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A B S T R A C T   

Detection and identification of plant pathogenic fungi have relevant implications for both food safety and human 
health, and require fast and easy-to handle diagnostic techniques. In this context, we report the design and 
development of a fluorescent array-based sensor, containing different organic receptors, able to detect selectively 
Penicillium italicum, Alternaria alternata and Fusarium sacchari. The detection of these pathogenic fungi can be 
performed using a smartphone, leading to the first example of detection of microscopic fungal plant pathogens by 
fluorescent array using a smartphone as detector. This study represents a proof-of-concept for the realization of 
practical sensoristic devices able to detect pathogens in plant products and food or in environmental samples, in 
order to guarantee food and human health security.   

1. Introduction 

Fungi, in the broad sense of the term which includes both True Fungi 
(Fungi sensu stricto) and Oomycetes, are the most numerous groups of 
plant pathogens [1]. Many plant diseases, such as rusts, smuts, powdery 
mildews, downy mildews, fruit and vegetable rots, anthracnoses and 
scabs, are responsible for severe pre- and postharvest crop losses glob-
ally. Moreover, some plant pathogenic fungi, particularly species of 
Alternaria, Aspergillus, Fusarium and Penicillium, produce noxious sec-
ondary metabolites collectively called mycotoxins, that may contami-
nate plant products and foods [2,3]. Recently, secondary metabolites 
produced by Alternaria alternata and Penicillium digitatum on infected 
orange fruits have been identified. They belong to different chemical 
classes and include AAL-toxin TB2, AAL-toxin TE2, AF-toxin II, Alte-
nusin, Alternariol monomethyl ether, Alternethanoxin A, Altersolanol L, 
Aurasperone C, Curvularin, Dihydroaltersolanol, Erythroglaucin, Mac-
rosporin A, Maculosin, Porriolide, Porritoxinol and Tentoxin, all pro-
duced by A. alternata, as well as Alantrypinone, Anacine, Asteltoxin, 
Atrovenetins,Fungisporin, Lichexanthone, Palitantin, Penipacid B, 

Penochalasin K, Rubratoxin B, Serantrypinone, Solistatin and Patulin, 
produced by P. digitatum [4]. Fusarium species, including F. sacchari, are 
known to produce several toxic secondary metabolites, the major toxins 
associated with F. sacchari and other Fusarium species include fumoni-
sins (B1, B2 and B3), tricothecenes (deoxynivalenol - DON or vomitoxin 
and T-2), zearalenone, beauvericin, enniatins and moniliformin. These 
toxins frequently co-occur and contaminate important agricultural 
crops, posing health hazards to humans and animals [5]. A few 
destructive fungal plant pathogens, such as Plenodomus tracheiphilus, the 
causal agent of mal secco disease of citrus [6,7], are included in the lists 
of organisms of quarantine concern as they are considered a threat for 
agriculture and nature conservation. Restrictions are imposed to the 
trade of plants and plant products to prevent the spread of these quar-
antine organisms and a major task of the regional and national phyto-
sanitary services is to intercept them, primarily at the borders, to 
prevent their introduction and spread. Alternaria alternata is the causal 
agent of several plant diseases worldwide such as Alternaria brown spot 
of mandarins [8] and heart rot of pomegranate [2,9,10]. Fusarium sac-
chari is one of the species of this genus of fungi responsible for 
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post-harvest rot of banana fruits [10,11,12]. Detection and identifica-
tion of plant pathogenic fungi, or biological hazard substances, have 
relevant implications for both food safety and human health [13]. Due to 
the perishable nature of plant products and the high number of samples 
to be examined crucial features of routine diagnostic methods must be 
rapidity and ease of application. Conventional diagnostic protocols for 
fungi rely on examination of morphology and DNA analyses [14–16]. In 
general, these techniques show high sensitivity and selectivity, but are 
expensive and time consuming. Moreover, they require equipped labo-
ratories and specialized personnel. 

The recent development of array sensor, also known as “chemical 
nose”, may help in solving these problems due to the simple analysis 
protocol, a non-destructive sampling, fast response and ease to handle 
[17,18]. An optical array consists in many optical/fluorescent organic 
receptors/probes, which show different affinity for the target analyte. 
The array technology is based on the non-specific interaction between 
analyte and the organic receptors/probes. The presence of many re-
ceptors in the array device leads, after a proper mathematical treatment 
(i.e. multivariate analysis), to multiple interactions with an enhanced 
selectivity compared to the classical sensor-single molecule [19]. In 
particular, array sensing can be performed exploiting covalent reaction 
between the analyte and the receptor on the array, leading to the for-
mation of a new chemical species [20]. Our strategy is to perform the 
sensing exploiting non-covalent interactions, such as hydrogen bonds, 
π− π staking and cation-π, in order to finely modulate the interactions 
between each probe and the analyte, thus leading to higher selectivity 
[21–28]. In fact, a covalent reaction between probe and analyte leads to 
a simple off-on signal, while the formation of non-covalent interactions 
leads to a tunable recognition signal by depending the nature and the 
structure of the analyte, increasing the output information of the array. 
In addition, the possibility to perform sensing in real field by using a 
simple methodology to acquire and elaborate the data of the array 
should be extremely useful for practical applications. In this context, 
modern smartphones with a high-resolution camera and specialized 
software for image data treatment, can be useful due to the possibility to 
obtain qualitative/quantitative information following the optical or 
colorimetric changes of the organic receptors into the array device 
[29–34]. Moreover, this method does not require the presence of 
specialized operator and cuts costs and time of the analysis. 

Based on these premises, we report the design and fabrication of an 
array-based sensor, containing different fluorescent organic receptors 
that were demonstrated to be able to detect selectively P. italicum, 
A. alternata and F. sacchari. These fungi cause postharvest fruit rots of 
major fruit crops. In particular, P. italicum and the congeneric 
P. digitatum are the two most common causal agents of Penicillium mold, 
a very damaging postharvest disease of citrus fruits globally [35–39]. In 
particular, P. digitatum and P. italicum are responsible for green mold and 
blue mold of citrus fruits, respectively [36]. Green mold is the most 
common Penicillium rot of citrus fruits; however, blue mold is more 
insidious because it spreads in the box and may infect healthy fruits 
directly, regardless of injury [35]. Consequently, it may be regarded a 
nesting-type pathogen. 

We based our array sensor on four different class of organic fluo-
rophores, in detail Bodipy’s, cavitands, rhodamines and naph-
thylamides, properly functionalized with functional groups able to 
interact by non-covalent interactions with the target analyte. We 
selected these probes to cover a wide range of emission spectra. In 
particular, quinoxaline cavitands show an emission band from 350 to 
500 nm, naphthylamides have a characteristic emission from 400 to 600 
nm, and Bodipy’s lead to an emission in the range 500–700 nm. In 
addition, our approach is to exploit formation of hydrogen bonds (due to 
the presence of phenolic, alcoholic and amino groups in the probe), ion- 
dipole (by alkyl-pyridinium group), π− π and hydrophobic effect (by 
aromatic rings and aliphatic chains, respectively). 

We demonstrated the ability of the new device to detect and 
discriminate these fungi from other fungal plant pathogens, also at low 

concentrations. To the best of our knowledge, this is the first example of 
detection of fungi by array sensors, using a smartphone as a detector. 

2. Results and discussion 

2.1. Array design 

The array was designed to contain molecular probes with different 
excitation/emission ranges, and the possibility to establish different 
non-covalent interactions with the analytes. In particular, we selected 
four different classes of chromophores (highlighted in red in Fig. 1): 
rhodamines, bodipy’s, quinoxaline and naphthylamides. These probes 
contain many recognition sites (highlighted in blue in Fig. 1), able to 
interact through non-covalent interactions with the analytes: hydrogen 
bonds, ion-dipole, dipole-dipole, π− π and hydrophobic effect. Syntheses 
of these probes were performed using simple synthetic protocols, 
detailed in the Supporting Information. 

2.2. Sensing by array 

In a polyamide filter paper, with a diameter of 5 cm, 1.5 μl of the 
probe solution (1 mM in CHCl3) has been dropped and then the solvent 
was evaporated. Images of the array under UV lamp irradiation 
(365 nm) in a dark chamber have been acquired by a commercial 
smartphone (with a 12 megapixel camera resolution), before and after 
the exposure to selected water-suspensions of fungi. In particular, 
conidium or zoospore suspensions in sterile distilled water (s.d.w.) 
(1.7–2.0 ×106 conidia, or 1.0–1.5 ×105 zoozpores mL− 1) of six different 
fungi (Plenodomus tracheiphilus, Phytophthora nicotianae, Phytophthora 
citrophthora, Penicillium italicum, Alternaria alternata and Fusarium sac-
chari, see Supporting Information, Fig. S21), were dropped onto each 
probe of the array sensors. After evaporation of the solvent, the array 
was further photographed, and the images before and after exposure to 
the fungal conidia solutions were processed by Fiji. This software con-
verts the images into RGB channel values, which are then converted to 
Gray channel (G) by using the formula G= (Rvalue + Gvalue +Bvalue)/3, 
thus obtaining a single value for each pixel. The emission intensities of 
this G scale for each probe have been compared to phenanthrene (Ctrl in 
Fig. 1), and these normalized values (ratio between the intensity of each 
probe and the intensity of the control) have been tabulated for statistical 
treatment using the Excel software (Microsoft 365, a schematic repre-
sentation of the elaboration process is provided in the Supplementary 
Material, Fig. S22). Fig. 2 shows the array image obtained by smart-
phone, under 365 nm UV lamp, before and after the exposure to 
P. italicum (1.7–2.0 × 106 conidia mL− 1). 

In particular, Fig. 3 shows the array response, in terms of change of 
the emission of each probe, to different fungal conidial or zoospore 
suspensions. 

It can be observed that each probe changed emission differently upon 
exposure to different fungal suspensions. In particular, in the case of 
P. italicum (yellow bars), A. alternata (green bars) and F. sacchari (orange 
bars) a clear different response could be detected. This indicates the 
possibility to discriminate these three fungi from the others. In addition, 
P. italicum primed a general quenching of the fluorescence emission, 
while F. sacchari and A. alternata induced an enhancement of the emis-
sion. With the other fungi tested, Pl. tracheiphilus, Ph. citrophthora and 
Ph. nicotianae, the emission response was almost similar to each other, 
thus precluding the possibility of discrimination. The selectivity here 
showed is typical of the array technology, due to the presence of mul-
tiple receptor response. Probably, the differential luminescent responses 
were primed by specific volatile organic compounds (VOCs) generated 
by the tested fungi, with a functional mechanism similar to that of 
biosensors [39,40,41]. Fungi, including those associated to citrus fruits, 
produce a wide array of VOCs but not all are species- or genus-specific 
[8,42–45]. 

Partial Least Squares (PLS) analysis is a multivariate data treatment 
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technique allowing comparison between multiple response and 
explanatory variables. PLS is a regression method and allows the iden-
tification of underlying factors, which are a linear combination of the 
explanatory variables or X (also known as latent variables) which best 
model the response or Y variables. PLS has been widely applied to 
predict Y variables from X variables, and then it has evolved into a 
classification method that is well known as PLS-discriminant analysis 
(PLS-DA). PLS-DA combines dimensionality reduction and discriminant 
analysis into one algorithm and is especially applicable to modelling 
data in which the number of features (variables observed) are close to or 
larger than the number of observations (or data points). We have applied 
PLS-DA to provide discrimination capabilities to the multiarray-based 
sensing of fungi, and PLS for the quantification of the most relevant 
fungus. A detailed description of the Partial least squares for discrimi-
nation was reported by Barker [46]. Fig. 4a displays the cumulative R2 
and Q2 Y for all the groups after each component. That is how much of 
the differences between the groups is explained by the model (R2Y) and 
how well new observations can be classified into the proper group 

(Q2Y). This shows how well the variation of each group is explained by 
the model and how well each group can be classified and predicted. In 
particular, Q2Y accounts the cumulative percent of the variation of the 
response predicted by the model, after the last component, computed by 
cross validation. Q2 tells us how well the model predicts new data. The 
larger is Q2, the more useful model will be. Considering the first 3 
components 90 % Q2 is reached. Fig. 4c-d report the scores plot of the t1 

Fig. 1. Representation of the array and chemical structures of the organic probes used in the device (chromophores are represented in red, recognition sites are 
represented in blue). 

Fig. 2. Real images acquired by smartphone under UV excitation (365 nm) of 
array before (left) and after (right) the exposure to P. italicum. 

Fig. 3. Normalized emission responses of G channel ([Isample-Iwater]/I0 where 
Isample is the emission of probes after the exposition to the fungus suspension, 
Iwater is the emission of probes to sterile distilled water and I0 is the emission of 
probes before the exposition to the fungus suspension). Probes are numbered 1 
(RHB), 2 (RHBP), 3 (RHBM), 4 (OBP), 5 (MPB), 6 (PBP), 7 (OBEP), 8 (MBEP), 9 
(PBEP), 10 (Naph-1), 11 (Naph-2), 12 (CavQx), 13 (BDPy-Di-NH2), 14 (BDPy- 
Di-AE), 15 (BDPy-AE), 16 (BDPy-Ar), 17 (BDPy-OH). 
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vs t2 and t1 vs t3 of the X scores. It can be interpreted as a point of view 
into the X space. The observations are colored by groups. This shows 
how well the groups are separated. We found a very good clustering and 
discrimination of the several fungi under investigation. Plots also reveal 
the presence of outliers representing observations outside the Hotelling 
T2 ellipses at 95 % of confidence. A couple of samples related to Ph. 
nicotianae are located outside the ellipses. We have tried to remove them 
but the model in its whole substance does not significantly change. From 
the PLS model we computed PLS regression coefficients for each Y 
variable arbitrary assigned to numerically represent each group of fungi. 
These express the relation between the Y variables (fungi group) and all 
the terms in the model. The regression coefficients relate to the centered 
and scaled data and are computed from all extracted components. These 
coefficients are not independent as the variables are not independent. 
The coefficients are displayed with a confidence interval computed by 
jackknife cross-validation [47]. Fig. 4b displays the variables sorted by 
order of their importance in separating the groups. For each group the 
coefficients plot shows which variables are the most important to 
separate this group from the others. We noted that the most important 
probes to discriminate fungi by means of a 3 components model are 
PBEP and Naph-di-AE. BDPy-di-AE and BDPy-AR are the less important. 
Ultimately, the model possesses a highly discriminating capacity, which 
gives our method a very good ability to classify fungi. 

To verify the capabilities of the method in quantitative respects, we 
applied it to different solutions of P. italicum that were diluted up to 
5 log of dilution factor. We applied multivariate PLD regression. Fig. 5 
shows the results. It shows the log of the dilution factor predicted by the 
model as the true value is changed. The model using 7 components can 
quantify P. italicum with extremely satisfactory agreement with the ex-
pected value. 

Then, the detection limit of P. italicum by the array was tested. In 
particular, starting from a mother solution of 1.7–2.0 × 106 conidia 
mL− 1, a serial dilution (1/10, 1/103 and 1/104) was prepared and the 
array response to each dilution was tested. Fig. 6 shows the results of the 
test. 

At dilutions between 0 (corresponding to 1.7–2.0 × 106 conidia 
mL− 1) and 1/103 (corresponding to 1.7–2.0 × 103 conidia mL− 1), an 
inverse relationship between the emission level and concentration of 

Fig. 4. a) R2 Y and Q2 Y of the PLS-DA model as a function on the calculated components, b) ordered 3 components VIP variables cross validated, c) t1 vs t2 scores 
plot, d) t1 vs t3 scores plot. Ellipses represent T2 Hotelling at 0.95 confidence. 
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P. italicum conidia in the solution was observed. Conversely, the emis-
sion levels at concentrations of 1/103 and 1/104 conidia mL− 1 did not 
differ significantly between each other, indicating a detection limit of 
less than 1.7–2.0 × 103 conidia mL− 1. 

Finally, the sensitivity of the array was assessed in real sample. In 
particular, it was determined on washing waters from lemon fruits 
artificially inoculated with P. italicum. In detail, tests were carried out on 
water samples from markedly symptomatic fruits (7 days post inocula-
tion - dpi). Fig. 7 shows the comparison between results obtained with 
the washing waters (red bars) and P. italicum mother solution (black 
bars, 1.7–2.0 × 106 conidia mL− 1) previously reported in Fig. 3. In 
general, probes show the same trend (in terms of quenching or 
enhancement of emission) both with laboratory and real samples. The 
difference of intensities can be ascribed to the washing water, which 

contains chemical and biological substances produced by the fruit or 
originating from the pathogen/fruit peel interaction that can interfere 
with the response respect to the laboratory P. italicum solution. 

As for molecular diagnostic methods based on quantitative PCR 
(qPCR), which is regarded as the most sensitive diagnostic method 
currently available, different detection limits have been reported in 
literature (most between 10 pg and 10 fg of target DNA), which make it 
possible the detection of single propagules (e.g. single unicellular con-
idia or zoospores) of fungal plant pathogens [8]. Consequently, the 
detection limit of the array-based sensor device developed in this study 
is by far higher than qPCR. However, the array-based method is very fast 
and easy to handle, moreover it does not require a destructive sampling, 
equipped laboratories and specialized personnel. Finally, for the detec-
tion of fungal propagules in a liquid medium, such as washing waters 
from citrus packinghouses, its sensitivity can be increased through 
filtration or centrifugation. 

To the best of our knowledge, no threshold limit values (TLVs) of 
concentration of P. digitatum and P. italicum conidia in the environment 
have been determined to forecast the risk of Penicillium molds infections 
on citrus fruits in packinghouses. Conversely, even though no official 
standards or TLVs, usually expressed in terms of colony forming units 
(CFU), have been so far set for airborne concentrations of allergenic 
mold spores by public agencies (https://www.osha.gov/shib; 
https://www.epa.gov/mold/mold-testing-or-sampling), several studies 
tried to determine a quantitative relationship between the concentration 
of spores of allergenic molds in the environment and the effects on 
human health [46,48–53]. As fungal genera detected using the array 
device developed in the present study, such as Alternaria, Fusarium and 
Penicillium, are reported among the most common airborne allergenic 
fungi [48–53], it can be hypothesized that this array could complement 
the instruments used currently to detect allergenic fungi for sanitary 
purposes. Interestingly, very recently a smartphone-based digital system 
was applied to read automatically and improve the performance of a 
lateral flow assay widely used for the diagnosis of cryptococcosis, an 
invasive fungal disease affecting immunocompromised people 
[54]..Moreover, as for Penicillium molds of citrus fruits, it can be 
envisaged that the array device developed in the present study can be 
used to monitor the inoculum of Penicillium species in the environment, 
as a decision support tool for the application of sanitation measures in 
packinghouses to reduce the risk of infections during fruit handling and 
storing. 

3. Conclusions 

This is the first example of detection of microscopic fungal plant 
pathogens by fluorescent array using a smartphone as detector. The 
identification of Penicillium, Alternaria and Fusarium species was 
demonstrated by analyzing the fluorescence intensities emitted by the 
probes. Classification was implemented by means of a supervised clas-
sification method based on the PLS algorithm. P. italicum, in particular, 
could be also detected at a low concentration (1/104 conidia mL− 1). This 
study represents a proof-of-concept for the realization of practical sen-
soristic devices able to detect pathogens in plant products and food 
samples or in the environment, in order to guarantee food and human 
health security. Although, the test showed selectivity for some fungal 
genera before application it should be tested on mixtures of diverse fungi 
to verify if it can discriminate target fungal pathogens from congeneric 
closely related species and other fungi in the complex context of 
microbiome associated to fruits and food matrices or to equipment’s and 
room walls in packinghouses. Compared with molecular diagnostic 
methods, this fluorescence array sensor has a lower detection limit, but 
offers a rapid response, portability, multiple capabilities, and low cost. 
These significant advantages could enable many new applications for 
the detection of phytopathogenic fungi that other methods cannot 
achieve. Work is in progress to detect fungi in real samples, improve 
reproducibility with the results obtained with fungal standard solutions 

Fig. 6. Normalized emission responses of gray channel to a different dilutions 
of a suspension of Penicillium italicum conidia ([Isample-Iwater] where Isample is the 
emission of probes after the fungal exposition and Iwater is the emission of 
probes to sterile distilled water). Probes are numbered 1 (RHB), 2 (RHBP), 3 
(RHBM), 4 (OBP), 5 (MPB), 6 (PBP), 7 (OBEP), 8 (MBEP), 9 (PBEP), 10 (Naph- 
1), 11 (Naph-2), 12 (CavQx), 13 (BDPy-Di-NH2), 14 (BDPy-Di-AE), 15 (BDPy- 
AE), 16 (BDPy-Ar), 17 (BDPy-OH). 

Fig. 7. Normalized emission responses of the array to laboratory solutions 
(black bars, P. italicum mother solution, 1.7–2.0 × 106 conidia mL− 1) and real 
samples of washing waters (red bars), in terms of G channel ([Isample-Iwater]/I0 
where Isample is the emission of probes after the exposition to the fungus sus-
pension, Iwater is the emission of probes to sterile distilled water (in the case of 
laboratory solutions), washing water (in the case of real sample) and I0 is the 
emission of probes before the exposition to the fungus suspension). Probes are 
numbered 1 (RHB), 2 (RHBP), 3 (RHBM), 4 (OBP), 5 (MPB), 6 (PBP), 7 (OBEP), 
8 (MBEP), 9 (PBEP), 10 (Naph-1), 11 (Naph-2), 12 (CavQx), 13 (BDPy-Di-NH2), 
14 (BDPy-Di-AE), 15 (BDPy-AE), 16 (BDPy-Ar), 17 (BDPy-OH). 
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and quantify the amount of these pathogens, resulting in a practical 
analytical protocol. An additional potential application of the newly 
developed array device could be the detection of allergenic fungi in the 
air. To these aims, appropriate sampling procedures should be conceived 
and validated. 

4. Experimental section 

4.1. General experimental methods 

The NMR experiments were carried out at 27 ◦C on a Varian UNITY 
Inova 500 MHz spectrometer (1H at 499.88 MHz, 13C NMR at 
125.7 MHz) equipped with a pulse field gradient module (Z axis) and a 
tunable 5 mm Varian inverse detection probe (ID-PFG). ESI mass spectra 
were acquired on an API 2000- ABSciex using CH3CN or CH3OH (posi-
tive or negative ion mode). A JASCO V-560 UV− vis spectrophotometer 
equipped with a 1 cm path-length cell was used for the UV− vis mea-
surements (resolution 0.1 nm). Luminescence measurements were car-
ried out using a Cary Eclipse Fluorescence spectrophotometer with 
resolution of 0.5 nm, at room temperature. The emission was recorded 
at 90◦with respect to the exciting line beam using 5:5 slit-widths for all 
measurements. All chemicals were reagent grade and were used without 
further purification. 

4.2. Preparation of conidial or zoospore suspensions 

Spore suspensions (fungal conidia and oomycetes zoospores) were 
prepared according to Aloi et al., 2021. The True Fungi (Pl. tracheiphilus, 
P. italicum, A. alternata and F. sacchari) were grown on potato dextrose 
agar (PDA) at 25 ◦C in the dark for seven days until the mycelium 
covered at least 90 % of the Petri dish (see Supporting Information). Five 
pieces of mycelium (5 mm diameter) were grown on potato dextrose 
broth (PDB) for at least 24 h. Conidia were then recovered by centrifu-
gation, rinsed and resuspended in sterile distilled water (s.d.w.). The 
final conidial concentration was adjusted to 106 conidia/mL using a 
hemocytometer. Oomycetes (Phytophthora nicotianae, Ph. citrophthora) 
were first grown on V8 juice agar (V8A) at 20 ◦C in the dark for seven 
days. For the zoospore production, mycelium plugs from these colonies 
were flooded in sterile distilled water (s.d.w.) with autoclaved soil 
extract and incubated for 2–3 days at 20–22 ◦C with 16/8 h photope-
riod. Sporangia formation was monitored during this incubation period 
and once mature sporangia were observed, the plates were cold shocked 
by incubation at 4 ◦C for 45 min after which they were removed and left 
at room temperature for 1 h to stimulate zoospore release. The zoo-
spores were removed from the plates, pooled together and the concen-
tration was determined by using a hemocytometer and standardized to 
105 zoospores/mL. 

4.3. Procedure for sensing by array 

Experimental Setup. The UV− Vis lamp power 6 W, and the excita-
tion wavelength was 365 nm. The position of the array device into the 
dark chamber can be modified, due to the presence of the control probe. 
In fact, the possible variations of the irradiation are normalized by the 
comparison with the control. The array device is located at 20 cm from 
the smartphone and UV source. Into several circular polyamide supports 
(0.2 µm pore size, 5 cm of diameter), after UV/O3 treatment, were 
dropped on different positions 1.5 µL of each probes (1 × 10− 3 M in 
CHCl3) and 1.5 µL of the phenanthrene (1 M in CHCl3). The solid sensors 
were illuminated with a UV lamp (365 nm) in a dark chamber and the 
visible emission image was acquired with a smartphone (iPhone 13, 24 
Mpixel). Then, six different fungal conidial or zoospore suspensions 
(P. tracheiphilus, P. italicum, A. alternata, F. sacchari, 1.7–2.0 × 106 

conidia mL− 1 and P. nicotianae, P. citrophthora, 1.0–1.5 × 105 or 
zoozpores mL− 1) in distilled sterile water were dropped by a cellulose 
filter onto the different sensors and they were dried at air. The solid 

sensors were further photographed. The photos revealed the changing in 
fluorescence of the probes. Fluorescence variations, if any, were 
instantaneous and stable in time for hours. The images before and after 
exposure of the fungal conidia suspension were processed by Fiji [55]. In 
particular, the software converts the images into RGB channel values 
and then converted to Gray (G) by using the formula G= (Rvalue +
Gvalue +Bvalue)/3, thus obtaining a single value for each pixel. The 
emission intensities of this scale for each probe have been compared to 
the control (phenanthrene), and these normalized values (ratio between 
the intensity of each probes and the intensity of the control) have been 
reported, this process was repeated for each fungal. The resulting values 
were tabulated for statistical treatment using the Excel software 
(Microsoft 365). 

In particular, the following formula was applied: [Isample-Iwater]/I0 
where Isample is the emission of probes after the fungal exposition, Iwater 
is the emission of probes to distilled sterile water and I0 is the emission of 
probes before the fungal exposition. 

Then we tested the possibility to quantify Penicillium italicum in so-
lutions with different concentrations, from 1.7 to 2.0×106 mL− 1 to 
17–20. 

4.4. Synthesis of probes 

RhB has been acquired by Merck. RhBP, RhBM [56], OBP, MBP, PBP, 
OBEP, MBEP, PBEP, BDPy-Ar, BDPy-OH [57], Napht-1 and Napht-2 
[58], Cav-Qx (Santonocito et al., 2022) [34], BDPy-Di-AE and 
BDPy-AE [59], BDPy-Di-NH2 [21] have been synthetized following a 
modified synthetic procedures and detailed in the Supporting 
Information. 

4.5. PLS-DA classification 

Multivariate analysis of dataset was performed by means of SIMCA-P 
11 (Umetrics). Dataset was centred and unity scaled. 

4.6. Preparation of washing waters from artificially inoculated lemon 
fruits 

Lemon fruits cv. Femminello Siracusano, collected from an organic 
citrus commercial orchard in the Siracusa province (Sicily, Italy), were 
preliminarily surface-sterilized with a 1 % NaClO solution for 2 min, 
rinsed with tap water, and air-dried at room temperature. For the 
inoculation, fruits were wounded with a 2-mm-diameter plastic tip (3 
wounds per fruit) without injuring the juice sacks below the albedo; 
then, 20 μl of P. italicum conidial suspension (concentration 106 conidia/ 
mL) were placed into the wound. Inoculated fruits were placed in a 
plastic container and maintained at 20 ◦C and 80 % of relative humidity. 
After 7 days incubation (dpi), symptomatic inoculated fruits were 
washed in sterile distilled water (sdw) (ratio: 200 mL of sdw / 100 mL of 
fruits) for 1 min, under magnetic stirring, Finally, washing water was 
aseptically collected and tested by the array. 
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