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Abstract: Cystoseira sensu lato marine forests, which are among the most productive and diverse sys-
tems in rocky intertidal and subtidal habitats of the Mediterranean Sea, are experiencing a widespread
decline throughout the basin due to increasing human pressures. Yet it is still unclear whether Marine
Protected Areas (MPAs) may represent effective tools for conservation of these important habitat
formers and their associated assemblages. Here, we compared the biomass of intertidal stands of
Ericaria amentacea (C. Agardh) Molinari and Guiry and their understory assemblages between the
no-take zone and control sites in two Mediterranean MPAs. We did not find evidence supporting a
significant effect of full protection in increasing the biomass of E. amentacea stands and associated as-
semblages, except for macroalgae of the understory in one of the investigated MPAs, raising concerns
on the potential effectiveness of MPAs in mitigating human impacts on these marine forests. Such
findings call for major efforts to implement long-term monitoring programs of protected Cystoseira
s.l. forests in order to inform an adaptive management of conservation measures within MPAs and
eventually to set active interventions of restoration.

Keywords: community ecology; conservation; Cystoseira sensu lato; human impact; macrobenthos;
rocky intertidal habitats

1. Introduction

Macroalgal forests are the largest and most productive components of coastal ecosys-
tems worldwide [1]. In the Mediterranean Sea, brown algae such as Cystoseira sensu lato
(including the genera Cystoseira, Ericaria and Gongolaria) are particularly important as
habitat formers [2]. These fucoid algae dominate rocky intertidal and subtidal habitats,
forming dense macroalgal stands that, due to their structure and high biomass, play a cru-
cial role as ecosystem engineers by creating highly complex three-dimensional structures
and providing secondary substrate which, in turn, support highly diverse understory and
epiphytic assemblages [3]. Moreover, this complexity allows sustaining diversified trophic
levels, enhancing primary and secondary productivity along with many other ecosystem
functions [4,5]. Canopies of Cystoseira s.l. and associated macroalgae are spatially organized
into four distinct layers: a basal layer consisting of the basal portions of Cystoseira s.l. thalli
and of encrusting calcareous algae, a turf layer made of sciaphilic algae, a mid-canopy
layer of arborescent and laminar algae, and an upper-canopy layer formed by Cystoseira
s.l. fronds and their epiphytes [6]. Due to their structural features, Cystoseira s.l. canopies
are inhabited by a number of different species belonging to several phyla, among which
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are other algae, crustaceans, molluscs, and polychaetes dominate [7,8]. In Mediterranean
shallow rocky bottoms, these macroalgal stands also harbour a very high fish species
richness compared to other habitats, which are important nurseries for many species of
commercial interest [2,9]. Due to their ecological importance, Cystoseira s.l. species are
listed in several protocols for the protection of marine biodiversity, such as the SPAMI
Protocol of the Barcelona Convention [10], and are recognized as privileged descriptors of
the ecological status of Mediterranean coastal marine communities [11,12].

Cystoseira s.l. forests are experiencing widespread decline due to the detrimental
effects of different anthropogenic stressors such as pollution, eutrophication, overfishing
and climate change [13–20] which, in densely populated coastal zones, could combine
with direct physical disturbance from human trampling [21] and/or destructive fishing
practices [22]. As a result of cumulative human pressure, Cystoseira s.l. canopies may be
subjected to the reduction in cover and biomass or local extinctions and may be replaced by
less structured and opportunistic algal species, such as turf-forming algae, mussel beds or
sea urchin barrens, leading to an overall simplification of the architectural and functional
complexity of the habitat [23–25]. The loss of these fucoid algae in favour of turf algae or
barren habitats results in the reduction in community respiration, gross and net primary
productivity compared to turf algae or barren habitats [26], the decrease in biodiversity
of associated assemblages [27], and the impairment of microbial degradation of organic
matter and secondary production [28]. Since Cystoseira s.l. canopies extend over ~15%
of Mediterranean coasts, although data on the presence of such species in large portion
of the Mediterranean Sea are still lacking [29], the decline in these habitat formers are
likely to have profound consequences on the functioning of the whole coastal ecosystem
at a basin scale. Protecting these canopy-forming species is, therefore, a priority for the
management of coastal ecosystems, as their decline may trigger cascading effects leading
to loss of biodiversity and ecosystem functions and services [30,31].

Marine Protected Areas (MPAs) and especially the no-take zones can be effective
tools for conservation of macroalgal forests and the associated marine biodiversity. First,
MPAs could promote the persistence of large brown algae by ensuring their protection
from different types of physical human disturbances (e.g., coastal development, destructive
fishing) that can directly affect these species [32–34]. Moreover, the reduced level of cumu-
lative human disturbance within their boundaries could confer to protected communities a
greater resistance to environmental stress with respect to unprotected communities [35].
The role of MPAs in mitigating human pressure, nevertheless, may also rely on indirect
effects of protection that, through the stabilization of community-wide regulative pro-
cesses such as, for instance, top-down control of predator fish on grazers [36–38], may
increase the overall abundance and stability of macroalgal stands and associated inver-
tebrate assemblages [39,40]. However, evidence from several Mediterranean MPAs does
not seem to support a consistent correlation among increased abundance of predator fish,
reduced population size of the main grazers (i.e., sea urchins) and increased stands of
canopy-forming brown algae in subtidal habitats [38]; idiosyncratic effects of protection on
intertidal Cystoseira s.l. canopies were also detected [33,41,42].

The proportion of Cystoseira s.l. populations under different conservation regimes
(including MPAs, marine parks, Natura 2000 sites, etc.) in the NW Mediterranean Sea has
largely increased in the recent years [25], but it is still far from being clearly ascertained
whether current protection strategies within MPAs are effective for the conservation and
management of these habitat formers and their understory assemblages. In this study,
we compared the canopy of Ericaria amentacea (C. Agardh) Molinari and Guiry in the
intertidal fringe between the no-take zone and control sites under less restrictive protection
measures in two Mediterranean MPAs to test the effects of full protection on the biomass
of canopies, and of the two main components of the associated understory assemblages,
namely macroalgae and invertebrates.
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2. Material and Methods
2.1. Study Area and Sampling Design

The experiment was carried out in two MPAs, the Portofino MPA (Ligurian Sea) and
the Isole Ciclopi MPA (NW Ionian Sea) (Figure 1). The Portofino MPA (PFN) extends
over 346 ha and was established in 1998, whereas the Isole Ciclopi MPA (CIC) is larger
(623 ha) and older, dating back to 1989. The two MPAs have a single no-take, no-access
zone (18 and 35 ha for PFN and CIC, respectively) enclosed within a buffer area comprising
zones of general and partial protection, where fishing and recreational human activities
(e.g., diving, boating) are allowed.
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Figure 1. Study areas (the MPAs of Portofino, PFN, and Isole Ciclopi, CIC) and sampling sites.
P = no-take, no-access area; C1 = control site 1; C2 = control site 2. Limits of zones under different
protection regimes within the MPAs were also reported. Example of E. amentacea midlittoral fringe at
PFN (bottom left corner).

In each MPA, E. amentacea canopies and associated assemblages of the intertidal fringe
were sampled on sub-horizontal rocky reefs at one site within the no-take, no-access zone
(hereafter referred to as the protected site, P) and in two control sites (i.e., C1 and C2,
collectively referred to as Cs) where most of human activities are allowed (Figure 1). Cs
were characterized by environmental conditions comparable to those at P in terms of type
and slope of rocky substrate, exposure to wave actions, currents and prevailing winds.
In each site, five random samples of sessile assemblages were collected on two sampling
occasions, namely October 2020 and July 2021. Sampling consisted of the complete removal
of the E. amentacea thalli and the associated understory assemblage from the rocky substrate
on a surface of approximately 160 cm2 for each sampling unit. Samples were collected
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with the help of a PVC cylinder placed upon the canopy and an inox blade, which was
slid under the cylinder in order to cut the E. amentacea thalli, to scrape off all the other
organisms, and to keep everything in the cylinder. A plastic bag was placed on the top
of the cylinder to prevent loss of scraped material and vagile species. Care was taken to
collect all scraped organisms from the substrate. Samples were preserved in formaldehyde
(4%) and sea water solution and brought back to the laboratory for subsequent processing.

Samples were sieved with 1 mm mesh and soaked in sea water for 24 h to remove
formaldehyde residues and were then sorted by separating organisms from inorganic debris
and by detaching epiphytes (algae and invertebrates) from the E. amentacea thalli. Mesh
size of 1 mm was chosen as it is widely recognized to allow an accurate quantification of
biomass of macrobenthos (e.g., [43,44]). Macroalgae were separated from invertebrates and
grouped altogether, whereas invertebrates were sorted under magnification and grouped
into main taxa (phylum or class). A list of all taxa is provided as Supplementary Material
(Table S1). As we focused on the effect of full protection on biomass rather than on its
effect on species-level assemblage structure, we collapsed organisms into large taxonomic
groups. Coarse taxonomic resolution facilitated estimations of biomass, avoiding the
intrinsic difficulties of weighting the biomass of taxa accounting for very few (and often
very small) individuals. The biomass of all groups of organisms was estimated as dry
weight after desiccation at 80 ◦C for 48 h.

2.2. Statistical Analysis

Analysis of Variance (ANOVA) was used to test for differences in the total biomass
of E. amentacea, associated macroalgae and invertebrates between the protected site P and
Cs. The design for the analysis was the same for both MPAs, and included two factors:
Time (Ti), random, with two levels (T1, October 2020, and T2, July 2021), and Site (Si), with
three levels, one protected site and two controls, with n = 5 replicates. The design for the
analysis was asymmetrical [45] as it involved a single protected site to be compared against
two control sites. The Site term was therefore partitioned into two portions: the 1-d.f. fixed
contrast of P versus Cs (P- vs.-Cs) and the variability between Cs. This partitioning was
applied to the other term in the analysis that includes the factor Site, that is the Ti × Si
interaction. Finally, the residual variation was partitioned in two portions, Res P and Res Cs,
which is the residual variability of observations at P and Cs, respectively. The assumption
of normality of the response variables was tested with the Shapiro–Wilk test. Cochran’s
C-test [45] was used to test the assumption of homogeneity of variances prior to analysis
and data were log(x + 1) transformed to stabilize variance if required. For all response
variables, the assumptions of normal distribution and variance homogeneity were met
using raw data (or after data transformation), except macroalgae biomass at PFN. In this last
case, non-normality and variance heterogeneity persisted after transformation. Although
ANOVA is robust to slight deviations from non-normality, heterogeneous variances may
increase the rate of Type I error, and thus results of tests for this variable were interpreted
using a more conservative significance level of α = 0.01 [45].

Distance-based permutational multivariate analysis of variance (PERMANOVA) [46]
was used to test for differences between P and Cs in the structure of invertebrate assem-
blages associated with E. amentacea canopies following the same design as for ANOVA. The
analysis was based on Bray–Curtis dissimilarities of untransformed data and each term in
the analysis was tested with 5000 random permutations.

A canonical analysis of principal coordinates (CAP) [47,48] was performed for the
Ti × Si interaction term to depict temporal and spatial patterns of variation in invertebrate
assemblages. Invertebrate taxa that might be responsible for any group differences seen
in the CAP plot were investigated by calculating the product–moment correlations of
original variables (taxa) with canonical axes [47]. Correlations of individual variables with
the two canonical axes (r1 and r2) were represented as lines in a projection biplot. Taxa
were included in the biplot only if exceeding an arbitrarily chosen value of correlation

(=
√

r2
1 + r2

2 ≥ 0.3).
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3. Results
3.1. Portofino MPA

The total biomass of E. amentacea did not differ between P and Cs at PFN (Table 1).
Visual inspection of the graph in Figure 2a suggested higher biomass of E. amentacea in T2,
although ANOVA did not detect significant temporal variations (Table 1).

Table 1. Summary of asymmetrical ANOVA testing for differences between P and Cs in total biomass
(dry weight) of E. amentacea, associated macroalgae, and invertebrates at PFN. The main effect of
terms involved in higher-order interactions were not tested. Results of tests for the assumption
of normality (Shapiro–Wilk test) and variance heterogeneity (Cochran’s C-test) were also reported:
NS = not significant, * = p < 0.05, *** = p < 0.001.

E. amentacea Macroalgae Invertebrates

Source d.f. MS F P MS F P MS F P

Ti 1 1957.60 13.205 0.0681 9.64 2.543 0.2518 537.51 2.931
Si 2 40.62 0.274 0.7849 3.34 0.880 0.5320 235.66 1.285

P-v-Cs 1 27.4 0.182 0.7109 0.92 0.674 0.4199 95.94 0.523 0.5447
Cs 1 54.21 0.215 0.7238 5.75 1.001 0.4998 375.38 1.086 0.4869

Ti × Si 2 148.24 2.066 0.1487 3.79 2.764 0.0831 183.42 4.322 0.0249
Ti × P-v-Cs 1 43.90 0.612 0.4418 1.84 1.343 0.2579 21.01 0.061 0.8462

Ti × Cs 1 252.58 3.131 0.0959 5.74 2.867 0.1098 345.82 8.331 0.0107
Res 24 71.76 1.37 42.44

Res P 8 56.94 0.11 44.30
Res Cs 16 80.67 2.00 41.51

Transformation log(x + 1) log(x + 1) None
Shapiro–Wilk test W = 0.967 NS W = 0.913 * W = 0.969 NS

Cochran’s C-test C = 0.443 NS C = 0.753 *** C = 0.330 NS
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For macroalgae of the understory, values of total biomass were similar between times
of sampling and sites, except for the high value recorded in T1 at C2 (Figure 2b), and no
significant spatial and temporal variations were detected, nor did the biomass of macroalgae
significantly differ between P and Cs (Table 1).

Significant spatio-temporal variations instead characterized the total biomass of inver-
tebrates (significant Ti × Si interaction, Table 1), which showed a general increase in T2,
though not consistent among sites (Figure 2c). However, the biomass of this component
of the understory assemblage did not differ between P and Cs (Table 1). PERMANOVA
did not detect significant differences between P and Cs in the multivariate structure of the
understory invertebrate assemblages at PFN (Table 2). Assemblages significantly varied
over time and among sites (significant Ti × Si interaction, Table 2). Patterns of variation
were portrayed in the CAP plot (Figure 3), showing that the invertebrate assemblages at C1
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were mostly characterized by bivalves (Biv), polychaetes (Pol), colonial tunicates (Tun) and
holothurians (Hol) in T2, whereas the remaining taxa characterized the assemblages at this
site in T1, and at P and C2 in all sampling times.

Table 2. Summary of asymmetrical ANOVA testing for differences between P and Cs in total biomass
(dry weight) of E. amentacea, associated macroalgae, and invertebrates at CIC. The main effect of
terms involved in higher-order interactions were not tested. Results of tests for the assumption
of normality (Shapiro–Wilk test) and variance heterogeneity (Cochran’s C-test) were also reported:
NS = not significant.

E. amentacea Macroalgae Invertebrates

Source d.f. MS F P MS F P MS F P

Ti 1 2091.30 3.715 330.61 4.873 52.24 8.712 0.0982
Si 2 207.41 0.368 66.84 0.985 2.16 0.359 0.7356

P-v-Cs 1 161.37 0.287 0.6459 129.91 1.915 2.92 0.486 0.5577
Cs 1 253.46 0.519 0.6025 3.76 0.568 1.39 0.132 0.7784

Ti × Si 2 562.88 11.906 0.0003 67.85 12.517 0.0002 6.00 2.052 0.1505
Ti × P-v-Cs 1 637.72 1.307 0.4576 129.07 19.493 0.0002 1.40 0.480 0.4952

Ti × Cs 1 488.08 9.455 0.0073 6.62 2.571 0.1284 10.59 3.760 0.0703
Res 24 47.28 5.42 2.92

Res P 8 38.60 11.11 3.14
Res Cs 16 51.62 2.58 2.82

Transformation None log(x + 1) log(x + 1)
Shapiro–Wilk test W = 0.955 NS W = 0.989 NS W = 0.981 NS

Cochran’s C-test C = 0.329 NS C = 0.452 NS C = 0.306 NS
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1 (T1), green symbols = Time 2 (T2).

3.2. Isole Ciclopi MPA

No differences in the total biomass of E. amentacea between P and Cs were detected
at CIC (Table 2). The total biomass of E. amentacea inconsistently varied among sites and
between sampling times (significant Ti × Si interaction, Table 3). However, as for PFN, a
general increase in biomass can be observed in T2 (Figure 4a).
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Table 3. Results of asymmetrical PERMANOVA testing for differences between P and Cs in biomass
of invertebrate assemblages associated to E. amentacea in both the investigated MPAs (PFN and
CIC). The analysis is based on Bray–Curtis dissimilarities (untransformed data) and each test was
performed using 5000 random permutations. Significant tests are provided in bold. Denominators
for tests (MSDEN) were also indicated.

PFN CIC

Source d.f. MS Pseudo-F P (perm) MS Pseudo-F P (perm) MSDEN

Ti 1 6962.60 1.640 14,908.00 2.444
Si 2 6715.40 1.582 3396.40 0.557

P-v-Cs 1 9595.80 2.261 0.1694 3382.10 0.554 0.6978 Ti × Si
Cs 1 3835.20 0.650 0.6415 3410.70 0.322 0.8175 Ti × Cs

Ti × Si 2 4244.40 2.605 0.0168 6101.00 6.551 0.0002 Res
Ti × P-v-Cs 1 2592.10 0.440 0.7678 1623.00 0.153 0.9332 Ti × Cs

Ti × Cs 1 5896.70 3.417 0.0158 10,579.00 11.109 0.0002 Res Cs
Res 24 1629.50 931.34

Res P 8 1437.25 889.38
Res Cs 16 1725.60 952.29
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Figure 4. Mean ± SE (n = 5) total biomass (dry weight) of (a) E. amentacea, (b) macroalgae, and
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CIC in each sampling time. Time 1 (T1) = orange bars, Time 2 (T2) = green bars. Note that scales on
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The total biomass of macroalgae associated with E. amentacea canopies significantly
differed between P and Cs, although this pattern was not consistent between the two sam-
pling times (significant Ti × P-v-Cs interaction, Table 3); at CIC, the biomass of macroalgae
was significantly higher at P than at Cs in T1, whereas their total biomass was comparable
among sites in T2, irrespective of protection level (Figure 4b).

No effects of full protection were detected for invertebrate biomass, and there were
no statistically significant spatial and temporal variations (Table 3). A general increase
in their biomass, nevertheless, seemed to characterize the understory assemblages in T2
(Figure 4c). The average multivariate structure of invertebrate assemblages significantly
varied between times and among sites (significant Ti × Si interaction), but no significant
differences imputable to full protection were detected (Table 2). The CAP plot for CIC
(Figure 5) showed that invertebrate assemblages in T1 were dominated by hydroids (Hyd) at
P and C2, whereas sponges (Por) and bryozoans (Bry) characterized C1. In T2, invertebrate
assemblages were quite distinct, showing an increase in biomass of different sessile taxa
(bivalves (Biv), tunicates (Tun), and anthozoans (Ant)) and of vagile organisms (crustaceans
(Cru), holothurians (Hol), polychaetes (Pol)) in all sites (Figure 5).
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4. Discussion

Assessing the effectiveness of MPAs is crucial to ensure the achievement of conserva-
tion goals and to refine conservation strategies for an adaptive management of protected
communities in the face of changing environmental conditions [49,50]. In most cases, as-
sessments of the ecological effects of MPAs, and particularly of full protection in no-take
zones, have focused on fish documenting increased assemblage diversity, abundance and
biomass of protected populations with respect to unprotected areas [51–55]. Macroben-
thic assemblages received comparatively less attention, except for commercial or charis-
matic invertebrate species (e.g., [56–58]), and often responded to protection inconsistently
(e.g., [33,41]). Moreover, if fish assemblages promptly respond to protection (e.g., [59]),
the effects of protection on macrobenthos can take much more time to become evident.
Differently, these effects may occur through an increased temporal stability/resilience of
assemblages rather than through changes in their average structure [40,60,61], or the effects
can vary in time or concerning only some components of the assemblages [41].

E. amentacea (as all Cystoseira s.l. species) naturally exhibits substantial phenological
variations in its morphology/biomass and associated understory [62,63]. In winter, only
the perennial basal cauloids remain in most species. Later, in spring, new branches sprout,
and in summer thalli consist of main axes covered by many leaf-like structures. In late
summer–autumn, the erect branches are shed and only the cauloid persists in a quiescent
state during the following unfavorable, cold season. Such changes reflect on the associated
assemblages [64], leading to the proliferation of photophilic algae in the understory during
the resting season, alternating with an increase in vagile (e.g., polychaetes, crustaceans,
holothurians) and epiphytic (e.g., hydroids) invertebrate abundance during the growing
season [62,65]. These natural patterns clearly emerged in both study areas, with an overall
average turnover in total biomass (including all assemblage components) between T1 and
T2 equal to 1468 ± 346 g·m−2 and 794 ± 335 g·m−2, at PFN and CIC respectively. Yet,
for all the investigate variables, temporal variations were not consistent among sites, and
changes in biomass of E. amentacea canopies, despite being quite evident on average, were
not statistically significant. This is probably because E. amentacea biomass was not yet
completely depleted in T1 (October 2021), as typically occurs during the resting period,
thus smoothing out potential variations with respect to T2 (July 2022). Nevertheless, the
interest here was not to confirm well-known cyclic patterns of change in E. amentacea,
but rather to understand whether the effects of protection on these fucoid algae and their
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associated assemblages, if any, were consistent through time or affected their temporal
patterns of variation.

At PFN, our analysis did not detect significant differences between P and Cs in neither
E. amentacea nor the associated macroalgae or the structure of invertebrate assemblages of
the understory, suggesting no effects of full protection on intertidal assemblages, at least
concerning the biomass of the investigated components. It could be argued that control
sites fell under a regime of general protection, and that this could have contributed to
preserve the integrity of E. amentacea stands also at Cs. General and partial regimes of pro-
tection, nevertheless, allow several human activities (e.g., recreational uses, tourism), which
are generally not strictly regulated, potentially leading to detrimental effects on marine
communities [66–68]. Evidence from adjacent areas highlighted that in the last decades, the
effects of increasing cumulative human pressure have expanded, being likely responsible
for detrimental changes in subtidal reef communities and plankton assemblages [69,70]
despite the presence of conservation initiatives, and suggested the difficulty of local pro-
tection regimes to face widespread environmental degradation. Regardless, sea-based
human activities (e.g., artisanal fishery, boating, anchoring) are likely to exert a limited
influence on intertidal habitats, such as those investigated in this study, which can be more
susceptible to land-based pollution (e.g., terrestrial runoffs) and direct onshore activities
(e.g., trampling due to human frequentation for bathing or rod angling). The mainland at
PFN, however, is poorly urbanized and the implementation of a terrestrial reserve since
1935 prevented the expansion of land-based (e.g., industries, intensive agriculture) sources
of pollution in the area [71], largely limiting their potential effects on nearshore habitats.
It is also worth noting that control sites at PFN, due to the local features of the whole
coastline, are not easily accessible to human frequentation and that the MPA is strongly
enforced [72]. Thus, the lack of significant effects of full protection were most likely due
to the incidental reduction (or exclusion) of direct human impacts on E. amentacea stands
at Cs to levels not significantly different from those experienced in the no-take, no-access
zone P. Analogously to what occurred for PFN, no effect of full protection in modifying
the biomass of E. amentacea or the total and multivariate biomass of associated inverte-
brate assemblages was detected at CIC. Unlike PFN, this MPA is located along a highly
urbanized coastline (see also Figure 1) with high touristic frequentation during summer
and beyond due to the favourable climate. In such an environmental context, the potential
effects of protection on macrobenthic assemblages may be strongly reduced, or completely
overcome, as a consequence of high anthropization (e.g., [40,69]), and the abundance of
E. amentacea could eventually correlate with gradients of human pressure rather than the
spatial arrangement of protection regimes [42]. In addition, CIC is a relatively small MPA
with low enforcement [72], which makes it more vulnerable to neighbouring direct physical
disturbance from human attendance and indirect effects of coastal human activities such
as the exposure to land and sea-based chemical pollution and organic enrichment [73,74].
Interestingly, a significant effect of full protection was detected for understory macroalgae
at CIC, which had a higher biomass in T1 at P than at Cs. Control sites at CIC are easily
accessible and therefore more exposed to direct effects of human frequentation, and espe-
cially to mechanical disturbance of human trampling with respect to P where human access
is forbidden. Since erect macroalgae are more vulnerable to trampling than turf algae [32],
high trampling pressure could reduce the abundance of large, erect macroalgae favouring
small, filamentous, turf-forming species, thus leading to an overall decrease in biomass
in this component of the understory. We found no evidence of a significant decrease in
biomass of E. amentacea at Cs, probably because it is quite resistant to trampling [75], unlike
other Cystoseira s.l. species [32].

MPAs are the main global strategy to conserve and restore marine biodiversity and as-
sociated ecosystem services [76,77]. However, they cannot provide an exhaustive solution to
the complexity of human-driven environmental issues affecting marine ecosystems [78,79],
often leading to contrasting outcomes depending on reserve features, social and environ-
mental contexts, and ecology and biology of species involved [32,42,80]. Our findings do
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not support the hypothesis of a significant effect of no-take zones in increasing the biomass
of E. amentacea stands and associated assemblages with respect to control areas under lower
levels of protection, although further investigations to increase the spatial and temporal
extents of these assessments are needed. As Cystoseira s.l. forests are declining from lo-
cal to large scale [29,81], these results reinforce concerns that human pressures affecting
these habitat formers cannot be effectively mitigated within MPA boundaries [25,67,82–84].
Managing human pressures at a wider spatial scale is crucial to ensure the effectiveness
of local-scale conservation initiatives in enhancing the resilience of Cystoseira s.l. forests
to present and future stressors [17,19,85,86]. Wide gaps in information on fucoid algae
in the Mediterranean MPAs also limit our understanding of the actual role of protection
in preserving the integrity of these habitat formers [25], which urgently call for major
efforts in long-term monitoring of their distribution and ecological status in MPA networks
at a basin scale. This would also allow identifying critical cases within MPAs requiring
active interventions of restoration, especially when the decline of Cystoseira s.l. originates
from transient environmental deterioration, and natural recovery may be hampered by
hysteresis. Finally, future research needs to provide a deeper insight into the functioning of
Cystoseira s.l. forests, and the ensuing goods and services they provide in order to optimize
conservation investments taking into account their actual contribution to the overall natural
capital of coastal ecosystems.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/d15010089/s1, Table S1: Taxonomic list of taxa of the E. amen-
tacea understory assemblages. For taxonomic and morphological groups, grouped species or taxa
are reported.
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