolog 4 (ErbB4) 

inhibitors 

ErbB4 is a member of the EGFR family and 

activating mutations in ERBB4 have been 

reported in multiple studies dealing with 

melanoma. Recently, several clinical trials are 

evaluating ibrutinib, a covalent inhibitor of 

Bruton’s tyrosine kinase (BTK) in cutaneous 

melanoma (NCT02581930). 

286 

Targeted therapy Targeted drugs act in a different way from 

conventional chemotherapy drugs, which 

basically attack any rapidly dividing cells. These 

treatment options selectively block activity of 

key driving mutations identified in melanoma 

growth such as BRAF, NRAS, C-KIT and so 

forth. 

164 

BRAF, MEK, c-KIT, VEGF, 

PI3K/AKT-mTOR inhibitors 

The development of selective inhibitors of 

phosphokinases has considerably extended the 

therapeutic prospect and drastically enriched the 

therapeutic outcome for melanoma. BRAF-

mutated melanoma patients significantly benefit 

of kinase inhibitor therapies, especially through 

the combination of BRAF and MEK inhibitors 

that provide a good long-term disease control. 

Moreover, such regimens have been shown to 

achieve a progression-free survival of more than 

ten months and an overall survival of more than 

two years, along with good quality of life. 

Despite this, the majority of patients develop 

secondary resistance during long-term kinase 

inhibitor therapy. To this aim, current clinical 

287,288 



trials are oriented towards the investigation of 

alternative drug combinations including 

inhibitors of other signaling pathways as well as 

immune checkpoint inhibitors. 

 

Table 3. Treatment strategies for advanced melanoma 

 

In this perspective, computational model could contribute to discover and understand any 

mechanisms of acquired resistance, including reactivation of the MAPK pathway, constitutive 

activation of RTKs, activation of PI3K or overexpression of EGFR. 

 

3.2 Methods  

3.2.1 Pathway model 

The behavior of malignant melanoma A375 cell line, harboring BRAFV600E mutation, was modeled 

through an in silico platform to study the effects of a commercial selective BRAF inhibitor (e.g., 

Dabrafenib) that usually improves the response to standard treatments at an early stage but also shows 

an intrinsic resistance in several treated patients289.  

A software for simulation and analysis of biochemical networks and their dynamics, named COPASI 

(COmplex PAthway SImulator), was used to develop the model for the analysis of the effects of 

BRAF alterations on both MAPK and PI3K/AKT pathways290. COPASI platform includes a specific 

standard methodology helpful to understand complex biochemical processes. In particular, it uses 

deterministic integration of ordinary differential equations (ODEs)291 and stochastic simulation of 

reaction networks through using Gillespie's algorithm292. Moreover, it allows the computation of 

steady states293, stoichiometric network analysis294, sensitivity analysis295, optimization and 

parameter estimation296. 

All model entities and their relative interactions were retrieved from KEGG (Kyoto Encyclopedia of 

Genes and Genomes) PATHWAY Database215. The model consists of 48 species and 48 biochemical 



reactions. In Figure 3, one can see the overall representation diagram of MAPK and PI3K/AKT model 

in melanoma.  

 

Figure 3. Representation diagram of MAPK and PI3K/AKT model in melanoma.  

Pappalardo et al. PLOS ONE 2016;11: e0152104 

 

To model the interactions between the two specific pathways, “Kegg reference map ko04010” was 

considered for MAPK signaling pathway, while “Kegg reference map hsa04151” for PI3K/AKT. 

Other protein kinase cascades such as the ones involved in EGFR activation, PIK3CA function, AKT 

modulation and RAF1 signaling were modeled. 

Moreover, RAS signalling pathway (Kegg reference: ko04014) and mTOR signalling pathway (Kegg 

reference: ko041150) were included within the model to investigate any possible mechanisms not 

observed before in terms of possible escapement of apoptosis and alternative mechanisms that may 

induce Dabrafenib resistance phenomena through the activation of additional signalling pathways. 



The values for the initial concentration of entities were gathered from GSE22301 available on GEO 

(Gene Expression Omnibus) dataset297. 

Tipically, Henri-Michaelis-Menten kinetics rules and modulates activation and deactivation of the 

majority of the biochemical reactions that take place inside the cell8 and its formula is given by: 

𝑉 × 𝑆

𝐾𝑚 + 𝑆
 

 

Where S is the substrate, “V” is the maximum rate gained by the system and “Km” (Henri-Michaelis-

Menten constant) is the substrate concentration at which the reaction rate is half of V.  

For modeling purposes, a new modified version of the well-known Henri-Michaelis-Menten law was 

adopted in order to consider both substrate and modifier function in those activation or deactivation 

reactions of specific proteins.  

The modified Henri-Michaelis-Menten equation may be represented schematically as: 

𝐾𝑐𝑎𝑡 × 𝑆1 × 𝑆2

(𝐾𝑚 + 𝑆2)
 

Contrarily to the classical one, the new equation includes two types of substrates: S1 represents the 

modifier of the reaction and S2 is the generic substrate. Moreover, the kinetic law includes an 

additional parameter, described as “Kcat”, that symbolizes the number of enzymatic reactions 

catalyzed per second. While Henri-Michaelis-Menten law refers to the rate of enzymatic reactions, 

the modified Henri-Michaelis-Menten equation inspects the ratio between the reactions of the 

biochemical system and their affinity for the substrate, on the basis of how efficient the modifier 

involved is. 

Within the model, one can see a specific kinetic law for a specific class of biochemical reaction. In 

particular, a modified version of Henri-Michaelis-Menten law was employed to model the activation 

and deactivation reactions; mass action law were inserted to model two specific biochemical 



reactions, in particular the physiological deactivation reactions of model species and protein 

degradation reactions; an irreversible constant flux law was considered to model proteins production 

reactions.  

A375 melanoma cell line harboring B-RAFV600E mutation was modeled to analyze and investigate 

the dynamics of critical nodes within the main pathways involved in melanoma development and 

progression. To obtain this a “bRafMutated” species was modeled similarly to a “bRafInactive” 

species, especially in terms of initial concentration, while its behavior regarding the activation of 

MEK was modeled such as a “bRafActive” species. 

To better investigate, the dynamics and the effects of a specific therapeutic protocol for melanoma, 

and eventually its possible mechanisms of resistance, a selective B-RAF inhibitor was modeled within 

the in silico lab to reproduce the potential drug effects in the multifaceted dynamics of PI3K/AKT 

and MAPK signalling pathways. To this aim, a “Dabrafenib” species was inserted within the model 

at different concentrations (2, 1, 0.5, 0.25 and 0.125 nM) along with all its biochemical machinery, 

in particular the physiological drug degradation and its main actions in the inhibition of 

“bRafMutated” species. 

To simulate the physiological drug degradation, the half-life of Dabrafenib is about 10 hours, 

according to the data available on European Medicines Agency web site, and represents the main 

parameter used to set the related mass action law and able to reproduce the drug decay.  

Moreover, the central role of AKT protein kinase in the crosstalk between PI3K/AKT and MAPK 

pathways was modeled taking into account the activation of mTORC1 pathway and the 

activation/deactivation machinery of several proteins on AKT signaling such as (PDK1 and 

HSP90/Cdc37). The relative set and list of ODEs representing the species and their relative reactions 

of the model can be found looking at Figure 4. The entire MAPK and PI3K/AKT model is hosted in 

SBML (L2V4) format on BioModels Database298 and is identified by the following code: 

“BIOMD0000000666”.  



 

 

Figure 4. List of the ODEs of MAPK and PI3K/AKT model.  

Pappalardo et al. PLOS ONE 2016;11:e0152104 

 

The A375 cell line employed for this study derives from a 54 years old female affected by malignant 

melanoma and was obtained from ATCC (LGC Standards, Italy). This cell line was very useful to 

study the role of MAPK and AKT pathways because of the presence of the single alteration exhibited 

in BRAFV600E.  



Western blot analysis was performed to validate the in silico results using the Anti-MAP Kinase 

ERK1/ERK2 (pThr202/ pThr204) rabbit Ab and Anti-MAP Kinase ERK1/ERK2 rabbit Ab in order 

to detect respectively phosphorylated and total ERK 1/2 proteins. The Anti-beta Tubulin Ab was used 

as housekeeping gene. Moreover, student's t-test was used for statistical analysis. 

3.2.2 DNA methylation 

Pathway analysis could benefit of different forms of enrichment to better elucidate the biological 

function of each node. This is particularly true when this strategy is applied to novel therapeutic 

targets discovery in melanoma (in particular) and in cancer (in general). Among the existing strategy 

to enrich signaling pathways, DNA mutations occurring in driver genes such as B-RAF mutation 

could represent an important aspect to consider. However, DNA mutations are not the only reasons 

of tumor heterogeneity299. Also, epigenetic modifications can influence gene function and alter 

signaling pathways involved in cell physiological process and cell homeostatic balance300. Within the 

possible epigenetic mechanism, DNA methylation represents a greatly stable marker of gene 

regulation and other epigenetic mechanisms such as histone modifications301,302. In particular, it deals 

with a process by which DNA methyltransferases (DNMTs) enzyme transfers a methyl group to 

cytosine of palindromic CpG dinucleotides of a DNA sequence. This mechanism has been widely 

recognized to be correlated with transcriptional activity and in particular dealing with the inverse 

correlation between promoter methylation and gene expression. However, the functional role of 

global methylation patterns in gene regulation is still understood and an increased knowledge of these 

mechanisms that modulate gene expression through DNA methylation can lead to several advances. 

In particular, high-throughput technology and bioinformatics analysis can contribute to the 

development of alternative strategies to overcome methylome modification in cancer and the 

identification of new diagnostic and prognostic biomarkers associated to methylation hotsposts and 

hence, to cancer proliferation303–305.  



With the goal to enhance pathway analysis with an effective enrichment strategy, we developed an R 

package named Epigenetic Methylation and Expression (EpiMethEx) to investigate the functional 

role of global methylation patterns in gene regulation, useful to identify any methylation hotspots as 

well as extended genomic regions involved in regulation of relative genes306.  

EpiMethEx is able to identify methylation modifications of wide genomic regions that affect gene 

expression modulation. In particular, it detects: 

E. single methylation hotspots (CG probeset); 

F. extended methylation regions (methylation groups) by combining the CG probesets 

accordingly to specific genomic regions (TSS1500, TSS200, 3'UTR, body and so on…); 

G. CpG islands necessary for the modulation of the equivalent methylated gene.  

This R package executes cyclic correlation analysis between gene expression and methylation levels 

of each gene analyzed. EpiMethEx has been tested on a large series of data including both DNA 

methylation and gene expression profiling of melanoma samples achieved from “The Cancer Genome 

Atlas” (TCGA)307.  

The data in input are represented by 3 datasets: 

a) expression levels of all genes according to RNAseq analysis;  

b) relative methylation data; 

c) data about CG dinucleotides probesets 

Melanoma data for the execution of beta-test study were obtained from: 

a) the SKCM gene expression (Pancan Normalized) [ https://genome-cancer.ucsc.edu/]; 

b) the SKCM DNA methylation Methylation450k [ https://genome-cancer.ucsc.edu/] 

c) probeset annotation [ https://www.ncbi.nlm.nih.gov/] 

The analysis was performed on a total of 20,530 genes and 485,577 CG probesets, all referring to 473 

different TCGA samples. The main steps of the analysis are reported in Figure 5. 

https://genome-cancer.ucsc.edu/


 

Figure 5. EpiMethEx workflow 

Candido et al. BMC Bionformatics 2018; to appear 

 

 

Each step is described as follows:  

 Step 1: Gene expression analysis 



This phase consist on the analysis of the gene expression datasets of tumor samples that report the 

expression levels of genes. Then, a preprocessing and cleaning phase was achieved in order to remove 

from the analysis all the genes having null values across all samples. Furthermore, gene expression 

dataset was put in a descending order according to the TCGA sample gene expression value. In 

conclusion, a division in three equally spaced groups was executed, according to the sample gene 

expression, in order to create, for each gene, Up, Medium and Down expression groups. 

 Step 2: CG probeset pre-processing 

The main phases of step 2 includes: 

a) a pre-processing analysis performed to assign to each CG probeset: i) the corresponding gene; 

ii) the position within the region of the assigned gene (TSS1500, TSS200, 3’UTR, 1stExon, 

Body and 5’UTR); iii) the relative position within CpG islands, including proximal regions 

(Shore, Shelf);  

b) mapping of several CG probesets on different regions of the same gene, due to several 

transcript isoforms; 

c) pre-processing of dataset to obtain a one-to-one relation and in order to have a unique “cg-

gene-ID-position” correspondence; 

d) use of the resulting CG probeset annotation matrix to extrapolate from SKCM DNA 

methylation dataset the methylation levels of CG probesets relative to each gene analyzed in 

step 1; 

e) ordering and grouping of CG methylation values through the same TCGA expression order 

obtained from the sorting of the first dataset (step 1).  

 Step 3: CG probesets grouping and analysis: 

a) median of CG methylation levels stratified according Up, Medium and Down gene expression 

groups; 



b) beta-difference and p-value of each methylation level of CG probesets among gene expression 

groups; 

c) pearson correlation and p-value among gene expression levels and relative CG methylation 

levels; 

d) grouping of CG probesets within gene regions (all CG probesets belonging to the same gene 

region that are TSS1500, TSS200, 3’UTR, 1stExon, Body and 5’UTR); 

e) grouping of CG probesets within Island positions and adjacent Shore and Shelf regions of 

each gene; 

f) grouping of all CG probesets within the same gene. 

The final step consists on data filtering script for the Beta-test study. In particular, external script on 

EpiMethEx output data files was executed to: i) filter methylation data according to the median 

values among stratification levels; ii) filter methylation data according to β-difference and 

according to the methylation stratification level p value; iii) filter gene data according to FC and p-

value; iv) filter data according to Pearson correlation p value.  

The R scripts along with a detailed documentation including the user manual and how to utilize the 

software are available in the GITHUB repository at the following url: 

https://github.com/giupardeb/EpiMethEx. 

 

3.3 Results and discussion 

3.3.1 Pathway model results 

Two simulations of our model were performed under different conditions that are shown in Figure 6. 

Panel A depicts the pathway model simulated under normal EGF stimulation conditions in order to 

obtain a high transient activation of ERK. Panel B shows A375 cell line scenario under B-RAF 

mutation condition, hence, a strong ERK activity is pointed out, typical of B-RAFV600E mutated 

melanomas.  

https://github.com/giupardeb/EpiMethEx


 

 

 

Fig 6. pERK (ErkActive) and BRAF dynamics 

Pappalardo et al. PLOS ONE 2016;11: e0152104 

 

As a final point, the simulation correctly predicts the expected behavior of an elevated ERK activity. 

In other words, the species pERK owns a constant preeminent activity. It is worth mentioning that 

higher levels of pERK are not observed possibly due to the fact that pERK is already nearby to its 

threshold points and/or due to the involvement of alternative nodes within the entire pathway that 

may impact on the final outcome. 

Furthermore, we performed 48 hours of simulation to analyze the specific behavior and response of 

A375 cell lines at different concentrations of Dabrafenib inhibitor (0.125 nM, 0.250 nM, 0.500 nM, 

1.0 nM and 2.0 nM). The dynamics of pERK, BRAF mutated and Dabrafenib at different Dabrafenib 

dosage are reported in Figure 7. BRAF inhibition leads to an ERK phosporylation reduction and 

consequently also to a reduction of its activity. This reduction of pERK concentrations is in agreement 

with the behavior observed in vitro. 



 

Figure 7. In silico dynamics of pERK (ErkActive), BRAF (bRafMutated) and Dabrafenib.  

Pappalardo et al. PLOS ONE 2016;11: e0152104 

 

In silico results were confirmed through western blot analysis as reported in Figure 8. One can notice 

that pERK levels decrease due to Dabrafenib inhibitor activity against BRAFV600E protein. 

 

 



 

Figure 8. In vitro validation of in silico results. 

Pappalardo et al. PLOS ONE 2016;11: e0152104 

 

At this stage, we can assert that this in silico model could be used as starting point for the investigation 

and the simulation of any drug resistance phenomena, unresponsivity mechanism to selective 

inhibition treatment protocols and target discovery in specific and detailed cancer scenario.  

Moreover, this in silico analysis has confirmed the crucial role of AKT kinase in the crosstalk between 

PI3K/AKT and MAPK pathways due to the fact that in parallel, pathways such as mTORC1 and 

specific proteins such as PDK1, could affect and interfere with AKT signalling, leading to an 

enhanced phosphorylation profile of ERK. 

The in silico model of MAPK and PI3K/AKT developed for melanoma was then implemented with 

specific modeling features to generate a predictive model for target discovery of possible resistance 

mechanisms typical in advance thyroid cancer (See Chapter 4). 

3.3.2 DNA Methylation results 

In order to evaluate the biological significance of EpiMethEx selected genes and probesets, output 

data derived from the analysis of SKCM TGCA dataset were analyzed by using the filtering script 

mentioned above.  

In Figure 2, one can see the percentage of CG probesets positively (light gray boxes) and negatively 

(dark gray boxes) correlated to gene expression grouped, according to their relative position in gene 



regions. The most CG probesets positively correlated are mapped in 3'UTR (88%) and Body (79%) 

regions, conversely negative correlations were observed in TSS1500 (71%), TTS200 (90%), 1stExon 

(84%).  

Moderate differences were obtained comparing the CG probesets of 5'UTR region, while low 

difference were observed between all positive and negative correlated CG probesets, as shown in 

panel A of Figure 9. These results were in agreement with the literature concerning both the well-

described link between promoter hypermethylation and gene downregulation and the emerging role 

of intragenic methylation in regulation of gene expression.  

The additional stratification for island position of the CG probesets revealed a sensible increase of 

CG probsets belonging to Island (21% vs 7%) and N Shore (29% vs 17%) in negative correlated CG 

of both TSS1500 and TSS200 regions. Among 3'UTR CG probesets, increment of CG percentages 

was observed in N Shore and S Shore region of negative correlated probesets. Moderate increase was 

observed for S Shelf probesets (9% vs 0%) of positive correlated in 1st Exon CG and similar trend 

was observed for Island of negative correlated CG in 5'UTR region (12% vs 27%).  

Finally, negatively correlated CG probeset in Body region showed increment of N Shore, Island and 

S Shore groups compared to relative regions of positive correlated CGs. These results are reported in 

panel B of Figure 2. These stratification criteria showed that hypomethylation of promoter regions 

was mainly associated to demethylation of the CG probesets belonging to Islands and S Shore of 

promoter. Moreover, these findings highlight the importance of the high frequency of CpG in 

promoter region to induce down regulation as a result of the methylation of these CpG sites.  



 

Figure 9. Methylation CG probesets vs gene expression. 

Candido et al. BMC Bionformatics 2018; to appear 

 

For what concerns the stratification of CG probesets according to Island position showed a moderate 

increment of negative correlated CG within Island region (60%) and adjacent N and S Shore regions 

(49% and 62%). On the contrary, Shelf regions showed a sensitive reduction of negative correlated 

CG (26% and 22%) as shown in panel A of Figure 10. Body-associated CG probesets mapped in 

Island and Shore regions showed a decrease of about 15 % compared to Shelf regions. As 

consequence, an increase of CG probesets included in TSS1500, TSS200, 3'UTR and 1stExon regions 

was observed among Island and adjacent Shore regions. No variation was observed for 5'UTR CG 

probesets as reported in panel B of Figure 10. A further analysis performed stratifying the Island 

positions CG probesets and according to gene regions showed a similar behavior for each Island 

positions with significant increase of negative correlated CG probesets included between TSS500 and 

1stExon region (as reported in panel A and B of Figure 10). The same CG probesets were decreased 

within Body regions as one can see on panel C of Figure 10). Overall, Island position analysis 

suggested that hypomethylation observed in Island and Shore regions mainly affects CG probesets 



included in TSS1500, TSS200, 3'UTR, 1stExon, and 5'UTR. As consequence, the gene 

overexpression was mostly related to hypomethylation of Island of body regions. 

 

 

 

Figure 10. Correlation of CGs grouped by position in gene regions. 

Candido et al. BMC Bionformatics 2018; to appear 

 

To summarize, EpiMethEx tool, through the cyclic correlation analysis between gene expression and 

methylation levels for each gene, is able to identify methylation hotspots and extended genomic 

regions involved in the regulation of their relative genes. Overall, the beta-test analysis showed a 

negative association between methylation and gene expression for the most modulated genes in 

melanoma; then, positive correlation was observed in some overexpressed genes that showed 

intragenic hypermethylated hotspots. New information gained through the application of EpiMethEx 

allow to explore signaling pathways related to genes that, without this enrichment strategy, would 

have not be considered.  

 

 



4 COMPUTATIONAL MODELING IN THYROID CANCER  

4.1 Thyroid cancer background 

Thyroid cancer (TC) is the most common malignancy of the endocrine system and in the past three 

decades, there has been a dramatic increase in the number of people diagnosed with thyroid cancer308 

Based on reports from the National Cancer Institute (NCI) and the American Cancer Society, the 

incidence of TC has risen over the past 10 years by an average of 5.5% annually, and the death rate 

rose by 0.8% annually from 2002 to 20111. 

TC represents 3.8% of all new cancer cases in the United States and is the ninth most common cancer 

overall. The American Cancer Society has estimated that 62,450 people in the United States would 

have been diagnosed with thyroid cancer in 2015, and 1950 deaths would have been result from the 

disease2. 

Recently, the number of new cases of thyroid cancer is estimated to be 12.9 per 100,000 men and 

women annually, and the number of associated deaths is estimated to be 0.5 per 100,000 men and 

women annually309. 

Thyroid cancer occurs more frequently in women than in men, along with an approximate ratio of 3:1 

and can occur in any age group but more so in adults aged 45 to 54 years, with a mean age of 50 years 

at diagnosis310. 

The rise in the incidence of thyroid cancers may be attributable to the widespread use of imaging 

studies, such as computed tomography, ultrasounds, magnetic resonance imaging, and positron 

emission tomography (PET) scans that incidentally detect thyroid nodules311. 

                                                             
1   National Cancer Institute. SEER stat fact sheets: thyroid cancer. http://seer.cancer.gov/statfacts/html/thyro.html. Accessed January 12, 2015 
2 American Cancer Society. Thyroid cancer: what are the key statistics about thyroid cancer? Revised January 12, 2015. 

www.cancer.org/cancer/thyroidcancer/detailedguide/thyroid-cancer-key-statistics. Accessed January 12, 2015 



Moreover, the effect of environmental factors cannot be excluded such as a volcanic environment and 

several chemicals with potential carcinogenic properties312,313. 

TC is categorized into four main types: i) papillary thyroid carcinoma (PTC); ii) follicular thyroid 

carcinoma (FTC); iii) medullary thyroid carcinoma (MTC) and iv) anaplastic thyroid carcinoma 

(ATC)314. 

PTC is the most common thyroid malignancy (it represents approximately 70% to 80% of thyroid 

cancers) and is also the least aggressive type of cancer, because it has the tendency to grow and 

metastasize slowly315.  

FTC accounts for around 14% of thyroid cancers. It is more aggressive than papillary thyroid 

carcinoma and may be associated with iodine deficiency316. A variant of follicular carcinoma is 

represented by the Hürthle-cell carcinoma that is treated at the same way as follicular carcinoma317. 

PTC and FTC are considered well-differentiated thyroid cancer. The lifetime risk for PTC and FTC 

is approximately 1.1%, and the 5-year survival rate has risen to 97.8%, because almost 70% of cases 

are now diagnosed at an early stage, when the cancer is localized at the gland318. 

MTC is a cancer of parafollicular cells that are physiologically present in thyroid gland and it 

represents approximately 3% of thyroid cancers. Moreover, it is often associated with multiple 

endocrine neoplasia. Furthermore, medullary carcinoma is capable to produce calcitonin in excess, 

which makes it a valuable tumor biomarker319. 

ATC represents around 2% of thyroid cancers and is the most dangerous type of TC, due to the fact 

that it metastasizes early both to the neighboring lymph nodes and both to distant sites320. 

Other thyroid malignancies, such as lymphoma and other variants of the four TC types listed above, 

represent the remaining segment of thyroid cancers.  



For what concerns the treatment options for TC, they consist of surgery, radioactive iodine (131I) 

therapy and thyroid hormone replacement aimed at maintaining thyroid-stimulating hormone (TSH) 

levels at the very low or low-to-normal range321. 

In patients whose cancer no longer takes up iodine, the employment of tyrosine kinase inhibitors 

represent a valuable treatment alternative to radioactive iodine therapy for recurrent or metastatic 

thyroid cancers322. An emerging therapeutic strategy for these cancers is target therapy with small 

molecule kinase inhibitors (KIs). The major drugs are represented by vandetanib, cabozantinib, 

sorafenib. 

Vandetanib was approved in 2011 by FDA for the treatment of patients with symptomatic or 

progressive, unresectable, locally advanced or metastatic medullary TC. It targets RTK, EGFR and 

VEGF receptor323. The approval was based on data coming from the phase 3 Zactima Efficacy in 

Thyroid Cancer Assessment (ZETA) study324. 

Cabozantinib was the second TKI approved by FDA for the same indication as vandetanib325, on the 

basis of the EXAM (Efficacy of XL184 in Advanced Medullary Thyroid Cancer) trial3. Cabozaninib 

targets three pathways in MTC: MET, VEGF receptor 2, and RTK. Vandetanib and cabozantinib have 

shown significant prolongation of progression-free survival, and calcitonin and carcinoembryonic 

antigen levels decrease dramatically with these agents. However, no overall survival benefit was seen 

in these trials so far. These kinase inhibitors need to be personalized to patients due to their several 

side effects; then, a great deal of clinical judgment is mandatory before treating patients with them. 

Sorafenib is a multikinase inhibitor of RET, wild-type and BRAFV600E mutation, VEGF receptors 

2 and 3 approved in 2013 by FDA for the treatment of 131I-refractory, locally recurrent or metastatic, 

progressive, differentiated thyroid cancer326. The study, which led to the FDA's approval of sorafenib, 

                                                             
3 Exelixis. FDA approves Cometriq (cabozantinib) for treatment of progressive, metastatic medullary thyroid cancer. November 29, 

2012. http://exelixis.com/investors-media/press-releases. Accessed January 21, 2015 

http://exelixis.com/investors-media/press-releases


was a phase 3, multicenter, randomized, double-blind, placebo-controlled clinical trial that included 

patients with locally recurrent or metastatic, progressive differentiated thyroid cancer327. 

In conclusion, several KIs have been explored for the treatment of advanced thyroid tumors, but just 

some of them have been approved for the use in clinical practice. To date, sorafenib and lenvatinib 

were approved by FDA for the treatment of advanced differentiated thyroid carcinoma. In contrast, 

kinase inhibitors did not exhibit any significant effect in patients with poorly differentiated and ATC. 

Among them, also a BRAFV600E inhibitor, named vemurafenib (or PLX4032), was approved by 

FDA for treatment of metastatic melanoma328. Unfortunately, it did not provide any satisfactory result 

as a single agent in patients with poorly differentiated and ATC. In a small cohort of seven patients 

with ATC, only two patients achieved long-lasting responses to vemurafenib therapy while for four 

patients a progression of disease was registered329. This result suggests that poorly differentiated and 

anaplastic thyroid cancer cells show mechanisms tumor relapse due to an intrinsic or acquired 

resistance to vemurafenib.  

To this aim, computational modeling and in silico simulations represent nowadays essential resources 

for the analysis and the investigation of controversial and unknown mechanisms of resistance to 

conventional drug therapy and are able to predict possible new interventions to overcome this issue 

still unresolved. 

 

4.2 Methods 

Starting from a previous evidence that the so-called cancer stem cells (CSCs)330 own the ability to: 

i) grow as non-adherent spheroids (thyrospheres)331; 

ii) to sustain self-renewal in vitro and also tumor growth332–334; 

iii) to promote metastasis and to confer resistance to chemotherapeutic agents335–339 



we developed an in silico model including MAPK and PI3K/AKT pathways and their associated 

protein networks, with the molecular entities and interactions involved in CSCs resistance to 

vemurafenib.  

In this view, we tailored resistance to vemurafenib by focusing on the mechanisms underlying the 

enhanced ERK/AKT phosphorylation in response to the drug. The model is built on a system of ODEs 

able to simulate both the expected and the emergent behavior within the protein network. 

To instantiate the model, we used KEGG215 as main source to import data into the model. In particular, 

this database was used to: i) obtain all the entities that participate in the biochemical reactions 

involved in tumorigenesis of thyroid cancer (to this aim we considered the protein kinase cascades 

that sequentially contain EGF-Sos-Ras-Raf1-Mek1-ERK and EGFR-PI3K-PIP3-AKT); ii) display 

how a specific node shares one or more signaling pathways of our interest; iii) obtain the entire 

network and localization of molecules needed to simulate the biological scenario obtained in vitro. 

Serine/threonine-protein kinase BRAF represents the main step in the transduction of mitogenic 

signals from the cell membrane to the nucleus. BRAF protein is strongly linked both to MAPK and 

PI3K/AKT pathways that are mainly involved in tumor progression. Hence, we focused on BRAF 

protein and its role in regulating the signaling pathways involved in cell proliferation, differentiation 

and apoptosis. Moreover, we performed a comparative modeling how wild type BRAF gene and its 

V600E mutant variant may influence the entire biochemical system. 

To reproduce the experimental conditions of cell environment, we assumed that all the molecular 

entities examined had a homogenous concentration overall the cell volume, ranging from ≈10 nM/l 

to ≈10 μM/l340. For mutated species, in particular BRAF, we set the concentration to 100 nM/l, 

because this protein is constitutively activated and overexpressed during the entire time course of the 

simulation; for growth factors entities that occupy the culture medium (i.e., Fibroblast growth factor 

(FGF)) the concentration was set to 1x106 nM/l; for all the remaining molecules to 10 nM/l. 

The model tailored for 8505C CSCs was built with 74 entities, including protein kinases (i.e., AKT), 

growth factors (i.e., EGF), membrane receptors in their different status of activation (i.e., pEGFR in 



its activated form), small molecules, including protein kinase inhibitors at different concentrations 

(i.e., vemurafenib) and 85 biochemical reactions. The number of enzymatic reactions catalyzed per 

second and the Henri-Michaelis-Menten constant were set to the same value i.e., 0.1. This because 

experimental data do not indicate any predominant velocity in the considered biochemical reactions. 

To simulate the dynamics of the system, we used the COPASI pathway software tool 341. The model 

is available in GitHub repository visiting the following URL:  

https://github.com/francescopappalardo/MAP3K8-Thyroid-Spheres-V-3.0.  

Besides the classic Henri-Michaelis Menten law, we used a slightly modified version of this law as 

mentioned for melanoma modeling (See Chapter 3, paragraph 3.2.1). 

To reproduce drug resistance phenomenon, we introduced the Mutated-BRAF species at the 

concentration of 100 nM/l that is the same concentration of the initial Inactive-BRAF. We then 

removed all the biochemical pathways not influencing Mutated-BRAF species (i.e., the activation of 

BRAF by Rap1) and replaced Active-BRAF with Mutated-BRAF species in the switch of Mek 

activation. Moreover, new elements were subsequently inserted to reproduce the inhibitory effect of 

vemurafenib. To this purpose, we introduced vemurafenib species at a concentration of 1000 nmol/l 

that corresponds to the same one used in vitro in 8505C-CSCs.  

To better define the reaction framework of vemurafenib, we also included its degradation rate and its 

inhibitory effect against BRAF Mutated-species. Indeed, vemurafenib half-life in vivo is about 57 

hours342 and this parameter was used to rate the associated mass action law and simulate its decay.   

With the aim to simulate the resistance mechanism, we applied a further modified version of the 

Henri-Michaelis-Menten (HMM2) law that simulates how the inhibition of a modifier could lead to 

a counter-regulatory mechanism, which may invert the typical response to the inhibitor. In particular, 

we defined a piecewise equation that reads as follows: 

 

(1)                               𝐻𝑀𝑀2(𝐾𝑐𝑎𝑡, 𝐾𝑚, 𝑠1, 𝑠2) = {
𝐾𝑐𝑎𝑡∗𝑠1∗𝑠2

𝑘𝑚+𝑠2
   𝑖𝑓 𝑠1 ≤ 1,

     0              𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

https://github.com/francescopappalardo/MAP3K8-Thyroid-Spheres-V-3.0


 

 

As shown in the equation (1), this rule develops towards an “inverted” direction:  if the modifier S1 

is absent or at low concentration, the reaction could take place. Otherwise, if the modifier is in a 

normal or constitutive activated status, the biochemical reaction will not take place.  

In order to find ever long-distance crosstalk in the graph defined by the signaling network under 

study, we identified (through a depth first approach343) both forward edges and back edges.  

Forward edges are directed from one node of the graph to one of its descendants (for example TNF 

for ERK and TRAF complex for AKT).  Back edges are directed from one node to one of its ancestors 

(inverted effect). By this search, we found that MAP3K8 contributes to ERK activation, suggesting 

that this kinase may be targeted to overcome drug resistance.  

To facilitate the discovery of these potentially effective nodes, a further computational strategy was 

developed. Specifically, we developed a mapreduce approach based algorithm able to scan and detect 

nodes that are far from the target taken into account. The project is divided into three main sections:  

1. "mapReduce.py" 

2. "launchScript.sh"  

3. A web interface that allows the user to perform the analysis in an interactive way. 

The interface gives the user the option to select different parameters in order to launch the search. It 

includes: 

a) “Gene (hsa)”: the starting gene from which the detection of neighbors commences. 

b) “Pathway (hsa)”: the starting pathway for the neighbors gene search. 

c) “Hop”: the distance from the gene target i.e., how many “hops” are needed to reach and 

discover linked nodes. 



Once all the parameters have been set, the bash script "launchScript.sh" is launched. At the end of the 

analysis the web interface provides to the user a graph containing all the nodes and links generated 

on the basis of the starting gene. 

Then “launchScript.sh” script takes as input the parameters selected from the web interface and 

executes the “mapReduce.py” script, as many times as necessary to analyze all the pathways that are 

gradually discovered during the depth analysis within the nodes. This analysis provides all the useful 

information to determine which is the least recurrent pathway and the results can be visualized 

through a specific graph produced by the web interface. 

“MapReduce.py” script receives in input, through the “launchScript.sh”, the pathway of interest. If 

the input gene does not exist, the program itself will download the “xml” file through the KEGG API 

machinery and will convert it into the ".txt" format. In order to obtain this, several functions have 

been implemented within the Python script and they include: 

a. download_html (gene): the function takes as input the gene and downloads the corresponding 

html page. Then, it gets and returns the list of pathways in which the gene is present; 

b. download_xml (hsa): this function takes as input the hsa pathway downloading it in “.xml” 

format through the API of KEGG. 

c. create_txt (hsa): this function uses the downloaded pathway in “.xml” format, and converts it 

to a “.txt” format. It contains, for each line: i)starting gene ID; ii)arrival gene ID; iii)type of 

relationship that connects these genes (e.g., 34; 30 # PPrel # phosphorylation #). 

d. id_to_hsa (hsa): this function takes as input the file produced by the "create_txt" utility. Then, 

through the "read" function of the "Bio.KEGG.KGML.KGML_parser" library, the IDs of the 

genes are converted with their corresponding hsa memberships. This is particularly useful due 

to the fact that for each pathway considered, the same gene has different ID (e.g., hsa: 5594 + 

hsa: 5595; hsa: 5604 # PPrel # phosphorylation #). 



e. hsa_to_name (): this function transforms the hsa of genes into their corresponding names 

using an ad hoc constantly updated dictionary through the "read" function of the library 

"Bio.KEGG.KGML.KGML_parser" (e.g., hsa: 5594 + hsa: 5595 ---> MAPK1). 

Once the pathway is downloaded, the "ReducePathway.run ()" function is executed and performs the 

following functions: 

1) “mapper1” takes the ".txt" format pathway generated by the “create_txt” function and gives 

two elements  to “reducer1” that consist of i) a first string corresponding to the gene selected 

by the user and ii) a second string that corresponds to the direct neighbors of gene. 

2) “reducer1” transforms the second string received by “mapper1” into a list-type object in order 

to associate the gene with the list of the respective neighbors. Consequently, it will return this 

result to “mapper2”. 

3) “mapper2” takes in input the reference gene and the list returned by the reducer1. Afterwards, 

two operations are performed: 

- for each element the function "download_html" is run; this function generates a new 

list and for each element of this list “download_xml”, “create_txt” and “id_to_hsa” 

are run. 

- Each element in the list returned by “reducer1” is concatenated to the string of the 

gene received as input from the reducer1. This operation allows a step by step final 

pathway building. 

After “mapper2” ends, a file with the maps of all the neighbors of the gene analyzed is created. Then, 

on the newly created file, the function “hsa_to_name ()” is called. 

This final file is useful for the creation of a “Json file” which in turn is used to create the final graph. 

For what concerns the biological setting, anaplastic thyroid cancer cells HTH74 (BRAF wild-type) 

and SW1736 (BRAF V600E positive) were provided by Dr N. E. Heldin (Uppsala, Sweden). 8505-



C (BRAF V600E positive) cell line was purchased from European Animal Cell Culture (Salisbury, 

United Kingdom). The follicular cancer cell line WRO was provided by A. Fusco (Naples, Italy). 

BRAF V600E mutation in thyroid cancer cell lines was confirmed by PCR amplification and 

sequencing. 

4.3 Results and discussion 

The developed model allows to investigate alternative signaling pathways and we identified other 

pathways that do not directly influence ERK dynamics. In particular, we found that TNF signaling 

pathway, that is divided in two branches, stimulates both ERK and AKT protein kinases; ERK 

pathway is activated by TNFR1, while AKT by TNFR2. This bifurcation contains fundamental nodes, 

not considered before, to stimulate ERK and AKT phosphorylation. ERK activation is allowed 

through MAP3K8 contribution. AKT activation is triggered through the intervention of the TRAF 

complex and then, at a second stage, through PI3K activation.  

At this stage, the depth first search carried on our in silico model of 8505C-CSCs allowed to predict 

that the concomitant inhibition of both MAP3K8 and BRAF V600E is able to consistently reduce 

ERK phosphorylation. This prediction was confirmed by in vitro experiments with selective 

inhibitors. 

In silico predictions about the inhibitor combination protocol are shown in Figure 11 where the 

computational framework was applied to simulate and predict two different cases.  

 



 

Figure 11. In silico prediction of Vemurafenib plus MAP3K8 inhibitor combination protocol. 

Adapted from Gianì et al., Bioinformatics 2018; to appear 

 

Panel A shows pERK concentration at time 4 hours while panel B depicts its dynamics over time. 

ERK behaviour under BRAF knock-out condition when vemurafenib is administered at 1 µM 

concentration is simulated setting the PLX4032 species value to 1000 nM in the in silico model. These 

results show an initial p-ERK deactivation after BRAF arm knock-out and then a significant increase 

of the resistance mechanism against vemurafenib and the ineffectiveness of the treatment with 

conventional kinase inhibitors. When MAP3K8 inhibitor is administered at 10 µM concentration 

along with vemurafenib (at 1 µM concentration) the in silico model predicts a significant decrease of 

pERK (more than half of reduction, in comparison with the vemurafenib only administration). 

Inhibition of MAP3K8 was simulated setting MAP3K8:NF-kB_Inactive species value to 0 in the in 

silico model. 

The mapreduce paradigm was able to automatically scan and detect nodes that are far from our 

specific target taken into account (pErk). As one can see on Figure 12, MAPK1 gene that corresponds 

to ERK gene, according to KEGG nomenclature, is modulated by two arms that are respectively 

MAP2K1 and MAP2K2. For MAPK1 gene, the “hop” selected was equal to “2” and after the launch 

0

5

10

15

pERK concentration at 4 hrs

n
M

/l

Vemurafenib

Vemurafenib + 

MAP3K8 

inhibitor

0 5000 10000 15000 20000
0

5

10

15

pERK dynamics

Time (seconds)

n
M

/l
Vemurafenib

Vemurafenib + 

MAP3K8 

inhibitor

A 

B 



of the script, we obtained a generation of nine neighbor genes for MAPK1 and a generation of six 

neighbor genes for MAPK2. In both isoforms of the same gene, the output graph pointed out the 

presence of MAP3K8 gene as one of the possible neighbor gene involved in the modulation and in 

the phosporylation of ERK. 

 

Figure 12. A screenshot of mapreduce paradigm based algorithm. 

Adapted from Biondi et al., Euromicro Conference on Parallel and Distributed Processing 2019; submitted 

 

To validate in silico prediction, we compared the expression levels of MAP3K8 between the 8505C-

CSCs and monolayer 8505C cancer cells counterpart by qRT-PCR. These results are shown in Figure 

13. 

 



 

 

Figure 13. MAP3K8 kinase expression and function in 8505C-Spheres. 

Adapted from Gianì et al. Bioinformatics 2018; to appear 

 

Interestingly, 8505C-CSCs showed higher levels of MAP3K8 expression than 8505C monolayer 

parental cells (Figure 13A).  

Next, we evaluated the effect of a selective inhibitor of MAP3K8 on 8505C-CSCs response to 

vemurafenib in terms of cell growth and apoptosis by measuring both the cleavage of poly (ADP-

ribose) polymerase (PARP) and DNA fragmentation analysis. 

To this end, we exposed 8505C-CSCs to increasing doses of the MAP3K8 inhibitor with or without 

1 µM vemurafenib for 7 days. MAP3K8 inhibitor significantly restored in a dose-dependent manner 

the effect of vemurafenib on sphere formation in 8505C-CSCs harbouring the BRAF V600E mutation 

(Figure 13B).  



According to growth inhibition, western blot analysis revealed a substantial PARP cleavage in 

8505C-CSCs upon combined treatment, indicative of apoptosis induction (Figure 13C). More 

specifically, treatment of MAP3K8 inhibitor used as single agent did induce PARP cleavage; 

however, it was less marked as compared to combined treatment. As expected, vemurafenib alone 

failed to induce cleavage of PARP. Similar results were observed in DNA fragmentation assay 

(Figure 13D). 

Finally, combined treatment of vemurafenib and MAP3K8 inhibitor resulted in effective suppression 

of ERK rebound and AKT overactivation compared to vemurafenib alone, providing a rationale for 

the observed synergy in both growth and apoptotic assays (Figure 13E). We also confirmed our results 

using an additional thyroid cancer cell lines harboring BRAF mutation, SV1736 (data not shown). 

To summarizing, these results indicate that a small subpopulation of cancer cells, cancer stem cells 

(CSCs), may be involved in the failure of therapies targeting BRAF V600E in advanced thyroid 

cancer. These data have been obtained in CSCs derived from a panel of well-established thyroid 

cancer cell lines by a sphere-formation assay. This cell system provided a reliable model for further 

experiments on KI resistance. The stem cell identity of these cancer spheres is supported by their 

extensive self-renewal in vitro and overexpression of several stemness-related genes, such as OCT-

4, ABCG-2, HES-1 and HEY-1, compared to monolayer parental cells. 

Here we find a paradoxical stimulatory effect of BRAF-inhibitor vemurafenib on mutant BRAF 

V600E spheres (8505C-spheres) at variance with their parental monolayer cultures (8505C-

monolayers). Indeed, same drug dose, while inhibiting cell growth and ERK activation in mutant 

BRAF V600E monolayer cultures, it stimulated sphere proliferation with a markedly different effect 

on kinetics of both ERK and AKT activation. In 8505C-spheres vemurafenib induced only a transient 

inhibition of ERK phosphorylation with a rapid and paradoxical re-activation starting at 30 minutes. 

In the same experimental context, a progressive increase in AKT activation was also observed. In 

accordance with the theory of the role of CSCs in chemoresistance, these data suggest a resistance 

phenomenon to vemurafenib in a subpopulation of these thyroid cancer cells.  



Importantly, the in silico approach allowed us to identify MAP3K8 protein, a serine/threonine kinase 

expressed in 8505C-CSCs, as possible mechanism of resistance. Here, we developed a computational 

model with the aim to investigate alternative signaling transduction pathways over long distances that 

can affect possible crosstalk links between MAPK and PI3K/AKT.   

Applying depth first search strategy, we tracked alternative pathways able to explain the escapement 

from ERK activation. Under BRAF inhibition, the depth first search identified long distance entities 

that, in turn, may affect the dynamics of ERK activation. By a computational view, this method 

identifies forward edges, which point from a node of the graph to one of its descendants (for example 

TNF for ERK and TRAF complex for AKT), and back edges, which point from a node to one of its 

ancestors (inverted effect). By this search, we found that MAP3K8 (MAP3K8) contributes to ERK 

activation, suggesting that this kinase may be targeted to overcome drug resistance.  

In vitro experiments indicated that in mutant BRAF V600E 8505C-CSCs the inhibitory activity of 

vemurafenib is restored by the addiction of the selective MAP3K8 inhibitor. Hence, these data were 

in agreement with and confirmed our prediction obtained by simulation modeling. 

MAP3K8 kinase was shown to be an important mediator in inflammation during both innate and 

adaptive immune response43,344,345. Activation of MAP3K8 involves downstream signaling pathways 

such as MEK/ERK, JNK, p38 MAPK, and NF-κB not only involved in inflammatory response but 

also in the production of pro-inflammatory cytokines such asILandIFN346–349. 

Recently, accumulating evidences suggest that MAP3K8 may play a role in cell transformation, tumor 

growth and metastatic progression in several human cancers350–354. In this view, a recent report 

indicates that that higher expression of MAP3K8 correlates with both the BRAF V600E mutation and 

tumor recurrence in papillary thyroid cancer (PTC)355.  

Our data indicate for the first time that MAP3K8 is up-regulated in 8505C-CSCs compared to 8505C 

cell monolayer. Moreover, treatment with MAP3K8 inhibitor alone induced both marked DNA 

fragmentation and PARP cleavage, indicative of apoptosis induction in 8505C-CSCs.  



Taken together, MAP3K8 appears not only drive vemurafenib resistance in CSCs but might represent 

a potential novel prognostic marker and therapeutic targets for advanced thyroid cancer treatment. 

Indeed, MAP3K8 expression levels may be a clinically useful biomarker to predict the response to 

vemurafenib monotherapy in BRAF mutant tumors as well as may also help guide the selection of 

MAP3K8 combination therapy in these cancers. 

Moreover, these data are suggestive that MAP3K8 may support the development of stem cell 

capabilities in the thyroid cancer cells and, and also be associated with tumor progression and 

metastasis. Thus, future study will be directed to investigate the role of MAP3K8 in thyroid cancer.  

In conclusion, our data highlight a distinct mechanism by which mutant BRAF V600E thyroid cancer 

escape from vemurafenib inhibitory activity. Our current data reveal that MAP3K8 contributes to 

vemurafenib resistance of mutant BRAF V600E thyroid CSCs.  

The further role of MAP3K8 as biomarker in predicting response in thyroid cancer under vemurafenib 

treatment could be better assessed through in vivo experiments that will be performed in due course. 

Moreover, with a limited effort, the in silico model can be adapted to other diseases that share the 

same signaling pathway. 

 

 

 

 

 

 

 

 

 

 

 



5 CONCLUSIONS 

Nowadays, computational modeling and simulation are more than useful in finding novel therapeutic 

targets and prognostic biomarkers for a more effective treatment in cancer. In particular, these 

strategies are able to better understand controversial mechanisms both at cellular and molecular level, 

to speed-up the drug discovery process and to help in overcoming specific drug resistance 

phenomena.  

In this PhD project, we applied ordinary differential equations based models coupled with algorithmic 

approaches to reveal biochemical and genetic mechanisms underlying drug resistance phenomena in 

melanoma and thyroid cancer treatments. 

For what concerns melanoma, we developed a computational model able to simulate PI3K/AKT and 

MAPK pathways and their interactions, both in physiological conditions and in melanoma A375 cell 

line harboring B-RAF mutation. The physiological model correctly reproduces the strong transient 

activation of ERK, while the melanoma A375 model reproduces pERK behavior when Dabrafenib 

intervention is administered. Its behavior is correlated to Dabrafenib concentration and p-ERK levels 

drop down due to the inhibitor activity of Dabrafenib over BRAFV600E protein. 

This model represents a good starting point for further investigations of other fundamental signalling 

pathways of specific diseases that show genetic alterations and constitutive activation of particular 

nodes within the pathways.  

In parallel, EpiMethEx, a computational tool for the correlation analysis between gene expression 

and methylation levels, was developed to identify methylation hotspots and extended genomic regions 

involved in gene regulation.  The beta-test analysis showed a negative association between 

methylation and gene expression for the most modulated genes in melanoma. At the same time, a 

positive correlation was observed in some overexpressed genes that showed intragenic 

hypermethylated hotspots. The information gained through the application of EpiMethEx facilitates 



the exploration of signaling pathways for a specific gene that, without this enrichment strategy, would 

have not be considered.  

To investigate particular types of thyroid cancer that are refractory to kinase inhibitors treatment (e.g. 

vemurafenib),  the developed computational strategy simulates MAPK and PI3K/AKT pathways and 

their associated protein networks. Moreover, the application of a depth first search strategy carried 

on the in silico model of 8505C-CSCs was able to identify alternative signaling pathways that do not 

directly influence ERK dynamics. In particular, we found that TNF signaling pathway stimulates both 

ERK and AKT protein kinases and the model was able to predict that the concomitant inhibition of 

both MAP3K8 and BRAF V600E is able to drastically reduce ERK phosphorylation. The prediction 

was then confirmed in vitro with a selective inhibition protocol.  

The novel insights revealed by these innovative computational approaches allowed researchers to 

simplify the challenge of identifying novel targets and circumventing the need for costly and time-

consuming experiments. The results achieved in this project, also pave the way for a wide variety of 

future research, including design of new drugs that inhibit, in a more effective way, specific functional 

sites and a better understanding of evolutionary biology.  

Prospectively speaking, these results provide the opportunity to look further into possible 

applications. According to the new findings able to overcome drug resistance in thyroid cancer, a 

gene expression study of MAP3K8 in malignant melanoma A375 cell line, harboring BRAFV600E 

mutation, will be investigated to evaluate potential activity in ERK modulation. Methylation analysis 

through EpiMethEx will be performed in other cancer datasets (e.g., thyroid cancer) to establish 

further combination roles of gene expression and methylation levels. The very interesting result 

coming from the in vitro validation of MAP3K8 as an efficient inhibitor of ERK activity in 8505C-

CSCs deserves an in vivo trial in order to confirm its biological function. 
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