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A B S T R A C T   

Background: The recent health emergency caused by the COVID-19 pandemic forced people to change their mobility habits, with the reduction of 
non-essential travels and the promotion online activities. During the first phase of the emergency in 2020, governments considered several mobility 
restrictions to avoid the pandemic diffusion. However, it is difficult to quantify the actual effects of these restrictions on the virus spreading, 
especially due to the biased data available. Notwithstanding the big role of data analysis to understand the pandemic phenomenon, it is also 
important to have more general models capable of predicting the impact of different policy scenarios, including territorial parameters, indepen-
dently from the available infection data. In this respect, this paper proposes an agent-based model to simulate the impact of mobility restrictions on 
the spreading of the COVID-19 at a large scale level, by considering different factors that can be attributed to the diffusion and lethality of the virus 
and population mobility patterns. 
Methods: The first step of the method includes a zonation of the study area, according to administrative boundaries. A risk index is calculated for 
each zone considering indicators which can influence the virus spreading and people lethality: mean winter temperature, housing concentration, 
healthcare density, population mobility, air pollution and the percentage of population over 60 years old. The agent-based model associates the risk 
index to the agents and determines their “status” (“susceptible”, “infected”, “isolated”, “recovered” or “dead”) by combining the risk index with the 
mean infection duration, using a SIR-based approach (i.e. susceptible–infective-removed). 
Results: The study is applied to Italy. Several scenarios based on different mobility restrictions have been simulated, including the one based on the 
official data (status quo). The main results show that characterizing zones with a risk index allows to adopt local policies with almost the same 
effectiveness as in the case of restrictions extended to the full study area; scenario simulations return an increase in terms of infected (+20%) and 
deaths (+25%) with respect to the status quo. These results underline the importance of finding a trade-off between socio-economic benefits and 
health impact. 
Conclusions: The reproducibility of the proposed methodology and its scalability allow to apply it to different contexts and at a different admin-
istrative level, from the urban scale to a national one. Moreover, the model is able to provide a decision-support tool for the design of strategic plans 
to contrast pandemics based on respiratory diseases.   

1. Introduction 

The recent health emergency caused by the COVID-19 pandemic has forced people to change their mobility behaviours, with the 
reduction of leisure travels and the promotion of teleworking and online educational activities (De Vos, 2020). Among the most applied 
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contagion control measures, those relating to the limitation of travels, e.g. the so-called “stay-at-home” order, have become widespread 
with the aim of avoiding the circulation of the virus in public environments. Public transport has been highly impacted both by 
government restrictions and travellers’ choices (Jenelius and Cebecauer, 2020; Gutiérrez et al., 2020). 

In the acute phases of the emergency, the disease has forced government agencies to consider several preventive measures to 
control its spreading. In Italy, during the first wave of 2020 a national lockdown of about two months was imposed by the government 
to limit population mobility, provoking a reduction in urban travel and number of air flights. During the second wave started in fall 
2020, differentiated strategies were implemented according to the “colours” of the regions based on multiple sanitary indicators by the 
Italian Ministry of Health. However, data are not easily accessible or clearly explained to the public, resulting in uncertainties and, 
sometimes, leading to protests from the regional government departments. 

Notwithstanding the effectiveness of social distancing measures, the debate on the actual impact of travel limitation measures is 
very lively, both in the academic world and in public opinion. Public transport is a case in point, being its influence on the virus 
spreading highly debated (Tirachini and Cats, 2020). 

Mobility restrictions, indeed, affect the economic conditions of both people and governments and are also responsible for a 
“segregation effect” of people with low income (Bonaccorsi et al., 2020). It is therefore important to quantify the effectiveness of 
various measures on the spread of the virus, to avoid overestimating the effects of health prevention that can generate various equally 
serious economic and social consequences. 

This paper proposes an agent-based model to dynamically simulate the impact of mobility restrictions on the spreading of the 
COVID-19 at a national scale. The model proposed is new, since it reproduces a real case study, i.e. Italy, at the spatial scale of national 
regions. Besides it considers multiple data sources and a-priori parameters that can be related to the risk of spreading. To build the 
ABM, we drew inspiration from a previous study aimed at measuring an a-priori risk index for each of the 20 Italian regions based on an 
analytical model (Pluchino et al., 2021). The Authors showed that the geographic distribution of this index correlates with the 
available COVID-19 official data related to the pandemic spreading. Based on this, possible policy interventions have been suggested to 
tackle the virus spreading. Fazio et al. (forthcoming) proposes a first dynamical version of the model by Pluchino et al. (2021) to test 
their findings through an agent-based approach. They proposes an ABM as a tool to simulate any pandemic spreading based on res-
piratory diseases and tested it in the case of the COVID-19 spreading in Italy. This paper stems from Fazio et al. (forthcoming) by 
presenting the full ABM where a scenario analysis is also performed, differentiating for each region the measures to restrict mobility 
that might have been implemented to struggle the pandemic during the first COVID-19 wave. 

The remainder of the paper is organised as follows. Section 2 includes an overview of similar studies, Section 3 presents the data 
and methods used to build the ABM, while section 4 introduces the case study and the related model steps. Section 5 presents and 
discusses the results with some policy implications. Section 6 concludes the paper. 

2. Literature review 

There is a growing literature dealing with the actual effects of mobility restrictions on the COVID-19 virus spreading. Parino et al. 
(2021) provided a spatial meta-population model to estimate the effectiveness of the so called non-pharmaceutical interventions 
(NPIs), such as social activity and mobility reduction imposition. Findings show that the efficacy of these policy measures could have 
entailed better benefits if imposed in the early phase of the outbreak. Zhou et al. (2020) built a mathematical model, fed by aggregate 
mobile phone data and infection data, to analyse the level of transmissibility of the virus in different mobility restrictions scenarios. 
Results show that a reduction of mobility around 20%–60% entailed a good effectiveness on controlling the infection spread. Cartenì 
et al. (2020) proposed a multiple linear regression model in order to estimate the consequences of the change in mobility habits of 
users. The Authors demonstrated that mobility habits, number of tests/day and other environmental variables are the ones that most 
influence the number of infections. Oka et al. (2021) came to similar conclusions, combining infection, death, and recovery data 
together with human mobility information. Gatto et al. (2020) conducted a mobility restrictions scenario analysis with the aim of 
quantifying the expected number of hospitalizations in Italy. Authors show that the absence of lockdown would have involved a huge 
increase in the number of hospitalized, while the increase would have been lower in case of more relaxed mobility restrictions. de 
Sousa et al. (2020), using a Kinetic Monte Carlo model, estimated the risk associated to short and long lockdown, concluding that the 
latter did not affect the number of infected contrary to what one would expect. Other studies about USA and Chinese cases analysed 
huge amounts of data and used statistical models to show the strong correlation of mobility restrictions on the virus spreading (Xiong 
et al., 2020; Badr et al., 2020; Kraemer et al., 2020). 

However, the use of total number of cases to monitor the spread of the infection may lead to incorrect results, precisely because this 
value is highly conditioned by the actual number of tests carried out on the population. As a consequence, the quantification of the 
restrictions’ impact on the rate of infection is difficult, especially due to the biased data available. 

In this respect, some authors focused on data of deaths, which are likely to be less affected by specific assumptions, and correlated 
them with mobile data, showing that mobility is responsible for more than 90% of the initial spreading in Italy and in France (Iacus 
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et al., 2020). 
Data analysis techniques usually play a big role to understand this type of phenomena; however, due to the rapid development of 

the pandemic, it is also important to have more general models capable of predicting the impact of different scenarios, independent on 
the available infection data. Simulation models could help to understand the possible impact of differentiated strategies (e.g. according 
to the geographical scale), and replicate the related scenarios in a disaggregated way. 

In this respect, agent-based models (ABM) have many advantages, among them the possibility of simulating the behaviour of 
autonomous agents and the complex social interactions with other agents at a micro-scale level (Tzouras et al., 2021). Moreover, ABM 
is capable of including very rich data scenarios together with country-specific demographic data, and the possibility of simulating 
population mobility patterns (Cho et al., 2012; Le Pira et al., 2020; Calabrò et al., 2022). 

A further advantage of using the ABM approach is the stochastic nature of the simulations, which allows to implement a component 
of randomness (Huppert and Katriel, 2013; Shi et al., 2014). ABM have been used to simulate virus spreading, drawing inspiration from 
the so-called SIR-based models and applying them to a dynamic simulation environment. Silva et al. (2020) proposed the so called 
COVID-ABS to simulate different scenarios (e.g. lockdown, use of face masks) and estimated their economic impact. Cuevas (2020) 
provided an ABM aiming at reproducing the transmission risks in facilities and performing different hypothetical scenarios. Both 
studies did not apply the model in a real case study but reproduced a synthetic population of a closed society. Lima and Atman (2021) 
presented an epidemiological model using an ABM to evaluate the spreading level at different percentage of mobility reductions. 
However, the Authors made the assumption of random walk for agents without referring to official mobility data. Kai et al. (2020) 
focused on the impact of universal masking through an ABM Monte Carlo. Their results suggest that a social distance measure without 
the adoption of mask wearing would have entailed an increase in the infection rate. Najmi et al. (2020) extended an existing 
activity-based model named SydneyGMA to replicate the case of Sydney by determining COVID-19-specific parameters and consid-
ering the interaction among agents resulting in a useful model at a city level. Mahmood et al. (2020) introduced an agent-based 
simulator of COVID-19 spreading, incorporated spatial, demography and epidemiology data. This model is configured as a decision 
tool that can be adopted by policy-makers for their specific context. 

Notwithstanding the importance of these studies to analyse COVID-19 dynamics by reproducing its spreading at different scales, 
there is a general lack of comprehensive ABM capable of providing a decision-support tool for the design of strategic plans to contrast 
pandemics based on respiratory diseases. In this respect, this sanitary emergency highlighted the importance for countries of being 
equipped with an a-priori pandemic plan capable of suggesting efficient strategic solutions and intervening in advance to limit the 
negative effects. This paper is framed in this context and proposes an ABM that could be used for ex-ante evaluations of different 
scenarios at a large scale, i.e. the national one. The details about the data and methods used are presented in the following. 

3. Data and methods 

The rationale behind the use of ABM is to evaluate how the epidemic spread changes on the basis of different mobility restriction 
policies. 

As previously mentioned, we drew inspiration from a previous study aimed at measuring an a-priori risk index for each of the 20 
regions in Italy (Pluchino et al., 2021). The study showed that the geographic distribution of this index correlates at the regional scale 
with the available COVID-19 official data about the number of infected individuals, patients in intensive care and the number of deaths 
registered after the first epidemic wave in 2020. More in detail, the risk index was built combining the following indicators, extracted 
from data collected on a regional basis before the beginning of the pandemic: mean winter temperature (Wt), since low temperatures 
affect the spread and transmission of the virus; housing concentration (Hc), since urbanization of cities leads to a more threatening 
diseases diffusion; healthcare density (Hcd), as it was found the potential of hospitals to favour super-spreading events; population 
mobility (Pm), since this favour the interaction among people and the virus transmission; air pollution (Ap): the correlation between 
exposure to particulate pollution and the diffusion of COVID-19 is demonstrated by various studies; population over 60 (P_over60), 
considered more vulnerable to suffer virus effects. References and more detailed information can be found in Pluchino et al. (2021). 

In the proposed ABM there are two types of agents: regions and individuals. Based on the actual population of each region, a 
proportional number of individuals is assigned, considering that each individual-agent is representative of a certain number of real 
individuals (with a scale of approximately 1:1000 based on the actual number of Italian population). 

This approximation was made in order to avoid excessive simulation time arising from considering the real scale of the Italian 
population. 

A description of the parameters affecting agents’ behaviours is provided in section 4.1. 
The construction of the model can be summarized as schematized in Fig. 1. 
The ABM simulations were carried out through the NetLogo software, which is a multi-agent programmable environment for 

simulating and modelling complex systems by taking into account the evolution of the “agents” over time (Wilensky, 1999). 
In the following, the case study of Italy is presented more in detail together with a description of the related model’s phases. 

4. Case study 

The case study analysed in this work is related to Italy and its 20 administrative regions. Italy was the first European country in 
which the virus appeared, although the dynamics of spread and the date of the first infection remain uncertain. The first confirmed 
cases of contagion date back to 2020, January 23rd, when two tourists from China were tested positive for the virus in Rome. The first 
two official outbreaks of COVID-19 infections with positive cases of Italian citizens were reported later on February 21st, in Lombardy 
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and Veneto.1 Since then, the infection has spread throughout Italy with varying intensity. Nevertheless, several studies have shown 
that there were actually cases even before (Apolone et al., 2020; Valenti et al., 2020). On March 7th a government measure imposed 
some travel limitations. On March 11th, the restrictive measures were converted into a national lockdown, with a “stay-at-home” order 
allowing travelling only for essential services or urgent reasons, with the aim of stopping the spread of the virus. This national 
lockdown of about two months has provoked a tough reduction both in short and long distance travelling. 

Fig. 2a shows statistics on the number of daily cases in Italy. As can be seen, the trend increases starting from March and it seems to 
have a surge in the second wave starting from October 2020. The first trend is justified by the difficulty to accurately detect the actual 
number of infected (Tradigo et al., 2020). Subsequently, with the growth in the number of tests, the share of recorded infected people 
has gradually increased. Nevertheless, uncertainties on the actual number of cases still remain, due to the biased data available on the 
contagion rate. 

In October 2020, the World Health Organization (WHO) stated that 10 percent of the global world population was infected with the 
virus.2 This leads to the belief that also in Italy the number of infected was actually much higher than reported by official data sources, 
touching the millions of infected. This number is also comparable with the average annual number of seasonal flu cases.3 The number 
of daily deaths (Fig. 2b) has instead the same order of magnitude in both waves. 

The absence of reliable data on the number of infections did not allow to have clear information on the actual effects of the re-
strictions imposed in the first COVID-19 wave on the virus spreading. 

Based on these premises, we developed an ABM able to reproduce a contagion rate which matches WHO statistics (resulting in a 
higher number of total cases) and the differentiation of infections between the Italian regions visible from the data collected by the 

Fig. 1. ABM steps.  

Fig. 2. Daily new cases (a); daily deaths (b) in Italy (source: https://www.worldometers.info/coronavirus/country/italy/).  

1 https://lab24.ilsole24ore.com/storia-coronavirus/.  
2 https://www.cnbc.com/2020/10/05/who-10percent-of-worlds-people-may-have-been-infected-with-virus-.html.  
3 https://www.epicentro.iss.it/influenza/stagione-2019-2020-primo-bilancio. 
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Italian Ministry of Health. In this paper we will use the model to simulate different mobility restriction scenarios and evaluate the 
related impacts during the first epidemic wave in 2020. As shown in Fig. 3, the realistic geographical distribution of representative 
agents on the Italian territory allows to simulate the population mobility either in absence or in presence of restrictions, evaluating in 
real-time the virus diffusion and the corresponding effects in terms of infections and mortality. 

Thanks to the results obtained, it will be possible to provide suggestions on mobility restrictions for an emergency plan that could 
be adapted not only for the case of COVID-19, but also for other similar pandemics. 

The steps of the ABM and the selected scenarios are described in the following. 

4.1. Model steps 

4.1.1. Agents setup 
In the setup phase all the parameters relating to both regions and individuals are set. Each agent r (region) is characterized by the 

following parameters: Wt, Hc, Hcd, Ap, Pm and P_over60. Each agent i (representing individuals) inherits the first 5 parameters from 
its home region and is classified in an age-group depending on the percentage of P_over60. 

The dynamics of the model is given by the changes in people mobility through the Pm parameter (Pm_reduction), which are 
evaluated for each agent r and different time windows, according to mobility restriction. 

For the mobility procedure, reference was made from an Italian mobility report which contains an overview of the mobility habits 
of people in Italy (“16◦ Rapporto sulla mobilità degli italiani”, source: ISFORT4). This report provides the percentage distribution of 
trips for four classes of distance from 2 km to over 50 km (Fig. 4). Individual-agents in the model move according to the assigned 
mobility index (Pluchino et al., 2021) multiplied by the probability of making a trip belonging to these distances’ classes. Trips over 50 
km are considered as done by plane. For airline mobility, authors referred to a dataset containing Origin-Destination matrix of airline 
travel for each region (source: ENAC, 2019 5). 

The model is capable of dynamically reproduce mobility restrictions by using three main datasets that provide the reduction of air 
flights from March 7th until June 25th, daily mobility radius, and number of trips. OpenData are used to gather information about 
mobility decrease considering, in particular, the reduction of air flights from 2019 to 2020 and the reduction of the radius and number 
of overall trips (references are reported in Table 1). 

Table 1 summarizes agents’ parameters (P). Each parameter has been normalized between 0 and 1, as in Pluchino et al. (2021). 

4.1.2. Virus spreading model 
For the calculation of risk index (RI) authors referred to the Crichton’s Risk Triangle (Crichton, D., 1999), which evaluates RI as a 

function of three parameters: hazard, vulnerability, and exposure. (i) Hazard takes into consideration those factors that can intervene 
in the spread of the infection; (ii) Vulnerability is a measure of probability that an individual suffers a health damage due to infection; 
(iii) Exposure refers to the number of exposed people. 

In the study of Pluchino et al. (2021), the RI is calculated for each region r as a floating-point variable between 0 and 1 and is 
obtained as: 

Fig. 3. Simulation environment.  

4 https://www.isfort.it/progetti/16-rapporto-sulla-mobilita-degli-italiani-audimob/.  
5 https://www.google.com/search?q=enac+dati+traffico+2019/. 
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RI = HAZARD • VULNERABILITY • EXPOSURE                                                                                                                     (1) 

Hazard, vulnerability and exposure are also floating-point variables between 0 and 1, in turn calculated as follows:  

HAZARD = 1/3 • Hc + 1/3 • Hcd + 1/3 • Pm                                                                                                                             (2)  

VULNERABILITY = 1/3 • Wt + 1/3 • Ap + 1/3 P_over60                                                                                                            (3)  

EXPOSURE = population of each region                                                                                                                                      (4) 

In the ABM model authors propose a dynamic version of RI by referring it to each individual-agents. In this respect the new risk 
index (ri) is calculated as follow:  

ri = hazard • vulnerability                                                                                                                                                          (5)  

hazard = 1/3 • Hc + 1/3 • Hcd                                                                                                                                                   (6)  

vulnerability = 1/3 • Wt + 1/3 • Ap                                                                                                                                            (7) 

The model provides a disaggregate version of RI in which the Pm, P-over60 and exposure component are specific characteristics 
referred to each agent i and therefore are not considered for the direct calculation of the risk index. 

In order to simulate the total Italian population (about 59433744 individuals at the beginning of 2020) we adopt 60000 agents i, 
each one representing 991 real individuals, then we distribute them at random inside the territory of each region (see the black dots in 
Fig. 2), proportionally to the respective inhabitants. 

Fig. 4. Scheme of distances classes.  

Table 1 
Summary of agents parameters.  

P Description and unit Source Type 

Wt Average winter temperature (◦C) Italian Ministry of Agriculture (2016–2017) Fixed for each 
region 

Hc Ratio between the total number of houses and the number of houses 
classified as “detached houses" 

Italian Ministry of Economic Policy Planning 
and Coordination (2011) 

Fixed for each 
region 

Hcd Number of hospital beds per inhabitant Italian Ministry of Health (2019) Fixed for each 
region 

Ap Exposure to concentrations of particulate matter (PM) WHO (2016) Fixed for each 
region 

Pm Ratio between the sum of commuting flows (incoming and outgoing) for a 
region and the population employed in the region. 

Italian Ministry of Economic Policy Planning 
and Coordination (2011) 

Fixed for each 
region 

Pm_reduction 1. reduction of air flights (%); 
2. reduction of the dimension of the daily mobility radius (%); 
3. reduction of the number of trips (%); 

1. EUROCONTROL 
2. Covid19mm.github: first report 
3. Google: covid19-mobility 

Dynamic time 
windows 

P_over60 Fraction of population over 60 ISTAT (2011) Fixed for each 
region  
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RI is therefore assigned to each region and also characterizes each individual living in that region, as explained below. Official data 
show that 95% of people died in Italy due to COVID-19 were aged over-60.6 For this reason, for the calculation of RI, a distinction was 
made between under-60 and over-60 years old, increasing the probability of being exposed for the latter category. 

By combining the RI with the mean infection duration, the model determines the status associated to each individual on the basis of 
a SIR-based approach (Kermack and McKendrick, 1927): susceptible, infected, isolated (or not isolated), immune and dead. The mean 
infection duration, based on official data (Italian Ministry of Health7), is considered equal to 10 days. Individual-agents change their 
status according to the procedure summarized in the following flowchart below (Fig. 5) and hereby described. The simulation starts 
with two agents with the status “infected” which represent the “zero patients”. All the other individual-agents start from a status called 
“susceptible”. Once the simulation starts and the individuals begin to travel according to the assigned mobility index, if a “susceptible” 
individual encounters an “infected” one, in an infection radius of about 7 km (Covid19mm.github: first report), it will have a prob-
ability to contract the virus based on the product between hazard and virulence. If the result of this product is more than a random 
floating number between 0 and 1 (random-float 1 in Fig. 5), individuals will change their status into “infected”. After getting infected, 
the individual is assigned with a probability of being symptomatic (≤10%) or asymptomatic (≥90%),8 that turns him respectively into 
the new status or “isolated” and “not isolated”. Finally, after the mean infection duration, the individual dies or recovers from the 
infection, by comparing the product between vulnerability and lethality with a random floating number between 0 and 1, assuming 
respectively “dead” or “immune” status. 

While hazard and vulnerability are parameters directly linked to each individual, virulence and lethality are related to the char-
acteristic of the virus. Virulence, which corresponds to the contagiousness of the virus, is a fixed parameter. Its value has been 
calculated through a calibration procedure by reproducing different scenarios and varying virulence until obtaining results compa-
rable to the real data in terms of number of deaths. Also for the lethality, which correspond to the mortality level of the virus, reference 
was made to real data. 

Due to the data uncertainty, lethality value varies according to a Gaussian probability distribution with mean 0.02 and standard 
deviation 0.01, i.e. lethality oscillates around 2% (Russell et al., 2020). 

4.1.3. Choice of analysis scenarios 
According to policy suggestions by Pluchino et al. (2021), the following scenarios have been tested: 

Fig. 5. Individual’s status change procedure flowchart.  

6 https://www.epicentro.iss.it/coronavirus/sars-cov-2-decessi-italia.  
7 http://www.salute.gov.it/portale/nuovocoronavirus/dettaglioNotizieNuovoCoronavirus.jsp?lingua=italiano&id=5117.  
8 https://www.istat.it/it/archivio/246156. 
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− Status Quo: Same total mobility restrictions for all regions;  
− Scenario N1: No mobility restrictions at all (RI = 1 for all regions);  
− Scenario S1: Total mobility restrictions for all the regions (RI = 1 for all regions);  
− Different mobility restrictions according to 3 zones based on the values of the following parameters (Table 2, Table 3 and Fig. 6):  

o mobility index (Scenario M);  
o hazard (Scenario H);  
o vulnerability (Scenario V);  
o risk index (Scenario RI). 

More details on how these parameters were calculated can be found in Pluchino et al. (2021). 

4.1.4. Scenario simulation 
Following the real case study, the analysis of different scenarios has the same starting date as the governmental restriction 

introduced in Italy (i.e. March 7th, 2020). December 28th, 2019 was chosen as the starting pandemic date for all scenario, due to the 
uncertainty of the beginning of the infection in the country (Apolone et al., 2020; Valenti et al., 2020). 

The two “zero patients” are in Lombardy and Lazio, regions where the first cases of COVID-19 occurred and also those where hub 
airports are present; hence they were considered the regions with more connections to other countries. 

The output data of the simulation, calculated on June 25th, 2020 (after the end of the first epidemic wave), are the following:  

− Number of infected people for each region;  
− Number of dead people for each region. 

Each scenario was simulated 5 times and the results were averaged to have a statistics of the events. Computing simulation time for 

Table 2 
Zone classification according to mobility index, hazard, vulnerability and risk index. 

Table 3 
Characterization for zone-based scenarios.  

Risk index zone Parameter ZONE 1 ZONE 2 ZONE 3 

Scenario M mobility index No mobility restriction 50% of mobility restriction Total mobility restriction 
Scenario H hazard 
Scenario V vulnerability 
Scenario RI risk index  
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each scenario assumes reasonable values (about 20 min). 

5. Results and discussion 

5.1. Results 

In the following, results showed in Fig. 7 and Fig. 8 will be presented and discussed. 
In the first rows of these figures, a comparison will be made between the status quo (a scenario assuming the national lockdown 

adopted by the Italian Government during the first epidemic wave) and the real COVID-19 data concerning, respectively, the 
cumulated number of infected and the cumulated number of deaths. It is worth of notice that the order of magnitude for the simulated 
infection cases substantially differs from that one of official data, while it is the same for the number of deaths. As already anticipated, 
the absence of an adequate tests sampling, especially in the first wave, has led to an unreliable number of infected recorded by the 
official institutions. Through the simulations it has been verified that, in order to obtain a comparable total number of deaths (about 
39,000 simulated against the 35,000 reals, from December 28th, 2019, until June 25th, 2020), millions of circulating infected in-
dividuals would be necessary. This finding confirms the hypothesis, already discussed in Section 4, that the official data about infected 
was heavily underestimated. However, in terms of relative distribution of cases in the various regions, the comparison of the two 
chromatic maps in the first row of Fig. 7 is quite good. The same holds also for the analogous comparison in Fig. 8, where the simulated 
distribution of deaths among the Italian territories correctly identifies the northern regions as the most damaged, as in reality. The 
apparent discrepancy concerning the central and southern regions, which in the status quo simulation registered fewer deaths than in 
the real cases, can be explained recalling that the main approximation of the present model lies on the fact that each agent is 
representative of about 1000 individuals. Therefore, the epidemic behaviour in regions with less than 1000 deaths cannot be properly 
captured by the simulations, which return a null result. 

The next step is to compare the status quo scenario with other alternative zone-based scenarios, i.e. M, H, V and RI. Looking again at 
Figs. 7 and 8, second and third rows, it can be noticed the expected increase in the number of infected and dead people due to the lower 

Fig. 6. Classification in three zones, with increasing mobility restrictions, for scenarios defined in Table 3.  
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restrictions. As summarized in Table 4, the increase is about 20% on average for the total number of infected and 25% for the total 
number of deaths for the whole Italian territory. The increase for the most damaged region, i.e. Lombardy, goes from 20% to 31% for 
both infected and dead people. These findings are in line with other research studies. Gatto et al. (2020) simulated a scenario in which 
the duration of mobility restrictions during the first phase in Italy only lasted one month. In comparison with the status quo, the 
considered scenario entailed only a small increase in terms of hospitalization, comparable to the increase in the number of infected 
obtained in our model. Lima and Atman (2021) observed an effective reduction of infection rate with the flattening of the infection 
curve for a percentage of mobility reduction of 70%–90%, less than a 100% of reduction which corresponds to a total lockdown. 
Similarly, de Sousa et al. (2020) demonstrated that a total lockdown policy did not have much effect on reducing the peak of the 
infection curve. However, even if solutions with partial lockdowns are of course preferable from the socio-economic point of view, the 
increment in terms of loss of human life is not negligible with respect to the total lockdown and should be carefully evaluated. On the 

Fig. 7. Distribution of number of infected for each scenario.  
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other hand, there are no relevant differences in the results of the four indicator-based scenarios. Therefore, the RI scenario can be 
considered as the best solution, since is the one implying less restrictions, i.e. fewer regions in lockdown. 

Pluchino et al. (2021) already demonstrated the effectiveness of RI as a good indicator of virus spreading and consequences on the 
population, by correlating its regional values with real data of the first wave of the pandemic. Here, we can try to support this result by 
simulating two new scenarios with RI = 1 for all regions, i.e. with the same a-priori risk for the whole territory, and showing that the 
results are not compatible with real data. Scenario N1 simulates virus spreading in absence of lockdown while scenario S1 simulates 
the same national lockdown of the status quo. As expected, a huge increase in the number of infected and deaths (more than 100%) with 
respect to the simulated status quo is observed, particularly in scenario N1. Also Gatto et al. (2020) simulated a scenario without 
lockdown, obtaining similar results, i.e. a very high increase in hospitalization. This suggests that the consequences in terms of infected 
and deaths would have been much worse if a-priori conditions would have no influence on virus spreading. Moreover, in these 

Fig. 8. Distribution of number of deaths for each scenario.  
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scenarios damages would be more uniformly distributed over the Italian territory than in reality, without substantial differences 
between northern and central-southern regions. 

5.1.1. Policy implications and discussion 
In terms of policy implications, the main result is that differentiated mobility restrictions for the different regions are a suitable 

solution to limit virus spreading while reducing the overall impact on the economy. This is in line with the policies adopted by the 
national Government for the second wave that defined three zones (red, orange and yellow) based on multiple healthcare indicators, 
which depend both on the ability of each region to cope with the virus spreading, and real-time data based on a continuous monitoring. 
However, our model suggests solutions that could be applicable for any sanitary emergency, regardless of real-time data, which could 
be, as in this case, naturally biased. In this respect, the ABM could be used to set the initial mobility restrictions, which should be 
updated according to the dynamic conditions linked to the virus spreading. 

In other words, the model could be considered a decision-support tool for any strategic plan to contrast pandemics based on 
respiratory diseases, allowing a classification of regions based on a-priori data that could be regularly updated to have an up-to-date 
risk assessment for each region and know in advance the impact of different mobility restrictions strategies. This is particularly 
important and needed, given the unpreparedness of different countries to cope with the virus and, in the case of Italy, the lively debate 
around the outdated pandemic plan.9 

Moreover, since the model predicts the impact of the reduction of the radius of trips on the virus spreading, it could be also used to 
simulate targeted policies based on municipal, regional or national mobility. In the performed simulations, a lower radius for trips (i.e. 
short trips) reduces the risk of contagion because of a lower probability of getting in touch with other people, and this suggests that 
local policy-makers should guarantee adequate accessibility to essential services on short distances during pandemics and promote the 
use of sustainable transport modes to reach them, also in the view of the effects of pollution on the transmission of respiratory disease, 
proven also in the case of COVID-19 (Hensher, 2020; Gutiérrez et al., 2020). 

To sum up, from a policy-maker point of view, in order to reduce the spread of a virus epidemic, it is possible to plan twofold 
policies, based on the parameters related to the risk index: (i) reducing the hazard (protection policy) by adopting different mobility 
restrictions, according to the simulation results that dynamically provide the risk level of a region over time; (ii) reducing vulnerability 
(prevention policy) by promoting forms of sustainable mobility and compact city (e.g. 15-minutes city), capable of reducing the 
environmental impact and fostering shorter trips. In this respect, the Italian government has been following this path, implementing 
national policies for the purchase of non-polluting vehicles (e.g. “Buono mobilità”), and promoting the construction of infrastructures 
dedicated to active mobility10, 11. 

6. Conclusion 

In this paper, an ABM is presented to dynamically simulate the impact of mobility restrictions during COVID-19 pandemics in Italy. 
Different mobility limitation scenarios have been simulated with the aim of suggesting possible policy measure to limit the virus 
spreading. The scenario construction is based on the assignment of different mobility restrictions: no mobility restrictions at all, total 
mobility restrictions or different mobility restriction corresponding to 3 zones according to different parameters (i.e. M, H, V and RI). 
The main results show that assigning an a priori regional risk allows to adopt policies of localized restrictions that maintain almost the 
same effectiveness as a complete closure, allowing the opening of a greater number of economic activities and a greater mobility. In the 
second wave, the Italian government decided a similar zonation, classifying Italian regions into three risk areas based on the pro-
gressive gravity of health emergency. 

These government measures consider only sanitary parameters and are suitable for real-time management of the health emergency. 
However, at the beginning of the pandemic, the adoption of an adequate pandemic plan could have led to less drastic economic 

consequences (Haug et al., 2020). 

Table 4 
Summary of the results obtained for each scenario.  

SCENARIO Number of region for each zone % increment of infected with respect to SQ % increment of deaths with respect to SQ 

ZONE 1 ZONE 2 ZONE 3 Total Lombardy Total Lombardy 

M 6 9 5 +22% þ30% +28% þ31% 
H 4 10 6 +17% +25% +30% +30% 
V 12 7 1 +22% þ30% +18% +20% 
RI 13 6 1 +21% +28% +26% +30% 
N1 20 0 0 þ123% +1% þ187% þ31% 
S1 0 0 20 +106% − 12% +156% +18%  

9 https://www.theguardian.com/world/2020/aug/13/italy-pandemic-plan-was-old-and-inadequate-covid-report-finds.  
10 https://www.gazzetta.it/bici/03-11-2020/milano-50-chilometri-nuove-piste-ciclabili-l-obiettivo-2020-390550946007.shtml.  
11 https://www.gazzettaufficiale.it/atto/serie_generale/caricaDettaglioAtto/originario?atto.dataPubblicazioneGazzetta=2020-09-05&atto. 

codiceRedazionale=20A04737&elenco30giorni=false. 
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In this respect, the model proposed in this paper aims at providing useful suggestions to contrast epidemic emergency in the context 
of a preliminary strategic plan. The reproducibility of the model and its scalability to different territorial contexts makes it a tool able to 
provide valuable information for government agencies to undertake the proper interventions in the event of a pandemic diffusion. In 
this respect, as future research, it should be tested in other contexts where the virus spreading followed different patterns. Finally, the 
ABM can also be adapted to other health emergencies caused by respiratory diseases. Notwithstanding the potential of ABM for 
simulating virus spreading, there are some limitations. Once is related to the approximation of 1 agent corresponding to almost 1000 
real individuals, making it difficult to recreate the early periods of the pandemic when the number of infected/deaths was still in the 
hundreds. Another limitation is linked to the mobility analysis. In this model agents move according to classes of distance, but a 
differentiation in terms of modes of transport has not been implemented (excluding very long distance trips which are considered as by 
plane). In this respect, future research might include the use of different modes of transport and assign to each of them a risk of in-
fections, considering that collective modes have been considered riskier than individual ones, due to their potential crowding (e.g. see 
Barbieri et al., 2021). This would be relevant if one adopts a higher level of details, e.g. by focusing on the urban scale instead of the 
national one. Moreover, a dynamic of vaccine administration could be implemented, with the aim of evaluating its effectiveness 
together with the policies of restrictions on mobility. 
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